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Thesis content

The Lambda Cold Dark Matter (ΛCDM) cosmological model can successfully explain the
homogeneous and isotropic Universe and the formation and dynamics of cosmic struc-
tures. In the ΛCDM scenario, halos of cold dark matter (CDM) are predicted to surround
the Milky Way (MW) and the other galaxies. Thus, in the last decades, the predictions
of ΛCDM on the properties of dark matter (DM) halos have been largely tested on our
Galaxy.

Even though the CDM model explains a number of observational properties of galaxies,
it faces persistent challenges on galaxy scales, as illustrated in Chpt. 1 of this Thesis and
in our review de Martino et al. (2020). Possible solutions to these challenges can be
found within the CDM scenario, by including in CDM simulations physical processes
that involve baryons and that were previously neglected. Other solutions come from
the assumption of DM candidates different from the weakly interacting, non-relativistic,
collisionless particles that constitute CDM. Finally, the challenges of the ΛCDM model
on the scale of galaxies may also be interpreted as a breakdown of the law of gravity, and
another way to face them is thus to assume a different theory of gravity.

The shape of the halos is one of the testable predictions of the ΛCDM model. DM-only
numerical simulations find globally triaxial DM halos with a tendency to prolateness in
the center. When the physics of baryons is accounted for, cosmological hydrodynamic
simulations predict rounder DM halos in the inner regions. The predicted triaxiality
parameters of the DM halos are subject to changes if alternative DM candidates are
considered. Constraining the shape of the DM halo of the MW is thus instrumental to
test the predictions of the standard cosmological model on galaxy scales and to unveil
the nature of the DM particles. The fact that, to date, none of the elementary particles
suggested as candidates of dark matter has been detected may suggest a failure of New-
tonian gravity on galaxy scales, calling for a modification of the law of gravity. In this
perspective, one of the most explored and successful alternative theories of gravity on
galaxy scales is MOdified Newtonian Dynamics (MOND).

In this Thesis, we investigate the MW gravity following two different approaches: (i)
assuming that the Milky Way is embedded in a DM halo and that Newtonian gravity holds
on Galactic scales, in Chpt. 2 we propose a new method to determine the shape of the DM
halo of the MW; (ii) accounting for the possibility that Newtonian gravity may not be
the correct theory of gravity, in Chpt. 3 we propose a novel test to discriminate between
Newtonian gravity and MOND. In both approaches, we perform our investigations by
means of hypervelocity stars (HVSs), that we use as test particles to probe the Galactic
gravitational potential well. Indeed, these stars are ejected from the Galactic center on
purely radial trajectories and may reach the outer regions of the Galaxy. During their
travel, they acquire non-null tangential velocities due to the non-spherical components of
the Galactic gravitational potential.

Following approach (i), in Chpt. 2, based on our work Gallo et al. (2022), we use
Newtonian gravity and assume the presence of a DM halo surrounding the MW. In this
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model, for a given distribution of the baryonic matter in the Galactic bulge and disk,
the magnitude of the HVS tangential velocities proves to be a powerful indicator of the
shape of the DM halo. We thus propose a new method to determine the shape of the
gravitational potential of the DM halo of the MW with the galactocentric tangential
velocities of a sample of HVSs. We compute the trajectories of different samples of HVSs
in a MW where the baryon distribution is axisymmetric and the DM potential either is
spherical or is spheroidal or triaxial with radial-dependent axis ratios. We create ideal
observed samples of HVSs with known latitudinal component of the tangential velocity,
vϑ, and azimuthal component of the tangential velocity, vϕ. Axisymmetric potentials only
affect the latitudinal components of HVSs, while non-null azimuthal components originate
from non-axisymmetric matter distributions. Therefore, we determine the shape of the
DM potential with the distribution of |vϑ|, when the Galactic potential is axisymmetric,
or with the distribution of |vϑ| and of a function, v̄ϕ, of vϕ when the Galactic potential
is non-axisymmetric. We recover the correct shape of the DM potential by comparing
the distribution of |vϑ| and v̄ϕ of the ideal observed sample against the corresponding
distributions of mock samples of HVSs that traveled in DM halos of different shapes. We
use ideal observed optimal samples of ∼ 800 HVSs, which are the largest samples of 4 M�
HVSs ejected with the Hills mechanism at a rate ∼ 10−4 yr−1, currently outgoing, and
located at more than 10 kpc from the Galactic center. In our ideal case of galactocentric
velocities with null uncertainties and no observational limitations, the method recovers
the correct shape of the DM potential with a success rate S & 89% when the Galactic
potential is axisymmetric, and S > 96% in the explored non-axisymmetric cases.

The unsuccessful cases yield axis ratios of the DM potential that are off by ±0.1.
The success rate decreases with decreasing size of the HVS sample: for example, for a
spherical DM halo, S drops from ∼ 98% to ∼ 38% when the sample size decreases from
∼ 800 to ∼ 40 HVSs. Accurate estimates of the success rate of our method applied
to real data require more realistic samples of mock observed HVSs. Nevertheless, our
analysis suggests that a robust determination of the shape of the DM potential requires
the measure of the galactocentric velocity of a few hundred HVSs with robustly confirmed
galactocentric origin.

Following approach (ii), in Chpt. 3, based on our work Chakrabarty et al. (2022), we
account for the possibility that Newtonian gravity is not the correct theory of gravity,
and we show that measuring the velocity components of HVSs can discriminate between
MOND and Newtonian gravity. As anticipated above, HVS azimuthal velocities only
appear in non-axisymmetric matter distributions. We find that, for HVSs with sufficiently
high ejection speed, the azimuthal velocity components are proportionate to the deviation
of the gravitational potential from axial symmetry. The ejection velocity threshold is
∼ 750 km s−1 for 4 M� stars and increases with decreasing HVS mass. We determine the
upper limit of vϕ as a function of the galactocentric distance for these high-speed HVSs
if MOND, in its quasi-linear formulation QUMOND, is the correct theory of gravity and
either the triaxial Galactic bulge or a non-spherical hot gaseous halo is the primary source
of the azimuthal component, vϕ. In Newtonian gravity, the HVSs within 60 kpc of the
Galactic center may easily have vϕ values higher than the QUMOND upper limit if the
DM halo is triaxial or if the DM halo and the baryonic components are axisymmetric
but their two axes of symmetry are misaligned. Therefore, even a limited sample of high-
speed HVSs could in principle enable us to distinguish between the QUMOND scenario
and the DM model.

A critical issue of both our new method to constrain the DM halo shape and our novel
test to distinguish between MOND and Newtonian gravity is the uncertainty on the HVS
tangential velocities used to probe the MW gravitational potential. Currently available
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velocities from the Gaia Early Data Release 3 are affected by relative uncertainties that
can exceed 100%. These errors need to be reduced by at least a factor ∼ 10 to make
our gravity test decisive. On the other hand, the impact of the velocity uncertainties on
the success rate of our method to determine the shape of the DM halo of the MW is
currently under investigation. Indeed, the high success rate of our method in recovering
the correct DM halo shape is obtained for the ideal case of null uncertainties. To preserve
a high success rate, the uncertainties on the HVS tangential velocities need to be as small
as possible. Because proper motion is the main source of uncertainty on the tangential
velocity for distant HVSs, and significantly contributes to this uncertainty for nearby
HVSs, improving the precision on the measures of HVS proper motion is a crucial step
to significantly constrain the shape of the DM halo of our Galaxy. A Theia-like future
astrometric mission should reach an end-of-mission uncertainty on proper motions of a
few microarcseconds per year, namely ∼ 100 times smaller than that of Gaia. Our work
is contributing to the definition of the scientific goals and of the technical requirements
of this mission.

The Thesis is organized as follows. In Chpt. 1, based on our works de Martino et al.
(2020), Gallo et al. (2022), and Chakrabarty et al. (2022), we introduce the general
context of the Thesis: In Sect. 1.1 we discuss the missing mass problem, which led to
the introduction of the concept of DM; in Sect. 1.2 we explore the ΛCDM cosmological
model; in Sect. 1.3 we present the challenges faced by the ΛCDM model on galaxy scales
(Sect. 1.3.1) and we explore possible solutions under the assumption of either different
DM candidates (Sect. 1.3.2) or a different theory of gravity (Sect. 1.3.3); in Sect. 1.4
we investigate the theoretical predictions on the shape of DM halos made by the ΛCDM
model (Sect. 1.4.1) and by models that assume alternative DM particles (Sect. 1.4.2), and
we explore the current observational constraints on the shape of the DM halo of the MW
(Sect. 1.4.3); finally, in Sect. 1.5 we focus on HVSs: we explore the mechanisms that can
lead to their ejection (Sects. 1.5.1 and 1.5.2) and discuss their observations (Sect. 1.5.3).

In Chpt. 2, based on our work Gallo et al. (2022), we present our new method to
constrain the shape of the MW DM halo using a statistical sample of HVSs whose galac-
tocentric tangential velocities are known. In Sect. 2.1 we describe our numerical simu-
lations of the initial velocity distribution of a sample of HVSs ejected according to the
Hills mechanism, and the simulations of the HVS trajectories in a Galactic gravitational
potential generated by DM halos with different shapes; we also illustrate the construc-
tion of our HVS phase space mock catalogs. In Sect. 2.2 we show how the asphericity
of the DM halo mostly affects the HVS tangential velocity: we identify this velocity as
the key variable to statistically discriminate between different shapes of the DM halo,
and we select the appropriate HVS sample to pursue this goal. In Sect. 2.3 we present
our statistical method to recover the shape of the DM halo from a distribution of HVS
tangential velocities. In Sects. 2.4 and 2.5 we show the results of the application of our
method to an ideal sample of mock observed HVSs with null uncertainties and no ob-
servational limitations that traveled in an axisymmetric and non-axisymmetric Galactic
gravitational potential, respectively. In Sect. 2.6 we investigate the effect of the size of
the ideal sample of mock observed HVSs on the success rate of our method. We discuss
our results and conclude in Sects. 2.7 and 2.8.

In Chpt. 3, based on our work Chakrabarty et al. (2022), we propose a novel test to
discriminate between MOND and Newtonian gravity by means of the measurement of the
azimuthal component of the galactocentric tangential velocity of even few HVSs observed
in the MW. In Sect. 3.1 we illustrate the quasi-linear formulation of MOND (QUMOND)
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that we adopt in this work. Sect. 3.2 describes our model of the distribution of the MW
baryonic matter that generates the QUMOND gravitational potential. In Sect. 3.3 we
illustrate the model of DM halo we adopt for comparison with the QUMOND predictions.
In Sect. 3.4 we illustrate and discuss our simulations of the HVS kinematics in MOND
and in Newtonian gravity. In Sect. 3.5 we show the galactocentric tangential velocities of
the HVSs in QUMOND and in Newtonian gravity, and detail our QUMOND predictions.
We conclude in Sect. 3.6.

We present our final remarks and future prospects in Sect. 4.
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Chapter 1

Introduction 1

1.1 The missing mass problem and the idea of dark matter halos

“Dark matter, in an astronomical sense, is introduced to explain the difference
between how objects in the sky ought to move, according to some preconceived
notion, and how they are actually observed to move.”

(R. H. Sanders (2010), The Dark Matter Problem: A Historical Perspective)

The concept of invisible or dark matter (DM) developed during the last century to what
is the current connotation.

In 1932, Oort first introduced the concept of invisible matter after having pointed out
in the Milky Way (MW) a discrepancy of a factor of up to two between the amount
of the visible stellar populations near the Sun and the total matter density estimated
from dynamical data. Although this result is often considered to be the first evidence of
the existence of dark matter, the discrepancy has now been alleviated by more accurate
observations of the stellar disk population (Kuijken and Gilmore, 1989a,b; Holmberg and
Flynn, 2004).

In 1933, F. Zwicky pointed out a discrepancy between the observed velocity dispersion
of about 1000 km s−1 along the line of sight of eight galaxies in the Coma cluster (Fig. 1.1)
and the velocity dispersion expected in a system of N massive galaxies in dynamical
equilibrium (∼ 80 km s−1). In order to explain this discrepancy, the average density of
the Coma cluster needed to be at least 400 times greater than that derived from the
observation of the luminous matter. Part of this huge density difference was due to the
underestimate of the cluster distance of a factor ∼ 8. The remaining part was due to the
underestimate of the baryonic mass of the cluster by a factor of about ten: indeed the
presence of a hot X-ray emitting gas component was unknown at that time. However,
even though the distance and baryonic mass of the cluster are properly computed, a mass
discrepancy between five and ten subsists (Jones and Forman, 1984; David et al., 1990).

This discrepancy implied the presence of a large amount of invisible mass: this was
the first time that the dark matter concept was introduced in an extragalactic context.
Although this mass was still thought to be in the form of stars and/or gas which were
not yet observable, this result of Zwicky traditionally marks the birth of the dark matter
problem.

A new era began in the 1970s, when V. C. Rubin and W. K. Ford measured the
rotation curve of the Andromeda galaxy (M31) out to 110 arcminutes away from the

1Part of the content of this chapter is published in our works de Martino et al. (2020), Gallo et al. (2022), and
Chakrabarty et al. (2022).
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1 – Introduction

Figure 1.1. The Coma galaxy cluster. Image credits: NASA, ESA, and the Hubble Heritage Team
(STScI/AURA).

galactic center, and estimated a mass-to-light ratio of 13 ± 0.7 M�/L� at R = 24 kpc
(Rubin and Ford, 1970). In the same years, measures of the 21-cm line emission of neutral
hydrogen also suggested that the rotation curves of spirals fall off at large radii less rapidly
than they should when most of the galaxy mass is concentrated in the optically luminous
component (Freeman, 1970; Roberts and Rots, 1973). This flatness of the rotation curves
led to the conclusion that galaxies are embedded in massive halos extending to large radii,
as was suggested by theoretical studies of the stability of disk against the development
of a bar (Hohl, 1971; Ostriker and Peebles, 1973).

In the 1980s the idea of DM halos surrounding the galaxies and becoming dynamically
more important at increasing distances from the galactic center was accepted by the
majority of the astronomers.

The presence of a mass discrepancy in the Universe continued to be, up to the present
day, the constant result of independent observations from the galactic to the cosmological
scales.

On the scale of galaxies, evidence of missing mass results from:

• the nearly flat rotation curves of disk galaxies at large radii (see Fig. 1.2) (e.g., Rubin
and Ford, 1970; Freeman, 1970; Rogstad and Shostak, 1972; Roberts and Rots, 1973;
Bosma, 1978; Rubin et al., 1982, 1985; van Albada and Sancisi, 1986; Persic et al.,
1996; Martinsson et al., 2013; Bhattacharjee et al., 2014);

• the stability of dynamically cold stellar disks (e.g., Hohl, 1971; Ostriker and Peebles,
1973; Fall and Efstathiou, 1980; Sellwood, 2014);

• the dynamics of the outer regions of elliptical galaxies (e.g., Franx et al., 1991;
Cappellari et al., 2006; Cappellari, 2016; Pulsoni et al., 2018);
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1.1 – The missing mass problem and the idea of dark matter halos

• the large mass-to-light ratios of dwarf galaxies (e.g., Kormendy, 1987; Irwin and
Hatzidimitriou, 1995; Wechsler and Tinker, 2018);

• the discrepancy between the expected gravitational acceleration given the baryonic
matter and the gravitational acceleration observed thanks to weak gravitational
lensing measurements (e.g., Brouwer et al., 2021).

Figure 1.2. Rotation velocity for four Sb galaxies as a function of the fraction of the isophotal radius,
R25, for each galaxy. The figure is reproduced from Rubin et al. (1982).

On the scale of galaxy clusters (Biviano, 2000; Voit, 2005; Diaferio et al., 2008; Walker
et al., 2019), mass-to-light ratios of ∼ 100− 400M�/L� were found (Girardi et al., 2002;
Rines et al., 2004; Proctor et al., 2015). However, these high values are not indicative of
the real mass discrepancy in the galaxy clusters, because the clusters are characterized by
a major hot gas component. Thus, on the scale of galaxy clusters, the mass discrepancy
can be more meaningfully quantified by the ratio between the total mass of the cluster,
Mtot, and the sum of the stellar and gaseous mass, Mstars + Mgas. Typical values of the
mass discrepancy are in the range ∼ 5− 15 (Blumenthal et al., 1984) and result from:

• the dynamics of the member galaxies (e.g., Kneib et al., 1996;  Lokas and Mamon,
2003; Giodini et al., 2009; Geller et al., 2013; Rines et al., 2013; Sohn et al., 2017;
Tian et al., 2021);

• the X-ray emission of the intracluster gas (e.g., Sarazin, 1986; Rosati et al., 2002;
Böhringer and Werner, 2010; Sohn et al., 2019; Clerc et al., 2020);

• gravitational lensing (e.g., Tyson et al., 1990; Clowe et al., 2006; Postman et al.,
2012; Sereno et al., 2018; Meneghetti et al., 2020; Umetsu, 2020).

Initially the dominant idea was that the dark matter consists of baryonic matter and
the search for dark matter focused on sub-luminous compact objects, such as planets,
brown dwarfs, white dwarfs, neutron stars, and black holes. These Massive Astrophysical
Compact Halo Objects (MACHOs) are now believed to form only a small fraction of
dark matter. Microlensing surveys have been used to set an upper limit of 8% to the
contribution of MACHOs to the mass fraction of the DM halo of the Milky Way (Lasserre
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1 – Introduction

et al., 2000; Tisserand et al., 2007). Nevertheless, there is the possibility that Primordial
Black Holes (PBHs), which formed before the Big Bang nucleosynthesis and have masses
below the sensitivity range of microlensing surveys, may form a substantial fraction of
the total dark matter density. This idea was originally discussed by Carr and Hawking
in 1974. However, generating a relevant abundance of primordial black holes requires a
substantial degree of non-Gaussianity in the power spectrum of the primordial density
perturbations (Motohashi and Hu, 2017; Passaglia et al., 2019). Recently, the detection
of gravitational waves has set a tight upper limit to the abundances of these black holes.
This limit suggests that the black hole contribution to the dark matter abundance is at
the level of a few per cent (Wang et al., 2018), as allowed by the constraints on non-
Gaussianity obtained from the Planck satellite (Young and Byrnes, 2015; Clark et al.,
2017; Planck Collaboration et al., 2020c).

Meanwhile, a novel idea was growing: that the dark matter consists of non-baryonic
subatomic particles only weakly interacting with baryons and photons. Indeed, on cos-
mological scales, the structure formation from the nearly homogeneous matter distribu-
tion implied by the small temperature anisotropies of the cosmic microwave background
(CMB) requires a stronger gravitational pull than that provided by the baryonic matter
alone (Silk, 1967; Davis et al., 1985; Spergel et al., 2007; Planck Collaboration et al.,
2020a).

The evidence of a mass discrepancy in both galaxies and clusters of galaxies, together
with the cosmological arguments for a substantial non-baryonic component of the Uni-
verse, lead to the emergence of a new paradigm: the standard Cold Dark Matter (CDM)
model of the Universe. This paradigm is now replaced by the Lambda Cold Dark Matter
(ΛCDM) model, with the inclusion of a negative-pressure fluid, the dark energy, that
explains the Universe expansion.

1.2 The ΛCDM model

Over the last decades, the standard model for the evolution of the Universe, the ΛCDM or
concordance model (Ostriker and Steinhardt, 1995), was established by many independent
observations; among them:

• the CMB temperature fluctuations (Hinshaw et al., 2013; Planck Collaboration et al.,
2020a,b,c,d,e);

• the power spectrum of the matter density perturbations (Percival et al., 2001; Pope
et al., 2004; Tegmark et al., 2004);

• the luminosity distances to supernovae SNIa (Riess et al., 1998; Perlmutter et al.,
1999; Riess et al., 2004; Astier et al., 2006; Davis et al., 2007; Kowalski et al., 2008;
Amanullah et al., 2010; Suzuki et al., 2012);

• the expansion rate of the Universe (Jimenez et al., 2003; Simon et al., 2005; Stern
et al., 2010; Moresco et al., 2012a,b).

The current constraints on the cosmological parameters have reached unprecedented
accuracy (Génova-Santos, 2020).

In this model, the present period of accelerated expansion is driven by the cosmological
constant Λ, that provides an energy density ΩΛ,0 = 0.686± 0.020 in units of the critical
density ρc = 3H2

0/8πG (Planck Collaboration et al., 2020a). The cosmological constant
can be identified with a perfect fluid with an equation of state p = wρ, between pressure
p and energy density ρ, with the constant parameter w = −1. The second largest
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1.2 – The ΛCDM model

contribution to the total energy-density budget of the Universe is dark matter, which
is needed to explain the dynamics of galaxies and the large-scale structure. Its energy
density is ΩDM,0 = 0.314±0.020 (Planck Collaboration et al., 2020a). The present density
of ordinary, or baryonic, matter is Ωb,0h

2 = 0.02207 ± 0.00033 (Planck Collaboration
et al., 2020a). Summing the contributions of the cosmological constant, dark matter,
and baryonic matter yields the curvature of the Universe Ωk,0h

2 = −0.037+0.044
−0.042 (Planck

Collaboration et al., 2020a), where h is the Hubble constant in units of 100 km s−1 Mpc−1.
This curvature makes the Universe spatially flat.

The concordance model successfully describes the homogeneous and isotropic Universe,
and the dynamics of cosmic structures (see, however, Sect. 1.3.1).

Dark matter is expected to consist of stable massive particles beyond the Standard
Model of elementary particle physics. Dark matter can thus clump in self-gravitating
structures embedding galaxies and clusters of galaxies. Once General Relativity is as-
sumed to be the correct theory of gravity, evidence of the DM existence is based on its
gravitational effects that solve the mass discrepancy problem on both galaxy scales and
galaxy cluster scales.

Dark matter also allows the primordial perturbations in the density field of the bary-
onic matter to grow and form the cosmic structures we observe today (e.g., Kuhlen et al.,
2012). Indeed, in the history of cosmic expansion, for models where the dark matter and
dark energy are not separated from the other components of the Universe, dark matter
decouples from the primordial plasma much earlier than baryons; the primordial fluctu-
ations in the DM density field thus start growing earlier and, at recombination epoch,
they are larger than the baryon density perturbations that are still coupled to the per-
turbations of the background radiation field that generates the CMB anisotropies. After
the recombination epoch, baryonic matter falls into the gravitational potential wells of
the DM halos and forms the cosmic structure (see e.g., Bertone et al., 2005; Boyarsky
et al., 2009; Feng, 2010; Bertone and Hooper, 2018).

In these models, DM particles are thus in thermal equilibrium with the cosmic plasma
before the decoupling epoch, when they get out of kinetic equilibrium, as they become
non-relativistic, at temperature T = Td � mDM, where mDM is the mass of the DM
particle. In the standard CDM model, the DM particles are so massive that Td � T0,
where T0 is the plasma temperature at recombination epoch. They thus decouple from
other particles and start moving freely at non-relativistic speeds in the early Universe.
The comoving number density of DM particles freezes out when the creation and anni-
hilation of the DM particles are inhibited. In general, the freeze-out cosmic temperature
Tf � Td. The comoving number density of DM particles is thus set by their annihilation
cross section at this epoch (Jungman et al., 1996)

Ωχh
2 = (3× 10−27cm3/sec)/〈σv〉ann . (1.1)

Intriguingly, for Weakly Interacting Massive particles (WIMPs), with mass in the
range ∼ 1GeV - 10TeV, the annihilation cross section 〈σv〉ann gives Ωχh

2 comparable
to the observed dark matter density ΩDM,0 ∼ 0.3 (Planck Collaboration et al., 2020a).
This coincidence is usually called “the WIMP miracle”. WIMPs are expected in the
theory of supersymmetry, which dates back to the 1970s and supposes that, for any
given fermion, there is a boson with the same quantum numbers, and vice versa (Martin,
1998). In this case, there would be many electrically neutral and weakly interacting
massive particles that could be cosmologically abundant and could play the role of dark
matter. Nowadays, direct and indirect searches for WIMPs as well as other DM particle
candidates are ongoing (see e.g., Tanabashi et al. (2018) for a comprehensive review).
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1.3 Beyond the ΛCDM model

The ΛCDM model, that successfully describes the formation and dynamics of cosmic
structures and the homogeneous and isotropic Universe, still faces important challenges
at all scales. Among the difficulties faced the on cosmological scales, there are the cosmo-
logical constant problem (e.g., Weinberg, 1989; Del Popolo and Le Delliou, 2017) and the
cosmic coincidence problem (e.g., Velten et al., 2014; Del Popolo and Le Delliou, 2017).
The cosmological constant problem consists in a huge difference between value of the
cosmological constant obtained in quantum field theory, when interpreting the constant
as the present energy density of the vacuum, and the value resulting from observations:
quantum field theory predicts ρΛ = 1071 GeV4, while the cosmological upper bound is
ρΛ = 10−47 GeV4. The coincidence problem is connected to the fact that the dark energy
and dark matter energy densities are of the same order of magnitude at the present epoch
(ΩΛ ≈ 0.7 and ΩDM ≈ 0.3, respectively), thus requiring very special initial conditions in
the primordial Universe. Other challenges of ΛCDM involve the discrepancy between
the observations at early and late cosmological time of some cosmological parameters:
one example is the Hubble tension, namely the disagreement at 5σ between the values
of the Hubble parameter, H0, derived from the CMB data, that are cosmological model
dependent, and the values obtained from the direct local distance ladder measurements.
Another example is the tension at 3σ on the strength of matter clustering S8 (for a
comprehensive review see, e.g., Abdalla et al., 2022).

Nevertheless, the most severe challenges of the ΛCDM model appear at the scale of
galaxies as detailed in Sect. 1.3.1.

1.3.1 Challenges of the ΛCDM model on the scale of galaxies

In the standard cosmological model, DM consists of massive particles that weakly interact
with ordinary matter and that decoupled from the primordial plasma when they were
non-relativistic. This CDM scenario encounters some difficulties in describing structures
at galactic scales (see e.g., Moore, 1994; Boylan-Kolchin et al., 2011; Bullock and Boylan-
Kolchin, 2017; Del Popolo and Le Delliou, 2017; Salucci, 2019). These difficulties include
the cusp/core problem (CCP), the missing satellites problem (MSP), the too-big-to-fail
(TBTF) problem, and the planes of satellite galaxies problem (PSP).

• The CCP is the discrepancy between the flat DM density profile observed at the
centers of low surface brightness (LSB), dwarf and ultra-faint galaxies, and the
cuspy profile predicted in collisionless N-body simulations (e.g., Navarro et al., 1997;
Ferrero et al., 2012; Genina et al., 2018). In particular, N-body simulations show
cuspy density profiles for DM halos of galaxy size; the halo density increases with
decreasing radius r as r−β, with β in the range ∼ [1 − 1.5]. These slopes do not
match the cores favored by the observed rotation curves (Davis et al., 1985; Flores
and Primack, 1994; Moore, 1994; Navarro et al., 1997). Nevertheless, modeling the
kinematics of stars in dwarf galaxies does not lead to a clear conclusion to whether
these galaxies are dominated by a core or a cusp in their innermost regions (Walker
et al., 2009). Figure 1.3 illustrates the cusp/core problem. A “modern” approach
to the CCP problem consists in facing the diversity of rotation curves problem (e.g.,
Oman et al., 2015; Ghari et al., 2019), that is the difference between the shape of
the theoretical rotation curves obtained in DM only simulations and the shape of
the observed rotation curves. Indeed, for a fixed maximum circular velocity, the
theoretical circular velocity profiles are substantially invariant, while the shapes of
the observed rotation curves display large differences (especially for dwarf galaxies)
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and only part of them are in agreement with the simulations. Typically, the rotation
curves that do not match the theoretical predictions have a lower circular velocity in
the inner part of the galaxy that indicates an inner mass deficit. Although this mass
deficit can be the result of an inner core of the DM density profile, approaching the
problem as a deficit in the mass eliminates the uncertainties of the decomposition
of the inner mass profile in its baryonic and DM contributions, and enables a direct
comparison between simulations and observations.

Figure 1.3. Rotation curve (left panel) of UGC 5750 (the LSB galaxy, showed in the right panel).
The data of the rotation curve are obtained with the integrated field Hα spectroscopy (squares) (Kuzio
de Naray et al., 2006), long slit optical observations of the Balmer transition (circles) (McGaugh et al.,
2001; de Blok and Bosma, 2002), and radio observations of the 21 cm atomic hydrogen spin flip transition
(stars) (van der Hulst et al., 1993). The isothermal sphere with a core (CIS) profile (solid line) fits the
data. rc(zero) and rc(max) are the values of the core radius obtained from the fit in the no disk and
maximum disk case, respectively; the solid line is the case of no disk. Neither the Navarro-Frenk-White
(NFW) profile (dashed line), whose parameters are fixed and given by the ΛCDM cosmology, nor the
singular isothermal sphere (SIS) profile can describe the DM halo of this LSB galaxy. The figure is
reproduced from Chen and McGaugh (2010).

• The MSP, illustrated in Fig. 1.4, is the fact that the DM halos of galaxies like the
Milky Way are predicted to have a number of dark matter subhalos which is an
order of magnitude larger than the number of satellites observed around the Milky
Way or other comparable galaxies (Kauffmann et al., 1993; Klypin et al., 1999).

• The TBTF problem (Read et al., 2006; Boylan-Kolchin et al., 2011, 2012; Garrison-
Kimmel et al., 2014), illustrated in the right panel of Fig. 1.4, manifests in the
central densities of the most massive DM subhalos formed in ΛCDM simulations;
these densities are systematically larger than the central densities of the brightest
classical Milky Way satellites, as inferred from their stellar kinematics. In princi-
ple, associating the classical satellites to dark matter subhalos with smaller central
densities and smaller mass would erase the discrepancy; however, this association
would clearly imply that the most massive subhalos would not host a galaxy. In
other words, these subhalos “failed” to form stars even though less massive subhalos
succeeded in doing so.

• The PSP refers to the fact that, in the galaxy systems of the Milky Way (see Fig. 1.5),
of M31, and of Centaurus A, the satellite galaxies reside in a thin plane and they
generally corotate. This satellite configuration appears unlikely in the simulations
of the standard CDM model (Pawlowski et al., 2014).
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Figure 1.4. Left panel: Projected dark matter distribution (600 kpc on a side) of a 1012 M� DM
halo from the ELVIS ΛCDM simulations (Garrison-Kimmel et al., 2014). The number of small subhalos
strongly exceeds the number of known Milky Way satellites (missing satellites problem). The circles
highlight the nine most massive subhalos. Right panel: Spatial distribution of the closest nine of the
eleven most luminous (classical) satellites of the Milky Way (the diameter of the outer sphere is 300
kpc). For these satellites, the central mass inferred from stellar kinematics is a factor of ∼ 5 lower than
the mass predicted for the central regions of the subhalos highlighted in the left panel, preventing the
association of the classical satellites to the most massive subhalos of the DM halo of Milky Way-like
galaxies (too-big-to-fail problem). The figure is reproduced from (Weinberg et al., 2015).

Possible solutions to some of the above mentioned challenges can be found within the
context of the CDM scenario. For example, including in the CDM simulations physical
processes that mostly affect the baryonic matter and that are usually neglected, may
alleviate some of the problems (see e.g., de Martino et al. (2020) for a comprehensive
review).

Possible solutions within the CDM paradigm to the cusp/core problem can involve
processes as supernova feedback and dynamical friction. Winds driven by supernovae
(Navarro et al., 1996a; Mashchenko et al., 2006) or stellar winds (Gnedin and Zhao,
2002; Mashchenko et al., 2008) can be an effective mechanism to transform the cusp of
the dark matter density profiles into a core. In both cases the winds produce energy
feedback that can drastically modify the shape of the dwarf galaxies by forcing the gas
and the DM particles to move outwards, change the gravitational potential well, and
flatten the density profile (Mashchenko et al., 2008). Moreover, the dynamical friction
between gas clumps with masses of 105 − 106M� can transfer angular momentum from
the gas to the DM particles that would move away from the central region of the halo,
flattening its density profile. This effect should be efficient in the early phase of the galaxy
formation when the halo size is smaller (El-Zant et al., 2001; Romano-Dı́az et al., 2008).
However, gas clumps in dwarf galaxies are usually less massive than 105 − 106M�; thus,
the mechanism is not sufficient to solve the cusp/core problem (Jardel and Sellwood,
2009). Moreover, when approaching the diversity of rotation curves problem, cored DM
density profiles do not offer a natural explanation for the large range of values of the
mass deficit inferred from the observed rotation curves; indeed, at a given mass scale,
the size of the cores should be similar. Although there are uncertainties in the inference
of the rotation curve of a galaxy due to instrumental complexities and to the difficulties
of modeling non-circular and random motions, it is unlikely that their effect can be so
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Vast Polar Structure (VPOS) of the Milky Way

Figure 1.5. Edge-on view of the vast polar structure (VPOS) around the Milky Way and the disk
(solid black line at the center). The orientation and the width of the best fit satellite plane are indicated
by the dashed and dotted lines, respectively. The colored triangles, red upward (blue downward) for
receding from (approaching towards) an observer at rest with respect to the host galaxy, indicate coherent
kinematics of the co-orbiting satellites. The satellites with no proper motion measurements are plotted
as crosses. The grey area corresponds to the region ±12◦ from the Milky Way disk which is obscured by
galactic foreground. The figure is reproduced from Pawlowski (2018).

high to provide the explanation for the diversity of rotation curves problem (Oman et al.,
2015).

The MSP can be addressed within the CDM model with the abundance matching
technique, that matches the cumulative distribution of an observed property of galaxies
with the predicted cumulative distribution of the mass of their DM halos (Bullock and
Boylan-Kolchin, 2017). For example, by adopting the mean star formation rate as the
observed property, the MSP in the MW appears to be solved for satellite masses larger
than 109 M� (Read and Erkal, 2019), for which the cumulative mass function within
280 kpc from the MW center is consistent with the results from ΛCDM simulations
that account for sub-halo depletion by the MW disk. For satellites with halo masses
. 109M�, the MSP might be explained by the suppression of star formation caused
by UV reionisation (Bullock and Boylan-Kolchin, 2017), but this issue requires further
investigation.

An overestimate by about a factor two of the mass of the DM halo of the Milky Way
can in principle solve the TBTF problem for the Galaxy. Indeed, in this scenario, the
number of massive dark sub-halos not corresponding to observed dwarf satellites would be
of the order of three; this number can be attributed to statistical fluctuations (Boylan-
Kolchin et al., 2012). However, there are currently no indications of the existence of
systematic errors that can reduce the estimate of the Milky Way mass by the required
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factor. In addition, the TBTF problem appears in M31 and in other galaxies; therefore,
the overestimate of the Milky Way mass would not fully remove the tension. One way to
solve this problem would be to account for baryonic physics in simulations (Brooks and
Zolotov, 2014; Dutton et al., 2016; Buck et al., 2019), even though the results depend on
the mass resolution of baryonic particles.

Concerning the planes of satellite galaxies problem, although several solutions have
been proposed within the CDM model, none of them has been unanimously accepted,
because they either fail to reproduce all the observational aspects or they are based
on poorly-investigated assumptions. For example, some mechanisms can reproduce the
planar structures observed in M31 and Centaurus A (Libeskind et al., 2015) but not in
the Milky Way (Libeskind et al., 2014; Pawlowski, 2018).

Besides the above mentioned solutions, some of the challenges faced by the ΛCDM
model on galaxy scale can be solved under the assumption of either a different DM
candidate (see Sect. 1.3.2) or a different theory of gravity (see Sect. 1.3.3).

1.3.2 Alternative dark matter candidates

Besides WIMPs, among the hypothetical elementary particles beyond the Standard Model
that can make up for the non-baryonic dark matter, quantum chromodynamics (QCD)
axions and fuzzy dark matter (FDM) are strongly motivated candidates (Hu et al., 2000;
Amendola and Barbieri, 2006). QCD axions are suggested by the solution of the Strong
CP problem in the Standard Model (Weinberg, 1978; Wilczek, 1978), while fuzzy dark
matter arises from the compactification of extra dimensions in the String Theory land-
scape (Arvanitaki et al., 2010). Moreover, some of the small scale issues of the CDM
scenario can be solved assuming a warm dark matter (WDM) model or a self-interacting
dark matter (SIDM) model.

QCD axions

QCD axions have the double virtue of solving the Strong CP problem in the Standard
Model (SM) of particle physics (Peccei and Quinn, 1977a,b; Weinberg, 1978; Wilczek,
1978) and of being a potential candidate for dark matter (Abbott and Sikivie, 1983;
Preskill et al., 1983; Dine and Fischler, 1983): it was indeed shown that they could be
abundantly produced in the early Universe and their energy density behaves as that of
CDM. Ultra-light axion-like particles (ULALPs) with a mass of ∼ 10−22 eV might solve
both the cusp/core problem, resulting in DM density profiles with a ∼ 1 kpc extended
core, and the missing satellites problem. An attempt to solve the CCP with QCD axions
by simply extrapolating the ULALPs scenario does not work, because the DM core they
produce would be too small: of the size of O(1) km (Marsh and Pop, 2015). Whether
QCD axions can address the small-scale problems requires further investigations.

Fuzzy dark matter

Another excellent alternative to CDM is Fuzzy Dark Matter, which consists of ultra-light
bosons with mass in the range 10−23−10−20 eV (Hu et al., 2000; Amendola and Barbieri,
2006). These light bosons are naturally generated from symmetry breaking due to the
misalignment mechanism (Preskill et al., 1983; Abbott and Sikivie, 1983; Svrcek and
Witten, 2006), and are very common in string theory (for more details see Arvanitaki
et al., 2010). FDM is considered to be a real scalar field φ with mass mφ which is
minimally coupled to the metric (Hui et al., 2017).
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The field φ is initially massless until the Universe cools down to some critical temper-
ature (Luu et al., 2020). It acquires the mass by rolling down and oscillating about the
minimum of a potential generated non-perturbatively (Luu et al., 2020). The typical de
Broglie wavelength of a FDM particle is a few kpc:

λdB

2π
=

~
mφv

= 1.92 kpc

(
10−22 eV

mφ

)(
10 km/s

v

)
. (1.2)

Therefore, the physics of FDM on length scales below λdB differs from that of the standard
CDM. In particular, small density fluctuations unstable for masses larger than the Jeans
mass (see Eq. 42 in Hui et al., 2017) lead to a minimum halo mass of ∼ 107 M� for a
boson mass of ∼ 10−22 eV. On the contrary, on scales above λdB, the large scale structure
of FDM is indistinguishable from CDM (Schive et al., 2014).

In 2014, novel N-body simulations with unprecedented high resolution showed the rich
small scale structures of FDM halos (Schive et al., 2014). The uniqueness of these N-
body simulations was their ability to capture the quantum nature of the DM particles
by combining Schrödinger’s and Poisson’s equations (Widrow and Kaiser, 1993). Each
virialized halo has a core of dark matter in the innermost part, which represents the
ground state solution of the Schrödinger-Poisson equations. This core is surrounded by
an interference pattern represented by fluctuations in the velocity and density fields of
the particles. The cores, more often called solitons, exhibit flat density profiles that can
naturally explain the wide cores in dwarf galaxies, and match the Navarro-Frenk-White
(NFW) density profiles (Navarro et al., 1996b) in the outer regions of the halos.

Since solitons have a constant central density thanks to pressure support, they may
potentially solve the CCP. To shed light on this issue, independent analyses used stellar
kinematics data of dwarf spheroidal galaxies by carrying out a Markov Chain Monte
Carlo fitting procedure of the projected velocity dispersion profiles (Marsh and Pop, 2015;
Calabrese and Spergel, 2016; González-Morales et al., 2017; Chen et al., 2017). These
analyses found that the data prefer soliton-generated cores (with boson mass ∼ 10−22

eV) over cuspy NFW profile.
N-body simulations also show the suppression of the halo number density for mass

≤ 1010 M�, and how this cut-off depends upon the mass of the FDM particle (Marsh and
Silk, 2014). Such suppression may provide a solution to the MSP (Du et al., 2017).

The debate on whether or not FDM may be a viable DM candidate is still ongoing.
The presence of the soliton in every virialized halo can affect the dynamics of the disk by
enhancing the circular velocity in the inner part of the rotation curve; this feature can
provide a way to probe the model (Bar et al., 2019). However, many pieces of evidence,
like the contribution of baryons or the constraints on FDM mass, still need to be explored.

Warm dark matter

In contrast to CDM, WDM particles decouple when they are still relativistic; they thus
erase primordial fluctuations on sub-galactic scales, and produce a cut-off in the primor-
dial power spectrum (Smith and Markovic, 2011). WDM particles can play the role of
CDM in the cosmological evolution of the Universe (Schneider et al., 2014) and may also
alleviate some of the problems of the CDM model at galactic scales.

To investigate the suppression of the primordial power spectrum on small scales, one
of the most powerful tools is the Lyman-α forest. A lower limit to the mass of the
WDM particles were initially set to mχ > 750 eV (Narayanan et al., 2000) by fitting the
Lyman-α forest in quasar spectra. More recent analyses of the Lyman-α forest and of
the Milky Way satellites have increased the lower limit to several keV (e.g., Seljak et al.,
2006; Abazajian, 2006; Kennedy et al., 2014).

15



1 – Introduction

The most promising candidate of WDM is sterile neutrino, with mass ms, which is
mixed with an ordinary neutrino (Dodelson and Widrow, 1994; Dolgov and Hansen, 2002).
For small mixing angles such as sin2 2θ ∼ 10−7, the total amount of sterile neutrinos is
only a small fraction of the ordinary neutrinos.

The claimed detections are based on the so-called 3.55 keV line emission, which is
attributed to the decay of DM particles, and are obtained by using Chandra X-ray obser-
vations of galaxies in the Local Group (Horiuchi et al., 2014), studies on dwarf galaxies
(Malyshev et al., 2014), and Suzaku observations of the Perseus galaxy cluster (Tamura
et al., 2015). These investigations imply a sterile neutrino of mass ∼ 7 keV.

In contrast to these results, the full-sky Fermi Gamma-ray Burst Monitor data (Ng
et al., 2015) do not reveal any significant signal for sterile neutrino decay lines in the
energy spectrum.

Additional constraints have been obtained by using gravitationally lensed quasars:
under the assumption of a thermal relic DM particle, modeling the image positions and
the flux-ratios of several gravitationally lensed quasars implies a lower limit (Hsueh et al.,
2019) of mχ > 5.58 keV or mχ > 5.2 keV, consistent with the lower limits mχ > 5.3 keV
or mχ > 3.5 keV, depending on the assumed thermal history of the intergalactic medium,
derived from the analysis of the Lyman-α forest (Bolton et al., 2008; Iršič et al., 2017;
Garzilli et al., 2019).

WDM particles can lead to possible solutions of some of the CDM observational chal-
lenges. Since WDM particles are moving freely when they are relativistic, they can travel
distances of the order of the horizon size, suppressing density fluctuations on scales below
the inverse of a characteristic comoving wavenumber (Bode et al., 2001):

kWDM ∼ 15.6
h

Mpc

(mX

keV

)4/3
(

0.12

ΩDMh2

)1/3

, (1.3)

with obvious meaning of the symbols. This suppression of the density perturbations may
lead to a solution of some of the problems that the CDM model encounters at galactic
scales. The matter power spectrum drops below a certain length scale k−1 depending
upon the mass of the WDM particles. For example, the power spectrum is suppressed
below k−1 ∼ 100 kpc for a particle mass of ∼1 keV (Viel et al., 2005). Therefore, the
subhalo mass function can be brought into agreement with satellite counts and the MSP
would be solved (Smith and Markovic, 2011; Zavala et al., 2009; Papastergis et al., 2011).

In addition, the gravitational collapse leads to a cuspy halo profile with a lower cen-
tral concentration compared to CDM halos (Smith and Markovic, 2011). Moreover, the
existence of a relic thermal velocity distribution for the WDM particles may convert the
cusp in the density profile into a core, providing a solution to the CCP (Tremaine and
Gunn, 1979). Nevertheless, the cores appear to be smaller than required to explain the
data on LSB galaxies (Villaescusa-Navarro and Dalal, 2011; Macció et al., 2012).

These results have been widely validated by many N-body simulations of structure
formation within the WDM scenario (e.g., Bode et al., 2001; Polisensky and Ricotti,
2011; Macció et al., 2012; Anderhalden et al., 2012; Schneider et al., 2012; Angulo et al.,
2013).

Finally, a WDM particle with mass in the range 1.5− 2 keV can potentially solve the
TBTF problem for satellite dwarf galaxies, as Milky Way-sized DM halos have fewer and
less dense massive subhalos in WDM than in CDM (Lovell et al., 2012; Schneider et al.,
2014). Furthermore, the TBTF problem for field dwarf galaxies can also be solved by a
WDM particle with mass of ∼ 1 keV (Papastergis et al., 2015). However, WDM particles
with such small masses are in conflict with a number of observational constraints; masses
of the WDM particles that are consistent with the largest estimate of ∼ 7 keV enable
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WDM simulations to alleviate the TBTF problem only when baryonic feedback and tidal
process are accounted for, similarly to CDM simulations.

Self-interacting dark matter

A model of WDM and SIDM was firstly introduced in 1992 (Carlson et al., 1992), and
subsequently constrained a few years later (Machacek, 1994; de Laix et al., 1995). In
2000, Spergel and Steinhardt proposed the idea of cold and self-interacting dark matter
to solve two small scale issues of CDM: the cusp/core and the missing satellites problems.
The newly proposed SIDM particles behave like collisionless CDM at larger length scales,
where the rate of collisions becomes negligible due to the smaller density.

SIDM models are commonly parametrized by the cross-section per unit mass, σ/m,
which, in general, is a function either of the relative velocity vrel of the DM particles, or
of the total mass of the virialized halo, Mhalo. In addition, vrel and Mhalo are related by
the fact that the velocity dispersion of the DM particles is larger in more massive halos.

Cosmological simulations of SIDM halos without the baryonic feedback predict con-
stant density cores (Dave et al., 2001; Yoshida et al., 2000; Rocha et al., 2013; Elbert
et al., 2015) contrary to the cuspy profiles from the simulations of collisionless CDM. The
SIDM simulations solve the cusp-core problem if σ/m & 0.5 cm2/g for galactic halos with
Mhalo ∼ 1011 M� (Firmani et al., 2000; Elbert et al., 2015). However, galaxy clusters with
Mhalo ∼ 1014 M� require σ/m ∼ 0.1 cm2/g (Meneghetti et al., 2001; Firmani et al., 2000,
2001; Tulin and Yu, 2018). The difference in σ/m at galaxy and cluster scales implies
velocity-dependent cross-sections which is a crucial aspect of the SIDM models.

Although SIDM with large scattering rates tends to reduce the number of subhalos,
the MSP is not easily solved by SIDM (Rocha et al., 2013; Colin et al., 2002; Vogelsberger
et al., 2012; Zavala et al., 2013), unless non-minimal SIDM interactions are assumed (Tulin
and Yu, 2018). From SIDM-only simulations, the values of σ/m required to solve the
MSP are most likely ruled out by constraints from the measured ellipticities of DM halos
(see Tulin and Yu (2018) and references therein). However, the baryonic contributions
may significantly change this scenario on galaxy scales. On the scale of galaxy clusters,
values of σ/m in the range 0.3 to 104 cm2/g are excluded based on the fact that, unlike
the number of satellite galaxies, the number of galaxies in a cluster is comparable to the
number found in the simulations of the formation of the large-scale structure (Gnedin
and Ostriker, 2001; Rocha et al., 2013).

The self-interactions between the DM particles also alleviates the TBTF problem for
satellite and field dwarf galaxies. Even though self-interaction has little effect on the
abundance or total mass of the subhalos, it effectively decreases the central density of
the most massive subhalos by removing mass from these regions, characterized by cuspy
density profiles. Velocity-independent SIDM models are consistent with the kinematics
of the Milky Way dwarf spheroidal galaxies (dSphs) for values of the cross-section per
unit mass σ/m ≈ 1 cm2/g (Zavala et al., 2013; Dooley et al., 2016); lower values of
σ/m generate a population of subhalos too dense to be consistent with the observations.
On the other hand, velocity-dependent SIDM models successfully solve the TBTF (Loeb
and Weiner, 2011; Vogelsberger et al., 2012; Dooley et al., 2016). However, the class of
velocity-dependent SIDM models remains largely unconstrained.

In principle, SIDM with dissipative or inelastic scattering may also alleviate the prob-
lem of the planes of satellite galaxies by allowing the observed satellites to be dark
matter dominated tidal dwarfs (Foot and Silagadze, 2013; Randall and Scholtz, 2015).
In CDM simulations, dwarf galaxies formed due to tidal disruption during the merging

17



1 – Introduction

of two galaxies are baryon dominated. On the contrary, a dissipative dark matter sce-
nario allows a thin dark matter disk in a halo, and merging galaxies with such dark disks
may produce dark matter dominated dwarf galaxies with strong phase-space correlations.
However, the presence of a dark matter disk in the Milky Way is not currently supported
(Schutz et al., 2018; Buch et al., 2019).

1.3.3 Alternative theories of gravity: MOND

The observational challenges of the CDM model on galactic scales may also be interpreted
as a breakdown of the law of gravity. Modifications of the law of gravity conceived to
explain the observed kinematics of visible matter started to be systematically investi-
gated back in the 1980s (Bekenstein and Milgrom, 1984; Sanders, 1986, 1990; Sanders
and McGaugh, 2002), although some suggestions were put forward much earlier (e.g.,
Finzi, 1963). On cosmological scales, observational data from the Planck mission do not
seem to provide statistical evidence in favor of any particular theory of gravity (Planck
Collaboration et al., 2020a). Also at galactic scales, where the physics is complicated by
the relevant role of baryons, the issue remains open.

In the following, we focus on MOdified Newtonian Dynamics (MOND), the alternative
theory of gravity for which we conceived a novel test in Chakrabarty et al. (2022) (see
Chpt. 3).

MOND

In 1983, Milgrom suggested to explain the mass discrepancy in cosmic structures with a
modification of the law of gravity rather than with the presence of dark matter (Milgrom,
1983a,b,c). His phenomenological proposal rests upon the hypothesis that there is an
acceleration scale a0 ' 1.2 × 10−10 m s−2 above which Newtonian gravity holds and
below which Newtonian gravity breaks down. This idea goes beyond the naive idea that
gravity should be modified simply beyond a length scale (Finzi, 1963; McGaugh and de
Blok, 1998b).

According to Milgrom’s suggestion, the magnitude a of the acceleration experienced
by a test particle in a gravitational field is

a = ν

(
aN
a0

)
aN , (1.4)

where aN is the magnitude of the gravitational acceleration, estimated in Newtonian
gravity, originated by the distribution of the baryonic matter alone, as dark matter is
assumed to be nonexistent; ν is an interpolation function whose asymptotic behaviors
are ν → 1 when aN � a0 (and thus a = aN) and ν → (aN/a0)−1/2 when aN � a0 (and
thus a =

√
aNa0).

A number of interpolation functions has been proposed in the literature; one of them
is that of McGaugh (2008):

ν

(
aN
a0

)
=
(

1− e−
√
aN/a0

)−1

. (1.5)

Rather than as a modification of the law of gravity, the introduction of an acceleration
scale can be alternatively interpreted as a modification of the law of inertia F = ma,
where the inertial mass differs from the gravitational mass when aN � a0 (Milgrom,
1994, 1999, 2006). In both cases, Milgrom’s suggestion yields a MOdified Newtonian
Dynamics (MOND) (see Famaey and McGaugh (2012) for an extensive review).
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1.3 – Beyond the ΛCDM model

The introduction of an acceleration scale makes the MOND formulation manifestly
purely phenomenological: in General Relativity, the acceleration is linked to the affine
connection Γµνλ which is not a tensor; therefore, the formulation of a covariant version
of MOND, which is required to test the theory against the properties of the large-scale
structure on cosmic scales, is not unique and remains difficult. As a consequence, in the
MOND framework we can neither build a cosmological model, which is the most relevant
success of the ΛCDM model, nor quantify the phenomenology of gravitational lensing,
which is an important probe of the mass distribution on large scale. An additional
shortcoming is that MOND is unable to explain the observed mass discrepancy on the
scale of galaxy clusters and on larger scales, although the amount of required dark matter
is substantially reduced (Milgrom, 1983c).

Attempts to provide MOND with a covariant formulation include, for example, AQUAL
(Bekenstein and Milgrom, 1984), TeVeS (Bekenstein, 2004), and bimetric MOND (Mil-
grom, 2009). These theories introduce additional scalar, vector or tensor fields and reduce
to MOND in the non-relativistic limit (Cardone and Radicella, 2009). Recently, Hernan-
dez et al. (2019) concluded that a covariant equivalence between the MOND acceleration
scale a0 and the scalar quantity Kb, constructed at galaxy level, yields a cosmic expansion
history of the Universe in agreement with ΛCDM predictions; with:

Kb = K
r4

M
=

28Ga0

c4
, (1.6)

where M is the total mass of the baryonic component in a galactic system, K is the
Kretschmann curvature scalar for a Schwarzschild metric, G is the universal gravitational
constant and c is the speed of light. Skordis and Z lośnik (2021) present a relativistic
version of MOND in which a scalar field plays the role of DM in the early-Universe; this
MOND version successfully explains the CMB and matter power spectrum in the linear
regime.

The number of different theories shows that a covariant theory that reduces to MOND
is not uniquely determined. Therefore, invalidating one of these theories does not nec-
essarily invalidate MOND. For example, the detection of gravitational waves originating
from the merging of two neutron stars (LIGO Scientific Collaboration and Virgo Collab-
oration, 2017) combined with the observation of a gamma-ray burst within a few seconds
(Goldstein et al., 2017; Savchenko et al., 2017) implies that the speed of light and the
speed of gravitational waves coincide within one part in 10−15. In the original formu-
lation of TeVeS, the speed of gravitational waves in general is different from the speed
of light and therefore TeVeS appears to be ruled out (Gong et al., 2018). Nevertheless,
there is a family of tensor-vector-scalar theories that still reduce to MOND in the non-
relativistic limit, where the speed of gravitational waves equals the speed of light (Skordis
and Z lośnik, 2019).

The idea of a hybrid model that merges the success of MOND on small scales with
the properties of the large-scale structure provided by the presence of dark matter was
suggested by Angus in 2009. He assumed MOND as the theory of gravity and added a Hot
Dark Matter (HDM) component made of sterile neutrinos of mass ∼ 11 eV. The existence
of a sterile neutrino still appears to be a solution to the detection of the excess of electron-
like events in short-baseline neutrino experiments (Aguilar-Arevalo et al., 2018). HDM
has the advantage of clumping on scales larger than the scale of galaxies. The MOND
phenomenology would thus be preserved on small scales, whereas dark matter starts
becoming relevant on larger scales, where MOND apparently disagrees with observations
(see Diaferio and Angus (2012) for a review). Unfortunately, this hybrid model is unable
to reproduce the mass function of galaxy clusters (Angus and Diaferio, 2011; Angus et al.,
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2013, 2014).
On the other hand, on the scale of galaxies, MOND has proved not only to success-

fully describe most of the observed phenomenology, but actually to be predictive (e.g.,
Merritt, 2020). The predictions of MOND on the scales of galaxies are so distinctive that
it has become customary to collect them in the so-called MOND phenomenology. These
observational facts are clearly independent of the theory of gravity; therefore, other theo-
ries, alternative to the standard model, must mimic the MOND phenomenology on these
scales.

Confirmed MOND predictions include:

• the Baryonic Tully-Fisher Relation (BTFR; McGaugh et al., 2000) of disk galaxies.
The BTFR is the correlation between the total baryonic mass of the galaxy (Mbar)
and the asymptotic flat velocity of its rotation curve, Vc, that behaves as Mbar =
AV 4

c , where the normalization constant is A = 47 ± 6 M� km−4 s4 (McGaugh,
2012). A can also be written as A ∼ (Ga0)−1, the product between the gravitational
constant G and an acceleration scale a0 = 1.2 × 10−10 m s−2. The intrinsic scatter
of the BTFR reaches a minimum of ∼0.10 dex for Υ[3.6] & 0.5 M�/L� (Lelli et al.,
2016b). MOND predicts this correlation with virtually no systematic scatter over
∼ 5 orders of magnitude in baryonic mass (Lelli et al., 2016a; McGaugh, 2020);

• the Mass Discrepancy-Acceleration Relation (MDAR; Sanders, 1990; McGaugh, 2004).
MDAR is the anti-correlation between the Newtonian acceleration due to the mass
density of baryons and the squared ratio of the total and the baryons-induced galaxy
velocity, (V/Vbar)

2, that coincides with the mass discrepancy, (M/Mbar) under the
assumption of spherical symmetry. In the standard model, we dynamically esti-
mate the total mass with M ∼ rv2/G; from the luminosity we can estimate the
baryonic mass Mbar. In MOND, Newtonian gravity holds when the Newtonian grav-
itational acceleration generated by the baryonic mass is larger then a0, therefore
we expect M/Mbar ∼ 1 in this regime and M/Mbar increasingly larger than 1 at
increasingly smaller accelerations. This mass discrepancy-acceleration relation, pre-
dicted in 1983 (Milgrom, 1983b), implies increasingly large mass-to-light ratios for
galaxies with increasingly fainter surface brightness, as it was confirmed years later
with the observations of dwarf spheroidals galaxies and LSB disks galaxies (Mateo
et al., 1991; McGaugh and de Blok, 1998a). The MDAR can also be interpreted
as a discrepancy between the Newtonian gravitational acceleration generated by the
baryonic mass distribution, gbar, and the observed centripetal acceleration derived
from the rotation curves of disk galaxies, gobs. The tight correlation between gobs and
gbar was found by McGaugh et al. (2016) and is called radial acceleration relation
(RAR): the deviation from the one-to-one relation appears at Newtonian accelera-
tions smaller than a0 and the relation is described by the interpolation function of
Eq. (1.5) (McGaugh, 2008). Accurate spectroscopic measures of the disk galaxies
in SPARC (Lelli et al., 2016a) and other data sets (e.g., Lelli et al., 2013) support
this relation;

• the Freeman limit. When the introduction of massive DM halos was thought to
be necessary to make the disks dynamically stable and explained the flat rotation
curves, Freeman noted that the mean central surface brightness of disk galaxies is
µF = 21.65 mag arcsec−2 in theB-band with a little scatter of 0.30 mag arcsec−2: this
relation became known as the Freeman law (Freeman, 1970). However, the Freeman
law was the result of an observational bias, as it became clear a few years later (Allen
and Shu, 1979). In fact, disks appear in a wide range of central surface brightness
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(van der Kruit and Freeman, 2011). In addition, LSB galaxies are actually more than
half of the total galaxy population and the number of galaxies with central surface
brightness brighter than µF = 21.65 mag arcsec−2 drops substantially faster than for
a normal distribution (McGaugh et al., 1995): the Freeman law actually is a Freeman
limit. The Freeman limit is a property of the baryonic matter, whereas dark matter
dominates the dynamics of disk galaxies in the standard model. Therefore, the
Freeman limit must originate from the interplay between dark matter and baryonic
matter. The CDM model has not yet an obvious solution for deriving this limit
(Dalcanton et al., 1997). On the other hand, in MOND, the origin of the Freeman
limit simply derives from gravitational dynamics. Without dark matter, disks are
unstable in Newtonian gravity. However, if MOND is the theory of gravity, the disk
becomes stable against the development of bars (Milgrom, 1989; Brada and Milgrom,
1999; Tiret and Combes, 2008b; Jiménez and Hernandez, 2014; Thies et al., 2016;
Sánchez-Salcedo et al., 2016; Banik et al., 2018). It follows that disks without
any dark matter are gravitationally stable only if they are in the MOND regime,
aN < a0. If mass is proportional to luminosity, we have the acceleration aN ∼ 2πGΣ,
in Newtonian gravity, where Σ is the surface mass density. The limit aN < a0

becomes aN ∼ 2πGΣ < a0; in other words, gravitationally stable disks must have
Σ < a0/(2πG): this limit a0/(2πG) ≈ 143 M� pc−2 neatly returns the Freeman limit
µF = 21.65 mag arcsec−2 (Milgrom, 1983b, 1989);

• the dependence of the shape of the rotation curves on the surface brightness of the
galaxy. High surface brightness (HSB) galaxies are expected to have steeply rising
rotation curves that flatten at small radii, whereas LSB galaxies are expected to
have slowly rising rotation curves that converge to the asymptotic constant velocity
at large radii (McGaugh, 2020);

• the large mass-to-light ratios of dwarf galaxies when interpreted in Newtonian gravity
(Aaronson, 1983; Kormendy, 1987; Mateo et al., 1991; Mateo, 1998). MOND can
explain the velocity dispersion profiles of dwarf spheroidals with mass-to-light ratios
M/L consistent with stellar population synthesis models for the classical dwarfs,
except Carina (Angus, 2008; Serra et al., 2010). Carina is the closest dwarf spheroidal
to the Milky Way and detailed N-body simulations in MOND show that tidal forces
and the external field effect, an effect that lacks in Newtonian gravity, can only partly
alleviate the tension (Angus et al., 2014): the best-fit M/L in the V -band required
to match the observed velocity dispersion profile is M/L ∼ 5.3−5.7 M�/L�, a value
∼ 10% higher than the upper limit of ∼ 5 M�/L� for the old stellar population of
Carina (Maraston, 2005). However, there might still be the possibility to alleviate
this tension both observationally and theoretically: more accurate measurements
of the proper motion of the dwarf spheroidals and larger samples of stars with
accurate photometry can provide a better understanding of the physical properties
of the dwarf spheroidals; similarly, the modeling of these systems can be improved
by considering a triaxial three-dimensional stellar distribution, more sophisticated
treatments of stellar binaries and even more accurate stellar population synthesis
models.

Many of the observational challenges described in Sect. 1.3.1 were predicted by MOND
many years before they were actually observed and posed unexpected challenges to the
traditional dark matter framework. This feature is specific to MOND and makes it
fundamentally different from the other suggested theories of modified gravity: these latter
theories attempt to describe these observations only after they become available and never
anticipate them.
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Because in MOND no dark matter is present, MOND provides a natural solution to all
the DM-related challenges of the ΛCDM model illustrated in Sect. 1.3.1, namely the cus-
p/core problem, the missing satellites problem and the too-big-to-fail problem. Finally,
MOND might present a viable mechanism for the formation of the plane of satellites. In
the standard model, the problem of the plane of satellites would be most easily solved
if these satellites were collapsed tidal debris formed during galaxy interactions (Weil-
bacher et al., 2000; Bournaud and Duc, 2006; Wetzstein et al., 2007). Unfortunately, the
dwarf galaxies appear to be dark matter dominated, whereas these Tidal Dwarf Galaxies
(TDGs) are expected to be dark-matter free. In fact, the DM halo of the parent galaxy is
supported by the velocity dispersion of the DM particles and it is dynamically hot, unlike
the dynamically cold baryonic galactic disk supported by rotation. Therefore the DM
halo does not participate in the formation of the TDGs orbiting in a dynamically cold
plane: this tidal tail can only originate from the galactic disk. In MOND, this mechanism
would work without the complication of the existence of the dark matter, as shown by
N-body simulations (Tiret and Combes, 2008a; Renaud et al., 2016); the mechanism is
actually favored by the enhanced self-gravity of the baryons.

1.4 The shape of dark matter halos

1.4.1 Theoretical predictions in the ΛCDM model

The ΛCDM cosmological model predicts the existence of DM halos surrounding the Milky
Way and the external galaxies.

Although at first order the spherically symmetric NFW profile (Navarro et al., 1997)
can provide a good approximation to the shape of the DM halos, the first numerical N-
body simulations (Frenk et al., 1988; Dubinski and Carlberg, 1991; Warren et al., 1992;
Cole and Lacey, 1996) found the shape of the DM halos to be triaxial, and subsequent
works (e.g., Jing and Suto, 2002; Bailin and Steinmetz, 2005; Hayashi et al., 2007; Vera-
Ciro et al., 2011) confirmed this results.

The triaxiality coefficient, T , is defined as:

T =
1−

(
b
a

)2

1−
(
c
a

)2 , (1.7)

where, a, b, and c are the ellipsoidal parameters of the DM halo, with a > b > c; thus,
b/a and c/a are the intermediate-to-major axis ratio and the minor-to-major axis ratio,
respectively. If the DM halo is purely prolate (a > b = c) the triaxiality parameter is
T = 1. If the DM halo is purely oblate (a = b > c) the triaxiality parameter is T = 0. The
DM halo is triaxial for 0 < T < 1; usually, a DM halo with 0 < T < 1/3 is considered
nearly-oblate and a DM halo with 2/3 < T < 1 is considered nearly-prolate (Warren
et al., 1992).

In particular, DM halos in CDM simulations are triaxial with a tendency to prolateness
in the center, while they become more triaxial in the outer part. For example, Dubinski
and Carlberg (1991) find that the halos are strongly triaxial and very flat, with an average
density minor-to-major axis ratio (c/a)ρ = 0.50 and an average density intermediate-to-
major axis ratio (b/a)ρ = 0.71, that corresponds to a triaxiality parameter T = 0.66.
Within the inner 25 kpc, they find that the DM halos become more prolate with average
density axis ratio (c/a)ρ = 0.42 and (b/a)ρ = 0.56, that lead to T = 0.83. This behavior
is as a consequence of an accretion history that is more anisotropic at early times, when
halos are fed through narrow filaments, and becomes more isotropic at later times (Vera-
Ciro et al., 2011).
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The results obtained from these DM-only simulations are affected by the absence of the
baryonic component, whose inclusion is of fundamental importance to properly describe
the formation of small scale systems like the MW and the other galaxies. The inclusion
of the gas dynamics in the simulations was the first attempt to account for the baryonic
effects on the shape of the DM halo in the 1990’s (e.g., Katz and Gunn, 1991; Katz and
White, 1993; Dubinski, 1994).

In the following years, cosmological hydrodynamic simulations were used to investigate
the impact of radiative cooling, star formation, and supernova feedback on the final shape
of the DM halos (e.g., Gnedin et al., 2004; Kazantzidis et al., 2004; Gustafsson et al.,
2006; Tissera et al., 2010; Abadi et al., 2010; Zemp et al., 2012; Bryan et al., 2013; Butsky
et al., 2016).

The inclusion of these effects leads to a larger sphericity of the DM halos, that are now
predicted to be, in the central regions of galaxies, rounder than previously thought. For
example, Butsky et al. (2016) find that, for masses of ≈ 1012M�, the inner halo becomes
more spherical with an average density minor-to-major axis ratio (c/a)ρ = 0.8, while in
the DM-only simulations of Dubinski and Carlberg (1991) an axis ratio (c/a)ρ = 0.42 is
obtained within 25 kpc from the galactic center.

1.4.2 Theoretical predictions for alternative dark matter candidates

The dependence of the shape of the DM halo on the type of DM particle candidate is
still a poorly investigated field.

Among the alternative DM candidates illustrated in Sect. 1.3.2, only self-interacting
dark matter (SIDM) has been explored in this perspective.

Chua et al. (2020) explored the effects of inelastic DM self-interactions on the internal
structure of a simulated MW-size halo. They found that the central density of the MW
halo is reduced by the energy injection from inelastic self-interactions on a timescale
shorter than that of the elastic scale; this results in a larger size for the core of the
DM halo. Inelastic collisions also isotropize the orbits, causing an overall lower velocity
anisotropy for the inelastic MW halo.

All SIDM models lead to more spherical halos (i.e., larger b/a and c/a) than CDM
for a significant fraction of the halo. This increase in sphericity is stronger in the inner
regions and decreases towards the virial radius (see Fig. 1.6). In particular, when the
primordial fraction of DM in the excited state is χ2

init = 100%, in the inner 10 kpc from
the center of the galaxy, the DM halo is more spherical in the case of inelastic SIDM
((c/a)ρ ≈ 0.65) than in the case of CDM ((c/a)ρ ≈ 0.4), but less spherical than in the
case of elastic SIDM ((c/a)ρ ≈ 0.75).

In order to incorporate the effects of both baryonic and SIDM elastic interactions,
Vargya et al. (2021) studied a set of cosmological-baryonic simulations of MW-mass
galaxies from the FIRE-2 project by varying the SIDM self-interaction cross-section,
σ/m. Using the same initial conditions, they compared the shape of the DM halo at
redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm2 g−1) with
that obtained in CDM simulations; they found that, when the baryonic feedback effects
are included, the SIDM models do not produce the large differences in the inner structure
of MW-mass galaxies predicted by SIDM-only models.

1.4.3 Observational constraints for the Milky Way

In the last decades, a large number of studies has been conducted with the aim of testing
model predictions on the shape of the DM halo of the MW with available observations.
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Figure 1.6. Top panels: intermediate-to-major (b/a) density axis ratio as a function of galactocentric
distance, r. Bottom panels: minor-to-major (c/a) density axis ratio as a function of galactocentric
distance, r. The left panels show the results from simulations in which the primordial fraction of dark
matter in the excited states is χ2

init = 100%, while the right panels show the results for χ2
init = 50%. The

bottom plots attached to each panel show the ratio of the SIDM profiles relative to CDM. The figure is
reproduced from Chua et al. (2020).

Those tests used different tracers of the Galactic gravitational potential, such as:

• the distribution and kinematics of halo stars (e.g., Smith et al., 2009a; Loebman
et al., 2014);

• the kinematics of disk stars in the Solar neighborhood (Olling and Merrifield, 2000);

• the tidal streams from satellite galaxies and from globular clusters (e.g., Helmi, 2004;
Johnston et al., 2005; Fellhauer et al., 2006; Růžička et al., 2007; Law et al., 2009;
Koposov et al., 2010; Law and Majewski, 2010; Vera-Ciro and Helmi, 2013; Küpper
et al., 2015; Bovy et al., 2016; Malhan and Ibata, 2019);

• the distribution of globular clusters (e.g., Posti and Helmi, 2019);

• the distribution of the MW satellite galaxies (Zentner et al., 2005);

• the flaring of the HI distribution (e.g., Olling and Merrifield, 2000; Banerjee and
Jog, 2011).
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Because of the use of different tracers, the results of these studies hold on different
spatial scales. However, even on comparable scales, these results are not all consistent
with one another, partly because of the use of different techniques and partly because of
the different working assumptions.

The Galactic DM halo is suggested to be overall close to spherical on the basis of the
tilt of the velocity ellipsoid of a sample of halo subdwarf stars located at galactocentric
cylindrical radii of 7-10 kpc and depth . 4.5 kpc below the Galactic plane, in the 250
deg2 sky area covered by SDSS Stripe 82 (Smith et al., 2009a).

Under the assumptions that the MW DM halo is a spheroid and the full Galactic
gravitational potential is axisymmetric, a variety of results are found. The GD-1 stellar
stream excludes a significantly oblate DM halo at the GD-1 location, r ∼ 14 kpc, where
the vertical-to-planar axis ratio (hereafter referred to as “flattening”) of the gravitational
equipotential surfaces is constrained to qΦ > 0.89, according to Koposov et al. (2010);
the same stellar stream is found to provide a stronger constraint, yielding a prolate DM
halo with mass density flattening qρ = 1.27, by Bovy et al. (2016). On the other hand,
the stellar stream Pal 5 constrains the DM halo to be mildly oblate at r ∼ 19 kpc, with
either potential flattening qΦ = 0.95 (Küpper et al., 2015) or density flattening qρ = 0.9
(Bovy et al., 2016), suggesting a radial-dependent flattening for the DM halo. Finally,
the combination of Pal 5 and GD-1, together with constraints on the force field near the
Galactic disk, return a nearly spherical DM halo, with qρ = 1.05, (Bovy et al., 2016)
within the inner 20 kpc.

These results are at odds with those found with different probes on similar scales: the
combination of the kinematics of disk stars in the vicinity of the Sun with the flaring of the
HI disk is found to consistently constrain the DM halo to be oblate, with density flattening
qρ ∼ 0.8 (Olling and Merrifield, 2000); the kinematics of halo stars also constrains the
dark halo to be significantly oblate, with flattening qρ = 0.4 (or, equivalently, qΦ = 0.7;
Loebman et al. 2014). Conversely, the distribution of globular clusters suggests a prolate
DM halo with density flattening qρ = 1.3 (Posti and Helmi, 2019).

At larger galactocentric distances, 20 . r . 60 kpc, the tidal streams of the Sagittarius
dwarf spheroidal (Sgr dSph) galaxy lead to conclude that the DM halo potential has to be
mildly oblate (qΦ = 0.90−0.95; Johnston et al. 2005) or nearly spherical (qΦ = 0.92−0.97;
Fellhauer et al. 2006) to explain the precession of Sgr dSph’s orbit, while extremely oblate
halos with density flattening qρ < 0.7 are ruled out (Ibata et al., 2001); on the other
hand, the potential of the dark halo has to be prolate, with qΦ = 1.25−1.5 to explain the
kinematics of Sgr dSph’s older, leading stream (Helmi, 2004). Finally, on scales r . 200
kpc, the modeling of the Magellanic stellar streams generated by the interaction of the
MW with the Magellanic system favors a DM halo that has a globally oblate potential
with qΦ < 1 (Růžička et al., 2007). The uncertainties on the quoted flattening range from
∼ 5% to ∼ 20%.

Some of the apparent inconsistencies among the results on the shape of the dark halo
can be solved by assuming that the DM halo is triaxial, so that the Galactic potential is
globally non-axisymmetric. For instance, a triaxial DM potential with intermediate-to-
major axis ratio (b/a)Φ = 0.99 and a minor-to-major axis ratio (c/a)Φ = 0.72 on scales
20 . r . 60 kpc enables Law and Majewski (2010) to explain, at the same time, both the
angular precession and the radial velocities of the stars in the Sgr dSph leading stream
(see also Law et al., 2009).

Other inconsistencies on the shape of the dark halo, especially those on different spatial
scales, may in principle be relieved by discarding the simplifying assumption of a radial-
independent shape for the halo: although common to all the above-mentioned models,
this assumption is not supported by the results of N-body simulations. In this context,
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by assuming an axisymmetric dark halo to model the flaring of the HI disk, Banerjee
and Jog (2011) find the halo to be prolate, with a density flattening qρ increasing from
1 to 2 in the range 9 . r . 24 kpc. Conversely, with a non-axisymmetric model applied
to the Sgr dSph’s streams, and accounting for the effects of the Large Magellanic Cloud
(LMC), Vera-Ciro and Helmi (2013) constrain the DM halo potential to be mildly oblate
at r . 10 kpc, where qΦ = 0.9, and smoothly translating to a triaxial shape at larger
radii, where the intermediate-to-major axis ratio is (b/a)Φ = 0.9 and the minor-to-major
axis ratio is (c/a)Φ = 0.8, in agreement with cosmological simulations.

All these results clearly show that, despite the large efforts, the shape of the MW DM
halo remains uncertain and that further work is necessary.

1.5 Hypervelocity stars

In this Thesis we will use hypervelocity stars (HVSs) as tracers of the MW gravitational
potential. These stars are ejected from the Galactic center and may reach the outer
regions of the Galaxy within their lifetime: this property makes them exceptional tools
to investigate the MW gravity on a wide range of scales.

1.5.1 The Hills mechanism

The existence of hypervelocity stars was postulated by Hills in 1988, who defined as an
HVS a star ejected from the Galactic center after a close encounter between a binary star
system and the supermassive black hole (SMBH) at the center of our Galaxy associated
with SgrA?; if the binary system experiences a sufficiently close passage near the SMBH,
it can be tidally disrupted: one of the binary member is ejected as hypervelocity star
and maybe characterized by a present-day speed exceeding the Galactic escape velocity,
while the companion star becomes gravitationally bound to the SMBH (Hills, 1988).

A SMBH of mass MBH tidally disrupts a stellar binary of mass mb and semi-major axis
ab at distances smaller than the binary tidal disruption radius, rbt, at which the SMBH
gravitational tidal force exceeds the force that binds the binary (Miller et al., 2005):

rbt = ab

(
3MBH

mb

) 1
3

' 14 AU
( ab

0.1 AU

) (M�
mb

) 1
3
(

MBH

106 M�

) 1
3

. (1.8)

The orbital velocity of the stars in a binary system is:

vb =

√
Gmb

ab

, (1.9)

that corresponds to vb ' 102 km s−1 for, e.g., an equal mass system of mb = 4 + 4 M�
with semi-major axis ab = 0.5 AU. For a SMBH of 4 × 106M� (Gillessen et al., 2017),
the orbital velocity of the same stellar binary at the disruption radius is:

v =

√
GMBH

rbt

' 104 km s−1 . (1.10)

Thus, when the binary is tidally disrupted, the stars have a relative motion of order vb

and their specific energy changes by δE = 1/2(v + vb)2 − 1/2v2 ' vvb (Hills, 1988; Yu
and Tremaine, 2003). Because of the conservation of energy, the ejected star gets a final
velocity at infinite distance from the SMBH of vej =

√
2vvb that, for the example here

considered, corresponds to ' 103 km s−1.
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Figure 1.7. Schematic illustration of the Hills mechanism. The Figure is reproduced from Brown
(2015).

HVS ejection velocities at infinite distance from the SMBH can be predicted with
higher detail with numerical simulations. Simulating HVSs ejected after a 3-body en-
counter between an equal mass binary and a SMBH, Bromley et al. (2006) obtain a final
velocity distribution at infinite distance from the black hole whose mean value is:

vej = 1,370 km s−1
( ab

0.1 AU

)−1/2
(
mb

M�

)1/3(
MBH

4× 106 M�

)1/6

fR, (1.11)

where fR is a factor of order unity that depends on Rp, the periapse distance to the
SMBH. For an unequal-mass binary, the ejection velocities of the primary star (with
mass m1) and secondary star (with mass m2) are respectively:

v1 = vej

(
2m2

m1 +m2

)1/2

, v2 = vej

(
2m1

m1 +m2

)1/2

. (1.12)

The Hills mechanism is illustrated in Fig. 1.7.
The periapse distance to the SMBH and the semi-major axis of the stellar binary

determine on the probability of ejection,

Pej = 1−D/175, (1.13)

where

D =

(
Rp

ab

) (
106 mb

2MBH

)1/3

(1.14)

and 0 ≤ D ≤ 175 (Hills, 1988; Bromley et al., 2006). For D ≥ 175, the binary does not
approach close enough to the SMBH to produce an ejection. The ejection probability as
a function of D parameter is shown in Fig. 1.8.

The stellar binaries encounter the SMBH with a rate that depends on the timescale
at which they are scattered into the SMBH “loss cone”, namely the subset of Galactic
center orbits with low angular momentum that pass close to the SMBH. The stars in
the loss cone are rapidly eliminated and, thus, the steady-state encounter rate between
the SMBH and the stars depends on the dynamical processes that refill the “empty loss
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Figure 1.8. Ejection probability, PE, as a function of D parameter. The curves are labeled by the mass
of the SMBH and the semi-major axis of the binary. An equal mass binary of mass mb = 2M� is used
in all simulations. The Figure is reproduced from Hills (1988).

cone”. The rate, R, at which HVSs are ejected from the Galactic center is then affected
by the rate of the encounters between the binaries and the SMBH.

In his work of 1988, Hills finds a theoretical HVSs ejection rate of ∼ 10−3 − 10−4 yr−1

from the simulated number of stellar binaries, with semi-major axis ab = 0.1 − 1 AU,
that encounter the SMBH in a full loss cone. This ejection rate decreases when an empty
loss cone is considered. Assuming that the loss cone is replenished by the two-body
relaxation, namely the gravitational encounter in which a star orbit is altered due to the
gravitational interaction with another star, Yu and Tremaine (2003) estimate an HVS
ejection rate R ∼ 10−5(η/0.1) yr−1, with η the fraction of stars in binaries with semi-
major axis ab . 0.3 AU. However, because other processes can also fill the loss cone
(e.g., Merritt and Poon, 2004; Hopman and Alexander, 2006; Perets et al., 2007), the
above estimate likely represents a lower limit. Bromley et al. (2012) assume continuous
star formation and steady, random scattering of binary stars toward the Galactic center:
they estimate an ejection rate R ≈ 1 − 2 × 10−3 yr−1 when integrating over all the
mass spectrum of the ejected stars considered. However, if the assumption of continuous
star formation is dropped, the ejection rate decreases to ∼ 2 − 8 × 10−5 yr−1. Zhang
et al. (2013) consider different origins of the injected binaries (both from stellar disks
and from infinity) and different models of the Initial Mass Function of the primary stars.
Comparing their simulations with the observed S-stars in the Galactic Center and the
B-type HVSs in the Galactic halo, they find the best match for models with HVS ejection
rates of 10−5 − 10−4 yr−1.

HVSs are ejected isotropically from the Galactic center in the pure radial direction.
Then, they start their travel through the MW gravitational potential, during which they
are decelerated and they acquire non-null tangential velocities. Indeed, their radial tra-
jectory is bent by the non-spherical components of the Galactic potential or by satellite
galaxies orbiting the MW (Kenyon et al., 2018; Boubert et al., 2020). HVSs thus repre-
sent a powerful tool to investigate the MW gravity. However, not all the stars ejected
according to the Hills mechanism are unbound to the MW; there is a population of stars
whose ejection velocity is not high enough to enable them to escape the gravitational
field of the Galaxy: these stars are called “bound HVSs” (Bromley et al., 2006; Kenyon
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et al., 2008). For bound HVSs, lower ejection velocities and longer lifetimes imply larger
number of orbits traced by the stars around the Galactic center. Thus, in order to use
HVSs to investigate the MW gravity, proper selection criteria must be applied to exclude
bound HVSs whose acquired tangential velocities can be extremely high independently
from the non-spherical components of the Galactic potential that bent their trajectory
(See Sects. 2.2.2 and 3.4.2).

1.5.2 Alternative mechanisms

After the formulation of the Hills mechanism and the prediction of the existence of hy-
pervelocity stars (Hills, 1988), alternative scenarios for the generation of HVSs were
proposed:

• three-body interactions between a single star and a binary BH can lead to the ejection
of stars as HVSs (Yu and Tremaine, 2003). Differently from the Hills mechanism,
in this scenario, the HVS ejection is not isotropic and it is flattened along the plane
of the orbital motion of the binary black holes. However, ejections are expected to
become more and more isotropic as the binary SMBH hardens (Sesana et al., 2006).
A variant of the binary SMBH is a binary system composed of an intermediate
mass black hole (IMBH) and a SMBH; observations in the Galactic center cannot
exclude the presence of an IMBH less massive than 104M� orbiting Sgr A* (Reid
and Brunthaler, 2004). A study of Rasskazov et al. (2019) shows that, on average,
the ejection velocities of HVSs produced by this mechanisms are slower than that
obtained according to the Hills mechanism.

• the scattering of a star off a stellar-mass BH orbiting a SMBH can lead to the
ejection of HVSs (O’Leary and Loeb, 2008); the stars within 0.1 pc from Sgr A*
are expected to encounter a cluster of stellar-mass BHs that have segregated to that
region. Ejections occurs when a star is scattered off an orbiting BH and kicked out
of the Galactic center; the ejection velocities can reach the ∼ 2000 km s−1.

• the interaction between a globular cluster and a SMBH binary can produce HVSs
(Fragione and Capuzzo-Dolcetta, 2016); in this scenario some stars of the cluster can
reach high velocities as the combined result of the extraction of their gravitational
binding energy and the slingshot due to the interaction with the SMBH binary.

• a four-body interaction between a binary star and a binary SMBH can eject both
single HVSs and binary HVSs. The HVS ejection rate is enhanced for the largest
mass ratio SMBH-SMBH binaries (Wang et al., 2018).

• the production of HVSs in the interaction of an active galactic nucleus (AGN) jet
from the central SMBH with a dense molecular cloud has been proposed as an
alternative to the above mentioned stellar dynamical mechanisms for the production
of HVSs (Silk et al., 2012);

However, as noted by Brown (2015), among the mechanisms proposed for the HVS
production, the Hills mechanism has a unique ability in generating a large number of
unbound main-sequence stars and in explaining the presence of the so-called S-stars (see
Fig. 1.9) in close orbit around the central SMBH (e.g., Ghez et al., 2003, 2005; Gillessen
et al., 2009, 2017; Genzel et al., 2010).
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Figure 1.9. Left panel: S-stars S0-2 and S0-102 near Sgr A*. The image was taken at a wavelength
of 2.12 µm. The Figure is reproduced from Meyer et al. (2012). Right panel: The astrometric data for
the 17 stars used for the multi-star fit, shown together with the best-fitting orbits from the multi-star fit
(solid lines). The Figure is reproduced from Gillessen et al. (2017).

1.5.3 Observations: state of the art and challenges

On the observational side, it was W. R. Brown who serendipitously discovered the first
HVS candidate (HVS1): a B-type star escaping the MW with a heliocentric radial velocity
of 831± 6 km s−1, corresponding to a galactocentric velocity of at least 673 km s−1, that
enables the star to escape the MW gravitational potential (Brown et al., 2005).

Many HVS candidates were later found in both targeted and not targeted surveys
(e.g., Hirsch et al., 2005; Edelmann et al., 2005; Brown et al., 2006a,b, 2007a,b, 2009,
2012, 2014; Tillich et al., 2011; Li et al., 2012, 2015; Pereira et al., 2013; Zheng et al.,
2014; Huang et al., 2017; Neugent et al., 2018; Du et al., 2019; Luna et al., 2019; Koposov
et al., 2020; Li et al., 2021). The fastest star, S5-HVS1, has a heliocentric radial velocity
of 1017 km s−1 corresponding to a galactocentric velocity of 1755 km s−1(Koposov et al.,
2020), while other observed stars have speeds smaller than the Galactic escape velocity
and are, thus, bound HVSs.

For example, the Hypervelocity Star Survey (Brown et al., 2006a,b, 2007a,b, 2009,
2012, 2014) is a spectroscopic survey of halo stars complete over 12,000 deg2 of sky that
selects for B-type stars by broadband color only, while no kinematic selection criteria are
applied to the sample. The HVS Survey identifies 21 unbound late B-type stars in the
halo that are significantly unbound from the Galaxy in radial velocity alone and that are
traveling in an outward trajectory (consistently with an ejection from the Galactic center).
These unbound stars are identified as 2.5− 4M� main-sequence stars at a galactocentric
distances of 50 − 120 kpc: stars of this mass should not be found at faint magnitudes
in the outer halo, unless they were ejected as hypervelocity stars. The HVS Survey also
includes a comparable number of bound HVS candidates with galactocentric velocities of
∼ 300 km s−1 in the outer halo. Figure 1.10 shows the Galactic rest frame velocity of the
stars in the HVS Survey as a function of the galactocentric distance: unbound HVSs are
marked by magenta stars, while possible bound HVSs are marked by blue circles. Other
HVS candidates are classified as A type stars or as F, G, or K type stars like those found
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1.5 – Hypervelocity stars

by Li et al. (2015).

Figure 1.10. Observed Galactic rest frame velocity vrf and galactocentric distance R of late B-type
stars in the Hypervelocity Star Survey. The dashed line is the Galactic escape velocity from the model by
Kenyon et al. (2008). Dotted grey lines are isochrones of flight time from the Galactic Center. Unbound
HVSs are marked by magenta stars, while possible bound HVSs are marked by blue circles. The Figure
is reproduced from Brown (2015).

We live in the Gaia era (e.g., Gaia Collaboration, 2016b,c,a, 2018b,a, 2021) and in
the last years several studies have been conducted to forecast the number of HVSs that
Gaia can detect by the end of the mission (Marchetti et al., 2018), search for new HVSs
candidates (e.g., Marchetti et al., 2017; Bromley et al., 2018; Marchetti et al., 2019;
Marchetti, 2021), and revalue the classification of a star as HVS candidate based on the
improved accuracy on proper motions provided by Gaia (e.g., Boubert et al., 2018; Brown
et al., 2018; Irrgang et al., 2018; Erkal et al., 2019; Kreuzer et al., 2020; Irrgang et al.,
2021). The birth place of the HVS candidates is indeed uncertain and some of them may
actually be:

• runaway stars ejected from the Galactic disk. There are two proposed mechanisms
for the ejection of runaways: (i) the supernova ejection mechanism, in which the
runaway is ejected from a binary stellar system when its former companion explodes
as a supernova; in this scenario, the maximum possible ejection velocity is given
by the sum of the supernova kick and the orbital velocity of the progenitor binary
(Blaauw, 1961); (ii) the dynamical ejection mechanism, according to which the run-
away is ejected by dynamical 3-body or 4-body interactions in a young star cluster
(Poveda et al., 1967) with a maximum possible ejection velocity set by the escape
velocity of the most massive star (Leonard, 1991);

• halo stars outliers whose velocities can reach 450 km s−1 (Smith et al., 2009b);

• fast halo stars, that can be unbound to the MW, produced by a tidal interaction
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between a dwarf galaxy and the MW near the Galactic center (Abadi et al., 2009).
For example, the star J1443+1453, with a velocity larger than the escape speed at
its position, may have been tidally stripped from the Sgr dSph (Huang et al., 2021);

• stars of extragalactic origin ejected as either HVSs or runaway stars from the nearest
satellite galaxies of the MW, as the Large Magellanic Cloud (LMC) (Boubert and
Evans, 2016; Boubert et al., 2017). For example, the high galactocentric rest frame
velocity of the star J1443+1453 may also be explained with an ejection from the
Sgr dSph due to a gravitational slingshot effect involving a SMBH, an IMBH or a
massive PBH (Huang et al., 2021).

To confirm the genuine HVS nature of a candidate, it is thus of the utmost importance
to prove its galactocentric origin. The metallicity of the HVS candidates or their spatial
distribution may be used, together with their high speed, to prove a galactocentric origin.
Indeed, for example, the fastest runaways stars are ejected in the direction of Galactic
rotation, with simulations predicting 90% of hyper-runaways (i.e., runaways unbound to
the Galaxy) at Galactic latitudes b < 30◦ (Bromley et al., 2009); on the contrary, the Hills
mechanism predicts an isotropic ejection. Moreover, runaway star velocities are limited
to the escape velocity from the surface of the stars, while HVS velocities can, in certain
cases, exceed this limit. The origin of an HVS candidate is usually investigated through a
backtracking of the star trajectory in a chosen gravitational potential (e.g. Brown et al.,
2014, 2018; Marchetti et al., 2019; Irrgang et al., 2018; Koposov et al., 2020; Kreuzer
et al., 2020; Irrgang et al., 2021). Thus, the identification of genuine HVSs depends on
the gravitational potential assumed for the Galaxy. For this reason, the use of HVSs to
constrain the MW gravitational potential generates a circularity problem (see Sects. 2.7,
3.5.3, and 4).

From the available literature, we estimate a sample of ∼ 70 HVS candidates whose
galactocentric origin has not been unambiguously ruled out. This sample includes both
unbound and bound HVS candidates, that make up ∼ 40% and ∼ 60% of the full sample,
respectively. These HVS candidates are the result of heterogeneous classification methods,
and the number of true HVSs remains uncertain until the galactocentric origin of these
stars is unambiguously confirmed.
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Chapter 2

Probing the shape of the Milky Way
dark matter halo with hypervelocity
stars: a new method 1

The shape of DM halos that surround galaxies in the ΛCDM model is one of the testable
predictions of this model, as illustrated in Sect. 1.4. As reviewed in Sect. 1.4.3 this
prediction has been largely tested on our Galaxy, in the last decades, through a number
of projects aimed at constraining the shape of its DM halo. Those tests use different
tracers of the Galactic gravitational potential, hold on different spatial scales, and are
not all consistent with one another. Among the tracers that can be used to probe the
MW DM halo, there are hypervelocity stars (HVSs) As described in detail in Sect. 1.5,
HVSs are ejected from the Galactic center and their present-day speeds can exceed the
Galactic escape velocity. HVSs may reach the outer regions of the Galaxy and are thus
powerful probes of the MW mass distribution. Since the discovery of the very first HVS
candidate (Brown et al., 2005), the HVSs have been recognized as a powerful tool to probe
either the shape of the Galactic DM halo (Gnedin et al., 2005; Yu and Madau, 2007), or
its mass (Rossi et al., 2017; Fragione and Loeb, 2017), or both (Contigiani et al., 2019).
They were also used to discriminate among different models of the Galactic potential in
Newtonian gravity (Perets et al., 2009) and between different theories of gravity (Perets
et al. 2009; see also our work Chakrabarty et al. 2022, presented in Chpt. 3).

In this Chapter, we use HVSs as tracers of the shape of the MW DM halo. We assume
that Newtonian gravity holds on Galactic scales, we fix the mass of the DM halo, and
we use the kinematical properties of the HVSs to constrain the triaxiality parameters of
the dark halo. We account for neither the gravitational effects of the LMC on the HVS
trajectories (Kenyon et al., 2018) nor the time dependence of the gravitational potential
of the MW due to its interaction with the LMC (Boubert et al., 2020). Because the HVSs
are ejected radially with high speed and may cross the entire Galaxy before dying out,
in an isolated MW, the small, typically a few per cent, deviations from straight lines of
their trajectories are determined by the asphericity of the MW gravitational potential
well, dominated by the DM halo at large galactocentric distances.

Previous studies aimed at constraining the shape of the gravitational potential of the
dark halo with HVSs made use of (i) sufficiently accurate (σµ . 10 µas yr−1) proper
motion measurements of either one observed HVS with known distance or a set of two or

1The results presented in this chapter are published in our work Gallo et al. (2022)
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more HVSs with unknown distance, with the constraints becoming tighter for larger sam-
ples of observed HVSs (Gnedin et al., 2005); (ii) a triaxiality estimator that is a function
of the components of the specific angular momentum of HVSs located at galactocentric
distances r & 50 kpc (Yu and Madau, 2007); (iii) a likelihood function constructed by
back-propagating the phase-space position of each HVS to the Galactic center, in order
to reproduce its observed phase-space coordinates and mass (Contigiani et al., 2019).

The above methods have been applied to triaxial (Gnedin et al., 2005; Yu and Madau,
2007) or axysimmetric (Contigiani et al., 2019) DM halos. The techniques used by Gnedin
et al. (2005) and Contigiani et al. (2019) do not depend on the model of the potential
assumed for the DM halo, but require the integration of the HVS trajectories; conversely,
the angular-momentum technique designed by Yu and Madau (2007) does depend on
the dark halo potential, but does not require the trajectory integration. In all these
models, the shape of the DM halo potential is constant with radius. Furthermore, all the
techniques require intermediate steps that involve each HVS of the sample individually,
even though the final result depends on the contribution of all the HVSs of the sample.

Here we present a new statistical method to constrain the axis ratios of a distance-
dependent, triaxial DM halo potential from the distributions of the HVS observables that
are mostly affected by the asphericity of this potential, namely the components of the
galactocentric tangential velocities. Differently from the techniques illustrated above, our
method does not require intermediate steps that involve each star of the sample, such as
the trajectory integration or the evaluation of the angular momenta of the HVSs; it can
be applied to different models of the MW gravitational potential (as it is the case for the
methods by Gnedin et al. (2005) and Contigiani et al. (2019)); it is not degenerate in the
axis ratios.

The Chapter is organized as follows. In Sect. 2.1, we describe our numerical simu-
lations of the initial velocity distribution of a sample of HVSs ejected according to the
Hills mechanism, and the simulations of the HVS trajectories in a Galactic gravitational
potential generated by DM halos with different shapes; we also illustrate the construc-
tion of our HVS phase space mock catalogs. In Sect. 2.2, we show how the asphericity
of the DM halo mostly affects the HVS tangential velocity: we identify this velocity as
the key variable to statistically discriminate between different shapes of the DM halo,
and we select the appropriate HVS sample to pursue this goal. In Sect. 2.3, we present
our statistical method to recover the shape of the DM halo from a distribution of HVS
tangential velocities. In Sects. 2.4 and 2.5, we show the results of the application of our
method to an ideal sample of mock observed HVSs with null uncertainties and no ob-
servational limitations that traveled in an axisymmetric and non-axisymmetric Galactic
gravitational potential, respectively. In Sect. 2.6, we investigate the effect of the size of
the ideal sample of mock observed HVS on the success rate of our method. We finally
discuss our results and conclude in Sects. 2.7 and 2.8.

2.1 Numerical simulations and mock catalogs

In Sect. 2.1.1, we illustrate the generation of the distribution of the initial velocities of
HVSs ejected with the Hills mechanism, illustrated in Sect. 1.5.1. In Sect. 2.1.2, we
describe our model for the gravitational potential of the MW, generated by the baryonic
components and a DM halo with different shapes, and in Sect. 2.1.3 we illustrate the
simulation of the trajectories of the ejected HVSs across the Galaxy. Finally, in Sect. 2.1.4,
we describe the mock catalogs that we built from the HVS phase space distribution.
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2.1.1 Ejected stars: velocity distribution

Following Hills (1988) (see also Bromley et al., 2006), we simulated the ejection of stars
from the Galactic Center with a 3-body numerical code which reproduces the gravitational
interaction of a binary star system with the SMBH associated with SgrA?. For the
ejected stars, our code provides the distribution of the ejection velocities, vej. A detailed
description of the code will be provided in a separate paper.

We set the mass of the SMBH to 4× 106M�, consistent with different estimates (e.g.,
Boehle et al., 2016; Gillessen et al., 2017). For simplicity, we restricted our simulations
to equal-mass stellar binaries of 4 + 4 M� on hyperbolic orbits. The mass of 4 M� is
representative of the upper end of the mass distribution of the HVS candidates observed
in currently available surveys (see references in Sect. 1.5.3). We will further discuss our
mass choice in Sect. 2.7.

For a fixed mass of the binary members, the velocity distribution of the ejected stars
depends upon a series of parameters: (i) the stellar binary semi-major axis, a; (ii) the
minimum approach distance, Rmin, between the center of mass of the binary and the
SMBH; (iii) the inclination angle, i, between the orbital plane of the binary star and the
orbital plane of the binary’s center of mass and the SMBH; (iv) the initial phase, φ, of the
binary star. We randomly sample i and φ in the interval [0, 2π] with uniform probability
density function. As for a and Rmin, which determine the probability of ejection of the
primary star, we randomly sampled a from the interval 0.05 − 4 AU with probability
density function p(a) ∝ 1/a, and we randomly drew Rmin from the interval 1 − 700 AU
with probability density function p(Rmin) ∝ 1/Rmin (Bromley et al., 2006, and references
therein).

Figure 2.1 shows the ejection velocity distribution for a simulation of Nint ∼ 240,000
3-body interactions that produces Nej = 60,000 ejection events. Most of the ejected stars
possess ejection velocities in the range∼ 250−4,000 km s−1; the velocity distribution has a
major peak at vej ∼ 510 km s−1 and has positive skewness. A minority of stars are ejected
with speeds lower than ∼ 250 km s−1: these stars are the result of rare, double-ejection
events, where neither of the binary members becomes gravitationally bound to the SMBH,
and both stars are ejected. Because we assumed that the binary system starts its approach
trajectory towards the SMBH with a velocity at infinity vinf = 250 km s−1 (Hills, 1988),
energy conservation requires that one of these stars is ejected with velocity lower than
250 km s−1. Our distribution of ejection velocities is comparable to the ejection speed
distribution obtained from the analytical prescription by Bromley et al. (2006).

We note that the ejection velocity vej is defined as the speed that an ejected star would
have at infinite distance from the SMBH, in absence of other gravitational sources (Hills,
1988; Bromley et al., 2006), as in our 3-body simulation. However, the ejection velocity
distribution shown in Fig. 2.1 can be used as a distribution of initial velocities when
simulating the trajectories of the HVSs from the Galactic center to the outer halo, as we
explain in Sect. 2.1.3.

2.1.2 Milky Way gravitational potential

We modeled the Milky Way gravitational potential Φ as the superposition of the potentials
generated by three distributions of baryonic matter and one distribution of dark matter:

Φ = ΦBH + Φb + Φd + Φh, (2.1)

where ΦBH is the potential generated by the SMBH located in the Galactic Center, Φb is
generated by the Galactic bulge, Φd is the disk potential, and Φh is the potential of the
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Figure 2.1. Distribution of ejection velocities for the ejected star(s) of a 4 + 4 M� binary star system,
after a close encounter with a 4× 106M� SMBH. The distribution consists of Nej = 60,000 stars ejected
in Nint ∼ 240,000 3-body interactions.

dark matter halo embedding the Galaxy. We consider the Galaxy as isolated, neglecting
both the presence of the LMC (Kenyon et al., 2018) and any time dependence of the
Galactic potential deriving from the interaction of the MW with the LMC (Boubert
et al., 2020).

In a reference frame with the origin at the Galactic Center, we used spherical coordi-
nates (r, ϑ, ϕ) for the spherically symmetric components of the potential (with −90◦ ≤
ϑ ≤ 90◦), cylindrical coordinates (R,ϕ, z) for the axisymmetric components, and Carte-
sian coordinates (x, y, z) for the triaxial component. We took the x-y plane as the equa-
torial plane of the disk, with the x-axis corresponding to the direction from the Sun to
the Galactic center, and we took the z-axis as the vertical axis.

We included the contribution of the SMBH to the gravitational potential as:

ΦBH(r) = −GMBH

r
, (2.2)

where MBH is the mass of the SMBH.
For the bulge component, we adopted the Hernquist (1990) potential:

Φb(r) = −GMb

r + rb

, (2.3)

where Mb = 3.4 × 1010 M� and rb = 0.7 kpc (Kafle et al., 2014; Price-Whelan et al.,
2014; Rossi et al., 2017; Contigiani et al., 2019) are the scale mass and the scale radius
of the model, respectively.

For the disk component, we adopted the axisymmetric potential by Miyamoto and
Nagai (1975):

Φd(R, z) = − GMd√
R2 +

(
ad +

√
z2 + b2

d

)2
, (2.4)

where Md = 1.0 × 1011 M�, ad = 6.5 kpc and bd = 0.26 kpc (Kafle et al., 2014; Price-
Whelan et al., 2014; Rossi et al., 2017; Contigiani et al., 2019) are the scale mass and the
scale lengths of the model, respectively.
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Finally, we modeled the contribution of the DM halo with the triaxial generalization of
the spherically symmetric NFW (Navarro et al., 1997) potential proposed by Vogelsberger
et al. (2008):

Φh(r̃) = −GM200

f(C200)

ln
(

1 + r̃
rs

)
r̃

, (2.5)

where f(w) = ln(1+w)−w/(1+w), M200 = 8.35×1011M� is the DM halo mass enclosed
within r200,2 C200 = r200/rs = 10.82 is the halo concentration parameter, and rs = 18 kpc
is a generalized scale radius. For the above parameters, we adopted the values used by
Hesp and Helmi (2018), that are consistent with the values derived from halo stars (Xue
et al., 2008), blue horizontal branch stars (Deason et al., 2012a), the massive satellite
population of the MW (Cautun et al., 2014), and Cepheids (Ablimit et al., 2020). The
coordinate r̃ is a generalized radius that replaces the radius r of the NFW spherical
potential,

r̃ =
(ra + r) rE

ra + rE

. (2.6)

Here, rE is an “ellipsoidal radius”,

rE =

√
x2

a2
+
y2

b2
+
z2

c2
, (2.7)

where the three ellipsoid parameters, a, b, and c have to fulfill the condition a2+b2+c2 = 3,
and their combination defines the degree of triaxiality of the potential well. Specifically,
the axis ratio of the equipotential surfaces on the x-y plane is qy = b/a, whereas the axis
ratio of the equipotential surfaces on the x-z plane is qz = c/a. The parameter ra is the
scale length where the smooth transition from a triaxial potential to a nearly spherical
potential occurs; we took it to be 1.2rs, as in Hesp and Helmi (2018): the halo is triaxial
(r̃ ≈ rE) in the inner region (r � ra), whereas it is approximately spherical (r̃ ≈ r) in
the outer region (r � ra).

In general, the potential Φh(r̃) given by Eq. 2.5 is triaxial with qy /= 1, qz /= 1, and
qy /= qz. However, this potential becomes spheroidal when either qy or qz are equal to 1
or when qy = qz /= 1: when qy = 1, the potential is axisymmetric about the z-axis; when
qz = 1, the potential is axisymmetric about the y-axis; when qy = qz /= 1 the potential
is axisymmetric about the x-axis. When both qy and qz are equal to 1, the DM halo
potential is spherically symmetric.

Because ΦBH and Φb are spherically symmetric, and Φd is axisymmetric about the
z-axis, our gravitational potential Φ (Eq. 2.1) is globally axisymmetric about the z-axis
when the DM halo is either spherical or spheroidal and axisymmetric about the z-axis.
On the other hand, the Galactic gravitational potential is non-axisymmetric when the
DM halo is either triaxial or spheroidal with a symmetry axis misaligned with respect to
the z-axis.

In all of our simulations, we adopted the same parameters for the SMBH, the bulge,
and the disk potentials (Eqs. 2.2-2.4). We also adopted the same parameters for the
potential of the DM halo (Eq. 2.5), with the exception of (i) the triaxiality parameter
qz, which was set to a different value in each of the simulations of the axisymmetric
Galactic potential, while qy was kept fixed to 1, and (ii) both triaxiality parameters, qy
and qz, in simulations of a non-axisymmetric Galactic potential. By varying the triaxiality

2r200 is the radius of a spherical volume whose mean mass density is 200 times the critical density of the Universe
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parameter of the DM halo qy and qz in appropriate ranges of values, we explored the effect
of the halo shape on the HVS observables.

Figure 2.2 shows the magnitude of the radial gravitational acceleration in the plane of
the disk associated with our MW potential Φ as a function of the cylindrical coordinate
R, for a spherical DM halo (qy = 1, qz = 1). The chosen gravitational potential generates
masses enclosed within 120 pc and within 100 kpc that agree with the observed values
derived by Launhardt et al. (2002) and reported in Dehnen and Binney (1998), respec-
tively. It also reproduces a circular velocity of 235 km s−1 at the solar neighborhood,
in agreement with the observational values of 231± 6 km s−1 by Bobylev (2017) and of
230± 12 km s−1 by Bobylev and Bajkova (2016).

Total
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Figure 2.2. Magnitude of the radial gravitational acceleration in the plane of the disk due to our
MW potential Φ (Eq. 2.1), as a function of the radial cylindrical coordinate R. The black solid line
represents the total gravitational acceleration. The dashed and dotted lines represent the contributions
of the SMBH (dashed orange line), the bulge (dotted green line), the disk (blue dot-dashed line), and a
spherical DM halo (magenta long-dashed line).

2.1.3 Orbit integration

In the Galactic gravitational potential illustrated in Sect. 2.1.2, we simulated the time
evolution of the position, velocity, and acceleration of a sample of stars ejected from the
Galactic Center according to the Hills mechanism (see Sect. 2.1.1). For each star, we
numerically integrated Newton’s equation of motion in a galactocentric reference frame
and in Cartesian coordinates, using the Velocity Verlet algorithm (e.g., Frenkel and Smit,
2001). We traced the star trajectory until the star death. In our simulations, the total
energy of a star is conserved with a relative accuracy of ∼ 10−8.

In Sect. 2.1.1, we showed that our sample of ejected star consists of Nej = 60,000 HVSs;
we adopted this sample as our full sample of initial velocity magnitudes. This choice is
legitimate: even though vej is defined as the speed that an ejected star would have at
infinite distance from the SMBH in a 3-body interaction (see Sect. 2.1.1), our SMBH
is embedded in the Galactic mass distribution; thus, the ejected stars can be assumed
to move at vej at the outer edge of the sphere of influence of the SMBH, just before
the Galactic gravitational potential starts to overcome the SMBH potential. The Hills
ejection mechanism yields an isotropic distribution of ejected stars. We thus assigned
each of the Nej stars an initial position (r0, ϑ, ϕ), with r0 = 3 pc the radius of the sphere
of influence of the SMBH (Genzel et al., 2010), and (ϑ, ϕ) randomly drawn from a uniform
distribution over the surface of a sphere; we assigned each star a velocity direction n̂(ϑ, ϕ).
We end up with a sample of Nej initial conditions.
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Figure 2.3. The number of 4 M� observable HVSs, that started to be ejected at t = 0 at a rate
10−4 yr−1, stops increasing beyond t ' τL = 160 Myr. The vertical, dashed line marks the time of the
steady state when we chose to observe the system, tobs = 400 Myr.

In our simulations below, we computed the trajectories of the HVSs in a large num-
ber of different subsamples of size smaller than Nej. Each subsample was generated by
adopting a random subsample of the Nej initial conditions. Each subsample was selected
as follows.

At an average rate R = 10−4 yr−1, roughly consistent with the estimate by Bromley
et al. (2012) and Zhang et al. (2013) (see also Hills, 1988; Yu and Tremaine, 2003), all the
Nej HVSs would be ejected in 600 Myr. We thus assigned the i-th HVS of each subsample
an ejection time tej,i uniformly sampled in the range 0− 600 Myr. The stars have a finite
lifetime and each star can thus have a different residual lifetime at tej,i. A 4 M� star
with Solar metallicity has a main sequence lifetime τms ' 160 Myr (Schaller et al., 1992;
Brown et al., 2006b): we took this lifetime as the total lifetime of the star, τL. Thus, at
the time of ejection, the i-th star is also assigned an age τej,i randomly sampled from a
uniform distribution between 0 and τL.

Figure 2.3 shows that the number N(t) of observable stars, whose lifetime is τL, reaches
a steady state N(t) ' Ns ' 8000 at t ' τL. The steady state is the result of the
combination of (i) a continuous ejection of stars, with average rate R, and (ii) the finite
lifetime of the stars, τL. We chose to observe our star sample at the observation time,
tobs = 400 Myr. All the stars whose ejection time was larger than tobs were discarded
from the sample. Among the remaining HVSs, we selected the Nobs stars that are alive
at the observation time tobs, namely the stars that satisfy the condition tobs− tej,i + τej,i <
τL. For these stars, we computed the trajectory through the Galaxy for a travel time
ttravel,i = tobs − tej,i.

We computed the orbits of the sample of Nobs ' Ns ' 8000 HVSs in a series of
64 simulations, each of them corresponding to a different combination (qy, qz) of the
triaxiality parameters of the DM halo (see Sect. 2.1.2). The different combinations were
obtained by varying both qy and qz in the range 0.7− 1.4 in steps of 0.1. A summary of
the simulated shapes of the DM halo is reported in Table 2.1.

2.1.4 Mock catalogs A and B

With the simulations described in Sect. 2.1.3, we created two series of mock catalogs,
hereafter referred to as mock catalogs A and B. In both series, each mock catalog includes
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2 – Probing the shape of the Milky Way dark matter halo with hypervelocity stars: a new method

Table 2.1. Summary of the shapes of the DM halo gravitational potential used to simulate the HVS
trajectories.

Shape of the Axis of Axial Number of
DM halo symmetry ratios combinations
Spherical − qy = qz = 1 1

Spheroidal z qy = 1 & qz /= 1 7
Spheroidal y qy /= 1 & qz = 1 7
Spheroidal x qy = qz /= 1 7

Triaxial none qy /= qz & qy /= 1 & qz /= 1 42

the phase space distribution of Nobs HVSs at the observation time tobs in a DM halo with
a given shape. However, the two series differ in the initial conditions of the HVSs.

Each mock catalog A was generated with the same set of Nobs initial conditions. In
other words, all the stars with the same identification index i in all catalogs A are given
the same combination Si ={vej, n̂(ϑ, ϕ), tej, τej}i of initial conditions, namely the same
ejection velocity, ejection time tej, and age τej at ejection. The only difference among
these mock catalogs is the set of triaxiality parameters of the DM halo, (qy, qz). We used
mock catalogs A to highlight the effect of the degree of triaxiality of the DM halo on
the distribution of the phase space coordinates of the HVSs, and to identify the phase
space coordinates that can serve as shape indicators (Sect. 2.2.1). On the other hand,
mock catalogs B were generated with different sets of Nobs initial conditions. In other
words, the i-th stars in different catalogs B are given a different combination Si of initial
conditions. Therefore, mock catalogs B differ from one another not only for the shape
of the DM halo, but also for the sample of ejected stars. We used mock catalogs B to
explore the effect of the variation of the initial conditions on the detection of deviations
from spherical symmetry of the shape of the DM halo potential (Sect. 2.2.3). We also
used catalogs B to implement our method to recover the shape of the DM halo of the
MW from real HVS samples (Sect. 2.3).

Each mock catalog A or B includes the positions and the velocities of the Nobs bound
and unbound HVSs in the galactocentric, the Galactic heliocentric, and the equatorial
reference frames, at the observation time t = tobs. In our simulations, the star position
in the galactocentric reference frame is (r, ϑ, ϕ) in spherical coordinates and (x, y, z) in
Cartesian coordinates, with ϕ = 0◦ on the x-axis, and ϑ = 0◦ on the x-y plane; the
star galactocentric velocity is (vr, vϑ, vϕ), with vr the radial velocity, vϑ the latitudinal
velocity, and vϕ the azimuthal velocity. We defined as tangential velocity the vector whose
components are the latitudinal and the azimuthal velocities: ~vt = (vϑ, vϕ); its magnitude

is vt ≡ |~vt| = (v2
ϑ + v2

ϕ)
1
2 . We show the distribution of the galactocentric distance, as well

as the distributions of the galactocentric radial, latitudinal, and azimuthal velocities of
the HVSs for one of our mock catalogs in Appendix 2.9.1.

As will be shown at the end of Sect. 2.2.1, we evaluated the possible use of galac-
tocentric, heliocentric, and equatorial phase space coordinates to infer the shape of the
dark halo. To this aim, we converted the star phase space coordinates from the galac-
tocentric to the Galactic heliocentric reference frame, by choosing the Sun to be located
at (x, y, z) = (−R�,0,0) and to have velocity (U�, V� + Θ0,W�) in the galactocentric
reference frame. We used R� = 8.277 kpc (Gravity Collaboration et al., 2022), and our
model’s rotational velocity at R�, Θ0 = 235 km s−1, in agreement with Bobylev (2017)
and Bobylev and Bajkova (2016) (see Sect. 2.1.2). For the velocity of the Sun with re-
spect to the local standard of rest, we used U� = 11.1 km s−1, V� = 12.24 km s−1, and
W� = 7.25 km s−1 (Schönrich et al., 2010). The equations for the transformation of
coordinates and velocities from the galactocentric to the Galactic heliocentric reference
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2.2 – Indicators of the shape of the DM halo

frame, and from the Galactic heliocentric to the equatorial reference frame, are reported
in Appendix 2.9.2.

2.2 Indicators of the shape of the DM halo

We used mock catalogs A described in Sect. 2.1.4 to investigate the effect of the triaxi-
ality parameters of the gravitational potential of the DM halo on the HVS phase space
distribution. Our final goal was to identify the HVS phase space coordinates (Sect. 2.2.1)
and define the HVS samples (Sects. 2.2.1 and 2.2.2) that are best suited to discriminate
between different shapes of the DM halo.

2.2.1 Effect of the shape of the DM halo on the HVS phase space distribution

We explored the effect of the triaxiality parameters of the gravitational potential of the
DM halo on the phase space distribution of the simulated HVSs, with the goal of identi-
fying the phase space coordinates that are most sensitive to the shape of the DM halo,
and can thus be identified as triaxiality indicators. For this purpose, we resorted to
mock catalogs A: because these catalogs are all generated with a specific sample of stars,
characterized by fixed distributions of initial conditions (Sect. 2.1.4), any significant dif-
ference among two of these mock catalogs can only be ascribed to the different triaxiality
parameters of the gravitational potential of the DM halo.

For our investigation, from each mock catalog A of Nobs stars (see Sect. 2.1.4), we
selected a subsample of stars that, at the time of observation tobs, are located at galacto-
centric distances r > 10 kpc, where the gravitational effect of the DM halo starts to be
relevant (see Fig. 2.2). We also required the stars to possess positive galactocentric radial
velocity, vr > 0, to match the observational HVS selection criterion. Applying these se-
lection criteria returns, for each mock catalog, a subsample of N ' Nobs/10 ' 800 stars.
In Sect. 2.2.2 we demonstrate that this reasonable sample selection turns out to be the
best selection on the basis of kinematic arguments.

We performed our analysis by means of a statistical approach. Specifically, we made
use of the two sample Kolmogorov-Smirnov test (Press et al., 2007), hereafter referred
to as “KS test”, to check whether the null hypothesis H0 is true, namely whether the
distribution of a given phase space coordinate in a spherical DM halo and the distribution
of the same coordinate in a non-spherical DM halo are consistent with being drawn from
the same parent population, and are thus indistinguishable. If the p-value of the KS test is
p ≤ α, then H0 is rejected at the adopted significance level α: in this case, we considered
the two distributions as significantly different from each other, and we investigated the
use of that phase space coordinate as an indicator of the shape of the DM halo. We
adopted a significance level α = 5%.

For our KS tests, we considered the distributions of the components of the star posi-
tion and velocity in the galactocentric reference frame, in both spherical and Cartesian
coordinates, for a series of pairs of DM halos; each halo pair is composed of a spherical
DM halo and a non-spherical DM halo with different triaxiality parameters. For the
sake of simplicity, we illustrate here the details of our investigation for spheroidal DM
halos with qy = 1, namely for spheroidal halos that are axisymmetric about the z-axis
and yield a global axisymmetric Galactic potential; we only comment on the case of a
non-axisymmetric Galactic potential. This restriction will not imply a loss of generality
of our main result. Both the axisymmetric and the non-axisymmetric cases are carefully
explored in Sects. 2.4 and 2.5.
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We created 50 series of mock catalogs A. Each series consisted of a spherical DM halo
and six spheroidal DM halos axisymmetric about the z-axis and with qz ranging from
qz = 0.7 (extremely oblate halo) to qz = 1.4 (extremely prolate halo). The set of initial
conditions is the same for each halo in the same series, and differs from one series to the
other. We computed the p-values of the KS tests between the distributions of the phase-
space coordinates in the spherical halo and those in the spheroidal halos of the same
series. Table 2.2 shows the range of these p-values for the 50 series of mock catalogs.

The distributions of the magnitude of the latitudinal velocity, |vϑ|,3 are the only distri-
butions to be significantly different in a spherical DM halo and in a spheroidal DM halo
axisymmetric about the z-axis: for DM halos whose gravitational potential well displays
a deviation from the spherical shape |qz−1| ≥ 0.1, we always got p < α, implying that the
null-hypothesis of the KS test could be rejected at the significance level α. In particular,
for the largest deviations from the spherical DM halo considered in this work, the p-value
is < 10−10. On the other hand, for a very mild deviation of the potential well of the DM
halo from the spherical shape (i.e., for |qz − 1| ≤ 0.05) the distributions of |vϑ| are never
significantly different from the spherical case. Finally, for DM halos whose potential well
displays a deviation from the spherical shape |qz − 1| in the range (0.05 − 0.1), the dis-
tributions of |vϑ| can either be or not be significantly different from the spherical case,
depending on the set of stars’ initial conditions used for the generation of mock catalogs
A. For example, when |qz − 1| = 0.075, we found p in the range 0.01− 0.14 for the case
of spherical vs. oblate (with qz = 0.925) DM halo, and p in the range 0.01− 0.11 for the
case of spherical vs. prolate (with qz = 1.075) DM halo.

For all the distributions of phase space coordinates different from |vϑ|, we found p >
0.7: we could not reject the null-hypothesis of the KS test at the significance level α = 5%,
regardless of the shape of the DM halo. Therefore, we conclude that the magnitude of
the HVS latitudinal velocity, |vϑ|, is the only phase space coordinate whose distribution
can be used to discriminate between a spherical and a spheroidal DM halo axisymmetric
about the z-axis.

This result is not surprising. HVSs are ejected radially outward from the Galactic
center, but they attain non-zero tangential velocities, ~vt, as they travel through a non-
spherically symmetric potential. In our model (see Eq. 2.1), the potentials of both the
SMBH and the bulge are spherically symmetric (see Eqs. 2.2 - 2.3). However, the disk
potential (see Eq. 2.4) is axially symmetric about the z-axis. Hence, it contributes to the
component of the tangential velocity along the polar angle, that is the latitudinal velocity
vϑ. When the DM halo is either spherical or spheroidal with axial symmetry about the
z-axis, vϑ is still the only non-null component of the tangential velocity. In particular,
when the DM halo is spherical, only the gravitational pull of the disk induces non-null
vϑ; on the other hand, when the DM halo is spheroidal with axial symmetry about the
z-axis, the gravitational pull of the disk combines with that of the DM halo: in the case
of prolate spheroidal DM halo (qz > 1) the pull of the disk is opposite to that exerted
by the DM halo, while in the case of oblate spheroidal DM halo (qz < 1) both the disk
and the halo attract the stars towards the Galactic plane, leading to higher tangential
velocities.

3|vϑ| is equivalent to the magnitude of the tangential velocity, vt, in a spheroidal DM halo axisymmetric about the
z-axis.
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This situation is illustrated in Fig. 2.4, where we show a comparison of the distributions
of the magnitude of the latitudinal velocity, |vϑ|, for simulated HVSs in a Galaxy with
a spheroidal DM halo which is axisymmetric about the z-axis and characterized by an
extremely prolate (qz = 1.4), spherical (qz = 1), and extremely oblate (qz = 0.7) shape.
The fraction of HVSs with higher |vϑ| is larger in the case of the oblate DM halo (green
histogram) than in the case of the spherical DM halo (grey, shaded histogram), because
of the concordant gravitational pull of disk and DM halo. Conversely, the fraction of
stars with lower |vϑ| is larger in the case of the prolate DM halo (blue histogram) than
in the case of the spherical DM halo, because of the opposite pull of disk and DM halo.
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Figure 2.4. Distribution of the magnitude of the HVS galactocentric latitudinal velocity, |vϑ|, in a
Galaxy with an extremely prolate DM halo (qz = 1.4; blue histogram), a spherical DM halo (qz = 1;
grey, shaded histogram), and an extremely oblate DM halo (qz = 0.7; green histogram). The distributions
were generated with the same initial conditions (mock catalogs A), to highlight the effect of the different
geometries of the DM halo.

The results reported in Table 2.2 show that, while the latitudinal velocity vϑ is an
indicator of the shape of the DM halo, the polar angle ϑ is not, even though any differ-
ence in the distributions of ϑ for stars that have traveled in different DM halos is only
determined by the halo shape, as vϑ is. This higher sensitivity of vϑ to the changes of
the shape of the DM halo has two explanations: (i) vϑ is the time derivative of ϑ; any
variation in vϑ implies a variation ∆ϑ of the coordinate ϑ over a finite time interval ∆t;
however, significant ∆ϑ can be achieved only over ∆t that, on average, are larger than
the HVS travel time; (ii) the vϑ’s are null at the ejection, and the final distribution of
vϑ is determined by the gravitational potential alone; instead, the distribution of ϑ is
uniform in cosϑ at the start: hence, its final distribution is the result of the combination
of the initial randomness and of the action of the gravitational potential.

Table 2.2 also shows that neither the Cartesian spatial coordinates nor the Cartesian
components of the HVS velocity are significantly affected by the deviation from spherical
of the shape of the DM halo; therefore, they are not useful indicators of the triaxiality
of the DM halo. This result is expected for the Cartesian spatial coordinates x and y,
as well as for the velocity components vx and vy, because the gravitational potential
is symmetric about the z-axis. On the other hand, for the same reason, the result is
not fully expected for z and vz. However, our simulations show that the projection, on
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the z-axis, of any non-null vϑ induced by a non-spherical gravitational potential in the
star motion is overwhelmed by the projection, on the same axis, of the radial velocity
component of the star. If vz is not a good indicator of the triaxiality of the DM halo, the
spatial coordinate z cannot be a good indicator either: as ϑ is less sensitive than vϑ to
the shape of the DM halo, z is less sensitive to the halo shape than vz.

The results that we obtained for a spheroidal DM halo symmetric about the z-axis
(i.e., for a DM halo with qy = 1 and qz /= 1) can be extended to the more complex cases
of a fully triaxial DM halo and of a spheroidal DM halo with a symmetry axis misaligned
with respect to the z-axis (i.e., for a DM halo with qy /= 1). In those cases, the stars
acquire both a non-null latitudinal velocity, vϑ, and a non-null azimuthal velocity, vϕ.
Therefore, both components of ~vt = (vϑ, vϕ) can be used as indicators of the triaxiality
parameters of the DM halo.

We note that significant differences between the distributions of HVS tangential ve-
locity components in a spherical and in a non-spherical DM halo only emerge when those
velocity components are computed in the galactocentric reference frame. In the Galactic
heliocentric reference frame, no phase space coordinate is characterized by distributions
that significantly differ in the cases of spherical and non-spherical DM halos, according to
the KS test. Specifically, this is the case for each of the components of the star velocity.
Indeed, all the components of the heliocentric velocity (vd, vl, vb) are a composition of vr

and ~vt = (vϑ, vϕ) (see Eqs. 2.11-2.13), and the information on the triaxiality parameters
stored in the galactocentric ~vt’s is diluted in the velocity transformation from the galacto-
centric to the heliocentric system. The same results hold for the phase space coordinates
in the equatorial reference frame.

2.2.2 Star kinematics and sample selection

As illustrated in Sect. 2.2.1, the components vϑ and vϕ of the tangential velocity of the
HVSs can effectively probe the non-spherical components of the gravitational potential.
This result was demonstrated for a subsample of mock HVSs characterized by r > 10 kpc
and vr > 0. Here, we show that these sample selection criteria turn out to be the most
suitable selection criteria also on the basis of the star kinematics, for HVSs of 4M�.
Indeed, these criteria enable us to select those stars whose tangential velocity is not
affected by effects other than the shape of the gravitational potential well. We adopted
an analogous HVS sample selection based on stellar kinematics in Chakrabarty et al.
(2022) (see Sect. 3.4.2).

In our model of the Galactic potential (see Sect. 2.1.2), stars with ejection speed
vej & 800 km s−1 always possess tangential velocities that are independent of their radial
velocities, and are induced only by the non-spherical shape of the gravitational potential
well. Those stars are robust indicators of the shape of the DM halo in any stage of their
trajectory. Conversely, for stars with ejection speed vej . 800 km s−1, the tangential
velocity, vt, can be strongly coupled with the radial velocity, vr, for a significant fraction
of their trajectory, and vt can be very high regardless of the shape of the DM halo.
Indeed, if any of these stars is sufficiently young at ejection, it may experience the outer
turnaround before dying out. At the outer turnaround, the star starts falling back toward
the Galactic center, its radial velocity becomes negative, and its tangential velocity starts
growing; this growth continues until the star experiences the inner turnaround, and then
starts a new outward trajectory, with positive radial velocity and a tangential velocity
that decreases with time. Therefore, those stars may serve as indicators of the halo shape
only in specific parts of their outward trajectory, namely only during specific periods of
their lifetime.
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The situation is illustrated in Fig. 2.5 for the case of a spherical DM halo, and for
a set of HVSs ejected radially outward in the direction n̂(ϑ, ϕ) = n̂(45◦, 45◦) and with
representative values of the ejection speed, |vej| = {700, 720, 740, 800, 900} km s−1. All the
stars are ejected with null age, τej = 0, to illustrate the evolution of the stars’ observables
during the largest possible travel time (i.e., 160 Myr, for the 4 M� stars considered in
this work). Stars not ejected with null age would experience only part of the evolution
shown in the figure. We note that the choice of the ejection direction of the HVSs does
not affect any of the results that are presented in the following.

Panel a of Fig. 2.5 shows the relation between the magnitude of the tangential velocity,
vt = |vϑ|, and the radial velocity, vr, for the above set of stars. We note that the magnitude

of the tangential velocity, vt = (v2
ϑ+v2

ϕ)
1
2 is equivalent to the magnitude of the latitudinal

velocity |vϑ| because the DM halo is spherical: since the axisymmetric disk potential is
the only source of non-zero vt, the azimuthal velocity vϕ is null.

Panel b of Fig. 2.5 shows the relation between the radial velocity, vr, and the distance
to the Galactic center, r, for the same set of HVSs. Both the vertical dashed line in panel
a, and the horizontal dashed line in panel b correspond to a null radial velocity, vr = 0,
that the star possesses at its outer and inner turnaround radii.

For the HVSs generated with ejection speeds vej & 800 km s−1 (blue and purple lines),
both panels a and b show that these stars can never reach their outer turnaround radius
(r = rout) before dying out. Indeed, they never cross the line vr = 0 from right to left in
panel a, and the line vr = 0 from top to bottom in panel b.
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Figure 2.5. Panel a: Magnitude of the galactocentric latitudinal velocity, |vϑ|, as a function of the
galactocentric radial velocity vr, for HVSs ejected with different speed vej and traveling in a spherical
DM halo. Initially, the star velocity is purely radial, and |vϑ| = 0; as time goes on, |vϑ| becomes non-null
due to the non-spherical potential of the Galactic disk (see Eq. 2.4). For stars with smaller ejection speed
(vej . 800 km s−1), radial and angular dynamics are coupled: this coupling results into a fast growth of
|vϑ| after the first turnaround of the star. However, such couplings are not manifested for stars with larger
ejection speed. Panel b: galactocentric radial velocity vr as a function of the galactocentric distance r,
for HVSs ejected radially outward with different ejection velocities vej. The vertical dashed line of panel
a and the horizontal dashed line of panel b corresponds to vr = 0, while the vertical dashed line of panel
b corresponds to r = 10 kpc. In both panels, HVSs are ejected in the direction n̂(ϑ, ϕ) = n̂(45◦, 45◦)
with a travel time of 160 Myr, which is the largest possible travel time for a 4 M� star.

For these stars, panel a shows that |vϑ| is always . few 10 km s−1, regardless of vr:
these values of vϑ are entirely determined by the deviation from the spherical symmetry
of the gravitational potential. This deviation is due to the axisymmetric disk alone, in
the case of the spherical DM halo considered here; it is due to a combination of disk and
triaxial DM halo when the DM halo is non-spherical, as discussed in Sect. 2.2.1. At any
stage of the stars’ trajectories, the distributions of |vϑ| for these stars can be used as an
indicator of the shape of the DM halo.

On the contrary, for the HVSs with ejection speed vej . 800 km s−1 (cyan, dark
green, green, orange, and red lines), both panels a and b show that these stars may
undergo at least the first, outer turnaround before dying out. Indeed, these stars may
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cross both the line vr = 0 from right to left in panel a, and the line vr = 0 from top
to bottom in panel b at the outer turnaround radius, r = rout, if they are ejected with
sufficiently low age. When vej . 740 km s−1, the stars may also experience the second,
inner turnaround. In this case, they cross again the line vr = 0 from left to right in panel
a, and correspondingly cross the line vr = 0 from bottom to top in panel b, at the inner
turnaround radius, r = rin. Finally, when vej . 720 km s−1, the stars may also undergo
subsequent turnarounds.

For the HVSs with vej . 800 km s−1, panel a shows that, after an initial phase where
the star velocity is almost purely radial, with |vϑ| . few 10 km s−1 regardless of vr, |vϑ|
quickly increases after the outer turnaround and becomes very large for those stars that
undergo the inner turnaround. These large values of |vϑ| are determined by the exchange
of kinetic energy between radial and angular degrees of freedom, rather than by the shape
of the gravitational potential well, especially close to the inner turnaround. Therefore,
the tangential velocity of these stars could in principle be used as an indicator of the
shape of the DM halo only in specific parts of the star’s trajectory.

To perform our investigation on the shape of the DM halo by means of the HVS
tangential velocities, we needed to select only the stars that, at t = tobs, were on their first
outward trajectory from the Galactic center, namely the stars that had not experienced
an inner turnaround yet. Therefore, we first excluded the stars that, at t = tobs, were on
an inward trajectory (vr < 0) toward the Galactic center: we thus required vr > 0 for the
stars of our sample. From all the outgoing stars, we then excluded those that had already
experienced the inner turnaround and may thus had uninterestingly large |vϑ|. To do so,
we note that panel b of Fig. 2.5 shows that stars characterized by ejection velocities
vej . 740 km s−1 may live long enough to experience at least one inner turnaround.
However, panel b of Fig. 2.5 also shows that these stars can never go back to galactocentric
distances r > 10 kpc, after having undergone the inner turnaround. We thus required
a galactocentric distance r > 10 kpc for the stars of our sample. This detailed analysis
of the star kinematics thus supports our choice of the two preliminary selection criteria,
vr > 0 and r > 10 kpc, adopted in Sect. 2.2.1.

The case of a non-spherical DM halo is slightly more complicated than the case of
the spherical halo explored so far. Here, both the disk and the DM halo generate a
non-null latitudinal velocity, vϑ; furthermore, fully triaxial or spheroidal DM halos with
a symmetry axis misaligned with respect to the z-axis are also sources of a non-null
azimuthal velocity, vϕ, because the axial symmetry of the Galactic potential is broken.

However, we again find that both vϑ and vϕ are strongly coupled with vr for the stars
with vej . 800 km s−1, as it happened for vϑ in the case of a spherical DM halo. As an
example, for the case of a (qy, qz) = (0.8,1) DM halo, Fig. 2.6 shows the relation between
the azimuthal and radial velocity components. The stars’ travel time is again 160 Myr,
namely the largest possible travel time for 4 M� stars. The figure shows that for stars
with vej . 800 km s−1, |vϕ| starts increasing after the outer turnaround, and reaches
very large values close to the inner turnaround, irrespective of the shape of the DM halo
that generated the non-null vϕ’s. To exclude all the stars that had acquired large vϕ and
correspondingly large vθ after the outer turnaround, we again selected stars with vr > 0
and r > 10 kpc, as we did in the case of a spherical DM halo.

We note that these two selection criteria, illustrated for both a spherical DM halo
(see Fig. 2.5) and a non-spherical DM halo with (qy, qz) = (0.8,1) (see Fig. 2.6), actually
hold for a DM halo with any combination of axis ratios among those investigated in this
work, as illustrated in Fig. 2.7. This figure shows the radial velocity, vr, as a function
of the galactocentric distance, r, for a star ejected at vej = 740 km s−1 and traveling in
a Galaxy with DM halos of different shapes: a spherical DM halo, an extremely oblate
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Figure 2.6. The HVS galactocentric azimuthal velocity vϕ as a function of the radial velocity vr, for
HVSs ejected with different speed vej and traveling for 160 Myr. Here, the gravitational potential of the
MW is non-axisymmetric, with a qy = 0.8 and qz = 1.0 DM halo potential. Initially, the star velocity is
purely radial, and vϕ = 0; as time goes on, vϕ becomes non-null due to the DM halo asymmetry with
respect to the z-axis (see Eq. 2.5). Radial and angular dynamics are coupled for stars with smaller ejection
speed (vej . 800 km s−1); these stars start acquiring significant vϕ values after the outer turnaround.
However, stars with larger ejection speed die before this increase of vϕ can happen. The grey dashed
line corresponds to vr = 0.
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Figure 2.7. galactocentric radial velocity vr as a function of the galactocentric distance r for HVSs
ejected radially outward with an ejection velocity of vej = 740 km s−1 in the direction n̂(ϑ, ϕ) =
n̂(45◦, 45◦), for different shapes of the DM halo. The triaxiality parameters (qy, qz) of the DM halos are
listed in the inset. The travel time is 160 Myr. The vertical and the horizontal dashed lines correspond
to r = 10 kpc and vr = 0, respectively.

or prolate DM halo which is axisymmetric about the z-axis, and an extremely oblate or
prolate DM halo which is axisymmetric about the y-axis. Regardless of the axis ratios,
stars ejected at vej = 740 km s−1 can never reach a galactocentric distance r > 10 kpc,
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after having experienced the inner turnaround.
We emphasize that the stars’ outer and inner turnaround radii depend on the grav-

itational potential chosen for the computation of the trajectories (see also Chakrabarty
et al. (2022) or Sect. 3.4.2). Thus, the kinematic selection criteria derived in this work
would differ in different models of the Galactic gravitational potential. In addition, the
kinematic selection criteria depend on the mass of the HVSs. In particular, HVSs with
M < 4M� would have longer lifetimes, and thus a higher probability to reach the outer
turnaround, undergo the inner turnaround, and go back to large galactocentric distances
before dying out; this would result in a threshold radius larger than 10 kpc.

2.2.3 Effect of the initial conditions on the distributions of the shape indi-
cators

In Sect. 2.2.1, we identified the distribution of the magnitude of the HVS latitudinal
velocity, |vϑ|, as the only distribution of HVS phase space coordinates to be significantly
affected by a change of shape of the DM halo from spherical to spheroidal with axis of
symmetry about the z-axis. Based on this finding, and extending the argument to a more
general, non-axisymmetric Galactic potential, we identified the components of ~vt (i.e., vϑ
and vϕ) as indicators of the triaxiality parameters of a DM halo. Hereafter, we generally
refer to ω as each of the quantities used as an indicator of the shape of the DM halo; we
define the distribution of the shape indicator ω as Dω.

In Sect. 2.2.1 we presented results obtained for simulated HVSs from mock catalogs
A, that are unambiguously determined by the shape of the DM halo because the set of
stars is ejected with the same initial conditions in halos of different shapes. If a set of
real HVSs were ejected with the initial conditions used to generate our mock catalogs A,
recovering the shape of the MW DM halo from the distributions Dω of real stars would
be straightforward. In reality, however, the situation is more complex. At any given time
t, we can observe the phase space distribution of a sample of HVSs that are traveling in a
DM halo whose unknown shape we want to recover. Furthermore, the ejection conditions
of these stars are also unknown: even assuming an ejection mechanism (e.g., the Hills
mechanism, in our case), we do not know the initial conditions of the stars’ trajectories,
which are subject to statistical fluctuations. Therefore, recovering the shape of the DM
halo requires the comparison of the distributions Dω of the real HVS sample with mock
Dω’s that were generated with all possible combinations of initial conditions and shape
of the DM halo. In the following, we illustrate the impact of the statistical fluctuations
of the initial conditions of the ejected stars on the distributions Dω and on our ability to
detect deviations from spherical of the shape of the DM halo.

When simulating the trajectories of a sample of HVSs, a different set of initial condi-
tions for the trajectories yields a different distribution of the HVS phase space coordinates
at t = tobs. Consequently, the results of the KS test, that compares the distribution Dω

of the shape indicators against a reference set of Dω’s of DM halos with different degrees
of triaxiality, depend on the initial conditions. In Sect. 2.2.1, we already explored the
effect of using different sets of initial conditions, each of them applied to all mock catalogs
A generated for a series of spheroidal DM halos with different shapes. These different
sets are responsible for the fluctuations of the p-value of the KS test within the ranges
reported in Table 2.2 for some of the HVS phase space coordinates. As a result, mild
deviations from spherical of the shape of the DM halo (i.e., 0.05 < |qz − 1| < 0.1) may
not be recognized.

The situation becomes more complex when different sets of initial conditions are ap-
plied to each mock catalog. To investigate this case, we resorted to our HVS mock
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catalogs B (see Sect. 2.1.4): these catalogs differ from one another both for the shape of
the DM halo, as catalogs A, and for the set of the stars’ initial conditions.

Depending on the combination of initial conditions and triaxiality parameters that
characterizes each mock catalog B, the comparison of the resulting Dω’s for any of these
catalogs with a catalog of a spherical halo, based on the KS test, may lead to two different
incorrect conclusions: (i) p < α (with α = 5%), suggesting a deviation from the spherical
halo, at the significance level α, even though both star samples have traveled in the same,
spherical DM halo; (ii) p > α, suggesting that both the DM halos crossed by the two star
samples are spherical, even though one of the two halos is not.

Situation (i) would never occur in the comparison of two catalogs A, with the same
initial conditions: the KS test for two Dω’s from different catalogs A would always yield
p = 100% for identical halo shapes. Conversely, for two mock catalogs B, situation (i) can
occur as a consequence of a fundamental property of the p-value: when we compare two
Dω’s with the KS test, if the null hypothesis is true (i.e., if the two Dω’s are drawn from
the same parent distribution), the value of the KS test statistics will be at least as large
as the observed value in a fraction p of the cases (e.g., Press et al., 2007). Because the
p-value of the KS test is a random variable itself, and because for a true null hypothesis
it is uniformly distributed in the range [0; 1] (e.g., Hung et al., 1997; Donahue, 1999;
Bhattacharya and Habtzghi, 2002), one time out of 20 the p-value will be ≤ 5% for Dω’s
that are drawn from the same parent distribution. At the significance level α = 5%, this
probability implies that a null hypothesis that is actually true (i.e., the shapes of the two
DM halos are equal) will be rejected in 5% of the cases. 4

Situation (ii) can instead occur also for catalogs A, when the shapes of the DM halos
are only mildly different. However, our success in detecting actual deviations from the
spherical shape with the KS test applied to the Dω’s is lower for catalogs B because
of the additional effect of the statistical fluctuations of the initial conditions. Indeed,
whereas in catalogs A we cannot distinguish a spherical DM halo from a spheroidal DM
halo, symmetric about the z-axis, whose deviation from spherical is |qz − 1| < 0.1, with
catalogs B the range of non-detectable deviations widens to |qz − 1| . 0.2. The failure
to detect the different shapes of DM halos is a failure to reject a null hypothesis that is
actually false. 5

We note that false negatives may significantly hamper the recovery of the halo shape,
especially for mild deviation from spherical of the shape of a spheroidal DM halo axisym-
metric about the z-axis. As an example, we mention that comparing the Dω’s obtained in
a spheroidal DM halo axisymmetric about the z-axis and with qz = 0.9 (i.e., |qz−1| = 0.1)
against those obtained in a spherical DM halo yields a rate of false negatives of ∼ 20%:
in other words, we are not able to distinguish the shapes of the two DM halos in ∼ 20% of
the cases. Even though the rate of false negatives decreases with an increasing deviation
from the spherical shape, and it becomes null for |qz − 1| & 0.2, it is important to reduce
the rate of false negatives to improve the efficiency of the shape recovery of the DM halo.

Summarizing, when the initial conditions of the trajectories of a set of HVSs are
unknown, as it happens for real HVSs, comparing the Dω’s of real stars with mock Dω’s
with a KS test may yield results on the shape of the DM halo which are significantly
affected by the initial conditions of real HVSs, especially for mild deviations of the shape
of the DM halo from spherical. Therefore, it is important to design a method that

4In statistical hypothesis testing, this incorrect rejection is known as “type I error”, or “false positive”.

5In statistical hypothesis testing, this failure to reject a false null hypothesis is known as “type II error”, or “false
negative”.
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optimizes the recovery of the shape of the DM halo, minimizing the effects of the statistical
fluctuations of the stars’ initial conditions. We propose this optimized method in the
following.

2.3 A new method to constrain the shape of the DM halo

Our final goal is to recover the shape of the DM halo from the distribution Dω of the
shape indicators ω of a real sample of HVSs, properly accounting for the effects of the
unknown initial conditions of the stars’ trajectories. To this aim, we designed a method
based on (i) the use of the KS test to compare the Dω of the sample of real HVSs with
the corresponding distributions generated with a series of DM halos of different shape;
(ii) the property of the KS test’s p-value mentioned in Sect. 2.2.3: its uniform probability
density function for a true null hypothesis which, in our case, occurs when two Dω’s are
drawn from the same parent distribution.

To implement the method and evaluate its efficiency, we resorted to our HVS mock
catalogs B (see Sect. 2.1.4), that differ from one another for the shape of the DM halo
and/or the set of the stars’ initial conditions. We also constructed a sample of synthetic
HVSs, hereafter referred to as the “observed sample”: the stars of this sample are ejected
from the Galactic center, according to the Hills mechanism, with a statistically random
set of initial conditions, and move across a Galaxy whose DM halo has a known shape.
In our analysis, the observed sample mimics a real sample of HVSs: we used it to test
the efficiency of our method in recovering the correct, known shape of the DM halo from
its Dω at t = tobs. The distributions of the kinematic properties of one of our observed
samples is highlighted in green color in Fig. 2.20 of the Appendix. We emphasize that
our HVS observed samples are ideal: we include neither observational uncertainties nor
observational cuts imposed by the star observability, like its magnitude or position within
the Galaxy. The method success rates that we estimate in Sects. 2.4.2 and 2.5.3 are thus
valid for these samples alone and not for the HVS samples that might actually be observed.

We illustrate the basic concepts of our method in Sect. 2.3.1, and the method imple-
mentation in Sect. 2.3.2.

2.3.1 Fundamentals of the method

In our approach, recovering the shape of the DM halo crossed by an observed sample
of HVSs requires the comparison of the Dω of the observed sample with a series of
corresponding Dω’s generated in mock catalogs characterized by a different shape of the
DM halo and by a different set of initial conditions. We considered the shape of the DM
halo of the mock sample that best matches the observed sample as the actual shape of
the DM halo crossed by the HVS observed sample.

In principle, the comparison could be performed by means of a KS test, whose null
hypothesis H0 states that the two compared Dω’s are drawn from the same parent dis-
tribution. At the significance level α, we would accept H0 in those cases where the test
returns p > α, and we would reject it otherwise. Accepting H0 would correspond to
considering the Dω of the observed sample indistinguishable from the mock Dω selected
for the comparison, thus associating to the observed sample a DM halo with the same
shape of the mock sample’s DM halo. However, because of the effect of the statistical
fluctuations of the initial conditions of the stars’ trajectories (see Sect. 2.2.3), the Dω

of the observed sample may either turn out to be indistinguishable from a significant
number of mock Dω’s obtained in DM halos with different shapes (false negatives), or
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turn out to be significantly different from mock Dω’s obtained in DM halos with identical
shapes (false positives).

To select the “best match” between observed and mock sample, we resorted to a
property of the p-value, already mentioned in Sect. 2.2.3. When the null hypothesis H0

is true, the p-value is uniformly distributed in the range [0; 1] (e.g., Hung et al., 1997;
Donahue, 1999); thus, its median value is pmed = 0.5. On the other hand, when the
alternative hypothesis, Ha, is true, the distribution of the p-values is markedly skewed
towards low p-values, because small values of p are more likely; thus, the median p-value
under Ha will be pmed � 0.5.

As a consequence, performing the KS test for a number nt of Dω pairs that are ran-
domly drawn from the same parent distribution, namely from the ensemble of the Dω

obtained from mock catalogs B that are characterized by the same shape of the DM
halo but by different initial conditions, yields a uniform distribution of p-values. Con-
versely, performing the KS test for a number nt of Dω pairs that are randomly drawn
from different parent distributions, namely from different mock catalogs B, each of them
characterized by a different shape of the DM halo and different initial conditions, yields
a distribution of p-values which is markedly skewed towards small p-values. The larger is
the difference in shape, the more skewed is the distribution.

The situation becomes more complex when we pick a specific distribution of ω, say D̃ω,
as that of the observed sample, and we compare it against a series of mock distributions,
performing a number nt of KS tests. Even though both the HVS observed sample and
the mock samples have traveled in the same DM halo, the distributions of the p-values is
not necessarily uniform. It may be approximately uniform over the range [0; 1], skewed
towards low p-values, or skewed towards high p-values, with a corresponding median p-
value pmed ' 0.5, pmed < 0.5, and pmed > 0.5, respectively. This situation is illustrated in
Fig. 2.8, that shows the distributions of the p-values obtained from nt = 5,000 KS test
comparisons of D̃ω for each of n = 3 different observed samples against all the Dω’s of
a mock catalog B generated with a spherical DM halo. In each of the three cases, the
observed sample and all the mock samples of HVSs have traveled in the same, spherical
DM halo; however, the p-value distributions are markedly different: the black histogram
shows the case of an approximately uniform distribution, with pmed ' 0.5; the olive
histogram shows the case of a distribution skewed towards low p-values, with pmed ' 0.3;
the purple histogram shows the case of a distribution skewed towards high p-values, with
pmed ' 0.7.

The fact that a uniform distribution of p-values is not guaranteed even for the same
shapes of the DM halo is a consequence of the random selection of the observed sample’s
D̃ω that we compare against all of the mock Dω’s. If we repeat the exercise of Fig. 2.8
with a series of n > 3 observed samples, we find n different distributions of p, each of
them with a different median p-value. However, for sufficiently large n, the sum of all
these distributions yields a uniform distribution. Moreover, the distribution of the n
median p-values is markedly skewed towards high pmed’s, as the one shown in Fig. 2.9:
here, the grey histogram is obtained assuming in turn as observed sample each of the
nt = 5,000 mock catalogs B with a spherical DM halo and comparing its D̃ω against all
the Dω’s of the remaining mock catalogs, for a total of n = nt = 5,000 KS tests per
observed sample, and nt corresponding p-values whose distribution has a median pmed.
Repeating the exercise n = nt = 5,000 times yields a distribution of n = nt = 5,000
median p-values. In this distribution, ∼ 80% of the pmed’s are in the range 0.3− 0.7, and
the median is M0 ' 0.55.

We note that the characteristics of the distribution of the median p-values primarily
depend on the validity of H0; indeed, the distribution is independent of the shape of the
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Figure 2.8. Distributions of the p-values obtained by comparing D̃ω from each of n = 3 observed
samples of HVSs against the Dω’s of a series of nt = 5,000 mock samples. The observed samples and
the mock samples have all crossed a spherical DM halo. The black histogram shows an approximately
uniform distribution of p, with a median value pmed ' 0.5; the olive histogram shows the case of a
skewed distribution with pmed ' 0.3; the purple histogram shows the case of a skewed distribution with
pmed ' 0.7. The median p-values of the three distributions are marked by the vertical dashed lines.
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Figure 2.9. Distribution of the median p-values obtained from the KS test comparison of D̃ω from all
possible observed samples against the Dω’s from mock catalogs B generated in the same DM halo; the
DM halo is spherical (grey histogram) or spheroidal with axis of symmetry about the z-axis with an
oblate (qz=0.7; green histogram) or prolate (qz = 1.4; blue histogram) shape. The grey, green, and blue
solid lines are the medians of the corresponding distributions.

DM halo under test. As shown in Fig. 2.9, the pmed’s have indistinguishable distributions
for extremely prolate (qz = 1.4; blue histogram), spherical (qz = 1; grey histogram), and
extremely oblate (qz = 0.7; green histogram) DM halos. The compatibility of the three
distributions is also confirmed by a KS test. For all of the distributions, the median pmed

is M0 ' 0.55.
Summarizing, Figs. 2.8 and 2.9 show how the KS test comparison of the D̃ω of an

observed sample of HVSs with a series of nt mock Dω’s may yield a p-value distribution
different from uniform even though the observed sample and the mock sample crossed DM
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halos with the same shape. This variety of p-value distributions corresponds to a variety
of pmed’s. Higher pmed’s are more likely than lower pmed’s, implying that a distribution of
p-values skewed towards higher p’s is more likely to occur under the null hypothesis H0.
Conversely, a distribution of p-values skewed towards lower p’s, and thus characterized
by a lower pmed, is a more likely outcome under the alternative hypothesis Ha that the
DM halos have different shapes.

Therefore, to select the “best match” between the observed sample and the mock
sample, we chose the p-value distribution characterized by the largest pmed. The DM
halo crossed by the HVS observed sample was then assigned the shape of the mock
sample that yielded the “best match”.

2.3.2 Implementation of the method

To implement our method, we first explored the case of an axisymmetric Galactic po-
tential, that includes the case of a spherical DM halo and that of a spheroidal DM
halo axisymmetric about the z-axis; we then explored the more complex case of a non-
axisymmetric Galactic potential, that includes the case of a spheroidal DM halo with a
symmetry axis misaligned with respect to the z-axis, and that of a fully triaxial DM halo.

In both the axisymmetric and non-axisymmetric case studies, we resorted to mock
catalogs B (Sect. 2.1.4), that we constructed as follows. We defined a series of ns reference
shapes for the DM halo, characterized by: (i) triaxiality parameters qy = 1 and qz that
varied in steps of 0.1 within the range 0.7− 1.4, for the axisymmetric Galactic potential;
(ii) triaxiality parameters qy and qz that both varied in steps of 0.1 within the range
0.7 − 1.4, and qy /= 1, for the non-axisymmetric Galactic potential. For each of the ns

shapes of the DM halo, we generated an ensemble of nt = 5,000 HVS mock catalogs B,
each of them including the phase space coordinates of a sample of HVSs characterized
by a different random set of initial conditions. We also generated one observed sample
of HVSs, randomly drawn from one of the mock catalogs B: this sample plays the role of
a real HVS sample, and was used to evaluate the efficiency of the method in recovering
the known shape of the DM halo crossed by the observed sample.

For each of the ns simulated shapes of the DM halo, we performed a number nt = 5,000
of KS test comparisons of the D̃ω of the observed sample against the Dω’s of the mock
samples. From these nt KS tests, we got a distribution of nt p-values, whose median is
pmed. We repeated the procedure for all the ns simulated shapes, and eventually obtained
a set of ns pmed’s. We selected the mock sample corresponding to the largest value of pmed

as the sample that “best matched” the observed sample, and we associated the shape of
its DM halo to the DM halo of the observed sample.

To evaluate the success rate of our method in recovering the shape of the DM halo
crossed by the observed sample, we generated a series of n = nt observed samples cor-
responding to the same shape of the DM halo, by randomly varying the set of the HVS
initial conditions, and we computed the fraction of cases where the method correctly
recovers the known shape of the DM halo crossed by the observed sample. Finally, to
study the dependence of the success rate of our method on the shape of the DM halo, we
repeated our analysis for the observed samples of HVSs drawn from DM halos of different
shapes.

In Sect. 2.4 we illustrate the application of our method to a series of observed samples
generated in an axisymmetric Galactic potential, where the shape indicator ω is |vϑ|.
The test used for our analysis is the two-sample, one-dimensional KS test that we also
used in the previous sections. In Sect. 2.5 we illustrate the application of our method to
a series of observed samples generated in a non-axisymmetric Galactic potential, where
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the shape indicators ω are |vϑ| and a function of vϕ. The test used for our analysis is the
two-sample, two-dimensional KS test.

A possible alternative to the KS test chosen for our method is represented by the
Anderson-Darling (AD) test (Anderson and Darling, 1952, 1954). However, the AD test
currently exists only in its one-dimensional formulation; the use of this test would thus
be limited to the case of axisymmetric Galactic potentials, when the shape of the DM
halo can be recovered from the distribution of one shape indicator only, |vϑ|. In the
comparison of two one-dimensional distributions of |vϑ|, the AD test is more sensitive to
the tails of the distributions than the KS test. These tails are sensibly affected by the
shape of the DM halo, as can be seen from Fig. 2.4. Therefore, the use of the AD test for
our method is expected to improve our method success rate (see Sect. 2.4.2) in recovering
the correct shape of an axisymmetric DM halo. Consequently, our choice of the KS test
as the statistical test of our method represents a conservative choice in terms of method
success rate.

Unlike the AD test, the KS test is available also in its two-dimensional formulation.
We can thus also apply the method to non-axisymmetric Galactic potentials, where the
comparison of the distributions of the two shape indicators, |vϑ| and a function of vϕ, is
required. Adopting the same statistical test guarantees a consistent comparison of the
success rate in axisymmetric and non-axisymmetric scenarios.

We remind that, from mock catalogs B and for the observed sample, we always selected
subsamples of stars that fulfill the criteria defined in Sect. 2.2.2, namely subsamples
composed of N ' Nobs/10 ' 800 stars located at r > 10 kpc and with vr > 0.

2.4 Constraining the shape of the DM halo in an
axisymmetric Galactic potential

If the DM halo of our Galaxy is either spherical (i.e., with triaxiality parameters qy = qz =
1) or spheroidal with axial symmetry about the z-axis (i.e., with triaxiality parameters
qz /= qy = 1), the total gravitational potential of the Galaxy (Eq. 2.1) is axisymmetric
about the z-axis. For an axisymmetric Galactic potential, we show that the method
presented in Sect. 2.3 can effectively recover the axial ratio qz of the DM halo from the
distribution D̃ω of the shape indicator ω of an observed sample of HVSs (Sect. 2.4.1).
We also present the evaluation of the success rate of the method (Sect. 2.4.2).

As demonstrated in Sect. 2.2.1, if the Galactic potential is axisymmetric, there is only
one shape indicator ω of the DM halo: the magnitude of the latitudinal velocity of the
HVSs, |vϑ|. We refer to its distribution as D|vϑ|. A few examples of D|vϑ| for DM halos
with different shapes were shown in Fig. 2.4.

2.4.1 Shape recovery

We defined a series of ns = 8 reference shapes for the DM halo by varying qz in steps of
0.1 in the range 0.7− 1.4, For each shape, we generated an ensemble of nt = 5,000 mock
catalogs B, one per different set of initial conditions of the star trajectories. We thus
got nt mock samples of stars, and nt corresponding distributions D|vϑ| for each of the ns

shapes of the DM halo.
As a first test, we chose as the HVS observed sample one random mock sample of

HVSs that have crossed a spherical DM halo (with qz = qy = 1). We now show that our
method successfully recovers the axis ratio qz = 1.

For each of the ns = 8 reference shapes, we performed a set of nt = 5,000 KS test
comparisons of the observed sample’s D̃|vϑ| against each of the nt D|vϑ|’s of the mock
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Figure 2.10. Panel a: Distributions of the p-values (in logarithmic scale) obtained from the KS test
comparison of the distribution D̃|vϑ| of one HVS observed sample generated in a spherical DM halo,
against each of the ns = 8 ensembles of nt = 5,000 mock distributions D|vϑ| generated in DM halos
with different shapes, as listed in the panel. The vertical, dashed lines mark the median p-value of each
distribution. Panel b: Enlargement of the right-most part of panel a with the pmed axis in linear scale.
The difference in shape of the distributions in panels a and b are due to the different size of the histogram
bins in the logarithmic and linear scales.

samples associated to that reference shape. Figure 2.10 shows the outcome of this test.
Specifically, panel b of Fig. 2.10 shows the test result for three of these ns sets of com-
parisons: the nt KS test comparisons of the D̃|vϑ| of the observed sample against the
D|vϑ|’s of the mock star samples that traveled in the spherical DM halo yields a uniform
distribution of p-values (filled, grey histogram) whose median is pmed ' 0.5; the com-
parison of D̃|vϑ| against a mock sample generated either in a slightly oblate (qz = 0.9;
yellow histogram) or in a slightly prolate (qz = 1.1; magenta histogram) DM halo yields
a distribution of p-values which is markedly skewed towards very low p’s; the median
p-values are pmed = 2× 10−2 for the observed vs. oblate comparison, and pmed = 10−4 for
the observed vs. prolate comparison.

As shown in panel a of Fig. 2.10, the median p-value becomes smaller and smaller for
increasing departure from spherical of the shape of the DM halo of the mock catalogs used
for the comparison: it reaches pmed ' 10−13 for the comparison against the most oblate
DM halo case (qz = 0.7; green histogram) considered in this work, and pmed ' 10−21

for the comparison against the most prolate DM halo case (qz = 1.4; blue histogram).
We thus confirm that the largest pmed, that we obtained in the observed vs. spherical
comparison, identifies the correct shape of the DM halo crossed by the observed sample
(i.e., the spherical shape, with qz = qy = 1).

2.4.2 Success rate S of the method

Even though the result shown in the above test is a likely result, it is not guaranteed.
Indeed, as pointed out in Sect. 2.3, the p-value distributions of Fig. 2.10 are not unique,
and depend on the specific observed sample that we pick for the comparison (i.e., from
the set of random initial conditions of the simulated HVSs). Therefore, it may happen
that only in a fraction of cases the largest pmed is the correct indicator of the shape of
the DM halo. We defined this fraction as the success rate S of our method in recovering
the correct axis ratio of the DM halo. We now illustrate the evaluation of the method
success rate, S, for the case of a spherical DM halo (Sect. 2.4.2), and the investigation of
the dependence of S on the shape of the DM halo (Sect. 2.4.2).
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The case of a spherical DM halo

To evaluate the success rate S of our method in recovering the correct axis ratio qz = 1, we
constructed the distributions of all possible pmed’s that could be obtained by comparing
the observed sample against the mock samples corresponding to the reference shapes of
the DM halo. To generate these distributions, we simulated a series of n = nt HVS
observed samples in a spherical DM halo, by randomly varying the set of the stars’ initial
conditions. For each observed sample, we performed the nt KS test comparisons against
all the mock samples of a given shape, and we obtained a pmed; performing the procedure
for n = nt observed samples yields a distribution of n = nt values of pmed for each
comparison of the observed samples against the mock samples of a given shape of DM
halo. Repeating this exercise for each of the ns = 8 shapes of DM halo yields the ns

distributions of pmed’s that we show in Fig. 2.11.
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Figure 2.11. Panel a: Distributions of the median p-values, pmed (in logarithmic scale), obtained from
the KS test comparison of the HVS observed sample generated in a spherical halo against each of the
ns = 8 ensembles of mock HVS samples generated in a DM halo with different shape. Each distribution is
the result of the KS test comparison of the D̃|vϑ|’s of the n = nt observed samples against the nt = 5,000
mock samples generated in a DM halo with different shape as listed in the panel. Panel b: Enlargement
of the right-most portion of panel a, with the pmed axis in linear scale. The yellow and pink distributions
are the only distributions with non-null overlap with the grey distribution. The different shape of the
distributions in panels a and b are due to the different size of the histogram bins in the logarithmic and
linear scales.

Panel a of Fig. 2.11 shows that the comparison of the observed samples (generated
in a spherical DM halo) against the samples generated in a spherical DM halo returns a
distribution (the grey histogram) where most of the pmed’s are larger than the pmed’s of the
other distributions, confirming that the method correctly recovers the shape of the DM
halo crossed by the observed sample in most of the cases. However, panel a also shows
that the distribution corresponding to the comparison of the observed samples against
the samples generated in the spherical DM halo displays a non-null overlap with the two
distributions of pmed that correspond to the comparison of (i) the observed samples against
the samples generated in a slightly oblate DM halo (qz = 0.9; yellow histogram), and (ii)
the observed samples against the samples generated in a slightly prolate DM halo (qz =
1.1; magenta histogram). This non-null overlap, that can be better appreciated in panel
b, implies that, for an observed sample generated in a spherical DM halo, the shapes that
mildly deviate from spherical (|∆qz| = 0.1, in our mock catalogs) might be erroneously
associated to the observed sample of HVSs, based on our method. The moderate, non-
null overlap, however, does not necessarily imply that erroneous associations do occur
with a rate proportional to the overlapping areas.
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To illustrate this concept, let us consider two overlapping distributions of pmed, one
which is right-skewed and the other which is left-skewed, with a non-null overlap (as, e.g.,
the grey and yellow distributions of Fig. 2.11). Each value of pmed of the distributions
is contributed by a specific HVS observed sample, characterized by a specific random
set of initial conditions and a specific D̃|vϑ| (see Sect. 2.4.1 for details). Only when the
pmed that contributes to the left-skewed distribution (pmed,ls) is higher than the pmed

that contributes to the right-skewed distribution (pmed,rs) for the same random observed
sample, the erroneous association does occur. Other similar pairs (pmed,ls, pmed,rs), that
can be randomly drawn from the overlapping portion of the two distributions, may never
occur in reality. Therefore, whereas a null overlap ensures a null rate of erroneous shape
associations, the existence of a non-null overlap of two distributions is only an indication
that some erroneous associations may occur, without quantifying their rate of occurrence.
However, the larger is the overlap, the higher is the probability of erroneous associations.

To evaluate the rate of success of our method in recovering the shape of a spherical DM
halo, for each distribution of pmed’s (as the yellow and magenta distributions in Fig. 2.11)
that has a non-null overlap with the pmed distribution corresponding to the observed vs.
spherical comparison (i.e., the grey distribution in Fig. 2.11), we computed the rate of
occurrence of pairs (pmed,ls, pmed,rs) where pmed,ls > pmed,rs, thus providing an erroneous
shape recovery. We found that in 1.16% of the cases (i.e., in 58 cases out of 5,000) the
KS test comparison of the D̃|vϑ| of the observed sample against the nt = 5,000 D|vϑ|’s of
a mildly oblate (qz = 0.9) DM halo yields a pmed value larger than that obtained in the
comparison against the nt = 5,000 D|vϑ|’s of a spherical DM halo (i.e., pmed,ls > pmed,rs),
leading to erroneously classify as mildly oblate a spherical halo; this result is equivalent
to a success rate S = 98.84%. The fraction of erroneous associations drops to 0.4% for
the comparison against a mildly prolate (qz = 1.1) DM halo, yielding S = 99.6%. For
|∆qz| ≥ 0.2, the overlap of the pmed distributions with the distribution corresponding to
the spherical DM halo is null, implying a null rate of erroneous associations, and a success
rate of our method S = 100%.

Overall, for an observed sample generated in a spherical DM halo, our method enables
to recover the correct axis ratio qz = 1 of the DM halo in more than 98% of the cases; in
other words, the method has a success rate S & 98%. We stress that, in the rare cases of
an erroneous shape association, the recovered axis ratio qz is off by only |∆qz| = 0.1.

Dependence of the success rate S on the shape of the DM halo of the observed sample

The success rate S of our method displays a weak, non obvious dependence on the actual
shape of the DM halo crossed by the HVS observed sample. Indeed, repeating the exercise
of Sect. 2.4.2 for an HVS observed sample that traveled in each of our ns = 8 reference
DM halos (with qz = 0.7− 1.4), returned a success rate that varies from 89% to 99%, as
listed in Table 2.3.

The success rate is slightly higher for spherical (qz = 1.0) or mildly prolate (qz = 1.1)
DM halos than for oblate and markedly prolate DM halos; in other words, our method
recovers more easily the shape of a DM halo crossed by an observed sample of HVSs
when this DM halo is not too different from spherical. In addition, S is slightly lower
for markedly prolate than for markedly oblate DM halos; this result indicates that the
method recovers more easily the shape of an oblate DM halo than the shape of a prolate
DM halo.

To illustrate this effect, Fig. 2.12 shows the analogs of the distributions of Fig. 2.11
for the case of an HVS observed sample that traveled in a prolate DM halo with qz =
1.2. Panel a shows that the comparison of the HVS observed sample against the mock
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Table 2.3. Success rate S of our method in recovering the axis ratio qz of the DM halo of an axisymmetric
Galactic potential from the distribution of the magnitudes of the azimuthal velocities, D|vϑ|, of an
observed sample of HVSs.

qz 1.4a 1.3 1.2 1.1 1.0 0.9 0.8 0.7a

S 88.9% 92.6% 96.6% 99.2% 98.4% 97.4% 97.2% 96.6%

Notes. (a) To properly compute the success rate in recovering the shape of DM halos with qz = 1.4

and qz = 0.7 we generated also reference sets of nt = 5,000 HVS mock catalogs for DM halos of qz = 1.5 and

qz = 0.6, respectively.

sample that traveled in a DM halo with the same shape returns a distribution (the pink
histogram) where most of the pmed’s are larger than the pmed’s of the other distributions.
This result confirms that the correct shape is recovered also for non-spherical DM halos.
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Figure 2.12. Panel a: Distributions of the median p-values, pmed (in logarithmic scale), obtained from
the KS test comparison of the HVS observed sample against each of the ns = 8 ensembles of mock HVS
samples generated in a DM halo with different shape. Each distribution is the result of the KS test
comparison of the D̃|vϑ|’s of the n = nt observed samples obtained in a prolate DM halo with qz = 1.2
against the nt = 5,000 mock samples generated in a DM halo with different shape as listed in the panel.
Panel b: Enlargement of the right-most part of panel a with the pmed axis in linear scale. The cyan, blue,
and magenta distributions are the only distributions with non-null overlap with the pink distribution.
The difference in shape of the distributions in panels a and b are due to the different size of the histogram
bins in the logarithmic and linear scales.

However, panel a and the corresponding enlargement in panel b also show that three
distributions of pmed display a non-null overlap with the distribution corresponding to the
correct shape: two of these distributions correspond to the comparison of the observed
samples against the samples generated in more prolate DM halos (qz = 1.3 and qz = 1.4;
cyan and blue histograms, respectively); the third one corresponds to the comparison
against a less prolate DM halo (qz = 1.1; magenta histogram). The number of overlapping
distributions is thus larger (three instead of two) than in the case of the spherical DM
halo illustrated in Fig. 2.11; furthermore, the overlapping area of the distributions is also
larger than in Fig. 2.11 for the same ∆qz. Consequently, when the HVS observed sample
traveled in a markedly prolate DM halo with qz = 1.2, we get a larger number of erroneous
shape associations for this halo than in the case of HVSs traveling in a spherical halo.

We note that, while the larger number of overlapping distributions is only a charac-
teristics of the pmed distributions associated with markedly prolate (qz ≥ 1.2) DM halos,
the larger overlapping area is a property shared by all the oblate and markedly prolate
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DM halos. The excess in the number of overlapping distributions, where present, deter-
mines erroneous associations of the shape of the DM halo with spheroids whose qz differs
by 0.2 from the true qz; however, it negligibly affects the success rate S of our method
(. 0.02%). On the other hand, the larger overlapping area of the pmed distributions
associated to DM halos whose qz differs by 0.1 from the true qz is the main responsible
for the shape dependence of S, because the larger area increases the probability that a
DM halo is assigned a shape whose qz is off by 0.1. Summarizing, in the infrequent cases
of erroneous shape associations, the recovered axis ratio qz is typically off by |∆qz| = 0.1,
although |∆qz| = 0.2 can seldom occur (. 0.04% of the cases) when the DM halo crossed
by the HVS sample is markedly prolate.

As illustrated at the beginning of this section, the weak dependence of the success rate
S on the shape of the DM halo crossed by the HVS observed sample manifests itself with
a slightly higher S for spherical and mildly prolate DM halos, and a slightly lower S for
markedly prolate than for markedly oblate DM halos. This weak shape dependence is a
direct consequence of the following facts: (i) the difference between the D|vϑ|’s of HVSs
that traveled in a spherical or in a mildly prolate DM halo (qz = 1.0−1.1) and the D|vϑ|’s
generated in DM halos with q′z = qz±0.1 is more pronounced than the difference between
the D|vϑ|’s generated in DM halos that are either oblate (qz = 0.7 − 0.9) or markedly
prolate (qz = 1.2 − 1.4) and the D|vϑ|’s produced in DM halos with q′z = qz ± 0.1; (ii)
the differences among the D|vϑ|’s of markedly prolate halos are milder than those among
oblate halos. We ascribe these two effects to a combination of (a) the choice of a fixed
resolution in qz of our mock catalogs (i.e., ∆qz = 0.1), and (b) to the superposition of
the gravitational actions of the disk and of the DM halo.

Specifically, effect (i) is mostly due to reason (a), that is the resolution in qz of our mock
catalogs. Indeed, more and more prolate (oblate) DM halos, obtained from the spherical
halo (qz = 1.0) by progressively increasing (decreasing) qz by ∆qz = 0.1, generate a
response in the D|vϑ|’s that is stronger when qz is closer to 1. This is true independently
of the presence of the axisymmetric disk potential.

On the other hand, effect (ii) is due to a combination of reasons (a) and (b). Reason
(a) causes the markedly prolate DM halos considered in our mock catalogs to have qz’s
(1.2, 1.3, and 1.4) that render their shapes more similar to one another than the qz’s
of the oblate DM halos considered in this work (0.7, 0.8, and 0.9); indeed, the DM
halos whose axis ratios are the reciprocals of the axis ratios of these oblate halos would
be characterized by qz’s equal to ' 1.1, 1.25 and 1.4, respectively. Thus, the D|vϑ|’s
generated by the markedly prolate DM halos are expected to be less different from one
another than the corresponding distributions obtained for the oblate DM halos.

On top of this effect, the gravitational pull of the disk makes the D|vϑ|’s generated
by the markedly prolate DM halos even less different from one another. Indeed, in a
prolate DM halo the gravitational pull of the halo is opposed to the pull of the disk. For
qz ≤ 1.2, the presence of the DM halo increases the fraction of HVSs with low |vϑ|’s,
rendering the distributions D|vϑ|’s more left-skewed than that of a spherical DM halo.
However, for qz ≥ 1.3, the action of the DM halo not only compensates the gravitational
pull of the disk, but it overcomes this pull, by bending the HVS trajectories towards the
z-axis: consequently the fraction of low |vϑ|’s drop - because vϑ increases in magnitudes
and changes sign - and renders the D|vϑ|’s less left-skewed and more similar to those of
the less prolate DM halos.

The above effects are responsible for a slightly higher success rate S for oblate DM
halos. While the effects of the choice of a fixed ∆qz to build the mock catalogs can easily
be overcome, the effect of the combined gravitational actions of the disk and of the DM
halo is inherent to the problem.
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Overall, in an axisymmetric Galactic potential, our method recovers the axis ratio qz
of the DM halo crossed by an observed sample of HVSs with a success rate S & 89%,
and the erroneous shape association imply qz that is off by ±0.1 in the overwhelming
majority (& 99.96%) of the cases. In a negligible fraction (. 0.04% 6) of the cases, and
for markedly prolate DM halos only, qz can be off by 0.2.

2.5 Constraining the shape of the DM halo in a
non-axisymmetric Galactic potential

If our Galaxy has either a fully triaxial DM halo (i.e., triaxiality parameters qy /= qz,
with qy /= 1 and qz /= 1 ) or a spheroidal DM halo with a symmetry axis misaligned
with respect to the z-axis (i.e. triaxiality parameters qy /= qz = 1, or qy = qz /= 1),
the total gravitational potential of the Galaxy (Eq. 2.1) is non-axisymmetric. For a
non-axisymmetric Galactic potential, we show that the method presented in Sect. 2.3
can effectively recover the axial ratios qy and qz from the distribution D̃ω of the shape
indicators ω of an observed sample of HVSs (Sect. 2.5.2). We also present the evaluation
of the success rate of the method (Sect. 2.5.3).

As anticipated in Sect. 2.2.1, in a non-axisymmetric Galactic potential both compo-
nents of the tangential velocity ~vt = (vϑ, vϕ) are affected by the halo triaxiality, and can
thus be used as indicators of the shape of the DM halo. Specifically, we identify two shape
indicators ω: the magnitude of the latitudinal velocity of the HVSs, |vϑ|, and a function
v̄ϕ of the azimuthal velocity vϕ, that we define in Sect. 2.5.1. Hereafter, the distributions
of the two shape indicators |vϑ| and v̄ϕ will be referred to as D|vϑ| and Dv̄ϕ , respectively.
The corresponding two-dimensional distribution will be referred to as D|vϑ|,v̄ϕ .

2.5.1 |vϑ| and v̄ϕ: two indicators of the shape of the DM halo

In a Galaxy with a non-axisymmetric gravitational potential, D|vϑ| and Dv̄ϕ are both
affected by each of the two triaxiality parameters, qy and qz.

The behavior of D|vϑ| in the case of a non-axisymmetric Galactic potential is similar
to the behavior of D|vϑ| in an axisymmetric Galactic potential (Sect. 2.2.1).

Figure 2.13 shows D|vϑ| for a sample of HVSs that traveled in a Galaxy with DM halos
of different shapes: the comparison of different distributions in each of the two panels
shows that increasing qz at fixed qy leads to D|vϑ|’s that are generally more skewed towards
low values of |vθ|. This effect was already shown in Fig. 2.4 for the case of spheroidal
DM halos axisymmetric about the z axis (i.e., with qy = 1): the gravitational pull of the
disk, that drives the HVSs towards the x-y plane, is more and more compensated by a
DM distribution which is more and more elongated in the direction of the z-axis. We
note that the increase of skewness with increasing qz depends on the value of qy and stops
when the action of the DM halo overcomes that of the disk, making vϑ change sign and
increase in magnitude. This effect can be noticed in the left panel of Fig. 2.13, where the
D|vϑ|’s are comparable for qz = 1.0 and qz = 1.4.

On the other hand, a comparison of the distributions corresponding to the same value
of qz (i.e., the distributions drawn with the same color) in the two panels in Fig. 2.13
shows the dependence of D|vϑ| on qy, at fixed qz: DM halos with lower qy at fixed qz

6The reported fraction of erroneous shape association with qz off by 0.2 was computed without taking into account the
cases corresponding to qz = 0.7 and qz = 1.4: indeed, computing this fraction also for these extreme cases would have
required the use of mock samples generated in a DM halo with qz = 0.5 and qz = 1.6.
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Figure 2.13. Distributions of the magnitude of the galactocentric tangential velocity |vϑ| for HVSs
that have traveled in DM halos with qz = {1.4, 1.0, 0.7}, and with qy = 0.7 (left panel) and qy = 1.4
(right panel). The distributions were generated with the same initial conditions (mock catalogs A), to
highlight the effect of the different geometries of the DM halo.

imply larger concentration of dark matter away from the x-y plane, and thus generate
(i) D|vϑ|’s that are more skewed towards lower |vϑ|’s, as long as qz is not too high and
the DM halo only compensates the |vϑ|’s induced by the disk, (see, e.g., the green and
grey histograms, corresponding to qz = 0.7 and qz = 1.0); (ii) D|vϑ|’s that are less skewed
towards lower |vϑ|’s, for large values of qz, when the pull of the DM halo overcomes
the pull of the disk, and the increase in |vϑ| previously discussed is enhanced by a dark
matter distribution more concentrated about the z-axis (see, e.g., the blue histograms,
corresponding to qz = 1.4).

A non-null distribution of vϕ is a distinctive characteristic of non-axisymmetric Galac-
tic potentials: because in our model the gravitational potential is axially symmetric for
the Galactic disk and spherically symmetric for the bulge, the only source of non-zero vϕ
is the triaxial DM halo with qy /= 1. This DM halo can be either a fully triaxial DM halo
or a spheroidal DM halo with a symmetry axis misaligned with respect to the z-axis (see
Sect. 2.1.2).7

Even though the distribution of vϕ is extremely sensitive to the triaxiality parameters
of the DM halo, using the very value of vϕ as a shape indicator leads to a degener-
acy problem: a triaxial ellipsoid with a given qy = qy,1 and qz = qz,1 is equivalent, in
terms of geometric shape, to a triaxial ellipsoid characterized by qy = qy,2 = 1/qy,1 and
qz = qz,2 = qz,1/qy,1; indeed, the role of the semi-major axes a and b is swapped in these
two ellipsoids, and a rotation of 90◦ about the z-axis would make one of the two ellipsoids
coincide with the other. As a consequence, the resulting distributions of vϕ are statisti-
cally indistinguishable. This effect can be seen in the left panel of Fig. 2.14, where we
show the case of two samples of HVSs that traveled in two triaxial gravitational potentials
whose semi-major axes a and b are swapped: one potential has (qy,1, qz,1) = (0.7,1.0) and
the other has (qy,2, qz,2) = (1.4,1.4) ' (1/qy,1, qz,1/qy,1).

We note that two DM halos which are degenerate in vϕ are also degenerate in |vϑ|.
This effect can be seen in Fig. 2.13, where the D|vϑ|’s corresponding to a DM halo with
(qy, qz) = (0.7, 1.0) (left panel, grey histogram) and to a DM halo with (qy, qz) = (1.4,1.4)

7An additional baryonic component of the MW that could in principle contribute to vϕ is the MW hot gaseous halo
(e.g., Fang et al., 2013; Gatto et al., 2013). However, we recently showed that its effect on the HVS azimuthal velocities is
negligible with respect to that of a triaxial DM halo with qy /= 1 (Chakrabarty et al., 2022). Therefore, we do not consider
the contribution of the hot gaseous halo in this work.
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(right panel, blue histogram) are indistinguishable.

This degeneracy problem does not limit our understanding of the halo geometric shape
in a strict sense; it rather hampers our ability of discriminating, for a DM halo with a
given geometry, between two halo orientations that differ by 90◦ within the adopted
reference frame. Breaking this degeneracy would thus enable to constrain not only the
degree of triaxiality of the DM halo, but also the orientation of the halo.

The degeneracy might be broken by considering only the HVSs that are traveling in
one of the four quadrants of the x-y plane. Indeed, when qy > 1, the mass distribution
is elongated in the direction of the y-axis; thus, the stars acquire a vϕ that drives them
towards the y-axis; conversely, when qy < 1, the stars are attracted towards the x-axis.
Therefore, when the stars are located in the first quadrant (i.e. they have azimuthal
coordinate 0◦ < ϕ < 90◦) they have positive vϕ when qy > 1 and negative vϕ when qy < 1,
in our sign convention. As shown in the right panel of Fig. 2.14, the distributions of vϕ
for the HVSs located in the first quadrant are manifestly different and not overlapping:
for qy = 0.7 the vϕ’s are all negative, while they are all positive for qy = 1.4.
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Figure 2.14. Distributions of the azimuthal velocity vϕ of two samples of HVSs that have traveled in
gravitational potentials whose DM halos have the same geometrical shape but differ by 90◦ in azimuthal
orientation. Left panel: The distributions of vϕ are indistinguishable from one another, when the stars
from all the quadrants are considered. Right panel: The distributions of vϕ become manifestly different
when we consider the HVSs located in the first quadrant of the x-y plane (0◦ < ϕ < 90◦) only. The HVSs
in the first quadrant have positive (negative) vϕ when qy = 1.4 (0.7). The distributions were generated
with the same initial conditions (mock catalogs A), to highlight the effect of the different geometries of
the DM halo.

Choosing only the HVSs located in one quadrant is however not the best solution to
break the above mentioned degeneracy, because the size of the sample is reduced by a
factor ∼ 4, lowering the success rate of our method (see Sect. 2.6). To recover the original
sample size, we defined as shape indicator the variable v̄ϕ ≡ vϕ

tanϕ
|tanϕ| , where the factor

tanϕ
|tanϕ| is a sign plus or minus that renders the value of vϕ positive when the star is moving

towards the y axis (qy > 1), and negative when the star is moving towards the x axis
(qy < 1), independently of the quadrant where the star is located.

Figure 2.15 shows the distributions of v̄ϕ for two pairs of HVS samples that traveled
through DM halos with the same geometric shape but azimuthal orientations that differ
by 90◦. One pair is composed of the HVS samples that traveled in DM halos with
(qy, qz) = (0.7,1.0) (green histogram) and (qy, qz) = (1.4,1.4) (blue histogram) (i.e. the
same samples investigated in Fig. 2.14); the other pair is composed of the HVS samples
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that traveled in DM halos with (qy, qz) = (0.9,1.0) (yellow histogram) and (qy, qz) =
(1.1,1.1) (magenta histogram). The figure shows how the use of the variable v̄ϕ instead of
vϕ enables us to easily distinguish distributions of azimuthal velocities generated in pairs
of DM halos that have the semi-major axes a and b swapped. Using the two-dimensional
distribution D|vϑ|,v̄ϕ thus enables us to overcome the degeneracy problem.

We note that the HVSs represented in Fig. 2.15 attain values of v̄ϕ that are of a few
km s−1 for mild qy deviations (i.e, |∆qy| = 0.1) from unity, but may reach ∼ O(10)
km s−1 for the most extreme values of qy considered in our study (i.e., qy = 0.7 and
qy = 1.4). This result is a consequence of the extreme flattening of the DM halo along
either the x-axis or the y-axis for values of qy that are extremely large or extremely small,
respectively.
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Figure 2.15. Distributions of v̄ϕ ≡ vϕ tanϕ
|tanϕ| for samples of HVSs that traveled in gravitational potentials

whose DM halo has different triaxiality parameters. The use of the variable v̄ϕ instead of vϕ enables to
easily distinguish distributions of azimuthal velocities generated in DM halos with the same geometry
but whose semi-major axes a and b are swapped. The distributions were generated with the same initial
conditions (mock catalogs A), to highlight the effect of the different geometries of the DM halo.

The distributions of |vϑ| and v̄ϕ are both very sensitive to the triaxiality parameters
of the DM halo. Therefore, their combination can provide a powerful tool to detect non-
sphericity of the DM halo and constrain the triaxiality parameters of the corresponding
gravitational potential, as we show below.

We compared the two-dimensional distributions D|vϑ|,v̄ϕ ’s of the shape indicators ob-
tained for HVSs that traveled in DM halos of different shapes. We generated the distri-
butions by using mock catalogs A, which were produced with HVS samples characterized
by the same random set of ejection conditions, as we did in Sect. 2.2.1 for the case of
spheroidal DM halos. We defined a series of ns = 56 total reference shapes by varying
both qy and qz in steps of 0.1 in the range [0.7; 1.4] and imposing qy /= 1. These reference
DM halos have either a fully triaxial shape or a spheroidal shape which is symmetric
about the x-axis or the y-axis, and lead to a non-axisymmetric Galactic potential. For
all these reference shapes, we generated the corresponding HVS mock catalogs.

We compared the D|vϑ|,v̄ϕ ’s obtained from each of this ns HVS samples against the
D|vϑ|,v̄ϕ obtained for a spherical DM halo, where qy = qz = 1, and Dv̄ϕ is a distribution of
null values. For this comparison, we used the two-sample, two-dimensional KS test (Press
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et al., 2007, and references therein), hereafter referred to as “2D KS test”. For all the 2D
KS test comparisons, we found null p-values, implying that the D|vϑ|,v̄ϕ ’s are significantly
different from each other even for the smallest differences in triaxiality parameters with
respect to the spherical DM halo. The null p-value results from the fact that, in a spherical
DM halo, the HVSs do not acquire any azimuthal velocity; any non null Dv̄ϕ is thus a
proof that the HVS sample has traveled in a non-axisymmetric gravitational potential.
This result proves that the distribution of |vϑ| and v̄ϕ can effectively detect non-spherical
shapes of the DM halo.

A 2D KS test comparison of pairs of D|vϑ|,v̄ϕ obtained for DM halos characterized by
the same value of qz but different values of qy yielded p-values always smaller than 5%
even for differences in qy as small as ∆qy = 0.1. The high sensitivity of the D|vϑ|,v̄ϕ to
small differences in qy at fixed qz is the result of the high sensitivity of Dv̄ϕ to qy. In
turn, this sensitivity comes from the fact that qy /= 1 is the only source of non-null vϕ in
triaxial DM halos.

Conversely, small differences in qz at fixed qy can lead to comparable D|vϑ|,v̄ϕ , according
to a 2D KS test, with p-values that can exceed 5%. These larger values of p originates
from the fact that differences in qz affect vϑ, but vϑ is also affected by the gravitational
pull of the disk. This effect was already discussed for the case of an axisymmetric Galac-
tic potential, with a DM halo which is either spherical or spheroidal about the z-axis,
(Sect. 2.2.1). Overall, v̄ϕ is a more powerful shape indicator than |vϑ|, and the com-
bination of the two shape indicators is the appropriate tool to constrain the triaxiality
parameters of a DM halo with the HVSs.

We note that, in our model of the gravitational potential of the MW, we assumed the
DM halo to have its principal axes aligned with the axes of our Cartesian reference frame,
x, y, and z, where x indicates the direction from the Sun to the Galactic center and z
is orthogonal to the Galactic plane (see Sect. 2.1.2). Releasing this assumption has an
effect on the shape indicator v̄ϕ . Indeed, let us assume that one of the principal axes
of the DM halo still coincide with the z axis, while the remaining two principal axes lie
on the Galactic plane, but are misaligned with respect to our x and y axes by an angle
0 < φ0 ≤ 45◦. In this case, the HVS v̄ϕ’s would no longer be all negative or all positive.
Specifically, for 0◦ < φ0 . 45◦, higher φ0 would correspond to higher degrees of mixing
of negative and positive values, while for φ0 ' 45◦, the v̄ϕ distribution will be about half
positive and half negative.

For very small misalignments, the very low degree of mixing of the v̄ϕ distribution
would not prevent us from breaking the degeneracy in the orientation of the DM halo.
On the other hand, for large misalignments, we would not be able to distinguish two DM
halos with the same geometrical shape but with orientations that differs by 90◦. However,
we stress that even in those cases the degree of triaxiality of the DM halo could still be
determined from the distribution of vϕ. Law et al. (2009) find that the axes of the DM
halo on the plane of the Galactic disk are aligned with the x and y axes within 15◦. In
this case, our method would not encounter degeneracy problems.

2.5.2 Shape recovery

To recover the shape of the DM halo by means of the distribution D̃|vϑ|,v̄ϕ of the shape
indicators |vϑ| and v̄ϕ, we made use of the series of ns = 56 reference shapes for a non-
axisymmetric Galactic potential obtained, as described above, by varying both qy and qz
in steps of 0.1 in the range 0.7− 1.4, and imposing qy /= 1. For each shape, we generated
an ensemble of nt = 5,000 mock catalogs B, one per different set of initial conditions
of the stars’ trajectories. From each mock catalog, we obtained one two-dimensional

66



2.5 – Constraining the shape of the DM halo in a non-axisymmetric Galactic potential

distribution D|vϑ|,v̄ϕ of the shape indicators, for a total of nt distribution D|vϑ|,v̄ϕ ’s per
shape of the DM halo.

As an example, we chose as the HVS observed sample one random mock sample of
HVSs that traveled in a DM halo with qy = 1.2 and qz = 0.9. We show here that our
method successfully recovers the correct triaxiality parameters qy and qz.

Following a procedure similar to that described in Sect. 2.4.1, for each of the ns = 56
reference shapes (qy, qz) of the DM halo we performed the 2D KS test comparisons of the

observed sample’s D̃|vϑ|,v̄ϕ against all of the nt = 5,000 D|vϑ|,vϕ ’s corresponding to each
shape. Thus, for each shape of the DM halo, we obtained a distribution of nt p-values
and a corresponding pmed.

Table 2.4 shows the pmed’s obtained in this exercise for a selection of DM halos of
different triaxiality parameters. We expect that the highest pmed points at the shape
of the DM halo that “best matches” the shape of the DM halo actually crossed by the
observed sample (see Sect. 2.4.1). Indeed, the highest pmed = 0.443 occurs for the DM halo
halo with triaxiality parameters qy = 1.2 and qz = 0.9, namely for the DM halo actually
crossed by the observed sample: this result demonstrates that our method effectively
recovers the correct shape of the triaxial DM halo crossed by the observed sample.

Table 2.4. Median value, pmed, of the distribution of nt = 5,000 p-values obtained from the nt 2D
KS test comparisons of the observed sample’s D̃|vϑ|,v̄ϕ against the D|vϑ|,vϕ ’s of the nt mock samples
corresponding to different shapes. The largest pmed indicates the “best match” between the observed
sample and the mock sample. The observed sample is generated in a DM halo with qy = 1.2 and qz = 0.9.

(qy, qz) pmed

(1.1,0.8) 6× 10−22

(1.1,0.9) 10−17

(1.1,1.0) 9× 10−16

(1.2,0.8) 0.006
(1.2,0.9) 0.443
(1.2,1.0) 0.004
(1.3,0.8) 3× 10−5

(1.3,0.9) 3× 10−6

(1.3,1.0) 3× 10−11

2.5.3 Success rate

In this subsection, we illustrate the success rate S of our method for the case of a DM
halo with a specific shape (Sect. 2.5.3) and the dependence of S on the shape of the DM
halo (Sect. 2.5.3).

The case of the triaxial DM halo with (qy, qz) = (1.2,0.9)

To evaluate the success rate S of our method, we followed a procedure similar to that
of Sect. 2.4.2. We generated a series of n = nt HVS observed samples in a DM halo
with qy = 1.2 and qz = 0.9, by randomly varying the set of the stars’ initial conditions.
For each observed sample, we performed the nt 2D KS test comparisons of the observed
sample’s D̃|vϑ|,v̄ϕ against the D|vϑ|,v̄ϕ ’s of all the nt mock samples corresponding to a given
reference shape of the DM halo, and we obtained a pmed. Performing the procedure for
n = nt observed samples yields a distribution of n = nt values of pmed for each given
shape of DM halo. Repeating this procedure for each of the ns = 56 shapes of DM halo
yields ns distributions of pmed’s.
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We show a representative selection of these distributions in Fig. 2.16. Panels a and
b show that the highest pmed’s correspond to the distribution obtained for the DM halo
with triaxiality parameters qy = 1.2 and qz = 0.9 (grey histogram), namely the halo
traveled by the observed sample: this proves that our method recovers the correct shape
of the triaxial halo in the large majority of the cases.
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Figure 2.16. Panel a: Distributions of the median p-values, pmed (in logarithmic scale), obtained from
the 2D KS test comparison of the HVS observed sample against a selection of 9 of the ns = 56 ensembles
of mock HVS samples generated in DM halos with different triaxiality parameters. Each distribution
is the result of the 2D KS test comparisons of the D̃|vϑ|,v̄ϕ ’s of the n = nt = 5,000 observed samples
obtained in a DM halo with qy = 1.2 and qz = 0.9 against the nt mock samples generated in a DM halo
with a different shape as listed in the panel. Panel b: Enlargement of the right-most part of panel a,
with the pmed axis in linear scale. The green and dark-green distributions are the only distributions with
non-null overlap with the grey distribution. The different shapes of the distributions in panels a and b
are due to the different size of the histogram bins in the logarithmic and linear scales.

There are, however, cases where an erroneous shape association can occur. As shown
in panel a of Fig. 2.16, the distributions of pmed’s, corresponding to the comparison of the
D̃|vϑ|,v̄ϕ ’s of the HVS observed sample against the D|vϑ|,v̄ϕ of the HVS samples generated
in DM halos with the same qy = 1.2 and with qz = 0.8 or qz = 0.9, display a non-null
overlap with the distribution corresponding to the comparison of the observed sample
against the samples from DM halos with qy = 1.2 and qz = 0.9. This overlap can
be better appreciated in the enlargement of panel b. The overlap implies that, for an
observed sample generated in a DM halo with qy = 1.2 and qz = 0.9, our method can
erroneously associate to the observed sample only the shapes characterized by the same
qy and by a qz slightly different (|∆qz| ≤ 0.1) from the correct qz.

Erroneous shape associations are however very rare, because the overlap between the
distributions is very modest. In the above example, the success rate of our method
is 99.98%; only in one case over 5,000 the highest pmed suggests triaxiality parameters
for the DM halo crossed by the observed sample that are not the correct ones, namely
(qy, qz) = (1.2, 1.0) instead of (qy, qz) = (1.2, 0.9). In the analyzed case, any difference
∆qy ≥ 0.1 leads to distributions of pmed that do not overlap, namely the rate of erroneous
shape associations is equal to zero; the axis ratio qy is thus correctly recovered in 100%
of cases.

Dependence of S on the shape of the DM halo of the observed sample

To investigate the effect of the shape of the DM halo of the observed sample on the success
rate of our method in the case of a non-axisymmetric Galactic potential, we explored three
additional shapes for the DM halo. Table 2.5 reports the axis ratios qy and qz of these
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DM halos, and the corresponding success rate, S. The axis ratio and success rate of the
case explored in Sect. 2.5.3 are reported in the same table for completeness.

Table 2.5. Success rate S of our method in recovering the axis ratios qy and qz of the DM halo of
a non-axisymmetric Galactic potential from the two-dimensional distribution D|vϑ|,v̄ϕ of an observed
sample of HVSs.

(qy, qz) S
(0.8,0.8) 100.00%
(1.3,0.8) 99.64%
(1.2,0.9) 99.98%
(1.2,1.3) 96.24%

We obtained success rates S > 96% in all the explored cases. Thus, for a non-
axisymmetric Galactic potential, the success rate of our method is less sensitive to the
actual shape of the DM halo than for an axisymmetric Galactic potential. As in the case
of an axisymmetric Galactic potential, illustrated in Sect. 2.4.2, for a non-axisymmetric
Galactic potential we found that the DM halo with the largest qz, namely the case
(qy, qz = (1.2,1.3), yields the smallest success rate, albeit still larger than 96%.

Even though we investigated only four shapes of DM halos, we selected them to ap-
propriately cover the axis-ratio space. We thus expect S & 95% also for different combi-
nations of axis ratios. In particular, less extreme axis ratios are expected to increase the
success rate of the method: this tendency, already shown in Sect. 2.4.2 for the DM halo
yielding an axisymmetric Galactic potential, is enhanced in the case of a DM halo that
generates a non-axisymmetric Galactic potential, because of the presence of a non-null
distribution of v̄ϕ. Therefore, a 2D distribution of shape indicators makes the constrain-
ing power of our method higher and more effective against the actual shape of the DM
halo that we want to recover.

2.6 Sample size and method success rate

In Sects. 2.4 and 2.5 we investigated the efficiency of our method in recovering the shape
of the DM halo, in both an axisymmetric and a non-axisymmetric Galactic potential,
from a mock observed sample of HVSs composed of ∼ 800 4 M� stars. The size of the
mock sample, dictated by the combination of the HVS ejection rate and the lifetime of
the stars (see Sect. 2.1.3), as well as by our selection criteria (see Sect. 2.2.1), represents
the optimal situation, that would occur if the HVSs were actually ejected according to
the Hills mechanism with the assumed rate, and if we were able to observe all of them.

Here, we present our investigation of the dependence of the success rate S of our
method on the size of the HVS observed sample. In Sect. 2.6.1, we show the results
obtained when repeating the analysis performed in Sect. 2.4 on a series of mock HVS
observed samples that traveled in a spherical DM halo and whose size is 50%, 25%, 10%,
and 5% of the original sample size. In Sect. 2.6.2, we illustrate the generalization of our
results to different shapes of the DM halo.

2.6.1 Spherical DM halos

We applied our method to an HVS observed sample that traveled in a spherical DM
halo. For the case of an observed sample whose size is 50% the original size, panel
a of Fig. 2.17 shows the distributions of the median p-values obtained by comparing
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each observed sample with the 5,000 mock samples generated in spheroidal DM halos
axisymmetric about the z-axis. This figure is the analog of Fig. 2.11, with the exception
of the reduced sample size of the observed sample and of the smaller number of pmed

distributions.
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Figure 2.17. Panel a: Distributions of the median p-values, pmed (in logarithmic scale), obtained by
comparing each of the 5,000 observed samples with ' 400 HVS generated in a spherical DM halo, with
the 5,000 mock samples generated in spheroidal DM halos axisymmetric about the z-axis with different
qz, as listed in the panel. Panel b: Enlargement of the right-most part of panel a with the pmed axis in
linear scale. The different shape of the distributions in panels a and b are due to the different size of the
histogram bins in the logarithmic and linear scales.

Panel b is the enlargement of panel a. It shows that the distributions of the median p-
values obtained from the comparison of the mock observed samples with the mock samples
generated in the spherical DM halo with qz = 1.0 (the grey histogram) is flatter than the
corresponding histogram in panel b of Fig. 2.11. Indeed, all the distributions of Fig. 2.17
are flatter than the corresponding distributions of Fig. 2.11. As a consequence, there is
a larger superposition of the grey distribution with the pmed distributions obtained from
the KS test comparisons of the observed samples and the samples that crossed the mildly
oblate (qz = 0.9) and mildly prolate (qz = 1.1) DM halos. Unlike Fig. 2.11, Fig. 2.17
also shows a non-null overlap of the grey distribution with the red distribution obtained
from the comparison of the observed sample against the sample that crossed an oblate
DM halo with qz = 0.8; however, this non-null overlap does not correspond to any actual
erroneous associations of the observed sample with an oblate DM halo with qz = 0.8,
because no comparison yields a pmed of the red distribution higher than the pmed of the
grey distribution (see Sect. 2.4.2).

Summarizing, a 50% smaller HVS sample implies a higher probability of assigning a
DM halo with an incorrect axial ratio qz to an observed sample of HVSs. This corresponds
to a lower success rate S of the method: while for the original HVS observed sample we
obtain S = 98.4%, for the 50% smaller sample we obtain S = 91.8%. However, the axial
ratio can be off by |∆qz| = 0.1 only, as for the full-size sample.

The flattening of the distributions of the median p-values keeps on increasing with
decreasing size of the observed sample. Figure 2.18 shows the change in the distribution
of the median p-values obtained from the KS test comparison of the HVS observed samples
against the mock samples generated in a spherical DM halo, when the size of the HVS
observed samples drops from 100% (grey histogram; N ' 800 stars) to 50% (brown
histogram; N ' 400 stars) and to 5% (black histogram; N ' 40 stars). The increasing
flattening of the pmed distributions for smaller HVS samples occurs because deviations
of the distribution of the p-values from the uniform distribution increase with decreasing
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Figure 2.18. Distributions of the median p-values obtained from the KS test comparison of the D̃|vϑ|
of each observed sample, generated in a spherical DM halo, with the 5,000 mock samples generated in
a spherical DM halo. The size of the compared samples is 100% (grey histogram; N ' 800 stars), 50%
(brown histogram; N ' 400 stars), and 5% (black histogram; N ' 40 stars), respectively, of the original
HVS sample size.

size of the HVS sample. In turn, the difference between pmed and the expected value 0.5
increases and the distributions of pmed’s thus have higher tails.
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Figure 2.19. Success rate S of our method in recovering the correct shape of a DM halo as a function
of the size of the HVS observed sample, for a spherical DM halo (qz = 1.0; black dots) and for two
spheroidal DM halos axisymmetric about the z-axis with qz = 1.1 (green dots) and qz = 1.4 (red dots).
The sample size reported on the x-axis is the average size of the 5,000 HVS observed samples used
to estimate the success rate in the spherical DM halo scenario. S is shown for sample sizes of 100%
(N ' 800 stars), 50% (N ' 400 stars), 25% (N ' 200 stars), 10% (N ' 80 stars), and 5% (N ' 40
stars) of the original sample size.

For the case of a spherical DM halo, the black dots in Fig. 2.19 show the success rate
of our method as a function of the size of the HVS observed sample. A success rate
S & 90% requires an HVS sample of N & 400 HVSs, while S & 75% is achieved with
N & 200 HVSs, S & 55% is obtained with a sample of N & 80 HVSs, and S & 40% is
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obtained with a sample of N & 40 HVSs.
When the HVS sample size is N ' 400, the unsuccessful cases yield axial ratios that

can be off by |∆qz| = 0.1 at most, as it is for the case of the optimal sample size,
N ' 800. On the other hand, when the sample size is N ' 200, the axial ratio can be
off by |∆qz| ≤ 0.2. For the smallest sample sizes considered here (i.e., for N ' 80 and
N ' 40), the axial ratio can be off by |∆qz| ≤ 0.4. For any sample size, the probability
to associate a given erroneous shape with the DM halo crossed by the observed sample
decreases with increasing difference |∆qz| between the erroneous and the actual axis ratio.

2.6.2 Non-spherical DM halos

For spheroidal DM halos that are axisymmetric about the z-axis, the dependence of the
success rate S of our method on the sample size is comparable to the dependence found
for spherical DM halos, illustrated in Sect. 2.6.1. However, the shape dependence of S
discussed in Sects. 2.4.2 and 2.5.3 is responsible for fluctuations of the value of S for any
given HVS sample size.

Figure 2.19 shows the dependence of the success rate S on the HVS sample size for the
spheroidal DM halos axisymmetric about the z-axis that yield the most extreme success
rates, namely those with qz = 1.1 (green dots) and qz = 1.4 (red dots), superimposed to
the same dependence for spherical DM halos (black dots). The different S’s between each
of the two spheroidal cases and the spherical case are represented by the vertical green
and red bars superimposed to the black dots. The spheroidal DM halo with qz = 1.4
yields the lowest success rate for each sample size, and the difference in S between this
case and the spherical case can be as high as ∼ 25%. On the other hand, the spheroidal
DM halo with qz = 1.1 yields the largest success rate for each sample size, with differences
in S from the spherical case always smaller than 10%.

For fully triaxial DM halos or for spheroidal DM halos non-axisymmetric about the
z-axis, we refrain from performing a detailed analysis: for the optimal sample size of
∼ 800 HVSs, our method recovers the correct shape of the DM halo with a success rate
S = 96% − 100% for the explored scenarios, depending on the actual shape of the DM
halo (see Sect. 2.5.3). This success rate is always higher than the success rate obtained,
for the optimal sample size, for a spheroidal DM halo axisymmetric about the z-axis and
with qz = 1.4; for some shapes of the non-axisymmetric DM halo, S can also be higher
than that obtained for a spheroidal DM halo axisymmetric about the z-axis and with
qz = 1.1. We thus expect that, for the case of non-axisymmetric DM halos, S will be
generally larger than for the axisymmetric cases with the same sample size.

2.7 Discussion

The HVSs are ejected from the Galactic center and cross a large range of distances during
their journey across the Galaxy. As shown in Sect. 2.2.1, their use as tracers of the DM
halo of the MW is appropriate in any region where the DM halo is expected to dominate
their kinematics, namely at galactocentric distances r & 10 kpc. However, the phase
space coordinates of the HVSs at any radius r stores the information on the triaxiality
parameters of the dark halo within r. Therefore, the HVSs appear to be a promising
probe of the triaxiality of the DM halo of the MW over a large range of spatial scales.

Conversely, other observational probes can constrain the shape of the DM halo over
more limited spatial scales (see Sect. 1.4.3). Our HVS-based method is thus a powerful
tool to complement the currently available constraints on the shape of the Galactic DM
halo provided by different tracers on different, limited scales.
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2.7 – Discussion

Clearly, the applicability of the presented method depends on a few working hypothe-
ses, that we discuss below. In addition, the size of the available HVS samples with
measured velocity is still an issue both for the success rate of the method and for the
magnitude of the offset between the recovered and the actual axis ratio. However, even
though our method was developed in the framework of a specific model of HVS produc-
tion and with a set of assumptions, our working hypotheses do not limit the validity of
the method, as we illustrate in the following.

As for the HVS production, we considered here the Hills mechanism, because of its
unique ability in generating both a large number of unbound main-sequence HVSs and
B-type stars in close orbit about SgrA? (see Sect. 1.5.1). However, our method can be
applied to any mechanism that can eject stars from the Galactic center on a purely radial
direction with a velocity vej & 730 km s−1, thus enabling them to reach r > 10 kpc with
non-null outward radial velocity.

All our simulated HVSs have a mass of 4 M�. The large majority of the HVS can-
didates are B-type stars with mass in the range ∼ 2− 4M�, while other candidates are
classified as A, F, G, or K type stars. The generation of a realistic sample of ejected stars
would require sampling the masses of the binary stars that encounter the SMBH from a
mass distribution. However, under the simplifying assumption that the population of bi-
nary stars were entirely composed of equal-mass binaries, the distribution of the ejection
velocities of a sample of HVSs with different masses would be the sum of the independent
distributions of the ejection velocities of equal-mass HVSs. Thus, our simulated mock
HVS sample of 4M� stars has the same fractional distribution of ejection velocities that
would be obtained for the subsample of 4M� stars in a simulated extended spectrum
of masses for equal-mass binaries. As a consequence, our mock observed sample would
mirror a real sample limited to 4M� HVSs.

In fact, in a realistic scenario, unequal mass binaries are likely. For hyperbolic encoun-
ters, as those simulated in this work, the primary member of each binary is usually ejected
as an HVS; its ejection velocity depends on the mass m2 of the secondary star. Thus,
in a distribution of binaries whose primary member is a 4 M� star, the velocity of the
ejected 4 M� HVS depends on the mass of the companion star, m2 ≤ 4M�. Nevertheless,
Bromley et al. (2006) show that the fractional velocity distribution of 4 M� HVSs located
at r = 10−120 kpc is insensitive to m2, when m2 = 0.5, 1, 2, and 4 M�. Our simulations
confirm this result for binaries with m2 uniformly sampled in the range 0.1− 4M�. The
insensitivity of the velocity distribution to m2 follows from the fact that the stars that
reach r > 10 kpc populate the high velocity tail of the distribution of ejection velocities
(vej & 730 km s−1); the high speed tail of the ejection velocity distribution obtained in
the case of 4+4 M� binaries is statistically indistinguishable from the high speed tail of
the corresponding distribution obtained when m2 is sampled in the range 0.1 − 4 M�.
Thus, limiting our mock HVS sample to 4M� stars ejected from equal mass binaries
returns, for stars in the region of interest (r > 10 kpc), final velocity distributions that
are statistically consistent with those we would obtain by fixing the mass of the primary
star to 4M� and by varying the mass of the secondary star in the range 0.1 − 4 M�.
However, the normalization of the latter distributions is smaller than the normalization
we obtain by simulating 4 + 4M� binaries. Indeed, when m2 = 0.1− 4M�, the ejection
velocity distribution peaks at lower values, implying that a lower number of HVSs can
reach r > 10 kpc.

The size of the HVS sample also decreases with decreasing ejection rate R. By adopting
R = 10−4 yr−1 (see Sect. 2.1.3), we generated an optimal sample of ∼ 800 4M� stars.
We investigated the effect of different sizes of the HVS samples on the method success
rate in Sect. 2.6, and showed that the success rate decreases for smaller sample sizes.
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This analysis is suggestive of the effect of a lower ejection rate on the success rate of our
method. Indeed, the ejection rate depends on a number of assumptions and it is still
poorly constrained (see, e.g., Hills, 1988; Yu and Tremaine, 2003; Bromley et al., 2012;
Zhang et al., 2013; Brown, 2015). Bromley et al. (2012) assume continuous star formation
in the Galactic center and estimate R ≈ 1− 2× 10−3 yr−1 when integrating over all the
mass spectrum of the ejected stars considered. Our adopted R = 10−4 yr−1 for 4M�
stars appears roughly consistent with this analysis of Bromley et al. (2012). However,
by dropping the assumption of continuous star formation, Bromley et al. (2012) find
substantial smaller values: R ∼ 2 − 8 × 10−5 yr−1. This range partly overlaps with the
range ∼ 10−5− a few 10−4 yr−1 found by Zhang et al. (2013) who consider different
origins of the injected binaries and different models of the Initial Mass Function of the
primary stars (see also Yu and Tremaine, 2003).

The decrease of the success rate with the decreasing size of the HVS sample illus-
trated in Sect. 2.6 also mimics the effect of the reduction of the HVS sample because of
observational limitations, like the star magnitude or the star position within the Galaxy.

The dependence of the size of the HVS sample on the mass of the stars is more intricate:
the larger number of stars with M < 4M� and lifetime τL > 160 Myr would determine
a larger number of HVSs that are alive at the observation time compared to our 4M�
star sample. However, longer-lived, lower-mass stars can reach larger Galactocentric
distances after experiencing the inner turnaround (Sect. 2.2.2); therefore, the lower limit
r = 10 kpc we adopted here for the 4M� stars will be larger for lower mass stars, thus
potentially reducing the number of HVSs suitable for our method. Opposite effects would
be determined by the moderate number of stars with M > 4M�, and lifetime τL < 160
Myr. We plan to investigate in future work how these effects combine to determine the
optimal sample size and, in turn, the success rate of the method.

Our HVS mock samples include both unbound and bound HVSs, that are HVSs whose
ejection velocity does not exceed the escape velocity of the MW. The bound HVSs that
satisfy the selection criteria that we defined in Sect. 2.2.2 are indicators of the shape of
the DM halo as good as the unbound HVSs. Therefore, the observation of bound HVSs
is of fundamental importance to increase the HVS sample size and the success rate of the
method.

As highlighted by Marchetti (2021), bound HVSs may be the best candidate stars
ejected from the Galactic center that can be observed in the Gaia catalogs, while the
majority of the unbound HVS population is expected to be too far from the Sun’s position
(Kenyon et al., 2014) for its radial velocity to be measured by the Gaia Radial Velocity
Spectrometer (RVS). In the current sample of HVS candidates, ∼ 70% of the stars are
located at a galactocentric distance r > 10 kpc, at the 3σ level. The possibility to measure
the radial velocities of fainter objects in the outer halo will be of fundamental importance
to identify new bound and unbound HVS candidates that satisfy our selection criteria.
For example, the forthcoming 4-metre Multi-Object Spectroscopic Telescope (4MOST; de
Jong et al., 2019) will be able to increase the volume of the spectroscopic sample provided
by Gaia; specifically, it will measure the radial velocities of Gaia photometric sources with
magnitude G < 20.5, while the Gaia RVS will provide radial velocities for sources with
GRVS ≤ 16.2 mag, corresponding to G ≤ 15.9 for B0V stars and G ≤ 17.4 mag for K4V
stars (Jordi et al., 2010; Fitzgerald, 1970).

If our sample of 4 M� HVSs reached the optimal size of ∼ 800 stars, in the ideal case
of null uncertainties, our method would be able to recover the correct axis ratios of the
DM halo in & 90% of cases, while being off by 0.1 in the remaining . 10%. The offset
of 0.1 found in the minority of unsuccessful cases is set by the resolution in triaxiality
parameters that we choose in our simulations, ∆qy,z = 0.1.

74



2.8 – Conclusions

Here, we did not investigate the effect of any observational limitations on our HVS
observed sample, nor the effect of the uncertainties on the HVS distances and galacto-
centric tangential velocities on the success rate of our method. This investigation will be
pursued elsewhere.

The main contribution to the uncertainty on the tangential velocity of distant HVSs
comes from their proper motion. The proper motion measurements currently available
in the Gaia Early Data Release 3 (EDR3; Gaia Collaboration, 2016c, 2021) are affected
by uncertainties that can lead to relative uncertainties on the tangential velocities larger
than 100%. On the other hand, for nearby HVS candidates, the largest contribution
to the uncertainties on the tangential velocities comes from the star distances inferred
from Gaia parallaxes: in the Gaia EDR3, the uncertainties on the parallaxes range from
0.02− 0.03 mas, for sources with G < 15 mag, to 1.3 mas, for sources with G = 21 mag
(Gaia Collaboration, 2021). The relative uncertainties on the parallax-inferred distances
of an HVS candidate at 10 kpc from the Sun can thus vary from 20−30% for the brightest
stars to 1300% for the faintest stars. To preserve the high success rate of our method,
it clearly is of utmost importance to reduce the uncertainties on both the star distances
and proper motions.

A future Theia-like mission (Malbet et al., 2016; The Theia Collaboration et al., 2017;
Malbet et al., 2019, 2021), designed for unprecedented high precision astrometry, may
achieve an end-of-mission uncertainty on proper motions of a few micro-arcseconds per
year (i.e., ∼100 times smaller than the uncertainty of Gaia), opening up the possibility
for significantly constraining the shape of the DM halo. The availability of more precise
measurements of proper motions will also make it possible to better constrain the birth
place of the current HVS candidates.

The confirmation of the galactocentric origin of the trajectories of HVS candidates
and their use to constrain the Galactic gravitational potential requires a final cautionary
note. This research program is far from obvious, and can suffer from a circularity problem.
The galactocentric origin of an HVS candidate can be assessed through a backtracking
of the star trajectory (e.g. Brown et al., 2014, 2018; Marchetti et al., 2019; Irrgang
et al., 2018; Koposov et al., 2020; Kreuzer et al., 2020; Irrgang et al., 2021); in turn,
the backtracking requires an assumption on the gravitational potential that one aims
to constrain. In addition to the matter distribution of the Galaxy, the gravitational
potential is set by the distribution of the satellites of the Galaxy (e.g., Kenyon et al.,
2018). Moreover, the gravitational potential of the Galaxy is time dependent because
of the interaction of the Galaxy with its satellites (Boubert et al., 2020). On a wider
perspective, the galactocentric origin of an HVS candidate also depends on the theory of
gravity (Chakrabarty et al., 2022). Therefore, a solid confirmation of the galactocentric
origin is currently limited to high-speed stars that are close to the Galactic center, where
the effects mentioned above are negligible (e.g., Koposov et al., 2020). An appropriate
method for constraining the gravitational potential with slower and more distant HVS
candidates would require, for example, an iterative approach. In the absence of a self-
consistent procedure, constraints on the Galaxy mass model with HVS candidates remain
questionable.

2.8 Conclusions

We presented a new method to infer the shape of the DM halo of the MW from the
distribution of the components of the galactocentric tangential velocities of a sample of
HVSs. We applied our method to an ideal optimal sample of ∼ 800 4 M� simulated
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HVSs. We referred to this sample as the observed sample. We illustrated the method for
both axisymmetric and non-axisymmetric Galactic potentials.

In the axisymmetric scenario, we recovered the axial ratio of the DM halo from the
one-dimensional distribution of one shape indicator only: the magnitude of the latitudinal
velocity, |vϑ|, of the HVSs of the observed sample. In the non-axisymmetric scenario, we
recovered the axial ratios from the two-dimensional distribution of two shape indicators:
|vϑ| and a function v̄ϕ of the azimuthal velocity, vϕ, of the HVSs of the observed sample.

The method is based on the use of the one- or two-dimensional KS test to compare the
distribution of the shape indicator(s) of the observed sample’s, D|vϑ| orD|vϑ|,v̄ϕ , against the
corresponding distributions of HVS mock samples that traveled in DM halos with different
shapes. The resolution in axial ratios of our ensemble of mock catalogs is ∆qy,z = 0.1.

For each shape of the DM halo, we compared the observed sample with a set of 5,000
D|vϑ|’s or D|vϑ|,v̄ϕ ’s, which account for the different ejection initial conditions of the HVSs.
A distribution of 5,000 p-values was thus obtained for each shape. We used the median,
pmed, of these p-value distributions to identify the shape of the DM halo that best matched
the shape of the DM halo crossed by the observed sample: the highest pmed value comes
from the p-value distribution associated with the correct shape of the DM halo.

In our ideal case of galactocentric velocities with null uncertainties and no observa-
tional limitations, the method has a success rate S & 89% in recovering the correct shape
of the DM halo of an axisymmetric Galactic potential, and a success rate S > 96% in
recovering the correct shape of the DM halo of the non-axisymmetric Galactic potentials
that we explored in this work.

The higher success rate of our method for a non-axisymmetric Galactic potential is due
to (i) the availability of two shape indicators, |vϑ| and v̄ϕ, compared to one shape indicator
alone for an axisymmetric Galactic potential; and (ii) the sensitivity of the azimuthal
velocity vϕ to the shape of the DM halo. In the small fraction of unsuccessful cases, an
erroneous shape association occurs; however, the discrepancy from the correct axial ratio
is small. Indeed, in the axisymmetric Galactic potential scenario, the erroneous DM halo
axis ratio qz typically differs from the correct ratio by |∆qz| = 0.1; an offset |∆qz| = 0.2
is very rare (. 0.04% of cases). In the case of a non-axisymmetric Galactic potential,
the incorrect shape associations are expected to be even rarer, because our method has
a higher constraining power for a non-axisymmetric than for an axisymmetric Galactic
potential.

The success rate of our method depends on the size of the HVS sample, and is higher
for larger HVS samples. In the case of an axisymmetric Galactic potential, a decrease in
the sample size corresponds to a decrease of the success rate that depends on the actual
shape of the DM halo: for a spherical halo, a decrease of the sample size from 800 to 40
mock observed HVSs implies a drop of S from ∼ 98% to ∼ 38%; for a spheroidal halo
axisymmetric about the z-axis with qz = 1.1, which yields the highest S, S drops from
∼ 99% to ∼ 41% for the same decrease of the sample size; for a spheroidal halo with
qz = 1.4, which yields the lowest S, S drops from ∼ 89% to ∼ 32%.

On the other hand, for any non-axisymmetric Galactic potential, and for any given
sample size, S is expected to be always larger than the rate obtained in the most unfa-
vorable axisymmetric case (qz = 1.4) and typically also larger than the rate obtained in
the most favorable axisymmetric case (qz = 1.1).

In addition to increase the success rate S, increasing the size of the HVSs sample
decreases the discrepancy between the inferred shape and the correct shape.

Accurate estimates of the success rate of our method when applied to real data re-
quire the generation of more realistic mock observed HVS samples, that account for (i)
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the uncertainties on the distances and velocities of the HVSs, (ii) the observational limi-
tations of the HVS sample, and (iii) an appropriate mass distribution of the ejected stars.
Nevertheless, our analysis suggests that a robust determination of the shape of the DM
potential requires measuring the galactocentric velocities of a few hundred HVSs whose
galactocentric origin is robustly confirmed.

We will assess elsewhere the sensitivity that is required for our method and that
might be reached with future astrometric space missions (Malbet et al., 2016; The Theia
Collaboration et al., 2017; Malbet et al., 2019, 2021). Similarly, we will investigate the
success rate of our method with expected realistic HVS samples that might come from
upcoming spectroscopic surveys (de Jong et al., 2019).

2.9 Appendix

2.9.1 Mock catalogs and observed sample
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Figure 2.20. Kinematic properties of the HVSs of one of our mock catalogs, corresponding to a Galaxy
whose DM halo has a triaxial gravitational potential with (qy, qz) = (1.2,0.9). The grey histograms
represent the full sample of HVSs; the green histograms represent our observed sample, derived from the
full sample by requiring r > 10 kpc and vr > 0. Top left panel: Distribution of galactocentric distances;
the vertical, dashed line corresponds to our threshold radius r > 10 kpc. Top right panel: Distribution
of the radial velocities; the vertical, dashed line corresponds to vr = 0. Bottom left panel: Distribution
of the latitudinal velocities. Bottom right panel: Distribution of the azimuthal velocities.

Fig. 2.20 shows the distributions of the distances to the Galactic center, and of the
galactocentric radial, latitudinal, and azimuthal velocities of our simulated HVSs at the
steady state (i.e., at the observation time tobs; see Sect. 2.1.3) for a mock catalog (see
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Sect. 2.1.4) generated in a gravitational potential where the DM halo is triaxial with
axis ratios (qy, qz) = (1.2,0.9). The grey histograms correspond to the full sample of
simulated HVSs, while the green histograms represent our “observed sample” of ∼ 800
HVSs, namely the ideal optimal sample of HVSs that we derived from the full sample by
applying the selection criteria r > 10 kpc and vr > 0 (see Sects. 2.2.1, 2.2.2, and 2.3).
The distributions of the kinematic properties of the stars in the other Galactic potentials
we investigated in this work are qualitatively similar to those shown in Fig. 2.20.

2.9.2 Transformation of coordinates and velocities

The Galactic heliocentric position of a star is (d, `, b), with d the heliocentric distance to
the star, ` its Galactic longitude, and b its Galactic latitude; the Galactic heliocentric
velocity is (vd, v`, vb), with vd the radial velocity of the star, and v` and vb the longitu-
dinal and latitudinal components of the heliocentric tangential velocity. The Galactic
heliocentric position and velocity components are

d =
√

(x+R�)2 + y2 + z2 , (2.8)

l = arctan

(
x tan ϕ

x+R�

)
, (2.9)

b = arcsin
(z
d

)
, (2.10)

and

vd = (vx − U�) cosl cosb+ [vy − (V� + Θ0)] sinl cosb

+(vz −W�) sinb , (2.11)

vl = [vy − (V� + Θ0)] cosl − (vx − U�) sinl , (2.12)

vb = (U� − vx) cosl sinb− [vy − (V� + Θ0)] sinl sinb

+(vz −W�) cosb . (2.13)

The longitudinal component of the proper motion µ is µ` = v`/(d cosb), and its latitudinal
component is µb = vb/d.

We transformed the Galactic heliocentric star position and proper motion to the equa-
torial system. In this system, the star position is (d, α, δ), with α the right ascension and δ
the declination; the star velocity is (vd, vα, vδ), with vd still the radial velocity of the star,
and vα and vδ the components of the star tangential velocity along the right ascension and
declination, respectively; the star proper motion is µ = (µα, µδ), with µα = vα/(d cosδ),
and µδ = vδ/d.

For the star position, we adopted the transformation equations (Duffett-Smith, 1979)

α = arctan

[
cosb cos(`− `asc)

sinb cosδG − cosb sinδG sin(`− `asc)

]
+ αG , (2.14)

δ = arcsin[cosb cosδG sin(`− `asc) + sinb sinδG] , (2.15)

where αG and δG are the equatorial coordinates of the North Galactic Pole, and `asc

is the Galactic longitude of the ascending node of the Galactic plane, related to the
Galactic longitude of the North Celestial Pole by `asc = `NCP− 90◦. We chose J2000.0 as
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a reference point for the coordinate conversion. This choice yields αG = 192.85948123◦,
δG = 27.12825120◦ (Cox, 2000), and `asc = 32.93192◦ (Poleski, 2013).

For the components of the proper motion µ, we adopted the transformation equations
(Poleski, 2013)

µδ =

(
C2 cosb

C2
1 + C2

2

) (
µ`
∗ +

C1

C2

µb

)
, (2.16)

µ∗α = − 1

C1

(C2µδ − µ`cosb) , (2.17)

with

C1 = sinδG cosδ − cosδG sinδ cos(α− αG) , (2.18)

C2 = cosδG sin(α− αG) , (2.19)

and µ∗` = µ` cosb, µ∗α = µα cosδ, and µ∗2α + µ2
δ = µ∗2` + µ2

b = µ2.
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Chapter 3

Probing MOdified Newtonian
Dynamics with hypervelocity stars 1

The most popular and widely investigated solution to the problem of the mass discrepancy
in the Universe is to assume the presence of cold dark matter that is non-baryonic and
interacts with the baryons only via gravity (Peebles, 1982; Bond et al., 1982; Blumenthal
et al., 1982, 1984; Spergel et al., 2007; Frenk and White, 2012; Strigari, 2013; Planck
Collaboration et al., 2020a), as illustrated in Sect. 1.1. However, to date, none of the
elementary particles suggested as candidates of dark matter has been detected (Tanabashi
et al., 2018).

In principle, the mass discrepancy problem can be solved with a modification of the
theory of gravity rather than with dark matter (Sanders, 1990; Sanders and McGaugh,
2002; Clifton et al., 2012; Nojiri et al., 2017). Modified Newtonian dynamics (MOND;
Milgrom, 1983a,b,c) is one of the most investigated modifications of Newtonian gravity
(e.g., Famaey and McGaugh, 2012; McGaugh, 2020), and proved to be predictive and
successful on galaxy scales, as detailed in Sect. 1.3.3.

However, a number of MOND predictions concerning the Milky Way (MW; Famaey
and McGaugh, 2012) and the nearby dwarfs (Hodson et al., 2020) still need to be tested
with upcoming astrometric data. Indeed, when interpreted in Newtonian gravity, the
MOND gravitational field requires the presence of “phantom dark matter” in addition
to the baryonic matter (Milgrom, 1983b; Bekenstein and Milgrom, 1984). Specifically,
MOND predicts the existence of a disk of phantom dark matter in the MW (Bienaymé
et al., 2009); therefore, the acceleration of the stars perpendicular to the plane of the
disk can constrain the total surface density of the baryonic and phantom disks (Nipoti
et al., 2007). At 1.1 kpc above the Galactic plane at the distance of the Sun from the
Galactic center, the total surface density in MOND is expected to be 60% larger than the
surface density of the baryonic disk, whereas this enhancement is predicted to be 51%
in Newtonian gravity with a spherical dark matter halo (Bienaymé et al., 2009; Famaey
and McGaugh, 2012). Similarly, the scale length of the “baryonic + phantom” disk can
be constrained by the vertical acceleration profiles at different radii. In the formulation
of MOND suggested by Bekenstein and Milgrom (1984), this scale length should be 1.25
times the scale length of the visible stellar disk (Bienaymé et al., 2009; Famaey and
McGaugh, 2012). Moreover, the angle between the minor axis of the velocity ellipsoid of
the stars in the solar neighborhood and the vertical direction depends on the shape of
the gravitational potential (Cuddeford and Amendt, 1991): for axisymmetric potentials,

1The results presented in this chapter are published in our work Chakrabarty et al. (2022)
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3 – Probing MOdified Newtonian Dynamics with hypervelocity stars

the angles expected in MOND and Newtonian gravity with a spherical dark matter halo
differ by 2 degrees at the distance of the Sun from the MW center and at 2 kpc above
the MW disk (Bienaymé et al., 2009).

In this Chapter we propose a novel prediction of MOND concerning the positions and
proper motions of hypervelocity stars (HVSs; see Sect. 1.5) within the MW. The HVSs are
ejected from the Galactic center with a speed of several hundred km s−1 or higher. These
stars are sometimes separated into samples of bound and unbound stars. This distinction
is irrelevant for our purpose here, and we consider as an HVS any star that is ejected
from the Galactic center on a purely radial orbit with null tangential velocity in the
galactocentric reference frame. Hypervelocity stars obtain nonzero tangential velocities
due to the non-spherical components of the Galaxy gravitational potential. As they travel
to large distances from the center, the distribution of their positions and velocities carries
signatures of the gravitational field of the Galaxy.

As illustrated in Chpt. 2, several schemes to constrain the shape of the DM halo
required in Newtonian gravity (Gnedin et al., 2005; Rossi et al., 2017; Contigiani et al.,
2019; Gallo et al., 2022) and to measure the virial mass of the MW (Fragione and Loeb,
2017) using HVSs have been proposed. However, prior to our work, the only attempt to
investigate MOND with HVSs was carried out by Perets et al. (2009) who suggested a
novel method to discriminate between various models of Galactic potential within CDM
and MOND paradigms using the asymmetry of the velocity distributions of incoming
and outgoing HVSs. The asymmetry is likely generated by both the structure of the
Galactic potential and the finite lifetime of the stars and can be used to probe the
Galactic potential. They explored five dark matter (CDM) potentials and one MOND
potential and found that two out of the five CDM models of the gravitational potential
are disfavored, while the remaining three models and the MOND potential all give similar
results.

Here, we simulate the kinematics of the HVSs in MOND as well as in Newtonian
gravity. We show that the azimuthal components, vφ, of the tangential velocities of
the HVSs may distinguish MOND from Newtonian gravity. Section 3.1 illustrates the
quasi-linear formulation of MOND (QUMOND) that we adopt in this work. Section
3.2 describes our model of the distribution of the MW baryonic matter that generates
the QUMOND gravitational potential. In Sect. 3.3 we illustrate the model of the dark
matter halo we adopt for comparison with the QUMOND predictions. In Sect. 3.4 we
illustrate and discuss our simulations. In Sect. 3.5 we show the galactocentric tangential
velocities of the HVSs in QUMOND and detail our QUMOND predictions. We conclude
in Sect. 3.6.

3.1 Quasi-linear modified Newtonian dynamics

Throughout this work, we adopted QUMOND, the quasi-linear formulation of MOND
(Milgrom, 2010), where the gravitational field is

~g = ν

( |~gN|
a0

)
~gN (3.1)

and ~gN is the Newtonian gravitational field due to the baryonic matter alone. The inter-
polating function ν(x) satisfies the limits ν(x)→ 1 when x� 1, and ν(x)→ x−1/2 when
x� 1. We adopt

ν(x) =

[
1

2

(
1 +
√

1 + 4x−γ
)] 1

γ

, (3.2)
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with γ = 1 or γ = 2 (Famaey and McGaugh, 2012). The function with γ = 1 is known
as the simple interpolation function. The acceleration scale, below which Newtonian
gravity modifies, is set by a0. The value of a0 is found by fitting the rotation curve
data (Begeman et al., 1991; Bottema et al., 2002), the observed correlation between the
mass discrepancy and the acceleration (McGaugh, 2004), and the baryonic Tully-Fisher
relation (McGaugh, 2011). The best-fit value of a0 varies from 3000 to 4000 km2 s−2

kpc−1 and also slightly depends on the chosen interpolation function ν(x) (Eq. 3.2). We
chose an intermediate value: a0 = 3600 km2 s−2 kpc−1 = 1.2× 10−10 m s−2.

For the Galaxy, we first assumed a simple model with three baryonic components:
a central SMBH, a stellar disk and a stellar bulge. With this model, the Newtonian
acceleration entering Eq. (3.1) is

~gN = −~∇(ΦBH + ΦBulge + ΦDisk) , (3.3)

where ΦBH, ΦBulge, and ΦDisk are the Newtonian gravitational potentials that we provide
in the next section. A more sophisticated model that includes the additional baryonic
component of a hot gaseous (HG) halo will be discussed in Sect. 3.5.1.

3.2 Newtonian gravitational potentials

We investigated two variants of the model for the baryonic gravitational potential that
enters Eq. (3.3): an axisymmetric model and a non-axisymmetric model. In the latter
model, the deviation from the axial symmetry originates only from the presence of a
triaxial bulge. We used the reference frame of the Galaxy with the origin at the Galaxy
center. We used cylindrical coordinates (R, φ, z) for the axisymmetric model and Carte-
sian coordinates (x, y, z) for the triaxial model; R lies on the x-y plane, which we take as
the equatorial plane of the Galactic disk. For the spherically symmetric components, we
used spherical polar coordinates (r, θ, φ).

3.2.1 The axisymmetric model

We adopted simple analytical potentials for the three MW components. For the stellar
disk, we used the Miyamoto-Nagai model (Miyamoto and Nagai, 1975)

ΦDisk(R, z) = − GMD√
R2 +

(
aD +

√
z2 + b2

D

)2
, (3.4)

with MD = 1.0 × 1011 M�, aD = 6.5 kpc, and bD = 0.26 kpc (Kafle et al., 2014; Price-
Whelan et al., 2014; Rossi et al., 2017; Contigiani et al., 2019).

For the bulge, we took the Hernquist sphere (Hernquist, 1990)

ΦBulge(r) = − GMB

rB + r
, (3.5)

with MB = 3.4 × 1010 M�, rB = 0.7 kpc (Kafle et al., 2014; Price-Whelan et al., 2014;
Rossi et al., 2017; Contigiani et al., 2019), and a total bulge mass of 3.0× 1010M�.

Finally, the gravitational potential of the central SMBH is

ΦBH(r) = −GMBH

r
, (3.6)
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with MBH = 4.0 × 106 M�. This mass of the SMBH is comparable to various estimates
reported in the literature (e.g., Eisenhauer et al., 2005; Ghez et al., 2008; Boehle et al.,
2016; Gillessen et al., 2017).

In this model, the axial symmetry of the MW originates only from the stellar disk
because the gravitational potentials of the SMBH and the bulge are spherically symmetric.

3.2.2 The non-axisymmetric model: The triaxial bulge

To estimate the impact of a non-axisymmetric distribution of the baryonic matter on the
HVSs kinematics in QUMOND, we considered the effects of a triaxial bulge and kept un-
altered the gravitational potentials of the SMBH and the stellar disk of the axisymmetric
model. A triaxial bulge is the primary source of azimuthal angular momentum within
the Galaxy (Gardner et al., 2020). Our adopted density profile of the triaxial bulge is
(Binney et al., 1997; McGaugh, 2008):

ρBulge(x, y, z) =
M0

ηζb3
m

e−(b/bm)2(
1 + b

b0

)1.8 , (3.7)

where

b =

√
x2 +

y2

η2
+
z2

ζ2
, (3.8)

η = 0.5, ζ = 0.6, bm = 1.9 kpc, and b0 = 0.1 kpc (Binney et al., 1997). The parameters are
determined from the observed luminosity distribution (Binney et al., 1997) and indicate
that the largest axis of the bulge, the x axis, is in the plane of the disk, and the second
largest axis, the z axis, is in the vertical direction. It follows that two principal axes of
the bulge are in the plane of the disk and, therefore, the bulge is not tilted with respect to
the plane of the disk. We chose the value of M0 so that the Newtonian accelerations due
to the triaxial and the spherical bulges are comparable at R & 0.5 kpc in the plane of the
disk; in other words, the axisymmetric and non-axisymmetric models yield comparable
rotation curves beyond ∼ 0.5 kpc and the dynamical differences between the two models
are limited to the central region. We set M0 = 5.7 × 1011M�, which yields a total mass
of the bulge of 2.1 × 1010M�. Figure 3.1 compares the density profiles of the spherical
and triaxial bulges in our two models.

We derived the Newtonian gravitational potential of the triaxial bulge, ΦBulge, by
solving the standard Poisson’s equation in three dimensions within a box of volume (16
kpc)3 about the center. Figure 3.2 shows that the magnitudes of the Newtonian radial
acceleration for the triaxial bulge are comparable to the Newtonian radial acceleration
generated by the spherical bulge of Eq. (3.5) at R & 0.5 kpc, as we require with our choice
of M0. Within a distance of 0.1 kpc from the center, the spherical bulge generates a larger
acceleration due to its steeper density profile shown in Fig. 3.1. In the intermediate regions
between 0.1 kpc and ∼ 0.5 kpc, the density profile of the spherical bulge is smaller than
the density profile of the triaxial bulge; however, the radial acceleration of the spherical
bulge is still larger than the acceleration of the triaxial case in any direction because, due
to the steeper central density, the spherical bulge encloses a larger mass within ∼ 0.5 kpc.
At large distances, r & 5 kpc, the triaxiality is not effective and the mass distribution
within the bulge can be treated as spherically symmetric.

McGaugh (2008) investigates the mass model of the MW in the context of MOND
by matching the predicted rotation curve against observations. The scale length of the
stellar disk and the mass of the bulge determine the relative contributions of these two
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Figure 3.1. Density profiles of the spherical (red) and triaxial (blue) bulges as functions of the distance
from the center. For the triaxial bulge, we show the density profiles along the x, y, and z axes.
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Figure 3.2. Magnitude of the radial acceleration in the plane of the disk, |aR|, due to the bulge
alone in Newtonian gravity: spherical bulge (red) and triaxial bulge (blue). For the triaxial bulge, the
acceleration varies with the azimuthal angle, φ, which is the angle with respect to the x axis in the plane
of the disk. We show the results for various values of φ; φ = 0◦ and φ = 90◦ correspond to the x and y
axes, respectively.

components of the Galaxy to the total rotation curve. Our model is roughly comparable
to the model of McGaugh (2008) that has the stellar disk with scale length Rd = 4 kpc
and bulge mass within 1% of the bulge mass in our model. Indeed, the circular velocity
vcirc in the McGaugh model is within 5% of our vcirc within r = 3 kpc, and ∼ 10% smaller
at r > 3 kpc. For different values of Rd, the agreement slightly worsens. For example, in
McGaugh’s model with Rd = 2.3 kpc, vcirc is ∼ 30% smaller than our vcirc within r = 3
kpc, but remains within ∼ 5% at r > 3 kpc.
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3.3 The dark matter halo in Newtonian gravity

We needed to compare the dynamics of HVSs in QUMOND with the corresponding
expectations in Newtonian gravity. We thus also considered a Newtonian model of the
MW with the same axisymmetric baryonic components described in the previous section,
but with an additional surrounding dark matter halo.

For the dark matter halo, we adopted the triaxial generalization suggested by Vogels-
berger et al. (2008) of the spherical NFW gravitational potential (Navarro et al., 1997):

ΦHalo = − GM200

f(C200)

1

r̃
ln

(
1 +

r̃

rs

)
, (3.9)

where f(u) = ln(1 + u) − u/(1 + u). M200 = 8.35 × 1011M� is the mass within r200,2

C200 = r200/rs = 10.82 is the concentration parameter, and rs = 18 kpc is the scale radius.
Our adopted values of the parameters are those used in Hesp and Helmi (2018). They are
consistent with the estimates from the kinematics of halo stars (Xue et al., 2008; Deason
et al., 2012b). The generalized radius is

r̃ =
rE(r + ra)

rE + ra

, (3.10)

where the ellipsoidal radius rE is

rE =

√(x
a

)2

+
(y
b

)2

+
(z
c

)2

(3.11)

and ra = 1.2rs (Hesp and Helmi, 2018) is the length scale that determines the transition
from the triaxial to the spherical shape: In the inner region (r � ra) the halo is triaxial
(r̃ ≈ rE), whereas in the outer region (r � ra) the halo is almost spherical (r̃ ≈ r). This
transition in the shape of the halo is a generic prediction of ΛCDM simulations (see, e.g.,
Hayashi et al., 2007). The parameters a, b and c satisfy the relation a2 + b2 + c2 = 3.

We defined the two triaxiality parameters qy = b/a and qz = c/a. Once qy and qz are
specified, a is given by

a =

√
3

1 + q2
y + q2

z

. (3.12)

Since the shape of the halo is currently poorly constrained (Bland-Hawthorn and Gerhard,
2016), we varied either qy or qz within 40% from unity.

In this work we did not use a triaxial dark matter halo. We only explored spheroidal
halos with different axes of symmetry (see Fig. 3.3). To study the effects of the dark
matter halo shape on the azimuthal component of the HVS velocity, vφ (see Fig. 3.4), we
chose a spheroidal halo that is axisymmetric about the y axis lying in the plane of the
disk (case (b) of Fig. 3.3) whereas the baryonic components are axisymmetric about the
vertical z axis. In this model, we set qy > 1 and qz = 1. To study the effects of the dark
matter halo shape on the latitudinal component vθ of the HVS velocities, we considered
a spheroidal halo that is axisymmetric about the z axis (i.e., qy = 1 and qz /= 1). The
halo is oblate if qz < 1 and prolate if qz > 1 (cases (c) and (d) of Fig. 3.3). Indeed, the
kinematics of halo stars from the Sloan Digital Sky Survey suggests that the dark matter
halo might be oblate within ∼ 20 kpc, with qz = 0.7 ± 0.1, based on the estimate of
constant potential surfaces (Loebman et al., 2014).

2r200 is the radius of a spherical volume within which the mean mass density is 200 times the critical density of the
Universe.
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(a) (b) (c) (d)

Figure 3.3. Schematic diagrams of our models of the Galaxy in Newtonian gravity. The baryonic
components, the bulge and the disk, are shown in black and the dark matter halo in gray. Different
shapes of the dark matter halo are shown: (a) spherical (edge-on view of the disk), (b) prolate with the
major axis on the plane of disk (face-on view of the disk), (c) oblate with the minor axis perpendicular
to the disk (edge-on view of the disk), and (d) prolate with the major axis perpendicular to the disk
(edge-on view of the disk). Only in case (b) are the axes of symmetry of the disk and the halo not
aligned.
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Figure 3.4. Components of the velocity of a star in the spherical polar coordinates with origin at the
Galactic center (GC): ~v = ~vr + ~vθ + ~vφ.

At the solar neighborhood (R = 8 kpc), our models yield a circular velocity of 235
km s−1 in Newtonian gravity and 240 (210) km s−1 in QUMOND with γ = 1 (γ = 2).
In addition, in our Newtonian model, the total mass enclosed within 120 pc is in perfect
agreement with the observed value reported in Table 3 of Kenyon et al. (2008), derived
from the estimate of the mass of the central region of the stellar disk of Launhardt et al.
(2002). The MW central region is where the HVSs experience the largest deceleration.
We verified that varying the radial acceleration profile of the MW central region within
the observational uncertainties does not affect our conclusions on the tangential velocities
of the HVSs.

3.4 Simulations of the kinematics of the HVSs

In this section we describe our simulations and our synthetic samples of HVSs. Section
3.4.1 illustrates the initial conditions of the equations of motion of the HVSs that we
adopted. In Sect. 3.4.2 we show that only stars beyond a minimum galactocentric dis-
tance, corresponding to a minimum ejection velocity, are relevant to discriminate between
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QUMOND and Newtonian gravity. This threshold depends on the star mass: for 4 M�
stars, the minimum galactocentric distance is 15 kpc, which corresponds to the minimum
ejection velocity ∼ 750 km s−1 for models in Newtonian gravity and QUMOND with
γ = 1. For QUMOND with γ = 2, the ejection velocity threshold is ∼ 710 km s−1, which
also corresponds to a minimum distance of 15 kpc.

3.4.1 Simulation setup

We assumed that the HVSs are generated through Hills’ mechanism (Hills, 1988): In a
three-body interaction between the SMBH associated with SgrA? and a binary star, one
star of the binary is ejected and the other is captured by the black hole. We emphasize
that the assumption of Hills’ mechanism for the ejection of the HVSs does not affect our
conclusions, as detailed at the end of this section.

In Hills’ ejection scenario, we simulated the velocity distribution of the HVSs ejected
from the Galactic center by means of a three-body numerical code that reproduces the
encounter of a set of equal-mass binary stars with the SMBH. The binaries’ orbital
parameters and minimum approach distance to the SMBH are drawn from appropriate
distributions (Bromley et al. (2006) and references therein). More details on the numerical
code and on the ejection velocity distribution will be provided in Gallo et al. (2022) (see
Sect. 2.1.1) and in an additional, separate paper. Here, we only report the information
that is instrumental to the present analysis.

We adopted a mass MBH = 4 × 106M� for the black hole (as in our model in Sect.
3.2.1) and a mass of 4 M� for each star in the binary. The choice of mass for the binary
stars is consistent with the fact that most of the observed unbound HVSs have masses
between 2.5 and 4 M� (Brown, 2015). In addition, choosing the upper limit of this mass
range is a conservative choice that is appropriate for our investigation, as we clarify in
Sect. 3.5. We obtained a distribution of ejection speeds that displays a prominent peak
at vej ∼ 510 km s−1, extends to velocities of ∼ 4000 km s−1, and has a positive skewness;
16% (12%) of the ejected stars have speed vej & 710 (750) km s−1, a value that will be
relevant for the present analysis (see Sect. 3.4.2). Our results on the ejection velocities are
comparable to the results obtained from the analytical prescriptions provided by Bromley
et al. (2006).

The distribution of ejection speeds formally corresponds to the distribution of velocities
that the ejected stars would have at infinite distance from the SMBH in absence of other
sources of gravitational potential. However, in the context of the Galactic center, this
distribution can be taken as the velocity distribution of the ejected stars at the starting
point of their trajectories across the MW, which we set as the radius of the sphere of
influence of the SMBH (i.e., r = 3 pc; Genzel et al., 2010). Although the distribution
of ejection velocities weakly depends on the binary mass (Bromley et al., 2006), our
results regarding the kinematics of the HVSs are independent of their mass, because the
gravitational acceleration acting on the HVSs is mass-independent.

The direction n̂(θ, φ) of the ejection velocity is assigned randomly to each star, be-
cause Hills’ mechanism yields isotropic ejections. We used the fourth order Runge-Kutta
method with adaptive step-size to integrate the equation of motion of each star. We
started with a predefined time-step of 5 kyr and the time-step was adjusted so that, at
each step, the position and velocity of the star were determined with an accuracy of 1 pc
and 0.01 km s−1, respectively. For stars with ejection velocities higher than 600 km s−1,
the conservation of total energy holds with a relative accuracy of 10−12 for each time-step
as well as over the entire simulation. Stars with ejection velocities lower than 600 km s−1

are not relevant for our study.
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The typical lifetime of an isolated star of 4 M� on the main sequence is τL ' 160
Myr, for Solar metallicities (Schaller et al., 1992; Brown et al., 2006b). We assumed this
lifetime as the total lifetime of our simulated stars. At the time of ejection, each star was
assigned a random age of τej = ετL, where ε is a random number drawn from a uniform
density distribution between 0 and 1. We took the average ejection rate to be 10−4 yr−1,
which is consistent with the estimates by Yu and Tremaine (2003) and Zhang et al.
(2013) (see also Hills, 1988). Therefore, in the simulation, we ejected stars in intervals
of ∆t = 0.01 Myr. For our chosen lifetime and ejection rate, the distribution of ejected
stars in the MW reaches a steady state after 160 Myr. We started the simulation at t = 0
and the i-th star was ejected at t = (i − 1)∆t with its age τ iej at the time of ejection.
We chose the time of observation, which is the total run-time of the simulation, to be
tobs = 400 Myr when the distribution of the HVSs is in the stationary regime. For each
star, we tested the condition of its survival: A star survives long enough to be observed if
[tobs−(i−1)∆t] < (τL−τ iej). If a star satisfies this condition, its travel time is determined
by [tobs − (i− 1)∆t].

We simulated the kinematics of the HVSs through the Galaxy (i) for QUMOND,
with the baryonic components only, and (ii) for Newtonian gravity, with the baryonic
components and the dark matter halo. For each model of the Galactic potential, we
determined positions and velocities of the HVSs at the time of observation, t = tobs.
Tables 3.1 and 3.2 summarize the simulations that we performed in QUMOND and in
Newtonian gravity. The tables list both the simulations of our simpler model for the
baryonic Galactic components considered in Eq. (3.3) and described in Sect. 3.2 and the
simulations that include the additional non-spherical HG halo surrounding the MW (see
Sect. 3.5.1).

Table 3.1. List of the simulations for QUMOND.

γ Bulge Hot gaseous halo Number of stars
1 spherical no 40000
1 triaxial no individual stars
2 spherical no 40000
2 triaxial no individual stars
1 spherical yes 40000
2 spherical yes 40000

Notes. To find the upper limit of |vφ| for QUMOND with a triaxial bulge, we performed many simulations of

individual stars. In this case, we used the gravitational field of the triaxial bulge within 5 kpc of the Galactic

center and that of the spherical bulge at larger radii.

Table 3.2. List of the simulations for Newtonian gravity.

qy qz Panel of Fig. 3.3 Hot gaseous halo
1 0.9 c no
1 1 a no
1 1.1 d no

1.1 1 b no
1.2 1 b no
1.2 1 b yes
1.4 1 b yes

Notes. Simulations in Newtonian gravity were performed with a spherical bulge. Each simulation contains 40000

stars.

We compared the final phase-space distributions of the HVSs obtained in QUMOND
with the distributions obtained in Newtonian gravity. Due to the large radial velocities
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3 – Probing MOdified Newtonian Dynamics with hypervelocity stars

of the HVSs, their phase-space distributions in the (r, vr) or (z, vz) space in QUMOND
are virtually indistinguishable from those in Newtonian gravity (left and middle pan-
els of Fig. 3.5). However, the distributions of the galactocentric tangential velocity
components, the latitudinal component vθ = r(dθ/dt), and the azimuthal component
vφ = r sin θ(dφ/dt), are distinctive and can be used, in principle, to discriminate between
QUMOND and Newtonian gravity (right panel of Fig. 3.5). Our result is independent
of the mechanism responsible for the ejection of the HVSs from the Galactic center: any
mechanism that can expel stars from the Galactic center with radial velocities vej & 710
km s−1, as we discuss below, and null tangential velocities would be suitable to perform
the analysis presented in this work, leading to the same conclusions.
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Figure 3.5. Distributions of HVSs in three sections of phase space in QUMOND with γ = 1.0 (blue
dots) and Newtonian gravity with a prolate (qy = 1, qz = 1.1) dark matter halo (red dots). The left,
middle, and right panels show the r-vr, z-vz, and r-vθ sections, respectively. Here, r is the galactocentric
distance, z is the vertical coordinate, and vr, vz, vθ are the radial, vertical, and latitudinal components
of the velocity, respectively.

3.4.2 Evolution of the tangential velocity components

The tangential velocity components of the HVSs are excellent probes of the non-spherical
components of the Galactic gravitational potential. However, this distinctive ability only
holds for HVSs with ejection speeds higher than a threshold: for stars with lower ejection
speed, the tangential velocity components may indeed be disproportionately high.

To find the threshold ejection velocity, we simulated the dynamics of 200 HVS with
mass 4 M�, ejection velocities vej between 650 and 850 km s−1, and random initial
directions. For each star, the simulation time was taken to be its lifetime, namely 160
Myr for 4 M� stars. This time is the maximum possible travel time. For each star, we
determined the maximum values of the magnitudes of the tangential velocity components,
|vθ| and |vφ|.

We considered both Newtonian gravity with different shapes of the dark matter halo
and QUMOND with γ = 1 and γ = 2. For both the Newtonian and the QUMOND
scenarios, the baryonic components (Eqs. 3.4 - 3.6) were taken to be axisymmetric about
the z axis. Due to the pull of the disk, the stars obtain nonzero vθ values for all the
models. However, in QUMOND with a spherical bulge, the stars do not obtain any |vφ|
because the baryonic matter, the only component present, is axisymmetric. In our models
of Newtonian gravity, the stars acquire nonzero values of vφ only when the two axes of
symmetry of the baryonic and dark matter components are misaligned: for example, for
(qy, qz) = (1.1, 1) (panel (b) in Fig. 3.3), the dark halo is symmetric about the y axis
whereas the baryonic matter is symmetric about the z axis. When no such misalignment
is present, as in the cases sketched in panels (a), (c), and (d) of Fig. 3.3, vφ vanishes,
and the only non-null component of the tangential velocity is the latitudinal velocity, vθ.
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3.4 – Simulations of the kinematics of the HVSs

The left panel of Fig. 3.6 shows that |vθ| can be as large as 600 km s−1 for stars with
vej < 710 km s−1 in QUMOND with γ = 2, and for stars with vej < 750 km s−1 in all
the other models. In contrast, for stars with ejection speed higher than these thresholds,
the maximum values of |vθ| are consistently lower than ∼ 100 km s−1. The right panel
of Fig. 3.6 shows qualitatively similar results for |vφ| in the Newtonian models with the
misaligned axes of symmetry (qy /= 1): in these models, |vφ| is lower than ∼ 20 km s−1

when vej & 750 km s−1. In these Newtonian models with qy /= 1, the vertical scatter in
the maximum values of |vθ| (left panel) is large. The stars ejected with smaller angle
with respect to the disk (i.e., (90◦− θ) . 30◦) undergo larger deflection and attain larger
|vθ|. On the other hand, the stars ejected almost perpendicular to the disk do not bend
significantly, hence have smaller |vθ|. Conversely, in the same Newtonian models, the
stars always attain a |vφ| & 350 km s−1 (right panel) irrespective of the direction of the
HVS ejection velocity.
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Figure 3.6. Left panel: Maximum values of the latitudinal velocity components, |vθ|, of 4 M� HVSs as
a function of their ejection velocities, vej, in Newtonian gravity with different shapes of the dark matter
halo and in QUMOND with γ = 1 and γ = 2; symbols and models are detailed in the inset. The vertical
scatter in the plot originates from the random directions of the star ejection. The vertical dotted lines
indicate vej = 710 and vej = 750 km s−1. In all the models except QUMOND with γ = 2, the maximum
|vθ| substantially drops for stars with vej & 750 km s−1. For QUMOND with γ = 2, the maximum
|vθ| drops for stars with vej & 710 km s−1. Right panel: Maximum values of the azimuthal velocity
components, |vφ|, of 4 M� HVSs as a function of their ejection velocities, vej, in two Newtonian gravity
models where the axes of symmetry of the baryonic matter and of the dark matter halo are misaligned.
The other models considered in the left panel do not appear because they are axisymmetric and have
zero |vφ| values. The vertical scatter originates from the random directions of the star ejection. The
vertical dotted line indicates vej = 750 km s−1.

High tangential velocities of the stars with lower ejection speed are caused by the
exchange of kinetic energy between radial and angular degrees of freedom, especially when
the stars undergo an inner turnaround. Figure 3.7 illustrates that the inner turnaround
does occur for stars with low ejection velocity. In Fig. 3.7 we show vφ as a function of the
radial component vr for three stars with ejection velocity vej = {745, 747, 749} km s−1 in
the Newtonian models with the misaligned axes, with (qy, qz) = (1.1, 1). In each case,
vr = vej and vφ = 0, initially; at later times, vφ starts increasing as vr decreases. When
vr = 0 for the first time, as indicated by the vertical dotted lines, the star undergoes
the outer turnaround, namely it reaches its maximum distance from the MW center and
starts moving inward. Therefore, vr becomes negative while vφ keeps increasing. When
vr becomes zero for the second time, the star undergoes the inner turnaround, namely
the star reaches the closest approach to the center and starts again moving outward.
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Figure 3.7. Azimuthal velocity component, vφ, as a function of the radial velocity component, vr, for
three HVSs with mass 4 M� and ejection velocity vej = {745, 747, 749} km s−1 in Newtonian gravity
with (qy, qz) = (1.1, 1). In each case, the star starts with vr = vej and vφ = 0. The maxima of vφ are
quite different in the three cases. The stars with vej = 747 and 749 km s−1 do not live long enough
to undergo the inner turnaround, that is, they do not encounter vr = 0 for the second time. On the
contrary, the inner turnaround occurs for the star with vej = 745 km s−1.

Around this phase of the inner turnaround, |vφ| reaches its maximum, as shown for
vej = 745 km s−1. Stars with higher ejection speeds take longer time to undergo the
outer turnaround and may not live long enough to experience the inner turnaround, as
illustrated by the other two stars shown in Fig. 3.7. As a result, the maximum of |vφ|
falls sharply around vej ≈ 750 km s−1 (right panel of Fig. 3.6).

We conclude that for stars with ejection velocities higher than a threshold velocity,
the maximum values of the magnitudes of the latitudinal and azimuthal velocity compo-
nents, |vθ| and |vφ|, are proportionate to the departure from the spherical symmetry of
the potential. For stars with ejection speeds lower than the threshold, this proportion-
ality disappears because these stars may experience the inner turnaround. Our simula-
tions suggest that, for 4 M� stars, this threshold ejection velocity is ∼ 710 km s−1 for
QUMOND with γ = 2 and ∼ 750 km s−1 for all the other models we investigate.

The ejection velocity is not observable but it is correlated with the outer turnaround,
namely the maximum distance from the MW center that the star can travel. Figure 3.8
shows the outer turnaround as a function of the ejection velocity of a star in different
models of the Galactic potential. This figure shows that neither in the Newtonian models
nor in QUMOND with γ = 1 can stars with vej . 750 km s−1 travel beyond a distance
of about 15 kpc from the Galactic center. Similarly, in QUMOND with γ = 2, the stars
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3.5 – Tangential velocity in QUMOND and Newtonian gravity

with vej . 710 km s−1 cannot travel beyond 15 kpc. Therefore, identifying the 4 M�
stars that have not experienced the inner turnaround, and thus have tangential velocities
proportionate to the deviation of the gravitational potential from axial symmetry, requires
considering only 4 M� HVSs at galactocentric distance r > 15 kpc.

The threshold ejection velocity increases with decreasing HVS mass, because of the
longer lifetimes of lower-mass HVSs: longer-lived stars do not experience the inner
turnaround only if they travel to larger galactocentric distances; in other words, only
if they have larger ejection speeds. For example, for 3 M� or 2.5 M� stars with lifetimes
on the main sequence ∼ 350 Myr and ∼ 580 Myr, respectively (Schaller et al., 1992), the
threshold ejection velocities are ∼ 790 km s−1 and ∼ 815 km s−1 in Newtonian models;
these threshold ejection speeds correspond to outer turnaround radii of ∼ 30 kpc and
∼ 50 kpc, respectively (Fig. 3.8). In QUMOND with γ = 1 (γ = 2), for 3 M� or 2.5 M�
stars, the threshold ejection velocity is ∼ 800 (755) km s−1 and ∼ 830 (785) km s−1,
respectively; the corresponding turnaround radius is ∼ 30 (30) kpc and ∼ 50 (50) kpc,
respectively. Therefore, the 3 M� or 2.5 M� stars are of interest for our test only if they
are at galactocentric distance r larger than 30 kpc and 50 kpc, respectively.
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Figure 3.8. HVS outer turnaround as a function of the ejection speed, vej, in Newtonian gravity with
different shapes of the dark matter halo and in QUMOND with γ = 1 and γ = 2; models and symbols
are detailed in the inset. The scatter of the points originates from the random initial directions of the
HVS ejection velocities. The Newtonian gravitational potential is dominated by the dark matter halo
that becomes approximately spherical at large radii and makes the scatter of the points decrease with
increasing vej. The vertical dotted lines mark the thresholds vej = 710 km s−1 for QUMOND with γ = 2
and vej = 750 km s−1 for all the other models; the horizontal line marks the minimum galactocentric
distance of 15 kpc, appropriate for 4 M� HVSs. Less massive stars have larger velocity thresholds and
larger minimum galactocentric distances.

3.5 Tangential velocity in QUMOND and Newtonian gravity

In this section we show the distributions of the azimuthal and latitudinal components
of the tangential velocity, vφ and vθ respectively, in both QUMOND and Newtonian
gravity. We show that, for HVSs within ∼ 60 kpc, QUMOND yields upper limits for |vφ|
values that are substantially lower than the values that non-axisymmetric gravitational
potentials can generate in Newtonian gravity. The QUMOND scenario might thus be
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3 – Probing MOdified Newtonian Dynamics with hypervelocity stars

challenged if values of |vφ| higher than those upper limits are observed.
In QUMOND, the symmetry of the Galactic potential is determined by the distribution

of the baryonic components alone, unlike the case of Newtonian gravity, where the shape
of the dark matter halo plays a crucial and dominant role. In QUMOND, if the baryonic
distribution is axially symmetric, the pull of the stellar disk generates non-null vθ values,
whereas vφ is always zero. Non-null values of vφ only appear in a non-axisymmetric
distribution of baryons, which mostly originates from a triaxial bulge (Eq. 3.7) or from a
non-spherical HG halo (Sect. 3.5.1).

In Newtonian gravity with a perfectly axisymmetric distribution of the baryonic mat-
ter, as we adopt here (Eqs. 3.4-3.6), non-null values of vφ can still appear if the halo of
dark matter is not axially symmetric about the same axis of symmetry of the baryonic
distribution, which is the z axis in our models. More importantly, a tilted or triaxial
dark matter halo acts on the variation in vφ for most of the HVS trajectory, whereas in
QUMOND the action of the triaxiality of the bulge is limited to the initial phase of the
HVS trajectory within ∼ 5 kpc of the center.

This fundamental difference suggests that we might expect substantially higher values
of vφ in Newtonian gravity than in QUMOND, unless in Newtonian gravity either the dark
matter halo is perfectly spherical or the halo is axisymmetric and its axis of symmetry
is aligned with the axis of symmetry of the baryonic components. These possibilities,
however, appear unlikely in the current dark matter scenarios (Hayashi et al., 2007;
Debattista et al., 2013).

A detailed study on how the shape of the dark matter halo in Newtonian gravity
affects the velocity components of the HVSs is presented in Gallo et al. (2022) (see
Chpt. 2). Here, we briefly discuss the distributions of the azimuthal and latitudinal
velocity components vφ and vθ in QUMOND and Newtonian gravity, and how vφ can
discriminate between the two theories of gravity.

3.5.1 The upper limit of the azimuthal component, vφ, in QUMOND

In QUMOND, if the baryonic components are non-axisymmetric, the HVSs may have
non-null vφ values. To estimate these values of |vφ|, in Sect. 3.5.1 we consider the effects
of a triaxial bulge, which is the Galactic baryonic component that is expected to play the
major role in affecting |vφ| (Gardner et al., 2020). In Sect. 3.5.1, we illustrate the effects
of including a non-spherical halo of hot gas surrounding a MW with a spherical bulge.

The role of a triaxial bulge

Finding the gravitational field of the triaxial bulge over the entire numerical domain
requires a demanding amount of computational time. We thus adopted a simplified
approach that uses the fact that the triaxiality of the bulge is not effective at distances
r & 5 kpc, according to the density profile in Eq. (3.7) and the acceleration profile
shown in Fig. 3.2. For our purpose, at these large radii, the gravitational potential of the
bulge is well approximated by the potential generated by a spherically symmetric source.
Therefore, we only used the field of a triaxial bulge to simulate the motion of the HVSs
within 5 kpc of the Galactic center; at larger radii, we adopted the gravitational field of
a spherical bulge. We matched the two regimes by setting the components of the velocity
at r = 5 kpc from the inner region as the initial conditions for the outer region. The
gravitational acceleration at r = 5 kpc due to the triaxial bulge is about 7% smaller than
the gravitational acceleration at r = 5 kpc due to the spherical bulge, suggesting that our
approach introduces a limited error in the integration of the equation of motion of the
HVSs. In fact, this approximation does not affect our main result: it produces a slight
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3.5 – Tangential velocity in QUMOND and Newtonian gravity

overestimate of the QUMOND upper limit we discuss below, because the acceleration of
the spherical bulge is higher than the actual triaxal bulge acceleration.

As argued in Sect. 3.4.2, 4 M� stars with ejection velocity vej . 710 km s−1 in
QUMOND with γ = 2, or with vej . 750 km s−1 in the other QUMOND and Newtonian
models, tend to have disproportionately high tangential velocity components and cannot
be used to probe the non-spherical components in the Galaxy potential. The maximum
value of vφ is inversely proportional to the ejection velocity, as expected by the argument
illustrated in Sect. 3.4.2.

In order to find the maximum |vφ| in QUMOND, we chose the lowest ejection velocity
relevant for our analysis. Figure 3.9 shows |vφ| as a function of the galactocentric distance
r for three different ejection velocities: vej = 710 km s−1 in QUMOND with γ = 2 (red
curves), vej = 750 km s−1 and 1000 km s−1 in QUMOND with γ = 1 (red and orange
curves). All the stars shown in Fig. 3.9 are ejected at a polar angle θ = 45◦; the solid lines
show vφ for an azimuthal angle φ = 45◦, whereas the dashed and dot-dashed lines show
vφ for the slowest stars for different φ. We remind the reader that the largest semimajor
axis of the triaxial bulge is along the x axis (see Eq. 3.7 and Fig. 3.4). According to
Fig. 3.9, at r = 5 kpc, the maximum vφ we should expect is ∼ 8 km s−1. We note that
this result is not sensitive to the choice of the interpolating function ν (Eq. 3.2), because
within 5 kpc the gravitational field is mostly Newtonian.
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Figure 3.9. Magnitude of the azimuthal velocity component, vφ, in QUMOND as a function of the
galactocentric distance, r, for three 4 M� HVSs with different ejection velocities: vej = 710 km s−1

in QUMOND with γ = 2 (red), vej = 750 km s−1 in QUMOND with γ = 1 (blue), and vej = 1000
km s−1 in QUMOND with γ = 1 (orange). The solid lines are for the stars ejected along θ = 45◦ and
φ = 45◦, whereas the dashed (dash-dotted) line is for θ = 45◦ and φ = 15◦ (75◦). In these examples, the
QUMOND field is due to the triaxial bulge and the axisymmetric disk. The stars acquire vφ only due
to the triaxiality of the bulge.

Assuming that the angular momentum per unit mass |`z| = r sin θ|vφ| is conserved at
larger radii, and |vφ| thus falls off as r−1, we obtain

|vmax
φ (r)| ∼ 4

(
10 kpc

r

)
km s−1 (3.13)

for 4 M� stars. The upper-limit radial profile of |vφ| reported in Eq. (3.13) is shown by
the black solid line in Fig. 3.10. The above equation provides a conservative upper limit
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Figure 3.10. Magnitudes of the azimuthal velocity components vφ of 4 M� HVSs in Newtonian gravity
as a function of their radial coordinates, r, at the time of observation for a prolate dark matter halo
with axis of symmetry in the plane of the disk. The light blue and purple dots show the HVSs for a halo
with (qy, qz) = (1.1, 1) and (qy, qz) = (1.2, 1), respectively. The black line shows the upper limit of |vφ|
in QUMOND due to the triaxial bulge. The upper limit also holds for HVSs with masses lower than
4 M�, provided they are beyond a certain galactocentric distance, e.g., r & 30 kpc (50 kpc) for 3 M�
(2.5 M�) HVSs.

for two reasons. First, the equation was derived using the 4 M� HVSs with the lowest
ejection velocities relevant for our analysis, namely 710 and 750 km s−1. Any HVS that
travels beyond 15 kpc (see Fig. 3.8) has higher ejection velocity, hence lower azimuthal
velocity. Secondly, the star trajectories bend toward the Galactic disk located in the
x-y plane (θ = 90◦; see Fig. 3.4), so that θ approaches 90◦.3 As a result, sin θ always
increases and causes a further decrease in |vφ|, because |`z| = r sin θ|vφ| remains constant.
Therefore, using the HVS with the lowest ejection velocity and taking sin θ as a constant
yield the conservative upper limit of |vφ| given in Eq. (3.13).

The radial profile |vmax
φ (r)| of Eq. (3.13) also provides a conservative upper limit for

stars with masses lower than 4 M�. Indeed, as discussed in Sect. 3.4.2, stars with lower
mass, and thus longer lifetimes, must be ejected with higher speeds in order to avoid
the inner turnaround. Therefore, for higher ejection speeds, the normalization of the
azimuthal velocity radial profile, |vφ(r)| in Eq. (3.13), will be lower.

In Newtonian gravity with an axisymmetric distribution of baryons (Eqs. 3.4-3.6), the
HVSs obtain non-null |vφ| values only when the dark matter halo is non-axisymmetric
about the z axis, as in our models with qy /= 1. Figure 3.10 shows the values of |vφ| and r
of the HVSs for two different shapes of the halo: (qy, qz) = (1.1, 1), and (qy, qz) = (1.2, 1).
In both cases, the halo is prolate with the semimajor axis along the y axis in the plane
of the disk. The halo becomes more spherical at larger radii, r & ra = 21.6 kpc. Thus,
the azimuthal angular momentum, `z = r sin θ vφ, of each HVS becomes a constant as
the star travels beyond r ∼ ra = 21.6 kpc and |vφ| decreases as r−1. Near r ∼ 21.6 kpc,
|vφ| of an HVS can be as high as 10 km s−1 for qy = 1.2, and 6 km s−1 for qy = 1.1

3As the disk is located on θ = 90◦, θ always approaches 90◦. For an HVS ejected above the disk, the initial value of θ
is between 0◦ and 90◦, and θ increases. When the HVS is ejected below the disk, the initial θ is between 90◦ and 180◦,
and θ decreases.
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3.5 – Tangential velocity in QUMOND and Newtonian gravity

(see Fig. 3.10). These values are substantially higher than the QUMOND upper limit
vmax
φ (r) ∼ 1.8 km s−1 derived with Eq. (3.13) at that distance and shown by the solid

line in Fig. 3.10.

The effect of a hot gaseous halo

In addition to the baryonic components considered in the previous section, we included
in our MW model a reservoir of baryons in the form of an HG halo extending up to the
virial radius of the MW. The existence of this HG halo with a temperature ∼ 106 K
is suggested by the O VII and O VIII emission and absorption lines in the soft X-ray
band (Paerels and Kahn, 2003; Gupta et al., 2012; Fang et al., 2013; Gatto et al., 2013;
Salem et al., 2015). The presence of such diffuse hot gas may alleviate the missing baryon
problem 4 (Fukugita et al., 1998; Gupta et al., 2012; Shull et al., 2012; Fang et al., 2013;
Planck Collaboration et al., 2020a). An oblate gaseous halo with the smallest principal
axis lying on the Galactic plane may be part of the Vast Polar Structure of the MW
(Pawlowski et al., 2011; Zhao et al., 2013; Hammer et al., 2013).

We modeled the HG halo using the density profile (Thomas et al., 2017):

ρHG(m) = ρ0,HG

(
1 +

m

r0,HG

)−3

exp

(
− m2

r2
t,HG

)
, (3.14)

where r0,HG = 100 kpc is the core radius and rt,HG = 200 kpc is the truncation radius.
The elliptical radius m for the oblate halo is

m =

√
x2

a2
HG

+ y2 + z2 . (3.15)

Currently, the shape of the halo has no observational constraints; we thus varied aHG from
0.4 to 0.8. Similarly, its total mass is uncertain by a factor of ten (Miller and Bregman,
2013; Gatto et al., 2013; Salem et al., 2015), and we thus explored two different values of
ρ0,HG: 3.0×105 and 3.0×104 M� kpc−3. These values yield a total mass of 1.5×1011M�
and 1.5× 1010M�, respectively, within 100 kpc.

We explored the effects of the HG halo on the azimuthal velocities of the HVSs in both
the Newtonian and QUMOND scenarios (Figs. 3.11-3.12). In both cases, we considered
the axisymmetric models for the central black hole, bulge and disk of Eqs. (3.4-3.6).

In Newtonian gravity, we considered the non-axisymmetric dark matter halos with
(qy, qz) = (1.2, 1) and (qy, qz) = (1.4, 1) and assumed that the principal axes of the dark
halo coincided with that of the HG halo. Whereas the dark halo is nearly spherical at
large radii (r & 21.6 kpc) and its contribution to the |vφ| values thus falls as r−1 at large
distances, the constant oblateness of the HG halo increases the |vφ| values at all radii.
Nevertheless the |vφ| values are dominated by the shape of the non-axisymmetric dark
matter halo, because its mass is at least 10 times the mass of the HG halo.

On the contrary, in QUMOND, the gravitational field is substantially enhanced at
large distances by the presence of the HG halo and its mass and shape have a relevant
effect on the values of |vφ|. Therefore, for the HG halo with the highest mass M(<
100 kpc) = 1.5× 1011M� (Fig. 3.11), although the |vφ|’s in Newtonian scenario can still
exceed the values in QUMOND at distances between 15 kpc and 60 kpc irrespective of

4The baryonic census in the Local Group appears to add up to only ∼ 15% (Fukugita et al., 1998) of the baryonic mass
expected from the estimated baryonic abundance (Ωbh

2 ≈ 0.022) (Planck Collaboration et al., 2020a) from the Big Bang
nucleosynthesis and the CMB anisotropies.
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Figure 3.11. Magnitudes of the azimuthal velocity components, vφ, of 4 M� HVSs as a function of
their radial coordinates, r, at the time of observation in the presence of an HG halo with total mass of
1.5 × 1011M� within 100 kpc in both Newtonian and QUMOND scenarios. The left and right panels
show the results for two different oblatenesses, aHG = 0.4 and 0.8, of the HG halo (see Eqs. 3.14-3.15).
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Figure 3.12. Same as Fig. 3.11 except for the HG halo with a lower mass: 1.5 × 1010M� within 100
kpc.

the shape of the HG halo, at larger distances, the maximum possible values of |vφ| in
QUMOND are higher than or comparable to the maximum possible values in Newtonian
gravity, depending on the shape of the HG halo. On the contrary, for the HG halo with
the lowest mass M(< 100 kpc) = 1.5× 1010M� (Fig. 3.12), the |vφ| values in Newtonian
gravity can be significantly higher than the values in QUMOND at distances between 15
kpc and 100 kpc.

In summary, the presence of an oblate HG halo increases the upper limit of the |vφ|’s in
QUMOND at all distances, compared to the presence of a triaxial bulge alone. However,
at smaller distances (15 kpc . r . 60 kpc), the |vφ| values in Newtonian gravity due to a
non-axisymmetric dark matter halo may still substantially exceed the QUMOND values.

3.5.2 Latitudinal component, vθ

The difference in the latitudinal component vθ of the velocity in QUMOND and in New-
tonian gravity is subtler than the difference in vφ. In QUMOND, the source of the
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3.5 – Tangential velocity in QUMOND and Newtonian gravity

gravitational field is concentrated in the plane of the disk and it bends the HVSs trajec-
tories toward this plane. In Newtonian gravity, the main role is played by the spheroidal
dark matter halo: A prolate halo, with its major axis perpendicular to the stellar disk,
is likely to generate vθ lower than in QUMOND; on the contrary, an oblate halo with its
major axis in the plane of the disk will generate vθ comparable or even higher than in
QUMOND. Accurate predictions of these differences clearly depend on the exact values
of the axial ratios, in addition to the actual mass and size of the dark matter halo.

From our knowledge of the baryonic components, we can predict the distribution of |vθ|
in Newtonian gravity, assuming that the dark matter halo is spherical and therefore it does
not affect vθ. Similarly, in our adopted model, the SMBH and the bulge have spherically
symmetric potential and do not contribute to vθ. The shaded histogram in the left panel
of Fig. 3.13 shows the distribution of |vθ| in this Newtonian model, effectively caused by
the disk alone. In QUMOND, at larger distances, where the Newtonian gravitational field
approaches a0, the gravitational pull of the disk gets enhanced compared to Newtonian
gravity. Consequently, the HVSs have larger |vθ| in QUMOND than in Newtonian gravity.
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Figure 3.13. Distributions of the latitudinal component of the velocity, |vθ|, in Newtonian gravity and
in QUMOND for 4 M� HVSs. The left panel shows the distributions of |vθ| for different models of the
Galactic potential: Newtonian gravity with a spherical dark matter halo (gray shaded histogram) and
QUMOND with γ = 1 (orange histogram) and γ = 2 (red histogram). As the gravitational pull of the
baryonic disk is enhanced in QUMOND, the fraction of HVSs with high |vθ| is larger than in Newtonian
gravity with a spherical halo. The right panel shows the distributions of |vθ| for three different shapes
of the dark matter halo in Newtonian gravity. The three halos have qy = 1 but different qz: a spherical
halo with qz = 1 (gray shaded histogram), a prolate halo with qz = 1.1 (blue histogram), and an oblate
halo with qz = 0.9 (red histogram). An oblate halo enhances the gravitational pull of the baryonic disk,
as shown by the larger fraction of HVSs with high |vθ| and the smaller fraction of HVSs with low |vθ|
(compare the shaded and red histograms). The opposite occurs with a prolate halo (compare the shaded
and blue histograms).

Figure 3.14 shows the magnitude of vθ as a function of the galactocentric distance
r due to the baryonic components in QUMOND with γ = 1 and 2 (orange and red
dots, respectively), and in Newtonian gravity with a spherical halo (black dots). In
both models, the maximum possible values of |vθ| decrease as ∼ r−1, because, as each
star travels beyond the length scale of the stellar disk, its angular momentum, ∼ rvθ,
becomes a constant. Because of the enhanced pull of QUMOND, the maximum value
of vθ is higher than in Newtonian gravity at all radii. Unfortunately, unlike the case of
vφ, these differences cannot be used to distinguish QUMOND from Newtonian gravity,
because these same differences can be generated by an appropriate shape of the dark
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3 – Probing MOdified Newtonian Dynamics with hypervelocity stars

matter halo, as we illustrate below.
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Figure 3.14. Latitudinal velocity components, |vθ|, as a function of the galactocentric distance, r, of
4 M� HVSs in QUMOND with γ = 1 (orange dots) and γ = 2 (red dots), and in Newtonian gravity
with a spherical dark matter halo (qz = 1) (black dots).

In Newtonian gravity with a dark matter halo, non-null vθ values are caused by the
Galactic disk and by the halo with qz /= 1 (models sketched in panels (c) and (d) of
Fig. 3.3). For an oblate halo (qz < 1), the gravitational pull of the halo enhances the
pull of the disk. Hence, the number of HVSs with high |vθ| is larger than in the case of
a spherical halo, as shown by the comparison of the red and shaded histograms in the
right panel of Fig. 3.13. The reverse happens for a prolate halo with qz > 1. Therefore,
the difference between the QUMOND and the Newtonian distributions shown in the left
panel of Fig. 3.13 can be easily mimicked in Newtonian gravity by an appropriate oblate
dark matter halo.
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Figure 3.15. Latitudinal velocity components, |vθ|, as a function of the galactocentric distance, r, of
4 M� HVSs in QUMOND with γ = 1 (orange dots) and γ = 2 (red dots), and in Newtonian gravity
with an oblate dark matter halo with qz = 0.4 (dark cyan dots).
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3.5 – Tangential velocity in QUMOND and Newtonian gravity

This degeneracy was emphasized by Read and Moore in 2005 when they attempted to
distinguish MOND from Newtonian gravity using the stellar streams of the Sagittarius
dwarf. The degeneracy between an oblate halo and QUMOND can be broken if qz is
sufficiently small. Indeed, similar to the case of vφ, QUMOND sets an upper limit to
|vθ|; on the contrary, in Newtonian gravity, |vθ| may be higher than this upper limit if
qz is sufficiently small. In our models, the Newtonian |vθ| values are higher than the
QUMOND upper limit if qz . 0.6. However, the difference between the QUMOND and
Newtonian |vθ| values is not as prominent as for |vφ| values: In our model, the transition
scale of the halo shape from oblate to spherical is ra = 21.6 kpc; therefore, the size of the
portion of the halo that is actually oblate is comparable to the size of the baryonic disk.
On the contrary, the size of the triaxial bulge causing nonzero |vφ| values in QUMOND
is much smaller than the scale length of the non-axisymmetric halo responsible for non-
null |vφ|’s in Newtonian gravity. Therefore, vθ is less effective than vφ at distinguishing
QUMOND from Newtonian gravity. Figure 3.15 quantifies this difficulty by showing |vθ|
versus r for QUMOND with γ = 1 and γ = 2, and for Newtonian gravity with an oblate
halo with qz = 0.4; this dark matter halo is a rather extreme case, when compared to the
current estimates of the shape of the MW dark matter halo (Loebman et al., 2014).

3.5.3 Azimuthal velocities: A comparison with real data

We attempted a first comparison of the QUMOND upper limit |vmax
φ (r)| (Eq. 3.13) with

the measured |vobs
φ | of nine stars drawn from the HVS survey sample of Brown et al.

(2014). These nine stars have masses in the range ∼ 2.5 − 4 M�. Their galactocentric
distances are larger than the minimum mass-dependent radii required for our test (see
Sect. 3.4.2). In addition, Kenyon et al. (2018) show that HVSs ejected within 25◦ from
the line joining the MW center and the LMC are affected by the LMC when they reach
a galactocentric distance of 35 to 65 kpc. The nine HVSs of our sample are all located
more than ∼ 84◦ away from the LMC, and the LMC pull should thus be irrelevant.

To be used for our test, these stars must originate from the Galactic center rather
than being disk runaway stars. In principle, we could distinguish the two kinds of stars
by tracing their trajectories back in time, if we knew the correct theory of gravity and
the correct MW gravitational potential. When this information is unknown, and it is
actually what we wish to constrain, this approach clearly generates a circularity problem.
We can solve this problem by tracing back the star trajectories in different gravitational
potentials and different theories of gravity to select those stars, if any, that appear to be
HVSs in all models. We will investigate this self-consistent treatment, and thus the actual
feasibility of our test, elsewhere. Here, we simply wished to see whether, if we assumed
that the observed allegedly HVSs were indeed HVSs in all the models, the current data
would have sufficed to distinguish between QUMOND and Newtonian gravity.

We relied on the analysis of Brown et al. (2018) who, in Newtonian gravity, assume
an axisymmetric disk and a spherical dark matter halo (Kenyon et al., 2014) to estimate
a larger probability for the nine stars mentioned above to come from the Galactic center
than to be disk runaway stars.

We computed the azimuthal components, vobs
φ , of their galactocentric velocities from

the proper motions available in the Gaia Early Data Release 3 (EDR3; Gaia Collabo-
ration, 2016c, 2021). We adopted the heliocentric distances derived from Brown et al.
(2018), and the radial velocities of Brown et al. (2014). We found that the magnitudes
of the azimuthal velocities are in the range |vobs

φ | ' 37 − 452 km s−1. For eight of these
stars, the uncertainties on the azimuthal velocities are dominated by the errors on the
proper motions, whereas the errors on the stars’ distances and radial velocities, as well
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3 – Probing MOdified Newtonian Dynamics with hypervelocity stars

as on the position and velocity of the Sun in the galactocentric reference frame, appear
to be negligible. For these stars, the relative uncertainties on the azimuthal velocities are
in the range ∼ 50− 340%. For the ninth star, B329, neglecting the error on its distance
is inappropriate. B329 is a (3.21± 0.24) M� star at galactocentric distance r = (61± 13)
kpc; by ignoring the uncertainty on the distance, we derived |vobs

φ | = (371± 74) km s−1,

whereas including the uncertainty on the distance yields |vobs
φ | = (371± 131) km s−1.

We conclude that the current uncertainties on |vobs
φ | make the azimuthal components

consistent with zero within 3σ for all of the nine stars of our sample. We are thus unable
to verify whether these measures would be in principle consistent with the QUMOND
limit. Indeed, even in Newtonian gravity, the large values of |vobs

φ | would probably imply
an unrealistically large flatness or triaxiality of the dark matter halo (Fig. 3.10). There-
fore, even if these nine stars were HVSs in both QUMOND and Newtonian gravity, the
comparison of their azimuthal components with the QUMOND upper limit, |vmax

φ (r)|,
would still be inconclusive.

3.6 Discussion and conclusions

We showed that measuring the galactocentric tangential velocity of HVSs in the MW
can effectively allow us to discriminate between MOND, in its QUMOND formulation,
and Newtonian gravity. Specifically, we demonstrated that HVSs with sufficiently high
ejection speed possess galactocentric azimuthal velocities whose magnitude, |vφ|, cannot
exceed a velocity threshold in QUMOND, while |vφ| has no upper bounds in Newtonian
gravity. This result could naturally translate into an observational test to discriminate
between these two theories of gravity.

Our findings follow from the fact that the HVSs ejected from the Galaxy center on ra-
dial orbits acquire non-null azimuthal tangential speeds, vφ, due to the non-axisymmetric
components of the Galactic gravitational potential. Hypervelocity stars with low ejection
velocity can turn back toward the Galactic center and move outward again, acquiring a
high |vφ| that is not proportionate to the deviation from the axial symmetry of the poten-
tial. In contrast, HVSs with high ejection velocities reach larger galactocentric distances
before turning back and thus die before experiencing the inner turnaround. These HVSs
acquire a substantially lower |vφ|, which is proportional to the deviation from the axial
symmetry of the potential.

In our models of the Galactic gravitational potential, the ejection velocity threshold
for 4 M� stars is ∼ 710 km s−1 in QUMOND with γ = 2, and it is ∼ 750 km s−1 both in
QUMOND with γ = 1 and in the Newtonian gravity models that we investigated here.
Hypervelocity stars with ejection velocities higher than this value reach galactocentric
distances larger than ∼ 15 kpc if they live long enough. We thus expect that the |vφ|
component of 4 M� HVSs beyond this distance can be used to probe the deviation from
the axial symmetry of the Galactic potential.

The ejection velocity threshold and the corresponding minimum galactocentric dis-
tance increase with decreasing HVS mass. For example, in Newtonian gravity, 3 M� and
2.5 M� HVSs have ejection velocity thresholds of ∼ 790 km s−1 and ∼ 815 km s−1, which
correspond to the minimum galactocentric distances of 30 kpc and 50 kpc, respectively.
In QUMOND with γ = 1 (γ = 2), 3 M� and 2.5 M� HVSs have ejection velocity thresh-
olds of ∼ 800 (755) km s−1 and ∼ 830 (785) km s−1, which correspond to the minimum
galactocentric distances of 30 (30) kpc and 50 (50) kpc, respectively (see Sect. 3.4.2).
Therefore, the mass of the star sets the minimum distances beyond which the star must
be located if we wish to use it for the test we suggested here.
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In Newtonian gravity, the symmetric features of the baryonic distribution can be
overcome by those of the dark matter halo surrounding the Galaxy. Here, we explored
the case where both the baryonic components and the dark matter halo are axisymmetric
but their axes are misaligned; the shape of the halo depends on the distance from the
Galactic center, and the halo approaches the spherical symmetry at distances larger than
∼ 21.6 kpc. It follows that vφ is affected by the non-axisymmetric features of the potential
up to this radius.

Among the baryonic components, only a triaxial bulge as well as the possible presence
of a non-spherical HG halo can affect vφ. Additional variations in vφ might derive from
massive external objects, such as the LMC (Kenyon et al., 2018), whereas other non-
axisymmetric components within the disk, such as spiral arms or density inhomogeneities,
are expected to affect only the stars within ∼ 1 kpc of the disk (Gardner et al., 2020).
The contribution from the HG halo in |vφ| strongly depends on its shape and total mass,
which are poorly constrained by observations.

In our QUMOND model with a triaxial bulge, the triaxiality of the bulge is effective
up to r ∼ 5 kpc; beyond this radius, the bulge can be approximated to be spherical
and, because of the conservation of angular momentum, the maximum value of |vφ| is
proportional to r−1 (Eq. 3.13). Therefore, when compared with the Newtonian model
affecting |vφ| out to ∼ 21.6 kpc, the values of |vφ| of HVSs at r & 15 kpc in QUMOND are
substantially lower than the values allowed for a non-axisymmetric potential in Newtonian
gravity. For example, at r ∼ 20 kpc, we find |vφ| . 2 km s−1 in QUMOND, whereas |vφ|
can be as high as 6 or 10 km s−1 for a dark matter halo with axial ratios qy = 1.1 or 1.2,
respectively (see Fig. 3.10).

If a non-spherical HG halo is included in the MW model, it dominates the |vφ| values
of the HVSs in QUMOND, and the |vφ| values in this case may be higher than those gen-
erated by the triaxial bulge alone. On the contrary, in Newtonian gravity, the |vφ| values
are still dominated by the dark matter halo and can still largely exceed the QUMOND
values for HVSs at distances of up to 60 kpc from the center.

We conclude that precise measurements of vφ for a few 4 M� HVSs at galactocentric
distances larger than ∼ 15 kpc (or 3 M� HVSs at r & 30 kpc, or 2.5 M� HVSs at
r & 50 kpc) and smaller than ∼ 60 kpc may in principle test the validity of QUMOND.
Finding a few HVSs with azimuthal components, |vφ|, above the QUMOND upper limits,
|vmax
φ |, given by Eq. (3.13) (black line in Fig. 3.10) or shown in Figs. 3.11-3.12 in the

presence of the HG halo, would suggest that MOND may not be the correct theory of
gravity, at least in its QUMOND formulation. Such tests clearly require that the HVSs
are confirmed to originate from the Galactic center and that their trajectories are not
perturbed by external objects, such as the LMC.

Assessing the HVS nature of observed stars is far from trivial, however, because we
need to trace their trajectories back in time with the theory of gravity and in the gravi-
tational potential that we wish to constrain. In addition, in QUMOND the perturbation
of the trajectories by objects beyond the MW is complicated by the external field effect
that is absent in Newtonian gravity (e.g., Haghi et al., 2016; Famaey et al., 2018; Hodson
et al., 2020). The external field effect is expected to be more relevant for the most distant
stars and needs to be quantified. We plan to tackle these issues elsewhere.

If we assume that the stars currently identified as HVSs are indeed HVSs in both
QUMOND and Newtonian gravity, we conclude that the current uncertainties on their
azimuthal velocities, vφ, mostly due to the large relative uncertainties on the proper
motion measurements, are too large to provide a conclusive comparison of the data with
our QUMOND limit. Indeed, in the subsample of nine HVSs drawn from the sample
of Brown et al. (2014) that we considered here, the azimuthal velocities have relative
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uncertainties in the range 35-340%. The precision on the estimates of vφ thus needs to
be improved by at least a factor of ∼ 10 to make our test decisive. Future measurements
from space-borne astrometric missions with expected microarcsecond precision on star
positions, such as Theia (The Theia Collaboration et al., 2017; Malbet et al., 2019, 2021),
are expected to allow us to discriminate between the two theories of gravity.
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Chapter 4

Final remarks and future prospects

In this Thesis, we reviewed the challenges of the ΛCDM cosmological model on galaxy
scales, and explored the gravitational potential of our own Galaxy by means of hyperve-
locity stars (HVSs).

The cosmological parameters of the ΛCDM model are measured at an accuracy of
∼ 1% or smaller (Hinshaw et al., 2013; Planck Collaboration et al., 2020a), effectively
confirming the capability of the model to describe the homogeneous and isotropic Universe
and the dynamics of cosmic structures. In this model, dark matter is ∼ 85% of the total
matter density of the Universe, but its fundamental nature is still unknown. As reviewed
in Chpt. 1 and, more extensively, in our work de Martino et al. (2020), the lack of
a direct detection of the DM particles is not the only issue encountered by the CDM
model. Indeed, this model faces several challenges on galactic scales, as the cusp/core
problem, the missing satellites problem, the too-big-to-fail problem, and the planes of
satellite galaxies problem (see Sect. 1.3.1). Possible solutions to these challenges can be
found accounting for physical processes that involve baryons and that were previously
neglected in CDM simulations, as feedback from supernovae and dynamical friction from
baryonic clumps. However, the effectiveness of baryonic feedback is still under debate.
Alternatively, a change of the dark matter paradigm (see Sect. 1.3.2) or a modified gravity
model that does not require DM (see, e.g., Sect. 1.3.3) can help to solve some of the issues,
although none of the models offers a definitive answer to all the questions yet.

In this context, investigating the gravitational potential of the Milky Way (MW) by
means of appropriate probes can help to test the predictions of the ΛCDM model on
galaxy scales. With this aim, as illustrated in Chpts. 2 and 3, we carried out a project
that uses HVSs as gravitational probes to (i) determine the shape of the DM halo of
our Galaxy, and (ii) test the viability of a model where MOdified Newtonian Dynamics
(MOND) holds on galaxy scales and no DM halo is present. HVSs are ejected from
the Galactic center and cross a large range of distances during their journey across the
Galaxy: they are thus powerful tracers of the MW mass distribution. During their travel
through the MW, the initially purely radial trajectories of the HVSs are bent by the
non-spherical components of the Galactic potential. As a consequence, the HVSs acquire
non-null tangential velocities, whose components turn out to be the key quantities for
both our halo-shape method and our gravity test.

We presented our new method to constrain the shape of the DM halo of the MW in
Chpt. 2 and in our work Gallo et al. (2022). This method determines the shape of the
MW DM halo by means of a new statistical approach based on the distribution of the
components of the galactocentric tangential velocities of a sample of HVSs. We applied
the method to an ideal optimal sample of ∼ 800 4 M� simulated HVSs, which we re-
ferred to as the observed sample, in both axisymmetric and non-axisymmetric Galactic
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potentials. In the case of an axisymmetric Galactic potential, we recovered the axial pa-
rameters of the DM halo from the one-dimensional distribution of the magnitude of the
latitudinal velocity, |vϑ|, of the HVSs of the observed sample. In the non-axisymmetric
scenario, the axial ratios of the DM halo are recovered from the two-dimensional distri-
bution of |vϑ| and a function v̄ϕ of the azimuthal velocity, vϕ, of the HVSs of the observed
sample. In our ideal case of no observational limitations and galactocentric velocities
with null uncertainties, the method has a success rate S & 89% in recovering the correct
shape of the DM halo in an axisymmetric Galactic gravitational potential, and S > 96%
in recovering the halo shape in the non-axisymmetric potentials explored in this work.
However, the success rate of our method depends on the size of the HVS sample, and is
lower for smaller HVS samples.

Even though our method was developed in a ΛCDM framework, with the gravitational
potential of the DM halos modeled with the triaxial generalization of the Navarro-Frenk-
White DM potential, the method can in principle be used not only to test the predictions
of ΛCDM on galactic DM halos, but also to constrain the still unknown nature of the
DM particles. Indeed, as discussed in Sect. 1.4.2, the shape of the Galactic DM halo
may depend on the nature of the DM particles. DM particle candidates different from
WIMPs may yield DM halos systematically different from those predicted by ΛCDM. In
this case, our method would virtually be able to reveal those differences.

Going beyond DM models, and with the aim to test whether a gravity theory that
does not include the contribution of any DM particles is a viable alternative to describe
the MW potential, in Chpt. 3 and in our work Chakrabarty et al. (2022) we proposed
a novel test to discriminate between a scenario in which Newtonian gravity holds on
galactic scales, and a scenario where MOND (in its quasi-linear QUMOND formulation)
is the correct theory of gravity on these scales. We compared HVS velocities simulated
in a MW ruled by Newtonian gravity and embedded in a DM halo and those obtained
in a MW ruled by MOND. We showed that measuring the galactocentric tangential
velocity of HVSs in the MW can effectively allow us to discriminate between MOND, in
its QUMOND formulation, and Newtonian gravity. Specifically, we demonstrated that,
in QMOND, HVSs with sufficiently high ejection speed and located within 60 kpc from
the Galactic center have azimuthal velocities smaller than a distance-dependent upper
limit, not met by Newtonian velocities. This result translates into an observational test
to discriminate between these two theories of gravity. Precise measurements of vφ for
a few 4 M� HVSs at galactocentric distances larger than ∼ 15 kpc (or 3 M� HVSs at
r & 30 kpc, or 2.5 M� HVSs at r & 50 kpc) and smaller than ∼ 60 kpc may test the
validity of QUMOND: finding a few HVSs with azimuthal components, |vφ|, above the
QUMOND upper limits, would suggest that MOND may not be the correct theory of
gravity, at least in its QUMOND formulation.

Both our proposed gravity test and our halo-shape method are conceived to be applied
to real observed HVSs. The current sample of HVS candidates consists of a few tens of
stars. This number of HVSs is sufficiently large for our gravity test: indeed, this test can
discriminate between the two theories of gravity with sufficiently precise vφ measurements
of even a few HVSs. On the other hand, the current number of HVS candidates is too
low to make our halo-shape method sufficiently successful. To ensure a high success rate,
it is of fundamental importance to measure the galactocentric velocities of a few hundred
genuine HVSs.

The possibility to measure the radial velocities of fainter objects in the outer halo,
for example by means of the forthcoming 4-metre Multi-Object Spectroscopic Telescope
(de Jong et al., 2019), will enable us to identify new HVS candidates that satisfy our
selection criteria (see Sects. 2.2.2 and 3.4.2).

106



A criticality of both our new method to constrain the MW DM halo shape and our
new gravity test is the problem of the uncertainties on the HVS tangential velocities.
Indeed, the high success rate of our new halo-shape method is obtained under the as-
sumption of tangential velocities with null uncertainties and it is expected to decrease
for increasingly high uncertainties. Similarly, for our novel gravity test, we find that the
current uncertainties on tangential velocities need to be reduced by at least a factor ∼ 10
to make the test decisive.

Proper motions are, together with the stars’ distances, the main source of error on
the tangential velocities. A future Theia-like mission (Malbet et al., 2016; The Theia
Collaboration et al., 2017; Malbet et al., 2019, 2021), designed for unprecedented high
precision astrometry, may achieve an end-of-mission uncertainty on HVS proper motions
of a few micro-arcseconds per year (e.g., ∼ 0.12 µas/yr for a star of R = 10 mag and
∼ 4.4 µas/yr for a star of R = 20 mag). Such a low uncertainty, ∼ 100 times smaller
than that of Gaia, will open up the possibility for significantly constraining the shape of
the DM halo of the MW and for discriminating between MOND and Newtonian gravity.

Our investigations of the Milky Way gravity by means of HVSs were conducted in the
framework of preparatory studies for this future astrometric mission, and are contributing
to the definition of its scientific goals. Furthermore, follow-up projects, that we are
already pursuing, will enable us to determine the precision that a Theia-like mission
should achieve on proper motions to make our method powerful and our gravity test
decisive. These results will contribute to the definition of the technical requirements of
this mission.

More precise measurements of proper motions will also make it possible to better
constrain the birth place of the current HVS candidates, helping to solve the circularity
problem that currently affects the possibility to apply both our halo-shape method and
our gravity test to real HVS data (see Sects. 2.7 and 3.5.3). It is indeed of the utmost
importance to build samples of HVS candidates with a high probability to originate from
the Galactic center, independently of the model of gravitational potential chosen to back-
track their position at the time of ejection. However, in recent works that investigate
the origin of the HVS candidates (e.g., Irrgang et al., 2018; Kreuzer et al., 2020; Irrgang
et al., 2021), the backtracking of the star trajectories is derived only for a specific Galactic
potential that include a spherical DM halo. In our halo-shape method, HVSs are used
to constrain the axial parameters of the DM halo; thus, their genuine HVS nature must
not depend on the shape of the DM halo that we want to determine. More generally, a
highly likely galactocentric origin of the sample of HVS candidates is required to test the
viability of alternative theories of gravity. To be used for our gravity test, the stars must
be HVSs in all the MW gravity models.

Once the above mentioned issues will be solved, our method to constrain the shape of
the Galactic DM halo and our novel gravity test will be powerful tools to shed light on
the Milky Way gravity.
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P. B. Denton, S. Dhawan, K. R. Dienes, E. Di Valentino, P. Du, D. Eckert, C. Escamilla-Rivera, A. Ferté,
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B. S. Sathyaprakash, M. Schmaltz, N. Schöneberg, D. Scolnic, A. A. Sen, N. Sehgal, A. Shafieloo, M. M. Sheikh-
Jabbari, J. Silk, A. Silvestri, F. Skara, M. S. Sloth, M. Soares-Santos, J. Solà Peracaula, Y.-Y. Songsheng,
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tois, R. S. Ellis, M. Filiol, A. C. Gonçalves, A. Goobar, D. Guide, D. Hardin, V. Lusset, C. Lidman, R. McMa-
hon, M. Mouchet, A. Mourao, S. Perlmutter, P. Ripoche, C. Tao, and N. Walton. The Supernova Legacy
Survey: measurement of ΩM , ΩΛ and w from the first year data set. A&A, 447(1):31–48, Feb. 2006. doi:
10.1051/0004-6361:20054185.

J. Bailin and M. Steinmetz. Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM
Halos. ApJ, 627(2):647–665, July 2005. doi: 10.1086/430397.

A. Banerjee and C. J. Jog. Progressively More Prolate Dark Matter Halo in the Outer Galaxy as Traced by
Flaring H I Gas. ApJ, 732(1):L8, May 2011. doi: 10.1088/2041-8205/732/1/L8.

I. Banik, M. Milgrom, and H. Zhao. Toomre stability of disk galaxies in quasi-linear MOND. arXiv e-prints, art.
arXiv:1808.10545, 2018.

N. Bar, K. Blum, J. Eby, and R. Sato. Ultralight dark matter in disk galaxies. Phys. Rev. D, 99(10):103020,
May 2019. doi: 10.1103/PhysRevD.99.103020.

K. G. Begeman, A. H. Broeils, and R. H. Sanders. Extended rotation curves of spiral galaxies : dark haloes and
modified dynamics. MNRAS, 249:523, April 1991. doi: 10.1093/mnras/249.3.523.

110



BIBLIOGRAPHY

J. Bekenstein and M. Milgrom. Does the missing mass problem signal the breakdown of Newtonian gravity?
ApJ, 286:7–14, Nov 1984. doi: 10.1086/162570.

J. D. Bekenstein. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D,
70(8):083509, Oct. 2004. doi: 10.1103/PhysRevD.70.083509.

G. Bertone and D. Hooper. History of dark matter. Rev. Mod. Phys, 90(4):045002, Oct 2018. doi: 10.1103/
RevModPhys.90.045002.

G. Bertone, D. Hooper, and J. Silk. Particle dark matter: evidence, candidates and constraints. Phys. Rep., 405
(5-6):279–390, Jan 2005. doi: 10.1016/j.physrep.2004.08.031.

P. Bhattacharjee, S. Chaudhury, and S. Kundu. Rotation Curve of the Milky Way out to ˜200 kpc. ApJ, 785
(1):63, April 2014. doi: 10.1088/0004-637X/785/1/63.

B. Bhattacharya and D. Habtzghi. Median of the p value under the alternative hypothesis. The American
Statistician, 56(3):202–206, 2002. doi: 10.1198/000313002146.

O. Bienaymé, B. Famaey, X. Wu, H. S. Zhao, and D. Aubert. Galactic kinematics with modified Newtonian
dynamics. A&A, 500(2):801–805, June 2009. doi: 10.1051/0004-6361/200809978.

J. Binney, O. Gerhard, and D. Spergel. The photometric structure of the inner Galaxy. MNRAS, 288(2):365–374,
June 1997. doi: 10.1093/mnras/288.2.365.

A. Biviano. From Messier to Abell: 200 Years of Science with Galaxy Clusters. In F. Durret and D. Gerbal,
editors, Constructing the Universe with Clusters of Galaxies, page 1, Jan. 2000.

A. Blaauw. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related
problems. Bull. Astron. Inst. Netherlands, 15:265, May 1961.

J. Bland-Hawthorn and O. Gerhard. The Galaxy in Context: Structural, Kinematic, and Integrated Properties.
ARA&A, 54:529–596, Sept. 2016. doi: 10.1146/annurev-astro-081915-023441.

G. R. Blumenthal, H. Pagels, and J. R. Primack. Galaxy formation by dissipationless particles heavier than
neutrinos. Nature, 299(5878):37–38, Sept. 1982. doi: 10.1038/299037a0.

G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees. Formation of galaxies and large-scale structure
with cold dark matter. Nature, 311:517–525, Oct. 1984. doi: 10.1038/311517a0.

V. V. Bobylev. Kinematics of the galaxy from Cepheids with proper motions from the Gaia DR1 catalogue.
Astron. Lett, 43(3):152–158, March 2017. doi: 10.1134/S106377371703001X.

V. V. Bobylev and A. T. Bajkova. Kinematic analysis of solar-neighborhood stars based on RAVE4 data. Astron.
Lett, 42(2):90–99, Feb. 2016. doi: 10.1134/S1063773716020018.

P. Bode, J. P. Ostriker, and N. Turok. Halo Formation in Warm Dark Matter Models. ApJ, 556(1):93–107, July
2001. doi: 10.1086/321541.
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hauer, M. G. Walker, and E. W. Olszewski. The cold veil of the Milky Way stellar halo. MNRAS, 425(4):
2840–2853, Oct. 2012b. doi: 10.1111/j.1365-2966.2012.21639.x.
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A. Genina, A. Beńıtez-Llambay, C. S. Frenk, S. Cole, A. Fattahi, J. F. Navarro, K. A. Oman, T. Sawala, and
T. Theuns. The core-cusp problem: a matter of perspective. MNRAS, 474(1):1398–1411, Feb 2018. doi:
10.1093/mnras/stx2855.

R. T. Génova-Santos. The Establishment of the Standard Cosmological Model Through Observations, pages 311–
347. 2020. doi: 10.1007/978-3-030-38509-5\ 11.

R. Genzel, F. Eisenhauer, and S. Gillessen. The Galactic Center massive black hole and nuclear star cluster. Rev.
Mod. Phys., 82(4):3121–3195, Oct 2010. doi: 10.1103/RevModPhys.82.3121.

117



BIBLIOGRAPHY

A. Ghari, B. Famaey, C. Laporte, and H. Haghi. Dark matter-baryon scaling relations from Einasto halo fits to
SPARC galaxy rotation curves. A&A, 623:A123, Mar. 2019. doi: 10.1051/0004-6361/201834661.
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A. Luna, D. Minniti, and J. Alonso-Garćıa. Candidate Hypervelocity Red Clump Stars in the Galactic Bulge
Found Using the VVV and Gaia Surveys. ApJ, 887(2):L39, Dec. 2019. doi: 10.3847/2041-8213/ab5c27.

H. N. Luu, S. H. H. Tye, and T. Broadhurst. Multiple ultralight axionic wave dark matter and astronomical
structures. Physics of the Dark Universe, 30:100636, Dec. 2020. doi: 10.1016/j.dark.2020.100636.
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F. Malbet, A. Léger, G. Anglada Escudé, A. Sozzetti, D. Spolyar, L. Labadie, M. Shao, B. Holl, R. Goullioud,
A. Crouzier, C. Boehm, and A. Krone-Martins. Microarcsecond astrometric observatory Theia: from dark
matter to compact objects and nearby earths. In H. A. MacEwen, G. G. Fazio, M. Lystrup, N. Batalha,
N. Siegler, and E. C. Tong, editors, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Mil-
limeter Wave, volume 9904 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
page 99042F, July 2016. doi: 10.1117/12.2234425.

122



BIBLIOGRAPHY

F. Malbet, U. Abbas, J. Alves, C. Boehm, W. Brown, L. Chemin, A. Correia, F. Courbin, J. Darling, A. Diaferio,
M. Fortin, M. Fridlund, O. Gnedin, B. Holl, A. Krone-Martins, A. Léger, L. Labadie, J. Laskar, G. Mamon,
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Fèvre, S. J. Lilly, V. Mainieri, A. Renzini, M. Scodeggio, I. Balestra, R. Gobat, R. McLure, S. Bardelli, A. Bon-
giorno, K. Caputi, O. Cucciati, S. de la Torre, L. de Ravel, P. Franzetti, B. Garilli, A. Iovino, P. Kampczyk,
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Function in the Local Environment from ΛCDM and ΛWDM Constrained Simulations. ApJ, 700(2):1779–
1793, Aug. 2009. doi: 10.1088/0004-637X/700/2/1779.

J. Zavala, M. Vogelsberger, and M. G. Walker. Constraining Self-Interacting Dark Matter with the Milky Way’s
dwarf spheroidals. MNRAS, 431:L20–L24, 2013. doi: 10.1093/mnrasl/sls053.

M. Zemp, O. Y. Gnedin, N. Y. Gnedin, and A. V. Kravtsov. The Impact of Baryon Physics on the Structure of
High-redshift Galaxies. ApJ, 748(1):54, March 2012. doi: 10.1088/0004-637X/748/1/54.

A. R. Zentner, A. V. Kravtsov, O. Y. Gnedin, and A. A. Klypin. The Anisotropic Distribution of Galactic
Satellites. ApJ, 629(1):219–232, Aug. 2005. doi: 10.1086/431355.

F. Zhang, Y. Lu, and Q. Yu. The Galactic Center S-stars and the Hypervelocity Stars in the Galactic Halo: Two
Faces of the Tidal Breakup of Stellar Binaries by the Central Massive Black Hole? ApJ, 768(2):153, May 2013.
doi: 10.1088/0004-637X/768/2/153.
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