
TOP EARNERS: A LABOR  
PRODUCTIVITY PROCESS  

 
 
 
 
 
 
 

CLAUDIO CAMPANALE 

ROCÍO FERNÁNDEZ-BASTIDAS 
 
 
 
 
 
 

Working paper No. 74 - MAY 2022 
 

 

DEPARTMENT OF 
ECONOMICS AND STATISTICS 

WORKING PAPER SERIES 
 

Quaderni del Dipartimento di Scienze 
Economico-Sociali e Matematico-Statistiche 

 

ISSN 2279-7114 
Founded in 1404 

 UNIVERSITÀ 
DEGLI STUDI 

DI TORINO 
 

ALMA UNIVERSITAS 
TAURINENSIS 



Top Earners: a Labor

Productivity Process

Claudio Campanale∗ and Roćıo Fernández-Bastidas†
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Abstract

In the present paper we confront standard wage processes used in the

quantitative literature on the optimal tax progressivity and a process with

heterogeneous life-cycle profiles that we propose against the data. We find

that the former fail to capture several features of the earnings dynamics at

the very top of the distribution while our proposed model improves along

some of these dimensions.
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1 Introduction

Under the influence of the large increase in concentration of economic means

occurred in the last 30 years, recent research has tried to analyze the level of tax

progressivity that maximizes revenues for the government and or welfare. A key

pre-requisite for the quantitative models that are used to explore these issues is a

process for wages that enables the model to match the observed concentration of

earnings especially at the very top of the distribution. Two approaches have been

used so far to achieve this goal. The first approach used by Guner et al. (2016)

consists of adding to a standard autoregressive process an ex-ante distribution

of fixed earnings skills with a small fraction of individuals possessing a very high

realization, sometimes termed “awesome state”. The second approach proposed

by Kindermann and Krueger (2020) adds to the standard autoregressive process

stochastic awsome states with limited persistence. In both cases the processes

are calibrated to match the cross-sectional distribution of household earnings.

However their implications for the dynamics of those earnings at the very top of

the distribution is not confronted with the data. This dynamics, and in particular

the persistence of superstar earnings is key in determining the effects of tax

progressivity and indeed these works deliver substantially different results in

terms of the revenue maximizing and optimal income tax rates.

In this short essay we exploit recent empirical evidence that accurately de-

scribes the properties of earnings at the very top of the distribution in Guvenen

et al. (2021a) to better shed light on the processes for top earnings that are the

input to taxation models. We do this along two lines. First we examine the

properties of the processes that follow the approaches of Guner et al. (2016) and

Kindermann and Krueger (2020). Second we propose an alternative process for

wages whose key feature is the presence of ex-ante heterogeneous growth rates.

The distribution of growth rates of earnings skills features both ordinary states

and awesome states, the latter being key to generate the top tail of the distribu-

tion. We show that traditional approaches fail along several of the dimensions

explored in the data by Guvenen et al. (2021a), our approach on the contrary

while still retaining the ability to match the cross section of the earnings distri-

bution also improves the model performance along these extra dimensions. We

thus see the wage process proposed here as an important building block of mod-

els aimed at studying the problem of the revenue and welfare maximizing tax

progressivity.
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2 Model Economy

We consider an overlapping generations model with idiosyncratic earnings risk,

incomplete markets and elastic labor supply. Our model special feature is the

addition of an Heterogeneous Income Profile (HIP), where we allow for a small

fraction of agents to experience extremely high earnings growth.

The model period is one year. Agents are born and work until their retirement

age JR. Agents of age j− 1 survive to the next period with probability sj. They

live up to a maximum age J . Population grows at rate n.

Households differ in their productivity e(z, θ, j), due to stochastic shocks zj, a

common age-productivity profile, ēj, and ex-ante heterogeneity, summarized by

the vector θi = (αi, βi) where αi denotes the level of earnings skills and βi is their

growth rate. Insurance markets are incomplete and households can accumulate

a risk-free asset aj. Borrowing is not allowed.

Agents maximize

E
[ N∑

j=1

δj−1
( j∏

i=1

si

) c1−σ
j

1− σ
− ν

l
1+ 1

χ

j

1 + 1
χ

]
(1)

where χ ≥ 0 is the parameter that governs the Frisch elasticity of labor supply,

ν measures the disutility of labor and σ is the coefficient of relative risk aversion.

The discount factor is given by δ.

A government finances public spendingG with individual taxes and accidental

bequests. Agents pay taxes on labor and capital income, and the tax schedule

Tj has three components: a flat-rate tax τI on total income I meant to capture

state and local taxes, a flat-rate capital income tax τk, and a non-linear income

tax scheme, Tf , representing the federal tax system. Hence, given total income

I = we(z, θ, j)l+ ra, the total amount of individual taxes paid by the household

is:

Tj = Tf (I) + τII + τkra (2)

The nonlinear tax function1 is given by t(Ĩ) = 1 − λĨ−τ , where t(Ĩ) is the

average tax rate at the relative income level Ĩ. Hence, federal taxes paid amount

to Tf = It(Ĩ). The parameter λ defines the level of the average tax rate, while

τ ≥ 0 controls the progressivity of the tax function.

Households pay a payroll tax τp to finance a pay-as-you-go pension system,

and receive the pension benefit, bj, when retired.

1The tax system is modelled following Guner et al. (2016).
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Let x = {a, z, θ, j} be the vector of state variables. The household’s problem,

described in recursive way, is given by

V (a, z, θ, j) = max
c,l,a′

[
c1−σ

1− σ
− ν

l1+
1
χ

1 + 1
χ

]
+ δsj+1Ez′,θ′|z,θV (a′, z′, θ′, j + 1) (3)

subject to the budget constraint

c+ a′ = (1 + r)a+ λw(1− τp)we(z, θ, j)l + (1− λw)bj − Tj (4)

and inequality constraints

c ≥ 0, a′ ≥ 0, 0 ≤ l ≤ 1 (5)

where r denotes the rental rate of capital and w is the wage rate per unit of

effective labor. The indicator function λw equals 1 when the agent is working

and zero otherwise.

Output is produced according to Y = AF (K,L) = AKωL1−ω. Capital depre-

ciates at rate ∆. The representative firm hires capital K and labor L in perfectly

competitive markets.

The equilibrium for this economy can be defined in the standard way and is

omitted for brevity.

3 Calibration

Agents are born at age 25, retire at age 65, living up to a maximum of 100 years.

The population growth rate is n = 0.011 (1.1%). The discount factor δ equals

0.982 to match a capital-output ratio of 2.95. The disutility of labor ν is set to

8.4 for an average of hours worked equal to one third. The Frisch elasticity χ is

set to a value of 1 as in Guner et al. (2016), and the risk aversion coefficient σ

equals 1. The parameter A is normalized to have a wage rate equal to 1. We set

the capital share ω to 0.35 and the depreciation rate ∆ equal to 0.06.

Regarding the tax system, we also follow Guner et al. (2016) and set λ = 0.911

and τ = 0.053. The state tax τI equals 0.05, the corporate tax rate is τk = 0.074,

and the payroll tax τp equals 0.122.

The key element in the model is the labor process. We specify the process

for the log-hourly wage of an agent by way of the following equation:

log(e(z, θ, j)) = αi + βi(j/10) + ēj + zj, zj = ρzj−1 + εj, z0 = 0 (6)
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where εj ∼ N(0, σ2
ε). Agents draw at birth αi, distributed as N (0, σ2

α), and their

individual-specific growth rate of earnings βi, that follows N (µβ, σ
2
β).

With respect to the calibration of the parameters of the given process we

follow the procedure in Guner et al. (2016) and Kindermann and Krueger (2020)

of taking parameters for the bottom part of the distribution from standard esti-

mates while for the top part of the distribution where such estimates do not exist

we pick parameters so that the model output matches certain available moments

in the data.

The persistence ρ of the shock z equals 0.958, and the variance σ2
ε equals

0.017, following Kaplan (2012). The age-productivity profile ēj comes from

Guner et al. (2016). We assume that αi and βi are uncorrelated. We set σ2
α = 0.25

in line with evidence in Kaplan (2012). From estimates in Guvenen et al. (2021b),

we obtain σ2
β = 0.0384.

We discretize the support of βi with a 5-point grid. To allow for the extremely

high earnings growth that are fundamental in trying to capture the dynamics at

the very top of the distribution, we consider two extra values for the βi, β6∗ and

β7∗, with β6∗ < β7∗. Agents are born in these states with probabilities {π6∗, π7∗}.
Ordinary growth states are fixed, the superstar growth states though are very

persistent but not fully permanent. The following transition matrix summarizes

the mobility across earnings growth states

Pβ,j =



β1 β2 β3 β4 β5 β6∗ β7∗

β1 1 0 0 0 0 0 0

β2 0 1 0 0 0 0 0

β3 0 0 1 0 0 0 0

β4 0 0 0 1 0 0 0

β5 0 0 0 0 1 0 0

β6∗ p61(j) p62(j) p63(j) p64(j) p65(j) (1− p67)(1− pe6(j)) p67

β7∗ 0 0 0 0 0 pe7(j) 1− pe7(j)


(7)

where the p6i(j) for i = 1, ..., 5 are given by p6i(j) = wi(1 − p67)p
e
6(j). The wi

term denotes the probability mass of each {βi}5i=1 in the stationary distribution

of βi absent the superstar growth states.2 The probability p67 of moving from

β6∗ to β7∗ is constant during the life cycle. The probability of moving from a

given superstar state to lower growth states pei (j) is given by the following logistic

2Hence,
∑5

i=1 wi = 1. The sixth row sums up to 1 since
∑5

i=1 p6i(j) = pe6(1 − p67) and∑6
i=1 p6i(j) = 1 − p67. This specification implies that an agent falling from state 6 down to

ordinary states ends up in each of the ordinary states with the same probability an ordinary

agent is born in them.
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function

pei (j) =
Li

1 + p1 exp(−p2(j − j0))
(8)

for i = {6, 7}. This specification delivers an age-dependent probability of exit

that increases as agents advance in their working career. This allows us to match

the earnings growth of top earners during the life cycle. We set exogenously

the initial probabilities {π6∗, π7∗} to 0.025 and 0.005, respectively. The other

parameters are endogenously chosen to match several features of top earners

growth, and are summarized in Table 1.

Table 1: Endogenously calibrated parameters for HIP process

Parameter Value Targets

µβ 0.1 Earnings growth bottom 99%

j0 30.0 Change in slope earnings growth at age 45

p1 10−5 Prob. exiting superstar shocks zero at age 25

p2 1.1 Earnings growth for second 0.9% after age 45

p67 0.012 Prob. top 0.1% moving to bottom 99% in 5 years

L6 0.13 Earnings growth top 0.1% after age 45

L7 0.17 Share earnings top 1%

β6∗ 0.78 Mean earnings growth second 0.9% until age 45

β7∗ 1.31 Mean earnings growth top 0.1% until age 45

Some parameter values mostly impact only one moment while others have

stronger interactions. Among the former group we set β6∗ and β7∗ to match the

growth rate of earnings up to age 45 for agents in the top 0.1% and next 0.9% of

the lifetime earnings distribution and p1 is set so that superstar states are initially

virtually permanent. The parameter j0 controls the age at which the probability

of exiting superstar states start to change rapidly. This by a composition effect

reduces the growth rate of earnings of the top groups to ordinary values so j0

is set to match the data in this dimension. The values of p2, L6, L7 determine

how fast and by how much exit probabilities increase once they start to do so

and again by a composition effect determine the growth rate of earnings of top

lifetime earners late in the working life and the share of earnings in the top 1%

of the cross sectional distribution. Finally, adding a small probability of moving

from state 6 upwards to state 7 helps aligning the probability of moving from the

top 0.1% to the bottom 99% of the current earnings distribution in the model

and in the data, although we could not match this target perfectly.
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Table 2: Earnings Distribution

Quintiles Top

1st 2nd 3rd 4th 5th 10% 5% 1% 0.1% Gini

Dataa -0.1 4.2 11.7 20.8 63.5 47.0 35.3 18.7 6.6 0.636

HIP Model 0.0 4.6 11.0 18.1 66.3 50.7 37.8 18.4 6.7 0.649

Guner et al. 0.0 4.7 11.0 19.9 64.4 47.9 35.6 18.6 4.2 0.636

K & K 0.0 5.1 9.4 19.9 65.5 53.3 41.0 18.7 5.7 0.654

aData from the 2007 Survey of Consumer Finances.

Finally, we consider two alternative model economies. The first one, labeled

Guner et al., features their earnings process with a permanent superstar state.

The second one, labeled K&K, takes the process from Kindermann and Krueger

(2020). We modify the value of the highest shock in K&K, and the superstar

state in Guner et al. to obtain a share of earnings for the top 1% of 18.7% as in

the SCF 2007. Other parameters, like the discount factor and disutility of labor,

are recalibrated in each version to match the same targets as in the HIP model.

4 Results: Top Earners Statistics

Results are reported in Figure 1 and tables 2, 3 and 4. We report the data and

the corresponding values from our HIP model and for comparison our version

of the models in Guner et al. (2016) and Kindermann and Krueger (2020). We

focus on the statistics for the three groups of ordinary households that make

the bottom 99 percent of the distribution and on the top 1% and 0.1% of the

distribution of lifetime earnings. Since comparable literature on taxation of the

top of the distribution focuses on matching the shares at different percentiles

and in particular at the top 1% we check first that all the three models satisfy

this criterion. This is done in Table 2 where we see that all the three models can

match quite well the distribution of earnings at different percentiles beyond the

top 1% that was used as a target. They also do a good job at the 0.1% percentile

except perhaps the model in Guner et al. (2016) which is only two thirds of the

data value

Figure 1 shows the results in terms of the lifetime earnings growth for the

very top percentiles and for the ordinary households in the economy. Since our

HIP process is calibrated to match this target it reproduces quite well both the

overall earnings growth and its age profile for the three groups. The model in
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(a) Data (b) HIP Model

(c) Guner et al. (d) K & K

Figure 1: Age Profile by lifetime Top Earnings Groups

Guner et al. (2016) fails in this dimension since its fixed skill levels implies that

lifetime profiles are just scaled version of each other. The model in Kindermann

and Krueger (2020) can generate earnings growth for the two top groups early

in life that is reasonably close to the data, although later in life there is a more

substantial fall for the top 0.1% group as a consequence of the low persistence

of the superstar shocks.

This is confirmed in Table 3 which reports the 5-year transition matrix across

the three groups. Panel A in the table reports the data. Results from our HIP

model, reported in panel B show a very close match especially in the persistence

within each of the two top groups. The probability of moving out of the two top

groups is also well matched except for some more notable deviations between

model and data for the probability of moving from the top 0.1% to the bottom

99% of the distribution. Panel C shows that the model in Guner et al. (2016)

generates too high persistence within the two top groups and too low a probability

of moving from these two groups to the bottom 99% of the distribution. Panel D
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Table 3: Transition Probabilities across Top Earnings Groups.

Five-Year Earnings, Five-Year Transitions

Panel A: Data

Top 0.1% Second 0.9% Bottom 99% Exit Sample

Top 0.1% 0.40 (0.59) 0.22 (0.32) 0.06 (0.09) 0.32

Second 0.9% 0.05 (0.07) 0.46 (0.61) 0.24 (0.32) 0.25

Bottom 99% <0.01 (<0.01) <0.01 (<0.01) 0.72 (0.96) 0.27

Panel B: HIP Model

Top 0.1% Second 0.9% Bottom 99% Exit Sample

Top 0.1% 0.37 (0.59) 0.16 (0.25) 0.11 (0.17) 0.37

Second 0.9% 0.06 (0.09) 0.45 (0.64) 0.19 (0.27) 0.30

Bottom 99% 0.00 (0.00) 0.00 (0.01) 0.84 (0.99) 0.15

Panel C: Guner et al.

Top 0.1% Second 0.9% Bottom 99% Exit Sample

Top 0.1% 0.61 (0.72) 0.23 (0.28) 0.00 (0.00) 0.16

Second 0.9% 0.04 (0.05) 0.80 (0.94) 0.01 (0.01) 0.16

Bottom 99% 0.00 (0.00) 0.00 (0.00) 0.84 (1.00) 0.16

Panel D: K & K

Top 0.1% Second 0.9% Bottom 99% Exit Sample

Top 0.1% 0.23 (0.31) 0.17 (0.23) 0.33 (0.46) 0.27

Second 0.9% 0.02 (0.03) 0.26 (0.32) 0.53 (0.65) 0.19

Bottom 99% 0.00 (0.00) 0.00 (0.00) 0.84 (1.00) 0.16

Note: numbers in parenthesis report the transition rates conditional on remaining in the

sample (normalized by one minus the exit rate).

shows that the reverse is true for the model in Kindermann and Krueger (2020).

An alternative way of looking at the dynamics of very top earnings is provided

in Table 4. This table presents the fraction of years that agents in the three

groups of lifetime earnings spend in the same age specific earnings groups. Panel

A reports the data. Looking at the first column, the data tell us that an agent

that is in the top 0.1% of the lifetime earnings distribution spends about a third of

her working years in each of the three age specific earnings groups, while someone

in the next 0.9% lifetime earnings group spends 38 percent of her working life

in the same age specific earnings group and 58 percent in the bottom group.
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Table 4: Mean Fraction of Working Years in Age-Specific Group

Panel A: Data

Lifetime Earnings Group

Age-Specific Top 0.1% Second 0.9% Bottom 99%

Top 0.1% 0.33 0.04 0.00

Second 0.9% 0.36 0.38 0.00

Bottom 99% 0.31 0.58 0.99

Panel B: HIP Model

Lifetime Earnings Group

Age-Specific Top 0.1% Second 0.9% Bottom 99%

Top 0.1% 0.41 0.04 0.00

Second 0.9% 0.32 0.43 0.00

Bottom 99% 0.27 0.53 0.99

Panel C: Guner et al.

Lifetime Earnings Group

Age-Specific Top 0.1% Second 0.9% Bottom 99%

Top 0.1% 0.66 0.04 0.00

Second 0.9% 0.34 0.95 0.00

Bottom 99% 0.00 0.01 1.00

Panel D: K & K

Lifetime Earnings Group

Age-Specific Top 0.1% Second 0.9% Bottom 99%

Top 0.1% 0.27 0.08 0.01

Second 0.9% 0.12 0.18 0.01

Bottom 99% 0.61 0.74 0.98

Our HIP model matches these figures remarkably well: An agent in the top

0.1% of the lifetime earnings distribution spends 41 percent of her working life

in the same age specific earnings group, 32 percent in the next 0.9% and 27

percent in the bottom group. An agent in the next 0.9% of the lifetime earnings

distribution in the model spends 43 percent of her working life in the same age

specific earnings group, and 53 percent in the bottom group. Panel C and D

report the same statistics for the papers in Guner et al. (2016) and Kindermann

and Krueger (2020). Consistent with the findings in Table 3 we find excessive

persistence in the model of Guner et al. (2016) where the top 0.1% and next 0.9%
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of the lifetime earnings distribution spend respectively 66 and 95 percent of their

time in the same age specific earnings group. We also find too little persistence

in the model of Kindermann and Krueger (2020) where the top 0.1% and next

0.9% of the lifetime earnings distribution spend respectively 27 and 18 percent

of their time in the same age specific earnings group and 61 and 74 percent in

the bottom group of the age specific distribution respectively.

5 Conclusion

Models of optimal tax progressivity need to generate the correct amount of earn-

ings concentration especially at the top of the distribution. In this paper we

have shown that processes for wages used so far while correctly matching top

earnings shares fail in other dimensions of their dynamics that are critical to the

taxation result. We have also proposed an alternative approach to modeling the

wage process featuring heterogeneous growth profiles with superstar states. This

approach improves along those dimensions and with further refinements in the

calibration could become a candidate for further work in this area.
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