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ABSTRACT
Brain-computer interfaces (BCIs) are one of the few alternatives
to enable locked-in syndrome (LIS) patients to communicate with
the external world, while they are the only solution for complete
locked-in syndrome (CLIS) patients, who lost the ability to con-
trol eye movements. However, successful usage of endogenous
electroencephalogram(EEG)-based BCI applications is often not
trivial, due to EEG variations between and within sessions and
long user training required. In this work we suggest an approach
to deal with this two main limitations of EEG-BCIs by inserting a
progressive and expandable neurofeedback training program, able
to continuously tailor the classifier to the specific user, into a mul-
timodal BCI paradigm. We propose indeed the integration of EEG
with a non-brain signal: the pupillary accommodative response
(PAR). The PAR is a change in pupil size associated with gaze shifts
from far to close targets; it is not governed by the somatic ner-
vous system and is thus potentially preserved after the evolution
from LIS to CLIS, which often occurs in neurodegenerative diseases,
such as amyotrophic lateral sclerosis. Multimodal BCIs have been
broadly investigated in literature, due to their ability to yield better
overall control performances, but this would be the first attempt
combining EEG and PAR. In the context of the BciPar4Sla, we are
exploiting these two signals, with the aim of developing a more
reliable BCI, adaptive to the extent of evolving together with the
user’s ability to elicit the brain phenomena needed for optimal
control, and providing support even in the transition from LIS to
CLIS.
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1 INTRODUCTION
Locked-In Syndrome (LIS) is a rare neurological condition, possibly
due to neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS), which bring the patient to the incapability of any
voluntary movement, except for eye movements. A LIS patient
is therefore unable to communicate autonomously, and a set of
solutions exists to assist communication in this population: from
no-tech (e.g. E-Tran boards) to high-tech (e.g. eye-tracker based
systems), these solutions are mainly based on residual muscular
control or eye-gaze [33].

One way to assess LIS patients’ intentions without depending
on eye movements is relying on brain signals. The most common
approach to non-invasively extract information about brain activity
is through EEG signals, which represent the activity of neuronal
ensembles in cortical areas underneath the electrodes [24]. A Brain-
Computer Interface (BCI) [23, 32] is a system capable of using this
kind of signals to control any kind of external effector, from robotic
arms to communication procedures. The main brain phenomena
exploited in BCI control are visually evoked potentials [3, 9], often
used in speller systems and necessarily phase-locked to an external
stimulus (exogenous BCI), and sensory-motor rhythms (SMR) vari-
ations, spontaneously evocable by the user (endogenous BCI) by
practicing Motor Imagery tasks (MI), i.e. imagined movement of a
specific body-part [37]. Sadly, EEG-based BCIs suffer from different
issues: low signal-to-noise ratio, high inter-session instability, need
of periodical recalibration of the predicting model and, in case of
SMR control, long user-training process [18, 22, 24, 30, 35].

From this point of view, a BCI could benefit from a secondary
input other than EEG, reliable and easy to control by the user, to
support him/her during the MI training period giving the possibility
to control the interface since day zero. Pupillary accommodative
response (PAR) [8, 26], is a good candidate for this role: the control
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signal is elicited by the natural act of gaze shifting from a far to a
near target, making the learning process for the user quite straight-
forward. The accommodation reflex is a complex mechanism that
allows to bring near targets into focus, involving eyes convergence
(inward rotation of the eyebulbs), lenses thickening and finally pupil
constriction [11]. PAR control in this context takes into considera-
tion only the pupil constriction phenomenon, evaluated through
real-time image processing of pupil videorecordings (see 3.1). When
the user is looking at a far target, the pupil is dilated: as soon as
the user intends shifting the visual attention onto a near target,
pupil constriction begins autonomously, and ends when clear vision
of the near target is achieved. When the user intends shifting the
visual attention back onto the far target, the process is reversed
and the pupil dilates again. PAR control is based on the variations
of pupil size, governed by the autonomic nervous system; therefore
it is potentially retained by complete locked-in syndrome (CLIS)
patients, which represent the subsequent stage in many cases of
LIS (e.g. when caused by neurodegenerative diseases), defined as
when the patient also loses the control of the eye movements. To
our knowledge, this is the first attempt in literature to develop a
multimodal endogenous BCI combining EEG and PAR.

The idea presented in this work aims at developing a low-cost
adaptive EEG-based BCI, easy to use at the beginning thanks to
PAR support, capable of continuously improving both the BCI clas-
sification model and user’s ability in controlling SMR and providing
a safer transition to CLIS conditions, usually an obligated passage
for this kind of patients. The work has been realized in context of
the BciPar4Sla, which is a follow-up of past project on BCI [14]
and aims to develop an innovative form of human-machine interac-
tion based on two possible communication channels: brain waves
voluntarily modulated by the patient (EEG) and pupillary changes.

This paper has been organized as follows: Section 2 discusses
related work in the field, Section 3 presents our approach, while
Section 4 concludes the paper.

2 RELATEDWORK
PAR signal has been proven robust and effective in terms of human-
computer interface control [26] and allowed to develop a stand-
alone Augmentative and Alternative Communication device, e-
Pupil [6], enabling the user to answer simple questions or summon
the attention of caregivers, yielding an accuracy of 100% over a 4
class discrimination paradigm, based on duration and instant of
initiation of pupillary constriction (see Figure 1).

Integrating an EEG-based BCI with such a control signal would
make it a multimodal BCI [21], potentially yielding better perfor-
mance in target detection and/or allowingmultidimensional control.
Many example of multimodal BCI can be found in literature. For ex-
ample, Kim et al. combined mental states recognition and eye-gaze
direction to increase the range of commands callable by the user
in a quadcopter driving task, while keeping the UI intuitive and
simple. Another example would be the work of Pfurtscheller et al.,
in which it is demonstrated that using a MI-based switch to activate
a steady state visual evoked potential BCI paradigm helps substan-
tially to reduce the misclassification rate. In this way an exogenous
paradigm could be used in a self-paced manner, exploiting the en-
dogenous nature of MI. Finally, de’Sperati et al. combined pupillary

Figure 1: Image takenwith permission from [6] andmodified.
a) Initiation of pupillary constriction; b) Duration of pupil-
lary constriction; c) Dynamic linear UI: two classes (YES/NO)
are discriminated by the location of the sliding bar during
PAR initiation, two other classes (HEY/HELP) are recognized
if the constriction lasts respectively between 3 and 6 seconds
or more than 6 seconds. For more details see [6].

frequency tagging, due to pupillary response to light intensity pe-
riodical oscillations, and steady state visual evoked potential to
increase accuracy in a simple binary communication protocol, but
to our knowledge there is no work in literature using both PAR and
MI in a multimodal BCI paradigm.

In order to exploit SMR as control signals the user needs to
learn how to correctly execute MI tasks, and to this aim usually
neurofeedback (NF) training protocols are adopted [10, 20, 28]. NF
training sessions consist in short trials (less than 20 seconds), in
which the user is told what MI task to exercise (e.g. right hand,
left hand, feet) and given a feedback somehow linked to the online
classification score, enabling him/her to hone the execution tech-
nique and reach better performances (i.e. faster SMR modulation,
better separation between classes). Being the user progressively
learning how to elicit changes in SMR, training the classifier only
at the beginning of the BCI experience (i.e. before the user finds
the best way to execute MI) is not an efficient strategy. Therefore
NF training embedded with online model adaptation techniques
emerged as effective tools for BCI users in order to obtain optimal
BCI performances [1, 12, 15].

3 APPROACH
This section describes the development perspectives of the current
work: subsection 3.1 introduces the signals exploited as controls
over the interface, their generation, the required processing and the
classification methods; subsection 3.2 describes the User Interface
(UI) in terms of interaction modalities and adaptation to user’s con-
trol capabilities; finally, subsection 3.3 describes the user training
protocol.

3.1 Control Signals
The BCI to be developedwill be based on twomain physiological sig-
nals: pupil area and SMR variations, obtained respectively through
PAR and MI tasks. In the following paragraphs signal generation,
acquisition, processing and classification for both phenomena are
briefly described.
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Figure 2: Image takenwith permission from [5] andmodified.
a) Hardware setup for PAR recognition; b) Custom eyeglasses
embedded with IR LED and camera.

PAR: Task Execution. Pupil constriction is obtained due to PAR
when the user shift the gaze from a far target to a near one. A
single PAR task is executed shifting the gaze to the near target,
and back to the far one. Taking inspiration from previous works
exploiting this phenomenon [5, 6, 26, 34], the main UI display will
constitute the far target (about 150 cm from the subject), while a
transparent plastic sheet covered in white dots placed about 30
cm away from the subject will constitute the near target (Figure
2a). The acquisition device will be an infrared (IR) camera, coupled
with an IR LED, mounted on a customized pair of eyeglasses and
connected to the PC (Figure 2b), although the intended application
could in principle work well with a remote eye-tracking system.
However, most remote eyetrackers do not provide a real-time access
to pupil size measurement and may be considerably expensive. On
the contrary, the present prototype was developed following a low-
cost approach, which however grants full control of all acquisition
and processing steps [5, 6, 26], as required in research applications.

PAR: Image Processing and Classification. The image processing
pipeline to be adopted reproduces the one presented in [5]. Briefly,
after a preliminary automatic identification of the region of interest
(ROI) containing the pupil, frames coming from the camera are
cropped to match the ROI, processed via the ellipse fitting method
described in [29] to detect the pupil, whose area can finally be
computed. Signal conditioning applied to the pupil area time se-
ries follows the pipeline designed in [6], and allows to cope with
physiological fluctuation of pupil size.

MI: Task execution. As said above, SMR modulation can hap-
pen as a consequence of specific mental tasks: during MI, the
user performs an imaginary movement of a specific body part,
which will trigger, similarly to an actual motor action, a frequency-
and location-specific modulation of the EEG power (event related
(de)synchronization; for details see [17]). The EEG acquisition setup
consists of an electrodes headset, a bioamplifier and a processing
workstation (PC). Two different acquisition system will be tried in
this work: OpenBCI1 CytonDaisy board (bioamplifier) coupled with
a Greentek2 EEG cap (headset), and an Emotiv3 EPOC+ (embedded).
Proceeding with implementation and testing the best performing
system will be chosen.

MI: EEG Classification of mental tasks. Among the different meth-
ods designed in the last decades, according to literature [22, 36]

1http://www.openbci.com/
2https://www.greenteksensor.com
3https://www.emotiv.com/

Riemannian Geometry based classifiers are considered state-of-the-
art for MI tasks classification. Following the pipeline described
in [12], for the initial model training, the EEG data is bandpass
filtered and divided in 50% overlapping 0.5 s long labeled epochs,
covariance matrices are computed and averaged in the Riemannian
space for the different classes (at least one MI task and the idle
state, i.e. no-control) obtaining class-specific prototypes. During
actual classification, new data epochs will be classified based on
the Riemannian distance from class prototypes.

Model adaptation. To address EEG strong non-stationarity [24]
adaptive approaches are encouraged [30], indeed the classifier de-
scribed by Freer et al. includes a comparison of strategies to contin-
uously update the classifier references (class prototypes in the Rie-
mannian space). The best performing in terms of classification accu-
racies and computational cost is based on a periodical re-estimation
of the Riemannian class means considering both incoming new
data epochs and the previous prototypes, the latter being heavily
weighted. Moreover, the classifier adaptation takes place during
NF training sessions, matching perfectly the intents of our work.
Therefore the adaptation method to be implemented will strongly
take inspiration from the just presented design.

3.2 User interface
Another core objective of this work is developing a BCI application
able of adapting to the user in a smart and personalized way [4],
helping him/her to make his/her preferential choices [16]. This aim
can be reached designing an adaptive user interface (UI), able to
evolve together with the control capabilities of the user. At the
beginning, when the user is not confident with the execution of
MI yet, the interface can be driven using PAR only (PAR-based UI).
After an initial period of user MI training through NF protocols,
and automatic model fine-tuning, if the scores obtained in the NF
training sessions are high enough (see subsection 3.3), the UI evolves
to a stage where both PAR and EEG can be exploited to obtain a
smoother User eXperience (UX). In any of these configurations,
the possibility of going back to the previous menu must always be
present and the UI should give the possibility to i) easily access NF
training sessions and ii) promptly call the caregiver when needed.
In the following paragraphs the design of interaction for the PAR-
based and multimodal configurations is described, and finally the
possibility of answering simple external questions is discussed.

PAR-based UI. When the UI has to be entirely driven by PAR,
the main paradigm for taking choices is selecting them from a
dynamic menu by executing the task, and confirming the selection
in a secondary confirmation menu. In this way, executing two PAR
tasks the user achieves a successful selection, supposedly in less
than five seconds [6]. In Fig. 3a a plausible example of main menu
is presented together with an example of confirmation menu for
the choice "Mental task training" (Fig. 3b).

Multimodal UI. Once the the user will be trained and ready to
use MI as browsing controls, the PAR-based menu configuration
will be integrated with "MI shortcuts", that is, the possibility for
the user to execute a MI to directly choose one of the available
options. For example, if the user was trained in right hand MI, this
task could be used to access communication mode (Speller from

http://www.openbci.com/
https://www.greenteksensor.com
https://www.emotiv.com/
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Figure 3: a) main menu view; the solid arrow glides along
the edge of the menu highlighting one by one the choices;
selection is achieved by executing a PAR task. b) confirmation
view; the only choices available are the one initially selected,
the two surrounding the latter and the go-back option.

the menu in Fig. 3) and the confirmation phase could be skipped.
The more MI the subject learns to use (and the model learns to
recognize), the more shortcuts can be integrated in the PAR-based
menu configuration.

Simple answers. Interaction with others is often based on simple
questions that require only a confirmation or denial answer from
the patient. Therefore this design includes the possibility to trigger,
via an external input (i.e. a push-button), a special menu with only
three choices: Yes, No and Don’t want to answer. The selection
follows the PAR-based menu paradigm.

We have to emphasise that the sketches proposed in Fig. 3 will
then be shown and discussed with stakeholders such as doctors,
caregivers and patients in order to review and redesign them in
a co-design perspective [7]. Once implemented, the proposed UI
will be tested in the wild with neurotypical users and then patients
by proposing a set of gamified activities, as already successfully
experienced in [13, 27], to make the experience more meaningful
and enjoyable, and collect then feedback in a real context of use.

3.3 Neurofeedback Training
As anticipated above, NF user training is a fundamental block for
SMR-based BCIs and, given the subject-tailored nature of the appli-
cation to be developed, its importance in this context gains even
more room. It consists of a closed loop system, whose actors are
i) the user, reproducing the required task, ii) the acquisition sys-
tem, which streams real-time EEG data to iii) the classifier running
on the PC, which in turn makes a prediction and gives it back to
the user, through iv) an audio and/or visual apparatus [31]. The
feedback reflects how close the user is to the ideal execution of the
task, therefore allowing him/her to try different strategies to reach
better or faster task recognition.

Being in this context NF training sessions closely bounded to
classifier adaptation, the interface used in this function will be also
inspired by [12]. The main difference with the paradigm developed
here stays in the number of tasks to be trained at once: Freer et al.
implemented a 4-classes training, while this work tends towards
a more gradual path, as suggested in [2, 28], training a new task
only after the user gets confident with the previous ones. More-
over, in this work the MI performance of the user must be tracked

in order to assess the potential reliability of using it as control
signal. According to [15], novel Riemannian-geometry based user
performance metrics reflecting class separability and within-class
consistency could be a valid index of user training progress, there-
fore these could be implemented and evaluated to define the switch
from PAR-based UI to Multimodal UI.

4 CONCLUSION
The vision presented in this short paper is essentially an attempt to
merge the work done with PAR in [6] with the advances in adap-
tive MI classifiers represented here by [12] and [15], in a novel
multimodal BCI application tailored on the specific user, following
his/her progress in training those skills (MI execution in this pre-
liminary prototype) which could restore, at least partially, his/her
independence. The novelty of this work resides mainly in the use
of PAR as additional control signal: this gives the user the possi-
bility to interact with the system since the first moment with no
need of training and through a quite natural act. Moreover, PAR
control signal features the possibility to expand its communication
potential in different ways. As done in [6], evaluating the duration
of pupillary constriction may allow to define different commands.
Alternatively, using a secondary display as near target would allow
to think about new interface designs and increase the interaction
speed. However, considering that CLIS patients cannot move the
eyes, the two displays should be superimposed, so the near one
should be semi-transparent. Moreover, PAR decoding algorithm
should be tailored in order to be able to recognize single gaze shift
and not complete PAR tasks as described in 3.1. Future works may
head in this direction, with the objective of obtaining a smooth UX
involving the main stakeholders in the co-design and evaluation of
both the UI and of the UX, matching CLIS patients needs and thus
enabling an easier and effective interaction with the outer world.
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