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Abstract

We introduce the topologically twisted index for four-dimensional N = 1 gauge theories quan-

tized on AdS2×S
1. We compute the index by applying supersymmetric localization to partition

functions of vector and chiral multiplets on AdS2 × T
2, with and without a boundary: in both

instances we classify normalizability and boundary conditions for gauge, matter and ghost fields.

The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form

with non-trivial exterior derivative and proportional to the spin connection. After regulariza-

tion the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional

holomorphic blocks, and crucially depends on the R-charge.
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1 Introduction and Summary

Supersymmetric field theories in both flat and curved spaces have been extensively studied over the

years, serving as a crucial arena for advancing our theoretical understanding of quantum field theory

(QFT), especially in the regime of strong interactions [1–3]. While the complete information of a

QFT is contained in its generating functional of correlation functions, exact computations of this

functional in interacting theories remain challenging. Nevertheless, the technique of supersymmetric

localization [4] has proven to be an extremely ductile tool, enabling exact non-perturbative compu-

tations of specific generating functionals and other observables in a large class of supersymmetric

field theories defined on curved manifolds. In particular, localization techniques have been employed

to study supersymmetric field theories on compact Riemannian manifolds, where a class of BPS

observables can be precisely evaluated by reducing functional integrals to Gaussian integrals around

a supersymmetric locus. Several such computations have been performed in various dimension and

for diverse topologies, leading to valuable insights [5–17], see also [18] and references therein.

Building on this success, this paper shifts attention towards studying supersymmetric gauge

theories on non-compact hyperbolic manifolds, focussing on AdS2 × T 2, where by AdSd we indicate

d-dimensional Anti-de Sitter space with Euclidean signature. Gauge theories in AdS have been

investigated in connection with monodromy defects [19], black-hole entropy [20, 21], chiral algebras

[22] and holomorphic blocks [23, 24]. Moreover, the isometry group of AdSd being the (global)

conformal group in (d− 1)-dimensions, QFT in AdS can be studied via conformal bootstrap [25,26].

Applying supersymmetric localization to QFTs on non-compact manifolds is also interesting from

a technical viewpoint as it requires the study of the behaviour at infinity of the degrees of freedom

contributing to the path integral. This is necessary in order to make sure that not only the final
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result for the partition function is convergent and well-defined, but also supersymmetry is preserved.

Alternatively, one can consider a boundary at a specific distance from the origin of AdS and explore

the interplay between supersymmetry, boundary conditions and boundary degrees of freedom, as

e.g. in [27–34,53].

In this paper we present a detailed calculation of partition functions for N = 1 supersymmetric

gauge theories defined on AdS2 × T 2. The construction of supersymmetric theories in a fixed back-

ground geometry involves taking a suitable limit of new minimal supergravity, leading to background

fields coupled to a supersymmetric gauge theory with an R-symmetry, incorporating ordinary vector

and chiral multiplets [35–37]. We turn on a non-trivial R-symmetry background field equal to half

the spin connection, which is the usual setup corresponding to the topological twist, preserving on

AdS2 × T 2 two Killing spinors of opposite chirality and R-charge. The metric we use on the four-

manifold is refined by parameters that in the partition function combine into two complex moduli:

one is a fugacity p = e2πiτ for momentum on T 2, with τ being the torus modular parameter, while

the other is a fugacity q probing angular momentum on AdS2. Such fugacities allow for linking

partition functions of supersymmetric gauge theories on AdS2 × T 2 to flavoured Witten indices for

theories quantized on AdS2 × S1, namely

IAdS2×T 2 = TrH

[
(−1)

F
e−2πH

]
= TrH

[
(−1)

F
e−2πiϕiQiq−J pP

]
, (1.1)

where H is the Hilbert space of BPS states on AdS2×S1 whereas the operatorH is the Hamiltonian,

F is the fermionic number, J is the angular momentum on AdS2, P is the translation operator along

S1 while ϕi andQi are the chemical potential and the charge operator for the i-th flavour symmetry1,

respectively. Technically, supersymmetric localization provides the plethystic exponential of the

single-letter index (1.1). For instance, let T be the gauge theory represented by a dynamical vector

multiplet in the adjoint representation of the gauge group G coupled to a chiral multiplet of R-

charge r < 1 in a representation RG of G. The topologically twisted index of T , defined on the

four-dimensional hyperbolic manifold AdS2 × T 2 in absence of boundaries, is given by the following

integral over the Cartan torus of G involving a ratio of elliptic Gamma functions:

ZAdS2×T 2 =

∫
du

∏

α∈Adj(G)

∏

ρ∈RG

e2πiΨ̂
Γe

(
e2πi(2ϕR)e2πiα(u); q, p

)

Γe

(
e2πi(2−r)ϕRe−2πiρ(u); q, p

) , (1.2)

where ϕR and u respectively are gauge and R-symmetry fugacities. We refrain from explicitly writing

down the phase factor Ψ̂ as its form is not particularly illuminating; anyhow, Ψ̂ can be read off from

a suitable combination of the ΨCM
D,R and ΨVM

D,R reported in the main text. We specified that (1.2) is

the expression valid for a chiral multiplet of R-charge lesser than one because the index involving the

same multiplets in the case r ≥ 1 has a different form: the reason is that on non-compact AdS2×T 2

1Although the R-symmetry does not commute with the supercharges, the corresponding fugacity ϕR appears in

the index as all other flavour fugacities ϕi. Gauge fugacities appear as flavour fugacities that are integrated over.
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the normalizability of the fields contributing to the partition function dramatically depends on the

R-charge. This phenomenon was already observed in lower dimension in relation to the topologically

twisted index computed via localization on AdS2 × S1 in absence of boundaries [24].

In presence of boundaries two dual sets of boundary conditions does not break supersymme-

try: either Dirichlet conditions, requiring the vanishing of fields at the boundary; or Robin condi-

tions, requiring the vanishing of derivatives of fields at the boundary. In fact, derivatives are linear

combinations of partial derivatives in directions that can be parallel and normal to the boundary,

hence Robin conditions effectively are generalized Neumann conditions. A boundary then allows

for constructing many different theories by just combining multiplets satisfying a priori different

sets of supersymmetric boundary conditions. For example, (1.2) can be interpreted as the twisted

index of a gauge theory where Robin boundary conditions were imposed on the vector multiplet

and Dirichlet boundary conditions were imposed upon the chiral multiplet. An intriguing feature

peculiar to the presence of boundaries is how boundary degrees of freedom induce a flip of bound-

ary conditions [29, 38]: for instance, suitably coupling a lower-dimensional matter multiplet to a

four-dimensional chiral multiplet fulfilling Dirichlet boundary conditions effectively yields a chiral

multiplet with Robin boundary conditions. At the level of the partition function such a flip of bound-

ary conditions is realized thanks to the multiplication properties of the special function appearing

in the 1-loop determinants whose integral defines the index:

ZCM
1-L |R = ZCM

1-L |DZCM
1-L |∂ , ZCM

1-L |∂ = e2πiΨ
CM
∂ /θ0

(
e2πiqiγi ; q

)
, (1.3)

where θ0(z, q) = (z, q)∞(q/z; q)∞, with (z; q)∞ =
∏

j≥0

(
1− zqj

)
being the indefinite q-Pochhammer

symbol, ZCM
1-L |D,R are the four-dimensional chiral-multiplet 1-loop determinants of fluctuations satis-

fying Dirichlet and Robin boundary conditions, respectively, while ZCM
1-L |∂ is the 1-loop determinant

of the three-dimensional boundary multiplet.

In summary, generalizing localization techniques to the case of non-compact manifolds naturally

opens up new avenues for exploration. Compelling future directions include a careful study of the

phase factors ΨCM
D,R and ΨVM

D,R appearing after regularization of the 1-loop determinants for chiral

and vector multiplets, as such phases encode important scheme-independent informations about

anomalies, vacuum energy and central charges of the corresponding gauge theory in hyperbolic

spacetime [13, 39–42]. Furthermore, it would be very interesting to analyze the large-N limit of

N = 4 supersymmetric Yang-Mills theory with gauge group SU(N) on AdS2 × T 2 as such limit

should unveil BPS configurations similar to the black-strings in AdS5 detected in the topologically

twisted index on the compact manifold S2×T 2 [43–46]. In particular, we predict that the constraint

γR − ω

2
+ αx

τ

2
=
αy

2
, αx, αy ∈ Z , (1.4)

which we derive in the main text, should also appear in the dual gravity theory with γR, ω being re-

lated to the electrostatic potential and the angular velocity of the supergravity solution, respectively.
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Besides, it would be very intriguing to investigate non-perturbative dualities for gauge theories on

AdS2 × T 2; especially in relation of boundary degrees of freedom, which are known to be affected

by such transformations in a non-trivial way [47]. Eventually, possible generalizations of this paper

comprehend the addiction of BPS defects, vortices or orbifold structures [48–51] on AdS2 × T 2, as

all these objects yield further refinements of the index [52].

Outline. In Section 2 we set up the background geometry by introducing the chosen metric and

frame on AdS2 × T 2. We then find its rigid supersymmetric completion by solving the conformal

Killing spinor equation on AdS2 × T 2 endowed with a background field for the U(1)R R-symmetry

that is proportional to the spin connection and encodes the topological twist. Thus, we show

that such conformal Killing spinors also solve the Killing spinor equation with a suitable choice

of background fields descending from new minimal supergravity. Hence, we study periodicities

and global smoothness of Killing spinors on topologically twisted AdS2 × T 2. In Section 3 we

write down the supersymmetric multiplets involved in our analysis, their supersymmetry variations

in component fields and Lagrangians. Then, we rewrite the supersymmetry transformations in

cohomological form by introducing a new set of fields that makes manifest the fundamental degrees

of freedom contributing to the partition function. Moreover, we show how supersymmetric boundary

conditions emerge from either supersymmetry-exact deformations of the Lagrangian or the equations

of motion. In Section 4 we calculate the path integral of topologically twisted gauge theories on

AdS2 × T 2 by means of supersymmetric localization. We first solve the BPS equations for vector

and chiral multiplets, thus obtaining the supersymmetric locus over which dynamical fields fluctuate.

Then, we calculate the contribution to the partition function of such fluctuations, giving rise to a

non-trivial 1-loop determinant expressed as an infinite product that can be regularized in terms of

special functions. We explicitly display the various possibilities corresponding to different choices of

either boundary or normalizability conditions imposed on supersymmetric fluctuations.

2 Supersymmetric Background

We choose the following line element on AdS2 × T 2:

ds2 = L2dθ2 + L2 sinh2 θ(dϕ+Ω3dx+Ω4dy)
2
+ L2β2

[
(dx+ τ1dy)

2
+ τ22 dy

2
]
, (2.1)

where the four-dimensional metric gµν can be read off from the usual relation ds2 = gµνdx
µdxν ,

with xµ = (θ, ϕ, x, y). In particular, θ ∈ [0,+∞) and ϕ ∈ [0, 2π) are coordinates on AdS2, while

x, y ∈ [0, 2π) are coordinates on T 2. The parameter L has dimension of length and encodes the

radius of AdS2 appearing e.g. in the Ricci scalar RAdS2
= −2/L2. The dimensionless parameters

Ω1,Ω2 ∈ R introduce in the partition function of the theory a fugacity for the angular momentum

on AdS2, as in [14, 43]; whereas τ1, τ2 ∈ R respectively are real and imaginary part of the modular
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parameter τ = τ1 + iτ2 of the torus T 2. Finally, the dimensionless parameter β ∈ R parametrizes

the scale of T 2 with respect to the radius of AdS2. We shall also consider a boundary at θ = θ0 > 0

to explore the interplay between bounday conditions and boundary degrees of freedom.

We adopt the orthonormal frame

e1 = Ldθ , e2 = L sinh θ(dϕ+Ω3dx+Ω4dy) ,

e3 = Lβ(dx+ τ1dy) , e4 = Lβτ2dy , (2.2)

satisfying e.g. gµν = δabe
a
µe

b
ν and δab = gµνeaµe

b
ν . In the frame (2.2) the non-trivial components of

the spin connection read

ω12 = −ω21 = − cosh θ(dϕ+Ω3dx+Ω4dy) . (2.3)

On AdS2 × T 2 the conformal Killing-spinor equations,

(
∇µ − iAC

µ

)
ζ +

1

4
σµσ̃

ν
(
∇ν − iAC

ν

)
ζ = 0 ,

(
∇µ + iAC

µ

)
ζ̃ +

1

4
σ̃µσ

ν
(
∇ν + iAC

ν

)
ζ̃ = 0 , (2.4)

is solved by

ζα =
√
k0 e

i
2 (αϕϕ+αxx+αyy)

(
1

0

)

α

, ζ̃α̇ =
√
k0 e

− i
2 (αϕϕ+αxx+αyy)

(
0

1

)α̇

, (2.5)

where k0 ∈ C is a normalization constant and α2,3,4 ∈ R parametrize non-trivial phases of ζ, ζ̃ along

the three circles inside AdS2 × T 2, while AC is the background field

AC =
1

2
(ω12 + αϕdϕ+ αxdx+ αydy) . (2.6)

Moreover, the spinors (2.5) fulfil the Killing-spinor equations

(∇µ − iAµ)ζ + iVµζ + iV νσµνζ = 0 ,

(∇µ + iAµ)ζ̃ − iVµζ̃ − iV ν σ̃µν ζ̃ = 0 , (2.7)

with background fields

V = Lβκ(dx+ τdy) ,

A = AC +
3

2
V , (2.8)

where κ is an arbitrary constant and the 1-forms AC and AR are smooth on AdS2 if αϕ = 1. Thus,

the ζ and ζ̃ reported in (2.5) are Killing spinors of R-charge ±1, respectively. As the field strength

F (R) of the R-symmetry field is non-trivial and satisfies F (R) = dA = (1/2)dω12, the Killing spinors ζ
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and ζ̃ describe a supersymmetric AdS2×T 2 background with a topological twist on AdS2, analogous

to those investigated in the case of compact manifolds e.g. in four [43] and three [14] dimensions.

On a compact two-dimensional manifold M2 the direct link between F (R) and dω12 characterizing

the topological twist implies that the R-symmetry flux equals the Euler characteristic of M2, up to

a sign. On a two-dimensional manifold with boundary B2 the R-symmetry flux fR is proportional to

the line integral of A along the one-dimensional boundary ∂B2. Indeed, applying Stokes’ theorem

to the smooth R-symmetry field A(0) = A|αϕ=1 gives

fR =
1

2π

∫

B2

F (R) =
1

2π

∫

B2

dA(0) =
1

2π

∮

S1
0

A(0) =
1

2
(1− cosh θ0) , (2.9)

with B2 being AdS2 with a boundary at θ = θ0 and S1
0 = ∂B2 being the circle in AdS2 at θ = θ0.

As observed in [20], on AdS2 fluxes are not quantized, as opposed to what happens e.g. on the

two-sphere, where the single-valuedness of transition functions between different patches requires all

fluxes to take integer values.

Imposing either periodicity or anti-periodicity of the Killing spinors ζ, ζ̃ along the torus circles

parametrized by x and y yields

αx, αy ∈ Z . (2.10)

Furthermore, smoothness of the R-symmetry field A requires αϕ = 1, implying the anti-periodicity

of the Killing spinors along the shrinking circle in AdS2 parametrized by ϕ. The Killing spinors

reported in (2.5) are manifestly smooth in every point of the four-manifold apart from the origin as

ζ, ζ̃ are written in the frame (2.2), which is singular at θ = 0 due to ϕ being undefined at the origin.

Smoothness at θ = 0 can be examined by first rotating (2.2) into a frame that is non-singular at the

origin via a local Lorentz transformation ℓab,

δeaµ = −ℓabebµ , ℓab =

(
0 ϕ

−ϕ 0

)a

b

, (2.11)

which in turn induces the following rotation upon ζ, ζ̃:

ζ′ = L−1ζ =
√
k0 e

i
2 [(αϕ−1)ϕ+αxx+αyy]

(
1

0

)
,

ζ̃′ = L̃−1ζ̃ =
√
k0 e

− i
2 [(αϕ−1)ϕ+αxx+αyy]

(
0

1

)
, (2.12)

where

L = exp

(
−1

2
ℓabσ

ab

)
, L̃ = exp

(
−1

2
ℓabσ̃

ab

)
, (2.13)

encode the action of local Lorentz transformations upon left- and right-handed spinors, respectively.

The spinors ζ′, ζ̃′ are independent of the coordinate ϕ if and only if αϕ = 1, which is then the value

making the Killing spinors smooth on the whole four-manifold.
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3 Supersymmetry and Cohomology

3.1 Vector Multiplet

A vector multiplet enjoying N = 1 supersymmetry consists of a 1-form aµ encoding the gauge

field, two complex spinors λ, λ̃ of opposite chirality parametrizing the gauginos and a 0-form D

corresponding to an auxiliary field ensuring off-shell closure of the supersymmetry algebra. The

fields
(
aµ, λ, λ̃,D

)
have R-charges (0,+1,−1, 0), transform in the adjoint representation of the

gauge group G. The vector-multiplet supersymmetry variations with respect to ζ, ζ̃ read

δaµ = iζ̃ σ̃µλ+ iζσµλ̃ ,

δλ = fµνσ
µνζ + iDζ ,

δλ̃ = fµν σ̃
µν ζ̃ − iDζ̃ ,

δD = ζ̃ σ̃µ

(
Dµλ+

3i

2
Vµλ

)
− ζσµ

(
Dµλ̃− 3i

2
Vµλ̃

)
, (3.1)

where f is the field strength of the gauge field a with components fµν = ∂µaν − ∂νaµ − iqG[aµ, aν ].

The constant qG is the gauge charge appearing in the covariant derivative

Dµ = ∇µ − iqRAµ − iqGaµ ◦RG
, (3.2)

where ◦RG
represents the action upon a field Φ in the representation RG of the gauge group G. The

bosonic fields aµ and D of the vector multiplet satisfy the reality conditions

a†µ = aµ , D† = −D , (3.3)

whereas there is no need to impose reality conditions upon the vector-multiplet fermionic fields λ, λ̃.

The supersymmetry transformations (3.1) can be rewritten in cohomological form as follows:

δa = Λ , δΛ = 2i(LK + GΦG
)a ,

δΦG = 0 ,

δΨ = ∆ , δ∆ = 2i(LK + GΦG
)Ψ , (3.4)

where we introduced the Grassmann-even 0-forms ΦG,∆ as well as the Grassmann-odd 0-form Ψ

and 1-form Λµ given by

ΦG = ιKa , ∆ = D − 2iY µỸ νfµν ,

Λµ = iζ̃ σ̃µλ+ iζσµλ̃ , Ψ =
ζ†λ

2i|ζ|2 − ζ̃†λ̃

2i|ζ̃|2
,

λα = i
(
Ψ− ιK̃Λ

)
ζα + i

ιY Λ

|ζ|2 ζ
†
α , λ̃α̇ = −i

(
Ψ+ ιK̃Λ

)
ζ̃α̇ − i

ιỸ Λ

|ζ̃|2
ζ̃†α̇ , (3.5)
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with

Kµ = ζσµζ̃ , Y µ =
ζσµ ζ̃†

2|ζ̃|2
, Ỹ µ = −ζ

†σµζ̃

2|ζ|2 , K̃µ =
ζ̃†σµζ̃†

4|ζ|2|ζ̃|2
, (3.6)

being the Killing-spinor bilinears defined in [43]. The norms |ζ|2 and |ζ̃|2 descend from the complex

conjugates of the Killing spinors, which are

ζ†α = (ζα)
∗
=
√
k0

∗ e−
i
2 (αϕϕ+αxx+αyy)

(
1

0

)α

, |ζ|2 = |k0| ,

ζ̃†α̇ =
(
ζ̃α̇
)∗

=
√
k0

∗ e
i
2 (αϕϕ+αxx+αyy)

(
0

1

)

α̇

, |ζ̃|2 = |k0| , (3.7)

providing in turn the reality conditions on Killing-spinor bilinears:

K∗
µ = 4|ζ|2|ζ̃|2K̃µ , Y ∗

µ =
|ζ|2
|ζ̃|2

Ỹ µ . (3.8)

In particular, the Killing-spinor equations (2.7) imply that Kµ, which in our setup reads

Kµ∂µ =
ik0
Lβτ2

(ω∂ϕ − τ∂x + ∂y) , (3.9)

is a Killing vector:

∇µKν = iǫµνλρK
λV ρ → ∇(µKν) = 0 . (3.10)

In (3.4) the supersymmetry variation δ manifests itself as an equivariant differential fulfilling

δ2 = 2i(LK + GΦG
) , (3.11)

where the Lie derivative LK generates a spacetime isometry of the manifold while

GΦG
a = −daΦG = −dΦG + iqG[a,ΦG] ,

GΦG
X = −iqGΦG ◦RG

X , X 6= a , (3.12)

represent the action of gauge transformations upon fields. In the case of weakly gauged theories

with background vector multiplets, (3.12) is interpreted as the action of the flavour group G ≡ GF .

The vector-multiplet Lagrangian,

LVM =
1

4
fµνf

µν − 1

2
D2 +

i

2
λσµDµλ̃+

i

2
λ̃σ̃µDµλ− 3

2
Vµλ̃σ̃

µλ , (3.13)

is δ-exact up to boundary terms,

LVM = δVVM +
i

2
∇µ

[
Ỹ µ(λλ)− Y µ

(
λ̃λ̃
)]

,

= δVVM + i∇µ

[
Ỹ µ
(
Ψ− ιK̃Λ

)
ιY Λ− Y µ

(
Ψ+ ιK̃Λ

)
ιỸ Λ

]
, (3.14)
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with deformation term

VVM =
1

4|ζ|2 (δλα)
†
λα +

1

4|ζ̃|2
(
δλ̃α̇

)†
λ̃α̇ ,

=
1

2
(δΨ)

†
Ψ+

1

2

(
ιK̃δΛ

)†
ιK̃Λ +

1

4|ζ|4 (ιY δΛ)
†
ιY Λ +

1

4|ζ̃|4
(
ιỸ δΛ

)†
ιỸ Λ . (3.15)

In absence of boundaries the total derivative in (3.14) is irrelevant and the corresponding action SCM

is δ-exact and then manifestly supersymmetric. In presence of boundaries the total-derivative terms

in (3.14) drop out if the following dual sets of supersymmetric boundary conditions are imposed:

Robin : ιY a|∂ = ιỸ a|∂ = ιY Λ|∂ = ιỸ Λ|∂ = 0 ,

Dirichlet : ιKa|∂ = ιK̃a|∂ = Ψ∂ = ιK̃Λ|∂ = 0 , (3.16)

together with the vanishing of the corresponding supersymmetry variations. Especially, Dirichlet

conditions only affect the components of the gauge field aµ that are parallel to the boundary,

whereas Robin conditions mix with each other components that are either parallel or orthogonal to

the boundary. After including Faddeev-Popov ghosts c, c̃ and their supersymmetric completion, as

e.g. in [4, 53], the BRST-improved supersymmetry variation (δ + δBRST)aµ = (Λµ +Dµc) implies

Robin : LỸ c|∂ = LY c|∂ = LỸ c̃|∂ = LY c̃|∂ = 0 ,

Dirichlet : c|∂ = c̃|∂ = 0 . (3.17)

3.2 Chiral multiplet

N = 1 chiral multiplets in a representation RG of the gauge group G contain a 0-form φ, a left-

handed spinor ψ and a 0-form F , where the latter is a non-dynamical field that, in analogy with D,

allows the closure of the supersymmetry algebra on the chiral multiplet without using the equations

of motion. The fields (φ, ψ, F ), whose R-charges are (r, r − 1, r − 2), are related to each other by

the following supersymmetry variations:

δφ =
√
2ζψ ,

δψ =
√
2Fζ + i

√
2
(
σµζ̃

)
Dµφ ,

δF = i
√
2ζ̃ σ̃µ

(
Dµψ − i

2
Vµψ

)
− 2i

(
ζ̃λ̃
)
φ . (3.18)

The bosonic fields φ and F of the chiral multiplet fulfil the reality conditions

φ† = φ , F † = −F̃ , (3.19)
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where φ̃ and F̃ , together with the right-handed spinor ψ̃, form an anti-chiral multiplet2 in the

conjugate representation RG of the gauge group G. Their supersymmetry transformation reads

δφ̃ =
√
2ζ̃ψ̃ ,

δψ̃ =
√
2F̃ ζ̃ + i

√
2(σ̃µζ)Dµφ̃ ,

δF̃ = i
√
2ζ̃σµ

(
Dµψ̃ +

i

2
Vµψ̃

)
+ 2iφ̃(ζλ) . (3.20)

If we define cohomological fields correspoding to the Grassmann-odd 0-formsB,C and the Grassmann-

even 0-form Ξ

B =
ζ†ψ√
2|ζ|2

, C =
√
2ζψ ,

ψ =
√
2Bζ − Cζ†√

2|ζ|2
, Ξ = F − 2iLỸ φ , (3.21)

where

Lv = vµDµ , v ∈
{
K, K̃, Y, Ỹ

}
, (3.22)

is the covariant Lie derivative along the vector v, the relations (3.18) can be written in cohomological

form:

δXi = X ′
i , δX ′

i = 2i(LK − iqRΦR + GΦG
)Xi , (3.23)

with i = 1, 2, where X1 = φ, X2 = B, X ′
1 = C and X ′

2 = Ξ. The supersymmetry variation of the

auxiliary field F in cohomological form is

δF = 2i
(
LKB + LỸ C − iιỸ Λφ

)
. (3.24)

The structure of (3.23) implies that the supersymmetry variation δ behaves as an equivariant dif-

ferential also on chiral-multiplet fields, where ΦR is the R-symmetry counterpart of the 0-form ΦG,

ΦR = ιKA =
ik0

2Lβτ2
(ωαϕ − ταx + αy) . (3.25)

More generally, δ2 acts upon a field X of R-charge qR, flavour charge qF and gauge charge qG as

δ2X = 2iLKX = 2i(LK + GΦR
+ GΦF

+ GΦG
)X , (3.26)

where

GΦR
X = −iqRΦRX , ΦR = ιKA =

ik0
2Lβτ2

(ωαϕ − ταx + αy) , (3.27)

2In Euclidean spacetime imposing reality conditions upon fermionic fields is not necessary.
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while GΦF
formally acts as in (3.12) with respect to the flavour group GF . The object ΦR did not

appear in (3.4) as the fields (a,Λ,ΦG,Ψ,∆) are R-symmetry neutral. The supersymmetry variations

(3.20) can be recast in the form reported in (3.23) by defining

B̃ =
ζ̃†ψ̃√
2|ζ̃|2

, C̃ =
√
2ζ̃ψ̃ ,

ψ̃ =
√
2B̃ζ̃ − C̃ζ̃†√

2|ζ̃|2
, Ξ̃ = F̃ + 2iLY φ̃ , (3.28)

and choosingX1 = φ̃, X2 = B̃, X ′
1 = C̃ as well asX ′

2 = Ξ̃. In cohomological form the supersymmetry

variation of the auxiliary field F̃ reads

δF̃ = 2i
(
LKB̃ − LY C̃ − iφ̃ιY Λ

)
. (3.29)

The chiral-multiplet Lagrangian,

LCM = Dµφ̃D
µφ+ iV µ

[(
Dµφ̃

)
φ− φ̃Dµφ

]
+ (r/4)φ̃

(
R+ 6V 2 +D

)
φ− F̃F

+ iψ̃σ̃µDµψ + (V µ/2)ψ̃σ̃µψ + i
√
2
(
φ̃λψ − ψ̃λ̃φ

)
, (3.30)

which in cohomological fields reads

LCM = 4LKφ̃LK̃φ+ 4LY φ̃LỸ φ−
(
Ξ̃− 2iLY φ̃

)(
Ξ + 2iLỸ φ

)

+ 2i
(
κφ̃LKφ+ B̃LKB + B̃LỸ C − C̃LYB + C̃LK̃C

)
− κC̃C

+ qG

[
C̃ιK̃Λφ− 2φ̃ιY ΛB + 2B̃ιỸ Λφ+ C̃Ψφ+ φ̃

(
∆− 2iιK̃LKa

)
φ− φ̃

(
Ψ− ιK̃Λ

)
C
]
, (3.31)

is δ-exact with respect to the deformation term VCM given by

LCM = δVCM , VCM = −2iB̃LỸ φ− 2iC̃LK̃φ− F̃B + qGφ̃
(
Ψ− ιK̃Λ

)
φ− κφ̃C . (3.32)

Consequently,

δLCM = 2iLKVCM = 2i∇µ(K
µVCM) . (3.33)

In absence of boundaries the supersymmetry variation of LCM being a total derivative readily implies

that the variation of the corresponding action SCM is zero. Moreover, since Kθ = 0, in presence

of a boundary at θ = θ0 the Lagrangian of the chiral multiplet is supersymmetric for any choice of

boundary conditions, where the latter can be obtained by imposing the vanishing of the boundary

terms generated by the equations of motion for to the bulk Lagrangian:

δeomLCM = (bulk) + 4∇µ

[
Y µδeomφ̃LỸ φ+ 4Ỹ µ

(
LY φ̃

)
δeomφ

]

+ 2i∇µ

(
Ỹ µB̃δeomC − Y µC̃δeomB

)
, (3.34)
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where the bulk terms vanish on the solution of the equations of motion. The boundary terms

descending from the equations of motion cancel out if the following dual sets of supersymmetric

boundary conditions are imposed:

Dirichlet : φ∂ = φ̃∂ = C∂ = C̃∂ = 0 ,

Robin : B∂ = B̃∂ =
(
LỸ φ

)
∂
=
(
LY φ̃

)
∂
= 0 . (3.35)

4 Supersymmetric Localization

We now compute the partition function of gauge theories coupled to matter via supersymmetric

localization [4]. We focus on Abelian gauge theories as the generalization to the non-Abelian case

is straightforward. We start by deriving the supersymmetric locus solving the BPS equations; then,

we will compute the 1-loop determinant of the fluctuations over the BPS locus.

4.1 BPS Locus

The vector-multiplet BPS equations are

λ = δλ = λ̃ = δλ̃ = 0 , (4.1)

which in cohomological form read

(LK + GΦG
)a = 0 , D − 2iY µỸ νfµν = 0 . (4.2)

We employ the following ansatz:

a = [aϕ(θ) + bϕ]dϕ+ [ax(θ) + bx]dx+ [ay(θ) + by]dy , (4.3)

where we set to zero the pure-gauge component ax(θ), while aϕ, ax, ay are complex functions and

the flat connections bϕ, bx, by are complex constants, a priori. The gauge field above is smooth on

AdS2 if bϕ = −aϕ(0). By plugging the ansatz (4.3) into the BPS equations (4.2) we obtain the

complex BPS locus for the vector multiplet:

[ωaϕ(θ)− τax(θ) + ay(θ)]BPS = a0 = constant ,

D|BPS = L−2 sinh−1 (θ)a′ϕ(θ) , (4.4)

implying that the BPS value of the gauge fugacity ΦG is manifestly constant,

ΦG|BPS =
ik0
Lβτ2

(a0 + ωbϕ − τbx + by) . (4.5)
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Imposing the reality conditions reported in (3.3) yields the real BPS locus

aϕ(θ)|BPS = aϕ = constant ,

ax(θ)|BPS = ax = constant ,

ay(θ)|BPS = ay = constant ,

D|BPS = 0 ,

Re(ω)aϕ − τ1ax + ay = Re(a0) ,

Im(ω)aϕ − τ2ax = Im(a0) . (4.6)

Using (4.6) for a smooth connection on AdS2 gives bϕ = −aϕ and

ΦG|BPS =
ik0
Lβτ2

[ay + by − τ(ax + bx)] . (4.7)

In presence of a boundary at θ = θ0 there are two possibilities: if Dirichlet conditions are imposed,

then ΦG|BPS has to vanish at the boundary. Since ΦG|BPS is constant, Dirichlet conditions require

ΦG|BPS = 0 everywhere. Instead, Robin boundary conditions do not impose any constraint on

ΦG = ιKa, which hence stays non trivial.

The BPS equations for the chiral multiplet read

ψ = δψ = ψ̃ = δψ̃ = 0 , (4.8)

which in cohomological form are

(LK − iqRΦR − iqGΦG)φ = 0 ,

(LK + iqRΦR + iqGΦG)φ̃ = 0 ,

F = 2iLỸ φ ,

F̃ = − 2iLY φ̃ , (4.9)

with φ = φ(θ, ϕ, x, y) and φ̃ = φ̃(θ, ϕ, x, y) being periodic in ϕ, x, y. For generic values of ΦR,ΦG

the trivial locus

φ = φ̃ = F = F̃ = 0 , (4.10)

is the only solution to (4.9, regardless of the presence of a boundary at θ = θ0. In particular, the

value of fields reported in (4.10) trivializes the classical contribution to the partition function given

e.g. by superpotential terms.

4.2 One-Loop Determinant

The 1-loop determinant of supersymmetric fluctuations over the BPS locus for a chiral multiplet is

ZCM
1-L =

detKerLY
δ2

detKerL
Ỹ
δ2

, (4.11)
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with the kernel of the differential operator LY = Y µDµ being spanned by functions Bmϕ,mx,my

labelled by integers corresponding to the Fourier modes around the circles parametrized by ϕ, x, y:

KerLY : Bmϕ,mx,my
= eimϕϕ+imxx+imyyB(0)

mϕ,mx,my
(θ) , mϕ,mx,my ∈ Z . (4.12)

The behaviour of the modes Bmϕ,mx,my
at the origin of AdS2 is

lim
θ→0

B(0)
mϕ,mx,my

(θ) ∼ θmϕ , (4.13)

meaning that Bmϕ,mx,my
is non-singular at θ = 0 if mϕ ∈ N. The modes Bmϕ,mx,my

satisfy the

eigenvalue equation δ2Bmϕ,mx,my
= λBBmϕ,mx,my

, where

λB =
2ik0
Lβτ2

[
−ωmϕ + τmx −my + qG(a0 + by − τbx − ωaϕ) +

r − 2

2
(ω − ταx + αy)

]
, (4.14)

is the eigenvalue contributing to the numerator of ZCM
1-L . Analogously, the kernel of the differential

operator LỸ = Ỹ µDµ is spanned by functions φnϕ,nx,ny
,

KerLỸ : φnϕ,nx,ny
= einϕϕ+inxx+inyyφ(0)nϕ,nx,ny

(θ) , nϕ, nx, ny ∈ Z , (4.15)

whose behaviour near the origin of AdS2 is

lim
θ→0

φ(0)nϕ,nx,ny
(θ) ∼ θ−nϕ , (4.16)

implying that φnϕ,nx,ny
is non singular at θ = 0 if (−nϕ) = ℓϕ ∈ N. The modes φnϕ,nx,ny

are

eigenfunctions of the operator δ2 with eigenvalue

λφ =
2ik0
Lβτ2

[
ωℓϕ + τnx − ny + qG(a0 + by − τbx − ωaϕ) +

r

2
(ω − ταx + αy)

]
, (4.17)

which contributes to the denominator of ZCM
1-L . In both λB and λφ the R-charges qφR = r, qBR = (r − 2)

as well as the gauge charge qG respectively multiply the same quantities γR and γG, where

γR =
1

2
(ω − ταx + αy) ,

γG = a0 − ωaϕ − τbx + by . (4.18)

Especially, the first line in (4.18) can be interpreted as a constraint on the chemical potentials

γR, ω, τ , as in the case of gauge theories on S3 × S1 dual to AdS5 black holes [54].

In presence of boundaries we have two possible 1-loop determinants: on the one hand, if we

impose Dirichlet conditions, the modes φnϕ,nx,ny
have to satisfy a first-order homogeneous differential

equation with boundary condition φnϕ,nx,ny
|∂ = 0, implying φnϕ,nx,ny

= 0. Therefore, Dirichlet

conditions kill the modes φnϕ,nx,ny
contributing to the denominator of ZCM

1-L , leaving the modes

Bmϕ,mx,my
unaffected. The result is

ZCM
1-L |D =

∏

mϕ∈N

∏

mx,my∈Z

[ωmϕ − τmx +my − qGγG − (r − 2)γR] , (4.19)
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which can be regularized by means of (A.4), yielding

ZCM
1-L |D = e2πiΨ

CM
D /Γe

(
e2πi(2γR−qiγi); q, p

)
,

ΨCM
D =

1

24τω
(1 + τ − 2(2γR − qiγi) + ω)

× [2(2γR − qiγi)((2γR − qiγi)− ω − 1) + ω + τ(1− 2(2γR − qiγi) + ω)] , (4.20)

with qiγi = (rγR + qGγG). On the other hand, if we impose Robin conditions, the modes Bmϕ,mx,my

have to satisfy a first-order homogeneous differential equation with boundary conditionBmϕ,mx,my
|∂ =

0, which sets Bmϕ,mx,my
= 0 everywhere. As a consequence, Robin conditions trivialize the modes

Bmϕ,mx,my
contributing to the numerator of the chiral-multiplet 1-loop determinant and leave the

modes φnϕ,nx,ny
untouched because LỸ φnϕ,nx,ny

= 0 on the whole four-manifold by definition. Thus,

ZCM
1-L |R =

∏

ℓϕ∈N

∏

nx,ny∈Z

[ωℓϕ + τnx − ny + qGγG + rγR]
−1

, (4.21)

whose regularized form provided by (A.4) reads

ZCM
1-L |R = e2πiΨ

CM
R Γe

(
e2πiqiγi ; q, p

)
,

ΨCM
R = − 1

24τω
(1 + τ − 2qiγi + ω)[2qiγi(qiγi − ω − 1) + ω + τ(1− 2qiγi + ω)] . (4.22)

As observed e.g. in [29,38], dual 1-loop determinants are mapped to each other by multiplication of

1-loop determinants corresponding ot boundary multiplets:

ZCM
1-L |R = ZCM

1-L |DZCM
1-L |∂ , ZCM

1-L |∂ = e2πiΨ
CM
∂ /θ0

(
e2πiqiγi ; q

)
,

ZCM
1-L |D = ZCM

1-L |RZFM
1-L |∂ , ZFM

1-L |∂ = e−2πiΨCM
∂ θ0

(
e2πiqiγi ; q

)
, (4.23)

with the boundary phase being given by

ΨCM
∂ = − 1

12ω
[1 + 6qiγi(qjγj − 1− ω) + ω(3 + ω)] = ΨCM

R −ΨCM
D . (4.24)

Eventually, in absence of boundaries, we require that both φnϕ,nx,ny
and Bmϕ,mx,my

are square

integrable on AdS2 × T 2 according to the integral measure
∫

AdS2×T 2

√
det g |Φ|2 . (4.25)

By inspection, the behaviour of the modes Bmϕ,mx,my
at infinity is

lim
θ→+∞

B(0)
mϕ,mx,my

(θ) ∼ eθ(r−2)/2 , (4.26)

and taking into account that

lim
θ→+∞

√
det g ∼ eθ , (4.27)
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as well as that the modes are finite near the origin at θ ∼ 0, normalizability of Bmϕ,mx,my
requires

r < 1 . (4.28)

Analogously, the behaviour of the modes φnϕ,nx,ny
at infinity is

lim
θ→+∞

φ(0)nϕ,nx,ny
(θ) ∼ e−θ r/2 , (4.29)

and normalizability of φnϕ,nx,ny
imposes

r > 1 . (4.30)

In summary,

ZCM
1-L |r<1 = ZCM

1-L |D , ZCM
1-L |r>1 = ZCM

1-L |R , (4.31)

and ZCM
1-L |r=1 = 1 as there are no normalizable modes for r = 1.

Similarly to what happens in three dimensions [53], the 1-loop determinant for a non-Abelian

vector multiplet enjoying N = 1 supersymmetry is

ZVM
1-L =

√
(detΨ δ2)(detc δ2)(detc̃ δ2)(

detι
K̃
a δ2
)
(detιY a δ2)

(
detι

Ỹ
a δ2

) , (4.32)

where Ψ, c and c̃ contribute as modes Bmϕ,mx,my
, in the adjoint representation of the gauge group

G, with R-charge r = 2, while ιỸ a, ιK̃a and ιY a contribute as modes φnϕ,nx,ny
in the adjoint of

G with R-charges (2, 0,−2), respectively. Nonetheless, if Dirichlet conditions upon vector multiplet

modes are imposed, only ιỸ a, ιY a survive and after simplifications we find

ZVM
1-L |D =

1

detιY A δ2
=
(
detφδ

2
)−1

r=2
=
(
ZCM
1-L |R

)
r=2

, (4.33)

where the product over roots of the adjoint representation of G is understood. On the other hand,

Robin conditions kill ιỸ a, ιY a, leaving the other modes invariant; therefore, after a few other sim-

plifications,

ZVM
1-L |R = detcδ

2 =
(
detBδ

2
)
r=2

=
(
ZCM
1-L |D

)
r=2

. (4.34)

Instead, in absence of boundaries, all modes appearing in (4.32) do contribute, a priori. In fact,

various contributions drop out, giving at the end of the day

ZVM
1-L =

detc δ
2

detιY a δ2
=
(
ZCM
1-L

)
r=2

=
(
ZCM
1-L |R

)
r=2

, (4.35)

where the last equality holds if we restrict to normalizable modes only, as in (4.31).
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A Regularization of Infinite Products

In the main text we found that 1-loop determinants of supersymmetric multiplets on AdS2 ×T 2 are

triple infinite products of the form

Q(b0|a0, c0)∞ =
∏

ℓ∈N

∏

n1,n2∈Z

(a0n1 + n2 + c0ℓ+ b0) , (A.1)

with a0, b0 and c0 being complex constants. The product above can be regularized by rewriting the

products over Z as double products over N and using multiple Zeta and Gamma functions [55]:

Qs1,s2(b|a12, c)∞ =
∏

ℓ∈N

∏

n1,n2∈N

(a12n1 + n2 + cℓ+ b)(−a12n1 + n2 + 1− cℓ− b)

× [−a12(n1 + 1) + n2 + cℓ+ b][a12(n1 + 1) + n2 + 1− cℓ− b] ,

=
1

Γ3(b|c, a12, 1)Γ3(1− b| − c,−a12, 1)Γ3(b− a12|c,−a12, 1)Γ3(1− b+ a12| − c, a12, 1)
,

= eiπ[ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]

×
(
e2πib; e2πic, e2πia12

)
∞

(
e2πi(a12−b); e−2πic, e2πia12

)
∞
,

= eiπ[ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]

(
e2πib; e2πic, e2πia12

)
∞(

e2πi(a12+c−b); e2πic, e2πia12
)
∞

,

= eiπ[ζ3(0,b|c,a12,1)+ζ3(0,1−b+a12|−c,a12,1)]/Γe

(
e2πib; e2πic, e2πia12

)
, (A.2)

where

Γe(z, q1, q2) =
(q1q2/z; q1; q2)∞

(z; q1; q2)∞
, (A.3)

is the elliptic Gamma function. Altogether,

∏

ℓ∈N

∏

n1,n2∈Z

1

a0n1 + n2 + c0ℓ+ b0
→ e2πiΨ(3)(a12,b,c)Γe

(
e2πib; e2πic, e2πia12

)
,

Ψ(3)(a12, b, c) = − 1

24a12c
(1 + a12 − 2b+ c)[2b(b− c− 1) + c+ a12(1− 2b+ c)] . (A.4)
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