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Abstract

Interventional radiology (IR) is an increasingly used medical specialty relying on the possibilities offered
by medical imaging guidance technologies to perform minimally invasive procedures (both diagnostic and
therapeutic) through very small incisions or body orifices. Although the operative context is quite similar
to that of the classical operating room (OR) literature, to the best of our knowledge management problems
arising in the IR operative context never appeared in the healthcare management literature. This is even more
true for studies that combine the OR approach with automatic extraction of information from real hospital
health record data as in the present study. Two specific features characterise our case study with respect to
the traditional OR literature: due to the Italian legislation, the anaesthetist (usually in a very limited number)
must be present for the entire duration of the procedure (C1), and the IR does not have its own ward but
receives inpatients from different wards (C2). The aim of this paper is to introduce a novel approach to
determine a robust solution for our case study problem addressing both features C1 and C2. Our approach is
based on the interplay between optimisation and predictive process monitoring (PPM) models. The obtained
results show that the proposed approach produces schedules that achieve higher usage rate, lower overtime
and more patients operated on than the original schedule. We also show that the integration of PPM models
within the optimisation workflow improves the quality of the output schedule with respect to the standard
one-shot optimisation.
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1. Introduction

Interventional radiology (IR) is an increasingly used medical specialty relying on the possibilities
offered by medical imaging guidance technologies to perform minimally invasive procedures (both
diagnostic and therapeutic) through very small incisions or body orifices. Compared with tradi-
tional methods, the advantage is to decrease risks, pain and recovery time. Real-time visualisation
also allows precise guidance to the abnormality. Although the operative context is quite similar
to that of the classical operating room (OR) literature, to the best of our knowledge management
problems arising in the IR operative context never appeared in the healthcare management litera-
ture (see, e.g., the reviews by Samudra et al., 2016, Hof et al., 2017, and Zhu et al., 2019).

This is even more true for studies that combine the OR approach with automatic extraction
of information from real hospital health record data, as in the present study. In particular, the
case study considered in this paper arises from the ‘Molinette’ hospital in Turin, one of the
largest Italian cities, and a partner of the Circular Health for Industry (CH4I) research project
(https://ch4i.di.unito.it/). Compared to traditional OR settings, procedures in IR are generally
shorter and rely on specialised medical equipment, meaning that procedural variety has less impact
on optimisation performance. However, two features of our case study characterise it with respect
to traditional OR literature: first, the anaesthetist (usually in a very limited number) must be
present for the entire duration of the procedure (C1); second, the IR unit does not have its own
ward and instead receives inpatients from different wards (C2).

The feature C1 implies the need of considering, at the same time, (i) the problem of selecting
patients from the waiting list and assigning their procedure to an IR room on a certain day over
the planning horizon and (ii) the problem of determining the precise sequence of the IR procedures
in such a way to avoid the overlap among different procedures assigned to the same anaesthetist.
The resulting joint approach is not common also in the OR literature (see, e.g., Siqueira et al.,
2018).

The feature C2 introduces a novel source of uncertainty not yet considered in the OR literature
(see, e.g., Beaulieu et al., 2012): actually, the fact that the inpatients arrive from different wards
inside the hospital means that they are not under control of the IR team introducing an exogenous
factor affecting the IR activities, as reported by the medical doctors during the CH4I project.

To address this uncertainty, we leverage process mining (PM) in combination with optimisation.
PM (van der Aalst et al., 2012) is a discipline at the intersection of data science and process man-
agement, focusing on analysing and improving operational processes based on event logs. Event
logs capture the sequence of activities in operational processes, and PM techniques are used to
discover process models, assess conformance and identify inefficiencies or deviations from expected
behaviour. Extensive applications of these techniques in the healthcare domain exist (Munoz-Gama
et al., 2022).

In particular, in this work, we employ predictive process monitoring (PPM) (Maggi et al., 2014;
van der Aalst and Carmona, 2022), a subset of PM that uses predictive models, often based on
machine learning (ML), to forecast future events or outcomes within a process. PPM is particularly
valuable for predicting the remaining time of an ongoing process, detecting potential deviations
and enabling proactive decision-making. In this paper, we employ PPM models to predict specific
aspects of IR procedures, which are then used to inform the optimisation process.
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The aim of this paper is to introduce a novel approach to determine a robust solution for our case
study problem, addressing both features C1 and C2, that integrates optimisation and PPM models.

In particular, we employ two PPM models. A first PPM model predicts how long an IR procedure
occupies the IR operating room in accordance with the procedure type and the patient’s ward of
origin. Such a time is then used to generate an initial optimised solution. An iterative procedure
validates such a solution by exploiting a second PPM model – capable of predicting the overall
daily running time of the IR operating room – in such a way as to determine a final and more
robust solution.

The approach proposed here strongly differs from that previously discussed in Di Cunzolo et al.,
2022: first, we consider only the problem of selecting patients from the waiting list and assigning
their procedure to an IR operating room in a certain day over the planning horizon; then, there the
PM techniques adopted serve only to identify delays and lagging cases in an analysis prior to the
optimisation, conversely here we adopt ML-based PPM models in interplay with the optimisation.

The paper is organised as follows. Section 2 presents some related works. Section 3 introduces
the reader to the PM and PPM. Section 4 introduces the case study considered in the paper. Sec-
tion 5 describes the methodology developed while the evaluation, and the results are discussed in
Section 6. Section 8 contains the final discussion and presents some future research directions.

2. Related work

Operational researchers provided in the last three decades several decision models and optimisation
tools aimed at addressing the complexity of the OR management as evidenced by the large number
of reviews in the last 15 years (Cardoen et al., 2010a; Cardoen et al., 2010b; Guerriero and Guido,
2011; Van Riet and Demeulemeester, 2015; Samudra et al., 2016; Hof et al., 2017; Zhu et al., 2019).

OR planning and scheduling are defined by three main decision levels: strategical, tactical and
operational that are, respectively, based on long-, medium- and short-term objectives (Hulsof et al.,
2012). Apart from recent integrated approaches (see, e.g. Aringhieri et al., 2015; Siqueira et al.,
2018), usually these levels are studied or analysed separately, given by the complexity of the problem
and the time horizon (e.g., the larger the horizon, the harder is the problem). Such studies can
be further challenged by the inherent stochasticity of their main parameters, such as the surgery
duration, the length of stay, the arrival of non-elective patients and often combined with staffing
and scheduling decisions (Lamiri et al., 2008; Duma and Aringhieri, 2015; Landa et al., 2016;
Duma and Aringhieri, 2018; Wang et al., 2018; Guido, 2024) as well as the limited availability of
historical data (Coban et al., 2023).

The availability and the management of resources is one of the key factors in the development
of the planning and scheduling strategies (Duma and Aringhieri, 2019; Landa et al., 2018). More
generally, the problem of patient scheduling considering downstream resources is receiving increas-
ing attention (see, e.g., van den Broek d’Obrenan et al., 2020; Schneider et al., 2020; Zhu et al.,
2022). On the contrary, the problem of integrating OR planning and personnel scheduling (such as
medical doctors, anaesthetists, etc.) is less considered (Breuer et al., 2020).

PM is a relatively recent discipline that focuses on extracting knowledge from data collected
in enterprise information system databases (van der Aalst, 2016). In healthcare, they are called
health information systems. Such data can be processed and organised into event logs, which is a
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structured way of collecting a set of traces, each of which contains the activities performed for any
particular process instance (van der Aalst, 2011). Process models can be represented using different
modelling paradigms ranging from procedural (van der Aalst, 2016) to declarative (Pesic, 2008)
and hybrid languages (van der Aalst et al., 2017).

Hospital Information System database can be the basis for applying PM and optimisation tech-
niques in healthcare. An example application involves the discovery of patient paths (Prodel et al.,
2015) by building process models from event logs (Prodel et al., 2018). Integer linear programming
has been used to discover a Petri net model (Van der Werf et al., 2008), or to reproduce meaning-
ful patient paths, and finally to build simulations that can consider behavioural and operational
aspects (Halawa et al., 2021).

The combination of PM, optimisation, and simulation methods can be the basis for building
decision support systems in healthcare (Moreira et al., 2019). PM techniques can be used in con-
junction with optimisation techniques to improve planning, including through online optimisation
algorithms (Duma and Aringhieri, 2020, 2023).

3. Process mining and predictive process monitoring

In this section, we introduce the main concepts of PM and its sub-field PPM.

3.1. Process mining

PM (van der Aalst et al., 2012) is a discipline that combines data science and business process
science. Its focus is to improve operational processes by extracting and exploiting knowledge in a
systematic way from event data.

PM techniques use a combination of event data and process models to perform several tasks:
provide insights on the process, identify inefficiencies and bottlenecks, discover deviations with
respect to the expected behaviour of the process, assess process performance and compliance with
respect to a given model as well as support improvements of the process itself. These tasks are
grouped into three main categories:

• Process discovery, which uses event data to discover a model that effectively describes the process;
• Conformance checking, which verifies if event data are in compliance with a given process model;
• Process enhancement, which exploits event data to contextually improve the existing process

model.

Event data are collected in enterprise information systems, as in the case of hospital information
systems in the healthcare scenario in which we are interested. To be suitable for the PM analysis,
the data extracted from an information system have to be properly preprocessed and transformed
in the so-called event log format. An event log is a collection of cases, and each case is in turn a
sequence of events. Each case represents an execution of the process under study. In the following,
we describe the main components of an event log:
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• Event. An event ei refers to the execution of an activity (or event class). It is usually identified by
three pieces of information: the activity that has been executed, the case ID which identifies the
process instance in which the event has happened, and the timestamp related to the time in which
the event has occurred. Furthermore, an event can carry additional information, also known as
data payload (or event attributes), such as the resource involved in the execution of the activity,
and other data recorded with the event.

• Trace. A trace (or case) corresponds to a single instance of the process and consists of a time-
ordered sequence of events σ = 〈e1, e2, . . . , en〉. In addition to the event sequence, also known
as control-flow information, traces can include attributes that do not change from event to event
in the trace execution (trace attributes), for example the birth place of a patient. For some, PM
tasks can be useful to standardise the length of the traces in the dataset. We define a prefix σ k

of length k as a truncation of the trace σ if k ≤ n: σ k = 〈e1, e2, . . . , ek〉; or its extension if k > n:
σ k = 〈e1, e2, . . . , en, ε, . . . , ε〉, where ε is a padding symbol.

• Event log. An event log is a collection of traces. In an event log, traces can be temporally ordered
based on their initial timestamp (the timestamp of the first event).

An important remark is that the same dataset can be looked at from different perspectives, and
this conditions the way in which traces and events are defined. This is particularly relevant in the
case of the distinguishing characteristics of PM in healthcare (Munoz-Gama et al., 2022). For
example, a healthcare dataset collecting patients’ examinations from different medical clinics, can
be inspected by looking at the history of the patient through all the medical clinics, or by looking at
the history of each clinic through all its patients. These are two different ways to analyse the same
data. In the first case, the patient care pathway represents the trace and the medical clinics are the
events. In the second case, each clinic represents a trace and the events correspond to the patients
visiting the clinic.

PM techniques can be classified as backward-looking (e.g., finding the causes of inefficiencies in
a process) or forward-looking (e.g., predicting the remaining processing time of a running trace).
In this work, we focus on forward-looking techniques and specifically on PPM which is described
in the next section.

3.2. Predictive process monitoring

PPM (Maggi et al., 2014; van der Aalst and Carmona, 2022) is a branch of PM that aims to predict
some aspects of the future evolution of an ongoing or yet-to-start process execution. The ability
to forecast relevant traits of the process execution can be really valuable in several domains and
scenarios, allowing organisations to prevent undesired outcomes, issues and delays.

PPM techniques can be classified using three main features: the type of prediction, the technique
or approach used to obtain the prediction and the information exploited in order to obtain the
prediction. In the following, we separately analyse these three dimensions, with a special focus on
the techniques used in this work.

Focusing on the prediction type, we can identify three main types of prediction:

• Outcome prediction, which aims to predict the possible outcome of a process (e.g., posi-
tive/negative);
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• Next activity prediction, which aims to predict the continuation of a process execution;
• Time-related prediction, which aims to predict time-related aspects, as, for instance, the cycle time

of a process execution or the time that a process instance will require to complete.

In this work, we are interested in time-related predictions (and more in-detail predictions on the
deviances from the expected durations), since we aim to use the predicted execution time of surgical
procedures to improve the scheduling.

Techniques and approaches used in PPM are grouped into two main classes: model-based meth-
ods, which rely on and exploit explicit process models; and supervised learning approaches, which
rely on ML and statistical techniques, such as classification and regression models, as well as neural
networks, by encoding event log information in terms of features. In this work, we consider the
latter class, indeed we will build two classical ML regressors to predict the execution time of single
and multiple surgical procedures, respectively.

There are many pieces of information contained in event logs that can be exploited in order to
obtain a prediction. They can be classified into four classes: the control flow, that is the sequence
of events of the trace or trace prefix; the data payloads, that is event and trace attributes asso-
ciated with the event and the trace, respectively, unstructured textual information available with
or included within the log; and contextual information, such as workload or resource availability
or inter-dependencies between concurrent traces. In this work, we consider the first three types
of information.

The information corresponding to every trace or prefix has to be properly encoded to be used by
the predictive ML model. In this work, we used two popular encodings:

• The frequency-based encoding is a way of encoding control-flow information by keeping track of
how many times each activity appears in the given trace. Note that this type of encoding does
not keep track of the sequential order of the events in the trace. In this work, we will consider a
simple variation of this encoding that contains also trace attributes (structured and unstructured)
together with the control-flow information. The resulting feature vector is (�t, fa1, . . . , faN ), where
�t are trace attributes, N is the total number of different activities (the number of event classes) in
the log and fa is the number of times in which the activity a appears in the trace.

• The complex index-based encoding includes, besides the trace attributes, the sequence of events
appearing in the trace together with their data payloads. The resulting feature vector is
(�t, e1, �p1, . . . , ek, �pk), where �t are trace attributes, ei is the ith event in the trace (according to the
temporal order of the events in the trace) an �pi is the data payload of the ith event that includes
both structured and unstructured information.

In ML-based PPM, encoded traces are then used to train the ML model. In this work, we adopt
Random Forest regression models for time-related predictions. Random Forests are ensemble learn-
ing methods that build multiple decision trees and aggregate their results to improve predictive
accuracy and robustness against overfitting.

The training methodology follows these steps: the dataset is split chronologically into three sub-
sets – training, validation and test sets. The training set is used to train the model, the validation
set is employed for hyperparameter optimisation and the test set is reserved for the final evaluation
of the model’s performance. Chronological splitting unsures a fair assessment by using the most
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recent traces in the dataset for evaluation, reflecting a real-world setting where predictions are
made on future process instances.

For model evaluation, standard metrics are used depending on the nature of the prediction task.
In the case of regression models, a common choice is the mean absolute error (MAE), which mea-
sures the average magnitude of prediction errors. This metric provides a straightforward assessment
of how closely the model’s predictions align with the actual outcomes.

4. Case study

In this work, we focus on the real-world scenario based on the Department of Diagnostic Imaging
and Interventional Radiology of the ‘Molinette’, which is part of the City of Health and Science
(CHS) of Torino (https://www.cittadellasalute.to.it/), one of the main hospitals in Italy. IR is a
medical speciality where minimally invasive procedures are performed using medical imaging guid-
ance. The procedures are performed through very small incisions or body orifices, achieving the
therapeutic goal with the minimum trauma for the patients.

In recent years, thanks to the availability of new materials, IR has replaced some traditional
surgical techniques. Common interventions are radiological methods, computed tomography scans,
magnetic resonance imaging and ultrasound. For example, interventional neuroradiology, which
focuses on the diagnosis and treatment of diseases of the head, neck and spine, has proven to be of
crucial importance in preventing ischaemic stroke.

IR procedures can be diagnostic or therapeutic. Diagnostic procedures support diagnosis mak-
ing or guide medical treatments: they include image-guided biopsy of tumours and injection of an
imaging contrast agent into blood vessels or ducts. Therapeutic procedures provide direct treat-
ment: they include administration of drugs via catheter, placement of medical devices (e.g., stents)
and angioplasty of narrowed structures.

In this paper, we use the term procedure to indicate the diagnostic or therapeutic intervention
a patient undergoes and the term service to indicate the specific test or treatment a procedure is
composed of. For instance, a procedure can be composed of two types of arteriography and a
chemoembolization treatment. Procedures and services can also be classified as clean, dirty and
infectious (e.g., Covid-19 cases). Dirty and infectious procedures and services, indeed, are the ones
requiring that the OR to be cleaned more in-depth.

The operating theatre is composed of four different IR operating rooms (or IR rooms) denoted
by S1, S2, S3 and S4. They have different equipment for different types of procedures: S1 and S2

are devoted to angioplasty, while S3 and S4 are used for procedures requiring echography and/or
computed axial tomography.

4.1. Dataset

The dataset provided by the CHS hospital contains anonymised data of 400 procedures that have
been performed in the IR room S1 of the Department of Diagnostic Imaging and Interventional
Radiology, in the period April 2022–September 2022, for a total of 27 weeks and 119 days. In
Table 1, we report additional details on the daily number of procedures, procedure durations and
IR session durations and overtime.

© 2024 The Author(s).
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Table 1
Details on procedures and IR sessions

Min Max Mean Median

Number of procedures per session 1 8 3.4 3
Procedures duration 4 minutes 2 hours 35 minutes 31 minutes 23 minutes
IR session total duration 20 minutes 7 hours 40 minutes 4 hours 20 minutes 4 hours 40 minutes
IR session overtime 0 minutes 3 hours 10 minutes 49 minutes 30 minutes

The dataset contains, for each procedure carried out, the patient’s unique identifier (i.e., a medical
record number) and the date of the procedure, demographic information related to the patient (i.e.,
age and gender), the clinical question (in natural language) that the procedure aims at addressing,
the specific services provided when carrying out the procedure, the technique used and the hospital
ward the patient comes from.

Moreover, the dataset contains detailed temporal data related to the time in which (i) the patient
entered the IR department (the information regarding the patient exiting the IR department is
not available in the dataset); (ii) the patient entered and exited the OR; (iii) the anaesthesia starts
and ends; (iv) the patient is ready for the operation after receiving the anaesthesia; (v) the surgical
procedure is started and ended; and (vi) the OR is cleaned and restored.

In addition, for every service provided by the IR department, we received two time estimations
made by the doctors: the estimated execution time of the surgical procedure and the estimated OR
occupancy, which also included the time for room restoration and cleaning. Finally, we received
also the list of clean and dirty services.

While the dataset provides a robust foundation for evaluating our system with real-world data, it
is important to acknowledge its limitations. The dataset is based on a single OR, which, while pro-
viding valuable insights, restricts the ability to explore optimisation across multiple rooms. Despite
this, the real-world context of the data offers a meaningful evaluation of the system’s performance,
demonstrating its effectiveness in a realistic setting and offering valuable guidance for future im-
provements and adaptations in more complex scenarios.

5. Methodology

In this section, we describe the proposed methodology that combines PM and optimisation tech-
niques. The main idea is to exploit the information contained in historical data about the utilisation
of the IR operating rooms to improve the optimisation of the weekly IR management. Namely, we
use PPM models to predict the deviations from the estimated execution time of procedures (PPM
phase) and we then leverage this information – in place of the time estimations provided by the
doctors – in the optimisation phase.

In Section 5.1, we detail the two PPM models employed to predict the temporal deviation of
the single procedure OR occupancy and the daily OR session overtime, respectively, from doctors’
estimates. In Section 5.2, we introduce a general mathematical model dealing with the problems
determined by the feature C1, that is (i) the problem of selecting patients from the waiting list
and assigning their procedure to an IR room on a certain day over the planning horizon and (ii)
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the problem of determining the precise sequence of the IR procedures in such a way to avoid the
overlap among different procedures assigned to the same anaesthetist. In Section 5.3, we finally
describe the whole approach that exploits the interplay between optimisation and PPM models.

5.1. Predictive process monitoring

In this section, we describe the PPM models that have been developed in order to support the
optimisation phase. The aim of these models is to predict the execution time of the single proce-
dures and the daily IR room occupancy and to use this information in place of the estimated time
suggested by the doctors.

We trained two different regression models. The first model, PPM1, predicts the delay or advance
of a procedure with respect to the time estimated by the doctors, independently of its position in the
schedule of the IR room. The second model, referred to as PPM2, predicts the overall daily running
time of the IR operating room taking into account the delay of all the procedures that occurred.

In the rest of this section, we describe in detail the two models.

5.1.1. Data pre-processing
First of all we pre-process the dataset in the following way. For each service, we add the execution
time estimates suggested by the doctors: the duration of the surgical procedure and the occupancy
of the OR including room restoration and cleaning time. In addition, based on the findings of Ron-
zani et al. (2022), we opt for not using the field ‘clinical question’ in its natural language form,
since it has been shown that the direct use of the textual field in supervised learning PPM hardly
improves the performance due to its high variability. Instead, we extract two binary flags from it,
which correspond to the appearance of the words ‘TARE’ and ‘TACE’ in the text, respectively.
These two words denote procedures which are commonly performed in IR. TARE is an abbrevi-
ation for Transarterial radioembolisation. It is a procedure made of two arteriographies: an arte-
riography of the celiac tripod and a liver arteriography. TACE is an abbreviation for transarterial
chemoembolisation. It is a procedure composed of three services, the same two arteriographies as
in TARE and loco-regional chemoembolisation.

5.1.2. PPM1
With the first PPM model, we aim to predict possible deviations (delays or advances) of a proce-
dure with respect to the time estimate given by the doctors, independently of the position of the
procedure within the daily schedule of the IR operating room (IR session). For this aim, we adopt
the following perspective in which a trace is represented by the single procedure and the events
correspond to the services that compose the procedure. We encode each trace in the following way.
Since in the data, there is no information on the order in which the services are performed inside
the procedure, we adopt the frequency encoding (see Section 3) to encode events. In addition, we
consider the following trace attributes: patient’s gender and age; TARE and TACE flags (see Data
pre-processing); the patient’s originating hospital ward and hospitalisation status; the technique
used during the procedure; and the surgical time and OR occupancy estimated by the doctors. The
surgical time and OR occupancy are given for every service; to obtain the estimate for the complete
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10 M. D. Cunzolo et al. / Intl. Trans. in Op. Res. 0 (2024) 1–26

procedure, we sum the values of all the services preformed during the procedure. Nominal features
are encoded with one-hot encoding.

The label is defined as the difference between the real OR occupancy and the one estimated by
the doctors.

The PPM model is obtained by training a Random Forest regressor (https://scikit-learn.org)
The training procedure includes the optimisation of the hyperparameters. Further details on the
training and the evaluation of the model are reported in Section 6.1.

5.1.3. PPM2
Differently from PPM1, which considers the single procedure independently of its position in the
scheduling of the IR operating room, the second PPM model aims to predict the effective daily
occupancy time (or total IR time) of the IR room taking into account the sequence of the scheduled
procedures. In this way, we wish to leverage

• possible correlations between procedures occurring in the same IR session and deviations from
the estimated time;

• possible correlations between the order of the scheduled procedures in the same IR session and
deviations from the estimated time.

To this aim, we consider a different perspective on the data, in which the IR session defines
a trace, and the events in the trace are the scheduled procedures. We encode every trace in the
following way. Since we want to leverage the sequence of procedures, we opt for the complex-index
encoding (see Section 3) that keeps track of the order of the events. We consider the following event
attributes: patient’s gender and age; TARE and TACE flags (see Data pre-processing); the patient’s
originating hospital ward and hospitalisation status and the technique used during the procedure.
Clearly, we do not include the timestamps of the events in the encoding, since we want to predict
the room occupancy starting only from the procedure schedule before any of the events are actually
performed. In addition, we consider the following trace attributes: the weekday, the total surgical
time estimated by the doctors and an estimate for the total IR time that can be either the initial
estimation by the doctors or the prediction of PPM1. The surgical time and IR room occupancy
estimates are summed over all the procedures scheduled in the IR session.

The label is defined as an upper bound of the total IR time, which represents the occupancy time
of the OR in an IR session. To be more precise the label is defined as follows:

label =
∑

procedure

max(procedure actual duration, procedure estimated duration), (1)

where the sum is over all the procedures of the IR session and the estimated duration of a procedure
can be either the initial estimate by the doctors or the prediction of PPM1.

The definition of the label is related to the evaluation methodology reported in Section 6.2. In-
deed one of the metrics used therein is the total IR time, and (1) defines an upper limit for it, since it
considers all the delays but does not consider potential in advance. Indeed, a procedure in advance
will not, in general, anticipate the next procedure that will anyway start at the scheduled time, so it
will not reduce in general the total IR time.

© 2024 The Author(s).
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The PPM model is obtained by training a Random Forest regressor. The training procedure in-
cludes the optimisation of the hyper-parameters. Further details on the training and the evaluation
of the model are reported in Section 6.1.

5.2. Optimisation

We introduce an integer linear programming model that jointly addresses the two problems implied
by the feature C1, that is (i) the problem of selecting patients from the waiting list and assigning
their procedure to an IR room on a certain day over the planning horizon and (ii) the problem of
determining the precise sequence of the IR procedures in such a way to avoid the overlap among
different procedures assigned to the same anaesthetist. In our modelling approach, we would like
to be as general as possible and in accordance with the OR literature. As a consequence, we refer to
the usual terminology adopted in the literature and consider the whole operative context depicted
in Section 4 made of four IR rooms and two types of procedures (or specialties) assuming that all
the IR teams are always available.

Let I , J and K be, respectively, the set of patients, specialities and IR rooms, which are indexed by
i, j, k. We would remark that set J is composed of two specialties, that is the procedures operated
on S1 and S2 and the ones operated on S3 and S4, respectively. Let Ij be the set of patients belonging
to the speciality j. Let T be the set of the days belonging to the planning horizon, indexed by t. Let
(k, t) be the IR session on the IR room k during the day t.

Let pi and skt be, respectively, the duration of the procedure of the patient i, and the maximum
time allowed for procedures in the IR session (k, t). The priority of the patient i is denoted with ri
and is defined in accordance with the realistic patient priority model introduced by Valente et al.
(2009) and deeply tested at S. Martino University Hospital of Genoa, Italy. The value ri is a function
of Li, that is the time (in days) spent by the patient i waiting for the treatment, and mi, that is the
maximum time (in days) before treatment of the patient i, that is the ideal time within which a
patient should receive their treatment.

The binary parameter τ
j

kt is equal to 1 if the OR k is assigned to speciality j on day t, 0 otherwise.
The binary parameter ui� is equal to 1 if the patient i should be scheduled before the patient �, 0
otherwise. This parameter is used to represent the sequence among clean, dirty and Covid-19 pro-
cedures.

Let A be the set of the available anaesthetists indexed by α. To represent the need and the avail-
ability of the anaesthetists, we introduce a binary parameter ai, which is equal to 1 when the proce-
dure of the patient i requires an anaesthetist, 0 otherwise, and the parameter Āαt, which represents
the time availability of the anaesthetist α on day t, in minutes.

Before stating the optimisation model, some decision variables should be introduced. The binary
variable xikt is equal to 1 if the patient i is selected for a procedure and assigned to the IR session
(k, t), 0 otherwise. The binary variable yi�kt is equal to 1 if the patient i is scheduled before the
patient � in the same IR session (k, t), 0 otherwise. The binary variable λi�t is equal to 1 if the
patient i precedes the patient � on day t independently of the IR room, 0 otherwise. The real variable
γi ∈ R+ models the starting time (in minutes) of the procedure of the patient i. We assume that time
starts from 0. The binary variable βαit is equal to 1 if the anaesthetist α is assigned to the patient i
on day t, 0 otherwise.

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13584 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 M. D. Cunzolo et al. / Intl. Trans. in Op. Res. 0 (2024) 1–26

Constraints (2) model the selection of the patients from the waiting list (constraints (2a)) and
their assignment to an IR session devoted to the specialty of the patient (constraints (2c) in which
M1

j can be set to the maximum number of executable procedures for each IR session (k, t) and for
each specialty j) without exceeding its time capacity (constraints (2b)).

∑

k∈K

∑

t∈T

xikt ≤ 1, i ∈ I, (2a)

∑

i∈I

pixikt ≤ skt, k ∈ K, t ∈ T, (2b)

∑

i∈Ij

xikt ≤ M1
j τ

j
kt. j ∈ J, k ∈ K, t ∈ T. (2c)

Constraints (3) model the assignment of the anaesthetist α to patient i on session (k, t), if the
procedure requires anaesthesia (constraints (3a)) in such a way as not to exceed the maximum time
capacity Āαt of the anaesthetist α on day t. Constraints (3c) avoid overlapping among patients
requiring the same anaesthetist on the same day. If two patients i and � have the same anaesthetist
α on day t (βαit + βα�t = 2) and they are assigned to two different IR room (xikt + x�ht = 2), then
one of two has to end the procedure before the other (γi + pi ≤ γ�). Note that M2

i can be set to the
maximum skt value for an IR session (k, t) to which the patient i can be assigned. Constraints (3d)
impose a precedence among each pair of patients.

∑

α∈A

βαit = ai

∑

k

xikt, i ∈ I, t ∈ T (3a)

∑

i∈I

βαit pi ≤ Āαt, α ∈ A, t ∈ T (3b)

γi + pi ≤ γ� + M2
i (5 − βαit − βα�t − xikt − x�ht − λi�t ), i, � ∈ I, i �= �,

k, h ∈ K, k �= h,

t ∈ T, α ∈ A, (3c)

λi�t + λ�it = 1, i, � ∈ I, i < �, t ∈ T. (3d)

Constraints (4) model the sequencing of the patients assigned to the same OR. Constraints (4a)
reinforce constraints (2b) by stating that the starting time of the procedure of the patient i plus
the duration should not exceed skt. Constraints (4b) guarantee that two patients i and � do not
overlap in the same OR k on day t. Constraints (4c) and (4d) determine the correct sequencing in
accordance with the parameter ui�.

γi + pi ≤ skt, i ∈ I, k ∈ K, t ∈ T, (4a)

γi + pi ≤ γ� + M2
i (3 − xikt − x�kt − yi�kt ), i, � ∈ I, i �= �, k ∈ K, t ∈ T, (4b)

γiui� ≤ γ�(1 − u�i) + M2
i (2 − xikt − x�kt ), i, � ∈ I, i �= �, k ∈ K, t ∈ T, (4c)

yi�kt + y�ikt = 1. i, � ∈ I, i < �, k ∈ K, t ∈ T. (4d)

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13584 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



M. D. Cunzolo et al. / Intl. Trans. in Op. Res. 0 (2024) 1–26 13

Fig. 1. Optimisation workflow which integrates the PPM models.

Finally, constraints (5) define the domains of the decision variables.

xikt, yi�kt, λi�t, βαit ∈ {0, 1}, γi ∈ R+ i, � ∈ I, k ∈ K, t ∈ T, α ∈ A. (5)

The objective of the optimisation models is to maximise the utilisation of the IR sessions and,
at the secondary level, to select the patients having higher priority ri, that is maximum waiting
time with respect to their maximum time before treatment. We would remark that maximising the
waiting time of selected patients is a proxy of the OR utilisation as proved by Aringhieri and Duma
(2017) and Aringhieri et al. (2022). Therefore, the objective function of our optimisation model can
be simplified as follows:

max z =
∑

i∈I

ri

∑

k∈K

∑

t∈T

xikt. (6)

5.3. Integrating optimisation and predictive process monitoring models

In this section, we illustrate how the PPM models described in Section 5.1 can be integrated with
the optimisation phase described in Section 5.2.

The complete workflow is presented in Fig. 1. The patient waiting list is initially processed by the
first predictive model PPM1, which adds to every procedure the predicted OR occupancy time. We
recall that PPM1 predicts how much the procedure occupancy time deviates from the estimate given
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14 M. D. Cunzolo et al. / Intl. Trans. in Op. Res. 0 (2024) 1–26

Table 2
Details of training and test datasets

Dataset Min date Max date Weeks Days Procedures

Training Apr 1 Sept 4 23 99 (83%) 324 (81%)
Test Sept 5 Sept 30 4 20 (17%) 76 (19%)

by the doctors. The waiting list, enriched with this temporal information, is then fed forward to a
first optimisation phase that generates an initial schedule. This schedule is subsequently analysed
using the second predictive model, PPM2, which estimates and quantifies the possible overtime of
every IR session in the schedule. If all the predicted overtime are lower or equal to a given temporal
threshold T , then the schedule is accepted as the final solution. If, instead, some IR sessions have
predicted overtime bigger than the threshold T , an additional optimisation phase is performed for
these sessions, in which at least one patient is changed or removed in every session, and a new
schedule is obtained. This is obtained by adding the constraint

∑

i∈I

1 − xikt ≥ 1 ∀(k, t) s.t. time estimate > T ,

to the model reported in the previous section, fixing all the variables regarding the IR session whose
estimate is less than or equal to T , and solving the resulting problem.

The new schedule is again evaluated by the PPM2 model that predicts the overtime for the ad-
justed IR session. The cycle is iterated until no overtime is bigger than the threshold T or a maxi-
mum number of iterations N has been executed.

6. Evaluation

In this section, we evaluate the methodology described in Section 5. To do this, we split our dataset
(see Section 4) into two parts: a training set and a test set, so that the latter corresponds to the last
four weeks in the dataset. The details of the split are reported in Table 2.

The training set is exclusively used to train the PPM models described in Section 5.1. The test set
is used both to assess the PPM model (see the next section), and as a waiting list that is used in the
optimisation phase described in Section 5.3. In this section, we give an exhaustive description of the
evaluation techniques adopted to test our methodology and the obtained results. Section 6.1 con-
tains the evaluation of the PPM models, while Section 6.2 contains the evaluation of the optimised
solutions obtained with the integrated approach, and its comparison with the standard one-shot
optimisation which does not use the information from the PPM models.

6.1. Predictive process monitoring

In this section, we describe the evaluation of the two PPM models described in Section 5.1. Even
though these two models have been created to support the optimisation phase, as described in
Section 5.3, it is still worthwhile to evaluate them independently of the potential improvement of
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Table 3
Hyper-parameter optimisation. The MAE values correspond to the fivefold cross-validation on the training set

Model MAE Hyper-parameters
n_estimator max_depth min_samples_split min_samples_leaf

PPM1 15.6 50 6 2 2
PPM2 (with OR occupancy estimated by doctors) 22.6 50 6 4 1
PPM2 (with OR occupancy predicted by PPM1) 21.4 10 4 8 1

Table 4
Test set evaluation. The MAE is reported together with the mean absolute value of the label for comparison

Model MAE Mean absolute label value

PPM1 15.9 38.6
PPM2 (with OR occupancy estimated by doctors) 21.2 337.5
PPM2 (with OR occupancy predicted by PPM1) 26.1 249.9

the optimisation performance. The analysis of the combination of PPM and optimisation is done
in the next section.

6.1.1. Evaluation setting
The two PPM models are first trained using the training dataset opportunely encoded, as described
in Section 5.1. In addition, we perform hyper-parameter optimisation of our predictive models.

Due to the small size of our dataset, we decide to use the same training dataset for both models
PPM1 and PPM2. For the same motivation, we opt for not using a dedicated validation set to
perform hyper-parameter tuning, instead, we use fivefold cross-validation inside the training set.
To build both models we opt for a classical ML regressor, the Random Forest regressor (we employ
the scikit-learn implementation of the Random Forest regressor https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestRegressor.html). We selected a random_state
equal to zero for reproducibility purposes and we performed the hyper-parameter tuning on the fol-
lowing parameters of the model: n_estimator, max_depth, min_samples_split and min_samples_leaf.
The metric used to validate and test the two models is the MAE.

6.1.2. Evaluation metrics
To evaluate the performance of the regression models, we use the MAE. MAE measures the average
absolute difference between the model’s predictions and the actual values (ground truth), providing
a direct measure of the regressor’s accuracy. Specifically, it is calculated as |PPM(x) − y|, where
PPM(x) represents the predicted value from the PPM model for a given input trace x, and y is the
corresponding ground-truth label.

6.1.3. Evaluation results
In Table 3 and Table 4 we report the results of the hyper-parameter optimisation and the test set
evaluation for the two models, respectively. The model PPM2 has been evaluated twice, one for
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every choice of the procedure OR occupancy time estimate – respectively, the estimate by the doc-
tors (first row) and the estimate based on the predictions of PPM1 (second row). In both cases, the
estimates are used both as input to the model and to define the label in Equation (1). From Table 4,
we observe that the performance of the two models is not particularly strong. The PPM1 model,
predicting the deviation in the procedure occupancy time with respect to the doctors estimation,
has an average MAE of 16 minutes, which corresponds to about one half of the average procedure
duration shown in Table 1. The PPM2 model, which predicts the total IR time, obtains a MAE
of 21 and 26 minutes in the two variants analysed, respectively, which is about a half of the mean
session overtime, as shown in Table 1.

A possible reason for such a result could be the lack of data for training the model. Indeed,
we see in Table 2 that we have only 324 traces to train PPM1 and only 99 traces to train PPM2.
However, we will see in the next section that, despite the modest performance of the PPM models,
the integration of their predictions in the optimisation workflow can indeed increase the quality of
the scheduling produced.

6.2. Optimisation

In this section, we assess the main contribution of this paper, which is the integration of the PPM
models within the optimisation workflow described in Section 5.3. This evaluation aims at answer-
ing the following research questions:

• RQ1: Does the integration of the PPM models in the optimisation workflow enhance the results
of the optimisation?

• RQ2: How does each of the two PPM models individually contribute to the outcome of the
optimisation?

• RQ3: How does the choice of the threshold parameter T (Section 5.3) affect the outcome of the
optimisation?

6.2.1. Evaluation setting
We apply the optimisation workflow described in Section 5.3 to the waiting list obtained from the
test dataset (see Table 2) producing a schedule for 15 days. Such a solution is computed by solving a
reduced version of the mathematical model reported in Section 5.2 restricted to only one IR room,
namely S1. We solved it by using a general-purpose solver, such as Cplex.

In order to answer the research questions presented at the beginning of this section, we consider
and evaluate the following variants of our optimisation workflow:

• V_one-shot is the standard one-shot optimisation obtained by using the procedure IR room oc-
cupancy times estimated by the doctors.

• V_full is the full optimisation workflow of Fig. 1 that uses the procedure IR room occupancy
times predicted by the PPM1 model and the iteration through the PPM2 model. We consider
two values of the threshold T : T = 15 (V_full_T15) and T = 20 (V_full_T20).

• V_PPM1_one-shot is a one-shot optimisation obtained using the procedure IR room occupancy
times predicted by the PPM1 model.
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• V_PPM2 leverages the iterative optimisation of Fig. 1 excluding the PPM1 module, that is us-
ing the procedure IR room occupancy times estimated by the doctors. In this case, also the
PPM2 model is trained without using the information on procedure IR room occupancy time
predicted by PPM1 (see Section 6.1). We consider two values of the overtime threshold T : T = 5
(V_PPM2_T5) and T = 10 (V_PPM2_T10).

Note that for the variant V_PPM2 we consider smaller values of the overtime threshold T than the
one used for the variant V_full. This is because the procedure IR room occupancy times estimated
by the doctors are usually overestimated, and therefore the schedule produced is inherently more
conservative. In particular, already at the first iteration step of the V_PPM2 workflow, each IR
session overtime is already lower than 15 minutes.

For the variants which include the PPM2 iterative optimisation, we consider a maximum it-
eration number N = 100. In addition, we compare all the schedules obtained against the actual
schedule that was used in the historical data during the first 15 days of the test set. We label this
schedule as V_historical.

6.2.2. Evaluation metrics
We introduce the two metrics used to assess the schedules produced by the optimisation workflow.
First of all, we define some preliminary concepts:

• the planned IR time is the time interval in which the IR room is scheduled to operate on;
• the total IR time is defined as the time interval from the scheduled opening of the IR room to the

end of its restoration after the last procedure. This can be larger than the planned IR time due to
procedures with delays;

• the real IR occupancy time is the total time in which the IR room was actually occupied, either by
carrying out a surgical procedure or by a post-operation IR room restoration operation.

The two metrics that we consider are

• IR usage rate U : This is the ratio between the real IR occupancy time and the total IR time. It
measures how efficiently the OR is used. A higher value for the IR usage rate is preferred, as
it indicates more efficient utilisation of the OR. It is difficult to ascertain an adequate value for
the usage rate with precision. This value is significantly influenced by the operative context in
relation to the patient case mix and the composition of the patient flow (e.g. elective and non-
elective patients) that the operating theatre is required to manage. Nonetheless, values exceeding
75% are in accordance with values deemed adequate in the existing literature (Tyler et al., 2003).

• overtime OT : This is the difference between total IR time and the planned IR time. It reflects
resource wastage due to the use of IR rooms beyond scheduled times. Zero overtime is ideal,
but overtime below a certain threshold is typically considered acceptable. Also in this case this
threshold depends deeply on the operative context. In our case study, overtime of less than 15
minutes is acceptable, as it does not incur extra costs for the hospital.

As an example, consider an IR room, scheduled to operate from 8.00 AM to 1.00 PM. This means
that the planned IR time is 300 minutes. Two procedures are carried out: the first one goes from 8.00

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13584 by C

ochraneItalia, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 M. D. Cunzolo et al. / Intl. Trans. in Op. Res. 0 (2024) 1–26

Table 5
Optimised schedule performances compared with the performance of the historical schedule

Optimisation variant Days Iterations Patients Mean OT (min) Mean U (%)

V_historical 15 – 67 37 72%
V_one-shot 15 – 60 12 64%
V_PPM1_one-shot 15 – 72 11 81%
V_PPM2_T5 15 37 60 9 64%
V_PPM2_T10 15 3 60 11 64%
V_full_T15 15 62 71 7 81%
V_full_T20 15 21 71 8 81%

AM to 10.30 AM and the second one from 11.00 AM to 1.10 PM, so that the total IR time is 310
minutes and the real IR occupancy time is 280 minutes. Therefore, U = 90% and OT = 10 minutes.

It is important to stress that these two metrics correspond to different aspects of the schedule
performance and therefore a good schedule should improve both of them even if these are two
conflicting metrics. Indeed, one could reduce overtime by simply inserting less procedures in an IR
session, but this will reduce the IR usage rate. Conversely, a denser schedule will probably increase
the IR usage rate at the expense of higher overtime.

We now describe how these two metrics are computed for the schedule produced by our optimisa-
tion workflow. The schedule obtained by the optimisation is made of the sequence of the scheduled
procedures and their estimated durations that are used for computing the scheduled starting time
of each procedure. We consider two possibilities for the procedure estimated duration: the initial
estimate made by the doctors and the predicted duration obtained by the PPM1 model. In order
to compute the metrics for the schedule produced by the optimisation workflow, we make the as-
sumption that the procedure actual IR room occupancy time – which takes into account also the
time necessary to restore the room after its use – is the one that has been observed historically
and that has been extracted from the test dataset. This could be a strong working assumptions
since the duration of a procedure may depend on many contingent or external factors. With this
assumption, the real IR occupancy time is computed as the sum of all the scheduled procedures
historical durations.

To compute the total IR time, we use the following method: if a procedure ends in advance, the
next procedure will still start at the scheduled time, and so this will not impact the total IR time.
Conversely, if the procedure ends late the next procedure will be delayed, and this will contribute
to increasing the total IR time. In this way, if a procedure is ahead of its estimated duration it does
not reduce, in general, the overtime but it does reduce the IR usage rate. The planned IR time is 300
minutes for all days.

6.2.3. Evaluation results
The performance of the original schedule and the optimised schedules obtained by the optimisa-
tion workflow is presented in Table 5. All the schedules have a time horizon of 15 days. For the
optimisation variants that include the iterative optimisation leveraging the PPM2 model, we report
how many iterations were necessary to obtain a schedule in which all the daily sessions have a pre-
dicted overtime lower than T . For all the variants, we were able to get that all the sessions have an
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Fig. 2. Mean overtime OT in minutes versus mean usage rate U for the historical and the optimised schedules.

overtime under the threshold so that none of the variants reached the limit of iteration N = 100.
Moreover, for each variant, we report how many patients the schedule includes in the time horizon,
the mean overtime OT and the mean usage rate U .

Note that each optimisation cycle takes at most 60 seconds, which is set as a time limit. Many
optimisation cycles are actually much faster than 60 seconds since most of the OR sessions are
already fixed so that the optimisation problem is much simpler. For instance, V_full_T15 takes
about 283 seconds, with the longer three iterations taking 55 seconds each on average, and the
remaining fifty-nine iterations taking less than 2 seconds each.

In the rest of this section, we will discuss the results to address the research questions outlined in
Section 6.2.

6.2.4. Answering RQ1
It is evident from Table 5 that all the optimisation variants produce significantly lower overtime
than the original schedule (V_historical). However, not all the optimised schedules achieve the same
usage rate U of the original schedule. In particular, the variants producing lower usage rates are
those that do not employ the PPM1 model’s predictions, as we will explain further while address-
ing RQ2. Ultimately, we can notice that the schedules produced by the full optimisation workflow,
which integrates the two PPM models, V_full_T15 and V_full_T20, are the ones with the best per-
formances, obtaining the highest usage rate and producing the lowest overtime. This answers to the
first research question RQ1. Namely, the integration of the PPM models allows us to obtain an
excellent usage rate of over 80%, which is 17 percentage points higher than the ordinary one-shot
optimisation, while also reasonably reducing overtime. These results are also displayed in Fig. 2.

Specifically, the integration of the PPM models enables us to achieve an excellent usage rate of
over 80.
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6.2.5. Answering RQ2
To answer the second research question, we comment on how the different components of our op-
timisation workflow, presented in Section 5.3, independently affect the performance of the sched-
ule produced. From Fig. 2, it is clear that the effects of PPM1 and PPM2 are distinct. Specif-
ically, employing procedure durations predicted by PPM1 in the optimisation significantly im-
proves the mean IR usage rate. In fact, all optimisation models that incorporate PPM1’s predictions
(V_PPM1_one-shot, V_full_T15, V_full_T20) achieve a higher usage rate than the original schedule
(V_historical). Conversely, optimisation models that do not use PPM1’s prediction (V_one-shot,
V_PPM2_T5, V_PPM2_T10) obtain a lower usage rate compared to the original schedule. This
can be attributed to the fact that these latter models rely on room occupancies estimated by doc-
tors, which are typically overestimated. On the contrary, using the predictions of the PPM1 model,
which are on average closer to the actual duration of the procedures (see Section 6.1) allows the
optimisation phase to generate better solutions.

On the other hand, incorporating the room occupancy predictions from PPM1 does not lead to
an improvement in overtime. Conversely, the integration of the iterative optimisation that leverages
the predictions of PPM2 does not affect the IR usage rate but seems to improve appreciably the
total overtime, independently of the presence of the PPM1 module. This behaviour is somehow
expected, since the purpose of the PPM2 module is indeed to re-optimise the IR sessions that,
according to the prediction model, generate an important overtime (higher than T ).

The overtime reduction might seem modest but is actually significant: for example, the use of
the schedule obtained with V_full_T15 saves 70 minutes in 15 days with respect to the one ob-
tained using V_PPM1_one-shot. This allows two IR sessions not to exceed the 15-minute threshold
for an acceptable overtime, thus avoiding the related costs. Furthermore, the overtime reduction
should be evaluated also considering the increased number of procedures performed, that is 72 for
V_PPM1_one-shot and 71 for V_full_T15 and V_full_T20 with respect to the 67 performed on the
original schedule (V_historical).

6.2.6. Answering RQ3
Finally, we comment on the role of the overtime threshold T used in the iterative optimisation, thus
answering to the third research question. In Fig. 3, we display the dependency of both overtime
(Fig. 3a) and the number of iterations (Fig. 3b) on the threshold value T for the two optimisa-
tion variants that incorporate the iterative optimisation module based on the PPM2 predictions
(V_PPM2, V_full). We can see that the effect of the parameter T is as expected: reducing the thresh-
old results in schedules with lower overtime, even if the difference in the mean overtime is only a
few minutes for both models. The disadvantage of lowering T is that the optimisation workflow
needs more iterations to produce the optimal schedule, thus taking a longer time to finish the com-
putation. Specifically, we observe that for V_PPM2 increasing the threshold from 5 to 10 minutes
significantly speeds up the convergence of the optimisation workflow, allowing a final acceptable
schedule to be reached after only three iterations through the PPM2 module, with an increase in
mean overtime of just two minutes. Similarly, for V_full, increasing the threshold from 15 to 20 min-
utes reduces the number of iterations by almost a third, with only a 1-minute increase in overtime.

Finally, we comment on the difference in behaviour between V_PPM2 and V_full. It can be ob-
served that the latter requires larger threshold values to achieve a comparable number of iterations
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Fig. 3. Dependence of overtime (a) and optimisation iterations (b) on the threshold value T .

relative to the former. This is due to the fact that the integrating PPM1 predictions in V_full re-
sults in tighter schedules, with a higher average number of procedures scheduled per IR session (see
Table 5). This likely conditions the PPM2 model to predict greater overtime, which in turn prolongs
the convergence in the iterative cycle.

7. Discussion and limitations

In this section, we discuss the advantages and limitations of the proposed method. Our discussion is
organized around two main aspects: the computational feasibility of our solution and the potential
application of alternative optimisation approaches to our problem.

7.0.1. Computational Feasibility
The problem we address falls into the larger family of OR planning problems. Specifically, our
problem can be traced back to the surgical case assignment problem (SCAP), which has been shown
to be NP-hard in Aringhieri et al. (2015). Nevertheless, we designed our models with computational
efficiency in mind, using open-source tools such as Pyomo (https://www.pyomo.org) and Coin-OR
(https://www.coin-or.org) to perform the optimization. Given the moderate size of our problem,
our methodology runs efficiently on standard PC hardware, which was a key requirement for the
research project funding this work.

The ML models employed for the PPM use a Random Forest architecture, which is both quick to
train and memory-efficient. Each model can be trained in under two minutes on a standard PC and
during each optimisation iteration, PPM inference requires only a fraction of a second, keeping it
computationally lightweight within the overall process.

7.0.2. Comparison with alternative methods
In this work, we focused on demonstrating the effectiveness of integrating PPM with optimisa-
tion rather than comparing our solution with alternative methods. Given that we are addressing a
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deterministic version of the problem, a comparison with other methods would add limited value.
Using exact optimisation allows us to guarantee an optimal solution, which is feasible within ac-
ceptable time limits given our problem size. Although heuristic or non-exact methods can be useful
for larger problem instances, they do not guarantee optimality and are generally applied when ex-
act methods become computationally infeasible due to factors like an increase in patients, rooms or
anaesthetists. For the current scope and problem instance sizes, our exact method is both feasible
and optimal.

Additionally, our solution is agnostic about the choice of ML regressor. However, comparing dif-
ferent ML methods could offer insights into how varying prediction accuracies impact scheduling
performance. Due to the limited data available in this project, we chose a Random Forest regressor,
which is computationally efficient and performs reliably on small datasets, making it suitable for
training and deployment for resource-constrained environments.

8. Conclusion

In this work, we introduced a new optimisation approach to improve the management of an IR
operating room computing more robust schedules. The main innovation is the integration inside
the optimisation workflow of two PPM models, which help to estimate surgical procedure durations
and IR session overtime.

We performed the evaluation of our method using a real-world dataset containing information
about four weeks of IR sessions in an IR department. We extracted from the dataset a waiting list
of patients and obtained an optimised schedule for fifteen days. We compared this schedule against
the original schedule used in reality in terms of mean IR usage rate and mean IR session over-
time. We also compared our method with a standard optimisation method that does not leverage
PPM models as well as with different variants of our methods that integrate only one of the two
PPM models.

We also compared our method with a standard optimisation approach that does not leverage
PPM models, as well as with different variants of our method that integrate only one of the two
PPM models.

The obtained results show that the proposed approach produces schedules that achieve higher
usage rates, lower overtime, and more patients operated on than the original schedule. We also show
that the integration of the two PPM models within the optimisation workflow improves the quality
of the output schedule with respect to the standard one-shot optimisation. In particular, we show
that each of the two PPM models used in the optimisation workflow contributes to improve one of
the two dimensions (mean IR usage rate and mean IR session), thus resulting in an improvement
on both the dimensions when used together.

As a future direction, we plan to mitigate an inherent limitation of the evaluation carried out in
this work. Indeed, in the evaluation, we make the assumption that the durations of the procedures
will be exactly the same as the historical data. The duration of a procedure, however, may also
very likely depend on external factors (e.g., the day of the execution, the resources available, etc.).
We expect that our optimisation approach already takes in part into account these factors. Indeed,
the iterative optimisation ensures the robustness of the schedule generated since it leverages on the
PPM2 model that already considers external factors in the prediction of the overtime. To overtake
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this evaluation limitation and assess the robustness of our optimisation method, one could employ
simulation models that reproduce faithfully the time evolution of processes (Camargo et al., 2022;
Meneghello et al., 2023). This kind of simulation indeed uses contingent factors (intercase features,
resource availability) for the assignment of events’ durations. Another direction of investigation is
the application of explainable AI (XAI) techniques to the PPM2 model in the iterative optimisation
phase. This integration could speed up this phase, allowing it to converge to the final solution in
less iterations. Indeed, the application of XAI techniques to the PPM model (Rizzi et al., 2020) can
identify the main cause for an IR session overtime. In this way, we could obtain guidance on the
replacements and on the changes to apply to the IR session schedule to reduce the overtime below
the T threshold.

From an optimisation perspective, a future direction of investigation is the development of opti-
misation algorithms to improve the efficiency of the optimisation phase in such a way to deal with
larger problems in terms of the number of patients and IR rooms.

A promising future direction for research in the integration of PPM and optimisation models is
the replacement of the PPM regressor models with classifiers. Instead of estimating the exact delay,
the objective would be to generate an alert that signals the likelihood of a delay with sufficient con-
fidence. This approach could enhance the optimisation process by focusing on identifying potential
delays rather than quantifying them. The assumption that a PPM model is available for estimating
the delay of individual procedures allows for the development of a robust optimisation model, sim-
ilar to that proposed by Addis et al. (2016), capable of handling a given number of the procedures
with the largest estimated delay.

More generally, it would be valuable to validate the proposed approach to the classical surgery
process scheduling problem, as this involves managing multiple ORs and more complex proce-
dures. Such validation could further demonstrate its potential to improve efficiency and resource
utilisation in a wider range of medical settings.
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