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Abstract

Background: Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The
current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identifi-
cation and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-
related signature.

Methods: We integrated different datasets and applied bioinformatic and statistical methods to construct a robust
immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene
signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual
patients.

Results: The immune-associated risk model discriminated high-risk patients in our investigated and validated
cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall
survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk
model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-
risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity.

Conclusions: Our study provides a novel tool that may contribute to the optimization of risk stratification for survival
and personalized management of COAD.
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Introduction
Colorectal cancer (CRC) is the second leading cause of
cancer death worldwide [1]. Colon adenocarcinoma
(COAD) is the most common subtype of CRC [2].
Despite the advancements in earlier diagnosis and treat-
ment over the past decades, the 5-year survival rate of
CRC patients remains unsatisfactory [3]. The current
prognostic model still relies on conventional clinical
predictors such as age, gender, as well as tumor-node-
metastasis (TNM) staging [4]. This model results in an
inaccurate prognosis due to the high heterogeneity of
CRC [5]. Thus, the establishment and application of
novel signatures or biomarkers for predicting the survival
of CRC patients or instructing the therapy strategy are of
great importance in this field. With the development of
next generation sequencing (NGS), the high-throughput
technology made it possible to screen significant signa-
tures for prognosis in a large scale and improve disease
diagnosis, prognosis and treatment.

Tumor microenvironment (TME) is emerging to be
related to prognosis in CRC [6]. The changes of TME are

considered to be the complex result of multiple variables
[6]. Still, the immune interaction was thought to play
an important role in this process [7]. Notably, the infil-
tration of immune cells into CRC tumors was reported
to be firmly associated with disease progression and
patient survival [7]. Immune therapy for CRC patients
was also taken in account as an emerging effective ther-
apy strategy [8]. During the process from tumorigenesis
to treatment, involved immune cells, as a complex and
multi-faceted role in cancer, take part in suppressing
tumor initiation and progression as well as promoting
proliferation, infiltration and metastasis [8]. The immune
activity involved in tumorigenesis causes the transcrip-
tome changes in tumor cells, which makes it possible to
develop an immune-associated signature that effectively
responds to clinical outcomes [9]. In this study, we estab-
lished a risk model comprising 23 genes based on the
modules identified from weighted correlation network
analysis (WGCNA). The predictive power of the immune
signature was identified by the stratification of risk score
at the transcriptome level. The prognosis effect of the
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genes is validated in a large independent cohort. Func-
tional enrichment and immune-activity deconvolution
showed immune signatures’ change in risk score-strati-
fied groups.

Methods

Schematic diagram of this study design

In this study, to identify and investigate a risk model
which can help improve the prognosis in colon cancer,
we collected data on human patients with colorectal ade-
nocarcinoma (COAD) (Fig. 1A), which is categorized as
transcriptome, clinical part and hallmark gene datasets

Page 3 of 15

(Additional file 1: Table S1). Correlation modules are
identified by weighted correlation network analy-
sis (WGCNA). Differentially expressed genes (DEGs)
(adjusted p <0.05, | log2(fold change) |> 1) were identified
among genes of survival-correlated modules. Univariant
Cox analysis was performed to predict the prognosis-
related module-derived DEGs. The risk model was estab-
lished by applying stepwise regression to multivariant
Cox model and 23 genes (from 174 candidate prognosis-
related module-derived DEGs) were selected with coeffi-
cient defined for each target gene (Fig. 1B). A risk score
was then calculated by summing up the multiplication
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Fig. 1 Schematic diagram of the study design. A Data of human samples of colorectal adenocarcinoma were obtained from public databases
(see Additional file 1: Table S1 and Supplementary Methods). B A risk model is established by integrating module analysis and Cox regression. C
The risk model is evaluated by independent prognosis analysis and a nomo decision tree is established by integrating risk score and other clinical
parameters. D The risk model is validated in another independent large cohort of colon cancer; molecular classification, therapy evaluation and
pathway enrichment analysis of the risk genes is investigated. E Tumor microenvironment immune activity is correlated with the risk model
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of gene expression level and its coefficient. Risk assess-
ment and prognosis analysis were performed to evaluate
the risk score in predicting survival in COAD patients
as an independent parameter. In addition, a comprehen-
sive decision tree of nomogram was constructed based
on the risk score and other clinicopathological param-
eters to improve risk stratification and assessment for
individual patients (Fig. 1C). Then, further validation
of the risk model was performed in another large inde-
pendent cohort of 562 samples of colon cancer. Evalua-
tion on the molecular classification, treatment response,
pathway enrichment and function representation on the
risk model were also applied to provide a deep insight
into these risk model genes (Fig. 1D). Risk model genes
showed a robust and putative functional role in indicat-
ing immune relevance. So, we tried to identify the cor-
relation between immune activity and risk score by
deconvoluting the tumor immune microenvironment
from the transcriptome (Fig. 1E), and showed that the
immune cells and immune activity are indeed involved in
tumor patients in the risk model.

Dataset preparation and data processing

The results here are in part based from data generated by
the TCGA Research Network: https://www.cancer.gov/
tcga.

A cohort of 437 samples with clinical annotations and
follow-up information were included in our study. Tran-
scriptome profiling data (HTSeq-FPKM files downloaded
from The Cancer Genome Atlas TCGA, https://portal.
gdc.cancer.gov) were used as the main data set for risk
model establishment and evaluation. All gene expression
quantification files from the cohort were downloaded as
txt format and further merged together in one file for
downstream analysis.

The validation dataset of GSE39582 containing 566
samples from 562 patients was downloaded from the
research work of Laetitia Marisa et al. [10].

Hallmark gene sets were downloaded from Yin He et al.
[11] (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC63
10928/), which addressed immune functions in different
detailed aspects.

CMS subtyping data and Kras/Braf mutation informa-
tion of the TCGA-COAD dataset are from the research
work of Justin Guinney et al. [12].

Manual curation data of treatment and response infor-
mation in the TCGA-COAD dataset is from the work of
Enrico Moiso [13].

The dataset containing both proteome and transcrip-
tome data is from the project CPTAC-2 prospective and
is downloaded from cBioPortal database [14].

All the datasets are summarized in Additional file 1:
Table S1 and can be downloaded directly from the
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indicated websites. Datasets or custom scripts that are
used in this research can be obtained upon request.

Data visualization and statistical analysis

R software (version 3.5.1, http://www.r-pro-ject.org) was
used to analyze data and plot graphs. Boxplot and point
plot were generated with R package “ggplot2’, heatmap
scaled by row was generated by R package “pheatmap”
with a clustering distance of “euclidean”. Chord diagram
was generated with R package ‘circlize! DEG statistical
analysis is performed by Wilcox test with R function “wil-
cox.test” Welch’s t test (unpaired) or one-way analysis of
variance was used to analyze differences between groups
in variables with a normal distribution.

Gene co-expression network construction

Co-expression networks were constructed by using
WGCNA (v1.69) package [15, 16] in R. First of all,
TCGA-COAD samples with clinical traits were selected
after removing repetitions from the same patient (Addi-
tional file 1: Fig. S1A), then unqualified samples for
WGCNA analysis are filtered by the function of “good-
SamplesGenes’, ending up with 288 COAD samples.
Uncommon genes and those with counts less than 10 in
more than 90% samples are removed from the WGCNA
analysis. After sample clustering, five outliers are
detected and removed in the downstream module analy-
sis with 283 remaining samples. A soft threshold (power)
of 7 is chosen for network construction by function of
“blockwiseModules” according to the scale-free topol-
ogy criterion which referred to the smallest value for an
approximate scale free topology as WGCNA used the
topological overlap measure (TOM) to represent proxim-
ity (Additional file 1: Fig. S1B). Based on the topological
overlap matrix measured from a pairwise correlation-
based adjacency matrix, the neighborhood similarity
among genes were estimated and the gene co-expression
modules, which are distinguished with different colors,
were then identified by average linkage hierarchical clus-
tering. Using the Dynamic Hybrid Tree Cut algorithm
and a minimum module size of 30 genes, a total of eight-
een modules were identified. The correlation analysis
of different modules is based on the module eigengenes
(MEs) which represent the first principal component of
the expression profiles in a given module (Additional
file 1: Fig. S1C). Linear regression between MEs and clin-
ical traits is applied to identify the module-trait associa-
tions (Fig. 2A). Modules are linked to traits by function
of “bicorAndPvalue”. Data visualization is performed by
the built-in functions in WGCNA package. The visualiza-
tion of the network in module tan and turquoise is per-
formed by the software Cytoscape (v3.7.1) based on the
connection information of topological overlap matrix
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from WGCNA analysis with an edge weight threshold of
0.01, ending up with all the nodes (genes) in module tan
(n="78) and turquoise (n =638) shown in the network.

DEG identification

Significant differentially expressed genes (adjusted
p<0.05, |log2(Fold Change)|>1) are identified by com-
paring tumor samples (n=398) with normal samples
(n=39) or risk-high group (n=167) with risk-low group
(n=167) in the TCGA cohort. p-value is calculated
by unpaired Wilcoxon test, p-value is adjusted by FDR
method. Log2 fold change is calculated by mean expres-
sion (FPKM) of tumor versus normal group.

Prognosis analysis

By using the function ‘coxph’ in R package ‘survival, a
Cox proportional-hazards regression model was used
to evaluate the significance of each parameter to overall
survival, both survival time and state are considered as
response parameters in this analysis.

Risk model construction

Univariant Cox analysis was first performed to predict
the prognosis-related DEGs from module MEturquoise
and MEtan. Risk model was then established by apply-
ing stepwise regression (‘step’ function in R) to multivari-
ant Cox model (‘coxph’ function in R) on 23 candidate
prognosis-related genes in order to get an optimal sim-
ple model without compromising the model accuracy.
The strategy used for stepwise regression is “sequential
replacement’, which is a combination of forward and
backward selections. It starts with no predictors, then
sequentially add the most contributive predictors. After
adding each new variable of candidate genes, remove any
variables that no longer provide an improvement in the
model fit. In this way, 23 risk genes were obtained in the
risk model. By applying this method, a coefficient was
predicted on each gene based on survival time and state
of patients (Additional file 1: Fig. S2D). A risk value was
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then calculated by summing up the multiplication of gene
expression level and its coefficient. Subsequently, we per-
formed risk analysis to evaluate the risk model. Low- and
high-risk group are stratified by the median risk score in
the TCGA-COAD cohort (n=334).

Survival analysis

The Kaplan—Meier method was used to draw survival
curves and the log-rank test was used to evaluate differ-
ences by using the function ‘coxph’ in R package ‘survival.
A Cox proportional-hazards regression model was used
to evaluate the significance of each parameter to overall
survival. Time-dependent receiver operating characteris-
tic (tROC) analysis was performed to measure the pre-
dictive power by the R package ‘survivalROC’ [17] with
the parameter ‘method =“KM?”, and the areas under the
curve at different time points [AUC(t)] of all the variables
were compared.

Cox analysis on risk score and other clinical parameters
Univariant or Multivariant Cox proportional-hazards
(Cox-PH) regression model was applied on the risk score
(categorizing the patients in low-risk or high-risk) and
other clinical parameters (age, gender, stage. T, M, N)
using R package ‘survival.

Nomogram analysis

A nomogram and a calibration curve were calculated
and plotted using R function (cph, Survival, calibrate and
nomogram) in the R package rms’ [18] with the param-
eters ‘1p=F, maxscale=100, fun.at=c(0.99,0.9,0.8,0.6,0.
4,0.2,0.1)" for ‘nomogram. Nomogram is a pictorial rep-
resentation of a complex mathematical formula. In the
nomogram of this study, all the clinical variables, such as
age, gender, stage, TNM phage and risk score were used
to represent a statistical prognostic model that predicts a
probability of cancer death. Basically, nomo score com-
ing from the nomogram analysis, is a comprehensive
parameter for predicting cancer risk by integrating all
the clinical variables that were put in. Nomo scores were

(See figure on next page.)

Fig. 2 Module-trait relationships identified by WGCNA analysis from the transcriptome data of COAD patients. A Each colored module represents a
network of genes with correlated expression built using TCGA-COAD samples after WGCNA quality filter and outliers'removal (n = 283)."MEgrey”is
unassigned gene sets which could not fit anywhere. Eight clinical traits (survival time, survival event, age, gender, stage, T, M, N) were evaluated for
correlated gene expression networks. The correlation coefficients and p values are based on biweight midcorrelation. The correlation coefficients
by modules and traits are shown at the top of each cell. The corresponding p-values for each module displayed at the bottom of each cell

within parentheses. The rows are colored based on the correlation of the module with the indicating traits: red for positive and blue for negative
correlation. Gene number and enriched biology process in each module of gene networks are displayed in the corresponding row on the right
side. B Interaction network of module tan and module turquoise, adjacency threshold for including edges is 0.01 (nTan =78; nTurquoise = 638).
Connection strength between two genes is measured by the edge weight in the Topological Overlap Matrix, higher value refers to a stronger
co-expression of genes, which is represented by the line transparency in the network. The network is organized by the force-directed layout, highly
connected genes is centered in the network. The risk model genes (n=23) is enlarged in the network
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extracted by the function formula_lp’ and ‘points_cal’ in
R package ‘nomogramFormula’

Gene ontology analysis

Gene ontology analysis is performed with differentially
expressed genes in web application DAVID (https://
david.ncifcrf.gov) [19, 20]. All gene ontologies enriched
significantly (p <0.05, fisher’s exact test) are shown in the
dot plot.

Immune cells deconvolution

CIBERSORTx  (http://cibersortx.stanford.edu/)  was
implemented to deconvolute the composition of specific
immune cells in the tumor microenvironment (TME)
from the transcriptome data of TCGA cohort. Specifi-
cally, FPKM matrix of COAD patients is formatted as
input file and uploaded to the web application of CIBER-
SORTYX, then cell fractions are imputed in the module of
“Impute Cell Fractions” with custom mode and default
parameters (permutations for significance analysis is set
to 100). The signature matrix file built in CIBERSORTx
(LM22: 22 immune cell types) is used as the signature
reference in this analysis.

Immune activity deconvolution
Single-sample gene set enrichment (ssGSEA) analysis
(R package ‘gsva’ with parameters “method="’ssgsea,
kedf="Gaussian; abs.ranking=TRUE”) was utilized to
identify clusters with different immune activity referring
the immune-activity hallmarks from Yin He et al. [11] in
four different immune aspects: immune cells, immune
and cytolytic activity, antigen presentation pathway,
and cytokine response. The enrichment scores of each
hallmarks gene set were summed to generate the SIES
(Sum of immune enrichment scores) for each sample.
‘Estimation of STromal and Immune cells in MAlig-
nant Tumours using Expression data’ (ESTIMATE) is a
method that uses gene expression signatures to infer the
fraction of stromal and immune cells in tumour samples.
Stromal, Immune and Tumor scores were obtained by
using R package of ESTIMATE [21]. The stromal score
captures the presence of stroma in tumor tissue, immune
score represents the infiltration of immune cells in tumor
tissue. ESTIMATE score of each patient=immune score
of each patient + the corresponding stromal score. As the
higher the ESTIMATE score is, the lower the content of
tumor cells is in the given tumor microenvironment. The
tumor score was calculated by the following equation:
Tumor score=maximal value of ESTIMATE score in
TCGA-COAD cohort—ESTIMATE score of each colon
cancer patient.
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Correlation analysis between SIES and risk score

As outliers affect the correlation analysis a lot, that is
especially serious in the risk model where extreme values
exist, those outliers statistically away from normal dis-
tribution are filtered from TCGA-COAD cohort before
correlation analysis. Maximum and minimum are tested
and filtered in a stepwise way by the function of “grubbs.
test” until all the remaining risk scores fits a normal dis-
tribution. We end up with 313 samples from 334 samples
in TCGA-COAD for downstream correlation in which
unpaired two tailed t test are applied.

The comparison between our risk model with other
prognosis models from different researches in the colon
cancer

The performance comparison is performed between
our risk model and other models from the researches
of Huang et al. [22], Chen et al. [23], Sun et al. [24], and
Liu et al. [25]. The comparison is based on the metrics of
— log10(p-value) in the discovery and validation cohort
respectively. p-value is calculated by the log rank test in
the survival analysis. For those p values recorded already
in the indicated cohorts in the corresponding researches,
they were used directly without any change. For those p
values not recorded in the corresponding researches, we
calculated the p value in the indicated cohorts by two
groups stratified according to the median value of gene
expression or risk score as defined in the corresponding
researches. For those models which indicated the gene
expression in more than one gene, we used the gene
which had the best prognosis in the discovery cohort in
the comparison.

Results

Establishment of a module-based gene signature

for prognosis

In order to build a novel prognostic risk model from can-
cer transcriptome data, we downloaded RNAseq-based
transcriptome data of the TCGA-COAD cohort (398
tumor samples from 334 patients of COAD). Hierarchical
and clustering analysis of gene expression data revealed 5
samples clustering apart from all the others (Additional
file 1: Fig. S1A). After exclusion of these 5 outlier sam-
ples, we performed weighted gene co-expression network
analysis (WGCNA) to screen modules of highly corre-
lated genes associated with the clinical parameters [15].
After choosing the soft threshold (Additional file 1: Fig.
S1B), the adjacency matrix describing the correlation
strength of each pair of nodes based on Pearson’s corre-
lation of module eigengenes (MEs) is transformed into
topological overlap measure (TOM), which quantitatively
represents the similarity in genes by comparing connec-
tion strength of two genes’ adjacency with other genes.
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Subsequently, 18 different gene co-expression modules
are generated by conducting hierarchical clustering to
classify genes with similar expression profiles based on
TOM dissimilarity.

The functional modules were compared for the patient
prognosis traits (survival and survival time) to identify
prognosis-related gene signatures in a systematic way.
Cluster 1 (MEtan, MEgreen, MEpurple and MEsalmon)
showed a negative correlation with either survival
event or survival time, while cluster 3 (MElightgreen,
MEgrey60, MEturquoise and MEyellow) showed a posi-
tive correlation with survival time (Fig. 2A and Addi-
tional file 1: Fig. S1C). Clusters 1 and 3 are enriched in
immune-associated pathways and translation/tran-
scription respectively, that may indicate the extrinsic
and intrinsic factor in affecting the survival of COAD
patients. Interestingly, cluster 4 (MEpink, MEblack and
MEgreenyellow), which is positively correlated with tra-
ditional clinical parameters (Stage, M, and N), is enriched
in cell proliferation, migration and biosynthetic pro-
cesses, suggesting the important and complex role of
these cellular activities in tumor progression (Fig. 2A).

As module MEturquoise and MEtan showed the high-
est absolute correlation with survival time and event
respectively (0.22 and — 0.12), we further established
the risk model based on the genes in these two modules
(module-derived genes). DEG (differentially expression
genes) analysis comparing tumor and normal samples
in the TCGA cohort identified 96 upregulated and 78
downregulated genes in cancer from the 716 genes of
the MEturquoise and MEtan modules (Additional file 1:
Fig. S2A). These DEGs are strongly enriched in innate
immune response pathways, adaptive immune response
(B cell regulation and immunoglobulin production), and
phagocytosis process (Additional file 1: Fig. S2B). It sug-
gested that the immune response occurred in tumor may
induce a different survival on COAD patients. We then
applied univariant Cox regression on the module-derived
DEGs and ended up with 23 genes that are correlated
with prognosis (p<0.05). Most immunoglobulin genes
(IGHG, IGHYV, IGLC, IGLV), GABARAP, MARCKS, and
SOX4 are identified with a hazard ratio (p-value<0.05)
of more than 1 in univariant Cox regression (Additional
file 1: Fig. S2C). Stepwise multivariant Cox regression
was applied to establish the risk model based on the 23
prognosis genes (Additional file 1: Fig. S2D). In the risk
model, NCOA7 comes up with the biggest coefficient. A
risk score was calculated in each sample by summing up
the multiplication of gene expression level and its coef-
ficient in the 23-genes risk model. Network construc-
tion showed immunoglobulin genes in the risk model
are connected in module tan and the other 15 genes are
connected in module turquoise with BID, TMEM147,
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ETHE1 and TMEMS54 highly interacted in the center,
while NCOA7 established only a small amount of connec-
tions in this module (Fig. 2B). Since the molecular classi-
fication of COAD had been intensively investigated and
CMS (consensus molecular subtypes) is a comprehensive
parameter representing different molecular signatures
[12], we checked the risk score in different CNS groups
in the TCGA dataset and found CMS4 group, which was
known to represent a worse overall survival and relapse-
free survival [12], had a significantly larger risk score
than other subtypes (Additional file 1: Fig. S2E). CMS
subtyping is consistent with the prognosis effect that the
risk model represents. In addition, the risk score in the
Kras-mutated group is larger than the Kras-non-mutated
group while it is lower in the Braf-mutated group than
the Braf-non-mutated group in the TCGA-COAD cohort
(Additional file 1: Fig. S2F and S2G). We didn’t observe
a significant correlation between the risk score and Kras
expression (p=0.29) or MSI (p=0.14) in the TCGA-
COAD cohort (n=334, data not shown). Other than
that, no significant correlation was observed between the
risk score and nonsynonymous mutation counts (n=318,
p=0.18, data not shown, nonsynonymous mutation
counts are from cBioPortal) in the TCGA-COAD cohort.
We also analyzed risk score in patients after chemother-
apeutic treatment and we observed that the responders
to the FLUOROURACIL+LEUCOVORIN + OXALI-
PLATIN treatment exhibited lower risk score than the
non-responders (Additional file 1: Fig. S2H), which indi-
cated the potential relevance of the risk model to clinical
treatments.

Risk score serves as a risk factor for overall survival

in the cohort

To evaluate the risk score as a risk factor in progno-
sis, the COAD patients were divided into two equal
parts as low-risk group and high-risk group according
to the median risk score in the cohort and supporting
the validity of the risk model, more dead cases were
enriched in the high-risk group (Fig. 3A, upper pan-
els). Of the 23 genes used to calculate the risk score,
20 genes were statistically differentially expressed
between low- and high-risk groups with the major-
ity of them being downregulated in high-risk group
(Fig. 3A, bottom panel, genes with asterisks). Survival
probability was significantly higher in low-risk group
(p=3.56e—07), with the probability of 5-year survival
in low-risk group being 0.861 [95% CI 0.722-1] com-
pared with 0.427 [95% CI 0.297-0.613] in high-risk
group (Fig. 3B). AUC (area under the roc curve) of the
risk model on predicting 5-year survival reaches 0.763
as the highest among all the clinical stratifications
(Stage: 0.751, N-phase: 0.748, T-phase: 0.643, M-phase:



Lu et al. Journal of Biomedical Science (2022) 29:81

0.617, Age: 0.581, Gender: 0.532) (Fig. 3C). Both univar-
iant (HR=5.3, p<0.001) and multivariant Cox analysis
(HR 4.4, p<0.001) showed the risk score could predict
prognosis as an independent factor (Fig. 3D). Multivar-
iant Cox regression modeling demonstrated that risk
score and age are the only significant independent risk
factors for overall survival among various clinicopatho-
logical variables (p <0.05, Fig. 3D). In order to quantify
the risk assessment for individual COAD patients, a
nomogram was built by integrating the risk score to all
the other clinicopathological features (Additional file 1:
Fig. S3A). As expected, the nomo score was the most
powerful and stable parameter in survival prediction
across the whole-time course from 1 to 5 years (average
AUC>0.8). The nomo score 1 based on both our risk
score and all the other clinical parameters was higher
than the nomo score 2 which is only based on the clini-
cal parameters, indicating our risk model can increase
the prognosis effect of the traditional parameter system
(Additional file 1: Fig. S3B). Risk score and stage exhib-
ited similarly good prediction in the first 3-year sur-
vival (Additional file 1: Fig. S3B). Expression changes
of the 23 risk genes grouped by clinicopathological fea-
tures were summarized in Table S2 (Additional file 1).
NCOA7 which showed decreased expression in dead
cases, also exhibited decreased expression in later stage
phased by stage, T, M, and N (Additional file 1: Fig.
S3C-G). The correlation between NOCA7 and clini-
cal phase may partially explain its biggest contribution
in the risk model (Additional file 1: Fig. S2D). Further-
more, we checked the NCOA7 expression in the TCGA
dataset and found NCOA?7 increased expression in the
tumor samples and low-risk group had a larger NCOA?7
expression than high-risk group (Additional file 1: Fig.
S3H). The difference of NCOA7 expression between
low-risk group and high-risk group was also confirmed
in the validated dataset (GSE39582; Additional file 1:
Fig. S3I). Further validation of NCOA?7 is performed
by using its protein level (project CPTAC-2 prospec-
tive database), in agreement with the result obtained
using the RNA expression, it showed a negative corre-
lation between NCOA?7 expression level and risk score
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(Pearson correlation, R=— 0.56, p=1.9e—05; Addi-
tional file 1: Fig. S3]). Interestingly, NCOA7 (Nuclear
Receptor Coactivator 7) has been reported to have
gene polymorphisms associated with breast cancer
development [26, 27] and it has also been identified as
a potential biomarker in oral squamous cell carcinoma
[28]. In addition, the engagement of NCOA7 by 3-HAA
(3-hydroxyanthranilic acid) enhances the activation of
AhR (aryl hydrocarbon receptor) in immunoregulatory
dendritic cells [29].

To validate the prognosis effect of our risk model,
survival analysis was performed in another independ-
ent cohort of colon cancer (GSE39582). Despite the fact
that the study of GSE39582 employed a different meth-
odology to profile the cancer transcriptome (Microarray
instead of RNAseq), the survival probability was signifi-
cantly increased in low-risk group with the probability
of 5-year survival in low-risk group being 0.736 [95% CI
0.682-0.795] compared with 0.608 [95% CI 0.548-0.674]
in high-risk group (Fig. 3E). These data strongly indicate
that the risk score, obtained by using the identified 23
genes, has a robust prognosis value.

Molecular signature of the risk model genes is represented
inimmune response

To better understand the function of the 23 genes of the
risk model, we compared tumor samples with normal
samples; all the 23 genes were differentially expressed
between normal and cancer tissue, with 10 genes down-
regulated and 13 upregulated (Fig. 4A). As expected,
these genes were strongly enriched in innate immune
response, B cell-related pathway, phagocytosis, adap-
tive immune pathway, and immunoglobulin components
(Fig. 4B and Additional file 1: Fig. S4A). DEG analy-
sis between the risk-high group and the risk-low group
in the tumor samples identified 166 upregulated genes
and 508 downregulated genes in the risk-high group
(Fig. 4C). These DEGs are mainly enriched in “immune
response’, “immunoglobulin production” and “adaptive
immune response’, indicating a difference of the immune
responses stratified by the risk model (Fig. 4D). To fur-
ther characterize our risk model, we evaluated the tumor

(See figure on next page.)

Fig. 3 Survival and Hazard ratio analysis based on risk model genes. A Panels above: ranked patients by risk score and relative survival visualization.
Panel below: heatmap of expression level of 23 risk model genes is shown in the indicated ranked patients. Risk groups are identified by the median
risk score. *Differentially expressed between low-risk group and high-risk group (p-value is calculated by Wilcoxon test, FDR-adjusted p < 0.05).

B Kaplan-Meier survival analysis in low- and high-risk group categorized by risk score in TCGA-COAD cohort (n=334). C AUC (area under the

ROC curve) of five-year survival predicted by risk score and all the other clinical parameters. TNM staging system is used to describe the amount
and spread of cancer in a patient’s body. T: the size of the original (primary) tumor and whether it has invaded nearby tissue; N: spread of cancer

to nearby lymph nodes; M: distant metastasis (spread of cancer from one part of the body to another). D Forest plot of Hazard ratios with 95%
confidence intervals of the indicated risk factors is obtained with both univariant (@bove) and multivariant (below) Cox regression method. E
Kaplan—-Meier survival analysis in another independent cohort of colon cancer (GS39582E, n=562)
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microenvironment (TME) enrichment by estimating the
tumor, stromal and immune contribution to the sam-
ple’s transcriptome by using the software ESTIMATE.
Immune enrichment score was significantly higher in
low-risk group patients, while no significant enrich-
ments were observed for the ESTIMATE, the tumor
and the stromal score (Fig. 4E and Additional file 1: Fig.
S4B). Complementary analysis performed by using the
software CIBERSORTYX, aimed to estimate the cell popu-
lations ratio within the sample, showed a larger ratio of
CD8 T cells and Neutrophils in low-risk group compared
to high-risk group while no significant changes were
observed for the other inferred cell populations (Fig. 4F
and G). Taken together, these analyses indicated the rel-
evance of the immune activity within the tumor for the
performance of our risk model.

Risk score was correlating with immunosuppressive TME

in COAD

To further investigate the role of risk score in the process
of immune regulation as a prognosis factor and its associ-
ation with the tumor immune environment, single-sam-
ple gene set enrichment analysis (ssGSEA) was executed
on immune-associated gene sets. Enrichment scores of
various gene sets related to immune system were cal-
culated from transcriptomes of the COAD patients and
hierarchical clustering together with heatmap visuali-
zation showed two distinct categories (Fig. 5A). Sum of
immune enrichment scores (SIES, defined as the sum of
the enrichment scores from all the immune-associated
gene sets in Fig. 5A) is higher in clusterl than in cluster2
(Fig. 5B).

To confirm the immune characteristics of these two
clusters, we further assessed the SIES with the stromal
score, immune score and tumor score inferred from
the software ESTIMATE (that estimates the stromal/
immune/tumor contribution to the tumor transcrip-
tome). SIES was positively correlated with ESTIMATE
score (r=0.8), stromal score (r=0.61) and immune
score (r=0.89), while negatively correlated with tumor
score (r=— 0.8) (Additional file 1: Fig. S5A), suggesting
that SIES correlates accurately with the immune activ-
ity and that a higher immune activity is present in clus-
ter]l with respect to cluster2. Clusterl exhibited a lower
risk score than cluster2 (Fig. 5C) and the expression of
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immunoglobulin genes (IGHG, IGHV, IGLC, IGLV) are
significantly decreased in cluster 2 (Additional file 1: Fig.
S5B), indicating immunoglobulin expression can bona
fide reflect the immune activity. Finally, COAD patients
of risk score-inferred low-risk group have a higher SIES
than those of high-risk group (Fig. 5D).

SIES consists of various immune aspects, which allow
us to deconvolute the immune activity represented by
SIES (Fig. 5E). In particular, gene sets related to dendritic
cells, neutrophils and T cells (Thl cells, T helper cells,
TIL, CD8 T cells) and to a minor extent to some types
of T-cells (e.g., Th2 cells, Treg, Tfh) are overrepresented
in low-risk group (Fig. 5E and Additional file 1: Fig. S6).
Not only immune cells but also immune cytolytic activity
antigen presentation pathway and CCR response (Addi-
tional file 1: Fig. S6) were all increased in low-risk group,
indicating a stronger innate (dendritic cells, neutrophils)
and adaptive (T cells) immune response in the low-risk
patients, which could partially explain the prognosis
effect reflected by risk model.

Discussion

It has been acknowledged that tumor microenvironment
plays an important role in the development of colorectal
cancer as an extrinsic factor [30]. The immune system has
been found to be involved in both preventing and pro-
moting tumor development [31]. It is known that there
is wide crosstalk between epithelial cells and resident
immune cells in colon through cytokines to maintain
homeostasis and to coordinate appropriate responses
to disease [32]. Understanding the immune processes
involved in colorectal cancer helps us to establish novel
markers for prognosis and expedite the progress of
immune-based therapeutics [8]. The exploration of a
robust immune-involved signature related to the prog-
nosis of colorectal cancer would provide targets for treat-
ment or other treatment paradigms for colorectal cancer.
Some efforts on colon cancer had been made to explore
prognosis-related signatures based on the TCGA data-
set, most of them were based on the prior knowledge,
resulting in a bias on the final selected gene sets [23-25,
33]. Other researches in this field were either focused on
the relevance of individual genes’ expression [22, 23] or
lacking robust validation and investigation [22, 23, 33],
that could not exclude the possibility of an overfitting

(See figure on next page.)

Fig. 5 Risk score is correlating with immunosuppressive tumor microenvironment in COAD patients. A Hierarchical cluster and heatmap of the
enrichment scores of the various gene sets related to immune functions on the COAD patients (n = 334). B Boxplot indicating the sum of the
immune enrichment scores (SIES) in cluster1 and clsuter2. p-value is calculated by unpaired two tailed t test. C Boxplot indicating the risk score

of COAD patients in cluster1 and cluster 2 (n =313). p-value is calculated by unpaired two tailed t test. D Boxplot indicating the SIES in patients

of low- and high- risk (according to the risk score stratification). p-value is calculated by unpaired two tailed t test. E Dot heatmap of the Pearson
correlation between risk score and enrichment score of the various gene sets related to immune functions. Dot size indicate the correlation extent
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from the algorithm [33]. Furthermore, few established
immune-associated signatures have been integrated with
traditional prognostic systems in order to optimize the
clinical routine.

In this study, we integrated the unbiased systematic
analysis and clinical information to construct a com-
prehensive risk model related to prognosis in colorectal
cancer. An immune-associated signature of 23 module-
derived genes was selected in the risk model to generate
a risk score by assigning different weights of each target
gene. Prognosis analysis on the risk model suggested
that risk score could provide an accurate risk stratifica-
tion as an independent prognosis factor. Validation of the
risk model on another large independent cohort of colon
cancer proved that the indicated immune signature could
work as robust integrated markers in COAD prognosis.
As a way to improve the risk model, nomogram provided
a more powerful decision than the traditional prognostic
system. By comparing our risk model with other prog-
nosis models from different researches of Huang et al.
[22], Chen et al. [23], Sun et al. [24], and Liu et al. [25], no
overlap is observed between our risk model with all the
other models in the gene level, indicating the uniqueness
of our risk model (Additional file 1: Fig. S7A). Our risk
model also outperformed all the other models both in the
discovery cohort and in the validation cohort in the sur-
vival analysis of colon cancer (Additional file 1: Fig. S7B).

Function representation analysis on the risk model
indicated a large relevance between risk genes with
immune response. Further investigation on the immune
activity and its deconvolution identified the composition
of immune cells and immune activity in tumor micro-
environment (TME) of COAD patients, a low immune
activity in the high-risk group may be responsible for the
bad prognosis in patients with COAD. In summary, we
identified a totally novel risk model, consisting of a com-
prehensive and new immune signature derived from sys-
tematic analysis. The risk model is proven to be robustly
relevant for the prognosis of COAD patients in two (dis-
covery and validation) independent cohorts. We also per-
formed a complete investigation of the risk model and
the immune activity.

Despite these promising results, more work needs to
be done. Firstly, due to the limitations of retrospective
studies, the prognostic robustness and clinical value of
the risk model require further validation in larger, pref-
erably prospective trials. Secondly, further experimental
research could be undertaken to investigate the immune-
associated biological functions underlying the risk genes
in COAD, especially the immune mechanism of NOCA7
in COAD prognosis, which played a pivotal role in the
risk model.
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Conclusion

In summary, we established a novel, validated immune-
associated and module-derived gene signature to dis-
criminate low-risk and high-risk patients with COAD in
an unbiased way by applying systematic analysis. Inte-
grating this with clinicopathological features, we con-
structed a nomogram to quantify risk assessment for
individual patients. The robust immune gene signature-
based model could be an effective tool to select high-risk
patients who may benefit from targeting therapies and
thus facilitate personalized management of COAD.
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