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Abstract  
 
The structured social hierarchies and individual social bonds within dairy cows’ groups 
significantly influence their welfare and productivity. Traditional monitoring methods are 
labour-intensive and often lacking insights into precise spatial positioning or the nature 
of behaviour. Here, a computer vision system was proposed, employing YOLOv8, for 
automated identification and tracking of dairy cows in barns equipped with Automated 
Milking Systems. The study pioneers the analysis of social interactions among 240 dairy 
cows using computer vision. Through comprehensive dataset preparation and model 
training, robust performance in cow detection and tracking was achieved. Evaluation 
metrics demonstrate the model's effectiveness in real-world settings, with high precision 
and recall values. The construction of temporal social networks was enabled, revealing 
insights into cow interactions. The results indicate the model's suitability for practical use, 
paving the way for future real-time analyses of cow social networks and promising 
advancements in dairy farming management. 
 
Keywords: Dairy Cows, Precision Livestock Farming, Computer Vision System, 
Convolutional Neural Networks, Social Interactions 
 
Introduction 
 
Cattle, like many other gregarious species, form structured groups characterized by well-
defined social hierarchies, and within these stable social units, cows develop particular 
social bonds (Gygax et al., 2010). The social environment and the ability to express 
specific social behaviours hold significant implications for both the well-being and 
productivity of cows (Bouissou et al., 2001). Traditional methods for monitoring social 
interactions in dairy cows often rely on manual observation, which is both time-
consuming and prone to inaccuracies. Consequently, conventional cow behaviour 
detection requires substantial staffing and resource allocation. Embedded sensor 
technology, such as spatial proximity loggers (Fielding et al., 2021; Leso et al., 2023) and 
Ultra-wideband (UWB) technology (Rocha et al., 2020), is commonly employed to 
explore social dynamics among animals. However, these sensors are limited to detecting 
social behaviour solely through spatial proximity assessment, lacking insights into precise 
spatial positioning or the nature of behaviour (positive or negative). Additionally, the use 
of wearable sensors poses challenges, necessitating attachment to the animal and 
management of battery life.  
Computer vision technology is currently acknowledged as a pivotal tool for detecting 
cows’ behaviours in a non-intrusive and cost-efficient manner (Tassinari et al., 2021; 
Zhang et al., 2023). Convolutional Neural Networks (CNNs) are algorithms widely used 
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in computer vision for livestock detection and recognition through the automatic 
extraction of both low-level features, such as edges and textures, and complex features 
(Wang et al., 2024). CNNs are used for cows’ identity recognition (Zhang et al., 2023) as 
well as for the recognition of different behaviours such as lying, standing, walking 
(McDonagh et al., 2021). However, only a limited number of studies have focused on 
analysing social interactions among dairy cows using these technologies (Guzhva et al., 
2016; Ren et al., 2021). 
In our research, we developed and assessed the reliability of a computer vision system 
utilizing deep learning techniques, for the automated identification of 240 individual dairy 
cows in a barn equipped with Automated Milking Systems (AMSs). Specifically, we 
explored the application of YOLOv8 (YOLOv8), a widely used framework based on 
CNNs, for detecting and tracking cows in a barn environment (e.g., Zheng et al., 2022; 
Wang et al., 2024). For this study, we utilized meticulously annotated real data collected 
from the farm under investigation. To our knowledge, this is the first endeavour to analyse 
social interactions among a sizable population of dairy cows using computer vision. Our 
main goal is to monitor the cows and establish their social networks to understand how 
the social context influences both their welfare and production. 
 
Material and Methods 
 
Animals and Housing 
 
The study was conducted in a cubicle free-stall barn situated on a commercial dairy farm 
in the North-West region of Italy. The structure of the barn consisted of two rectangular 
enclosed spaces, each measuring 45x30 meters. Each area hosted around 120 Holstein-
Friesian lactating cows and was equipped with two AMSs (Lely Astronaut A4); the first 
was allocated for primiparous cows, whereas the second area was dedicated to 
multiparous cows. The cows were housed indoors for the duration of their entire 
production cycle. 
 
Cameras configuration 
 
Eight Super Wide Angle Fixed Bullet Network Cameras (Hikvision DS-2CD2T45G0P-
I) were positioned to ensure a comprehensive view of both the barn area and the milking 
robots (Figure 1). Cameras were positioned to eliminate blind spots and ensure a 
comprehensive coverage of the barn. Each camera angle overlapped with others, 
providing multiple viewing perspectives, and maximizing visibility of cows regardless of 
their location within the barn. The cameras were installed outside the area where the 
animals were housed to prevent disturbances during routine checks and cleaning 
operations. 
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Figure 1. Left panel: upper view of the barn and location of the cameras (orange squares 
represent the milking robots). Right panel: side view of the barn. 
 
Frame Selection and Dataset Composition 
 
The data acquisition process was partitioned into multiple videos and time slots to ensure 
the dataset's maximum variability. The selection of the various time intervals aimed to 
capture all available lighting conditions, both natural and artificial, to enhance the 
dataset's robustness. Finally, to mitigate instances of low variance in the dataset, the 
videos were stored with low frame rate, i.e. 6 frames-per-second (FPS). From 144,000 
frames, 400 images were selected as detailed in the following section, encompassing 
contexts differing in cow numbers and body positions. The resulting dataset covers 24 
hours, with an average of 20.8 bounding boxes (displayed as a rectangular outline drawn 
around an object or a region of interest within an image) per image (Figure 2).  Image 
analysis and management was conducted through Roboflow, an online platform with 
tools for managing, annotating, and preparing data for training artificial intelligence 
models, computer vision ones in particular (Roboflow). On this platform, the images were 
labelled and categorized into three separate sets (training, validation and test) based on a 
70%, 20% and 10% split, respectively. The 10% allocated to the test set was essential for 
rigorously evaluating the model's generalization capabilities and ensuring its robust 
performance on unseen data. To further mitigate False Positives (FP), the test set was 
augmented with 1% of empty barn images and 1% of images from other barns 
(Ultralytics.a). 
 

 
 
Figure 2. Example of image selected for the training dataset. The blue squares represent 
the ground truths used in the training process.  
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Pipeline Structure for Video Pre-processing 

A structured pipeline of operations was devised to prepare the video dataset (V) for 
subsequent analysis. The objective was to extract a subset of key frames (K) that best 
represented the progression of the video. To achieve this, the pipeline prioritized both 
computational efficiency and the selection of informative frames capturing significant 
changes.  The pipeline took a video V of length T frames (in this case, T = 3600 for a 10-
minute video) as input and output a subset of key frames (K) using the following steps: 

1. Canny Edge Detection with Experimental Thresholds (Canny, 1986).                                       
This facilitated the precise identification of edges 𝐸𝐸𝑖𝑖 within each video frame 
(denoted as 𝐹𝐹𝑖𝑖, where 𝑖𝑖 = 1 to 𝑇𝑇), highlighting the foreground subjects. 
Mathematically, the Canny algorithm output a binary edge map (𝐸𝐸𝑖𝑖) for each 
frame 𝐹𝐹𝑖𝑖, where 𝐸𝐸𝑖𝑖(x, y) = 1 indicated the presence of an edge at pixel location (x, 
y) and 𝐸𝐸𝐸𝐸(x, y) = 0 in the opposite case. 

2. Edges employment as Masks for the extraction of 3-Channel (RGB) Edges.   
The detected edges (𝐸𝐸𝑖𝑖) were used to create a binary mask (𝑀𝑀𝑖𝑖) for each frame 𝐹𝐹𝑖𝑖. 
This mask allowed us to isolate relevant edge features, focusing on areas of 
potential change, while mitigating the influence of noise and irrelevant 
background elements. The resulting Frame (denoted as 𝐹𝐹𝑖𝑖𝑟𝑟) was obtained by 
assigning the original pixel value (RGB) from frame 𝐹𝐹𝑖𝑖 only to pixels where the 
corresponding location in the edge map 𝐸𝐸𝑖𝑖(x, y) had a value of 1. All other pixels 
in 𝐹𝐹𝑖𝑖𝑟𝑟 were set to black. 

3. Absolute Pixel-wise Difference Calculation for Top-K Frame Extraction. For each 
frame 𝐹𝐹𝑖𝑖𝑟𝑟 , a difference metric D(𝐹𝐹𝑖𝑖𝑟𝑟, 𝐹𝐹𝑖𝑖−1𝑟𝑟 ) was calculated by comparing each pixel 
of the current frame (𝐹𝐹𝑖𝑖𝑟𝑟) and the previous frame (𝐹𝐹𝑖𝑖−1𝑟𝑟 ). The top-k frames with the 
highest difference metric values were selected to enrich subset (K) with diverse 
and informative visual representations of the video content. 

By structuring the pre-processing pipeline in this manner, we aimed to streamline 
computational efforts while enhancing the interpretability and richness of the resultant 
dataset for downstream computer vision tasks. 

Object Detection model 
 
The state-of-the-art Ultralytics YOLOv8 (Ultralytics.b) model was used for the detection 
and tracking of cows from annotated image datasets. Leveraging the successes of its 
predecessors, YOLOv8 introduces novel features and enhancements designed to elevate 
its performance and versatility. 
 
Model training 
 
The training procedure involved using annotated data to train the model. Various 
techniques were employed to enhance the model's performance, including data 
augmentation, layer freezing applied on the backbone, and hyperparameter tuning.  
Specifically, hyperparameters fine-tuning was performed with genetic algorithms 
embedded in YOLOv8 and involved 100 iterations of 30 epochs each. Additionally, k-
fold cross-validation was applied to the validation set to reduce overfitting. Layer freezing 
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was employed to expedite training and reduce costs by preserving pre-trained layers. 
Additionally, parameter adjustment for optimization was conducted during the training 
phase. Hyperparameters such as learning rate, momentum, optimizer settings, and the 
number of epochs were adjusted to find the best combination in order to achieve optimal 
model's performance. This iterative process involved experimenting with different 
configurations to maximize the effectiveness of the training process and to improve the 
model's accuracy and generalization capabilities. 
 
Model Evaluation 
 
Following the training process, the model's performance was thoroughly evaluated using 
various metrics and techniques. Evaluation metrics demonstrated consistent improvement 
in the model's performance over epochs, with decreasing training and validation losses, 
high precision and recall values, and consistently high mean average precision (mAP) 
scores at different Intersection over Union (IOU) thresholds. Additionally, holdout cross-
validation techniques were utilized to evaluate the model's generalization ability and 
robustness, ensuring consistent performance across diverse datasets. The evaluation 
process provided insights into the model's effectiveness in accurately detecting and 
tracking cows in a barn environment, allowing for informed decisions on model 
deployment and further refinement if necessary. 
 
Results and Discussion 
 
Different models were tried out to assert the most suitable for our purpose. After various 
runs, it was decided to utilize the “YOLOv8l” version due to its trade-off between 
robustness and great inference speed (Table 1). 

Table 1. Results and characteristics comparison over different YOLOv8 models. The mAPval50-95 was 
calculated during validation of the best model achieved with the specified size on our dataset. The speed 
refers to the inference time on a single image with dimensions of 1344 × 760 pixels. 

Model mAPval 
50-95 

Speed (ms) Params 
(M) 

FLOPs (B) 

YOLOv8m 0.70355 23.859 25.9 78.9 
YOLOv8l 0.71561 32.164 43.7 165.2 
YOLOv8x 0.718 52.816 68.2 257.8 

 

The speed was determined as the average inference time measured on our system over 
100 inferences. Our system was equipped with an Intel(R) Core(TM) i7-6800K CPU @ 
3.40GHz, 2 NVIDIA GeForce RTX 3060 12GB GPUs, and 32 GB of RAM. Various key 
metrics were assessed during both the training and evaluation phases (Figure 3). 
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Figure 3. Key metrics achieved during the training and evaluation process. 
 

• Precision and Recall: the model may struggle to balance high precision and high 
recall, possibly due to dense clusters of objects in the peripheral areas of the 
frames interfering with our primary goal.     

• Precision and Recall Fluctuations: this may indicate occasional model overfitting 
to background noise, resulting in false positives. They are likely influenced by the 
presence of distant objects and heavy occlusion settings.  

• Validation Loss: the values of validation loss are generally comparable with the 
training loss which suggest that the model is generalizing (the model's capacity to 
perform effectively on unseen instances or data points, extending beyond the 
specific examples it was trained on) and not overfitting the training data.  

• mAP50 and mAP50-95: our approach consistently achieved a high mAP50 score 
of approximately 0.901, indicating excellent accuracy in "easy" detection tasks. 
In terms of mAP50-95, the model achieved a score of 0.733, confirming its 
readiness for real-world applications. 
 

 

Projection of the Detected Subjects 

In this study, we employed a point projection technique described by Ozella et al. (2024) 
to translate the detected cow centroids onto a simplified top-down barn layout. This 
method utilizes a calibration matrix (Wang et al., 2010), facilitating the conversion of 
image coordinates into real-world barn coordinates. The position (i.e., the real-world 
coordinates) represents the corresponding point on the barn floor map of a cow, expressed 
in centimetres (Figure 4).  
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Figure 4. Results of the projection process. Each diamond shape represents the centroid 
of a detected cow, mapped onto the barn layout. 
 
Using these real-world coordinates, the spatial proximity between each pair of cows can 
be computed to identify social interactions within the herd. This enables the construction 
of the temporal social network of the cows, also known as a time-varying network, where 
links are active only at certain points in time. The nodes of the network correspond to the 
cows, and the links correspond to the social distance between two cows. 
To the best of the authors’ knowledge, this study represents the first attempt to utilize 
computer vision for evaluating interactions across multiple subjects in various areas of 
the barn. While Guzhva et al. (2016) developed a video surveillance system for 
monitoring social interactions, their focus was solely on the waiting area of automatic 
milking stations, neglecting other aspects of dairy cattle behaviour or interactions 
occurring elsewhere in the barn. Additionally, Ren et al. (2021) aimed to implement a 
monitoring system using different technologies, including a computer vision system with 
a single camera, on a sample group of seven dairy cows. However, due to the restricted 
field of view of the camera, not all interactions among the animals were captured, limiting 
the system's effectiveness in discerning the nature of their interactions. 
Instead, in our study, the use of multiple wide-angle cameras limited the presence of blind 
spots or areas of restricted visibility, allowing for a comprehensive view of interactions 
and analysis of the complete social network. The employment of cameras, positioned 
external to the cow’s resting area, enabled an evaluation of the animals’ interactions free 
from any source of disturbance. Additionally, our study required a generic setup and low-
computational resources, further enhancing its replicability. 
 
Conclusions 
 
The model demonstrated strong performance in both validation and real-world scenarios, 
achieving a balance between precision and recall. While occasional overfitting to 
background noise occurred, its stability in later epochs indicated a successful trade-off. 
Consistency between validation and training loss values suggested effective 
generalization without overfitting. Furthermore, its high performance in common 
scenarios confirmed its suitability for practical use. Overall, the model met the authors’ 
expectations, demonstrating its ability to generalize and reliably perform in diverse 
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environments. In conclusion, the data obtained from this study will be essential for the 
development of future real-time analyses of the cows’ social network. 
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development of future real-time analyses of the cows’ social network. 
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