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Abstract 
 

Understanding temporal and spatial patterns of forest disturbance dynamics is 

becoming increasingly crucial due to global change-induced shifts of disturbance 

regimes. Anthropogenic climate change compounding with land-use change 

worsens the extent, frequency and severity of many natural disturbances. 

Furthermore, tree mortality triggered by exceptional drought and heat is 

increasing, with high impacts on carbon cycling and forest resilience. Remote 

sensing data like optical satellite imagery is a powerful tool for assessing forest 

disturbance dynamics at the landscape scale. Landsat imagery provides a unique 

opportunity for ecologists to track changes to forests over the last four decades. 

The recent Sentinel-2 mission expands the availability of medium-resolution 

multispectral imagery, complementing Landsat data. This thesis focuses on 

different aspects of forest disturbance dynamics: post-fire forest recovery, burn 

severity assessment and automated disturbance detection. 

We first assessed post-fire forest spectral recovery in four wildfires occurred in 

the central Apennines in 2007, using inter-annual Landsat time series and field 

data. We evaluated the ability of different commonly used spectral indices to 

track ecological processes associated with the encroachment of forest 

regeneration and we proposed the use of a novel spectral index, the Forest 

Recovery Index 2 (FRI2). Results from different burn severity classes and forest 

types highlighted that the novel index we proposed was more sensitive to forest 

regeneration dynamics compared to other spectral indices.    

Secondly, we developed a novel approach for mapping burn severity based on 

Sentinel-2 reflectance composites and bi-temporal indices. Our study areas were 

10 wildfires occurred in the Piedmont region in 2017. Field data consisted of 

Composite Burn Index plots distributed across the burnt areas. Pre- and post-fire 

reflectance composites embedding long-term phenology metrics provided 

significantly higher classification accuracy compared to paired images. 

Improvements offered by phenologically coherent reflectance composites over 
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paired images were related to higher radiometric consistency and increased 

contrast between healthy and burnt vegetation. 

Lastly, we present Change Detection by Multispectral Trends (CDMT), a Landsat 

time series-based automated algorithm for forest disturbance detection that 

exploits the full spectral information in Landsat imagery. CDMT segments inter-

annual multispectral time series to detect both abrupt and gradual changes using 

a novel statistical procedure.  We tested CDMT in the Aosta Valley region (Italy) 

and analysed trends in disturbances over a 34-year period. Our results highlighted 

that the user's and producer's accuracy of the disturbed class systematically 

increased when moving from the univariate to the multivariate setting. The 

inclusion of multiple bands, i.e. both original spectral bands and indices, allowed 

CDMT to leverage complementary information carried by different portions of 

the electromagnetic spectrum. Moreover, CDMT was sensitive toward an ample 

range of disturbance severities. For instance, it effectively captured abrupt and 

gradual changes associated with drought-induced tree mortality. 
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Chapter 1 

Introduction 

1.1 Forest recovery 

Forest recovery is an ecological process referring to the re-establishment or re-

development of several forest structural properties, e.g. canopy cover, biomass, 

tree height, stand basal area (Bartels et al., 2016; Frolking et al., 2009; Senf et al., 

2019). Post-disturbance recovery is crucial for evaluating the resilience of forest 

ecosystems in relation to shifts in disturbance regimes and provision of ecosystem 

services (Kulakowski et al., 2016; Seidl et al., 2016). Climate warming alters 

patterns of forest recovery, either directly or indirectly, by modifying disturbance 

regimes and the post-disturbance environment (Johnstone et al., 2016; Stevens-

Rumann et al., 2018). For instance, increases in frequency, severity and size of 

disturbances reduce the availability of biological legacies, e.g. seed propagules, 

survived tree individuals and woody debris, which are key elements that drive 

patterns of tree regeneration (Bartels et al., 2016; Johnstone et al., 2016; Swanson 

et al., 2011). Moreover, hotter and drier conditions, associated with climate 

change that occurs after a disturbance, negatively impact forest recovery by 

hindering the establishment of tree regeneration (Johnstone et al., 2016; Rodman 

et al., 2020; Stevens-Rumann et al., 2018). Failures in forest recovery can lead to 

transitions into non-forest vegetation and trigger land degradation (Doblas-

Miranda et al., 2017; Johnstone et al., 2016; Rodman et al., 2020). Therefore, 

post-disturbance management should primarily focus on facilitating early-

successional forests (Donato et al., 2012). In particular, both spatial heterogeneity 

of forest landscapes (Turner, 2010) and stand structural complexity in early-seral 

stages (Donato et al., 2012) are key factors that promote forest recovery.   

Optical satellite data at medium-resolution, such as multispectral Landsat 

imagery, has been long employed to assess post-fire vegetation recovery in 

Mediterranean-type ecosystems (e.g. Röder et al., 2008; Veraverbeke et al., 2012; 



9 
 

Viedma et al., 1997). Studies focusing on post-disturbance forest recovery were 

relatively recent, and typically employed multi decadal, inter-annual Landsat 

time series (e.g. Bolton et al., 2015; Kennedy et al., 2012; Schroeder et al., 2007; 

White et al., 2017). Tracking gradual spectral changes associated with forest 

recovery requires maximising spatial and spectral consistency of inter-annual 

Landsat time series. Fitting curves to spectral trajectories is effective to minimise 

inter-annual differences arising from phenological and atmospheric mismatches 

(Kennedy et al., 2010; Senf et al., 2019). The effectiveness of this approach 

depends on the enhancement of Landsat time series for reducing biases generated 

by outliers and missing data. Filtering residual noise (e.g. Kennedy et al., 2010), 

producing gap-free image composites (e.g. White et al., 2014) and inferring 

missing values through contextual analysis (e.g. Hermosilla et al., 2015) are 

among the main techniques. Most of the studies focusing on forest recovery 

employed original Landsat bands (Pickell et al., 2016) or spectral indices such as 

the Normalized Burn Ratio (NBR; Kennedy et al., 2012), the Tasseled Cap 

wetness (TCW; Senf et al., 2019) and the integrated forest z-score (IFZ; Zhao et 

al., 2016). The Shortwave Infrared (SWIR) bands are the most sensitive toward 

forest biomass and structure (Banskota et al., 2014; Pickell et al., 2016). 

Furthermore, spectral indices contrasting the SWIR bands and the near infrared 

(NIR) band have been extensively employed for tracking forest recovery (e.g. 

Kennedy et al., 2012; White et al., 2017). It is worth noting that forest recovery 

measured with spectral indices and bands is not directly related to the structural 

properties of the stands (Kennedy et al., 2012; White et al., 2017). Yet, recovery 

metrics derived from spectral indices and computed either in absolute or relative 

terms are useful indicators of short- to long-term forest recovery dynamics, 

providing information of spatial heterogeneity at the regional scale (e.g. Kennedy 

et al., 2012; White et al., 2017). Furthermore, several studies highlighted the 

effectiveness of disturbance and recovery metrics derived from Landsat time 

series for predicting stand structure when compared with LiDAR data, (e.g. 

Pflugmacher et al., 2012; Vogeler et al., 2016).  
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1.2 Burn severity 

The severity of a disturbance event is defined as its ecological effect on 

organisms, communities and ecosystems and is directly related to the intensity of 

a disturbance (Turner, 2010). Along with frequency and size, severity is one of 

the main components of disturbance regimes, largely influencing the ecological 

responses of forest ecosystems (Johnstone et al., 2016; McDowell et al., 2020). 

Post-disturbance management strategies that promote forest resilience and the 

recovery of ecosystem services rely on the assessment of severity to address 

interventions (Leverkus et al., 2018). In fire ecology, the terms fire and burn 

severity are often used to indicate a different timing for the assessment of severity 

(Cansler and McKenzie, 2012; Lentile et al., 2006; Veraverbeke et al., 2010a). 

Fire severity refers to an initial assessment, i.e. within weeks after fire occurrence 

and within the same season, of the effects directly related to fire intensity, such 

as fuel consumption and instant tree mortality. The term burn severity is widely 

used in remote sensing applications (Keeley, 2009) and refers to an extended 

assessment of severity, i.e. during the first growing season following the fire. 

Burn severity includes both the effects of combustion and the initial ecosystem 

response, e.g. delayed tree mortality and survivorship (Key, 2006). 

Key and Benson (2006) developed an operational approach for mapping burn 

severity at the landscape scale based on medium-resolution satellite imagery, i.e. 

Landsat data. Though this approach was initially developed for forests in the U.S., 

it has been successfully applied in different ecosystems globally, e.g. Soverel et 

al. (2011); Tanase et al. (2011); Veraverbeke et al. (2010a). The approach 

proposed by Key and Benson (2006) relies on integrating remote sensing-based 

change detection and field data collected using the Composite Burn Index (CBI) 

protocol. Specifically, the Normalized Burn Ratio (NBR; García and Caselles, 

1991) derived from Landsat images acquired in the pre- and post-fire growing 

seasons is employed to compute several bi-temporal indices, i.e. the differenced 

Normalized Burn Ratio (dNBR; Key and Benson, 2006), the Relative dNBR 

(RdNBR; Miller and Thode, 2007) and the Relativized Burn Ratio (RBR; Parks 
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et al., 2014). Thresholding bi-temporal indices into ecologically relevant burn 

severity classes is performed by including field measures of burn severity, e.g. 

CBI scores, in parametric models (Key and Benson, 2006; Kolden et al., 2015). 

The CBI protocol has proven to be effective when compared with other measures 

of burn severity, such as the percentage change in tree canopy cover and tree basal 

area (Miller et al., 2009). Matched acquisition timing and optimal seasonal timing 

determine the effectiveness of bi-temporal indices in capturing fire-induced 

spectral changes while reducing the influence of external factors (Key, 2006; 

Miller and Thode, 2007; Veraverbeke et al., 2010b). These latter include plant 

phenology, solar elevation angle, differences in illumination due to topography, 

and moisture content. A method for minimising non-fire induced inter-annual 

changes is the calibration of bi-temporal indices based on spectral variations in 

unburnt areas outside fire perimeter (Key, 2006; Meddens et al., 2016; Miller and 

Thode, 2007; Parks et al., 2014). The optimal seasonal timing for pre- and post-

fire image acquisition corresponds to early-to-middle growing season dates, as 

the vegetation reaches the peak in terms of photosynthetic activity (Eidenshink et 

al., 2007; Key, 2006; Picotte et al., 2020). Recently, limitations related to the 

availability of cloud-free image pairs with matched acquisition timing have been 

overcome through pixel-based compositing algorithms based on the complete set 

of Landsat images acquired during the growing season (Parks et al., 2018; 

Whitman et al., 2020). Frantz et al. (2017) produced pixel-based Landsat 

composites at the regional scale embedding spatial patterns of land surface 

phenology. They achieved phenological coherence of the land surface relative, 

for example, to the peak of the growing season. Among compositing approaches, 

those based on the median (Sagar et al., 2017) or multidimensional medians, e.g. 

the medoid (Flood, 2013) and the geometric median (Roberts et al., 2017), are 

robust towards invalid pixels that were missed by clouds and cloud shadows 

detection algorithms. Therefore, these algorithms produce spatially consistent 

image composites which can serve as input in several processing pipelines, e.g. 

Kennedy et al. (2018). 
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1.3 Disturbance detection 

By altering state and trajectories of forest ecosystems, disturbances have a pivotal 

role in regulating spatiotemporal heterogeneity of these ecosystems (Turner, 

2010). Disturbance regimes characterise temporal and spatial dynamics of 

disturbances, e.g. frequency, timing, size and severity, over long time periods 

(Johnstone et al., 2016; Turner, 2010). During recent decades, climate warming 

and land-use change caused shifts in disturbance regimes, intensifying frequency, 

size and severity of disturbance events and modifying their interactions 

(Johnstone et al., 2016; Mantero et al., 2020; McDowell et al., 2020; Seidl et al., 

2017). Gradual and non-stand replacing disturbances such as forest decline 

associated with drought and heat waves, insect outbreaks and pathogens emerged 

as a pervasive phenomenon in many forest ecosystems (Allen et al., 2010; Cohen 

et al., 2016; Coops et al., 2020). The impact of non-stand replacing disturbances 

is expected to worsen with current trends of climate warming, significantly 

impairing forest carbon storage (Allen et al., 2015). The increased vulnerability 

of forests to climate-driven disturbances has strong implications for forest 

management (Leverkus et al., 2021). Increasing the resilience of forest 

ecosystems should be pursued in several ways, such as promoting tree growth 

through forest thinning or assisting the migration towards disturbance-adapted 

tree species (Allen et al., 2015; Leverkus et al., 2021; Seidl, 2014). 

Landsat time series provide unprecedented opportunities for reconstructing forest 

disturbance dynamics over the last four decades thanks to their consistency in 

space, time and spectral characteristics (Kennedy et al., 2014; Wulder et al., 

2019). A plethora of Landsat time series-based algorithms has been developed 

since the opening of the U.S. Geological Survey Landsat archive in 2008 (Wulder 

et al., 2012). These algorithms were aimed at automating the detection of either 

a broad range of land cover changes or forest disturbance dynamics (Zhu, 2017). 

Differences between automated algorithms were mainly related to the frequency 

of Landsat time series, i.e. intra- or inter-annual, and to the mathematical 

approach they rely on, e.g. thresholding, segmentation, statistical boundary (Zhu, 
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2017). Another characteristic discriminating between algorithms is the capability 

of analysing one spectral band/index per run, i.e. univariate approach, or multiple 

spectral indices/bands, i.e. multivariate approach. While many algorithms were 

developed to target both abrupt and gradual disturbances, several authors found 

that they struggle in detecting low-severity events (Cohen et al., 2020, 2017; 

Rodman et al., 2021). Noise in Landsat time series generated by uncertainties in 

preprocessing operations like geometric and atmospheric correction can mask the 

signal of low-severity events (Cohen et al., 2017; Rodman et al., 2021). Ensemble 

approaches like those proposed by Cohen et al. (2020, 2018) and Healey et al. 

(2018) were effective to improve forest disturbance maps produced with 

automated algorithms, e.g. LandTrendr (Landsat-based Detection of Trends in 

Disturbance and Recovery; Kennedy et al., 2018, 2010) and CCDC (Continuous 

Change Detection and Classification; Zhu et al., 2019). In particular, these studies 

combined results obtained using multiple spectral bands/indices and/or 

algorithms through a secondary classification based on a supervised classifier, 

e.g. random forest. Advantages offered by ensemble approaches depend on the 

complementary information provided either by different wavelengths, e.g. SWIR 

and NIR, or by different algorithms. 

Aside from passive optical imagery, Synthetic Aperture Radar (SAR) data 

acquired by spaceborne radar sensors are effective for detecting forest 

disturbances such as windthrows (Rüetschi et al., 2019) and logging (Ruiz-Ramos 

et al., 2020; Ygorra et al., 2021). SAR data are particularly useful in geographic 

areas characterised by persistent cloud cover, e.g. the tropics, as they are not 

affected by the presence of clouds, thus enabling timely detection of changes to 

the forest cover. Nowadays, freely available SAR data, such as those acquired by 

the Sentinel-1 mission, prompted the development of automated algorithms for 

forest cover mapping and disturbance detection. Many studies based on SAR data 

employed bi-temporal change detection for mapping forest disturbances, e.g. 

Rüetschi et al., (2019). Recently, the detection of changepoints in time series of 

SAR data based on statistical methods like the Cumulative Sum (CUSUM), 
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emerged to be a powerful approach (Ruiz-Ramos et al., 2020; Ygorra et al., 

2021).  

In recent years, statistical methods for detecting changepoints in multivariate time 

series have gained interest because of their ability to analyse multivariate data 

arising in many disciplines (Cho and Kirch, 2020; Truong et al., 2020). The 

aggregation of a test statistic is a widely used method for dealing with the 

complexity associated with multidimensionality, e.g. Groen et al. (2013). 

Changes in multivariate time series can be either dense or sparse, depending 

whether they occur in the majority of the variates or in a subset, respectively. The 

type of change determines the best aggregation method, which is typically the 

maximum in the case of a sparse change or the average in the case of a dense 

change (Groen et al., 2013; Jirak, 2015). Currently, approaches aimed at finding 

the optimal aggregation method based on the type of change is an active research 

topic, e.g. Enikeeva and Harchaoui (2019) and Tickle et al. (2021). 

 

1.4 Thesis objectives and outline 

This thesis aims to deepen the understanding of forest disturbance dynamics at 

the landscape scale through the integration of optical satellite remote sensing and 

field data. In my PhD research project, I explored the potential of multispectral 

data acquired by Landsat and Sentinel-2 missions for tracking post-fire forest 

recovery, mapping burn severity and automating disturbance detection. The 

structure of the thesis is based on the following objectives: 

(i) to evaluate the ability of Landsat-derived spectral indices to track post-fire 

forest recovery in the short- to medium-term; 

(ii) to enhance effectiveness and operational usage of NBR-based bi-temporal 

indices for mapping burn severity; 

(iii) to automate disturbance detection based on Landsat time series over a wide 

range of severities. 

The thesis consists of five chapters: introduction (Chapter 1), research chapters 

(Chapters 2 to 4) and conclusions (Chapter 5). Research chapters are organised 
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as standalone research papers. Chapter 2 and 3 have been published, while 

Chapter 4 has been submitted for publication. Chapter 2 “Forest spectral recovery 

and regeneration dynamics in stand-replacing wildfires of central Apennines 

derived from Landsat time series” focuses on tracking post-fire forest recovery in 

four burnt areas in the central Apennines using Landsat-derived spectral 

vegetation indices. Chapter 3 “Mapping burn severity in the western Italian Alps 

through phenologically coherent reflectance composites derived from Sentinel-2 

imagery” focuses on burn severity mapping in 10 burnt areas in the Western 

Italian Alps using NBR-based bi-temporal indices and a novel image compositing 

approach that embeds spatial patterns of land surface phenology. Chapter 4 

“Change detection by multispectral trends: a Landsat time series-based algorithm 

for forest disturbance mapping and beyond” focuses on the development of an 

automated algorithm for mapping disturbances and their severity by analysing 

multivariate time series. 
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Abstract  

Understanding post-fire regeneration dynamics is an important task for assessing 

the resilience of forests and to adequately guide post-disturbance management. 

The main goal of this research was to compare the ability of different Landsat-

derived spectral vegetation indices (SVIs) to track post-fire recovery occurring in 

burned forests of the central Apennines (Italy) at different development stages. 

Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Moisture Index (NDMI), Normalized Burn Ratio (NBR), Normalized Burn Ratio 

2 (NBR2) and a novel index called Forest Recovery Index 2 (FRI2) were used to 

compute post-fire recovery metrics throughout 11 years (2008–2018). FRI2 

achieved the highest significant correlation (Pearson’s r = 0.72) with tree canopy 

cover estimated by field sampling (year 2017). The Theil–Sen slope estimator of 

linear regression was employed to assess the rate of change and the direction of 

SVIs recovery metrics over time (2010–2018) and the Mann–Kendall test was 

used to evaluate the significance of the spectral trends. NDVI displayed the 

highest amount of recovered pixels (38%) after 11 years since fire occurrence, 

whereas the mean value of NDMI, NBR, NBR2, and FRI2 was about 27%. NDVI 
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was more suitable for tracking early stages of the secondary succession, 

suggesting greater sensitivity toward non-arboreal vegetation development. 

Predicted spectral recovery timespans based on pixels with a statistically 

significant monotonic trend did not highlight noticeable differences among 

normalized SVIs, suggesting similar suitability for monitoring early to mid-

stages of post-fire forest succession. FRI2 achieved reliable results in mid- to 

long-term forest recovery as it produced up to 50% longer periods of spectral 

recovery compared to normalized SVIs. Further research is needed to understand 

this modeling approach at advanced stages of post-fire forest recovery. 

2.1 Introduction 

The interaction between climate and land-use changes is raising the frequency, 

surface area, and severity of wildfires in the Mediterranean Basin (Hernandez et 

al., 2015; Pausas and Fernández-Muñoz, 2012; San-Miguel-Ayanz et al., 2017, 

2013). Among climate change effects, long periods of dry weather are expected 

to increase fire danger in southern European mountains both under short- and 

long-term climatic scenarios (de Rigo et al., 2017). The development of 

appropriate management strategies is essential to prevent fire occurrence and to 

enhance forest recovery (Moreira et al., 2012; Spasojevic et al., 2016). The latter 

is a critical ecological process after a stand-replacing disturbance, referring to the 

re-establishment or re-development of forest biomass and canopy structure 

(Bartels et al., 2016; Frolking et al., 2009; Scheller and Swanson, 2015). This 

process affects regional and global carbon cycles (Goetz et al., 2012; Pan et al., 

2011) and promotes numerous ecosystem services (Frolking et al., 2009). 

Furthermore, forest degradation in the xeric Mediterranean mountains induced by 

a fire frequency increase can occur even in stands dominated by fire-adapted tree 

taxa (Moreira et al., 2012). Forest recovery at a landscape scale is often modeled 

as a fast and homogeneous process. However, depending on the fire severity 

level, it might be a very diversified one (Scheller and Swanson, 2015), with great 

changes in forest structure and species composition (Keeley, 2009).  
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Since past decades, satellite optical remote sensing was widely adopted for the 

analysis of post-fire forest recovery (Gitas et al., 2012). Imagery collected by the 

United States (US) Landsat program is currently considered as the most valuable 

source of time-series data at a landscape scale (Frolking et al., 2009; Vogelmann 

et al., 2016). This is primarily due to the long-term availability of systematically 

acquired images, spanning over 40 years. The unique combination of 30-m spatial 

resolution and 16 days of revisiting time enables assembling conspicuous Landsat 

time series (LTS) (Banskota et al., 2014). Monitoring forest regeneration 

development through gradual changes in the optical spectral domain is 

challenging, given the confounding effects from a variety of factors such as 

phenology and sun angles (Song and Woodcock, 2003; Vogelmann et al., 2016). 

To reduce these types of noise, selecting near-anniversary acquisition dates (Song 

and Woodcock, 2003) or using unburned neighboring pixels as control areas 

(Diaz-Delgado et al., 2001; Lhermitte et al., 2010) were proposed. However, 

limitations such as data gaps in the time series (Vogelmann et al., 2016) can 

negatively affect outcomes. Recent development in dense Landsat time-series 

collection by including all the clear yearly observations (Zhu et al., 2012) proved 

to be useful in characterizing both intra-annual variations and long-term temporal 

trajectories (Vogelmann et al., 2016).  

Spectral vegetation indices (SVIs) (Diaz-Delgado et al., 1998; Pickell et al., 2016; 

Schroeder et al., 2011; Viedma et al., 1997) and spectral mixture analysis (SMA) 

(Röder et al., 2008; Solans Vila and Barbosa, 2010; Veraverbeke et al., 2012) are 

common remote-sensing techniques to track post-fire vegetation recovery using 

LTS, and were adopted in different vegetation communities and ecosystems (Chu 

and Guo, 2013; Gitas et al., 2012). SVIs from LTS are widely used since they can 

maximize the sensitivity to plant biophysical factors and reduce the noise from 

atmosphere, landforms, and soil variability (Jensen, 2014; Song et al., 2015). 

Specifically, Normalized Difference Vegetation Index (NDVI) was widely 

employed to assess post-fire vegetation recovery using a multi-temporal approach 

in several burned sites of the Mediterranean Basin, primarily because of the high 

correlation achieved with field measurements such as fractional vegetation cover 
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(Clemente et al., 2009; Solans Vila and Barbosa, 2010). Other studies in North 

American boreal forests focused on indices contrasting the near-infrared (NIR) 

and shortwave-infrared (SWIR) bands of Landsat TM/ETM+/OLI sensors to 

track post-fire recovery (Cohen et al., 2010; Pickell et al., 2016; Schroeder et al., 

2011). Since the shortwave-infrared region of the spectral domain is sensitive to 

variations in the forest structure (Cohen and Goward, 2004; Cuevas-González et 

al., 2009; Song and Woodcock, 2003), Normalized Difference Moisture Index 

(NDMI) (Hardisky et al., 1983) and Normalized Burn Ratio (NBR) (Key et al., 

1999) or the SWIR1 band alone (Kennedy et al., 2007; Pickell et al., 2016) are of 

great interest to monitor post-disturbance forest recovery. Additionally, 

Normalized Burn Ratio 2 (NBR2) takes advantage of the contrast between the 

two Landsat sensor SWIR bands, with promising results in the assessment of 

post-fire vegetation recovery in the shrublands of California (Storey et al., 2016) 

and sclerophyll forests of Australia (Hislop et al., 2018).  

The Integrated Forest z-score (IFZ) is a threshold-based index that was initially 

developed as a part of the Vegetation Change Tracker algorithm (Huang et al., 

2010) in order to target abrupt forest cover changes at the pixel level. Specifically, 

IFZ is an inverse measure of the likelihood of a pixel to be forested, which is 

obtained by computing its spectral distance from defined forest pixels. Some 

authors proposed using the reciprocal of IFZ, termed Forest Recovery Index 

(FRI), to allow for the comparison with other spectral indices growing in direct 

proportion with the amount of vegetation cover such as NDVI (Chu et al., 2016). 

To date, few studies employed either IFZ or FRI in post-fire forest recovery 

tracking (Chen et al., 2011; Chu et al., 2016; Zhao et al., 2016), but its potential 

toward the detection of long-term forest recovery dynamics was highlighted 

within ponderosa pine forests (Chen et al., 2011), boreal larch forests (Chu et al., 

2016), and a mosaic of mixed conifer forests in the Greater Yellowstone 

Ecosystem (Zhao et al., 2016). 

Post-fire recovery rates were assessed through trend analysis on LTS which 

involved fitting linear, non-linear (Röder et al., 2008), and segmented (Kennedy 

et al., 2010) pixel-wise models to near-anniversary date images to characterize 
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the spatial variability of this gradual process. This approach proved to be 

effective, but trend analysis based on single curve fitting can be biased by outliers 

(Banskota et al., 2014), making the adoption of robust regression models 

preferable. Another challenging factor to be considered is the land-cover 

heterogeneity due to the anthropogenic disturbances. This is particularly evident 

in human-shaped landscapes featuring a complex patch mosaic of crops, forests, 

pastures, and human infrastructures.  

The present study aimed to compare the efficiency of different spectral vegetation 

indices to assess the early forest recolonization patterns in four burned landscape 

mosaics of the central Apennines (Italy). Wildfires in this mountain ecoregion are 

one of the most common natural disturbances (Vacchiano et al., 2016; van Gils 

et al., 2010), but forest recovery dynamics is scarcely studied with a remote-

sensing approach. Our general hypotheses to be tested were as follows: (a) 

Landsat-derived spectral vegetation indices employing the SWIR bands have 

enhanced sensitivity toward post-fire forest recovery dynamics; (b) forest 

regeneration processes under different burn severity degrees and forest types can 

be inferred from recovery patterns of spectral vegetation indices; (c) the ability 

of Landsat-derived spectral vegetation indices to track diachronic post-fire forest 

recovery dynamics can be assessed through spatially explicit robust regression 

models. 

2.2 Materials and methods  

2.2.1 Study areas  

The study was held in the central Apennines and it included areas of the Marche 

and Abruzzo administrative regions. Four large stand-replacing wildfires were 

located using MODIS Collection 6 Level 3 monthly burned area products 

(MCD64A1) (Giglio et al., 2018). The correspondent study areas were named 

with the nearest municipality: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), 

and Roccamorice (RM) (Figure 2.1). This dataset also provided the starting date 

of each wildfire and the overall burned surface area (Table 2.1). The extent of 
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forest areas affected by wildfires was initially estimated by intersecting the 

Corine Land Cover 2006 (CLC) forest cover map (codes 311, 312, 313) with the 

MODIS burned area products in a GIS environment (Table 2.1).  

Figure 2.1. Location and wildfire surface (orange polygons) from MODIS 

burned area (MCD64A1) of the four study areas: Roccafluvione (RF), L’Aquila 

(LA), Navelli (NA), and Roccamorice (RM). 

The large wildfires which occurred in central and southern Italy during the 

summer of 2007 were driven by severe climate conditions, similar to those arising 

in Greece during the same year (Camia and Amatulli, 2009; Joint Research 

Centre, 2008). The occurrence of previous prolonged drought periods, the high 

summer temperatures, and strong winds enhanced the spread of large wildfires 

(Joint Research Centre, 2008). Other environmental and social factors 

contributed to raising the fire risk in the study areas, such as the abandonment of 

agricultural lands and the lack of regular fire prevention forest management (Joint 

Research Centre, 2008). Moreover, the suppression of these wildfires was made 

difficult due to their almost synchronic occurrence (same days of July and 
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August) (Joint Research Centre, 2008). The impacted stands were mainly conifer 

plantations pure or mixed with indigenous broadleaved woodlands classified into 

three different forest types of the regional forest inventories. Hardwood stands 

were dominated by pubescent oak (Quercus pubescens) (Po) or by mixed manna 

ash (Fraxinus ornus) and European hop-hornbeam (Ostrya carpinifolia) (Ma). 

European black pine (Pinus nigra) (Pp) dominated conifer plantations.  

Table 2.1. Wildfire information, and climate and landform properties of the four 

study areas: Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice 

(RM). 

 RF LA NA RM 

Fire start date  
21 July 

2007 

9 August 

2007 

14 July 

2007 

23 July 

2007 

Overall burned area 

(hectares) 
2753 530 6939 1823 

Forest burned area 

(hectares) 
1860 391 1896 427 

Annual mean temperature 

(°C) 
12.4 11 11.8 10.9 

Annual mean precipitation 

(mm) 
820.9 856.7 827.1 743.9 

Mean altitude (m) ± SD 628 ± 146 977 ± 104 787 ± 206 933 ± 206 

Mean slope (°) ± SD 28 ± 9 21 ± 8 17 ± 9 17 ± 9 

Mean roughness index 23 12 9 10 

Heat Load Index ± SD 
0.76 ± 

0.09 
0.79 ± 0.05 0.74 ±0.06 

0.76 ± 

0.07 

Climate and landform similarities between the study areas (Table 2.1) were 

highlighted to support the comparison of post-fire recovery dynamics between 

these sites. Climatic data were extracted from WorldClim Version 2 grids with a 

spatial resolution of ~1 km2 (Fick and Hijmans, 2017), whereas 
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geomorphological features were derived from the 10-m resolution TINITALY 

DEM (Tarquini and Nannipieri, 2017). 

2.2.2 Dataset and preprocessing 

Forest regeneration dynamics were explored using a series of Landsat annual 

image composites at one-year intervals between 2001 and 2018, resulting in a 

total period of 18 years (seven pre-fire and 11 post-fire) for each study area. 

Annual composites were produced with priority to images acquired closest to the 

day of peak (DOP) of the same growing season and with the highest percentage 

of valid pixels (i.e., not contaminated by clouds/cloud shadows or with missing 

values). The selected DOP corresponds to 12 July in non-leap years (day-of-year 

197) and was derived from the EVI2 Long-Term Average Phenology (from 1980 

to 2010) available at the Vegetation Index and Phenology Lab Data Explorer 

(Vegetation Index and Phenology Lab, 2011), which contains historical annual 

phenology parameters obtained from AVHRR and MODIS sensors for 

homogeneous vegetation clusters (Didan, 2010). The least cloud-contaminated 

acquisitions available for the study areas in the growing season (1 June–31 

August) were selected to produce annual composites. The dataset includes 

Landsat TM, ETM+, and OLI images acquired in the WRS-2 Path/Row 190/30, 

190/31, and 191/30 (details are provided in Table S2.1). The majority of Landsat 

data was provided by the USGS Earth Resources Observation and Science 

(EROS) Center Science Processing Architecture (ESPA) On-Demand Interface 

(“USGS Earth Resources Observation and Science (EROS) Center Science 

Processing Architecture (ESPA) On Demand Interface,” 2018) processed in 

surface reflectance (Level-2 Science Products). Surface reflectance products of 

Landsat 5 TM and Landsat 7 ETM+ were generated using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006). 

Instead, Landsat 8 OLI processing was based on the Landsat Surface Reflectance 

Code (LaSRC) (Vermote et al., 2016). Two Landsat 5 TM scenes acquired in 

2008 (WRS-2 Path/Row 190/31) were available only in the ESA Landsat archive 
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(“ESA Online Dissemination,” 2018) at Level-1T (radiometrically calibrated and 

orthorectified using ground control points and DEM). They were co-registered 

with USGS scenes using the tool AROSICS (Scheffler et al., 2017) and further 

converted to surface reflectance using the 6S radiative transfer model (Vermote 

et al., 1997) employed by LEDAPS and implemented in GRASS GIS 7.2 

(GRASS Development Team, 2017; Neteler et al., 2012). Clouds and cloud 

shadows were masked with the function of mask method (Zhu et al., 2015; Zhu 

and Woodcock, 2012). As Landsat 8 OLI images were about one-third of all 

images used in this study, they were calibrated to those acquired by Landsat 7 

ETM+ through gain and offset coefficients (Roy et al., 2016). 

2.2.3 Fire perimeter and burn severity assessment 

Fire perimeter and the spatial distribution of burn severity patterns within each 

study area were assessed using the Relative difference Normalized Burn Ratio 

(RdNBR) (Miller and Thode, 2007). Single Landsat TM summer images of 2006 

and 2008 were employed to compute RdNBR as described by Equations (1), (2), 

and (3). Table S2.2 (Supplementary Materials) provides detailed information on 

these images. 

𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2) (1) 

𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 = ��𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∗ 1000� − 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (2) 

𝑁𝑁𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁

��𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
 (3) 

The evaluation of spectral changes caused by the fire on forest ecosystems during 

the following vegetative season is defined as an extended assessment of remotely 

sensed burn severity and included first- and second-order effects caused by fire 

(Key, 2006; Key and Benson, 2006; Veraverbeke et al., 2010). Because burn 

severity assessment was not performed through field surveys, the thresholds 
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defined by Miller and Thode (Miller and Thode, 2007) were used to define burn 

severity classes (low, moderate, and high) of the RdNBR. The dNBR offset was 

computed by averaging dNBR values within undisturbed forest pixels which were 

delineated for each study area (Section 2.2.5) to minimize changes in reflectance 

not caused by fire (Key, 2006; Miller and Thode, 2007; Parks et al., 2014). Fire 

perimeters of each study area were corrected through on-screen digitization of 

burned pixels in post-fire Landsat TM images (2008) using false-color 

composites (RGB = SWIR2, NIR, Red), as misclassification between unchanged 

and low-severity pixels occurred frequently.  

2.2.4 Area of interest within fire perimeters 

Regeneration dynamics were investigated in those groups of burned pixels 

containing at least 10% of tree canopy fractional cover before fires and that were 

larger than 0.5 ha. These parameters were drawn from the definition of forest 

provided by the Food and Agriculture Organization (FAO) of the United Nations 

(FAO, 1998). Pre-fire tree canopy fractional cover within each fire perimeter was 

computed using pre-fire forest/non-forest land-cover maps obtained from the 

classification of high-resolution (0.5 m) RGB aerial orthophotos provided by the 

Italian Agency for payments in agriculture (AGEA) (Table 2.2) through an 

object-oriented classification approach using Trimble eCognition Developer 

software. Firstly, a multi-resolution bottom-up segmentation (Baatz and Schäpe, 

2000; Benz et al., 2004) was applied in order to aggregate groups of tree canopies 

by repeatedly increasing the scale factor toward the stand scale. Secondly, the 

support vector machine (SVM) classifier (Huang et al., 2002; Tzotsos and 

Argialas, 2008) was applied to the coarser-scale objects using the radial basis 

function (RBF) kernel with tuning parameters “cost” (C) and gamma proposed 

by Qian et al. (Qian et al., 2015). On-screen validation of 200 randomly 

distributed points per forest/non-forest class (400 points for each study area) was 

performed using orthophotos as ground truth reference (Table 2.2).  
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Table 2.2. Italian Agency for payments in agriculture (AGEA) orthophoto 

acquisition dates, accuracy assessment metrics of forest/non-forest cover maps, 

and percentage of forest cover within fire perimeters. Accuracy metrics: 

producer’s accuracy (PA), user’s accuracy (UA), overall accuracy, and K statistic 

values for each study area (Roccafluvione—RF, L’Aquila—LA, Navelli—NA, 

Roccamorice—RM). 

 RF LA NA RM 

Acquisition dates 
18 June 

2007 

14 May 2007 

9 September 

2007 

14 

May2007 

18 June 

2007 

21 June 

2007 

9 July 

2007 

PA forest cover (%)  95.68 99.45 97.08 94.44 

PA non-forest cover 

(%) 
89.3 91.71 93.46 93.56 

UA forest cover (%) 88.5 91 93.2 93.5 

UA non-forest cover 

(%) 
96 99.5 97.2 94.5 

Overall accuracy (%) 92.25 95.25% 95.2% 94% 

Kappa coefficient 0.845 0.905 0.904 0.88 

Classified forest cover 

(%) 
85.75 73.38 39.11 32.68 

 

2.2.5 Spectral vegetation indices 

Post-fire temporal trajectories of burned forests were assessed using five spectral 

vegetation indices (SVI): NDVI (Normalized Difference Vegetation Index) 

(Tucker, 1979), NDMI (Normalized Difference Moisture Index) (Hardisky et al., 

1983), NBR (Normalized Burn Ratio) (Key et al., 1999), NBR2 (Normalized 

Burn Ratio 2) (Hislop et al., 2018; Storey et al., 2016; Stroppiana et al., 2012), 

and FRI2 (Forest Recovery Index 2), which is a revised version of FRI (Forest 

Recovery Index) (Chu et al., 2016). They were used with Landsat imagery both 
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for the detection of forest disturbances including fires and to monitor post-

disturbance forest dynamics. NDVI and NDMI, and NBR and NBR2 were 

computed as shown in Equations (4) and (5), and Equation (1) and (6), 

respectively. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁–𝑁𝑁𝑅𝑅𝑑𝑑)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑑𝑑) (4) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1) (5) 

𝑁𝑁𝑁𝑁𝑁𝑁2 =
(𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2)
(𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁2) (6) 

Like FRI, FRI2 (Equation (7)) is the reciprocal of IFZ (Huang et al., 2008) 

(Equation (8)). Adding 1 to IFZ at the denominator avoided obtaining wild values 

when IFZ was close to 0 and constrained FRI2 to the range between 0 and 1.  

𝐹𝐹𝑁𝑁𝑁𝑁2 =
1

(𝑁𝑁𝐹𝐹𝐼𝐼 + 1) (7) 

𝑁𝑁𝐹𝐹𝐼𝐼 = � 1
𝑁𝑁𝑁𝑁

 � �
𝑏𝑏𝑝𝑝 − 𝑏𝑏�𝑝𝑝
𝑆𝑆𝑁𝑁𝑝𝑝

�
2𝑁𝑁

𝑝𝑝=1
 (8) 

In Equation (8), 𝑏𝑏𝑝𝑝 is the spectral value of the pixel in band i, 𝑏𝑏𝚤𝚤�  and 𝑆𝑆𝑁𝑁𝑝𝑝 are the 

mean and standard deviation obtained from forest samples in band i, and NB is 

the number of spectral bands. The Red, SWIR1, and SWIR2 Landsat bands were 

employed due to their sensitivity to forest cover changes (Huang et al., 2010). 

Yearly means and standard deviations of forest cover were extracted from a forest 

mask with boundaries outlined by increasing fire perimeter extents of 4 km 

(Euclidean distance). Specifically, this mask was built selecting those Landsat 

pixels with a tree canopy fractional cover higher than 90% exhibiting a stable 

behavior over time. Because pre-fire tree canopy fractional cover was available 

only within the fire perimeters (Section 2.2.4), it was estimated outside them 

using a Random Forest model at the Landsat pixel scale. Pre-fire tree canopy 

cover maps within the fire perimeters were employed to train the model and the 
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Landsat data (six spectral bands acquired during pre-fire dates in 2007 and its 

derived SVIs) were used as predictor variables. At last, stable forest pixels were 

outlined by selecting those with an NBR maximum range lower than 0.15 for the 

entire analysis interval (2001–2018).    

2.2.6 Field data and SVI correlation 

Tree canopy fractional cover including both dominant and overtopped trees was 

visually assessed in the field (study area RF) during the summer of 2017 (June 

and July) using 38 circular plots with 30-m diameter. Centroids of the plots were 

located close to the center of each Landsat image pixel using a Trimble Juno 3B 

handheld GPS and a Trimble Pro 6T GNSS receiver having sub-metric horizontal 

accuracy. SVIs values were extracted using a bilinear interpolation method to 

limit mismatches between Landsat pixels centroids location and field plots as 

suggested by Parks et al. (Parks et al., 2014). Tree canopy fractional cover was 

correlated with the SVIs obtained from the image composite of 2017 using 

Pearson’s correlation test.  

2.2.7 Post-fire recovery metrics and temporal trajectories  

A Relative Difference SVI (RDSVI) index was computed for each post-fire SVI 

as shown in Equation (9), using an algorithm similar to the ones proposed for the 

burn severity detection (Miller and Thode, 2007; Parks et al., 2014). Forest 

spectral recovery causes a decrease in RDSVI values through time since the 

difference between pre-fire and post-fire decreases as well. The relativization of 

SVIs allowed for the comparison between recovery dynamics occurring under 

different ecological conditions such as pre-fire canopy cover density and different 

forest types. The median pixel value from 2001 to 2007 for each SVI was taken 

as reference for the pre-fire condition. The averaged difference between pre-fire 

median and annual post-fire SVIs was extracted from undisturbed forest cover 

(Section 2.2.4) to account for inter-annual changes of SVIs. These changes can 

be attributed to external factors such as phenology and sun angle, similarly to the 
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offset employed for burn severity assessment (Section 2.2.3). This offset was 

applied to normalized SVIs (NDVI, NDMI, NBR, and NBR2) as FRI2 is already 

obtained using yearly spectral values of undisturbed forest cover.  

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁 =
��𝑆𝑆𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑁𝑁𝑁𝑁𝑚𝑚𝑝𝑝ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑝𝑝𝑚𝑚𝑝𝑝� − 𝑆𝑆𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝑆𝑆𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
 (9) 

Post-fire forest spectral trajectories were assessed by averaging RDSVI values 

extracted from a set of sampling points located in different burn severity classes 

and forest types within the area of interest. These points were randomly 

distributed at a minimum distance of 200 meters in order to reduce the influence 

of spatial autocorrelation. Global Moran’s I test was performed using incremental 

distances to determine this lowest one. The number of sampling points varied 

among study areas from 491 to 77, according to the extent of each wildfire.  

2.2.8 Statistical analysis of recovery trends 

The non-parametric Theil–Sen (TS) slope estimator of linear regression (Sen, 

1968; Theil, 1992) was employed to assess pixel-wise changes of RDSVI 

occurring within the area of interest from 2010 to 2018. The time frame for the 

analyses started on the third year since fire occurrence. The early post-fire 

succession in Mediterranean ecosystems usually features a prompt colonization 

of annual herbs and perennial woody shrubs (Capitanio and Carcaillet, 2008). 

This could yield large increases of SVIs (Diaz-Delgado et al., 2001; Röder et al., 

2008; Viedma et al., 1997), biasing the trend of forest spectral recovery. The TS 

slope estimator was chosen as it is insensitive to up to 29% of outliers (Neeti and 

Eastman, 2011; Nitze and Grosse, 2016) and it proved to be effective in detecting 

SVI trends of forest ecosystems (Czerwinski et al., 2014; Nitze and Grosse, 2016; 

Olthof et al., 2014). This method involves computing the median of all the slopes 

between observation values at all pairwise time steps for a total of n(n − 1)/2 

slopes. Equation (10) displays how it is computed for observations Yj and Yi taken 

at time tj and ti. 
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𝑇𝑇𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 = 𝑚𝑚𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑝𝑝
𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑝𝑝

� ;  𝑚𝑚 < 𝑗𝑗, 𝑡𝑡𝑝𝑝  ≠  𝑡𝑡𝑗𝑗  (10)  

The intercept of the linear trend was computed with the Conover equation (11) 

(Conover, 1980), 

𝑚𝑚𝑚𝑚𝑡𝑡𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑠𝑠𝑡𝑡 = 𝑚𝑚𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌) − 𝑇𝑇𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 ×  𝑚𝑚𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) (11) 

where median(Y) and median(t) are the medians of observations (Y) and of the 

time-series length (t). The significance of the TS slope is commonly tested using 

the rank-based Mann–Kendall (MK) test (Kendall, 1975; Mann, 1945; Neeti and 

Eastman, 2011; Yue et al., 2002) through which the existence of a monotonic 

trend is evaluated, without any assumption regarding its shape. The direction and 

the power of a monotonic trend is expressed by Kendall’s rank correlation 

coefficient (tau) (Equation (12)) (Mann, 1945; Yue et al., 2002), 

𝜏𝜏 =
2𝑆𝑆

𝑚𝑚(𝑚𝑚 − 1) (12) 

where −1 ≤ τ ≤ 1. The test statistic S proposed by Mann (Mann, 1945) depends 

on a series of n repeated observations taken over equal time intervals (Equation 

(13)).  

𝑆𝑆 =  � � �
−1, 𝑚𝑚𝑖𝑖 𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑝𝑝 < 0  

0, 𝑚𝑚𝑖𝑖 𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑝𝑝 = 0
1, 𝑚𝑚𝑖𝑖 𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑝𝑝 > 0

𝑚𝑚

𝑗𝑗=𝑝𝑝+1

𝑚𝑚−1

𝑝𝑝=1

 (13) 

The MK test assumes the observations to be a set of statistically independent 

variables (Neeti and Eastman, 2011; von Storch, 1995) and the presence of serial 

correlation in SVI time series can lead to overestimating the portion of significant 

trends (Detsch et al., 2016; Neeti and Eastman, 2011). Because it appeared to be 

likely that changes in SVIs observed in Landsat time series are influenced by the 

underlying post-fire forest recovery process, it is worth considering the existence 

of a lag-one positive serial correlation (e.g., high observations may tend to follow 

high observations). Lag-one serial correlation was, thus, removed prior to 

applying the MK test using the trend-free pre-whitening procedure described in 
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Yue et al. (Yue et al., 2002) and implemented in the R (R Core Team 2018) 

package “zyp” (Bronaugh and Werner, 2018). Regression coefficients were used 

to predict the time required by each SVI to return to its pre-fire spectral values by 

setting the value of RDSVI equal to zero. Only those pixels displaying jointly a 

significant negative monotonic trend (α-level <0.01) in all of the SVIs in the MK 

test were considered reliable to assess recovery times.  

2.3 Results 

2.3.1 Relationship between field data and Landsat-derived SVIs 

The Pearson’s correlation test, employed to explore the linear relationship 

between tree canopy fractional cover available from field surveys and Landsat 

SVIs, produced slightly different values depending on the SVI (Figure 2.2). 

NDVI and FRI2 attained the lowest (0.66) and the highest (0.72) values of 

Pearson’s r, respectively, whereas NDMI, NBR, and NBR2 showed identical 

results. 
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Figure 2.2. Correlation matrix of Pearson’s test between tree fractional canopy 

cover (Tree fCover) obtained from field data and Landsat spectral vegetation 

indices (SVIs). Asterisks indicate that all tests were significant (p < 0.001). 

2.3.2 Temporal trajectories of post-fire RDSVIs 

Post-fire temporal trajectories of RDSVIs displayed that forest spectral recovery 

occurred as the difference of each SVI with its pre-fire value was reduced through 

the years (Figure 2.3). Different recovery patterns occurred between SVIs (rows 

in Figure 2.3) and between study areas, burn severity classes, and forest types 

(columns in Figure 2.3). SVIs exhibited noticeable differences concerning the 

variation range, the short-term post-fire behavior (three years), and inter-annual 

fluctuations. A wider range of values was observed in NDMI, NBR, and FRI2 

compared to NBR2 and NDVI. The short-term post-fire behavior of normalized 

SVIs (NDVI, NDMI, NBR, and NBR2) displayed a sharp recovery, whereas 

FRI2 highlighted a more constant recovery rate through time. Inter-annual 

fluctuations of NDVI, NBR2, and FRI2 were less pronounced compared to those 

of NDMI and NBR. Recovery patterns of study areas RF and RM were similar 

through the entire time series as observed between study areas NA and LA 

(Figure 2.3a). Patterns of temporal trajectories at different burn severity classes 

highlighted that forest spectral recovery in the low and moderate class was 

generally at an advanced stage at the end of the time series (Figure 2.3b). 

Temporal trajectories at different forest types highlighted that broadleaved-

dominated stands achieved slightly higher spectral recovery than those dominated 

by conifers (Figure 2.3c). 
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Figure 2.3. Post-fire temporal trajectories of Relative Difference SVIs (RDSVIs) 

(y-axis) at one-year intervals (x-axis) divided by study area (a), burn severity (b), 

and forest type (c). Years are expressed relative to fire occurrence. Study areas: 

Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM). 

Forest types: Po (pubescent oak), Pp (pine plantations), and Ma (manna ash and 

European hop-hornbeam). 

2.3.3 Percentage of SVI recovered pixels 

The percentage of recovered pixels for each SVI was computed considering 

pixels that completely recovered their pre-fire values by the 11th year after fire 

occurrence. They were aggregated by study area, burn severity class (Figure 

2.4a), and forest type (Figure 2.4b). On average, NDVI displayed the highest 
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percentage (38.26%) compared to NDMI (28.83%), NBR (27.54%), NBR2 

(26.23%), and FRI2 (24.92%). Differences between NDVI and the other SVIs 

increased for burn severity classes. In the high-burn-severity class, NDVI 

recovered 12.34% of pixels, whereas the average over NDMI, NBR, NBR2, and 

FRI2 was 5.5% (Figure 2.4a). Moreover, FRI2 displayed a larger separation 

between the recovered pixel percentage in the low class compared to the moderate 

and the high classes. Notably, the percentage of NDVI recovered pixels in Pp 

forests was higher (35.35%) compared to the mean value of the other SVIs 

(19.96%). The comparison between burn severity classes highlighted relevant 

differences of recovered pixel percentages, since the SVI averages were 50.36%, 

29.42%, and 6.87% in the low, moderate, and high class, respectively. Within 

forest types, averaged recovery percentage of Po (32.03%) was higher than the 

averages of Pp (23.04%) and Ma (18.67%) (Figure 4b).  

 

Figure 2.4. Percentage of recovered pixels aggregated by burn severity class (a) 

and forest type (b). Po: pubescent oak; Pp: pine plantations; Ma: mixed manna 

ash and European hop-hornbeam. 

2.3.4 Long-term trends of RDSVIs 

Long-term forest spectral recovery was evaluated through the median value of 

time required to attain pre-fire spectral conditions (Table 2.3) and by assessing 

the proportion of negative (τ < 0) or positive (τ > 0) significant trends (p < 0.01) 
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to the total amount of detected trends at the pixel level (Table 2.4). The number 

of pixels displaying a significant negative simultaneous trend of all the SVIs was 

2385 (214.65 ha). Among normalized SVIs, differences of the predicted recovery 

time length within each burn severity class and each forest type were very limited 

considering that the largest one was in pine plantations, and spanned over 1.27 

years. The recovery time instead varied among different fire severity classes and 

ranged from 8.56 years of NDMI in the low-burn-severity class to 12.20 years of 

NBR2 in the high-severity class. As for forest types, years ranged between 9.74 

for NDVI and 12.36 for NBR2 in Po and Ma, respectively. FRI2 instead required 

a longer time to attain spectral recovery compared to normalized SVIs. The 

difference in recovery time between FRI2 and the average of the normalized 

SVIs, expressed as the absolute value of years and as the relative difference, 

ranged from 1.3 years (14.7%) in the low-burn-severity class to 6.2 years (51.8%) 

in the high-burn-severity class. Among forest types, these differences varied from 

two years (19.5%) in Po to 4.9 years (45.9%) in Pp. The spatial distribution of 

Kendall’s tau provided for each study area (Figure 2.5) depicts where recovering 

(green) or declining trends (red) were strictly monotonic and, thus, statistically 

significant for the MK test, depending upon each RDSVI. Considering those 

pixels exhibiting a recovery trend (negative tau), the percentage of significant 

ones was noticeably different both for SVIs and study areas (Table 2.4). Over the 

four study areas, FRI2 attained the lowest mean percentage of significant 

recovery trends (9.04%) compared to normalized SVIs (22.31%). In particular, 

study areas RM and LA exhibited the lowest percentage of significant recovering 

trends with FRI2, while this difference was less evident considering normalized 

SVIs. Moreover, FRI2 displayed a noticeable amount of pixels with a significant 

declining trend in the study area LA (5.6%) which was higher than those with a 

recovery trend (3.67%) (Figure 2.5). 

Table 2.3. Median values and interquartile ranges (IQRs) of years required to 

complete forest spectral recovery within burn severity classes and forest types by 

pixels with a significant recovery trend of each Relative Difference spectral 



47 
 

vegetation index (RDSVI) (p < 0.01). Po: pubescent oak; Pp: pine plantations; 

Ma: mixed manna ash and European hop-hornbeam. 

 
NDVI 

(IQR) 

NDMI 

(IQR) 

NBR 

(IQR) 

NBR2 

(IQR) 

FRI2 

(IQR) 

Burn 

severity  

Low 
8.99 

(3.82) 

8.56 

(3.68) 

8.85 

(3.67) 

8.93 

(4.19) 

10.13 

(6.85) 

Moderate 
9.88 

(3.27) 

9.70 

(3.23) 

10.03 

(3.02) 

9.93 

(3.75) 

13.38 

(10) 

High 
12.02 

(2.53) 

11.68 

(3.19) 

11.93 

(2.39) 

12.20 

(2.84) 

18.15 

(14.13) 

Forest 

type 

Po 
9.74 

(3.49) 

11.01 

(4.42) 

10.59 

(3.49) 

9.98 

(3.99) 

12.35 

(11.54) 

Pp 
11.1 

(3.25) 

10.08 

(2.89) 

10.73 

(2.80) 

11.12 

(3.33) 

15.69 

(11.39) 

Ma 12.18 (3) 
11.53 

(3.56) 

11.85 

(2.73) 

12.36 

(3.44) 

15.58 

(13.32) 

Table 2.4. Percentage of pixels with a significant negative trend (p < 0.01) of 

RDSVIs with respect to the number of pixels within the area of interest of the 

study areas. Study areas are Roccafluvione (RF), L’Aquila (LA), Navelli (NA), 

and Roccamorice (RM). 

 
Study 

area 
NDVI NDMI NBR NBR2 FRI2 

Percentage with a negative 

trend (τ < 0) 

RF 26.86 36.48 39.88 38.42 18.24 

LA 19.49 16.04 21.97 27.92 3.67 

NA 14.87 18.9 26.99 19.06 10.9 

RM 7.56 10.65 17.07 14.87 3.35 
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Figure 2.5. Maps of Kendall’s tau rank correlation coefficient relative to RDSVI 

trends obtained with the Mann–Kendall test. Kendall’s tau values range from 1 

to −1. Positive values of tau are related to declining trends, whereas negative 

trends highlight spectral recovery. Study areas are Roccafluvione (RF), Navelli 

(NA), Roccamorice (RM), and L’Aquila (LA). 

2.4 Discussion 

2.4.1 Main differences between SVIs when tracking forest spectral 

recovery dynamics 

Post-fire forest spectral recovery observed in four landscapes of the central 

Apennines is an ongoing heterogeneous process described by the decreasing 

patterns of the recovery metric (RDSVI) computed with all the SVIs. 
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Nevertheless, substantial differences between the temporal patterns of the SVIs 

were observed. The different variation range between normalized SVIs is related 

to the sensitivity of each Landsat band to early post-fire changes (Key and 

Benson, 2006; White et al., 1996) in terms of magnitude and direction. In this 

sense, post-fire variations were found to be higher in those SVIs contrasting one 

of the two SWIR bands and the NIR band (NDMI, NBR) compared to those using 

the Red and NIR bands (NDVI) or both the SWIR bands (NBR2) (Figure 2.3). 

The ability of normalized SVIs to track the rapid spectral recovery occurring soon 

after the fire seems related to their sensitivity toward non-arboreal vegetation 

dynamics rather than to tree canopy cover development, as observed in 

comparisons with IFZ (Chen et al., 2011) and FRI (Chu et al., 2016). The inter-

annual variability of NDVI, NDMI, and NBR was higher respect to that of NBR2 

and FRI2. Since sun angle effects should be minimized by the compositing 

algorithm, which prioritized images acquired closer to a reference Julian day, 

inter-annual fluctuations seem more influenced by phenological and precipitation 

effects. As observed by Song et al. (Song and Woodcock, 2003), phenology 

variations in young stands affect the red, the near-infrared, and the shortwave-

infrared bands, which are the ones employed by NDVI, NDMI, and NBR. On the 

contrary, NBR2 seems less sensitive to variations due to precipitation effects 

(Storey et al., 2016) and FRI2 also minimized inter-annual fluctuations through 

yearly spectral statistics of dense forest cover, displaying a linear behavior 

through time. The higher percentage of recovered pixels achieved by NDVI at 

the 11th post-fire year compared to the other SVIs (Figure 2.4) confirmed its 

broad sensitivity to the amount of photosynthetically active vegetation (herbs, 

forbs, shrubs, and tree regeneration) (Buma, 2012; Schroeder et al., 2011). On the 

contrary, SVIs based on the SWIR bands were characterized by a low percentage 

of recovered pixels, indicating their higher sensitivity both to fire damages on 

forest cover and to the following forest structure recovery as observed in several 

studies on post-fire forest recovery monitoring using optical remote sensing 

(Cuevas-González et al., 2009; Pickell et al., 2016; Schroeder et al., 2011). 



50 
 

Results from field-based measurements indicated FRI2 as the most correlated 

with tree canopy fractional cover. 

2.4.2 Forest spectral recovery of different burn severity classes and 

forest types 

Although thresholds employed for burn severity classes were not meant to be 

used in these study areas, post-fire spectral recovery differences were clearly 

recognizable at increasing burn severity degrees. This distinction was observed 

both in the temporal trajectories of RDSVIs (Figure 2.3b) and in the pixel 

recovery percentages at the 11th post-fire year (Figure 2.4a). Also, these results 

highlighted that there was slightly more similarity between the recovery achieved 

at the moderate- and high-burn-severity classes by FRI2 compared to that attained 

with normalized SVIs. Among the latter, it was also observed that SWIR-based 

SVIs (NDMI, NBR, and NBR2) achieved considerably lower recovery compared 

to that of NDVI (Figure 2.4a). Since serious damages likely occurred to the over-

story layers at the moderate- and high-burn-severity classes, this seemed to 

greatly influence the recovery of FRI2 and SWIR-based normalized SVIs. This 

result suggests that primarily FRI2 and secondly SWIR-based normalized SVIs 

are sensitive to the gradual development of tree canopy cover. Similar results 

were already observed through the correlation between field measurements of 

burn severity and several differenced (post-fire minus pre-fire) SVIs at multiple 

time intervals (Chen et al., 2011). Differences observed in the recovery of SVIs 

between forest types 11 years after fire occurrence seemed to be mainly driven 

by the magnitude of spectral changes detected soon after the fires (Figure 2.3c). 

2.4.3 Forest spectral recovery time derived from monotonic trends 

Modeling trends of the SVI recovery metrics in a spatially explicit manner by 

coupling Mann–Kendall and Theil–Sen methods allowed for the investigation of 

the rate of change at those pixels with a monotonically decreasing trend over time. 

Spectral trends at those locations can be confidently attributed to the development 



51 
 

of a post-fire secondary succession (Czerwinski et al., 2014; Frazier et al., 2018; 

Olthof et al., 2014). In this study, normalized SVIs exhibited spectral recovery 

periods of 12 years or less. However, the periods required by FRI2 to recover 

were up to 50% longer than normalized SVIs, particularly in the high-burn-

severity class. This suggested that FRI2 is more suitable for tracking long-term 

forest recovery which results in slow rates of spectral changes due to the re-

establishment of pre-fire tree canopy cover (sensu Frolking et al., 2009). The 

sensitivity of IFZ and FRI to the advanced stages of the forest succession was 

observed in other studies addressing post-fire forest recovery assessment through 

different SVIs (Chen et al., 2011; Chu et al., 2016) and using IFZ alone (Zhao et 

al., 2016). The results obtained from the prediction of spectral recovery time were 

partly in disagreement with those of recovery percentages (Figure 2.4) as, in this 

latter analysis, few differences between normalized SVIs were observed. This can 

be explained because the number of pixels used to predict spectral recovery time 

was 2385, equal to 3.4% of the number of pixels involved in the analysis (69,444). 

These pixels were selected applying two major constraints to the trends of the 

recovery metric of SVIs. It was required that the RDSVI trends were significant 

in the MK test (p < 0.01) and that this was concurrently true at the same location. 

Despite the limited number of pixels, this approach allowed for the comparison 

between the recovery time of SVIs integrating spatial information. The resulting 

number of pixels was likely influenced by the lower percentage of significant 

trends of FRI2 compared to that of normalized SVIs (Table 2.4). Several factors 

could have limited the percentage of FRI2 pixels having a significant recovery 

trend in the MK test. Among these factors, FRI showed sensitivity to the delay of 

post-fire mortality of damaged tree crowns (Chu et al., 2016). Thus, a subtle 

decline in tree canopies throughout the analyzed period could produce significant 

declining trends of the FRI2 recovery metrics. This was particularly relevant in 

the LA study area (Figure 2.5), where the percentage of significant declining 

trends was 5.6% of all the forest burned pixels, which was slightly higher than 

the percentage of recovery trends (3.67%). Also, it is arguable that delayed 

mortality of tree crowns occurring during the analysis period produced a shift in 
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the direction of the spectral changes, resulting in statistically non-significant 

trends of the FRI2 recovery metrics. These factors highlighted that temporal 

trajectories of FRI2 at early stages of post-fire forest succession are generally 

non-monotonic compared to that of normalized SVIs. Hence, it is advisable that 

the assessment of significant trends with the MK test at the pixel level be 

performed considering the advanced stages of forest recovery. Moreover, benefits 

could come from the use of a contextual approach, exploiting the information of 

neighboring trends to assess their monotonicity with the MK test (Neeti and 

Eastman, 2011).   

2.5 Conclusions 

Assessing post-fire forest regeneration dynamics by means of multi-temporal 

change detection analysis with Landsat imagery and SVIs allowed exploring 

different temporal scales of this process. In order to better estimate the future 

trajectories of forest recovery, it is crucial to understand which SVI can serve 

better to achieve this scope. Modeling changes of SVIs over a sufficient period 

with a robust regression approach can effectively address this matter. This study 

highlighted that the enhanced FRI2 ability to track long-term forest regeneration 

dynamics could be associated with ecologically meaningful results regarding the 

length of the forest recovery process and referring to the re-establishment of a 

continuous canopy cover over the burned areas. Therefore, the choice of the most 

suitable SVI for post-fire vegetation recovery assessment should be based upon 

the existing type of vegetation cover and the appropriate timescale. Early to 

medium stages of the post-fire forest secondary succession can be monitored 

using a normalized index employing the SWIR bands. However, at a time scale 

wider than 10–12 years, FRI2 provided reliable results through linear modeling 

extrapolation. Further research is needed to test its suitability at advanced stages 

of post-fire forest recovery.  
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Supplementary material 

Table S2.1. Detailed list of the Landsat data used in this study. Study areas are 

Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM).  

Landsat 

sensor 

WRS-2 

Path/Row 

Acquisition date 

(dd/mm/yyyy) 

Landsat 

archive 

Study 

area 

TM 190/30 17/06/2001 USGS RF 

TM 190/30 03/07/2001 USGS RF 

TM 190/30 04/08/2001 USGS RF 

TM 190/30 20/06/2002 USGS RF 

TM 190/30 23/06/2003 USGS RF 

TM 190/30 09/06/2004 USGS RF 

TM 190/30 30/07/2005 USGS RF 

TM 190/30 15/06/2006 USGS RF 

TM 190/30 18/06/2007 USGS RF 

TM 190/30 20/07/2007 USGS RF 

TM 190/30 20/06/2008 USGS RF 

TM 190/30 07/08/2008 USGS RF 

TM 190/30 25/07/2009 USGS RF 

TM 190/30 12/07/2010 USGS RF 

TM 190/30 29/06/2011 USGS RF 

TM 190/30 16/08/2011 USGS RF 

ETM+ 190/30 23/06/2012 USGS RF 
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ETM+ 191/30 30/06/2012 USGS RF 

OLI 190/30 05/08/2013 USGS RF 

OLI 190/30 08/08/2014 USGS RF 

OLI 191/30 01/07/2015 USGS RF 

OLI 190/30 10/07/2015 USGS RF 

OLI 190/30 26/06/2016 USGS RF 

OLI 190/30 13/06/2017 USGS RF 

OLI 190/30 02/07/2018 USGS RF 

OLI 190/30 18/07/2018 USGS RF 

TM 190/31 03/07/2001 USGS 
LA; NA; 

RM  

TM 190/31 19/07/2001 USGS 
LA; NA; 

RM  

ETM+ 190/31 12/06/2002 USGS 
LA; NA; 

RM  

TM 190/31 20/06/2002 USGS 
LA; NA; 

RM  

TM 190/31 23/06/2003 USGS 
LA; NA; 

RM  

TM 190/31 09/06/2004 USGS 
LA; NA; 

RM  

TM 190/31 28/06/2005 USGS 
LA; NA; 

RM  

TM 190/31 14/07/2005 USGS 
LA; NA; 

RM  

TM 190/31 17/07/2006 USGS 
LA; NA; 

RM  

TM 190/31 18/06/2007 USGS 
LA; NA; 

RM  

TM 190/31 20/07/2007 USGS 
LA; NA; 

RM  

TM 190/31 06/07/2008 ESA 
LA; NA; 

RM  
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TM 190/31 23/08/2008 ESA 
LA; NA; 

RM  

TM 190/31 25/07/2009 USGS 
LA; NA; 

RM  

TM 190/31 10/06/2010 USGS 
LA; NA; 

RM  

TM 190/31 26/06/2010 USGS 
LA; NA; 

RM  

ETM+ 190/31 04/07/2010 USGS 
LA; NA; 

RM  

TM 190/31 12/07/2010 USGS 
LA; NA; 

RM  

TM 190/31 29/06/2011 USGS 
LA; NA; 

RM  

ETM+ 190/31 07/07/2011 USGS 
LA; NA; 

RM  

TM 190/31 16/08/2011 USGS 
LA; NA; 

RM  

ETM+ 190/31 23/06/2012 USGS 
LA; NA; 

RM  

ETM+ 190/31 09/07/2012 USGS 
LA; NA; 

RM  

OLI 190/31 05/08/2013 USGS 
LA; NA; 

RM  

OLI 190/31 21/06/2014 USGS 
LA; NA; 

RM  

OLI 190/31 08/08/2014 USGS 
LA; NA; 

RM  

ETM+ 190/31 02/07/2015 USGS 
LA; NA; 

RM  

OLI 190/31 10/07/2015 USGS 
LA; NA; 

RM  



67 
 

ETM+ 190/31 18/07/2015 USGS 
LA; NA; 

RM  

OLI 190/31 26/07/2015 USGS 
LA; NA; 

RM  

OLI 190/31 26/06/2016 USGS 
LA; NA; 

RM  

OLI 190/31 12/07/2016 USGS 
LA; NA; 

RM  

OLI 190/31 13/06/2017 USGS 
LA; NA; 

RM  

ETM+ 190/31 23/07/2017 USGS 
LA; NA; 

RM  

OLI 190/31 31/07/2017 USGS 
LA; NA; 

RM  

OLI 190/31 02/07/2018 USGS 
LA; NA; 

RM  

OLI 190/31 18/07/2018 USGS 
LA; NA; 

RM  

 

Table S2.2. Landsat images used to map burn severity in the four study areas: 

Roccafluvione (RF), L’Aquila (LA), Navelli (NA), and Roccamorice (RM). 

Study Area 
Acquisition 

timing 
RF LA NA RM 

Acquisition 

dates 

(dd-mm-yyyy) 

Pre 
15-06-

2006 

17-07-

2006 

17-07-

2006 

17-07-

2006 

Post 
07-08-

2008 

06-07-

2008 

06-07-

2008 

23-08-

2008 

WRS2 

Path/Row 

Pre 190/30 190/31 190/31 190/31 

Post 190/30 190/31 190/31 190/31 

Landsat 

archive 

Pre USGS USGS USGS USGS 

Post USGS ESA ESA ESA 
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Abstract 

Deriving burn severity from multispectral satellite data is a widely adopted 

approach to infer the degree of environmental change caused by fire. Burn 

severity maps obtained by thresholding bi-temporal indices based on pre- and 

post-fire Normalized Burn Ratio (NBR) can vary substantially depending on 

temporal constraints such as matched acquisition and optimal seasonal timing. 

Satisfying temporal requirements is crucial to effectively disentangle fire and 

non-fire induced spectral changes and can be particularly challenging when only 

a few cloud-free images are available. Our study focuses on 10 wildfires that 

occurred in mountainous areas of the Piedmont Region (Italy) during autumn 

2017 following a severe and prolonged drought period. Our objectives were to: 

(i) generate reflectance composites using Sentinel-2 imagery that were optimised 

for seasonal timing by embedding spatial patterns of long-term land surface 

phenology (LSP); (ii) produce and validate burn severity maps based on the 

modelled relationship between bi-temporal indices and field data; (iii) compare 

burn severity maps obtained using either a pair of cloud-free Sentinel-2 images, 
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i.e. paired images, or reflectance composites. We proposed a pixel-based 

compositing algorithm coupling the weighted geometric median and thematic 

spatial information, e.g. long-term LSP metrics derived from the MODIS 

Collection 6 Land Cover Dynamics Product, to rank all the clear observations 

available in the growing season. Composite Burn Index data and bi-temporal 

indices exhibited a strong nonlinear relationship (R2 >0.85) using paired images 

or reflectance composites. Burn severity maps attained overall classification 

accuracy ranging from 76.9% to 83.7% (Kappa between 0.61 and 0.72) and the 

Relative differenced NBR (RdNBR) achieved the best results compared to other 

bi-temporal indices (differenced NBR and Relativized Burn Ratio). 

Improvements in overall classification accuracy offered by the calibration of bi-

temporal indices with the dNBR offset were limited to burn severity maps derived 

from paired images. Reflectance composites provided the highest overall 

classification accuracy and differences with paired images were significant using 

uncalibrated bi-temporal indices (4.4% to 5.2%) while they decreased (2.8% to 

3.2%) when we calibrated bi-temporal indices derived from paired images. The 

extent of the high severity category increased by ~19% in burn severity maps 

derived from reflectance composites (uncalibrated RdNBR) compared to those 

from paired images (calibrated RdNBR). The reduced contrast between healthy 

and burnt conditions associated with suboptimal seasonal timing caused an 

underestimation of burnt areas. By embedding spatial patterns of long-term LSP 

metrics, our approach provided consistent reflectance composites targeted at a 

specific phenological stage and minimising non-fire induced inter-annual 

changes. Being independent from the multispectral dataset employed, the 

proposed pixel-based compositing approach offers new opportunities for 

operational change detection applications in geographic areas characterised by 

persistent cloud cover.   
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3.1 Introduction 

Fire is one of the major natural disturbance agents in European Alpine forests 

(Bebi et al., 2017; Kulakowski et al., 2016). Current fire regimes in the European 

Alps exhibit significant heterogeneity in terms of fire frequency, spatial extent 

and seasonality, according to the variability in climatic, environmental and 

anthropogenic drivers (Bebi et al., 2017; Conedera et al., 2018; Wastl et al., 2013; 

Zumbrunnen et al., 2011). Recent and projected increases in temperatures and 

drought conditions associated with climate change (Gobiet et al., 2014; Gobiet 

and Kotlarski, 2020; Gudmundsson and Seneviratne, 2016) are crucial factors for 

future shifts of fire regimes in the European Alps (Bedia et al., 2014; Cane et al., 

2013; Schumacher and Bugmann, 2006), substantially increasing the probability 

of large wildfires occurrence (Barbero et al., 2019). Recently, the severe and 

prolonged drought conditions associated with heat waves that occurred during the 

summer of 2017 in several parts of south-central Europe (Rita et al., 2020) led to 

an anomalous fire season in many regions of France, Italy, Portugal and Spain 

(Turco et al., 2018).  

Severity is one of the main factors influencing ecosystem responses, so its 

assessment is crucial to effectively guide post-fire management strategies aimed 

at promoting forest regeneration and the recovery of ecosystem services 

(Leverkus et al., 2018). From an ecological perspective, severity is defined as the 

magnitude of environmental change caused by fire (Key and Benson, 2006; 

Lentile et al., 2006). The term burn severity is commonly used in remote sensing 

applications (Keeley, 2009), and its differences with fire severity are related to 

the assessment period (Cansler and McKenzie, 2012; Lentile et al., 2006; 

Veraverbeke et al., 2010a). Fire severity commonly refers to an initial assessment 

of those effects directly related to combustion, such as fuel consumption and tree 

mortality measured immediately after the fire. On the contrary, burn severity 

refers to an extended assessment of severity, usually performed during the first 

growing season following the fire. This implicates that burn severity combines 
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fire effects and the initial ecosystem response, including delayed mortality and 

survivorship (Key, 2006).  

Mapping burn severity with medium-resolution satellite imagery, e.g. Landsat 

data, acquired in the pre- and post-fire growing seasons, is typically performed 

through bi-temporal indices based on the Normalized Burn Ratio (NBR) (García 

and Caselles, 1991), such as the differenced Normalized Burn Ratio (dNBR, Key 

and Benson, 2006), the Relative dNBR (RdNBR, Miller and Thode, 2007) and 

the Relativized Burn Ratio (RBR, Parks et al., 2014). Ecologically meaningful 

burn severity maps can be produced by classifying bi-temporal indices using 

thresholds derived from parametric models incorporating field measures of burn 

severity (Key and Benson, 2006; Kolden et al., 2015). Commonly adopted field 

data comprehend the Composite Burn Index (CBI) (Cansler and McKenzie, 2012; 

Key and Benson, 2006) and its modifications, i.e. GeoCBI (De Santis and 

Chuvieco, 2009) and weighted CBI (Soverel et al., 2010), percentage change in 

tree canopy cover and tree basal area (Miller et al., 2009). 

Given the influence of image selection on bi-temporal indices (Chen et al., 2020; 

Veraverbeke et al., 2010a), pre- and post-fire image pairs employed for 

computing bi-temporal indices should meet temporal requirements relative to 

matched acquisition and optimal seasonal timing (Key, 2006; Veraverbeke et al., 

2010a). Image pairs with similar acquisition timing throughout the year enhance 

spectral matching between pre- and post-fire conditions, enabling to disentangle 

between spectral changes induced by fire and external factors (Eidenshink et al., 

2007; Key, 2006; Miller and Thode, 2007; Veraverbeke et al., 2010b). Plant 

phenology, solar elevation angle, illumination variations due to topography, and 

moisture content of both soil and vegetation are among the most important 

external factors causing inter- and intra-annual changes in the spectral response 

of the land surface (Key, 2006; Key and Benson, 2006; Veraverbeke et al., 2010b; 

Verbyla et al., 2008). Several approaches are useful to limit the influence of such 

non-fire induced changes. For example, specific topographic correction 

techniques can effectively reduce pre- and post-fire differences in reflectance 

values arising from illumination effects associated with rugged terrains 
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(Veraverbeke et al., 2010b). Inter-annual variations in plant phenology and 

moisture content can be mitigated by performing a calibration based on dNBR 

values retrieved from the unburnt area surrounding the fire perimeter (Key, 2006; 

Meddens et al., 2016; Miller and Thode, 2007; Parks et al., 2014) and in the same 

forest type (Furniss et al., 2020; Picotte et al., 2020). The dNBR offset, usually 

computed as the average from the unburnt area and subtracted from the entire 

scene, should ideally be close to zero in the case of image pairs with matched 

spectral conditions (Key, 2006). This approach proved to be effective in 

improving the relationship between bi-temporal indices and CBI (Meddens et al., 

2016; Parks et al., 2018). Nevertheless, extracting the dNBR offset can be a 

subjective process (Picotte et al., 2020) and depends on the spatial configuration 

of the landscape mosaic (Parks et al., 2018). In particular, the selection of an 

appropriate set of pixels requires the presence of similar forest types near the 

burnt area, and a single value could be suboptimal to calibrate inter-annual 

differences in multiple forest types or within burnt areas with a broad altitudinal 

gradient.  

Optimal seasonal timing refers to the timing of image acquisition that maximises 

the contrast between healthy and burnt vegetation (Chen et al., 2020; Eidenshink 

et al., 2007; Key and Benson, 2006; Veraverbeke et al., 2010a). In temperate 

ecosystems, the optimal seasonal timing typically spans from early-to-middle 

growing season dates as the vegetation reaches its maximal photosynthetic 

activity (Eidenshink et al., 2007; Key, 2006; Key and Benson, 2006; Picotte et 

al., 2020). In burnt areas spanning a wide elevation range, the optimal seasonal 

timing can vary considerably, thus requiring multiple images to be processed 

(Key, 2006). Moreover, complex landscape mosaics such as those of the 

Mediterranean Basin exhibit a high degree of local variations in phenology 

associated with different land covers (Veraverbeke et al., 2010a).  

The selection of appropriate image pairs poses challenges for the operational 

assessment of burn severity with bi-temporal indices, e.g. when large areas or a 

high number of fires are considered (Parks et al., 2018; Whitman et al., 2020). 

Specifically, the amount of time required by expert operators (Parks et al., 2018), 
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the lack of standardised procedures (Chen et al., 2020), and the availability of 

cloud-free images (French et al., 2008), especially during the first post-fire 

growing season (Key and Benson, 2006), constrain the usage of bi-temporal 

indices. Recent approaches to overcome the limitations above have been 

developed (Parks et al., 2018; Whitman et al., 2020). They rely on pixel-based 

mean compositing algorithms that exploit all the Landsat images available in the 

pre- and post-fire growing season. While producing spatially consistent results, 

the mean compositing method requires an effective removal of invalid pixels, i.e. 

those contaminated by clouds, cloud shadows or snow (Vancutsem et al., 2007). 

As accurately identifying cloud and cloud shadows in Landsat and Sentinel-2 

imagery is an active research topic (Tarrio et al., 2020; Wei et al., 2020), 

compositing methods that minimise the importance of odd values would be 

preferable. Compositing algorithms based on multidimensional medians such as 

the medoid (Flood, 2013) and the geometric median (Roberts et al., 2017) can 

produce consistent pixel-based reflectance composites when the proportion of 

invalid values is less than half of the observations. The medoid approach belongs 

to the best pixel selection strategy group (sensu Griffiths et al., 2019), while the 

geometric median generates synthetic reflectance values, i.e. not actually sensed. 

The amount of available data considerably influences the quality of reflectance 

composites produced with the medoid (Roberts et al., 2017; Van Doninck and 

Tuomisto, 2017). However, the geometric median can produce spatially coherent 

reflectance values even when clear observations are scarce (Roberts et al., 2017). 

These methods have been successfully employed to produce image composites 

of Landsat imagery (Flood, 2013; Kennedy et al., 2018; Roberts et al., 2017; Van 

Doninck and Tuomisto, 2017).  

A widely adopted best pixel selection strategy is parametric scoring, which 

involves assigning a possibly weighted sum of scores obtained from the 

evaluation of several parameters to each clear observation available within the 

compositing period for a given pixel location (Frantz et al., 2017; Griffiths et al., 

2013; White et al., 2014). The acquisition Day-Of-Year (DOY) and year, the 

distance to clouds and cloud shadows, the sensor and the amount of atmospheric 
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haze are among the most used parameters. While target DOYs are often 

determined in a static fashion for producing reflectance composites over large 

areas (Griffiths et al., 2019, 2014; White et al., 2014), spatially explicit land 

surface phenology (LSP) metrics can serve to dynamically adjust scoring 

functions relative to the acquisition DOY for attaining phenological coherence 

(Frantz et al., 2017). Reflectance composites optimised for representing land 

surface at a specific phenological stage encompass climatic variations induced by 

both latitudinal and elevation gradients that can otherwise generate spectral 

inconsistencies when analysing vegetation dynamics over time (Frantz et al., 

2017). 

In the Western Italian Alps (Piedmont Region), several large wildfires 

simultaneously occurred in the second half of October 2017, outside of the fire 

season that typically spans from winter to early spring. They were favoured by 

exceptional summer drought conditions that lasted into the autumn associated 

with strong gusts of foehn wind (Arpa Piemonte, 2017; Bo et al., 2020). These 

events burnt nearly 10000 ha of forests, woodlands, shrublands and pastures and 

heavily affected the air quality of the surrounding urban areas (Bo et al., 2020). 

In response to these events, a post-fire management plan has been developed by 

the regional forest managers in cooperation with other stakeholders (Regione 

Piemonte, 2019), using burn severity maps produced by the University of Torino. 

Burn severity maps provided crucial information to identify areas that required 

prompt post-fire interventions. In fact, fire impaired the protective function of 

montane forests (e.g. Brang et al., 2006), i.e. protection against soil erosion, 

rockfall and avalanches, particularly in high severity patches. 

Our general hypothesis is that phenologically coherent reflectance composites 

can increase both effectiveness and operational usage of bi-temporal indices for 

mapping burn severity. In particular, we expect that targeting surface reflectance 

in early to intermediate stages of the growing season can enhance the 

discrimination capability of bi-temporal burn severity indices, e.g. between fire 

and non-fire induced spectral changes. In this study, we aimed at achieving the 

following objectives: (i) to generate pre- and post-fire reflectance composites 
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optimised for burn severity mapping with Sentinel-2 imagery by embedding 

spatial patterns of long-term LSP metrics; (ii) to produce and validate burn 

severity maps based on the modelled relationship between bi-temporal indices 

and CBI data; (iii) to compare burn severity maps obtained by using either 

Sentinel-2 image pairs or reflectance composites. 

3.2 Materials and Methods  

3.2.1 Study area 

Our study focuses on 10 burnt areas (Figure 3.1, Table 3.1) whose perimeters 

were mapped by the Carabinieri Command for Forest Protection through field 

surveys. We retrieved the start and end dates of each fire (Table 3.1) from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m standard Active Fire 

product (Schroeder et al., 2014) distributed by NASA’s Fire Information for 

Resource Management System (FIRMS). The extent of burnt areas ranged from 

55 to 3974 ha, resulting in a total area of 9740 ha, of which forests covered 7202 

ha, according to the Dominant Leaf Type map produced in 2015 (European 

Environmental Agency, 2018a). Burnt areas were mostly covered by montane 

and submontane broadleaved and coniferous forests. In particular, forests 

dominated by broadleaved species covered 4995 ha, and among tree species, 

sweet chestnut (Castanea sativa Mill.), European beech (Fagus sylvatica L.) and 

downy oak (Quercus pubescens Willd.) were the most abundant. The dominant 

coniferous tree species were European larch (Larix decidua Mill.), and Scots pine 

(Pinus sylvestris L.), covering 2207 ha of the total burnt area. 
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Figure 3.1. Geographic distribution of the burnt areas, sorted using their extent 

in decreasing order, from the largest to the smallest. Forest cover in the 

background corresponds to the Dominant Leaf Type map (reference year 2015, 

20 m spatial resolution, European Environmental Agency, 2018a). 

 

Table 3.1. Information regarding fire, landform, climate and forest cover 

properties of the burnt areas. For spatial data we report the average ± standard 

deviation. Column abbreviations are as follows: Ba = Burnt area; Ex = Extent; 

Sd = Start date; Ed = End date; El = Elevation; Te = Mean annual temperature; 

Pr = Mean annual precipitation; Br = Broadleaved tree cover; Co = Coniferous 

tree cover; Nf = Non-forest cover; Dt = Dominant tree species. Tree species 

abbreviations are: Eb = European beech; Sc = Sweet chestnut; Do = Downy oak; 

Mb = Mixed broadleaves; El = European larch; Sp = Scots pine. 
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Ba 
Ex 

(ha) 

Sd 

(yyyy-

mm-

dd) 

Ed 

(yyyy-

mm-

dd) 

El (m 

a.s.l.) 

Te 

(°C) 

Pr 

(mm) 

Br 

(%) 

Co 

(%) 

Nf 

(%) 
Dt 

1 3974 
2017-

10-22 

2017-

10-30 

1422 

±488 

6.1 

±2.9 

731 

±104 
37.1 26.7 36.2 

Eb; 

Sp 

2 1818 
2017-

10-18 

2017-

10-31 

853 

±242 

9.7 

±1.4 

786 

±65 
94.1 5.1 0.8 

Sc; 

Eb 

3 1570 
2017-

10-23 

2017-

10-30 

1190 

±340 

7.4 

±1.9 

729 

±63 
61.8 21.3 16.9 

Sc; 

Mb 

4 666 
2017-

10-23 

2017-

10-30 

1716 

±246 

4.6 

±1.4 

796 

±68 
15.1 58.6 26.3 

El; 

Mb 

5 624 
2017-

10-25 

2017-

10-28 

1487 

±325 

5.5 

±1.9 

868 

±99 
32.7 2.2 65 

Mb; 

Sc 

6 378 
2017-

10-24 

2017-

10-29 

1790 

±212 

4.6 

±1.2 

667 

±31 
22.3 42.8 34.9 

El; 

Mb 

7 271 
2017-

10-23 

2017-

10-26 

691 

±142 

10.4 

±1 

689 

±39 
79.9 16.3 3.8 

Sc; 

Mb 

8 220 
2017-

10-28 

2017-

10-30 

1423 

±197 

6.8 

±1.2 

803 

±45 
72.3 3 24.7 

Do; 

Eb 

9 164 
2017-

10-22 

2017-

10-25 

1489 

±173 

6 

±1.3 

730 

±31 
15.5 60.6 23.9 

Sp; 

El 

10 55 
2017-

10-23 

2017-

10-25 

911 

±67 

9.2 

±0.5 

705 

±19 
92.6 3.2 4.2 

Sc; 

Eb 

 

3.2.2 General overview 

We performed the analyses in two steps: fire severity (Section 3.2.5) and burn 

severity mapping (Section 3.2.6), as highlighted in Figure 3.2. Fire severity maps 

allowed us to develop the sampling design to collect CBI data in the burnt areas 

(Section 3.2.4). We employed LSP metrics during the selection of pre- and post-

fire images, hereafter referred to as paired images, and to produce reflectance 

composites (Figure 3.2). 
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Figure 3.2. Flowchart of the analyses performed in the current study, grouped 

into fire severity and burn severity mapping steps. 

3.2.3 Satellite data and preprocessing 

We conducted the analyses using data acquired by the MultiSpectral Instrument 

(MSI) onboard Sentinel-2A (S2A) and Sentinel-2B (S2B) satellites. Specifically, 

we downloaded Sentinel-2 images containing Top-Of-Atmosphere (TOA) 

reflectance values processed according to Level-1C for the UTM-based Military 

Grid Reference System (MGRS) tiles 32TLQ and 32TLR. We preprocessed 

Sentinel-2 images employed for mapping fire severity (Section 3.2.5) and burn 

severity (Section 3.2.6) using different tools, depending on their availability when 

we performed the analyses. We mapped fire severity using Bottom-Of-

Atmosphere (BOA) reflectance products obtained with the Sen2Cor 2.4.0 

processor (Louis et al., 2016). We then removed pixels contaminated by clouds, 
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cloud shadows and snow by applying masks generated using the Function of 

mask (Fmask) version 4.0 software (Qiu et al., 2019). We mapped burn severity 

using BOA reflectance products derived with the Framework for Operational 

Radiometric Correction for Environmental monitoring (FORCE) software 

(version 3.6.5, available at https://github.com/davidfrantz/force) (Frantz, 2019). 

In particular, the FORCE Level 2 Processing System performed the following 

operations: (i) detection of clouds, cloud shadows and snow using a modified 

version of the Function of mask (Fmask) algorithm (Frantz et al., 2018); (ii) sub-

pixel co-registration (Rufin et al., 2020); (iii) atmospheric correction (Frantz et 

al., 2016); (iv) topographic correction (Kobayashi and Sanga-Ngoie, 2008); (v) 

computation of Nadir BRDF (Bidirectional Reflectance Distribution Function)-

Adjusted Reflectance (NBAR) (Roy et al., 2017a, 2017b). Sub-pixel co-

registration, topographic correction and NBAR values were fundamental 

requirements for temporal and spatial consistency in a multi-temporal analysis 

setting (Frantz et al., 2016; Roy et al., 2017a; Rufin et al., 2020).  As Sentinel-2 

bands at 20 m spatial resolution, i.e. band 5 (B5), band 6 (B6), band 7 (B7), band 

8A (B8A), band 11 (B11) and band 12 (B12), were processed by FORCE at 10 

m by dividing each pixel into four sub-pixels, we resampled BOA reflectance 

values to the original 20 m grid using the cubic convolution method. For the 

Quality Assurance Information (QAI) masks resampling, we applied a 

conservative approach based on the “presence” rule proposed by Claverie et al. 

(2018): for each bit, in the case one of the four 10 m pixels within each original 

20 m was equal to one, all four pixels were set to one. Additional processing 

operations included spatial subsetting based on buffers around wildfire 

perimeters and invalid pixels masking, i.e. those covered by clouds, cloud 

shadows, snow and saturated pixels using the relevant bits in the QAI mask. We 

processed raster data using the R (R Core Team, 2021) package “raster” 

(Hijmans, 2020). 
 



80 
 

3.2.4 Field data 

We employed the Composite Burn Index (CBI) protocol (Key and Benson, 2006) 

to classify and validate bi-temporal indices derived for burn severity mapping 

(Section 3.2.6). CBI scores rely on ocular estimations of different factors grouped 

into five vertical strata: three in the understory and two in the overstory vegetation 

(Key and Benson, 2006). The final CBI score assigned to each plot assumed 

values in the interval [0 – 3], where zero corresponded to an unaltered condition 

and three to the maximum degree of fire induced changes. The CBI sampling 

design was based on fire severity maps (Section 3.2.5) and forest types.  In 

particular, a stratified random scheme for plot selection allowed us to collect CBI 

data covering the whole range of its values within the dominant tree species. We 

located 20 m circular CBI plots at a minimum distance of 60 m from each other 

and at the centre of 3x3 windows of 20 m pixels characterised by a low variability 

in dNBR (Key and Benson, 2006). We placed centroids of CBI plots close to 

those of Sentinel-2 pixels using a survey-grade Trimble R2 GNSS antenna with 

sub-meter geolocation accuracy and performed differential correction of these 

locations. We assigned CBI scores with the supervision of the same person in 

order to minimise the variability introduced by different evaluators (Miller et al., 

2009). We surveyed a total of 251 CBI plots from June to September 2018, 

distributed among the burnt areas as reported in Table S3.3. We classified CBI 

values into three severity categories: unchanged to low (CBI ≤ 1.25), moderate 

(CBI > 1.25 and ≤ 2.25) and high (CBI > 2.25) as proposed in other studies (Miller 

et al., 2009; Soverel et al., 2010). The distribution of CBI plots among severity 

categories was as follows: 51% in the unchanged to low, 33.5% in the moderate, 

and 15.5% in the high. In some areas, we were able to survey only a limited 

number of plots, i.e. less than 10, due to steep slopes and the lack of hiking trails 

for safely reaching the burned patches. 
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3.2.5 Fire severity 

We mapped fire severity patterns using Sentinel-2 data acquired between 

September and November 2017 (Table S3.1). We computed pre- and post-fire 

NBR (Equation 1) using the near infrared (NIR) narrow band (MSI B8A) and the 

second shortwave infrared (SWIR) band (MSI B12) to derive dNBR (Table 3.2). 

We calibrated dNBR by subtracting the dNBR offset, which was the average 

dNBR of unburnt pixels close to each fire perimeter, located within a 200 m outer 

buffer. We employed a relatively narrow buffer to minimise differences between 

burnt and unburnt vegetation characteristics, as suggested by Parks et al. (2018). 

Furthermore, inside this region, we selected only pixels mainly covered by tree 

canopies, e.g. more than two-thirds, to limit the influence of phenological 

mismatches caused by other vegetation types. In particular, we performed the 

selection according to the Tree Cover Density map produced by the Copernicus 

Land Monitoring Service in 2015 at 20 m spatial resolution (European 

Environmental Agency, 2018b). We finally classified dNBR using thresholds 

proposed by Key and Benson (2006).  

                                    𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁) (1) 

 
Table 3.2. Bi-temporal indices employed for mapping fire severity (dNBR) and 

burn severity (dNBR, RdNBR, RBR). 

Index Formula Reference 

dNBR �𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� × 1000 Key and Benson, 2006 

RdNBR 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁

��𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
 

Miller and Thode, 2007 

RBR 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 1001

 
Parks et al., 2014 
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3.2.6 Burn severity 

We mapped burn severity using bi-temporal indices based on NBR (dNBR, 

RdNBR, RBR) (Table 3.2) and performed the calibration through the dNBR 

offset. We employed either paired images acquired during the growing seasons 

of 2017 and 2018 or reflectance composites generated using all the clear 

observations available in these periods. Specifically, we defined a compositing 

period spanning from 20 May to 10 September as this date range falls within the 

growing season in the burnt areas. The phenology-based weight used in the 

compositing algorithm (Section 3.2.8) generally assumed minimum values, e.g. 

0.01, at the start and end dates of this period. 

For each burnt area, we obtained paired images by selecting pre- and post-fire 

images that were cloud-free, i.e. a percentage of valid pixels ≥95 and with 

matched acquisition dates, i.e. closest DOY as possible. If multiple paired images 

were available, we chose those closer to the long-term peak of the growing 

season, computed as described in Section 3.2.8. 

3.2.7 Sentinel-2 reflectance composites 

We produced reflectance composites using all the MSI bands acquired at 20 m 

spatial resolution and the weighted geometric median, also known as the Fermat-

Weber location problem (Brimberg, 1995; Cohen et al., 2016; Vardi and Zhang, 

2000). The weighted geometric median is an estimator of centrality for 

multivariate data based on the weighted sum of Euclidean distances to all the 

observations rather than on their sum, as in the case of the geometric median 

(Chaudhuri, 1996). It is effective for the generation of noise-reduced, cloud-free 

reflectance composites (Roberts et al., 2019).  

At the pixel level, we considered a n x p matrix containing n repeated 

observations in rows and reflectance values relative to p spectral bands in 

columns. We assigned a weight to each observation based on a specific weighting 

system. This procedure, iterated over all the pixels forming the image, can be 

formally expressed as follows. Given n observations yi ∈ ℝ𝑝𝑝with associated 
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weights wi ∈ ℝ>0, i = 1,…,n, the weighted geometric median is the vector mn ∈

ℝ𝑝𝑝that minimises the weighted sum of Euclidean distances from the n 

observations: 

𝑚𝑚𝑚𝑚 =  argmin𝑦𝑦∈ℝ𝑝𝑝�𝑤𝑤𝑝𝑝‖𝑦𝑦𝑝𝑝 − 𝑦𝑦‖
𝑚𝑚

𝑝𝑝=1

 (2) 

where ‖∙‖ denotes the Euclidean norm. If all the weights are equal, i.e. wi = 1/n, 

mn becomes the geometric median (Chaouch and Goga, 2012; Chaudhuri, 1996; 

Small, 1990). When observations are not collinear, e.g. they lie in two or more 

dimensions, the (weighted) geometric median always exists and is unique 

(Milasevic and Ducharme, 1987). The robustness properties of the weighted 

geometric median differ from those of the geometric median (Nevalainen et al., 

2007), which is unaffected by outlying values if their proportion remains under 

the breakdown point corresponding to half of the observations (Lopuhaa and 

Rousseeuw, 1991; Oja, 2013). In particular, the robustness of the estimator is 

influenced mostly by the weights assigned to invalid observations, e.g. 

contaminated by clouds, as it depends on the smallest set of observations whose 

weights sum up to at least half of all weights (Nevalainen et al., 2007). If only 

two clear observations are available, the weighted geometric median corresponds 

to the observation with the highest weight, providing no resistance to potential 

invalid values. As mountainous areas are characterised by frequent cloud and 

snow cover, the number of clear observations during certain growing seasons can 

be equal to two, so an adaptive time window for selecting more clear observations 

can mitigate data scarcity. During the compositing process, the width of the time 

window iteratively widened up to 20 days for each side until the number of clear 

observations for a given pixel location reached a minimum of three. We 

computed the weighted geometric median using Weiszfeld's iterative algorithm 

(Vardi and Zhang, 2000; Weiszfeld, 1937) implemented in the R (R Core Team, 

2021) package "Gmedian" (Cardot, 2020), which uses efficient linear algebra 

libraries based on C++ language at its core functions. 
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3.2.8 Weighting system 

Our pixel-based weighting system prioritised clear observations acquired during 

the greenup phase of the growing season and close to the date of peak while it 

penalised those lying nearby clouds or cloud shadows. Hence, the total weight wi 

of the i-th observation was the sum of a phenology-based weight (wp) with a 

distance-based weight (wd), and each of them assumed values in the interval [0, 

1]. We computed wp through long-term land surface phenology (LSP) metrics 

representing the DOY at which transitions between phenological phases typically 

occur at a given location. Long-term LSP metrics allowed us to overcome two 

major limitations related to annual data. First, post-fire LSP metrics likely 

deviated from pre-fire ones due to changes in vegetation cover. Second, persistent 

snow and cloud cover occurring in mountainous areas during certain years 

prevent the computation of wp on a yearly basis. We derived long-term LSP 

metrics from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Collection 6 Land Cover Dynamics Product (MCD12Q2) (Friedl et al., 2019). 

The MCD12Q2 product is available at 500 m spatial resolution from 2001 until 

2017 and it is based on the 2-band Enhanced Vegetation Index (EVI2). 

Specifically, we computed the pixel-wise geometric median throughout the 17-

year time series of Maturity (p1), Peak (p2) and Senescence (p3) metrics. These 

correspond to the dates when EVI2 first crosses 90% of its amplitude, reaches its 

amplitude and last crosses 90% of its amplitude, respectively. The robustness of 

the geometric median limited the influence of ephemeral changes for the 

considered time interval induced by land-use/land-cover or annual climate 

anomalies. We discarded pixels flagged as poor quality retrievals in the 

“QA_Detailed” layer of the MCD12Q2 product to limit the proportion of 

contaminated data. To cope with the different spatial resolutions of the 

MCD12Q2 product and Sentinel-2 data, we first resampled LSP metrics to 20 m 

using the nearest neighbour method, i.e. we divided MODIS pixels into sub-

pixels matching the grid and resolution of Sentinel-2 data. We then applied a 

Gaussian filter with a kernel having sigma equal to 250 m and a width 
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corresponding to one kilometre to eliminate the edges of the 500 m pixels while 

retaining the effects of local climate variability associated with topography on 

LSP metrics. Following Frantz et al. (2017), we derived wp for a given pixel 

location by adapting an asymmetrical Gaussian curve to each triplet of LSP 

metrics (p1, p2 and p3) (Figure 3.3). This procedure involved first computing the 

parameters σl and σr that determine the width of the curve at each tail: 

𝜎𝜎𝑙𝑙 = (𝑝𝑝2−𝑝𝑝1)
2

, 

𝜎𝜎𝑝𝑝 = (𝑝𝑝3−𝑝𝑝2)
2

. 
(3) 

We then computed wp by evaluating the Gaussian function at the DOY 

corresponding to the acquisition date of the i-th observation (parameter Di in 

equation 4): 

𝑤𝑤𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧exp �−c�

(𝑁𝑁𝑝𝑝 − 𝑠𝑠2)
𝜎𝜎𝑙𝑙

�
2

� ,𝑁𝑁𝑝𝑝 < 𝑠𝑠2,

exp �−c�
(𝑁𝑁𝑝𝑝 − 𝑠𝑠2)

𝜎𝜎𝑝𝑝
�
2

� ,𝑁𝑁𝑝𝑝 ≥ 𝑠𝑠2.
 (4) 

The parameter c in equation 4 further controlled the width of the Gaussian curve 

and we set it to 0.2 such that wp is equal to 0.45 at p1 and p3 (Figure 3.3). 

 

 
Figure 3.3. Example of the asymmetrical Gaussian curve used to compute the 

phenology-based weight (wp). Long-term LSP metrics p1, p2 and p3 correspond to 

Day-Of-Year (DOY) 166, 184 and 212, respectively. DOYs in the x-axis 

correspond to the beginning of each month in a non-leap year. 
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The distance-based weight, wd, was aimed at reducing the influence of potential 

invalid reflectance values lying close to detected clouds or cloud shadows. 

Moreover, it limited patchiness in reflectance composites caused by the edges 

resulting from the removal of invalid pixels in Sentinel-2 images. This was 

particularly relevant when a low number of clear observations was available for 

a given pixel location. We computed wd through a sigmoid function previously 

employed as a scoring function for evaluating the distance to clouds in several 

best pixel selection algorithms (Frantz et al., 2017; Griffiths et al., 2019, 2013): 

𝑤𝑤𝑚𝑚 =  1

�1+exp�− 10
𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

∙�𝐸𝐸𝐸𝐸𝑖𝑖−
𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

2 ���
, 

(5) 

where EDmax is the maximum Euclidean distance to invalid pixels at which wd can 

assume values lower than one and EDi is the Euclidean distance of the i-th 

observation (Figure 3.4). Our experiments showed that a distance of 200 m, 

equivalent to 10 Sentinel-2 pixels, was adequate to effectively reduce patchiness. 

 
Figure 3.4. The sigmoid curve used to compute the distance-based weight (wd). 

The red dashed line indicates the optimal Euclidean distance (ED) to clouds and 

cloud shadows used in this study. 

Finally, we normalised the weights, w1,…, wn, computed for all the observations 

available at each pixel location using the softmax function, previously employed 

with the weighted geometric median by Roberts et al. (2019), and defined as: 

𝑤𝑤𝑝𝑝 =  exp (𝑤𝑤𝑖𝑖)
∑ exp (𝑤𝑤𝑗𝑗)𝑛𝑛
𝑗𝑗=1

, 𝑚𝑚 = 1, … ,𝑚𝑚. (6) 
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The softmax transformation converts each component of a vector of real numbers 

into values comprised in the interval [0, 1] that sum to one (Bishop, 2006). 

Therefore, all the transformed weights can be interpreted as probabilities 

proportional to the exponentials of the unnormalised weights. This transformation 

increased the contrast in importance between the best and worst observation. 

3.2.9 Evaluation of long-term LSP metrics and radiometric consistency 

of reflectance composites 

Elevation emerged as a critical driver in mountainous areas controlling long-term 

LSP metrics derived either from MODIS (Hwang et al., 2011; Xie et al., 2017) 

or Landsat (Elmore et al., 2012) data. Hence, we evaluated spatial patterns of our 

long-term LSP metrics within the burnt areas through a correlation analysis with 

elevation using the Pearson correlation coefficient. We obtained elevation data at 

20 m spatial resolution by averaging values of the digital terrain model available 

for the Piedmont Region at 5 m spatial resolution. 

We assessed radiometric consistency in time of reflectance composites by 

evaluating the symmetrical linear relationship between pre- and post-fire values 

at each MSI 20 m band and the derived NBR values using the reduced major axis 

(RMA) regression method (Roy et al., 2016; Smith, 2009). The RMA regression 

is adopted when both dependent and independent variables contain measurement 

errors, as in the case of surface reflectance values from satellite imagery. The 

similarity between the symmetrical linear relationship obtained with NBR values 

computed either with paired images or reflectance composites allowed us to 

assess whether the weighted geometric median preserved the spectral 

relationships between the MSI bands B8A and B12. We performed these 

evaluations on a set of one million pixels randomly selected outside the fire 

perimeters within a maximum distance of three kilometres. We quantified 

differences between pre- and post-fire reflectance and NBR values using the root 

mean square error (RMSE). We assessed the significance of the linear 

relationships through the p-value associated with the F-test performed with 
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ordinary least squares (OLS) fits, using pre-fire values as the independent 

variable and post-fire values as the dependent variable. 

3.2.10 Classification and validation of burn severity maps 

Following the nonlinear regression models proposed by different authors (Miller 

et al., 2009; Miller and Thode, 2007; Parks et al., 2014), we predicted thresholds 

of each bi-temporal index that discriminated between field severity categories 

(unchanged to low, moderate and high) through the inversion of the following 

equation:   

𝑦𝑦 = 𝑚𝑚 + 𝑏𝑏 ∙ exp(𝐶𝐶𝑁𝑁𝑁𝑁 ∙ 𝑖𝑖) (7) 
where y corresponds to values of either dNBR, RdNBR or RBR.  

CBI plots for some burnt areas were either limited in the total amount or the range 

of values, so we used all the plots (n = 251) to build a combined regression model 

for each bi-temporal index. We note that vegetation characteristics varied among 

plots due to the presence of stands dominated by either conifers or broadleaves. 

We assessed the predictive performance of the regression models by averaging 

values of the coefficient of determination (R2) and RMSE obtained from 5-fold 

cross-validation repeated 1000 times. We sampled values of the three bi-temporal 

indices at each CBI plot location without employing any data interpolation 

method, e.g. bilinear interpolation (Cansler and McKenzie, 2012; Parks et al., 

2014), as this approach did not improve the predictive performance of the 

regression models. 

Using CBI values as reference, we built an error matrix by pooling reference and 

classification data of all the burnt areas. We then computed classification 

accuracy (producer’s, user’s and overall accuracy) and Cohen’s Kappa statistic. 

Lastly, we performed the exact McNemar test implemented in the R package 

“exact2x2” (Fay, 2010) to evaluate whether differences in overall classification 

accuracy between burn severity maps produced using paired images or 

reflectance composites were statistically significant. 
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3.3 Results 

3.3.1 Reflectance composites 

The number of pre- and post-fire clear observations available at the pixel level 

within the compositing period (20 May – 10 September) varied considerably 

inside each burnt area, between burnt areas and according to the acquisition year 

(Figure 3.5). Clear observations available at the majority of pixel locations were 

more than three in the pre- and post-fire compositing period while cloud-free 

images were fewer than three for some burnt areas (Figure S3.1). Sentinel-2 data 

was generally more abundant in 2018 than 2017. The overlapping zone between 

tiles 32TLR and 32TLQ greatly increased the number of clear observations at 

burnt area 7. 

 
Figure 3.5. Boxplots of Sentinel-2 clear observations available at each pixel 

location in the pre- and post-fire compositing period of 2017 and 2018, 

respectively. The dashed line indicates the level corresponding to three 

observations. Numbers in the x-axis refer to each burnt area, as indicated in Table 

3.1. 

Spatial patterns of the long-term Maturity (p1) and Peak (p2) were strongly and 

positively correlated with local variations of elevation, as highlighted by the 

Pearson correlation coefficient that varied across the burnt areas from 0.79 to 0.97 

for p1 and from 0.66 to 0.95 for p2 (Table S3.4). Conversely, the association 
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between long-term senescence (p3) and elevation was generally lower compared 

to p1 and p2 and varied considerably according to the burnt area (Table S3.4).  

Reflectance composites exhibited radiometric consistency in space as values 

between neighbouring pixels were similar, though they were computed using a 

different number of observations (Figure 3.6). Radiometric consistency in time 

was highlighted by similar reflectance values between pre- and post-fire unburnt 

pixels (Figure 3.6, Figure 3.7). The RMA regression lines between pairs of 

unburned synthetic reflectance values were close to the 1:1 line for all the MSI 

bands acquired at 20 m and R2 values associated with the OLS fit were moderate 

to high (0.69 – 0.84). RMSE ranged from 0.014 (B5) to 0.045 (B7) and the OLS 

regression was always highly significant (p <0.001) (Figure 3.7). Synthetic 

reflectance for MSI bands in the SWIR wavelengths (B11 and B12) was higher 

in 2017 (x-axis) than in 2018 (y-axis), as highlighted by the slope of the RMA 

regression line (Figure 3.7e-f). 
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Figure 3.6. False colour RGB image of burnt area 1 from a combination of MSI 

bands (R = B12, G = B8A, B = B5) obtained using post-fire reflectance composite 

(a). False colour RGB image subsets of pre-fire (b) and post-fire (c) reflectance 
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composites are located as indicated by the extent in panel (a). Panels (d) and (e) 

show the number of clear observations used to produce pre- and post-fire 

reflectance composites, respectively. The white line represents the official fire 

perimeter. 

Figure 3.7. Band-wise scatter plots between pre-fire (x-axis) and post-fire (y-

axis) reflectance composites. Values were randomly sampled outside fire 

perimeters (n = 1000000). The black dashed line represents the 1:1 line, and the 

solid red line corresponds to the RMA regression line. The coefficient of 

determination (R2) and p-value are derived from the OLS regression. Synthetic 

reflectance values of each MSI band acquired at 20 m are displayed: (a) B5, (b) 

B6, (c) B7, (d) B8A, (e) B11, (f) B12. 

The weighted geometric median preserved the spectral relationships across MSI 

bands, as displayed by pre- and post-fire NBR values of unburnt pixels (Figure 

3.8b) and synthetic reflectance values of burnt pixels (Figure 3.9). In particular, 

the RMA linear regression between pre- and post-fire NBR derived from 
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reflectance composites was very similar to that obtained with paired images 

(Figure 3.8). Pre-fire synthetic reflectance values for MSI bands B6, B7 and B8A 

were generally higher than most of those assumed by clear observations (Figure 

3.9).  

 
Figure 3.8. Scatter plots of pre-fire (x-axis) and post-fire (y-axis) NBR values 

randomly sampled outside the fire perimeters (n = 1000000). NBR was computed 

using either (a) paired images or (b) reflectance composites. The dashed black 

line is the 1:1 line, while the solid red line represents the RMA regression line. 

The coefficient of determination (R2) and p-value are derived from the OLS 

regression. 
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Figure 3.9. Pre-fire (green) and post-fire (red) surface reflectance values of three 

pixels in the burnt area 2 for each of the MSI bands acquired at 20 m (B5, B6, 

B7, B8A, B11, B12). Each pixel was located within a different burn severity 

category: (a) unchanged to low, (b) moderate, and (c) high. Light green and light 

red lines represent pre- and post-fire reflectance values of Sentinel-2 images 

acquired from 20 May to 10 September, whereas synthetic reflectance values are 

displayed in dark colours. 

3.3.2 Regression models 

The average R2 from the repeated 5-fold cross-validation procedure highlighted 

a slightly higher predictive performance of nonlinear regression models built with 

bi-temporal indices derived from reflectance composites than those computed 

with paired images (Table 3.3). However, differences in R2 were limited (≤0.008) 

for all bi-temporal indices. Considering the same bi-temporal index, the average 

RMSE was always higher for reflectance composites compared to paired images 

(Table 3.3). The calibration of bi-temporal indices with the dNBR offset provided 

a minor increase in the predictive performance of the regression models (Table 

3.3). Regression models built using the complete set of CBI plots and 

uncalibrated bi-temporal indices are displayed in Figure 3.10. Predicted 
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thresholds of bi-temporal indices discriminating between burn severity categories 

were higher using reflectance composites than paired images (Table S3.5).  

Table 3.3. Average values of the coefficient of determination (R2) and RMSE 

obtained from a repeated 5-fold cross-validation. We built regression models 

between bi-temporal indices (dNBR, RdNBR and RBR) computed using either 

paired images or reflectance composites and CBI. We either calibrated or not bi-

temporal indices through the dNBR offset. 

Bi-

temporal 

index 

Measure 

Paired images Reflectance composites 

Uncalibrated Calibrated Uncalibrated Calibrated 

dNBR  

R2 

0.865 0.869 0.871 0.873 

RdNBR 0.874 0.878 0.880 0.882 

RBR 0.872 0.877 0.878 0.879 

dNBR 

RMSE 

94.8 93.2 99.3 98.7 

RdNBR 112.5 110.6 116.8 116.3 

RBR 55.3 54.4 57.6 57.3 
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Figure 3.10. Nonlinear regression models built using CBI field-data (x-axis, n = 

251) and uncalibrated bi-temporal indices (y-axis) derived either from paired 

images (a-c) or reflectance composites (d-f). 

3.3.3 Burn severity maps 

Burn severity maps achieved overall accuracies ranging from 76.9% to 83.7% 

(Kappa between 0.61 and 0.72) and these were consistently higher for reflectance 

composites compared to paired images (Table 3.4). Paired images performed 

better with calibrated bi-temporal indices and among them, RdNBR provided the 

highest overall classification accuracy (80.5%, Kappa 0.67). Conversely, 

reflectance composites attained the highest overall classification accuracy 

(83.7%, Kappa 0.72) with uncalibrated RdNBR (Table 3.4). Among burn severity 

categories, the moderate one achieved the lowest user’s and producer’s accuracy 

(Table 3.4).  

Table 3.4. Accuracy of burn severity maps obtained using different bi-temporal 

indices (either uncalibrated or calibrated with the dNBR offset) derived from 
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paired images or reflectance composites. User’s Accuracy (UA), Producer’s 

Accuracy (PA) and Overall Accuracy (OA) are expressed as percentages. 

Cohen’s Kappa (K) ranges from -1 to 1. 

Bi-temporal 

index 

Burn 

severity 

category 

Paired images 
Reflectance 

composites 

UA PA OA K UA PA OA K 

U
nc

al
ib

ra
te

d 

dNBR 

Unchanged to 

low 
80.1 85.6 

76.9 0.61 

82.1 90.2 

81.7 0.69 
Moderate 64.3 57.7 73.5 64.1 

High 87.5 85.4 94.7 87.8 

RdNBR 

Unchanged to 

low 
80.9 86.4 

78.5 0.64 

81.8 91.7 

83.7 0.72 
Moderate 67.1 60.3 79.4 64.1 

High 90 87.8 97.5 95.1 

RBR 

Unchanged to 

low 
80.9 86.4 

78.1 0.63 

81.8 91.7 

82.5 0.7 
Moderate 66.2 60.3 75.8 64.1 

High 89.7 85.4 97.3 87.8 

C
al

ib
ra

te
d 

dNBR 

Unchanged to 

low 
81.1 87.9 

78.9 0.64 

80.8 89.4 

80.5 0.67 
Moderate 68.1 60.3 71.6 61.5 

High 89.7 85.4 94.7 87.8 

RdNBR 

Unchanged to 

low 
81.9 89.4 

80.5 0.67 

80.3 89.4 

81.7 0.69 
Moderate 71.6 61.5 75 61.5 

High 90 87.8 97.5 95.1 

RBR 

Unchanged to 

low 
81.8 88.6 

79.7 0.65 

79.7 89.4 

80.5 0.67 
Moderate 69.6 61.5 72.3 60.3 

High 89.7 85.4 97.4 90.2 

 

The calibration of bi-temporal indices through the dNBR offset improved the 

overall accuracy of burn severity maps derived from paired images by 2% 

(RdNBR and dNBR) and 0.8% (RBR). On the contrary, the calibration of bi-

temporal indices derived from reflectance composites reduced the overall 
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accuracy by 1.2% (dNBR) and 2% (RdNBR and RBR). Notably, changes in 

producer’s and user’s accuracy induced by calibration were mostly limited to the 

unchanged to low and moderate categories.  

Burn severity maps obtained from uncalibrated bi-temporal indices highlighted 

significant differences in overall classification accuracy (p <0.05) between paired 

images and reflectance composites (Table 3.5), particularly for the RdNBR (p 

<0.01). Differences in overall classification accuracy of burn severity maps from 

calibrated bi-temporal indices produced using paired images or reflectance 

composites were not statistically significant (Table 3.5). 

Table 3.5. Results from the exact McNemar test relative to differences in overall 

classification accuracy of burn severity maps derived from paired images or 

reflectance composites. P-value and 95% confidence interval (CI) refer to the 

significance and magnitude of difference in overall classification accuracy, 

respectively. 

Bi-temporal index p 95% CI 

U
nc

al
ib

ra
te

d dNBR 0.023 1.141 – 9.232 

RdNBR 0.007 1.386 – 17.361 

RBR 0.027 1.120 – 11.169 

C
al

ib
ra

te
d dNBR 0.503 0.564 – 4.230 

RdNBR 0.629 0.491 – 4.422 

RBR 0.814 0.444 – 3.645 

We compared burn severity maps obtained with calibrated RdNBR from paired 

images and uncalibrated RdNBR from reflectance composites. Visual inspection 

of the spatial patterns of burn severity patches revealed good agreement between 

maps obtained using the two approaches above (Figure 3.11), though differences 

in the extent of burn severity categories were noticeable (Figure 3.12). To account 

for missing pixels in burn severity maps derived from paired images (Figure 

3.11a), we removed these pixels also in maps obtained with reflectance 
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composites. In some areas, the extent of the moderate and high burn severity 

categories was greater in maps derived from paired images compared to those 

obtained with reflectance composites by a total of 198.6 ha (6.3%) and 47.5 ha 

(11.4%), respectively. Conversely, where the extent of the moderate and high 

severity categories was lower in maps obtained with paired images than in those 

produced with reflectance composites, differences amounted to 290.9 ha (-9.2%) 

and 125.6 ha (-30.1%). Overall, the extent of the moderate and high severity 

categories was lower in burn severity maps obtained with paired images 

compared to those derived with reflectance composites by 93.2 ha (-2.9%) and 

78.1 ha (-18.7%), respectively. 

 
Figure 3.11. Burn severity maps of area 1 (a, c) and area 2 (b, d) obtained with 

calibrated RdNBR computed using paired images (a, b) or uncalibrated RdNBR 
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from reflectance composites (c, d). The black line indicates the official fire 

perimeters. 

 

 
Figure 3.12. Extent of burn severity categories (unchanged to low, moderate and 

high) in each burnt area derived from maps obtained with calibrated RdNBR 

computed using paired images or uncalibrated RdNBR from reflectance 

composites. 

3.4 Discussion 

3.4.1 Reflectance composites 

The 5-days revisit time offered by the Sentinel-2 mission since both S2A and S2B 

satellites have been in orbit, provided a considerable amount of clear observations 

within the time window, i.e. more than 10 observations for many pixel locations. 

The lower number of clear observations available in the 2017 growing season 

compared to that of 2018 (Figure 3.5, Figure S3.1) was caused by the availability 

of S2B images only since July 2017, after the completion of the ramp-up phase 

(Sudmanns et al., 2019).  

Relying on long-term LSP metrics, our weighting system ignores inter-annual 

differences in plant phenology arising from different amounts of precipitation 

over the years, as in the case of the severe summer drought in 2017 (Rita et al., 

2020). Divergent plant phenology between years has the potential to generate 

non-fire induced spectral changes (Veraverbeke et al., 2010a; Verbyla et al., 
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2008). Reflectance composites showed greater overall stability of NBR values 

across the growing seasons of 2017 and 2018 in unburnt pixels compared to 

paired images (Figure 3.8). This suggests a limited impact of non-fire induced 

inter-annual variations on NBR values derived from reflectance composites. 

However, non-fire induced inter-annual differences in synthetic spectral values 

were noticeable in the SWIR wavelengths (MSI B11 and B12) and limited in the 

NIR narrow band (MSI B8A) (Figure 3.7d-f). The slope of the RMA fit lower 

than one in B11 and B12 is likely associated with low moisture conditions in 

plants and substrates during the pre-fire growing season of 2017 as a consequence 

of the severe drought. Pre-fire moisture content has been identified as the most 

critical variable for improving regression models between dNBR and CBI data 

(Soverel et al., 2011), suggesting its relevance in determining non-fire induced 

inter-annual changes at the spectral level.  

Linear and positive correlation between spatial patterns of long-term LSP metrics 

relative to the greenup phase of the growing season and patterns of topography 

(Table S3.4) has been observed in mountainous landscapes. This is associated 

with the influence of elevation on temperature and snow cover, which are both 

dominant factors controlling spring onset at high altitudes (Elmore et al., 2012; 

Hwang et al., 2011; Xie et al., 2017). Limiting the influence of ephemeral land-

cover changes and climate anomalies on the phenology-based weight improved 

the suitability of our weighting system for producing consistent reflectance 

composites throughout the years. Moreover, the coarse spatial scale at which 

long-term LSP metrics are implemented in the weighting system prevented the 

presence of artefacts in reflectance composites due to spatial discontinuities in 

LSP metrics associated with transitions between different land covers. 

Spatial heterogeneity associated with the number of clear observations had a 

negligible influence on the radiometric consistency in space of reflectance 

composites (Figure 3.6). The weighted geometric median produced synthetic 

reflectance values that were statistically representative of the compositing period 

and preserved spectral relationships across bands (Roberts et al., 2019). Because 

of the two properties above, the (weighted) geometric median is defined as a 
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central and global indicator of the data distribution (Chaouch and Goga, 2012). 

Hence, synthetic reflectance values obtained with the weighted geometric median 

are suitable for the computation of spectral indices (Roberts et al., 2019, 2017). 

For missed invalid pixels that can occur using detection algorithms for clouds and 

cloud shadows currently available for Sentinel-2 imagery (Tarrio et al., 2020), 

the robustness of the weighted geometric median is considerably superior to that 

of the weighted mean (Roberts et al., 2019). 

3.4.2 Burn severity mapping 

When mapping burn severity is the primary aim, the exploitation of the weighted 

geometric median integrating long-term LSP metrics offers a threefold 

improvement over the usage of paired images. First, it provides reflectance data 

for the whole burnt area with no or minimal presence of outlying values. Second, 

it generates reflectance values representative of the optimal seasonal timing at 

every pixel location. Third, spectral matching between pre- and post-fire 

conditions is promoted by the weighting system anchored to fixed DOYs 

corresponding to the long-term LSP metrics. 

Reflectance composites marginally increased the predictive performance of 

nonlinear regression models compared to paired images (Table 3.3). Results 

obtained with NBR mean composites were either similar (Parks et al., 2018) or 

opposite (Whitman et al., 2020) to ours. The exponential growth function 

correctly approximated the nonlinear asymptotic relationship between CBI and 

bi-temporal indices (Lentile et al., 2009) since values of these latter are not 

constrained to complete vegetation mortality (Miller et al., 2009). Mixing CBI 

plots dominated by either coniferous or broadleaved species did not prevent 

nonlinear regression models from achieving high predictive performance (R2 

>0.85). Moreover, the extensive preprocessing of Sentinel-2 images and the 

thoroughly collected CBI data likely enhanced the relationship between CBI data 

and bi-temporal indices.  
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The overall classification accuracy of burn severity maps derived from paired 

images was higher (approximately 6% – 7% differences) compared to similar 

studies using Landsat (Parks et al., 2018) or Sentinel-2 imagery (Mallinis et al., 

2017). Reflectance composites outperformed NBR mean composites derived 

from Landsat imagery (Parks et al., 2018), increasing the overall accuracy of burn 

severity maps by between 8% – 10% depending on the bi-temporal index. User’s 

and producer’s accuracies of the high burn severity category (>95%) provided by 

uncalibrated RdNBR derived from reflectance composites were comparable to 

results obtained with the random forest classifier for the crown consumption class 

in fire severity maps (Collins et al., 2018; Gibson et al., 2020). Improvements in 

the overall classification accuracy offered by reflectance composites over paired 

images were maximal and statistically significant for uncalibrated bi-temporal 

indices (Table 3.5). Similarly, Parks et al. (2018) obtained significant 

improvements in the overall classification accuracy using uncalibrated RdNBR 

derived from NBR mean composites compared to paired images. 

Our burn severity maps discriminated the moderate severity with a relatively low 

accuracy compared to the other categories (Table 3.4). Similar results have 

previously been reported when inferring burn severity from remotely sensed 

multispectral data (Miller et al., 2009; Soverel et al., 2010). In non-stand 

replacing fires, the assessment of mixed fire effects mostly impacting the 

understory vegetation through multispectral data is challenging as healthy and 

relatively dense tree canopy cover can mask fire effects (De Santis and Chuvieco, 

2007). Recently, Yin et al. (2020) integrated tree canopy cover information in the 

parameterisation and backward inversion of a radiative transfer model to limit the 

underestimation of the moderate and high burn severity.  

The calibration of bi-temporal indices with the dNBR offset reduced the 

classification accuracy of burn severity maps derived from reflectance 

composites (Table 3.4). In fact, the radiometric consistency in time between pre- 

and post-fire reflectance composites likely limited the utility of the dNBR offset. 

Drawbacks of using the dNBR offset are related to the selection of an appropriate 

set of unburnt pixels, as they should be representative of the pre-fire vegetation 
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in the burnt area (Parks et al., 2018; Picotte et al., 2020). Therefore, deriving the 

dNBR offset for large burnt areas characterised by a heterogeneous pre-fire 

vegetation can be subjective and prone to error. Our compositing method can 

improve the operational usage of bi-temporal indices by eliminating the need for 

further calibration. 

The increase in the accuracy of burn severity maps provided by reflectance 

composites over paired images appeared to be related to higher thresholds of bi-

temporal indices discriminating between burn severity categories (Table S3.5). 

In fact, a large range of values within each burn severity category favoured the 

discrimination capability of bi-temporal indices (Lentile et al., 2009). The priority 

given to observations close to the long-term peak of phenology enhanced the 

spectral contrast between healthy (pre-fire) and burnt vegetation, e.g. in the NIR 

region (Figure 3.9). A steady decrease in canopy greenness has been observed in 

deciduous forests during the greendown phase and has been implemented when 

modelling phenological transitions in forests using optical remote sensing data 

(Elmore et al., 2012; Klosterman et al., 2014; Melaas et al., 2013). In particular, 

the decline of reflectance in the near-infrared wavelengths throughout the 

summer months in deciduous forests (Jenkins et al., 2007) likely affects the 

temporal pattern of NBR mostly during the pre-fire growing season. Conversely, 

during the first post-fire growing season, the detection of fire induced changes 

can be heavily influenced by regeneration processes, particularly in quickly 

recovering ecosystems such as those of the Mediterranean basin (Veraverbeke et 

al., 2010a). In our burnt areas, the recovery of the herbaceous layer in wood-

pastures and the abundant sprouting from stumps in broadleaved forests 

increasingly reduced the spectral contrast between pre- and post-fire conditions 

over time. 

The optimisation of the seasonal timing in reflectance composites also increased 

the overall extent of the moderate and high burn severity categories (Figure 3.12). 

An underestimation of burn severity likely occurred when using paired images 

acquired during late summer (Figure S3.1) due to the weak contrast between pre- 

and post-fire spectral conditions, as observed by other authors (Chen et al., 2020; 
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Key, 2006; Veraverbeke et al., 2010a). On the contrary, the slight decrease in the 

extent of the moderate and high burn severity, e.g. in burnt area 2 and 3, when 

using reflectance composites was probably caused by higher thresholds of bi-

temporal indices than those derived from paired images (Table S3.5).  

Further investigation is needed to determine the applicability of our approach in 

certain fire-prone ecosystems where fire severity is of primary interest due to 

rapid vegetation regrowth (Parker et al., 2015; Picotte and Robertson, 2011; 

Veraverbeke et al., 2010a). As fire severity is assessed within a few weeks 

following the fire (Key, 2006), reflectance composites should be produced using 

a relatively short compositing period which would benefit from multispectral data 

with a high temporal resolution. In this sense, the Harmonized Landsat Sentinel-

2 (HLS) dataset (Claverie et al., 2018) provides medium-resolution multispectral 

data with a relatively high temporal resolution (up to 2-3 days).  

Though bi-temporal indices are widely used for mapping burn severity (Morgan 

et al., 2014), they typically make use of only two or three spectral bands, e.g. 

NBR, NDVI and EVI. Other methods based on optical remote sensing data make 

use of all the spectral bands available and proved to be effective in burn severity 

estimation (Morgan et al., 2014; Yin et al., 2020). Machine learning classifiers, 

e.g. random forest (Collins et al., 2018; Gibson et al., 2020), radiative transfer 

models (Yin et al., 2020) and spectral mixture analysis (Quintano et al., 2017) are 

among those approaches that could benefit from exploiting the full spectral 

information provided by reflectance composites. 

3.5 Conclusions 

In this study, we presented a compositing approach that offers the possibility to 

overcome some of the major limitations hindering burn severity mapping through 

bi-temporal indices derived from multispectral data. We highlighted that 

temporal constraints in the selection of appropriate paired images can 

significantly affect burn severity maps. Our approach provides new opportunities 

for operational burn severity mapping in areas characterised by persistent cloud 
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cover, such as mountainous landscapes. Moreover, phenologically coherent 

reflectance composites provide a standardised approach for mapping burn 

severity and avoid further processing to mitigate spectral mismatches. Among the 

advantages the proposed compositing algorithm provides, there is also its 

transferability to other optical sensors and multi-sensor data, such as surface 

reflectance provided by the HLS dataset (Claverie et al., 2018). In the context of 

forest ecology and forest disturbances mapping, several change detection 

techniques and classification algorithms could benefit from the use of 

phenologically coherent reflectance composites, thus being of broad interest to 

forest managers and researchers. 
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Supplementary material 

Table S3.1. Details regarding Sentinel-2 images used for the assessment of fire 

severity. 

Burnt 

area 
Tile 

Pre-fire acquisition date 

(satellite) 

Post-fire acquisition date 

(satellite) 

1 32TLR 2017/10/07 (S2A) 2017/11/01 (S2B) 

2 32TLQ 2017/10/07 (S2A) 2017/11/16 (S2A) 
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3 32TLR 2017/10/07 (S2A) 2017/11/01 (S2B) 

4 32TLQ 2017/09/12 (S2B) 2017/11/16 (S2A) 

5 32TLR 2017/10/07 (S2A) 2017/11/01 (S2B) 

6 32TLQ 2017/10/07 (S2A) 2017/11/01 (S2B) 

7 32TLR 2017/10/07 (S2A) 2017/11/16 (S2A) 

8 32TLQ 2017/10/07 (S2A) 2017/11/26 (S2A) 

9 32TLQ 2017/10/07 (S2A) 2017/11/26 (S2A) 

10 32TLR 2017/10/07 (S2A) 2017/11/16 (S2A) 

  

 

Table S3.2. Details regarding Sentinel-2 images used for the assessment of burn 

severity. 

Burnt 

area 
Tile 

Pre-fire acquisition date 

(satellite) 

Post-fire acquisition date 

(satellite) 

1 32TLR 2017/08/23 (S2B) 2018/08/28 (S2B) 

2 32TLQ 2017/07/26 (S2A) 2018/07/26 (S2B) 

3 32TLR 2017/07/26 (S2A) 2018/07/19 (S2B) 

4 32TLQ 2017/08/23 (S2B) 2018/08/28 (S2B) 

5 32TLR 2017/08/23 (S2B) 2018/08/28 (S2B) 

6 32TLQ 2017/07/06 (S2A) 2018/07/06 (S2A) 

7 32TLR 2017/06/19 (S2A) 2018/06/19 (S2B) 

8 32TLQ 2017/07/06 (S2A) 2018/07/04 (S2A) 

9 32TLQ 2017/07/04 (S2B) 2018/07/01 (S2A) 

10 32TLR 2017/07/04 (S2B) 2018/07/04 (S2A) 
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Figure S3.1. Barplots indicating the percentage of valid pixels for all the pre- and 

post-fire Sentinel-2 images acquired within each burnt area (1 – 10, letters a – j). 

The displayed time window spans from 20 May to 10 September. The dashed 

black line indicates the 95% threshold used for selecting paired images. Green 

boxes indicate the distribution of DOYs (Q1 – Q3) corresponding to the long-

term peak derived from the MODIS MCD12Q2 product within each study area. 

Red contours indicate paired images selected for burn severity mapping. 

 

Table S3.3. Distribution of CBI plots across burnt areas and severity categories. 

Burnt 

area 

Unchanged to low 

(CBI ≤ 1.25) 

Moderate (CBI > 

1.25 and ≤ 2.25) 

High (CBI 

> 2.25) 

Total CBI 

plots 

1 26 30 32 88 

2 16 24 0 40 

3 28 11 0 39 
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4 6 0 0 6 

5 14 1 0 15 

6 3 3 3 9 

7 9 13 1 23 

8 6 2 0 8 

9 6 0 3 9 

10 14 0 0 14 

All 128 84 39 251 

 

Table S3.4. Pearson correlation coefficients between long-term LSP metrics 

derived from the MCD12Q2 Collection 6 product and elevation within each burnt 

area. All estimates were statistically significant (p <0.001). 

Burnt area Mid-Greenup (p1) Peak (p2) Senescence (p3) 

1 0.97 0.95 0.85 

2 0.84 0.86 0.42 

3 0.90 0.85 0.58 

4 0.87 0.86 0.76 

5 0.93 0.91 0.34 

6 0.90 0.90 0.71 

7 0.91 0.66 0.72 

8 0.84 0.79 0.53 

9 0.92 0.88 0.84 

10 0.79 0.76 -0.83 
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Table S3.5. Predicted values of bi-temporal indices (dNBR, RdNBR and RBR) 

discriminating between burn severity categories obtained using either paired 

images or reflectance composites (uncalibrated or calibrated with the dNBR 

offset). 

Bi-

temporal 

index 

Transition 

between burn 

severity 

categories 

Paired images Reflectance composites 

Uncalibrated Calibrated Uncalibrated Calibrated 

dNBR 

Unchanged to low 

- moderate 124.4 121.5 138.4 132.9 

Moderate - high 485.7 484.2 519.3 514.4 

RdNBR 

Unchanged to low 

- moderate 153.6 150.3 171 164.5 

Moderate - high 600.9 597.5 639.6 633.7 

RBR 

Unchanged/Low - 

moderate 74.7 73.1 83.2 

80 

Moderate - high 292.6 291.7 311.6 308.7 
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Chapter 4 

Change detection by multispectral trends: a Landsat time 

series-based algorithm for forest disturbance mapping and 

beyond 

Donato Morresi, Hyeyoung Maeng, Raffaella Marzano, Emanuele Lingua, 

Renzo Motta and Matteo Garbarino 

This chapter has been submitted for publication to ISPRS Journal of 

Photogrammetry and Remote Sensing. 

Abstract 

Recent changes in spatial and temporal patterns of forest disturbances are mostly 

related to climate change and other anthropogenic factors, such as land-use 

change. Remote sensing data are critical to understand forest disturbance 

dynamics at the landscape scale. The spatial, temporal, and radiometric 

consistency of Landsat time series offers unprecedented insights into past 

disturbances that occurred during the last four decades. Many time series-based 

algorithms have been developed to automate the detection of land cover changes, 

including disturbances. Nevertheless, the sensitivity of these algorithms to low-

severity and gradual disturbances has been reported to be somewhat limited. We 

developed the Change Detection by Multispectral Trends (CDMT) algorithm, 

which exploits the full spectral information provided by Landsat time series to 

maximise the accuracy of disturbance maps. The CDMT algorithm segments 

multivariate annual time series through a novel statistical procedure for 

changepoint detection. We designed CDMT to capture a wide range of 

disturbances, from non-stand-replacing to stand-replacing events. We tested 

CDMT to analyse trends in disturbances, including their severity, occurred in the 

Aosta Valley region (Italy) over a 34-year period. Our results highlighted that the 

user’s and producer’s accuracy systematically increased when moving from the 
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univariate to the multivariate setting. Specifically, the user’s accuracy rose 

significantly compared to the producer’s accuracy due to the lower influence of 

the band-dependent noise in the multivariate setting. The inclusion of multiple 

bands in the time series allowed CDMT to leverage the complementary 

information carried by bands from different portions of the electromagnetic 

spectrum, e.g. SWIR and NIR wavelengths. Overall, the best performing 

combination of bands, i.e. original spectral bands and indices, achieved an F1 

score relative to the disturbed class equal to 83.1%, corresponding to a user’s 

accuracy of 82.4% and a producer’s accuracy of 83.9%. CDMT exhibited a high 

sensitivity to an ample spectrum of disturbance severities. For instance, it 

effectively captured abrupt and gradual spectral changes associated with drought-

induced tree mortality. Among the strengths of CDMT, there is minimal 

parametrisation, which would promote its applicability in different forest 

ecosystems. 

4.1 Introduction 

Disturbances such as wildfires, windthrows, and insect or pathogen outbreaks are 

key components of forest ecosystems (Turner, 2010). They alter the state and 

trajectories of ecosystems and generate heterogeneity in space and time. The 

intensification of climate-driven changes in disturbance regimes has been 

observed globally, with negative impacts on the structure, functions and 

composition of forests (Forzieri et al., 2021; McDowell et al., 2020; Seidl et al., 

2017). Shifts in disturbance patterns towards more frequent, larger and more 

severe events can drastically impair the resilience of forests and trigger transitions 

to a non-forest state (Johnstone et al., 2016; Millar and Stephenson, 2015; Seidl 

et al., 2016). Besides discrete disturbances, long-term studies based either on field 

(Andrus et al., 2021; Camarero et al., 2015) or remote sensing data (Cohen et al., 

2016; Senf et al., 2018) highlighted increasing trends in tree mortality rates, 

associated with gradual, non-stand replacing disturbances. Warming 

temperatures and increases in severe and prolonged droughts driven by climate 
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change resulted in extensive forest decline globally (Allen et al., 2015, 2010). 

Apart from the direct effects of climate change, modifications of the interactions 

between disturbance agents (Seidl et al., 2017) and land-use change patterns such 

as land abandonment (Mantero et al., 2020) further drove shifts in disturbance 

regimes. Identifying changes in disturbance regimes that occurred over the last 

decades has crucial implications for current and future management policies 

(Leverkus et al., 2021). Forest ecosystems management should primarily focus 

on increasing resilience, for example, by favouring migration towards 

disturbance-adapted tree species and promoting heterogeneity of the landscape 

mosaic (Allen et al., 2015; Leverkus et al., 2021; Seidl, 2014).  

Satellite-based remote sensing is a fundamental data source for forest ecologists 

as it enables a comprehensive understanding of ecological processes both in the 

spatial and temporal dimensions (Cohen et al., 2016; Hansen et al., 2013; 

Kennedy et al., 2014). In particular, continuously-acquired data of the land 

surface by Landsat satellites over the last four decades provide a unique 

opportunity to reconstruct long-term forest disturbance dynamics at the landscape 

scale (Hermosilla et al., 2015a; Kennedy et al., 2012; Senf et al., 2017; Wulder et 

al., 2019). The opening of the U.S. Geological Survey (USGS) Landsat archive 

in 2008 prompted a rapid increase in the use of time series for analysing forest 

ecosystems dynamics from regional to global scales (Banskota et al., 2014; 

Wulder et al., 2012). 

Several automated change detection algorithms based on Landsat time series have 

been developed either to explicitly map forest dynamics or target a broader range 

of land cover changes (Cohen et al., 2017; Zhu, 2017). Zhu (2017) divided 

Landsat time series-based algorithms into categories defined by the mathematical 

approaches they rely on, i.e. thresholding, differencing, segmentation trajectory 

classification, statistical boundary and regression. Other characteristics like time 

series frequency and sensitivity to discrete and gradual events are useful for 

classifying these algorithms. For instance, offline algorithms operate on 

completely available time series, while online algorithms can process 

continuously-acquired data. Moreover, algorithms are either univariate or 
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multivariate (Zhu, 2017), depending on the number of bands, i.e. bands and 

indices sensu Cohen et al. (2020), they can simultaneously analyse. The widely-

used algorithms for segmenting annual Landsat time series into linear trends like 

LandTrendr (Landsat-based Detection of Trends in Disturbance and Recovery; 

Kennedy et al., 2010) or C2C (Composite2Change C2C; Hermosilla et al., 2015b) 

are univariate. Conversely, algorithms based on intra-annual Landsat time series, 

e.g. CCDC (Continuous Change Detection and Classification; Zhu and 

Woodcock, 2014) and COLD (COntinuous monitoring of Land Disturbance; Zhu 

et al., 2019), are multivariate.  

The sensitivity of time series-based automated algorithms towards low-severity 

forest disturbances, i.e. those causing partial canopy loss, has been reported to be 

somewhat limited compared, for example, to visual interpretation of spectral 

trajectories (Cohen et al., 2017) or bi-temporal burn severity indices (Rodman et 

al., 2021). While primarily used for calibration and validation purposes (Cohen 

et al., 2010; Olofsson et al., 2014), visual interpretation of spectral trajectories 

enabled to disclose shifts in patterns of forest disturbance over considerably large 

areas such as the U.S. (Cohen et al., 2016) and Europe (Senf et al., 2018). 

Extracting the weak signals associated with non-stand-replacing disturbances is 

hindered by noise in Landsat time series, which is generated by uncertainties in 

preprocessing operations like georeferencing and atmospheric correction (Cohen 

et al., 2017; Rodman et al., 2021; Vogelmann et al., 2016). A key issue when 

targeting low-severity disturbances is the proper optimisation of the parameters 

of an algorithm in order to balance omission and commission errors (Cohen et 

al., 2017; Ye et al., 2021). For instance, Ye et al. (2021) improved the detection 

of subtle changes induced by insect outbreaks by first optimising the parameters 

of the CCDC algorithm.  

Recently, different ensemble approaches have been proposed to improve 

disturbance maps produced by Landsat time series-based algorithms (Bullock et 

al., 2020; Cohen et al., 2018; Healey et al., 2018; Hislop et al., 2019; Schultz et 

al., 2016). Ensemble approaches expanded disturbance detection capabilities in 

terms of accuracy and range of severities compared to those achieved with any 
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individual algorithm or band (Cohen et al., 2020, 2018; Healey et al., 2018). 

Algorithm ensembles are built using multiple change detection algorithms that 

are executed either in parallel (Cohen et al., 2020; Healey et al., 2018; Hislop et 

al., 2019) or sequentially (Bullock et al., 2020). Differences between these two 

approaches stem from the fact that results obtained with parallel ensembles need 

to be aggregated through a set of rules or using a supervised classifier (Cohen et 

al., 2020; Healey et al., 2018; Hislop et al., 2019). Conversely, sequentially 

running change detection algorithms requires the output from the first one to be 

used as input for the second one and so on. Multispectral ensembles (Cohen et 

al., 2018; Marzo et al., 2021; Schultz et al., 2016; Senf and Seidl, 2020) are built 

by first analysing several bands through multiple runs of a univariate algorithm. 

Results are then dissolved using a secondary classification model based on a 

supervised classifier, e.g. random forest. The advantages offered by multispectral 

ensembles are primarily related to the diversity of information provided by 

several bands (Cohen et al., 2020, 2018).  

A marked growth of statistical methods for changepoint detection in multivariate 

time series has been observed in recent years (see reviews by Cho and Kirch, 

2020 and Truong et al., 2020). The analysis of multivariate and possibly high-

dimensional time series, i.e. time series with dimensions of the same order of 

magnitude of the observations or even larger, is a common task in many fields 

such as bioinformatics (Grundy et al., 2020), finance (Cho and Fryzlewicz, 2015) 

and telecommunications (Bardwell et al., 2019). To deal with the complexity 

associated with multivariate time series, one common approach is to aggregate a 

test statistic (Groen et al., 2013) or project the time series to a single dimension 

and then process the data with a univariate method (Wang and Samworth, 2018). 

Assumptions on the proportion of time series that undergo a change determine 

the most appropriate aggregation method (Groen et al., 2013). For example, the 

widely-used CUSUM statistic for detecting structural changes (Brown et al., 

1975) has been aggregated across time series using either the average or the 

maximum (Groen et al., 2013; Jirak, 2015). Generally, the average of a test 

statistic performs better when a change occurs in the majority of the time series, 
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i.e. a dense change, while the maximum is more appropriate for changes 

occurring only in a fraction of them, i.e. a sparse change (Groen et al., 2013; Jirak, 

2015). Current methods like those proposed by Enikeeva and Harchaoui (2019) 

and Tickle et al. (2021) highlighted their potential for detecting changes in 

multivariate time series when these occur both in the dense and the sparse 

scenarios. Changepoint methods have primarily focused on detecting changes in 

the mean associated with constant signals, though some approaches use piecewise 

polynomial models to segment time series (Cho and Kirch, 2020). 

We hypothesise that segmenting annual Landsat time series through a 

multivariate approach could improve forest disturbance detection in a similar way 

to building a multispectral ensemble based on a univariate algorithm.  

Here we present an automated algorithm named Change Detection by 

Multispectral Trends (CDMT) that we primarily developed to detect forest 

disturbances. CDMT is a pixel-based, offline algorithm for detecting 

changepoints through the segmentation of annual Landsat time series. Unlike 

existing segmentation algorithms, CDMT can analyse both univariate and 

multivariate time series, i.e. time series including multiple bands. Though CDMT 

can detect changes in linear trends associated with disturbances and recovery 

processes, here, we focused only on disturbance detection. 

Our specific aims were to: 

i) automate the detection of abrupt and gradual disturbances by leveraging 

the full spectral information provided by Landsat time series; 

ii) assess how many and which bands to include in multivariate time series 

to maximise the accuracy relative to the detection of disturbances; 

iii) analysing trends in forest disturbances and their severity in the Aosta 

Valley region (Italy), over a 34-year period, from 1986 to 2019. 
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4.2 Materials and methods 

4.2.1 Study area 

Our study area encompasses the Aosta Valley region in northwestern Italy and 

has an extension of 3262 Km2 (Figure 4.1). The study area is covered by 

Path/Row 194/28, 195/28 and 196/28 of the Landsat World Reference System 

(WRS) 2 (Figure 4.1). Its territory is mostly mountainous, with an average 

elevation of 2100 m a.s.l. Forests account for 28.95% of the total area according 

to the Copernicus Dominant Leaf Type 2018 map (European Environmental 

Agency, 2020). Stands dominated by broadleaves occupy 515.61 Km2, while 

those dominated by conifers amount to 428.87 Km2. European larch (Larix 

decidua Mill.), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 

sylvestris L.) are the dominant coniferous tree species. Common broadleaved tree 

species include silver birch (Betula pendula Roth.), maples (e.g. Acer 

pseudoplatanus L.), sweet chestnut (Castanea sativa Mill.) and downy oak 

(Quercus pubescens Willd.). 

 

 
Figure 4.1. Geographic location of the study area with additional information 

regarding forest cover from the Dominant Leaf Type 2018 layer (European 

Environmental Agency, 2020) and Landsat data coverage (Path/Row) from the 

World Reference System (WRS) 2. 
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4.2.2 Landsat data 

We collected all Landsat Thematic Mapper (TM), Enhanced Thematic Mapper + 

(ETM+) and Operational Land Imager (OLI) Level 1 Tier 1 imagery from 

Collection 1 acquired between 1985 and 2020 with < 80% cloud cover. We 

processed images at surface reflectance using the Framework for Operational 

Radiometric Correction for Environmental monitoring (FORCE) software 

(version 3.6.5, available at https://github.com/davidfrantz/force; Frantz, 2019). 

The FORCE Level 2 Processing System allowed us to: (i) perform atmospheric 

correction based on radiative transfer modelling including adjacency effects 

(Frantz et al., 2016) and (ii) compute Nadir BRDF (Bidirectional Reflectance 

Distribution Function)-Adjusted Reflectance (NBAR) through a fixed global set 

of MODIS (Moderate Resolution Imaging Spectroradiometer) BRDF kernel 

parameters (Roy et al., 2017a, 2017b). We removed pixels contaminated by 

clouds, cloud shadows and snow using the Quality Assessment (QA) band 

provided by the USGS for every Landsat Collection 1 Level 1 image. The QA 

band is produced using the C Function of Mask (CFmask) algorithm (Foga et al., 

2017). 

We produced yearly reflectance composites using all the six bands of the 

TM/ETM+ sensors and the corresponding OLI bands relative to the growing 

season using the geometric median approach (Roberts et al., 2017). For each year, 

we defined an adaptive compositing period spanning between June 1 and 

September 30 that iteratively widened up to 20 days at both of its sides until at 

least three clear observations were found. This approach allowed us to maximise 

the robustness of the geometric median (Morresi et al., 2022). 

We computed eight spectral indices (Table 4.1) that are commonly used in the 

context of forest disturbance detection (Banskota et al., 2014; Cohen et al., 2018; 

DeVries et al., 2016). 

Table 4.1. List of the spectral indices used in this study. 
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Index Formulation Direction of 
change caused by 
a disturbance 

Reference 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

(NIR – RED)/ 

(NIR + RED) 

decrease (Rouse et al., 
1973) 

Normalized 
Difference 
Moisture Index 
(NDMI) 

(NIR – SWIR1)/ 

(NIR + SWIR1) 

decrease (Wilson and 
Sader, 2002) 

Normalized Burn 
Ratio (NBR) 

(NIR – SWIR2)/ 

(NIR + SWIR2) 

decrease (García and 
Caselles, 
1991) 

Moisture Stress 
Index (MSI) 

NIR/SWIR1 increase (Hunt Jr and 
Rock, 1989) 

Tasseled Cap 
Brightness (TCB) 

0.3037∗BLUE+0.2793∗ 

GREEN+0.4743∗RED+ 

0.5585∗NIR+0.5082∗ 

SWIR1+0.1863∗SWIR2 

increase (Crist, 1985) 

Tasseled Cap 
Greenness (TCG) 

−0.2848∗BLUE−0.2435∗ 

GREEN−0.4743∗RED+ 

0.7243∗NIR+0.0840∗ 

SWIR1−0.1800∗SWIR2 

decrease (Crist, 1985) 

Tasseled Cap 
Wetness (TCW) 

0.1509∗BLUE+0.1973∗ 

GREEN+0.3279∗RED+ 

0.34065∗NIR−0.7112∗ 

SWIR1−0.4572∗SWIR2 

decrease (Crist, 1985) 

Tasseled Cap 
Angle (TCA) 

arctan(TCB/TCG) decrease (Powell et al., 
2010) 
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4.2.3 Overview of the algorithm 

CDMT builds on a novel statistical procedure to segment multivariate Landsat 

time series into linear trends and detects changepoints. Linear trends are suitable 

approximations of annual Landsat time series that enable algorithms to detect 

abrupt and gradual changes associated with forest disturbance and recovery 

processes (Hermosilla et al., 2015b; Hughes et al., 2017; Kennedy et al., 2010). 

Operationally, CDMT builds multispectral time series by extracting values from 

time-ordered sequences of data cubes (Figure 4.2). The High-dimensional Trend 

Segmentation (HiTS) procedure  (Maeng, 2019, publicly available at 

https://github.com/hmaeng/HiTS) is at the core of our algorithm. The HiTS 

procedure was designed to detect multiple changepoints in multivariate and 

possibly high-dimensional data sequences. It is a generalisation into higher 

dimensions of the TrendSegment procedure (Maeng and Fryzlewicz, 2019) that 

partitions univariate data sequences into linear trends to detect multiple 

changepoints. 

We note that CDMT can also analyse univariate time series and does not detect 

changes either in the first or in the last year of the time series. Specifically, the 

HiTS procedure can detect changepoints at every time point except the first, while 

CDMT needs an observation after each changepoint to remove impulsive noise 

(Section 2.4.1). 

As CDMT and the HiTS procedure heavily rely on matrix-based operations and 

are written in plain R (R Core Team, 2021), we optimised computational 

efficiency using the “matrixStats” package (Bengtsson, 2021). We employed the 

“terra” package (Hijmans, 2022) to manipulate raster data and parallelise 

processing. 
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Figure 4.2. Flowchart of the processing steps performed by CDMT at the raster 

and pixel-level when analysing multispectral time series. Input data consist of 

four-dimensional arrays where bands and time form the third and fourth 

dimensions, respectively. 

4.2.4 Processing of multispectral time series 

CDMT processes only time series containing one-year gaps and removes them at 

the beginning of the processing. This implies that those time series with gaps 

longer than one year are discarded. CDMT employs an iterative procedure to 

discern between changepoints associated with forest dynamics and those caused 

by impulsive noise, i.e. outliers in the spectral signal that are associated, for 

example, with undetected clouds, cloud shadows or haze (Hermosilla et al., 

2015b; Kennedy et al., 2010). The iterative procedure for removing spurious 

changepoints continues until either all are removed, or five iterations are 

performed. If changepoints and gaps co-occur in a multispectral time series, 

CDMT updates the corresponding year of change depending on the number of 

gaps preceding each changepoint. It imputes gaps in each band using values of 

linear segments previously estimated by the HiTS procedure. Specifically, gaps 

located at the vertices of segments of at least three years in length are imputed 

using linear extrapolation based on the two preceding values. Otherwise, gaps are 

filled using the preceding value. Gaps located in the middle of a segment are filled 

using linear interpolation between the preceding and the following values. This 

approach is similar to that proposed by Hermosilla et al. (2015b) and determines 

that changepoints co-occurring with gaps are detected with a one-year lag. 
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4.2.5 Impulsive noise filter 

CDMT removes impulsive noise through a two-stage procedure consisting of the 

identification of candidate time points and their verification. CDMT leverages 

the ability of the HiTS procedure to detect point anomalies (Section 4.2.6), as 

these may correspond to spurious changepoints. Furthermore, CDMT computes 

two change magnitudes for each band:  

𝑑𝑑1 = |𝑣𝑣𝑝𝑝−1 − 𝑣𝑣𝑝𝑝|, 

𝑑𝑑2 = |𝑣𝑣𝑝𝑝−1 − 𝑣𝑣𝑝𝑝+1|, 

(1) 

where t corresponds either to a changepoint or to the time point preceding that 

changepoint. It then checks if, in any band, the following condition is satisfied: 

d1 is greater than four times the estimated standard deviation (Equation 3), and d2 

is smaller than the standard deviation. These values ensure that changepoints 

followed by anomalously rapid spectral recovery are included among candidate 

time points. 

CDMT re-analyses multispectral time series during the verification stage by 

iteratively removing each candidate time point. When it detects a changepoint at 

the candidate time point or nearby, considering a one-year offset, it labels the 

changepoint as an actual change. Otherwise, CDMT replaces invalid values 

through linear interpolation based on the preceding and following observations.   

4.2.6 Modified HiTS procedure 

In this section, we first provide a brief description of the HiTS procedure 

proposed in Maeng (2019) and then describe how we modified it for analysing 

Landsat time series. The changepoint model proposed by HiTS considers a 

multivariate time series data containing n variates of length T as follows: 

𝑋𝑋𝑝𝑝,𝑝𝑝 = 𝑖𝑖𝑝𝑝,𝑝𝑝 + 𝜀𝜀𝑝𝑝,𝑝𝑝, (2) 

where 𝑖𝑖𝑝𝑝 = (𝑖𝑖𝑝𝑝,1, … ,𝑖𝑖𝑝𝑝,𝑇𝑇)⊤ is the piecewise linear signal of the time series 𝑋𝑋𝑝𝑝 =

(𝑋𝑋𝑝𝑝,1, … ,𝑋𝑋𝑝𝑝,𝑇𝑇)⊤and 𝜀𝜀𝑝𝑝 = (𝜀𝜀𝑝𝑝,1, … , 𝜀𝜀𝑝𝑝,𝑇𝑇)⊤ is the independent Gaussian random error 
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with mean zero and variance 𝜎𝜎2. The model assumes that the signal vectors 

{𝑖𝑖𝑝𝑝}𝑝𝑝=1𝑚𝑚  have the form of a piecewise linear function and share N distinct 

changepoints at unknown locations 𝜂𝜂1, … , 𝜂𝜂𝑁𝑁 in the sense that at each 

changepoint, at least one signal vector undergoes a change in its linear trend, 

whether in the intercept or the slope or both. HiTS was designed to work well in 

detecting multiple changepoints corresponding to linear trend changes or point 

anomalies, which are large deviations of the signal from its neighbouring 

segments. It consists of four main steps: (1) High-dimensional Tail-Greedy 

Unbalanced Wavelet (HiTGUW) transform, (2) thresholding, (3) inverse 

HiTGUW transformation and (4) post-processing. 

The core ingredient of the HiTS procedure is the HiTGUW transform, a bottom-

up transformation of multivariate time series data through constructing a data-

driven wavelet basis. Starting from the finest scale, i.e. using raw input data of 

dimension n × T, the HiTGUW transform recursively merges neighbouring 

regions of the data from bottom to top and is completed after T – 2 local 

orthonormal transformations that result in a multiscale decomposition of the input 

matrix with n × (T – 2) detail-type coefficients and n × 2 smooth-type coefficients. 

The detail coefficient plays an important role in deciding which region should be 

merged first, as its size indicates the strength of local linearity; the detail 

coefficient becomes zero only when the raw observations in the corresponding 

merged region have a perfect linear trend. The merges are performed by giving 

priority to the interval whose (aggregated) detail coefficient has the smallest size, 

where the aggregation strategy is based on computing the maximum detail 

coefficient over n time series that corresponds to the maximum deviation from 

linearity over n time series at a given time interval. The resulting HiTGUW 

transform enables the sparse representation of the data in that the bulk of variance 

of the input data is encoded in only a few detail coefficients obtained at later 

merges. This justifies thresholding as the following step, where the pruning is 

performed in a way of deciding the significance of the sparse representation of 

the input data. Note that HiTS can deal with the case when the standard deviation 

of the error, 𝜎𝜎𝑝𝑝, varies across time series 𝑋𝑋𝑝𝑝, as it can be estimated using the 



139 
 

median absolute deviation (Hampel, 1974) that is adjusted for achieving 

asymptotic normal consistency (Equation 3).  

𝜎𝜎�𝑝𝑝 = �𝑁𝑁𝑀𝑀𝑁𝑁�𝑋𝑋𝑝𝑝,1 − 2𝑋𝑋𝑝𝑝,2 + 𝑋𝑋𝑝𝑝,3, … ,𝑋𝑋𝑝𝑝,𝑇𝑇−2 − 2𝑋𝑋𝑝𝑝,𝑇𝑇−1 + 𝑋𝑋𝑝𝑝,𝑇𝑇� × 1.4826�/√6 (3) 

In thresholding, the detail coefficient matrix obtained in the HiTGUW transform 

is used. For each changepoint candidate, the corresponding detail coefficients are 

aggregated over n time series, and if its size is greater than a pre-specified 

threshold, it survives. The threshold used to detect significant deviations from 

linearity is computed as follows: 

𝜆𝜆 = 𝐶𝐶�2𝑠𝑠𝑠𝑠𝑙𝑙 (𝑚𝑚𝑇𝑇), (4) 

where n is the number of time series, T is their length, and C = 1.2 is 

recommended in Maeng (2019). The inverse HiTGUW transformation performs 

inverted, i.e. transposed, orthonormal transformations in reverse order to that in 

which they were initially performed. This step uses the thresholded detail 

coefficients to produce the estimated piecewise linear signal composed of best 

linear regression fits (i.e. minimising the sum of squared errors) for each 

estimated segment. Lastly, in the post-processing step, non-significant 

changepoints are removed by performing the first three steps of the HiTS 

procedure using the estimated functions computed by the inverse HiTGUW 

transformation as input data. The reader is referred to Maeng (2019) for more 

details on the HiTS procedure.  

The original HiTS procedure was designed to prioritise the detection of sparse 

and high magnitude changes, irrespective of their duration, i.e. the length of the 

linear segment following a changepoint (Maeng, 2019). For instance, we consider 

two types of change: the change that is sparse across n time series with high 

magnitude and the change that is dense across the panel with low magnitude. If 

both types of change exist in a multivariate time series, the HiTS procedure 

prioritises the sparse change detection. This behaviour was determined by the 

aggregation approach of the detail coefficients in the HiTGUW transformation 

and thresholding step, which is based on the maximum among the individual time 

series. Our modification of the HiTS procedure aims at reducing its sensitivity to 
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noise while extending the range of disturbance severities to include persistent and 

low-severity events. These latter correspond to non-stand replacing disturbances 

such as those caused by insects, disease and drought-induced mortality (Cohen et 

al., 2016; Coops et al., 2020).  

First, at every iteration of the HiTGUW transformation, we multiplied the detail 

coefficients of each band by a weight wp, computed as follows: 

𝑤𝑤𝑝𝑝 =
∑ 𝑁𝑁𝑝𝑝𝑖𝑖

2𝑛𝑛−1
𝑖𝑖=1

(𝑚𝑚−1)
 𝑖𝑖𝑠𝑠𝑖𝑖 𝑚𝑚 ≠  𝑠𝑠, (5) 

where 𝑁𝑁𝑝𝑝𝑝𝑝2  is the coefficient of determination relative to the pairwise linear 

regression between bands p and i. Our weighting system follows an opposite 

rationale compared to that proposed by Bullock et al. (2020), who prioritised 

uncorrelated Landsat bands when aggregating the test statistic for the Chow test. 

We regarded the average pairwise coefficient of determination as a proxy metric 

for the predictive power of each band.  

Second, in the HiTGUW transformation, we aggregated the detail coefficients by 

summing the maximum and the average. This modification allowed us to 

prioritise dense and persistent changes over extremely sparse and ephemeral 

ones. 

Third, in the thresholding step, we aggregated the detail coefficients using either 

the maximum or the weighted average based on band-specific weights (Equation 

5). To select the optimal aggregation method, we employed the modified 

Bayesian Information Criterion (BIC) proposed by Hall et al. (2013), which 

contains the following penalty term: 

𝑃𝑃(𝑁𝑁) = 𝑘𝑘(𝑁𝑁 + 1) + 3𝑁𝑁, (6) 

where k is the number of parameters that define each linear segment, i.e. intercept 

and slope, and N is the number of changepoints. We summarised the BIC among 

bands for each aggregation method through the weighted average, using weights 

assigned to each band (Equation 5). The penalty term in Equation 6 effectively 

limited data overfitting, which was a condition arising mainly with the maximum 

statistics. Nevertheless, the maximum pointwise detail coefficient among bands 
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allowed CDMT to detect abrupt and non-stand-replacing disturbances, e.g. 

diffuse windthrows, producing a weak signal in the majority of the bands.  

Finally, we applied the finite sample bias correction factor proposed by Park et 

al. (2019) to the MAD (Equation 3) to improve the estimation of the standard 

deviation performed by the HiTS procedure. 

4.2.7 Classification of changepoints 

CDMT employs a decision tree to classify changepoints detected by the HiTS 

procedure into three classes: abrupt disturbances, gradual disturbances, and other 

events, e.g. post-disturbance reforestation (Figure 4.3). It evaluates each node 

based on the majority vote of the bands while it regards ties as negative outcomes. 

CDMT first determines whether a changepoint is associated with an abrupt or a 

gradual change by determining if it occurred mainly in the intercept or slope, as 

segments in the piecewise linear model estimated by the HiTS procedure are 

discontinuous. Specifically, CDMT computes two change magnitudes: 

𝑚𝑚1 = 𝑣𝑣𝑝𝑝−1 − 𝑣𝑣𝑝𝑝 , 

𝑚𝑚2 = 𝑣𝑣𝑝𝑝−1 − 𝑣𝑣𝑝𝑝+1, 

(7) 

where v and t correspond to the values estimated by the HiTS procedure and the 

time index of the changepoint, respectively. These change magnitudes (m1 and 

m2) correspond to those in Equation 1, although CDMT retains the information 

regarding the direction of change. Specifically, it compares the absolute values 

of m1 and m2 with the standard deviation of the time series (Equation 3) and 

checks for the concordance of their sign. Abrupt changes require that both m1 and 

m2 are greater than the standard deviation and that their signs have the same 

direction (Figure 4.3). Depending on whether the change was abrupt or gradual, 

CDMT evaluates the direction of change using either the sign of m1 or the slope 

of the segment beginning at the changepoint (Figure 4.3). We note that CDMT 

requires the reference direction of change for each band as ancillary information 

(Table 4.1). 
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Figure 4.3. Decision tree employed by CDMT to classify changepoints in 

multispectral time series. The sign function is abbreviated with “sgn”. The 

majority vote among bands determines the outcome at each node. 

After classifying changepoints, CDMT computes the duration of disturbances. 

Abrupt events last for one year, i.e. the frequency of the time series, while the 

duration of gradual disturbances corresponds to the length of the segment 

beginning with the changepoint.  

4.2.8 Spectral change magnitude and disturbance severity 

For every band, the change magnitude associated with an abrupt disturbance is 

equal to m1 (Equation 7). Conversely, the spectral change magnitude of a gradual 

disturbance corresponds to the difference between the values estimated by the 

HiTS procedure at the onset and ending years of that event, i.e. the vertices of the 

segment beginning with the changepoint. CDMT computes a synthetic spectral 

change magnitude for every disturbance, which is the median of the change 

magnitudes among bands in relative terms. Following Cohen et al. (2016), 

spectral change magnitudes are relativised by dividing for the estimated pre-

disturbance value. 

We converted the synthetic spectral change magnitude into disturbance severity, 

discriminating between stand-replacing and non-stand-replacing disturbances, as 

proposed by Senf and Seidl (2020). Specifically, we employed a logistic 

regression to predict the disturbance severity associated with synthetic spectral 
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change magnitude. Disturbance severity corresponded to the probability for a 

given pixel of being disturbed by a stand-replacing or a non-stand-replacing 

event. We selected the optimal threshold discriminating between these two 

classes a posteriori, using the “MinROCdist” criteria in the “PresenceAbsence” 

R package (Freeman and Moisen, 2008a, 2008b). This threshold minimises the 

distance between the receiver operating characteristic (ROC) curve and the 

upper-left corner in the ROC plot. 

To locate Landsat pixels corresponding to stand-replacing samples, we employed 

a comprehensive set of stand-replacing patches provided by the Regional Forest 

Service of the Aosta Valley. The perimeters of these patches were either 

delineated through the collection of GPS points during field surveys or by visual 

digitisation of aerial orthophotos. We randomly sampled 1500 Landsat pixels 

equally distributed among three main disturbance types: wildfires, windthrows 

and downslope mass movements, including snow avalanches and landslides. 

Stratification by disturbance type allowed us to account for differences in spectral 

changes, e.g. fire typically caused higher spectral change magnitudes compared 

to other disturbances. We located non-stand-replacing samples within the same 

disturbed patches, but outside stand-replacing perimeters and employed the same 

procedure described for the collection of stand-replacing samples, holding the 

sample size constant. 

4.2.9 Algorithm parametrisation 

CDMT requires a few parameters to be set prior to analyse multispectral time 

series. Our tests highlighted that the coefficient associated with standard 

deviation for detecting spurious changepoints (Section 4.2.5) had a negligible 

impact on the accuracy of the algorithm. The threshold (𝜆𝜆) controlling the 

significance of changepoints is the most important parameter in the HiTS 

procedure (Equation 4). When the length of the multispectral time series is held 

constant, λ varies as a function of both the number of bands included in 

multispectral time series and the parameter C (Figure 4.4). We tested the effect 
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of the parameter C on accuracy metrics using values comprised in the interval [1, 

1.3].  

 

Figure 4.4. Example of thresholds (𝜆𝜆) employed in the HiTS procedure for 

detecting changepoints using different values of the parameter C (Equation 4). 

Thresholds varied as a function of the number of bands included in a multispectral 

time series. The length of this latter is equal to 36 and corresponds to the length 

of annual Landsat time series in the present study. 

Selecting the bands to be included in multispectral time series is crucial, as these 

are characterised by different sensitivity to forest disturbances, e.g. Cohen et al. 

(2018); DeVries et al. (2016); Schultz et al. (2016). To evaluate the influence of 

each band on the detection accuracy of disturbances (Section 4.2.11), we tested 

all the unique combinations based on six Landsat reflectance bands (Blue, Green, 

Red, NIR, SWIR1 and SWIR2) and eight spectral indices (Table 4.1). The length 

of the unique combinations ranged from a single band to all of them, i.e. 14. 

4.2.10 Accuracy assessment 

Following other studies, e.g. Cohen et al. (2016); Hermosilla et al. (2015a), our 

definition of forest disturbance was as broad as possible. We included every 

spectral change in the direction of a forest disturbance irrespective of whether it 

was associated with a stand-replacing or non-stand-replacing event. Changes had 

to be discernible at least in Landsat time series and low-severity and gradual 
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disturbances had to last for at least three years. This was necessary for avoiding 

confusion between disturbances and normal inter-annual fluctuations. 

We assessed the accuracy of CDMT in detecting abrupt and gradual disturbances 

by considering them as individual events in space and time, following the 

approach proposed in other studies (Bullock et al., 2020; Cohen et al., 2017; Zhu 

et al., 2019). In particular, we evaluated either the year when an abrupt 

disturbance was detectable or the onset year of a gradual disturbance. We 

determined the occurrence of a disturbance event by simultaneously visualising 

annual multispectral Landsat time series at the plot level and the corresponding 

raster data in QGIS software. Raster data comprised RGB false-colour 

composites derived from Landsat yearly reflectance data (R=SWIR2, G=NIR, 

B=Red) and high-resolution imagery. Among high-resolution aerial imagery, 

there were historical black and white orthophotos acquired within the periods 

1988-1989 and 1994-1997, and natural colour orthophotos acquired within the 

period 1999-2000 and in 2006 and 2012. High-resolution satellite imagery 

included those provided free-of-charge by Google, Bing and Esri. Furthermore, 

we employed disturbance perimeters provided by the Regional Forest Service of 

the Aosta Valley (Section 2.7) as reference data for those plots located within 

them.  

Our reference dataset included 1408 plots, each corresponding to a Landsat pixel: 

disturbed plots were 630 in total while those undisturbed were 778. By evaluating 

individual years for each plot, we obtained 50724 sample units, of which 726 

were disturbance events as some plots were disturbed multiple times. Using a 

confusion matrix, we computed three accuracy metrics relative to the disturbed 

class: user’s accuracy (UA; equation 8), producer’s accuracy (PA; equation 9) 

and F1 score (equation 10). 

𝑈𝑈𝑀𝑀 =
𝑇𝑇𝑖𝑖𝑇𝑇𝑅𝑅 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅

(𝑇𝑇𝑖𝑖𝑇𝑇𝑅𝑅 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅 + 𝐹𝐹𝑚𝑚𝑠𝑠𝑠𝑠𝑅𝑅 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅) 
 × 100 (8) 

𝑃𝑃𝑀𝑀 =  
𝑇𝑇𝑖𝑖𝑇𝑇𝑅𝑅 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅

(𝑇𝑇𝑖𝑖𝑇𝑇𝑅𝑅 𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅 + 𝐹𝐹𝑚𝑚𝑠𝑠𝑠𝑠𝑅𝑅 𝑁𝑁𝑅𝑅𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑣𝑣𝑅𝑅)
 × 100 (9) 
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𝐹𝐹1 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑅𝑅 = 2 ×
𝑈𝑈𝑀𝑀 ×  𝑃𝑃𝑀𝑀
𝑈𝑈𝑀𝑀 + 𝑃𝑃𝑀𝑀

 (10) 

To build the reference dataset, we initially selected 2000 pixels among those 

detected by CDMT as disturbed or undisturbed through stratified random 

sampling. The disturbance map that we used for the selection of validation plots 

was derived from the analysis of multispectral time series formed by six bands: 

SWIR1 and SWIR2 Landsat bands, NBR, NDMI, TCW and TCA. Cohen et al. 

(2018) highlighted that these bands are particularly effective for detecting forest 

disturbances through annual Landsat time series due to their high Disturbance 

Signal To Noise Ratio (DSNR). We spatially constrained the selection of pixels 

through a forest mask built by merging the forest classes of the Corine Land 

Cover (CLC) maps relative to the years 1990 and 2018. Specifically, we included 

the following classes: broadleaved forest, conifer forest, mixed forest and 

transitional woodland. Moreover, we retained only those pixels that were covered 

by at least 50% of tree canopies at any time within the analysis period. 

4.3 Results 

4.3.1 Algorithm assessment: impulsive noise 

CDMT was robust towards impulsive noise due to two mechanisms: the filter and 

the insensitivity of the modified HiTS procedure to sparse and ephemeral 

changes. Impulsive noise occurring in all the bands caused a dense change that 

was detected by the HiTS procedure, identified and then removed by CDMT 

(Figure 4.5a). Conversely, when impulsive noise occurred sparsely across bands, 

the HiTS procedure did not detect any changepoint during these years (Figure 

4.5b). Hence, CDMT did not activate the filter when impulsive noise was 

overlooked by the HiTS procedure (Figure 4.5b).  

The sensitivity of the modified HiTS procedure to dense and persistent changes 

allowed the CDMT algorithm to effectively discriminate between forest 

disturbances and impulsive noise (Figure 4.5c). The spectral signal associated 

with a disturbance, e.g. wildfire, can resemble that of impulsive noise when rapid 
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post-disturbance vegetation recovery occurs. However, spectral changes 

associated with disturbances can be still detected during the following years, even 

if the strength of the signal decreased heterogeneously across bands (Figure 4.5c).  

 

Figure 4.5. Example of multispectral time series relative to three different pixels, 

containing either impulsive noise (a, b) or spectral changes caused by a wildfire 

(c). Vertical dashed lines indicate changepoints. Impulsive noise occurred in 2012 

(a), 1992 and 1996 (b). CDMT correctly retained the changepoint associated with 

a wildfire in 1991, despite its similarity with impulsive noise due to the rapid 

post-fire recovery of some bands. 

By analysing univariate time series, i.e. each individual band separately, we were 

able to disentangle the effect of the impulsive noise filter on the user’s and 

producer’s accuracy (Figure 4.6, Table S4.1). When CDMT removed impulsive 

noise, the user’s accuracy increased for all the bands (Figure 4.6b), and the 

median increase was 3.2%. Differences with unfiltered data ranged from 1.7% 

(Blue and SWIR1) to 5.6% (Red). Conversely, the producer’s accuracy slightly 

decreased for most of the bands and increased for some: differences with 

unfiltered data varied from -3% (SWIR1) to 0.7% (TCA). In general, the median 
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decrease in producer’s accuracy among bands was equal to 0.5%.

 

Figure 4.6. User’s and producer’s accuracy achieved by the CDMT algorithm 

using univariate time series. The impulsive noise filter was either deactivated (a) 

or activated (b) during the analysis of the time series. 

The capability of CDMT to separate the spectral signal associated with forest 

dynamics from impulsive noise and fill gaps was noticeable by comparing input 

bands and estimated values (Figure 4.7). In 2012, for instance, only images 

acquired by the ETM+ sensor onboard Landsat 7 were available, which caused a 

widespread presence of artefacts and gaps in the input bands (Figure 4.7a, d) due 

to the scan-line corrector failure in 2003 (Ju and Roy, 2008). On the contrary, the 

values estimated by CDMT were gap-filled and natural-looking, as they exhibited 

similarity with their neighbourhood (Figure 4.7b, e). The absolute residuals 

(Figure 4.7c, f) highlighted the location of those artefacts correctly detected by 

CDMT. 
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Figure 4.7. Spatial subset of the study area showing data of 2012 relative to the 

SWIR1 band (a-c) and TCA index (d-f). The first column (a, d) contains input 

data for the CDMT algorithm. Only Landsat 7 ETM+ images were available to 

generate pixel-based reflectance composites in 2012. The second column (b, e) 

contains values estimated and gap-filled by the CDMT algorithm while third 

column depicts absolute residuals (c, f). Vegetated areas correspond either to 

darker (a, b) or brighter patches (d, e) and were located in the upper and left part 

the subset. 

4.3.2 Algorithm assessment: weights and change thresholds 

Weights influenced accuracy metrics relative to the disturbed class when we 

included at least three bands: the effects on the user’s and producer’s accuracy 

were dissimilar, while they mostly increased the F1 score (Figure 4.8). In 

particular, the user’s accuracy of weighted bands was lower than for those 

unweighted, albeit differences diminished when the number of bands increased 

(Figure 4.8a). On the contrary, the producer’s accuracy generally increased, 

particularly when the number of bands was equal to or higher than four (Figure 

4.8b-c). Considering the best performing combination in terms of F1 score (Table 
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4.2), bands contrasting NIR and SWIR bands, i.e. NDMI, NBR and MSI, as well 

as TCW, had higher median weights compared to individual SWIR1 and SWIR2 

bands (Figure 4.9, Table S4.2). The median TCA weight was slightly higher than 

that of the SWIR1 band (Figure 4.9, Table S4.2). 

Regarding parameter C (Equation 4), we achieved the best performance in terms 

of the F1 score when we set it at 1.2 (Figure S4.1, Table S4.3). The producer’s 

accuracy increased when we decreased the parameter C, albeit the decrease in the 

user’s accuracy was much higher. For example, we consider the combination 

length that resulted in the maximum F1 score, i.e. seven weighted bands (Table 

4.2): decreasing the parameter C from 1.2 to 1 increased the maximum producer’s 

accuracy by 4.3%, vice versa, the maximum user’s accuracy decreased by 9.2% 

(Table S4.3). 

4.3.3 Algorithm assessment: bands combinations  

Accuracy metrics relative to disturbed pixels benefited from the inclusion of 

multiple bands in the time series to different extents (Figure 4.8). User’s accuracy 

asymptotically rose, with a sharp increase from univariate to bivariate time series 

(Figure 4.8a). Conversely, the producer’s accuracy marginally increased, as its 

maximum values slightly rose until we included five (unweighted) or seven 

(weighted) bands. Adding more bands decreased the producer’s accuracy 
markedly (Figure 4.8b). The median F1 score steeply rose until three bands were 

included, reached a peak at five bands and then slightly decreased (Figure 4.8c). 

Conversely, the maximum F1 score reached a peak at six (unweighted) or seven 

(weighted) bands (Figure 4.8c, Table 4.2). Overall, the best performing 

combination in terms of F1 score included seven weighted bands, i.e. SWIR1, 

SWIR2, NDMI, NBR, MSI, TCW and TCA. Its value was equal to 83.1%, 

corresponding to a user’s accuracy of 82.4% and a producer’s accuracy of 83.9% 

(Table 4.2). The bands above also corresponded to those included more often in 

the best performing combinations of every length (Table 4.3). 
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Figure 4.8. Distributions of each accuracy metric relative to all the unique 

combinations computed by including one to 14 bands in the CDMT algorithm: 

(a) user’s accuracy (UA), (b) producer’s accuracy (PA) and (c) F1 score. We also 

reported the effects on the distributions of accuracy metrics induced by weighting 

bands. 

 

Table 4.2. Details relative to the maximum F1 score among all the unique 

combinations of weighted bands, with a length from one to 14. We also reported 

the corresponding user’s and producer’s accuracy and the bands included in the 

best performing combination. 
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Combination length 

(unique 

combinations) 

Maximum 

F1 (%) 

UA 

(%) 

PA 

(%) 
Bands 

1 (14) 54.0 41.8 76.0 NDMI 

2 (91) 70.8 65.7 76.7 SWIR2, NDMI 

3 (364) 74.1 71.0 77.5 NDMI, TCW, TCA 

4 (1001) 78.1 79.5 76.7 SWIR2, MSI, TCW, TCA 

5 (2002) 79.9 79.3 80.4 
SWIR1, NBR, MSI, TCW, 

TCA 

6 (3003) 80.6 77.8 83.6 
SWIR2, NDMI, NBR, MSI, 

TCW, TCA 

7 (3432) 83.1 82.4 83.9 
SWIR1, SWIR2, NDMI, 

NBR, MSI, TCW, TCA 

8 (3003) 78.0 82.9 73.7 

SWIR1, SWIR2, NDMI, 

NBR, MSI, TCG, TCW, 

TCA 

9 (2002) 75.2 84.1 67.9 

NIR, SWIR1, SWIR2, 

NDMI, NBR, MSI, TCG, 

TCW, TCA 

10 (1001) 71.0 86.1 60.5 

NIR, SWIR1, SWIR2, 

NDVI, NDMI, NBR, MSI, 

TCG, TCW, TCA 

11 (364) 66.0 85.2 53.9 

BLUE, NIR, SWIR1, 

SWIR2, NDVI, NDMI, 

NBR, MSI, TCG, TCW, 

TCA 
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12 (91) 60.4 83.7 47.2 

BLUE, NIR, SWIR1, 

SWIR2, NDVI, NDMI, 

NBR, MSI, TCB, TCG, 

TCW, TCA 

13 (14) 54.7 83.1 40.8 

BLUE, RED, NIR, SWIR1, 

SWIR2, NDVI, NDMI, 

NBR, MSI, TCB, TCG, 

TCW, TCA 

14 (1) 49.0 84.7 34.4 

BLUE, RED, Green, NIR, 

SWIR1, SWIR2, NDVI, 

NDMI, NBR, MSI, TCB, 

TCG, TCW, TCA 

 

 

Figure 4.9. Distribution of weights assigned to each band considering the best 

performing combination in terms of F1 score. We randomly sampled 200000 

pixels among those disturbed in the study area. 
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Table 4.3. Number of times each weighted band was included in the best 

performing combination in terms of F1 score, irrespective of their length. 

Band Number of 

times 

Rank 

NDMI 12 1 

TCW 12 1 

TCA 12 1 

SWIR2 11 2 

MSI 11 2 

NBR 10 3 

SWIR1 9 4 

TCG 7 5 

NIR 6 6 

NDVI 5 7 

Blue 4 8 

TCB 3 9 

Red 2 10 

Green 1 11 
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4.3.4 Disturbance detection and severity assessment in the Aosta 

Valley 

CDMT detected forest patches that were disturbed either by discrete disturbance 

agents like fire and wind or associated with adverse climate conditions, such as 

exceptional drought and heatwaves (Figure 4.10, Figure 4.11). Climate-induced 

canopy mortality following a particularly unfavourable year produced 

heterogeneous spectral signals. In particular, CDMT detected non-stand-

replacing disturbances either as abrupt or gradual events, depending on their 

effect on linear trends in multispectral time series (Figure 4.11). Nonetheless, a 

qualitative assessment of the disturbed patches detected by CDMT through a 

comparison with high-resolution imagery highlighted good spatial agreement 

between these data (e.g. Figure 4.11).  

We converted the synthetic spectral change magnitude derived from the best 

performing combination in terms of F1 score (Table 4.2) into disturbance 

severity. We reported this latter as the predicted probability for a given pixel of 

being disturbed by a non-stand-replacing or stand-replacing event (Figure 4.12). 

The distribution of disturbance severity values among training pixels showed that 

this approach effectively discriminated between non-stand-replacing and stand-

replacing disturbances (Figure S4.1). The binary classification achieved an 

overall accuracy of 74.8%. The user’s and producer’s accuracy were 76.1% and 

72.3% for non-stand-replacing disturbances, respectively. For stand-replacing 

disturbances, these metrics achieved values equal to 73.6% and 77.3%, 

respectively. The ample range of values assumed by disturbance severity, i.e. 0.1 

– 1, highlighted the sensitivity of CDMT to a wide spectrum of disturbance 

severities (Figure 4.13). 
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Figure 4.10. Map of the study area depicting the year when CDMT detected the 

maximum synthetic spectral change magnitude. Inset maps (a-d) show 

geographic areas where forests were disturbed mainly by a single disturbance 

agent. Forested areas from the Dominant Leaf Type 2018 layer (European 

Environmental Agency, 2020) are depicted in grey. The exceptional drought and 

heatwave occurred in 2003 caused extensive mortality of tree canopies in stands 

dominated by broadleaves, e.g. downy oak (b), and conifers, e.g. Scots pine (d). 

We masked non-forest pixels and applied a minimum mapping unit equal to 5 

Landsat pixels (0.45 hectares). 
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Figure 4.11. Example of a forest stand dominated by Scots pine that was 

disturbed by the exceptional drought and heat occurred in 2003 (spatial subset 

from Figure 4.10d). The high-resolution satellite image from Bing was acquired 

in June 2014 and displayed brown patches associated with diffuse canopy 

mortality (a). The disturbance duration map (b) indicates that CDMT detected 

abrupt or gradual changes in linear trends. These differences were evident when 

looking at multispectral time series of two near pixels: one experienced an abrupt 

change in 2005 (c) while the other experienced a decline since 2003 (d). We 

masked non-forest pixels and applied a minimum mapping unit equal to 5 Landsat 

pixels (0.45 hectares). 
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Figure 4.12. The logistic regression model used for converting synthetic spectral 

change magnitude into disturbance severity. This latter corresponds to the 

probability for a given pixel of being disturbed by a non-stand replacing or a 

stand-replacing event. The dashed line indicates the optimal a posteriori threshold 

discriminating between the two severity classes. 

 
Figure 4.13. Map of the study area depicting the maximum disturbance severity 

occurred within the analysis period (1986 – 2019). Disturbance severity is 

expressed as the probability for a pixel of being disturbed by a non-stand 

replacing or a stand-replacing event. Inset maps (a-d) show geographic areas 

where forests were disturbed mainly by a single disturbance agent. The 

exceptional drought and heatwave occurred in 2003 impacted extensive forest 

patches and was characterised by very low severity (b, d). We masked non-forest 

pixels and applied a minimum mapping unit equal to 5 Landsat pixels (0.45 

hectares). 
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4.3.5 Trends in forest disturbances in the Aosta Valley 

We computed yearly disturbance rates by first summing the area of all disturbed 

pixels within the forest mask in a single year and then dividing by the total forest 

area (Section 2.9). The average yearly disturbance rate was 0.3 ± 0.64% standard 

deviation, considering the whole analysis period (Figure 4.14). The average 

yearly disturbance rate in the late 20th century (1986-2000) was equal to 0.19 ± 

0.27% standard deviation. The most critical years within this period were 1990, 

1997 and 1989, with a disturbance rate equal to 1.01%, 0.6% and 0.27%, 

respectively. Notably, the average yearly disturbance rate in the early 21st century 

(2001-2019) increased to 0.36 ± 0.8% standard deviation. During these years, the 

disturbance rate reached a peak in 2003 (3.7%), followed by 2001 (0.62%), 2002 

(0.52%) and 2009 (0.43%).  

Regarding disturbance severity, the average proportion between non-stand-

replacing and stand-replacing disturbances in the late 20th century was 95.6% to 

4.4% (Figure 4.15). In the early 21st century, stand-replacing disturbances 

increased on average by ~ 0.5%, i.e. to 4.9% of the total disturbed area. Overall, 

the proportion of stand-replacing disturbances remained somewhat stable 

throughout the whole analysis period, and the average was equal to 4.7 ± 3.7% 

standard deviation. 

 

Figure 4.14. Yearly disturbance rate in the Aosta Valley region between 1986 

and 2019. We included both non-stand replacing and stand-replacing 

disturbances. 
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Figure 4.15. The yearly proportion of stand-replacing and non-stand replacing 

disturbances between 1986 and 2019.  

4.4 Discussion 

4.4.1 Assessment of the algorithm 

When we employed univariate time series, the performances of CDMT in terms 

of user’s and producer’s accuracy were highly imbalanced towards the latter 

(Figure 4.6, Figure 4.8, Table 4.2). The low user’s accuracy highlighted the 

difficulty of CDMT to distinguish between subtle spectral changes associated 

with low-severity forest disturbances and noise in annual Landsat time series in 

a similar way to other automated algorithms (Cohen et al., 2020, 2018, 2017). 

Conversely, CDMT detected low-severity and gradual disturbances, attaining a 

relatively high producer’s accuracy, e.g. 76% using NDMI (Table 4.2). This 

result is likely related to the bottom-up, i.e. agglomerative, approach employed 

by the HiTS procedure (Section 4.2.6). When applied for the segmentation of 

various types of signals, bottom-up approaches outperform those based on sliding 

windows and top-down algorithms (Keogh et al., 2004). For instance, the C2C 

algorithm (Hermosilla et al., 2015b) is based on a bottom-up approach to segment 

annual Landsat time series. Considering the HiTGUW transform (i.e. the first 

stage of the HiTS procedure), the outperformance comes from its bottom-up 

nature, focusing on local features in its early stages before identifying global 
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features, which enables HiTS to perform well in detecting abrupt local changes, 

including point anomalies. To be specific, the ability of HiTS to detect point 

anomalies is obtained in the process of building an adaptive wavelet basis by 

recursively applying the conditionally orthonormal transformations. 

Several studies, such as Cohen et al. (2017) and Healey et al. (2018), explored 

the differences between disturbance maps derived from diverse Landsat time 

series-based algorithms by considering a broad range of severities. They 

highlighted a tendency of those algorithms based on the widely-used temporal 

segmentation methods like LandTrendr (Kennedy et al., 2018, 2010) and 

VeRDET (Hughes et al., 2017) to achieve a relatively high producer’s accuracy 

at the cost of a somewhat low user’s accuracy. Conversely, algorithms relying on 

another popular mathematical approach, the statistical boundary, produced 

heterogeneous results regarding disturbance detection accuracy (Cohen et al., 

2017; Healey et al., 2018). In particular, CCDC (Zhu and Woodcock, 2014) had 

a lower producer’s accuracy and a higher user’s accuracy compared to 

segmentation algorithms. On the contrary, EWMACD (Exponentially Weighted 

Moving Average Change Detection; Brooks et al., 2014) behaved similarly to 

segmentation algorithms as it was explicitly designed to detect non-stand-

replacing disturbances. 

In the multivariate setting, the user’s accuracy of CDMT increased to the level of 

the producer’s accuracy (Figure 4.8, Table 4.2). Similarly, the secondary 

classification model employed to fuse results of multispectral ensembles 

primarily increased the user’s accuracy of LandTrendr (Cohen et al., 2020, 2018; 

Senf and Seidl, 2020). As highlighted by the F1 score (Figure 4.8c, Table 4.2), 

the balance between user’s and producer’s accuracy peaked when we included 

four to seven bands in multispectral time series. This result is consistent with 

Cohen et al. (2020, 2018), who found that balanced errors reached an asymptote 

between four to seven bands using multispectral ensembles built with outputs of 

LandTrendr. Moreover, it also allowed the algorithm to maximise the producer’s 

accuracy as the spectral change filter designed to eliminate spurious breaks, i.e. 

increase the user’s accuracy, was unnecessary (Cohen et al., 2020, 2018). Moving 
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from univariate to multivariate time series, the producer’s accuracy of CDMT 

increased up to ~ 8% (Table 4.2). This was likely related to band-specific weights 

(Figure 4.9), as CDMT prioritised those bands that provided the best 

performances when employed alone (Figure 4.6). 

Unlike multispectral ensembles, CDMT does not require collecting a 

comprehensive set of disturbance samples for training a secondary classification 

model, e.g. random forest. Moreover, the statistical approach employed by 

CDMT, i.e. the modified HiTS procedure, allows the algorithm to exploit the 

multispectral information during every stage of the analysis (Section 4.2.6). The 

HiTGUW transform, for example, builds an adaptive unbalanced wavelet basis 

by evaluating deviations from linearity occurring in every input band at the same 

time interval. This feature ensures that the temporal segmentation is unique 

among bands. Conversely, the most widely-used multivariate algorithms like 

CCDC (Zhu and Woodcock, 2014) or COLD (Zhu et al., 2019) fit harmonic 

models to the time series in parallel, i.e. separately, and then aggregate the results 

across bands to identify changepoints. 

The increase in the user’s accuracy provided by multispectral time series is likely 

related to a decreased sensitivity of CDMT towards the band-dependent noise 

(Figure 4.5b). The presence of this latter clearly emerged from the results of the 

impulsive noise filter, which increased the user’s accuracy unevenly among 

bands (Figure 4.6, Table S4.1). For example, cirrus clouds in Landsat imagery 

alter surface reflectance heterogeneously among wavelengths, with a lower 

impact on the SWIR bands than on the others (Qiu et al., 2020). Conversely, 

forest disturbances and band-independent noise typically caused dense changes 

in the time series (Figure 4.5, Figure 4.11), though the latter were effectively 

removed by the impulsive noise filter (Figure 4.6, Table S4.1).  

In our study, the best performing bands in the univariate setting were based on 

the SWIR bands, i.e. MSI, NDMI and NBR, followed by TCW, SWIR2 band and 

TCA (Figure 4.6, Table S4.1). The effectiveness of those bands contrasting NIR 

and SWIR wavelengths for forest disturbance detection was reported by several 

studies based on different change detection algorithms (Cohen et al., 2018; Hislop 
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et al., 2019; Schultz et al., 2016). The combination that produced the highest 

accuracy in terms of F1 score included the top-six best performing bands taken 

individually plus the SWIR1 (Table 4.2). Apart from MSI, which was not 

included in their study, the top-six bands in terms of DSNR metric in Cohen et 

al. (2018) corresponded to those in the best performing combination with seven 

bands (Table 4.2). Notably, the rank of these bands based on the median band-

specific weight assigned by CDMT (Figure 4.9, Table S4.2) coincided with that 

based on the median DNSR. The most frequent bands in the top-performing 

combinations of every length were NDMI, TCW and TCA (Table 4.3). Following 

the classification proposed by Cohen et al. (2020), NDMI and TCW belong to 

SWIR bands, while TCA belongs to NIR bands. With reference to their study and 

others (DeVries et al., 2016; Schultz et al., 2016), our results support the 

prevailing importance of SWIR bands over NIR bands and their complementarity 

for detecting forest disturbance using Landsat time series.  

Concerning the parametrisation of the HiTS procedure, the performances of 

CDMT showed that parameter C, which controls the change threshold (Equation 

4), had a relatively low influence on the detection of changepoints (Figure S4.1, 

Table S4.3). Yet, decreasing C values from its recommended value, i.e. 1.2, to 1 

primarily reduced the user’s accuracy, as spurious changepoints were detected 

more frequently. This suggests the utility of parameter C in limiting the influence 

of inter-annual noise. Moreover, as the HiTS procedure normalises each time 

series 𝑋𝑋𝑝𝑝  by the standard deviation (Equation 3), its sensitivity to disturbances 

likely depends on the noise level in the time series. 

4.4.2 Disturbance severity assessment and trends in forest disturbances 

Disturbance severity gave an ecological meaning to the synthetic spectral change 

magnitude. Discerning between non-stand-replacing and stand-replacing events 

was an effective strategy to cope with different disturbance agents, as proposed 

in other studies (Cohen et al., 2016; Hermosilla et al., 2015a; Senf and Seidl, 

2020). In this sense, both classes attained relatively high accuracy, i.e. user’s and 
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producer’s accuracy higher than 70%. The relationship between spectral change 

magnitude and disturbance severity was nonlinear, particularly for stand-

replacing events (Figure 4.12). This is consistent with other studies that employed 

remotely sensed change metrics to infer disturbance severity, e.g. Morresi et al. 

(2022).  

Our results indicated an increase in both disturbance rate and severity during the 

first two decades of the 21st century compared to the late 20th century (Figure 

4.14, Figure 4.15). An increase in tree canopy mortality during the early 21st 

century in Europe was also highlighted in other studies (Seidl et al., 2014; Senf 

et al., 2021, 2018). Considering the whole analysis period, higher disturbance 

rates during certain years (Figure 4.14) were associated with the co-occurrence 

of discrete events, such as windthrows and wildfires in 1990 or drought and 

heatwaves in 2003 (Figure 4.10, Figure 4.11). In 1990, the winter storm Vivian 

severely impacted forests across the Alps (Wohlgemuth et al., 2017), including 

those in the Aosta Valley (Bottero et al., 2013). In the same year, seven wildfires 

occurred in the region, two of which had an extent larger than 300 hectares. The 

exceptional drought and heat that occurred in Europe during the summer of 2003 

(Rebetez et al., 2006) heavily decreased the primary productivity of both 

broadleaved and conifer forests, thus impairing their carbon sequestration 

capacity (Ciais et al., 2005). Moreover, this event triggered diffuse mortality of 

Scots pine in many parts of Europe (Allen et al., 2010), including the Aosta 

Valley region (Vacchiano et al., 2012). Our results showed that, albeit non-stand-

replacing, this anomalous event affected forest stands by an unprecedented 

extension (Figure 4.14). Moreover, CDMT captured the heterogeneity of the 

mortality response to drought and heat from different groups of Scots pine 

individuals, e.g. either delayed and abrupt or timely and gradual (Figure 4.11). 

Delayed mortality of Scots pine after drought has been observed after several 

years or decades as an effect of crown defoliation (Bigler et al., 2006). Among 

the consequences of such extreme droughts, Rouault et al. (2006) observed an 

increased susceptibility of various tree species, including Scots pine, to attacks 

from secondary pest insects. Moreover, Camarero et al. (2015) reported an 
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increase in the incidence of blue-stain fungi in the wood of Scots Pine. In the 

long-term, drought-induced decline of Scots pine population leads this species to 

disappear (Camarero et al., 2015) and being replaced by different tree species, 

e.g. downy oak (Rigling et al., 2013). 

4.5 Conclusions 

The CDMT algorithm offers new opportunities for automating forest change 

detection thanks to a novel multivariate statistical method for segmenting annual 

Landsat time series. While providing similar advantages as multispectral 

ensembles based on univariate algorithms, CDMT provides a more direct 

approach for exploiting multispectral time series. Here we focused on assessing 

its capabilities for disturbance detection over a wide range of severities, from 

non-stand-replacing to stand-replacing. However, like similar algorithms, CDMT 

can detect changes in spectral trends associated with growth and post-disturbance 

recovery. Testing the algorithm in a highly mountainous area, characterised by 

complex topography and data scarcity due to persistent snow and cloud cover, 

allowed us to explore its potential. In particular, we highlighted the advantages 

offered by the exploitation of the complete spectral information provided by 

Landsat imagery for disturbance detection. The low requirements in terms of 

parametrisation and the robust statistical approach should ease the applicability 

of CDMT in forest ecosystems different from those in our study area. Moreover, 

the methods implemented in CDMT are general enough to be employed with 

satellite time series from different optical sensors, e.g. the Multispectral 

Instrument onboard Sentinel-2 satellites.  
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Supplementary material 

Table S4.1. Effects of the impulsive noise filter on the user’s and producer’s 

accuracy when the CDMT algorithm analysed univariate time series, i.e. 

individual bands. 

Band 
User’s accuracy (%) Producer’s accuracy (%) 

Unfiltered Filtered Difference Unfiltered Filtered Difference 

Blue 6.4 8.1 1.7 10.2 9.6 -0.6 

Green 12.4 15.7 3.3 13.4 12.9 -0.5 

Red 20.0 25.6 5.6 22.6 21.9 -0.7 

NIR 22.3 24.3 2.0 17.5 16.7 -0.8 

SWIR1 31.3 33.0 1.7 39.4 36.4 -3.0 

SWIR2 34.0 38.6 4.6 54.7 54.3 -0.4 

NDVI 27.7 32.0 4.3 37.9 36.5 -1.4 

NDMI 39.6 41.8 2.2 77.3 76.0 -1.3 

NBR 36.2 40.1 3.9 72.0 72.2 0.2 

MSI 38.2 41.1 2.9 78.5 77.8 -0.7 

TCB 11.8 14.3 2.5 10.3 10.1 -0.2 

TCG 28.8 31.8 3.0 34.2 34.4 0.2 

TCW 35.9 40.4 4.5 59.1 59.1  0 

TCA 28.2 33.5 5.3 44.2 44.9 0.7 
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Figure S4.1. Maximum value achieved by each accuracy metrics among all the 

unique combinations of weighted bands, with a length from one to 14. User’s 

accuracy (UA), Producer’s accuracy (PA) and F1 score varied as a function of 

the number of bands included in the time series. They were also influenced by 

the parameter C that controls the thresholds (λ) employed in the HiTS procedure 

for detecting changepoints (Equation 4). 

Table S4.2. Median weights assigned to each band considering the best 

performing combination in terms of F1 score. We randomly sampled total of 

200000 pixels, equally distributed between undisturbed and disturbed ones. 

Band Disturbed (undisturbed) Rank 

MSI 0.69 (0.56) 1 

NDMI 0.69 (0.56) 1 

NBR 0.66 (0.51) 2 

TCW 0.64 (0.52) 3 

SWIR2 0.6 (0.46) 4 

TCA 0.55 (0.39) 5 

SWIR1 0.53 (0.45) 6 
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Table S4.3. Maximum value achieved by each accuracy metric among all the 

unique combinations of weighted bands, with a length from one to 14 and with 

different values of the parameter C. This latter controls the thresholds (λ) 

employed in the HiTS procedure for detecting changepoints (Equation 4). 

 Combination length 
Parameter C 

1 1.1 1.2 1.3 

Maximum UA (%) 

1 30.9 36.4 41.8 47.5 

2 77.3 88.9 93.8 96.6 

3 67.0 73.3 77.2 81.5 

4 76.1 81.7 82.9 87.0 

5 72.9 79.6 83.7 87.3 

6 78.5 83.4 87.2 90.0 

7 76.0 81.4 85.2 88.0 

8 79.4 84.4 87.2 90.6 

9 77.7 82.5 86.2 87.7 

10 79.7 84.8 86.7 88.6 

11 78.4 82.9 85.5 86.9 

12 78.9 82.7 84.9 87.2 

13 77.0 80.4 83.9 86.5 

14 76.0 81.3 84.7 84.3 

Maximum PA (%) 
1 79.3 78.5 77.8 75.8 

2 81.4 80.7 80.3 78.8 
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3 84.3 83.2 82.1 80.3 

4 86.0 84.6 82.6 79.8 

5 86.9 84.6 83.2 80.7 

6 86.6 85.8 83.6 79.2 

7 88.2 86.1 83.9 74.7 

8 83.2 80.3 74.0 66.3 

9 79.3 75.3 67.9 59.5 

10 74.5 68.7 60.5 53.4 

11 69.8 60.9 53.9 46.1 

12 62.0 54.3 47.2 41.2 

13 56.5 47.7 40.8 34.6 

14 48.5 41.3 34.4 29.6 

Maximum F1 (%) 

1 43.8 49.5 54.0 58.3 

2 61.8 66.7 70.8 73.4 

3 65.9 71.2 74.1 74.8 

4 71.0 76.3 78.1 78.5 

5 74.8 78.2 79.9 79.2 

6 75.8 78.4 80.6 80.9 

7 77.0 81.2 83.1 79.8 

8 77.8 79.6 78.0 74.8 

9 76.1 77.3 75.2 70.4 
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10 75.1 74.2 71.0 65.7 

11 72.5 69.5 66.0 60.0 

12 69.2 65.2 60.4 55.8 

13 65.1 59.7 54.7 49.1 

14 59.2 54.8 49.0 43.8 

 

 

 

Figure S4.2. Distribution of the disturbance severity of training pixels disturbed 

either by non-stand replacing or stand-replacing events. Disturbance severity 

corresponds to the probability predicted by the logistic regression. The horizontal 

dashed line indicates the a posteriori threshold separating between the 

probabilities associated with each disturbance severity class. 
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Chapter 5 

Conclusions 

The consequences of climate-induced shifts in disturbance regimes have been 

observed on forest ecosystems at different spatial and temporal scales globally. 

Therefore, the demand for spatially and temporally explicit information regarding 

forest disturbance dynamics is rising among researchers and land managers. The 

research chapters presented in this thesis provide new methodological insights 

into applications of satellite optical remote sensing for the assessment of forest 

disturbance dynamics at the landscape scale, including post-fire forest recovery 

(Chapter 2), burn severity mapping (Chapter 3) and disturbance detection 

(Chapter 4). Landsat and Sentinel-2 time series proved to be powerful tools for 

accurately detecting abrupt and gradual changes occurring to forests, from the 

stand- to the landscape-scale. The novel remote sensing approaches introduced in 

this thesis were tested in forest landscapes of the Alps and the Apennines. 

Nevertheless, a crucial aspect to be addressed when developing novel 

methodologies based on remote sensing data is their applicability to different 

forest ecosystems and datasets. The implementation of robust mathematical and 

statistical procedures into these methodologies promotes their transferability to 

various datasets and geographic areas as well as their operational usage. In this 

framework, the approaches proposed in this thesis rely on highly generalisable 

methods, such as the Theil-Sen estimator (Chapter 2), the weighted geometric 

median (Chapter 3) and the HiTS procedure (Chapter 4). The robustness of these 

methods was stressed through their application in mountainous landscapes, where 

unfavourable conditions often hinder multitemporal analyses based on optical 

remote sensing data. For instance, persistent clouds, snow cover and topographic 

complexity reduce data availability and introduce noise in the time series, thus 

limiting the applicability of change detection techniques. Nowadays, the 

availability of multispectral data with high temporal resolution such as the 

Harmonized Landsat and Sentinel-2 (HLS) surface reflectance dataset (Claverie 
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et al., 2018) or PlanetScope imagery (Roy et al., 2021) is increasing. Specifically, 

PlanetScope imagery provides both high spatial, i.e. 3 m, and temporal resolution, 

i.e. around 24 hours of revisit time at many locations globally (Roy et al., 2021).  

The major limitations of the methods proposed in this thesis are related to the 

relatively low spatial resolution provided by Landsat and Sentinel-2 data as well 

as the limited frequency of the time series, i.e. annual. Future improvements 

should be aimed at analysing optical remote sensing data with higher temporal 

and spatial resolution. While still limited in their whole temporal coverage, 

multispectral data such as that acquired by the PlanetScope constellation will 

likely improve the detection and assessment of forest disturbance dynamics. In 

particular, PlanetScope imagery will allow studying transient phenomena, which 

occur at spatial scales not resolved by medium resolution satellite images. 

Future applications of the approaches proposed in this thesis will concern, for 

example, the use of phenologically coherent reflectance composites (Chapter 3) 

in operational projects for burn severity mapping. Similarly, future applications 

of the CDMT algorithm (Chapter 4) will focus on extending the study area to the 

regional scale for evaluating the effects of climate change on forest disturbance 

dynamics in the Alpine region. 
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