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Abstract

We provide analogues of the results from Friedman and Motto Ros (2011) and
Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case κ = ω)
for arbitrary κ-Souslin quasi-orders on any Polish space, for κ an infinite cardinal
smaller than the cardinality of R. These generalizations yield a variety of results
concerning the complexity of the embeddability relation between graphs or lattices
of size κ, the isometric embeddability relation between complete metric spaces of
density character κ, and the linear isometric embeddability relation between (real
or complex) Banach spaces of density κ.
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CHAPTER 1

Introduction

1.1. What we knew

1.1.1. Equivalence relations and classification problems. The analysis
of definable equivalence relations on Polish spaces (or, more generally, on standard
Borel spaces) has been one of the most active areas in descriptive set theory for
the last two decades — see [20, 24, 49, 54] for excellent surveys of the subject.
The main goal of this research area is to classify equivalence relations by means of
reductions: if E and F are equivalence relations on Polish or standard Borel spaces
X and Y , then f : X → Y reduces E to F if and only if

(1.1) x E x′ ⇔ f(x) F f(x′),

for every x, x′ ∈ X. In order to obtain nontrivial results one usually imposes
definability assumptions on E and F and/or on the reduction f . For example one
may assume that

• E and F are Borel or analytic1 and f is continuous or Borel (as it is customary
when studying actions of Polish groups on standard Borel spaces [4,37,55]), or
that
• E and F are projective and f is Borel [33], or that
• E, F , and f belong to some inner model of determinacy, such as L(R) [35,37].
When the reducing function f is Borel we say that E is Borel reducible to F (in
symbols E ≤B F ) and that f is a Borel reduction of E to F . If E ≤B F ≤B E,
then E and F are said to be Borel bi-reducible, in symbols E ∼B F .

Borel reducibility is usually interpreted both as a topological version of the ubiq-
uitous notion of classification of mathematical objects, and as a tool for computing
cardinalities of quotient spaces in an effective way. If E and F are equivalence rela-
tions, then it can be argued that the statement E ≤B F is a precise mathematical
formulation of the following informal assertions:

• the problem of classifying the elements of X up to E-equivalence is no more
complex than the problem of classifying the elements of Y up to F -equivalence;
• the elements of X can be classified (in a definable way) up to E-equivalence
using the F -equivalence classes as invariants;
• the quotient space X/E has cardinality less or equal than the cardinality ofX/F ,
and this inequality can be witnessed in a concrete and definable way.

The theory of Borel reducibility has been used to gauge the complexity of many
natural problems. One striking example is given by the classification of countable
structures up to isomorphism briefly described below, whose systematic study was
initiated by H. Friedman and Stanley in [20]. In a pioneering work in the mid
70s [93] Vaught observed that by identifying the universe of a countable structure

1As customary in descriptive set theory, analytic sets are also called Σ1
1.

1
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2 1. INTRODUCTION

with ω, the collection ModωL of countable L-structures can be construed as a Polish
space, and the isomorphism relation ∼= on this space is an analytic equivalence
relation. In order to exploit this identification most effectively, first-order logic
must be replaced by its infinitary version Lω1ω, where countable conjunctions and
disjunctions are allowed [56]: by a theorem of Lopez-Escobar the (Lω1ω-)elementary
classes, that is the sets Modωσ of all countable models of an Lω1ω-sentence σ, are
exactly the Borel subsets of ModωL which are invariant under isomorphism. It
follows that each elementary class is a standard Borel subspace of ModωL, and that
the restriction of the isomorphism relation to Modωσ, denoted in this paper either
by ∼=�Modωσ or by ∼=ω

σ, is an analytic equivalence relation, whose complexity can
then be analyzed in terms of Borel reducibility.

Other classification problems whose complexity with respect to ≤B has been
widely studied in the literature include e.g. the classification of Polish metric spaces
up to isometry [8,14,15,25] and the classification of separable Banach spaces up
to linear isometry [69] or up to isomorphism [18].

1.1.2. Quasi-orders and embeddability. The concept of reduction from (1.1)
can be applied to arbitrary binary relations, such as partial orders and quasi-orders
(also known as preorders) [32]. Quasi-orders are reflexive and transitive relations,
and their symmetrization gives rise to an equivalence relation. For example, the
embeddability relation �∼ between structures (graphs, combinatorial trees, lattices,
quasi-orders, partial orders, . . . ) is a quasi-order, and its symmetrization is the
relation ≈ of bi-embeddability. The restriction of �∼ to the Borel set Modωσ, de-
noted by �∼�Modωσ or by �∼

ω
σ, is an analytic quasi-order. Similarly, the relation of

bi-embeddability on Modωσ, denoted by ≈�Modωσ or ≈ω
σ, is an analytic equivalence

relation.
In [64, Theorem 3.1] Louveau and Rosendal proved that it is not possible to

classify (in a reasonable way) all countable structures up to bi-embeddability, as
the embeddability relation �∼ is as complex as possible with respect to ≤B (whence
also ≈ is as complex as possible).

Theorem 1.1 (Louveau-Rosendal). The embeddability relation �∼
ω
CT on count-

able combinatorial trees (i.e. connected acyclic graphs) is a ≤B-complete analytic
quasi-order, that is:

(a) �∼
ω
CT is an analytic quasi-order on CTω, the Polish space of countable combi-

natorial trees, and
(b) every analytic quasi-order is Borel reducible to �∼

ω
CT.

Thus also the bi-embeddability relation ≈ω
CT on CTω is a ≤B-complete analytic

equivalence relation.

Remark 1.2. In an abstract setting, it is not hard to find ≤B-complete quasi-
orders and equivalence relations. In fact it is easy to show that for every pointclass
Γ closed under Borel preimages, countable unions, and projections, the collection
of quasi-orders (respectively: equivalence relations) in Γ admits a ≤B-complete
element, i.e. there is a quasi-order (respectively, an equivalence relation) UΓ ∈ Γ
such that R ≤B UΓ, for any quasi-order (respectively: equivalence relation) R ∈ Γ
— see [64, Proposition 1.3] and the ensuing remark. Examples of Γ as above
are the projective classes Σ1

n’s and S(κ), the collection of all κ-Souslin sets —
see Definition 9.1. However such ≤B-complete UΓ’s are usually obtained by ad
hoc constructions. In contrast, Theorem 1.1 provided the first concrete, natural
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1.1. WHAT WE KNEW 3

example of a ≤B-complete analytic equivalence relation: the relation ≈ω
CT of bi-

embeddability on combinatorial trees.2

A ≤B-complete analytic equivalence relation must contain a non-Borel equiv-
alence class, since it reduces the equivalence relation

(1.2) EA := {(x, y) ∈ ω2× ω2 | x = y ∨ x, y ∈ A} ,
where A ⊆ ω2 is a proper analytic set. On the other hand, the equivalence classes
of an equivalence relation EG induced by a continuous (or Borel) action of a Pol-
ish group G are Borel [53, Theorem 15.14], even when EG is Σ1

1 and not Borel.
Therefore there is a striking difference between the isomorphism relation ∼= (which
is induced by a continuous action of the group Sym(ω) of all permutations on the
natural numbers) and the embeddability relation �∼: even a very simple relation

like the EA above is not Borel reducible to ∼=, while any Σ1
1 equivalence relation

(in fact: any Σ1
1 quasi-order) is Borel reducible to �∼. Hjorth isolated a topological

property, called turbulence, that characterizes when an equivalence relation induced
by a continuous Polish group action is Borel reducible to ∼= [37].

The next example shows that �∼
ω
CT is also complete for partial orders of size ℵ1,

in the sense that each such partial order embeds into the quotient order of �∼
ω
CT.

Example 1.3. Let � be the Σ0
2 quasi-order on ω2 induced by inclusion on

P(ω)/Fin, i.e. x � y ⇔ ∃n ∀m ≥ n (x(m) ≤ y(m)). Then � can be embedded
into �∼

ω
CT by Theorem 1.1. By Parovičenko’s theorem [76], under the Axiom of

Choice AC any partial order P of size ℵ1 embeds into P(ω)/Fin, and hence any
such P can be embedded into (the quotient order of) �, and therefore also into
(the quotient order of) �∼

ω
CT.

Building on [64], in [23] S.D. Friedman and the second author strengthened
Theorem 1.1 by showing that the embeddability relation on countable models is (in
the terminology of [7]) invariantly universal, i.e. that the following result holds.

Theorem 1.4 (S.D. Friedman-Motto Ros). For every Σ1
1 quasi-order R there

is an Lω1ω-sentence σ such that R ∼B
�∼

ω
σ.

Invariant universality is a strengthening of ≤B-completeness, which just re-
quires that every analytic quasi-order R is Borel reducible to �∼�ModωL (Theo-
rem 1.1). Theorem 1.4 is obtained by applying the Lopez-Escobar theorem men-
tioned at the end of Section 1.1.1 to the following purely topological result — in
fact we do not know if there is a direct proof of Theorem 1.4 which avoids going
through Theorem 1.5.

Theorem 1.5 (S.D. Friedman-Motto Ros). For every Σ1
1 quasi-order R there

is a Borel B ⊆ ModωL closed under isomorphism such that R ∼B
�∼�B.

Various generalizations of Theorem 1.4 have already appeared in the literature:
for example, in [19] the authors briefly consider its computable version, while [73]
presents an extensive analysis of the possible interplay between the isomorphism
and the embeddability relation on the same elementary class Modωσ for σ an Lω1ω-
sentence.

2In [18] it is shown that the isomorphism relations between separable Banach spaces, and
between Polish groups are other natural examples of ≤B-complete analytic equivalence relations.
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4 1. INTRODUCTION

1.2. What we wanted

The present paper was motivated by the quest for generalizations of Theo-
rem 1.4 in two different directions:

(A) considering quasi-orders belonging to more general pointclasses, such as the
projective classes Σ1

n (for n ≥ 2) and beyond, and
(B) using more liberal (but still definable) kind of reductions.

Goal (A) is not an idle pursuit, since there are lots of equivalence relations
and quasi-orders on Polish spaces naturally arising in mathematics which are not
analytic. The following are a few examples of this sort.

Example 1.6. Consider the quasi-order (Q,≤B) of Borel reducibility between
analytic quasi-orders. As observed in [64], ≤B is a Σ1

3 relation in the codes for
analytic quasi-orders, that is: there is a surjection q : ω2 � Q such that the relation

x �Q y ⇔ q(x) ≤B q(y)

is Σ1
3. By [1], the restriction of �Q to (the codes for) countable Borel equivalence

relations is already a proper Σ1
2 relation.3

Example 1.7. Let X := (C([0; 1]))ω be the space of countable sequences of
continuous, real-valued functions on the unit interval [0; 1]. Consider the following
natural extension of the inclusion relation on X: given F ,G ∈ X, we say that F
is essentially contained in G (in symbols F ⊆lim G) if each function in F can be
obtained by recursively applying the pointwise limit operator to the functions in G.
This relation can be equivalently described as follows. Denote by lim(F) the subset
of C([0; 1]) generated by F ∈ X using pointwise limits, i.e. the smallest subset of
C([0; 1]) containing F and closed under the pointwise limit operation: then

F ⊆lim G ⇔ lim(F) ⊆ lim(G).
By a result of Becker (see e.g. [53, p. 318]), it is easy to see that the relation ⊆lim

is a proper Σ1
2 quasi-order.

Example 1.8. Consider the group Aut(X) of all Borel automorphisms of a
standard Borel space X, and the conjugacy relation on it. The elements of Aut(X)
can be coded as points of the Baire space, and the setA of codes isΠ1

1. Given c ∈ A,
let fc ∈ Aut(X) be the Borel automorphism coded by c. Then the equivalence
relation {(c, d) ∈ A2 | fc and fd are conjugated} is Σ1

2-complete [13].

Example 1.9. The density of a Borel set A ⊆ ω2 at a point x ∈ ω2 is the
value DA(x) := limn μ(A ∩Nω

x�n)/μ(N
ω
x�n), where μ is the usual measure on the

Cantor space and Nω
x�n is the basic open neighborhood determined by x�n (see

Section 3). The limit might be undefined for some x, although by the Lebesgue
density theorem DA(x) is 0 or 1 for μ-almost every x. Thus DA(x) :

ω2→ [0; 1] is
a partial function and we may consider the quasi-order

A � B ⇔ ran(DA) ⊆ ran(DB).

Since the density at a point x does not change if the set A is perturbed by a null
set, the quasi-order � makes sense on the measure algebra as well. It can be shown

3To the best of our knowledge, the exact topological complexity of the full �Q is still
unknown.
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1.2. WHAT WE WANTED 5

that � is a Π1
2-complete quasi-order on the measure algebra, and also on K(ω2),

the hyperspace of all compact subsets of ω2 (see [2, Corollary 6.4]).

Example 1.10. Given a metric space (X, dX), its distance set is ran(dX) :=
{r ∈ R | ∃x, y ∈ X d(x, y) = r}. A direct computation shows that the quasi-order
� on the space of (codes for) Polish metric spaces Mω (see Section 7.2.3) defined
by

X � Y ⇔ ran(dX) ⊆ ran(dY )

is Π1
2. Using [9, Theorem 4.5] one can easily show that � is in fact Π1

2-complete.

Goal (B), that is the use of more general reductions, is motivated by the ob-
servation that in certain situations ≤B is inadequate either because it could yield
counterintuitive results (Examples 1.11 and 1.12), or else because the class of quasi-
orders is too vast, such as those belonging to some well-behaved inner model (Ex-
amples 1.13 and 1.15).

Example 1.11. The equivalence relation EA of (1.2) is not smooth with respect
to Borel functions, although it is concretely classifiable. It becomes smooth if Borel
functions are replaced either by σ(Σ1

1)-measurable functions (that is: functions
such that the preimage of an open set belongs to the smallest σ-algebra containing
Σ1

1), or else by absolutely Δ1
2-definable functions (Definition 14.11).

Example 1.12. The relations of bi-embeddability and isomorphism on the
standard Borel space of countable torsion abelian groups are ≤B-incomparable,
while the former is strictly weaker than the latter if Δ1

2-definable functions are
used, and a Ramsey cardinal is assumed [6]. Thus using Δ1

2-definable reductions
is arguably more appropriate in this situation.

Example 1.13. Consider reductions belonging to L(R), the smallest inner
model containing all the reals, and let ≤L(R) be the resulting reducibility relation

between the quasi-orders of L(R). Assume ADL(R), i.e. that all games with payoff set
in L(R) are determined — this assumption follows from strong forcing axioms (such
as the Proper Forcing Axiom PFA [85]), or from the existence of sufficiently large
cardinals (e.g. infinitely many Woodin cardinals with a measurable above them).
Then many of the results on Borel reducibility between analytic binary relations
can be extended to L(R) by replacing ≤B with ≤L(R), including e.g. the dichotomies

of Silver and Glimm-Effros and the theory of turbulence — see [35–37].4 In this
paper we shall repeatedly use the following remarkable result [37, Theorem 9.18].

Theorem 1.14 (Hjorth). If EG is the orbit equivalence relation induced by a
Polish group G acting in a turbulent way on a Polish space X (and hence EG is
Σ1

1), then
L(R) |= EG �L(R)

∼=�ModκL
i.e. EG is not reducible in L(R) to the isomorphism relation ∼= on the space of all
L-structures of size κ, for any countable language L and any cardinal κ.

Example 1.15. The Silver and the Glimm-Effros dichotomies have also been
generalized to the ZFC-world by considering OD(R) the inner model of real-ordinal
definable sets in the Solovay’s model (see [22,48,88]). In this framework, one com-
pares quasi-orders in OD(R) by means of the OD(R)-reducibility ≤OD(R), namely
the reducibility notion obtained by considering reductions in OD(R).

4As pointed out in [35], the generalization of Silver’s dichotomy is due to Woodin.
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6 1. INTRODUCTION

Remark 1.16. Even though both Examples 1.13 and 1.15 mainly concern gen-
eralizations of the same dichotomies for equivalence relations, the methods used to
obtain them are quite different: in the former case the extensive knowledge of mod-
els of the Axiom of Determinacy AD is used, while in the latter forcing arguments
together with absoluteness considerations are employed.

Since both [64] and [23] exploit the fact that a set is Σ1
1 if and only if it is

ω-Souslin, one can ask what sort of generalizations of Theorem 1.4 in the direction
of goal (A) could be attained. Rather than looking at the more familiar projective
classes Σ1

n mentioned in (A), as common sense would probably suggest, working
with the pointclasses S(κ) of κ-Souslin sets for κ an uncountable cardinal (see
Section 9) turns out to be the right move.5 This approach is not too restrictive,
since e.g. under AD one has Σ1

n = S(κn) for an appropriate cardinal κn.
Remark 1.16 seems to suggest that if one aims at generalizing Theorem 1.4

to both the AC- and the AD-world, then different methods should be used. This
prompts the question of which one of the two approaches is more promising for our
purposes. On the one hand, the fact that we are going to study κ-Souslin quasi-
orders seems to indicate that an AD-approach similar to the one of Example 1.13
should be preferred: in fact AD imposes an extremely rich structure on the subsets
of Polish spaces and provides a well-developed general theory of κ-Souslin sets (for
quite large cardinals κ), while we have very little information on the structure and
properties of κ-Souslin sets in the context of AC, where the notion of κ-Souslin is
nontrivial only when κ is smaller than the continuum 2ℵ0 . On the other hand, any
generalization of Theorem 1.4 to κ-Souslin quasi-orders seems to require replacing
the space ModωL with ModκL, and the logic Lω1ω with Lκ+κ. Unfortunately, there
are two roadblocks down this path:

• a decent descriptive set theory on spaces like ModκL, which can be identified
with the generalized Cantor space κ2, seems to require cardinal arithmetic as-
sumptions such as |<κκ| = κ — see e.g. the generalization of the Lopez-Escobar
theorem in Section 8.2, and [21,68,93] for more on these matters;
• the classical analysis of the logics Lκ+κ essentially requires the full Axiom of
Choice AC.

Since both AC and |<κκ| = κ > ω contradict the Axiom of Determinacy, any
generalization of Theorem 1.4 under AD seems out of reach. But even under AC,
the cardinal condition κ<κ = κ > ω cannot be achieved when κ < 2ℵ0 , and the
latter is needed to guarantee that the notion of κ-Sousliness is not trivial.

As there is a strong tension between the possible scenarios, any generalization
of Theorem 1.4 may thus seem hopeless.

1.3. What we did

Despite the bleak outlook depicted in the previous section, we managed to prove
some generalizations of the Louveau-Rosendal completeness result (Theorem 1.1)
and of its strengthening to invariant universality (Theorem 1.4). Below is a collec-
tion of results that will be proved in Section 15. We would like to emphasize that
they are not proved by ad hoc methods, but they all follow from the constructions

5The idea of considering κ-Souslin quasi-orders is not new: in fact, κ-Souslin (and co-κ-
Souslin) quasi-orders on Polish spaces have been already extensively studied in the literature, see
e.g. [34,48,77].
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1.3. WHAT WE DID 7

and techniques of Section 10–13. This might serve as a partial justification for the
length of this paper.

The central idea is that a quasi order R on a Polish space is reduced to the
embeddability relation �∼

κ
CT on the collection CTκ of all combinatorial trees of size

κ. By Theorem 1.1, if R is Σ1
1, that is κ-Souslin with κ = ω, then R is reducible to

�∼
ω
CT; our results show that the higher the complexity of R, the larger the cardinal

κ must be taken. This is reminiscent of a well-known feature in the proofs of
determinacy where a game with a complex subset of the ωω is transfigured in a
closed game on ωκ with κ large. Our reduction takes place between a Polish space
and (a homeomorphic copy of) κ2, and the complexity of the reduction will be
either κ + 1-Borel or κ-Souslin-in-the-codes. We would like to stress that these
notions are quite natural when working with κ2.

A miscellanea of results. For the sake of brevity, in the statements of Theo-
rems 1.17 and 1.19 the quasi-order R is tacitly assumed to be defined on some Polish
or standard Borel space, and the embeddability relation on Modκσ, the collection
of models of size κ of the Lκ+κ-sentence σ, is denoted by �∼

κ
σ. Recall also that the

assumption ADL(R) used in some of the next results follows from sufficiently large
cardinals or strong forcing axioms, such as PFA.

Theorem 1.17 (Completeness results). (a) Assume ZFC+PFA. Then R ≤Σ1
2

�∼
ω1

CT and R ≤ω1

B
�∼

ω1

CT, for every Σ1
2 quasi-order R (Corollary 15.4).

(b) Assume ZFC + ∀x ∈ ωω (x# exists). Then R ≤S(ω2)
�∼

ω2

CT and R ≤ω2

B
�∼

ω2

CT,

for every Σ1
3 quasi-order R (Theorem 15.5).

(c) Assume ZFC + ADL(R). Then R ≤S(ωr(n))
�∼

ωr(n)

CT and R ≤ωr(n)

B
�∼

ωr(n)

CT , for

every Σ1
n quasi-order R, where r : ω → ω is

(1.3) r(n) =

{
2k+1 − 2 if n = 2k + 1,

2k+1 − 1 if n = 2k + 2

(Theorem 15.7).

(d) Assume ZF + DC + AD. For n > 0, let κn := λ1
n if n is odd and κn := δ1n−1

if n is even.6 Then R ≤Σ1
n

�∼
κn

CT (and hence also R ≤κn

B
�∼

κn

CT) for every Σ1
n

quasi-order R (Theorem 15.8).

(e) Assume ZFC + ADL(R). Then R ≤L(R)
�∼

κ
CT for every Σ2

1 quasi-order R of

L(R), where κ := δ21 is defined as in Section 4.2 (Theorem 15.17).

Remarks 1.18. (i) In Theorem 1.17, ≤κ
B is the generalization of ≤B to κ

an uncountable cardinal (Definition 14.2). The reducibilities ≤Σ1
n
and ≤S(κ)

are instead the analogue of ≤B where the reducing functions are required to
be, respectively, Σ1

n-in-the-codes and S(κ)-in-the-codes (see Definition 5.3);
with this notation, the standard Borel reducibility ≤B would be denoted by
≤Σ1

1
and ≤S(ω), respectively. Finally, ≤L(R) is reducibility in L(R) — see

Example 1.13.
(ii) The various statements in Theorem 1.17 can be seen as completeness results

generalizing Theorem 1.1 to pointclasses Γ properly extending Σ1
1. The move

to such Γ’s forces us to replace the Polish space CTω with CTκ (for some

6See Section 4.2 for the relevant definitions. In particular, κ1 = ω, κ2 = ω1, κ3 = ℵω , and
κ4 = ℵω+1.
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8 1. INTRODUCTION

κ > ω), which is homeomorphic to (a closed subset of) the generalized Cantor
space κ2, and hence far from being Polish. Therefore part (a) of Theorem 1.1
must necessarily be dropped in such generalizations (see also Remark 2.5).

(iii) The reader familiar with Jackson’s analysis of the regular cardinals below the
projective cardinals in L(R) will immediately see that parts (c) and (d) of
Theorem 1.17 are strictly related.

The relations∼κ
B and∼L(R) appearing in the next theorem are the bi-reducibility

relations canonically associated to ≤κ
B (see Remark 1.18(i)) and ≤L(R) (see Exam-

ple 1.13), respectively.

Theorem 1.19 (Invariant universality results). (a) Assume ZF + ACω(R).
Then for every Σ1

2 quasi-order R there is an Lω2 ω1
-sentence σ such that

R ∼ω1

B
�∼

ω1

σ (Theorem 15.3).

(b) Assume ZFC + ∀x ∈ ωω (x# exists). Then for every Σ1
3 quasi-order R there

is an Lω3 ω2
-sentence σ such that R ∼ω2

B
�∼

ω2

σ (Theorem 15.5).

(c) Assume ZFC + ADL(R), and let r : ω → ω be as in equation (1.3). Then
for every Σ1

n quasi-order R there is an Lωr(n)+1 ωr(n)
-sentence σ such that

R ∼ωr(n)

B
�∼

ωr(n)

σ (Theorem 15.7).
(d) Assume ZF + DC + AD. Let n �= 0 be an even number. Then for every

Σ1
n quasi-order R there is an Lδ1

n δ1
n−1

-sentence7 σ such that R ∼δ1
n−1

B
�∼

δ1
n−1

σ

(Theorem 15.8).

(e) Assume ZFC + ADL(R). Then for every Σ2
1 quasi-order R of L(R) there is

an Lκ+κ-sentence σ belonging to L(R) such that R ∼L(R)
�∼

κ
σ, where as in

Theorem 1.17(e) we set κ := δ21 (Theorem 15.17).

By considering the equivalence relation associated to a quasi-order, the results
above can be turned into statements concerning equivalence relations on Polish or
standard Borel spaces and the bi-embeddability relation ≈κ

CT on combinatorial trees
of size κ. The stark difference between bi-embeddability ≈ and isomorphism ∼= on
countable models uncovered by Theorem 1.1 (see the observation after Remark 1.2)

is also present in the uncountable case: assuming ADL(R), by Theorem 1.17(e) any

Σ2
1 equivalence relation of L(R) is ≤L(R)-reducible to ≈δ2

1

L , the bi-embeddability

relation on Mod
δ2
1

L , while this badly fails if ≈ is replaced by ∼=, by Hjorth’s Theo-
rem 1.14.

By applying Theorems 1.17 and 1.19 we also get some information on the Σ1
3

quasi-order (Q,≤B) of Example 1.6. Such quasi-order may be seen as a (definable)
embeddability relation between structures of size the continuum. It turns out that,
under suitable hypotheses, (Q,≤B) can be turned into an embeddability relation
between well-ordered structures of size potentially smaller than the continuum.
Indeed, in models with choice we have:

Theorem 15.6. Assume ZFC + ∀x ∈ ωω (x# exists). Then the quotient order

of (Q,≤B) (definably) embeds into the quotient order of �∼
ℵ2

CT. Moreover, there is an

Lℵ3 ℵ2
-sentence σ such that the quotient orders of (Q,≤B) and �∼

ℵ2

σ are (definably)
isomorphic.

7See Section 4.2 for the definition of the projective ordinals δ1n, and recall that when n is
even we have δ1

n = (δ1n−1)
+ (under the assumption ZF+ DC+ AD).
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On the other hand, in the determinacy world we get:

Theorem 15.10. Assume ZF+DC+ AD. Then the quotient order of (Q,≤B)

(definably) embeds into the quotient order of �∼
ℵω

CT. Moreover, there is an Lℵω+1ℵω
-

sentence σ such that the quotient orders of (Q,≤B) and �∼
ℵω

σ are (definably) iso-
morphic.

In Section 16.1 we generalize the combinatorial completeness property of �∼
ω
CT

described in Example 1.3 to the uncountable case, albeit in a weaker form, in both
the AC- and the AD-world.

Proposition 16.1. Assume ZFC and let ω < κ ≤ 2ℵ0 . Then every partial
order P of size κ can be embedded into the quotient order of �∼

κ
CT. In fact, for

every such P there is an Lκ+κ-sentence σ (all of whose models are combinatorial
trees) such that the quotient order of �∼

κ
σ is isomorphic to P .

Proposition 16.2. Assume ZFC and let ω < κ ≤ 2ℵ0 . Then ⊆∗
κ ≤κ

B
�∼

κ
CT,

where ⊆∗
κ is the relation on P(κ) of inclusion modulo bounded subsets. In par-

ticular, every linear order of size ℵn+1 can be embedded into the quotient order of
�∼

ℵn

CT (whenever 2ℵ0 ≥ ℵn).
Theorem 16.4. Assume ZF + DC + AD. Let κ be a Souslin cardinal. Then

every partial order P of size κ can be embedded into the quotient order of �∼
κ
CT. In

fact, if κ < δS(κ), then for every such P there is an Lκ+κ-sentence σ (all of whose

models are combinatorial trees) such that the quotient order of �∼
κ
σ is isomorphic

to P .

Notice that by Proposition 9.25(c) we can apply the second part of Theo-
rem 16.4 to any Souslin cardinal κ (in a model of ZF + AD + DC) which is not a
regular limit of Souslin cardinals: in particular, we can take κ to be one of the
projective ordinals δ1n.

Finally, in Section 16.2 we show that in all our completeness results (including
the ones mentioned so far in this introduction) one may freely replace embeddings
and combinatorial trees with other kinds of morphisms and structures which are
relevant to graph theory and model theory, namely:

• we can consider full homomorphisms between graphs (or even just combinatorial
trees);
• we may also consider embeddings between (complete) lattices, where the latter
may indifferently be construed as partial orders or as bounded lattices in the
algebraic sense.

1.4. How we proved it

In order to overcome the difficulties explained at the end of Section 1.2, we
forwent the approach followed in the countable case: this would have required to
first analyze the descriptive set theory of ModκL in order to achieve a generalization
of Theorem 1.5, and then obtain as a corollary the corresponding generalization of
Theorem 1.4. The key idea is to reverse this approach and to exploit the greater
expressive power of the logic Lκ+κ when κ is uncountable and directly extend
Theorem 1.4 as follows: to each κ-Souslin quasi-order R on the Cantor space ω2 we
associate an Lκ+κ-sentence σ (all of whose models are combinatorial trees) so that
R is bi-reducible to �∼

κ
σ, in symbols R ∼ �∼

κ
σ (Theorem 12.15). The corresponding
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10 1. INTRODUCTION

topological version is obtained as a corollary (using a restricted version of the
generalized Lopez-Escobar theorem) by using formulæ belonging to a sufficiently
powerful fragment Lb

κ+κ of Lκ+κ (b is for bounded). To be more precise: given a
tree T on 2× 2× κ such that R = p[T ] is a quasi-order, we shall construct in ZF

• a function fT : ω2 → CTκ (see (11.5)) such that fT reduces the quasi-order R
to �∼

κ
CT and satisfies fT (x) ∼= fT (y) ⇔ x = y (Theorem 11.8);

• an Lκ+κ-sentence σ = σT and a function hT : Modκσ → ω2 such that Modκσ is
the closure under isomorphism of the range of fT , and hT reduces �∼

κ
CT to R

(Corollary 12.14).

This construction depends only on the cardinal κ > ω and on the chosen witness T
of the fact that R is κ-Souslin. This means that the desired Lκ+κ-sentence σ and
the two reductions fT , hT witnessing R ∼ �∼

κ
σ can be found in every inner model

containing κ and T , and that they are in fact (essentially) the same in all these
models. Moreover, the reductions involved are absolute, as they can be defined by
formulæ (in the language of set theory) which define reductions between R = p[T ]
and �∼

κ
σ in every generic extension and in every inner model of the universe of sets V

we started with. Such reductions have essentially the same topological complexity
of the quasi-order R: for example, if κ is regular then they are κ + 1-Borel, a
natural extension of the classical notion of a Borel function (see Definition 5.1).
Therefore our results provide natural generalizations of both Theorems 1.4 and 1.5
(which correspond to the basic case κ = ω) to uncountable κ’s — see Theorems 14.8
and 14.10, respectively. All these observations lead us to consider also the more
general notion of definable cardinality, which is strictly related to the notion of
definable reducibility — see Chapter 14 for a more thorough discussion on the
genesis and relevance of these concepts.

It is worth pointing out that in order to find applications in both the AC-world
and the AD-world, the above mentioned preliminary completeness and invariant
universality results for κ-Souslin quasi-orders (for κ an uncountable cardinal) are
developed in ZF, so that they can be applied to all situations in which S(κ) is a
nontrivial pointclass. These include, among many others, the cases of the projective
pointclasses Σ1

n, of the Σ
2
1 sets of L(R), and even of the entire P(R) (under various

determinacy or large cardinal assumptions).
Let us conclude this section with a more general comment. There is a common

phenomenon in model theory: the study of uncountable models requires ideas and
techniques quite different from the ones used in the study of countable models, and
this paper is no exception. As already observed in Section 1.2 and at the beginning
of this subsection, the techniques used in [23] for the countable case cannot be
transferred to the uncountable case. Conversely, the arguments contained in this
paper cannot be adapted to include the countable case, since we essentially need to
be able to use a single Lκ+κ-sentence either to assert the existence of certain infinite
(but still small) substructures (see Chapter 12), or to express the well-foundedness
of a binary relation (see Chapter 13). As it is well-known, none of these possibilities
can be achieved using the logic Lω1ω.

1.5. Classification of non-separable structures up to bi-embeddability

As recalled at the end of Section 1.1.1, the problem of classifying e.g. Polish
metric spaces up to isometry or separable Banach spaces up to linear isometry
have been widely studied in the literature, but very little was known about the
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1.5. CLASSIFICATION OF NON-SEPARABLE STRUCTURES 11

analogous classification problems up to bi-embeddability. In [64] Louveau and
Rosendal used their Theorem 1.1 to show that many kinds of separable spaces are
in fact not classifiable (in any reasonable way) with respect to the relevant notion
of bi-embeddability. This is made precise by the following result. (Notice that the
relations appearing in the next theorem can all be construed as analytic quasi-orders
on corresponding standard Borel spaces — see [64] for more details.)

Theorem 1.20 (Louveau-Rosendal). The following relations are ≤B-complete
analytic quasi-orders:

(a) continuous embeddability between compacta ([64, Theorem 4.5]);
(b) isometric embeddability between (ultrametric or discrete) Polish metric spaces

([64, Propositions 4.1 and 4.2]);
(c) linear isometric embeddability between separable Banach spaces ([64, Theorem

4.6]).

As a consequence, the corresponding bi-embeddability relations are ≤B-complete
analytic equivalence relations.

(Theorem 1.20 has been further improved in [7], where it is shown that it is
possible to obtain analogues of Theorem 1.5 in which �∼

ω
CT is replaced by e.g. any

of the embeddability relations mentioned in Theorem 1.20.)
Following this line of research, in Sections 16.3 and 16.4 we study the com-

plexity of various classification problems for non-separable spaces. In particular,
we show that in all our completeness results one may systematically replace the
embeddability relation between combinatorial trees of size κ with e.g. the isomet-
ric embeddability relation between (discrete and/or ultrametric) complete metric
spaces of density character κ. Theorem 1.21 below offers a sample of the results
that may be obtained in this way (see also Theorem 16.20 and Remark 16.22.)
Before stating it let us point out that �i is the relation of isometric embeddability
between metric spaces, and that our use of “completeness” is a tad nonstandard —
see Remark 2.5.

Theorem 1.21. (a) Assume ZFC. Then the relation �i between (discrete)
complete (ultra)metric spaces of density character ω1 is ≤ω1

B -complete for Σ1
2

quasi-orders on standard Borel spaces. If moreover we assume either ADL(R)

or MA+¬CH+∃a ∈ ωω (ω
L[a]
1 = ω1), then such relation is also ≤Σ1

2
-complete

for Σ1
2 quasi-orders on standard Borel spaces.

(b) Assume ZFC + ∀x ∈ ωω (x# exists). The relation �i between (discrete) com-
plete (ultra)metric spaces of density character ω2 is ≤ω2

B -complete for Σ1
3

quasi-orders on standard Borel spaces.

(c) Assume ZFC+ADL(R). Then the relation �i between (discrete) complete (ul-

tra)metric spaces of density character ωr(n) is ≤ωr(n)

B -complete for Σ1
n quasi-

orders on standard Borel spaces, where r is as in equation (1.3).
(d) Assume ZF + DC + AD. For 0 �= n ∈ ω, let κn be as in Theorem 1.17(d).

The relation �i between (discrete) complete (ultra)metric spaces of density
character κn is both ≤κn

B -complete and ≤Σ1
n
-complete for Σ1

n quasi-orders on
standard Borel spaces.

In particular, it follows from Theorem 1.21 that the problem of classifying non-
separable complete metric spaces up to isometric bi-embeddability is extremely
complex. We show that for uncountable κ’s, both the isometry relation and the
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12 1. INTRODUCTION

isometric bi-embeddability relation between (discrete) complete metric spaces of
density character κ may consistently have maximal complexity with respect to
the relevant reducibility notion ≤κ

B (Theorem 16.27(a)). We also show that in

models of ADL(R) the relation of isometric bi-embeddability between ultrametric
or discrete complete metric spaces of a given uncountable density character is way
more complex (with respect to L(R)-reducibility) than the isometry relation on the
same class: the former ≤L(R)-reduces, among others, all Σ1

2 equivalence relations on

a Polish or standard Borel space, while the latter cannot even ≤L(R)-reduce all Σ1
1

equivalence relations (see the comment after Theorem 16.29). These observations
show in particular that it is independent of ZF + DC whether e.g. the relation
of isometric bi-embeddability between ultrametric (respectively, discrete) complete
metric spaces of density character ω2 is ≤ω2

B -reducible to the isometry relation on
the same class of spaces (Corollary 16.31).

Finally, in Section 16.4 we show that in all previously mentioned results (in-
cluding e.g. Theorem 1.21) one can further replace the isometric embeddability
relation �i between complete metric spaces of density character κ with the linear
isometric embeddability relation �li between Banach spaces of density κ. Thus
also the problem of classifying non-separable Banach spaces up to linear isometry
or linear isometric bi-embeddability is very complex — in fact these equivalence
relations may consistently have maximal complexity as well (Corollary 16.31).

In our opinion, these (anti-)classification results for non-separable complete
metric spaces and Banach spaces constitute, together with the tight connections
between κ+1-Borel reducibility ≤κ

B and Shelah’s stability theory uncovered in [21],
some of the strongest motivations for pursuing the research in the currently fast-
growing field of generalized descriptive set theory.

1.6. Organization of the paper, or: How (not) to read this paper

The aspiration of this paper, besides that of presenting new results, is to serve as
a basic reference text for works dealing with generalized descriptive set theory, and
at the same time to be as self-contained as possible. For this reason, in Sections 2–9
we collected all relevant definitions and surveyed all basic results involved in the rest
of the work. These sections contain many well-known folklore facts or elementary
observations which unfortunately, to the best of our knowledge, cannot be found
in a unitary and organic presentation elsewhere, together with some new results
which may be of independent interest.

Due to the applications we had in mind, we developed these preliminaries trying
to minimize the amount of set-theoretic assumptions or cardinal conditions required
to prove them: this often forced us to find new proofs and ideas which, albeit
slightly more involved than the “classical” ones, allowed us to work in wider or less
standard contexts. As a byproduct, we obtain independence results concerning the
generalized Cantor space ω12 which are invisible when working under ZFC + CH,
the most popular setup in the current literature to deal with such space (see e.g.
Remark 3.13(iii) or the comment after Proposition 6.7).

For the reader’s convenience, Sections 3–5 are organized as follows: all the
definitions and statements crucial for the rest of the paper are collected in its
first subsections, while their proofs, a more detailed and thorough discussion on
the subject under consideration, together with additional information and results,
are postponed to the later subsections, which are marked with a ∗. Readers only
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interested in the results on the embeddability relation and in their applications, may
safely skip these starred subsections.

The authors are aware of Bertrand Russell’s aphorism: “A book should have
either intelligibility or correctness: to combine the two is impossible, . . . ”. Although
we tried our best to avoid writing incorrect statements, whenever a choice had to
be made between intelligibility and correctness, we opted for the former. We are
also very intimidated by the second part of such aphorism: “. . . but to lack both
is to be unworthy of such a place as Euclid has occupied in education”, hoping we
did not fail so badly in this endeavor.

1.7. Annotated content

Here is a synopsis of the chapters of the monograph and their content.

Chapter 2: Preliminaries and notation. Here we collect all the basic
notions and facts that are taken for granted in this paper.

Chapter 3: The generalized Cantor space. We study the basic properties
of the generalized Cantor space κ2 endowed with various topologies. We consider
both the bounded topology τb and the product topology τp, as well as many other
intermediate topologies. We also introduce in this context the notions of Lipschitz
and continuous reducibility together with the corresponding (long) reduction games,
and use game theoretic arguments to prove (without any determinacy assumption)
some technical properties that are used in later sections.

Chapter 4: Generalized Borel sets. We introduce the collection of α-
Borel subsets (and their effective counterpart) of a given topological space X as a
generalization to higher cardinals of the classical notion of a Borel set. The notion of
α-Borel subset of R has been thoroughly studied under determinacy assumptions in
the Seventies-Eighties (see Cabal volumes), and the notion of α-Borelness also turns
out to be the right generalization of Borelness when X = κ2 for κ an uncountable
cardinal. Using the results on Lipschitz and Wadge reducibility from the previous
section, we show in particular that under ZFC the κ+1-Borel hierarchy on κ2 does
not collapse for every infinite cardinal κ.8

Chapter 5: Generalized Borel functions. We study κ+1-Borel functions
and Γ-in-the-codes functions between generalized Cantor spaces. These are natural
generalizations in two different directions of the notion of a Borel function between
Polish spaces, which would correspond to the cases κ = ω and Γ = Σ1

1 (equivalently,
Γ = S(ω)), respectively.

8This is an illuminating example of how new and more refined arguments allow us to drop
unnecessary assumptions on the cardinal κ. In the literature this result is usually proved (with a
straightforward generalization of the classical argument using universal sets and diagonalization)
only for cardinals κ satisfying κ<κ = κ. In contrast, our proof allows us to also deal with cardinals
satisfying κ<κ > κ (including the singular ones), where the required universal sets do not exist at
all.
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14 1. INTRODUCTION

Chapter 6: The generalized Baire space and Baire category. We con-
sider the generalized Baire space κκ and some of its relevant subspaces, including
e.g. the group Sym(κ) of permutations of κ, and extend to them the analysis from
Section 3. We determine under which conditions κκ and κ2 are homeomorphic,
notably including the cases when κ is singular or when we are working in models of
determinacy (such cases have not been considered in the literature so far). Finally,
we prove some Baire category results which, as usual, can be recast in terms of
forcing axioms.

Chapter 7: Standard Borel κ-spaces, κ-analytic quasi-orders, and
spaces of codes. Working in ZF, we introduce a very general notion of standard
Borel κ-space (which in the classical setting ZFC+ κ<κ = κ coincides with the one
introduced in [74]), and we consider κ-analytic relations on such spaces. We also
introduce various nice spaces of codes for uncountable structures or non-separable
spaces, including the space ModκL of (codes for) L-structures of size κ, the space Mκ

of (codes for) complete metric spaces of density character κ, and the space Bκ of
(codes for) Banach spaces of density κ. These spaces of codes are all standard Borel
κ-spaces, and the corresponding isomorphism/embeddability relations on them are
κ-analytic equivalence relations/quasi-orders.

Chapter 8: Infinitary logics and models. We recall the model theoretic
notions that are used in the sequel, including the infinitary logics Lκ+κ, and we
prove various generalizations to uncountable structures of the Lopez-Escobar the-
orem mentioned at the end of Section 1.1.1 (some of these generalizations were
independently obtained also in [21]). Although a full generalization can be ob-
tained in ZFC only assuming κ<κ = κ, a careful analysis of the proof leads to
several intermediate results. We also introduce the bounded logic Lb

κ+κ, a powerful
enough fragment of Lκ+κ which avoids the pitfalls of näıve generalizations of the
Lopez-Escobar theorem. This is crucial for many of our main results.

Chapter 9: κ-Souslin sets. We briefly study the pointclass S(κ) of κ-Souslin
subsets of Polish spaces and the collection of Souslin cardinals. These notions have
been extensively studied under the assumption ZF + DC + AD: we both review
those results from this beautiful and deep area of research which are relevant to
our work, and prove analogous results (when possible) under the assumption ZFC.
In particular, we compute the exact value of the cardinal δS(κ) associated to the
pointclass S(κ). To the best of our knowledge this computation has been overlooked
in the literature (even in the AD-context), so this result might be of independent
interest.

Chapter 10: The main construction. In this section we show how to con-
struct certain combinatorial trees (i.e. acyclic connected graphs) of size κ starting
from a descriptive set-theoretic tree T on 2×κ: this is the main technical construc-
tion that gives our completeness and invariant universality results.

Chapter 11: Completeness. Using the construction from the previous sec-
tion, we show that the relation �∼

κ
CT of embeddability between combinatorial trees

of size κ is complete for the class of κ-Souslin quasi-orders on Polish or standard
Borel spaces.
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Chapter 12: Invariant universality. We improve the result from Section 11
by showing that �∼

κ
CT is indeed invariantly universal for the same class of quasi-

orders.

Chapter 13: An alternative approach. We provide a modification of the
main construction and results from the previous three sections: this variant yields
a generalization of Theorem 1.5 that cannot be achieved using the construction and
results from Sections 10–12.

Chapter 14: Definable cardinality and reducibility. We discuss various
forms of definable cardinality and reducibility that have already been considered in
the literature, and translate our main results in corresponding statements involving
these concepts.

Chapter 15: Some applications. We present a selection of applications of
the results from Section 14 in some of the most important and well-known frame-
works, leading to those natural results which, as noticed at the beginning of this
introduction, were the original motivation for the entire work and for the technical
developments contained in it.

Chapter 16: Further completeness results. We show that �∼
κ
CT is com-

plex also from the purely combinatorial point of view by embedding in it various
partial orders and quasi-orders. Moreover, we provide some model theoretic vari-
ants of our completeness results concerning full homomorphisms between graphs
and embeddings between lattices. Finally, we prove some results on the complex-
ity of the relations of isometry and isometric (bi-)embeddability between complete
metric spaces of uncountable density character, as well as on the complexity of
the relations of linear isometry and linear isometric (bi-)embeddability between
non-separable Banach spaces.
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CHAPTER 2

Preliminaries and notation

2.1. Basic notions

Our notation is standard as in most text in set theory, such as [46,47,53,72].
By ZF we mean the Zermelo-Frænkel set theory, which is formulated in the language
of set theory LST, i.e. the first-order language with ∈ as the only non-logical symbol;
⊆means subset and ⊂means proper subset, P(X) is the powerset ofX, the disjoint
union and the symmetric difference of X and Y are denoted by X � Y and X�Y
respectively, and so on. For the reader’s convenience we collect here all definitions
and basic facts that are used later.

2.1.1. Ordinals and cardinals. Ordinals are denoted by lower case Greek
letters, and Ord is the class of all ordinals. A cardinal is an ordinal not in bijection
with a smaller ordinal. The class of all infinite cardinals is Card, and the letters
κ, λ, μ always denote an element of Card. For α ≥ ω we denote by α+ the least
cardinal larger than α. The cofinality of κ is the smallest cardinal λ such that
there is a cofinal j : λ → κ, i.e. ∀α < κ∃β < λ (α ≤ j(β)). A cardinal κ is called
regular is cof(κ) = κ and singular otherwise.

We use

(2.1) 〈·, ·〉 : Ord×Ord→ Ord,

for the inverse of the enumerating function of the well-order � on Ord×Ord defined
by

(α, β)� (γ, δ)⇔max{α, β}<max{γ, δ}∨[
max{α, β} = max{γ, δ} ∧ (α, β)≤lex (γ, δ)

]
,

where ≤lex is the lexicographic ordering. This pairing function maps κ× κ onto κ,
for κ ∈ Card. Let

(2.2) 〈〈·〉〉 : <ωOrd→ Ord

be a bijection that maps <ωκ onto κ, for κ ∈ Card — see e.g. [62, Lemma 2.5,
p. 159].

2.1.2. Functions and sequences. Unless otherwise specified, all functions
f : X → Y are assumed to be total. We write f : X � Y and f : X � Y to mean
that f is injective and that f is surjective, respectively. Similarly, the symbols
X � Y and X � Y means that there is an injection of X into Y and that Y is a
surjective image of X, respectively. The pointwise image of A ⊆ X via f : X → Y
is {f(a) | a ∈ A} and it is denoted either by f(A) or by f“A — the first notation
follows the tradition in analysis and descriptive set theory, the second is common

17
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18 2. PRELIMINARIES AND NOTATION

in set theory especially when A is transitive.1 The set of all functions from X to
Y is denoted by XY , while

(2.3) X(Y ) :=
{
f ∈ XY | f is injective

}
.

For κ an infinite cardinal let

Fn(X,Y ;κ) := {s | s : u→ Y ∧ u ⊆ X ∧ |u| < κ} .
Let <αY :=

⋃
γ<α

γY , and let

Fn(κ, Y ; b) := <κY

be the set of all sequences with values in Y and length < κ. For α, β ∈ Ord let

[α]β := {u ⊆ α | ot(u) = β} .
An element u of [α]β is identified with its (increasing) enumerating function u : β →
α. The sets ≤αX, [α]<β, and [α]≤β are defined similarly. The length of u ∈ <αX

is denoted by lhu. The concatenation of u ∈ <ωX with v ∈ ≤ωX is denoted by
u�v. When dealing with sequences of length 1 we shall often blur the distinction
between the element and the sequence, and write e.g. u�x rather than u� 〈x〉. For
x ∈ X and α ∈ Ord, the sequence of length α constantly equal to x is denoted by
x(α). If ∅ �= u ∈ <ωX then

(2.4) u� := u� lh(u)− 1

is the finite sequence obtained by deleting the last element from u.

2.2. Choice and determinacy

Since several results in this paper concern models of set theory where the Ax-
iom of Choice (AC) may or may not hold, we shall state explicitly any assumption
used beyond the axioms of ZF. Among such assumptions are theAxiom of Count-
able Choices (ACω), the Axiom of Dependent Choices (DC), their versions
restricted to the reals ACω(R) and DC(R), and the so-called determinacy axioms,
namely AD and its stronger version ADR. The Axiom of Determinacy AD is
the statement that for each A ⊆ ωω the zero-sum, perfect information two-players
game Gω

A is determined. That is to say that one of the two players I and II has a
winning strategy in Gω

A where they take turns in playing n0, n1, . . . ∈ ω and I wins if
and only if 〈ni | i ∈ ω〉 ∈ A. The Axiom of Real Determinacy ADR asserts that
every GR

A is determined, where A ⊆ ωR and I and II play x0, x1, . . . ∈ R. The prin-
ciple AD implies many regularity properties, such as: every set of reals is Lebesgue
measurable, has the property of Baire, and has the Perfect Set Property (PSP),
i.e. either it is countable, or it contains a homeomorphic copy of ω2.

We also occasionally consider the Axiom of κ-Choices (ACκ), asserting that
the product of κ-many nonempty sets is nonempty, its restriction to the reals
ACκ(R), the Continuum Hypothesis (CH), and various forcing axioms like
MAω1

, PFA, and so on.
Although AD and ADR forbid any well-ordering of the reals, and therefore are

incompatible2 with AC, they are consistent with DC. In fact they imply weak

1The notation f [A] for the pointwise image is also common in the literature, but we eschew
it as square brackets are already used for equivalence classes and for the body of trees — see
Section 2.6.2.

2In fact AD contradicts ACω1 (R), since this choice principle implies the failure of PSP.
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2.4. ALGEBRAS OF SETS 19

forms of choice. For example, ADR implies the Uniformization Property (Unif):
every function f : R → R has a right inverse, i.e. a function g : R → R such that
f(g(x)) = x for all x ∈ R; equivalently, for every set A ⊆ R2 there is a function f
with domain {x ∈ R | ∃y ∈ R ((x, y) ∈ A)} such that (x, f(x)) ∈ A. Uniformization
does not follow from AD: in L(R), the canonical inner model for AD, Σ2

1 is the
largest collection of sets that can be uniformized, and by an unpublished theorem
of Woodin’s, ADR and AD+ Unif are equivalent over ZF+ DC.

2.3. Cardinality

We writeX � Y to say thatX and Y are in bijection, and [X]� is the collection
of all sets Y of minimal rank that are in bijection with X, i.e. it is the equivalence
class of X under � cut-down using Scott’s trick. Working in ZF, the cardinality
of a set X is defined to be

|X| :=
{
the unique cardinal κ � X if X is well-orderable,

[X]� otherwise.

Thus AC implies that every cardinality is a cardinal. Set |X| ≤ |Y | if and only if
X � Y . By the Shröder-Bernstein theorem, |X| = |Y | if and only if |X| ≤ |Y | ≤
|X|.

When λ is a cardinal κλ denotes cardinal exponentiation, i.e. the cardinality of
λκ, while κ<λ := |<λκ| = sup {κν | ν < λ ∧ ν a cardinal}. Whenever we write κλ

(for λ and infinite cardinal) or κ<λ (for λ an uncountable cardinal) the Axiom of
Choice AC is tacitly assumed. Given a cardinal κ and a set X, we let Pκ(X) :=
{Y ⊆ X | |Y | < κ}.

The next result is straightforward under choice — the main reason to explicitly
give a proof here, is to show that it is provable in ZF.

Proposition 2.1. Suppose X has at least two elements and λ is an infinite
regular cardinal. Then

|<λ
(<λX)| = |λ× <λX| = |<λX|.

Proof. Fix distinct x0, x1 ∈ X, and for s ∈ <λX let s′ := x
(lh s)
0

�x1
�s. Then

<λ
(<λX)→ <λX, �s = 〈sβ | β < lh�s〉 �→ s′0

�s′1
� . . .�s′β

� . . . ,

is injective, and <λX � λ× <λX � <λX × <λX � <λ
(<λX), so we are done by

the Schröder-Bernstein theorem. �

2.4. Algebras of sets

Let X be an arbitrary set and let α ≥ ω. A collection A ⊆ P(X) is called
α-algebra (on X) if it is closed under complements and well-ordered unions of
length <α, that is

⋃
ν<β Aν ∈ A for every β < α and every sequence 〈Aν | ν < β〉

of sets in A. An ω-algebra is usually called an algebra, and an α+ 1-algebra is the
same as an α+-algebra. In particular, an ω+1-algebra (i.e. an ω1-algebra) is what
is usually called a σ-algebra.

Given a family G ⊆ P(X), the α-algebra (on X) generated by G is the
smallest α-algebra A on X such that G ⊆ A, and is denoted by

Alg(G, α).
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20 2. PRELIMINARIES AND NOTATION

Thus the family of the Borel subsets of a topological space (X, τ ) is

B(X) = Alg(τ, ω + 1) = Alg(τ, ω1).

The algebra Alg(G, α) can be inductively generated as follows: let

Σ1(G, α) := G
Π1(G, α) := {X \A | A ∈ G}

and for γ > 1

Σγ(G, α) :=
{⋃

ν<β Aν | β < α ∧ ∀ν < β (Aν ∈
⋃

ξ<γ Πξ(G, α))
}

Πγ(G, α) := {X \A | A ∈ Σγ(G, α)} .
The next result is straightforward.

Lemma 2.2. If 1 ≤ γ < δ and δ ≥ 3 we have that

Σγ(G, α) ∪Πγ(G, α) ⊆ Σδ(G, α) ∩Πδ(G, α)
so that if G ⊆ Σ2(G, α) the inclusion holds for every 1 ≤ γ < δ. Moreover

Alg(G, α) =
⋃

γ∈Ord

Σ1+γ(G, α) =
⋃

γ∈Ord

Π1+γ(G, α).

Notice that Ord in the equation above can be replaced by any cardinal λ with
cof(λ) ≥ α.

Lemma 2.3. Suppose X is an arbitrary set, α is an infinite ordinal, λ ≥ α is
a regular cardinal, and G ⊆P(X) contains at least two elements. Then

(a) <λG � Alg(G, α), and
(b) if λ = ν+ then νG � Alg(G, α).

In particular, if AC holds and |G| ≤ μ then |Alg(G, λ)| ≤ μ<λ , which equals to μ|ν|

if (b) holds.

Proof. (a) It is enough to construct surjections

pγ :
<λG � Σ1+γ(G, α)

for each γ < λ, so that

λ× <λG →
⋃
γ<λ

Σ1+γ(G, α), (γ, s) �→ pγ(s)

is a surjection, and hence the result follows from Proposition 2.1. The construction
of p0 :

<λG → Σ1(G, α) = G is immediate. Suppose pν has been defined for all
ν < γ, and let

qγ : γ × <λG �
⋃
ν<γ

Σ1+ν(G, α), (ν, s) �→ pν(s).

Since γ × <λG ⊆ λ × <λG, by repeated applications of Proposition 2.1 one gets
<λG �

⋃
ν<γ Σ1+ν(G, α), and hence

<λ
(<λG) � Σ1+γ(G, α), and therefore <λG �

Σ1+γ(G, α).
(b) As in part (a) one constructs surjections pγ :

νG � Σ1+γ(G, α) for all

γ < ν+, using the fact that ν2 � ν+. �

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.
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The σ-algebra of the Borel subsets of a topological space (X, τ ) is B(X, τ ) =
Alg(τ, ω+1). When the topology τ is clear from the context, it is customary write
B(X), Σ0

α(X) and Π0
α(X) instead of B(X, τ ), Σα(τ, ω+1) and Πα(τ, ω+1). Thus

Σ0
1(X) is the family τ of all open sets of X, Π0

1(X) is the family of all closed subsets
of X, Σ0

2(X) is the collection of all Fσ subsets of X, Π0
2 is the collection of all Gδ

subsets of X, and so on. Assuming ω1 is regular3 (a fact that follows from ACω(R)),
then B(X) =

⋃
1≤α<ω1

Σ0
α(X) =

⋃
1≤α<ω1

Π0
α(X). If X is metrizable then every

closed set is Gδ, so Σ0
α(X)∪Π0

α(X) ⊆ Σ0
β(X)∩Π0

β(X) for every 1 ≤ α < β. From
Lemma 2.3 we obtain at once the following result.

Corollary 2.4. Assume ACω(R). If τ is a topology on X �= ∅, then ωτ �
B(X).

2.5. Descriptive set theory

2.5.1. Polish spaces. A topological space is perfect if it has no isolated
points; it is zero-dimensional if it has a basis of clopen sets. A Polish space
is a separable, completely metrizable topological space; a Polish metric space
is a complete metric space that is separable. If the spaces Xn (n ∈ ω) are Polish
metric, then so is

∏
n Xn with the product topology. Since any countable set with

the discrete topology is Polish, then the Cantor space ω2 and the Baire space
ωω are Polish: a countable dense set is given by the sequences that are eventually
constant, and a complete metric for them is given by d(x, y) = 2−n if n is least
such that x(n) �= y(n) and d(x, y) = 0 if there is no such n. This metric is in fact
an ultrametric, so the balls are clopen and hence these spaces are zero-dimensional.
Recall that a metric d on a space X is called ultrametric if it satisfies the following
strengthening of the triangular inequality: d(x, y) ≤ max{d(x, z), d(z, y)} for all
x, y, z ∈ X. The space ω2 is the unique (up to homeomorphism) nonempty compact
zero-dimensional perfect Polish space, and ωω is the unique (up to homeomorphism)
nonempty zero-dimensional perfect Polish space in which all compact subsets have
empty interior [53, Theorems 7.4 and 7.7]. Any two uncountable Polish spaces are
Borel isomorphic [53, Theorem 15.6] and since many questions in descriptive set
theory are invariant under Borel isomorphism, it is customary to use R to denote
any uncountable Polish space.

2.5.2. Pointclasses. A general pointclass Γ is an operation (i.e. a class-
function) assigning to every nonempty topological space X a nonempty family
Γ(X) ⊆ P(X). The dual of Γ is the general pointclass defined by Γ̌(X) :=
{X \A | A ∈ Γ(X)}. The ambiguous general pointclass associated to Γ (or
to Γ̌) is the general pointclass ΔΓ defined by ΔΓ(X) := Γ(X) ∩ Γ̌(X). A gen-
eral pointclass Γ is hereditary if Γ(Y ) = {A ∩ Y | A ∈ Γ(X)}, for every pair of
nonempty topological spaces Y ⊆ X.

A general pointclass Γ is said to be boldface if it is closed under continuous
preimages, that is to say: if f : X → Y in continuous and B ∈ Γ(Y ) then f−1(B) ∈
Γ(X). When the topological space is clear from the context, we write A ∈ Γ rather
than A ∈ Γ(X). General boldface pointclasses are usually denoted by Greek letters
such as Γ and Λ, variously decorated, and are typeset boldface, whence the name.
Examples of general boldface pointclasses are: the collection of all open sets Σ0

1, its

3It is consistent with ZF that R is countable union of countable sets, and hence that every
subset of R is Borel.
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dual pointclass Π0
1 i.e. the collection of all closed sets, its ambiguous pointclass Δ0

1

i.e. the collection of all clopen sets, the Borel pointclasses Σ0
α,Π

0
α and the Borel

sets B.
A (boldface) pointclass is a general (boldface) pointclass restricted to Polish

spaces. In other words, a pointclass is an operation assigning to every nonempty
Polish space X a nonempty family Γ(X) ⊆ P(X), and it is boldface if f−1(B) ∈
Γ(X) for every B ∈ Γ(Y ) and every continuous function f : X → Y between Polish
spaces. If Γ(ωω) �= P(ωω) (equivalently: Γ(X) �= P(X) for any uncountable Pol-
ish space X), then Γ is called a proper pointclass. If {∅, X} ⊂ Γ(X) for some space
X (equivalently: Γ(ωω) ⊇Δ0

1(
ωω)) then Γ is nontrivial. The boldface pointclass

Γ is called nonselfdual if Γ(ωω) �= Γ̌(ωω) (equivalently: Γ(X) �= Γ̌(X) for any
uncountable Polish spaceX), and selfdual otherwise. The boldface pointclass Γ ad-
mits a universal set if there is U ∈ Γ(ωω×ωω) such that Γ(ωω) =

{
U (y) | y ∈ ωω

}
,

where U (y) := {x ∈ ωω | (x, y) ∈ U} is the horizontal section of U . If Γ admits a
universal set, then it is nonselfdual: under AD these two properties become equiv-
alent, that is: Γ admits a universal set if and only if it is nonselfdual. These
definitions extend to the case of a general boldface pointclass: Γ is proper (respec-
tively, nontrivial, nonselfdual, selfdual) if its restriction to the class of Polish spaces
is a proper (respectively, nontrivial, nonselfdual, selfdual) boldface pointclass.

Besides the Borel sets B, and the Borel pointclasses Σ0
α,Π

0
α, examples of bold-

face pointclasses are the projective pointclasses Σ1
n (for n ∈ ω), and the pointclasses

associated to third-order arithmetic, such as Σ2
1. As usual, the dual of Σi

α is Πi
α

and its ambiguous part is Δi
α (for i = 0, 1, 2 and 0 �= α < ω1). The pointclasses Σ

i
α

and Πi
α are hereditary and nonselfdual, the pointclass B is hereditary and selfdual,

while the Δi
α’s are selfdual and not hereditary.

The projective pointclasses are not general boldface pointclasses, as they are
not closed under continuous preimages. To see this consider the pointclass Σ1

1 of
analytic sets, i.e. for X Polish we set

Σ1
1(X) = {f(ωω) | f : ωω → X is continuous} ∪ {∅}.

If Y is a proper Π1
1 subset of X, then Y is the preimage of X ∈ Σ1

1(X) under
the inclusion map Y ↪→ X, but Y is not a continuous image of the Baire space,
i.e. Y /∈ Σ1

1(Y ). Closing Σ1
1 under continuous preimages yields a general pointclass

Γ, but it is not clear whether Γ contains all Borel sets (or even the closed ones), or
whether it is closed under continuous images. Moreover we have no use for such Γ.
This is why we stick to the usual definition of Σ1

1 rather than adopting the one of
Γ.

2.5.3. The prewellordering and scale properties. Let A be a set. A
(regular) norm on A is a map ρ : A → Ord which is surjective onto some α ∈
Ord. The ordinal α is called length of ρ. To each norm ρ : A → α we can
canonically associate a prewellordering (i.e. a reflexive, transitive, connected, and
well-founded relation) �ρ of A by setting x �ρ y ⇔ ρ(x) ≤ ρ(y) for all x, y ∈ A.
Conversely, to every prewellordering � of A we can canonically associate a (unique)
regular norm ρ : A � α (for some α ∈ Ord) such that � = �ρ: in this case we say
that � has length α.

Given a boldface pointclass Γ and a Polish space X, a norm ρ on A ∈ Γ(X) is

a Γ-norm if there are two binary relations ≤Γ
ρ∈ Γ(X ×X) and ≤Γ̌

ρ∈ Γ̌(X ×X) on
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X such that for all y ∈ A

∀x ∈ X
[
(x ∈ A ∧ ρ(x) ≤ ρ(y)) ⇔ x ≤Γ

ρ y ⇔ x ≤Γ̌
ρ y
]
.

In other words: the initial segments of the prewellordering �ρ are uniformly ΔΓ.
We say that the pointclass Γ is normed or has the prewellordering property
if every A ∈ Γ(X) admits a Γ-norm, for all Polish spaces X. A Γ-norm on a set

A ∈ ΔΓ is automatically a Γ̆-norm as well. On the other hand the property of
being normed does not pass to the dual: for example Π1

1 is normed, but Σ1
1 is

not [72, Section 4.B].
Let X be a topological space. A scale on A ⊆ X is a sequence 〈ρn | n ∈ ω〉 of

(regular) norms on A such that for every sequence 〈xn | n ∈ ω〉 of points from A,
if the xn’s converge to x ∈ X and for every n ∈ ω the sequence 〈ρn(xi) | i ∈ ω〉 is
eventually equal to some λn ∈ Ord, then x ∈ A and ρn(x) ≤ λn for all n ∈ ω. When
X = ωω, the existence of a scale 〈ρn | n ∈ ω〉 on A is equivalent to the assertion that
A is the projection of a tree on ω × κ, where κ := supn ran(ρn) (see Section 2.6.1
for the relevant definitions).

Given a boldface pointclass Γ closed under countable intersections and count-
able unions, a scale 〈ρn | n ∈ ω〉 on a set A ∈ Γ(X) is called Γ-scale if all the ρn’s
are Γ-norms.4 The pointclass Γ has the scale property if every A ∈ Γ(X) admits
a Γ-scale for all Polish spaces X.

2.6. Trees and reductions

2.6.1. Graphs and trees. A graph G = (V,E) consists of a nonempty set V
of vertices and a set E ⊆ [V ]2 of edges. Whenever V is clear from the context, the
graph is identified with E, and we write v0 G v1 or v0 E v1 instead of {v0, v1} ∈ E.
A combinatorial tree is a connected acyclic graph. If a specific vertex is singled
out, the resulting object is a rooted combinatorial tree and the chosen vertex
is called root. The size of a combinatorial tree is the cardinality of the set V of its
vertices. As the nature of the elements of V is irrelevant, a combinatorial tree of
size κ can be construed as a set of edges E ⊆ [κ]2, and hence it can be identified
with an element of κ×κ2 (via its characteristic function). Thus the space of all
combinatorial trees of size κ is

(2.5) CTκ :=
{
f ∈ κ×κ2 | f satisfies (2.6a)–(2.6c)

}
with

∀α, β ∈ κ (f(α, α) = 0 ∧ (f(α, β) = 1⇒ f(β, α) = 1))(2.6a)

∀α, β ∈ κ
[
f(α, β) = 1 ∨ ∃s ∈ <ωκ \ {∅} ∀i < lh(s)− 1(2.6b)

(f(s(i), s(i+ 1)) = 1 ∧ f(α, s(0)) = 1 ∧ f(s(lh(s)− 1), β) = 1)
]

∀s ∈ <ωκ (lh(s) ≥ 3 ∧ ∀i < lh(s)− 1 (f(s(i), s(i+ 1)) = 1)⇒(2.6c)

f(s(lh(s)− 1), s(0)) = 0).

The intuition behind these formulæ is that: (2.6a) says that f codes a graph
Gf , (2.6b) says that Gf is connected, while (2.6c) says that Gf is acyclic. It is
easy to check that CTω is a Gδ subset of ω×ω2 (which is homeomorphic to the
Cantor space ω2), and hence CTω is a Polish space.

4The definition of Γ-scale for an arbitrary boldface pointclass Γ requires that the norms be
uniformly in Γ — see [72, p. 173].
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2.6.2. Descriptive set-theoretic trees. The word tree may also refer to
a different concept in descriptive set theory: a tree on a set X is a nonempty
subset of <ωX closed under initial segments (ordered by the prefix relation). Such
an object is often called a descriptive set-theoretic tree, and

(2.7) Tr(X)

is the set of all descriptive set-theoretic trees on X. Any descriptive set-theoretic
tree can be seen as a rooted combinatorial tree with root ∅, and conversely. Elements
of a (descriptive set-theoretic) tree T on X are called nodes. We say that T is
pruned if every node has a proper extension, and that T is < κ-branching (for
κ a cardinal) if every node has < κ-many immediate successors, that is to say
|{x ∈ X | s�x ∈ T}| < κ for every s ∈ T . Sometimes, < (κ + 1)-branching trees
are simply called κ-branching. The body of T is the set of all infinite branches of
T , that is the set

[T ] := {f ∈ ωX | ∀n (f�n ∈ T )} .
If T is a tree on X × Y then the nodes are construed as pairs of sequences
(〈x0, . . . , xn〉 , 〈y0, . . . , yn〉) rather than sequences of pairs 〈(x0, y0), . . . , (xn, yn)〉,
and similarly the elements of [T ] are construed as pairs (f, g) ∈ ωX × ωY such that
(f�n, g�n) ∈ T for all n. The projection (on the first coordinate) of a subset
A ⊆ X × Y of a cartesian product is

(2.8) pA = {x ∈ X | ∃y ∈ Y (x, y) ∈ A}
The projection of a tree T on X × Y is the set

p[T ] := {f ∈ ωX | ∃g ∈ ωY (f, g) ∈ [T ]} .

2.6.3. Quasi-orders and equivalence relations. A binary relation R on
a set X is called quasi-order or preorder if it is reflexive and transitive, and a
symmetric quasi-order is called equivalence relation. The setX is called domain
of R and it is denoted by dom(R). If Y ⊆ X = dom(R), we denote by R�Y the
restriction of R to Y , i.e. the quasi-order R∩Y 2. If R is a quasi-order, then R−1 :=
{(y, x) | (x, y) ∈ R} is also a quasi-order, and ER := R ∩ R−1 is the equivalence
relation induced by R. A quasi-order R canonically induces a partial order on the
quotient space X/ER, which is called quotient order of R.

If E is an equivalence relation on X, then [x]E = [x] is the equivalence class
of x ∈ X and X/E is the quotient space. A set A ⊆ X = dom(E) is invariant
under E if y ∈ A whenever x E y for some x ∈ A. The E-saturation of A ⊆ X,
in symbols [A]E or even just [A], is the smallest invariant set containing A, that is

[A]E = [A] :=
⋃
x∈A

[x].

Given a (general) boldface pointclass Γ, we say that a quasi-order (or, more
generally: a binary relation) R on X is in Γ if R ∈ Γ(X × X). Notice that if
Γ is closed under finite intersections, this implies that the associated equivalence
relation ER is in Γ as well.

2.6.4. Reducibility. Given two quasi-orders R,S on the sets X,Y , we say
that R reduces to S (in symbols R ≤ S) if and only if there is a function f : X → Y
which reduces R to S, i.e. such that for all x, x′ ∈ X

x R x′ ⇔ f(x) S f(x′).
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If R ≤ S and S ≤ R we say that R and S are bi-reducible (in symbols R ∼ S).
Notice that if E is an equivalence relation and R ≤ E, then R is an equivalence
relation as well. If C is a class of quasi-orders, we say that the quasi-order R is com-
plete for C if S ≤ R for every S ∈ C. By limiting f to range in a given collection
of functions we obtain a restricted form of reducibility. For example if f is Borel
or f ∈ L(R), then the notions of Borel reducibility ≤B and L(R)-reducibility
≤L(R) are obtained, respectively. If ≤∗ is a restricted form of reducibility, we say
that R is ≤∗-complete for C if S ≤∗ R for every S ∈ C. In particular R is Borel-
complete for C if for every S ∈ C there is a Borel function that witnesses S ≤ R,
i.e. S ≤B R.

Remark 2.5. Our definition of “R is (≤∗-)complete for C” does not require that
R ∈ C. In fact, in most applications we will have that C is a collection of quasi-orders
on some Polish space, whileR will be the embeddability relation on some elementary
class of uncountable models. Notice however that R is a κ-analytic quasi-order in
the sense of generalized descriptive set theory (Definition 7.1) irrespective of the
complexity of the quasi-orders in C. As κ-analyticity is the natural counterpart
of Σ1

1 for Polish spaces, R is arguably not more complex than the elements of C,
as long as κ is related to the complexity of these elements. This is why we use
completeness rather than hardness in our results.

The notion of reducibility between equivalence relations and quasi-orders is
intimately related to the notion of cardinality of a set. If X,Y are arbitrary sets
and id(X) and id(Y ) denote, respectively, the equality relations on X and Y , then

|X| ≤ |Y | ⇔ id(X) ≤ id(Y )

and hence
|X| = |Y | ⇔ id(X) ∼ id(Y ).

Thus reducibility between equivalence relations can be seen as a generalization of
the notion of cardinality. Moreover, if E and F are equivalence relations on X and
Y , respectively, then

E ≤ F ⇒ |X/E| ≤ |Y/F |
and

E ∼ F ⇒ |X/E| = |Y/F |.
Assuming AC the implications above can be reversed, since any surjection has a
left inverse. Under determinacy it is still possible to revert the implications when
X, Y are Polish spaces. Working in ZF, |X/E| ≤ |Y/F | if and only if

∃R ⊆ X × Y
[
∀x ∈ X ∃y ∈ Y (x R y) ∧ ∀x1, x2 ∈ X ∀y1, y2 ∈ Y(
(x1 E x2 ∧ x1 R y1 ∧ x2 R y2 ⇒ y1 F y2) ∧(2.9)

(y1 F y2 ∧ x1 R y1 ∧ x2 R y2 ⇒ x1 E x2)
)]
,

so in order to get a reduction from E to F we may appeal to uniformization, as
any g : X → Y such that (x, g(x)) ∈ R for all x ∈ X, witnesses E ≤ F . The
existence of such g follows form ADR if E and F are arbitrary equivalence relations
on Polish spaces, or from AD+V = L(R) and E,F are Δ2

1. To see this notice that
the sentence in (2.9) is Σ2

1 so the witness R can be taken to be Σ2
1 as well, and

hence we can apply Σ2
1-uniformization.
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If a set A is the surjective image of X via some map f then, letting EA be the
equivalence relation on X defined by x EA x′ ⇔ f(x) = f(y), the factoring map
f : X/EA → A, [x]EA

�→ f(x) is well-defined and witnesses |X/EA| = |A|. This
observation can be turned into a method to compute cardinalities. For example, in
models of AD one is mainly interested in the cardinalities of sets which are surjective
images of a Polish space, and such cardinalities are called small cardinalities, or
small cardinals when we are dealing with well-orderable sets. If A, B are two
sets whose cardinality is small, then EA ≤ EB ⇒ |A| ≤ |B| (again, in some special
situations this implication can be reversed).
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CHAPTER 3

The generalized Cantor space

3.1. Basic facts

The usual topology on the Cantor space ω2 is the product topology, which is
generated by the sets

Nω
s := {x ∈ ω2 | s ⊆ x}

for s ∈ <ω2. If ω is replaced by some uncountable cardinal κ, then there are at
least two topologies on the generalized Cantor space κ2 that can claim to be
the natural generalization of the previous construction.

Definition 3.1. Let κ be an infinite cardinal, and let

Nκ
s := {x ∈ κ2 | s ⊆ x} ,

where s : u→ 2 and u ⊆ κ.

• The bounded topology τb on κ2 is the one generated by the collection

Bb :=
{
Nκ

s | s ∈ <κ2
}
.

• The product topology τp on κ2 is the product of κ copies of 2 with the discrete
topology, and hence it is generated by the collection

Bp := {Nκ
s | s ∈ Fn(κ, 2;ω)} .

The families Bb and Bp are called the canonical basis for τb and τp, respectively,
and their elements are called the basic open sets.

To simplify the notation, when κ is clear from the context we write Ns instead
of Nκ

s . Conversely, we write τb(
κ2), Bb(κ2), τp(κ2), and Bp(κ2) instead of τb, Bb,

τp, and Bp if attention must be paid to the underlying space. When κ = ω the
topologies τb and τp coincide, so when dealing with the Cantor space ω2 we can talk
about topology without further comments. In contrast, Lemma 3.10 below shows
that τb and τp are significantly different when κ is uncountable. For example

(3.1) κ regular ⇒ τb is closed under intersections of size < κ

while τp is never closed under countable intersections — see Proposition 3.12(i)
below.

Generalizing the notion seen in Section 2.6.2, a descriptive set-theoretic
tree on X of height κ is a nonempty T ⊆ <κX closed under initial segments.
Such T is called pruned if

∀t ∈ T ∀α < κ∃t′ ∈ T [lh(t′) = α ∧ (t ⊆ t′ ∨ t′ ⊆ t)].

Note that ∅ �= C ⊆ κ2 is closed with respect to τb if and only if it is of the form

[T ] := {x ∈ κ2 | ∀α < κ (x�α ∈ T )}
with T a pruned tree on 2 of height κ.

27
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28 3. THE GENERALIZED CANTOR SPACE

The literature on κ2 with κ an uncountable cardinal (and on some other strictly
related spaces, see Sections 6.1 and 7.2) falls into two camps: most of the papers
in general topology (see e.g. [10–12, 42, 61, 63, 89–91]) deal with τp or with the
so-called box topology, while papers on infinitary logics (see [17, 21, 27, 28, 68,
78–81,93]) use almost exclusively the bounded topology. In this paper, instead,
both the bounded and the product topology play an important role: although the
statements of our main results refer to the bounded topology, several proofs make
an essential use of (an homeomorphic copy of) the space (κ2, τp) — see Chapters 12
and 13. This seems to be a curious feature, and we currently do not know if the
use of the product topology can be avoided at all.

Remarks 3.2. (i) The name bounded topology comes from the fact that τb
can be equivalently defined as the topology generated by the collection of all
sets of the form Nκ

s with s : u→ 2 for some bounded u ⊆ κ: such a collection
is an alternative basis for τb which properly contains Bb. When κ is regular,
this basis can be also described as the collection of all sets of the form Nκ

s

with s : u → 2 for some u ⊂ κ of size <κ (thus avoiding any reference to
the ordering of κ in the definition of τb): however, this is not true when κ is
singular because if u ⊆ κ is cofinal in κ, then every set Nκ

s for s : u → 2 is a
proper τb-closed set.

(ii) The sets Nκ
s with s : {α} → 2 for α ∈ κ, form a subbasis B̃p (which generates

Bp) for the product topology on κ2. For ease of notation the elements of B̃p
are denoted by

Ñκ
α,i = Ñα,i := {x ∈ κ2 | x(α) = i} .

(iii) The definition of product topology makes sense for spaces of the form A2

(or even AX for X a topological space) with A an arbitrary set, while the
definition of the bounded topology requires that A be well-orderable — see
Section 7.2.

By Remark 3.2(i), if κ is regular then the bounded topology is generated by
the sets Nκ

s with s ∈ Fn(κ, 2;κ). This suggests that when κ is regular τp and τb lie
at the extrema of a spectrum of topologies on κ2.

Definition 3.3. Let λ ≤ κ be infinite cardinals. The λ-topology τλ on κ2 is
generated by the basis

Bλ := {Nκ
s | s ∈ Fn(κ, 2;λ)} .

In particular: τp = τω.

As usual, when we need to explicitly refer to the underlying space we write
τλ(

κ2) and Bλ(κ2) instead of, respectively, τλ and Bλ. It is easy to check that the
sets in Bp,Bλ,Bb are clopen, and hence the topologies τp, τλ, τb are zero-dimensional.

Lemma 3.4. Let κ be an uncountable cardinal, and consider the topologies
τp, τλ, τb on κ2.

(a) if ω ≤ λ < ν < κ are cardinals, then Bλ ⊂ Bν , each Nκ
s ∈ Bν is τλ-closed,

and τλ ⊂ τν ,
(b) τcof(κ) ⊆ τb, and
(c) τb = τcof(κ) ⇔ κ = cof(κ).

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.
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Proof. (a) It is clear that Bλ ⊂ Bν and hence τλ ⊆ τν . Fix Ns ∈ Bν . If

|dom s| < λ, then Ns is τλ-clopen, if λ ≤ |dom s| < ν, then Ns =
⋂

α∈dom s Ñα,s(α)

is τp-closed and hence τλ-closed, but it is not τλ-open as it does not contain any
element of Bλ. Therefore τλ �= τν .

(b) To see that τcof(κ) ⊆ τb, it is enough to show that Bcof(κ) ⊆ τb: if s ∈
Fn(κ, 2; cof(κ)) then Ns =

⋃
{Nt | t ⊇ s ∧ t ∈ α2}, where α = sup dom(s) < κ.

(c) If κ is singular, and s ∈ α2 with cof(κ) ≤ α < κ, then Ns ∈ Bb, but Ns

does not contain any set in Bcof(κ), so it is not τcof(κ)-open. If κ is regular, then
Bb ⊂ Bκ so τb ⊆ τκ, and therefore τb = τκ. �

In Sections 6 and 8 we use these topologies that lie strictly between the product
topology and the bounded topology, that is τλ with ω < λ < min(cof(κ)+, κ), while
we have no use for τλ with cof(κ) < λ < κ. Most of the nontrivial results on these
intermediate topologies seem to require the axiom of choice.

In order to simplify the notation, when κ is regular we stipulate the following

Convention 3.5. When κ is regular, the canonical basis for τκ is taken to be
Bb, that is

Bκ :=
{
Nκ

s | s ∈ <κ2
}
.

3.2. *More on 2κ

3.2.1. Lipschitz and continuous reductions.

Definition 3.6. Let κ be an infinite cardinal. A function ϕ : <κ2→ <κ2 is

• monotone if ∀s, t ∈ <κ2 (s ⊆ t⇒ ϕ(s) ⊆ ϕ(t)),
• Lipschitz if it is monotone and ∀s ∈ <κ2 (lh(ϕ(s)) = lh(s)),
• continuous if it is monotone and lh(

⋃
α<κ ϕ(x�α)) = κ, for all x ∈ κ2.

If ϕ is Lipschitz then it is continuous, and if ϕ is Lipschitz or continuous, then

fϕ :
κ2→ κ2, x �→

⋃
α<κ

ϕ(x�α)

is the function induced by ϕ.

Lemma 3.7. A function f : κ2→ κ2 is continuous with respect to τb if and only
if it is of the form fϕ for some continuous ϕ : <κ2→ <κ2.

Proof. If f is τb-continuous, then the map ϕ defined by setting for s ∈ <κ2

ϕ(s) := the longest t with length ≤ lh(s) such that f(Ns) ⊆Nt

is continuous and f = fϕ. Conversely if f = fϕ with ϕ continuous then f−1(Nt) =⋃
ϕ(s)⊇t Ns, and hence f is τb-continuous. �

We call a function f : κ2 → κ2 Lipschitz if it is of the form fϕ for some
Lipschitz ϕ or, equivalently, if x�α = y�α ⇒ f(x)�α = f(y)�α for all x, y ∈ κ2
and α < κ. (The reason for this terminology is that when κ = ω then f is Lipschitz
if and only if d(f(x), f(y)) ≤ d(x, y), where d is the usual metric on ω2.) It is
immediate to check that the composition of Lipschitz functions is Lipschitz, and
that Lipschitz functions are τb-continuous.
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Definition 3.8. Let A,B ⊆ κ2. We say that A is Lipschitz reducible to B,
in symbols

A ≤κ
L B,

if A = f−1(B) for some Lipschitz f : κ2→ κ2. Equivalently, A ≤κ
L B if and only if

Player II has a winning strategy in Gκ
L(A,B), the Lipschitz game of length κ

for A,B. It is a zero-sum, perfect information game of length κ, in which at each
inning α < κ the two-players I and II play xα, yα ∈ 2 with I playing first and at
limit levels:

II

I x0

y0

x1

y1

· · ·

· · ·

xα

yα

· · ·

· · ·· · ·
Gκ

L(A,B)

Player II wins just in case

〈xα | α < κ〉 ∈ A ⇔ 〈yα | α < κ〉 ∈ B.

Similarly, we say that A is continuously reducible or Wadge reducible1 to B,
in symbols A ≤κ

W B, if there is a continuous f : κ2 → κ2 such that A = f−1(B).
Equivalently: A ≤κ

W B if and only if Player II has a winning strategy in Gκ
W(A,B),

the Wadge game of length κ for A,B. This game is similar to Gκ
L(A,B), except

that II can pass at any round, provided that at the end a sequence of length κ is
produced.

A set A ⊆ κ2 is ≤κ
L-hard for a collection S ⊆P(κ2) if ∀B ∈ S (B ≤κ

L A). A
set which is ≤κ

L-hard for S and moreover belongs to S is said to be ≤κ
L-complete

for S.

Proposition 3.9. Suppose S ⊆P(κ2) and endow κ2 with the bounded topol-
ogy.

(a) If there is A ⊆ κ2 which is ≤κ
L-hard for S, then S �= P(κ2).

(b) Suppose S is closed under complements and continuous preimages, i.e. A ∈ S
implies f−1(A) ∈ S for all continuous f : κ2 → κ2. Then there is no ≤κ

L-
complete set for S.

Proof. (a) If κ2 \A �κ
L A, then κ2 \A already witnesses that S �= P(κ2), so

we may assume that κ2 \ A ≤κ
L A. Let g : κ2→ κ2 be the continuous map defined

by g(x)(α) := x(α + 1) for all α < κ, and let Ā := g−1(A). Player I has a winning
strategy in Gκ

L(Ā, A) by playing 0 (or 1 for that matter) at round 0 and at all limit
rounds, and by following σ at all successor rounds, where σ is a winning strategy
for II in Gκ

L(A, κ2 \A). Therefore Ā �κ
L A, and hence Ā /∈ S.

(b) Towards a contradiction, suppose A ∈ S is ≤κ
L-complete for S. Since

κ2 \ A ∈ S by closure under complements, then κ2 \ A ≤κ
L A. Then the set Ā

defined as in part (a) contradicts the choice of A: in fact, the function g witnesses
Ā ≤κ

W A, so that Ā ∈ S, but Ā �κ
L A. �

1W.W. Wadge initiated the use of games to study continuous reducibility on the Baire space
in [95].
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3.2.2. Properties of τp, τλ and τb. For the space ω2 the cardinality of the
topology equals the cardinality of the continuum

|τp(ω2)| = |τb(ω2)| = |ω2|.

The situation for κ2 when κ > ω is quite different. First of all note that the
following trivial facts:

(3.2) τp ⊆ τλ ∧ τp ⊆ τb,

and

(3.3) if B is a basis for a topology τ , then |τ | ≤ |P(B)|,

This is an immediate consequence of the fact that τ�P(B), U �→{B∈B | B⊆U},
is injective.

Lemma 3.10. Let λ < κ be uncountable cardinals, and let τp := τp(
κ2), τλ :=

τλ(
κ2), and τb := τb(

κ2).

(a) |τp| = |P(κ)|.
(b) P(ω2) � τλ and P(ω2) � τb and therefore τλ � P(ω2) and τb � P(ω2).

Moreover |P(<λ2)| ≤ |τλ| ≤ |P([κ]<λ)| and |τb| = |P(<κ2)|.
(c) Assume AD. If κ is a surjective image of R (i.e. κ < Θ, where Θ is as in

Definition 4.3), then |τp| < |τλ| and |τp| < |τb|.
(d) Assume AC. Then

• 2κ < 2(2
<λ) ⇒ |τp| < |τλ|,

• 2κ < 2(2
<κ) ⇔ |τp| < |τb|,

• 2(κ
<λ) < 2(2

<κ) ∧ λ < min(cof(κ)+, κ)⇒ |τλ| < |τb|.

Proof. (a) Since Bp = {Ns | s ∈ Fn(κ, 2;ω)} is a basis for τp and
|Fn(κ, 2;ω)| = κ, then |τp| ≤ |P(κ)| by (3.3). For the other inequality use the

injection P(κ) � τp, A �→
⋃

α∈A Ñα,1.

(b) The map P(ω2)→P(κ2), ω2 ⊇ A �→
⋃

s∈A Ns, witnesses that |P(ω2)| ≤
|τλ| and |P(ω2)| ≤ |τb|.

The function Fn(κ, 2;λ)→ [κ]<λ defined by

s �→ {2α | α ∈ dom s ∧ s(α) = 0} ∪ {2α+ 1 | α ∈ dom s ∧ s(α) = 1}

is an injection. Thus |[κ]<λ| ≥ |Fn(κ, 2;λ)| = |Bλ|, and hence |τλ| ≤ |P([κ]<λ)|
by (3.3). Similarly, as |Bb| = |<κ2|, then |τb| ≤ |P(<κ2)|. In order to prove the
other inequalities, consider the map

(3.4) U : <κ2 � Bb ⊆ τb, s �→N0(lh s)�1�s,

and notice that if s ∈ <λ2, then U(s) ∈ Bλ ⊆ τλ. Then the injection P(<κ2) � τb,
A �→

⋃
s∈A U(s), witnesses |P(<κ2)| ≤ |τb|, while its restriction to P(<λ2) has

range contained in τλ and witnesses |P(<λ2)| ≤ |τλ|.
(c) By a standard result in determinacy (see Theorem 4.4 below), there is a

surjection of ω2 onto P(κ), and hence ω2 � τp by (a). Let τ be either τλ or τb,
so that |τp| ≤ |τ | by (3.2). If |τp| = |τ | then ω2 � τ , and therefore ω2 � P(ω2)
by (b), a contradiction. Therefore |τp| < |τ |.

(d) follows from (a) and (b). �
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Remark 3.11. Assume AD and let κ be such that R � κ. Although R does not
surject onto τb(

κ2) by Lemma 3.10(b), at least we have that R � Bb(κ2). This is
because |Bb(κ2)| = |<κ2|, κ2 � <κ2, and R � κ2 by Theorem 4.4. As [κ]<λ � <κ2,
this implies that R � Bλ(κ2) for all ω < λ < min(cof(κ)+, κ), as well.

The next result summarizes some properties of the topologies τp, τλ and τb on
κ2. We denote with Cp, Cλ, Cb their algebras of clopen sets.

Proposition 3.12. Let λ < κ be uncountable cardinals, and consider the space
κ2 with one of the topologies τp, τλ, τb.

(a) The topologies τp, τλ, τb are perfect, regular Hausdorff, and zero-dimensional.
(b) τp is compact, while τλ and τb are not.
(c) Let Up, Uλ, and Ub be arbitrary open neighborhood bases of some x ∈ κ2 with

respect to τp, τλ, and τb. Then Up � κ, Ub � cof(κ), and (assuming AC)
Uλ � κ; moreover there are Up and Ub as above such that |Up| = κ and
|Ub| = cof(κ). Therefore τp and (assuming AC) τλ are never first countable,
while τb is first countable if and only if cof(κ) = ω.

(d) Let B′p, B′λ and B′b be arbitrary bases for the topologies τp, τλ and τb, respec-

tively, on κ2. Then B′p � κ, B′λ � <λ2 (and, assuming AC, also B′λ � κ), and

B′b � <κ2. Therefore the topologies τp, τλ and τb are never second countable.
(e) The topology τp is separable if and only if κ ≤ |ω2|. Therefore under AD the

topology τp is never separable, while under AC it is separable if and only if
κ ≤ 2ℵ0 .

(f) If D ⊆ κ2 is τλ-dense, then D � <λ2, hence τλ is never separable. Moreover
there is a τλ-dense set of size |[κ]<λ|. Thus assuming AC we get that the
density character of τλ is between 2<λ and κ<λ. Further assuming that λ is
inaccessible, one has that τλ has density λ if and only if κ ≤ 2λ.

(g) If D ⊆ κ2 is τb-dense, then D � <κ2. Moreover there is a τb-dense set of
size |<κ2|. In particular τb is never separable, and under AC it has density
character 2<κ.

(h) The topology τb is completely metrizable if and only if it is metrizable if and
only if cof(κ) = ω; the topologies τp and (assuming AC) τλ are never metriz-
able.

(i) The topology τ∗ with ∗ ∈ {p, λ, b} is closed under intersections of length ≤ α
(for some ordinal α) if and only if: α < ω when ∗ = p, α < λ when ∗ = λ
(assuming AC), |α| < cof(κ) when ∗ = b. In particular (3.1) holds.

(j) Cp is a ω-algebra, that is an algebra of sets; Cλ is a λ-algebra (assuming AC);
Cb is a cof(κ)-algebra.

Proof. Part (a) is trivial.

(b) Tychonoff’s theorem for (κ2, τp) is provable in ZF (see e.g. [57, Theorem
4]), and {Ns | s ∈ ω2} is an infinite clopen partition of (κ2, τλ) and (κ2, τb).

(c) Fix x ∈ κ2, and let U be one of Up, Uλ, Ub. We construct a map sending
each U ∈ U to some s(U) ⊆ x such that

(3.5) Ns(U) ⊆ U,

and consider the neighborhood base U ′ = {Ns(U) | U ∈ U}. As U � U ′, it is
enough to show that there is a map from U ′ onto κ or cof(κ).

Case U = Up: choose v(U) ∈ [κ]<ω such that (3.5) holds when s(U) = x� v(U).
The axiom of choice is not needed here, as [κ]<ω is well-orderable. If
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α < κ and U ∈ U is contained in Ñα,x(α), then α ∈ v(U); this implies
that κ =

⋃
{v(U) | U ∈ Up}, and therefore U ′ � κ.

Case U = Uλ: choose s(U)∈Fn(κ, 2;λ) so that (3.5) holds, and let S be the set

{dom s(U) | U ∈ U}. If α < κ and U ∈ U is contained in Ñα,x(α), then
α ∈ dom s(U) and hence κ =

⋃
S. As every element of S has size < λ,

then κ ≤ λ · |S|, so κ ≤ |S|. Thus U ′ � κ.
Case U = Ub: choose α(U) ∈ κ such that (3.5) is satisfied when s(U) = x�α(U). If

cof(κ) � |U ′|, then α := supU∈Ub
α(U)+ 1 < κ, so the open neighborhood

Nx�α does not contain any element of the open neighborhood basis U ′, a
contradiction.

The τp-neighborhhood base {Ns ∈ Bp | s ⊆ x} has size κ, and the τb-neighborhhood
base {Nx�αi

∈ Bb | i < cof(κ)} has size cof(κ), where the αi are cofinal in κ.
The fact that (κ2, τb) is first countable when cof(κ) = ω is immediate.

(d) Fix x ∈ κ2. The set Up = {U ∈ B′p | x ∈ U} is a τp-neighborhood base of
x, so Up � κ by part (c), whence B′p � κ. A similar argument shows that B′λ � κ
when assuming AC.

The map U defined in (3.4) has the property that U(s) ∩ U(t) = ∅ for s �= t.
Therefore the map B′b → <κ2 defined by

B �→
{
∅ if ∀s ∈ <κ2 (B � U(s)),

s if B ⊆ U(s),

is a well-defined surjection, and similarly for B′λ � <λ2.

(e) We first show that I2 with the product topology is separable, when I ⊆ ω2.2

The set

En :=
{
ϕ ∈ I2 | ∀f, g ∈ I (f�n = g�n ⇒ ϕ(f) = ϕ(g))

}
is countable since it is in bijection with the set of all functions from n2 to 2, and
hence

E :=
⋃
n∈ω

En

is countable. We now argue that E is dense by showing that it intersects every
basic open set of I2 of the form

V :=
{
ϕ ∈ I2 | ϕ(f1) = i1 ∧ · · · ∧ ϕ(fm) = im

}
with f1, . . . , fm ∈ I and i1, . . . , im ∈ {0, 1}. Let n be large enough so that
f1�n, . . . , fm�n are all distinct, and let ϕ ∈ En be such that ϕ(fj) = ij with
j = 1, . . . ,m. Then ϕ ∈ E ∩ V as required.

Conversely, suppose κ � |ω2|. Given any set {fn | n ∈ ω} ⊆ κ2 let F : κ → ω2
be defined by

F (α)(n) := fn(α).

By case assumption F cannot be injective, and hence there are α < β < κ such that
F (α) = F (β), that is fn(α) = fn(β) for all n. Thus {fn | n ∈ ω} is disjoint from
the basic open set {f ∈ κ2 | f(α) = 0 ∧ f(β) = 1} and therefore it is not dense.

The result under AD follows from the fact that ω1 does not embed into ω2.

2This is a particular case of the more general statement that the product of κ-many separable
spaces is separable if and only if κ ≤ 2ℵ0 [62, Exercises 3 and 4, page 86]. The reason for including
the proof here is to show that it holds in ZF.
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(f) Let D ⊆ κ2 be τλ-dense. As the sets U(s) defined in (3.4) are pairwise
disjoint, we obtain a surjection D � <λ2 by setting

(3.6) x �→
{
∅ if x /∈

⋃
s∈<λ2 U(s)

s if x ∈ U(s).

Moreover, the set
{
χu | u ∈ [κ]<λ

}
is τλ-dense and has cardinality |[κ]<λ|, where

χu : κ → {0, 1} is the characteristic function of u. Finally, the additional part
concerning the case when λ is inaccessible (assuming AC) can be proved by replacing
ω with λ in the proof of part (e).

(g) The argument is similar to that of part (f). If D is a dense set in (κ2, τb),
then one gets a surjection D � <κ2 by replacing λ with κ in (3.6). Moreover, the
set
{
s�1�0(κ) | s ∈ <κ2

}
is τb-dense and has cardinality |<κ2|.

(h) Since a metric space is first countable, by part (c) it is enough to show
that (κ2, τb) is completely metrizable when cof(κ) = ω. This easily follows from
the application of the Birkhoff-Kakutani theorem [71, §1.22, p. 34] to the first
countable Hausdorff topological group (κ2, τb) with the operation (x, y) �→ x + y
defined by (x + y)(α) := x(α) + y(α) modulo 2. For a more direct proof, let
〈λn | n ∈ ω〉 be a strictly increasing sequence of ordinals cofinal in κ, and equip
X :=

∏
n∈ω

λn2 with the product of the discrete topologies on each λn2: then the
metric d on X defined by d(x, y) = 0 if x = y and d(x, y) = 2−n with n smallest
such that x(n) �= y(n) if x �= y is complete and compatible with the topology of X.
Therefore, X and all its closed subsets are completely metrizable. Since the map
κ2 → X, x �→ 〈x�λn | n ∈ ω〉 is a well-defined homeomorphism between (κ2, τb)
and a closed subset of X, we get the desired result.

(i) Let 〈Uβ | β < α〉 be a sequence sets in τλ, with α < λ. It is enough to show
that for each x ∈ V :=

⋂
β<α Uβ there is s ∈ Fn(κ, 2;λ) such that x ∈Ns ⊆ V . For

each β < α choose uβ ∈ [κ]<λ such that Nx�uβ
⊆ Uβ . Then v :=

⋃
β<α uβ ∈ [κ]<λ

and Nx�v ⊆ V . On the other hand, the set Ns with s ∈ λ2 witnesses that τλ is not
closed under intersections of length λ, and similarly τp is not closed under infinite
intersections.

The argument for τb is similar. Suppose first |α| < cof(κ) and let 〈Uβ | β < α〉
be a sequence of sets in τb, and let V be as before. For any x ∈

⋂
β<α Uβ we

construct an s ∈ <κ2 such that Ns ⊆ V . For each β < α let f(β) be the smallest
γ < κ such that Nx�γ ⊆ Uβ . By case assumption ran(f) is bounded in κ, so
Ns ⊆ V with s := x� sup ran(f). Suppose now |α| ≥ cof(κ). Let 〈γβ | β < cof(κ)〉
be increasing and cofinal in κ, and let Vβ := N

0(γβ) if β < cof(κ) and Vβ := κ2 if

cof(κ) ≤ β < α. Then the set
⋂

β<α Vβ =
⋂

β<cof(κ) Vβ = {0(κ)} is closed and not
open.

(j) follows from (i). �

Remarks 3.13. (i) Even if (κ2, τb) is never compact by (b) above, some form
of compactness is available in certain cases: for example, as shown in [74,
Theorem 5.6], (κ2, τb) is κ-compact3 (i.e. such that every τb-open covering of
κ2 has a subcovering of size <κ) if and only if κ is a weakly compact cardinal.

3In general topology, κ-compact spaces are also called κ-Lindelöf.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



3.2. *MORE ON 2κ 35

(ii) By (c) and (d) of Proposition 3.12, the space (κ2, τp) with ω < κ ≤ |ω2|
witnesses (in ZF) the well-known fact that separability does not imply second
countability. Notice that the converse implication “a second countable space is
separable” is equivalent to ACω: given nonempty sets An, endow X :=

⋃
n An

with the topology generated by the An’s so that X is second countable. Then
any function enumerating a dense subset of X yields a choice function for the
An’s. (The other direction of the equivalence is immediate.)

(iii) Part (e) of Proposition 3.12 shows that the separability of (ω12, τp) is inde-
pendent of ZF+ DC.

(iv) The proof of part (e) of Proposition 3.12 also shows that if A is arbitrary, X

is a separable space, and AX is endowed with the product topology,
AX is separable ⇔ |A| ≤ |ω2|.

Thus the Perfect set Property PSP (which follows from AD) implies that the

space AX is separable if and only if |A| ≤ ω or |A| = |ω2|.
(v) The techniques of classical descriptive set theory heavily rely on the existence

of a (complete) metric, and hence by part (h) of Proposition 3.12 they cannot
be directly applied to κ2 with τp, τλ, and τb when κ > ω. In fact only a
handful of “positive” results can be generalized to e.g. (κ2, τb) (see [21,74]).

(vi) If cof(κ) < κ then the collection of clopen sets Ccof(κ) and Cb are distinct
cof(κ)-algebras, since Bb ⊆ Cb and by the proof of Lemma 3.4(c) there are
sets in Bb that are not τcof(κ)-open.

Proposition 3.14. Let λ < κ be uncountable cardinals, and work in κ2. As-
sume ACω(R). There is a set which is τλ-open and τb-open, and it is not τp-Borel.

Before starting the proof, let’s fix a bit of notation: if ν ≤ μ are infinite
cardinals, the inclusion map i : ν2 ↪→ μ2 is the identity if ν = μ, and it is the
map x �→ x�0(μ) if ν < μ.

Proof. By ACω(R) there is a non-Borel set A ⊆ ω2. Then U :=
⋃

s∈A Nκ
s is

a τλ-open subset of κ2. As the inclusion map (ω2, τp) ↪→ (κ2, τp) is continuous and
since the generalized pointclassB is boldface, then U cannot be Borel in (κ2, τp). �

Using the arguments above, one can prove the next result describing the con-
tinuous functions between generalized Cantor spaces.

Proposition 3.15. Let λ ≤ cof(κ) and λ′ ≤ cof(κ′) with κ ≤ κ′ cardinals, and

let i : κ2 ↪→ κ′
2 be the inclusion map. Then

(a) i : (κ2, τλ) ↪→ (κ
′
2, τλ′) is continuous if and only if λ′ ≤ λ. Therefore i is

continuous when κ′
2 is topologized with τp and κ2 is topologized with any of

τp, τλ, τb.

(b) If κ′
2 is given the bounded topology, then i is continuous if and only if κ = κ′.

(c) i : (κ2, τb) ↪→ (κ
′
2, τλ′) is continuous if and only if λ′ ≤ cof(κ).
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CHAPTER 4

Generalized Borel sets

4.1. Basic facts

4.1.1. α-Borel sets. The following definition introduces a natural generaliza-
tion of the notion of Borel subset of a topological space. It plays a central role in
the analysis of models of AD, but it is also of primary interest in other areas of set
theory and in general topology.

Definition 4.1. If X = (X, τ ) is a topological space and α an ordinal, the
collection of α-Borel sets (with respect to τ) is

Bα(X, τ ) := Alg(τ, α),

the smallest family of subsets of X containing all τ -open sets and closed under
the operations of complementation and well-ordered unions of length <α. A set is
∞-Borel (with respect to τ) if it is α-Borel (with respect to τ ) for some α, i.e. if
it belongs to B∞(X, τ ) :=

⋃
α∈Ord Bα(X, τ ). As usual when drop the reference to

X and/or τ when there is no danger of confusion.

Using the stratification of Alg(τ, α) in terms of the subcollections Σγ(τ, α)
described in Section 2.4, it is easy to check that that the operation Bα assigning
to each nonempty topological space (X, τ ) the collection Bα(X, τ ) of its α-Borel
subsets is a hereditary general boldface pointclass.

Remarks 4.2. (i) If α ≤ α′ and τ ⊆ τ ′ then Bα(X, τ ) ⊆ Bα′(X, τ ′).
(ii) Both expressions Bα+1(X, τ ) and Bα+(X, τ ) denote the same collection of

subsets of X, but the former is often preferable when discussing models of set
theory, since the term α+ 1 is absolute, while α+ is not.

(iii) Bω1
(X, τ ) = Bω+1(X, τ ) is the usual collection of Borel subsets ofX = (X, τ ).

The notion of α-Borel set can be trivial under choice. For example any sub-
set of an Hausdorff space X is in Bα(X) if α > |X|, and therefore AC implies
that B∞(X) = P(X). On the other hand, Theorem 4.18 below shows that
Bκ+1(

κ2, τb) �= P(κ2) holds in ZFC, i.e. that Bκ+1(
κ2, τb) is never a trivial class.

The situation in the AD-world is more subtle: B∞(ω2) = P(ω2) holds in every
known model of AD, and in fact the received opinion is that this must always be
the case — this is one-half of the well-known conjecture that AD ⇒ AD+ (see
Section 9.4). Recall from Section 2.5.3 that the length of a prewellordering � is the
length of the associated regular norm; this ordinal is denoted by lh(�).

Definition 4.3. Θ := sup{α ∈ Ord | there exists a surjection f : R � α}.
Equivalently

Θ := sup {lh(�) | � is a prewellordering of R} ,
and R can be replaced by any uncountable Polish space such as ω2 or ωω.

37
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38 4. GENERALIZED BOREL SETS

It is an easy exercise to show (in ZF) that Θ is a cardinal, while using choice
Θ = (2ℵ0)+. In contrast, the following theorem of H. Friedman shows that Θ is
a limit cardinal under AD (see [47, Theorem 28.15] or [72, Exercise 7D.19] for a
proof).

Theorem 4.4 (AD). If λ < Θ, then R � P(λ). In particular, λ+ < Θ for all
λ < Θ.

In fact, AD implies that Θ is quite large (e.g. larger than the first fixed point of
the ℵ-sequence), it has lot of measurable cardinals below it, and so on. For a proof
of these results see e.g. [72] and the references contained therein.

Under AD it is no longer true that successor cardinals are regular — see Sec-
tion 4.2. The next result shows that the regular cardinals are cofinal in Θ.

Lemma 4.5. Assume AD. For all α < Θ there is a regular cardinal α ≤ λ < Θ.

Sketch of the proof. Let Γ := posΣ1
1(�) be defined as in [72, Section 7C],

where � is a prewellordering of ωω of length α. Then Γ is ω-parametrized, so
ωω � Γ where Γ is the boldface version of Γ as defined in [72, Section 3H]. Since
Γ satisfies the hypotheses of [72, Theorem 7D.8], then

λ := sup{β ∈ Ord |β is the length of a strict well-founded relation in Γ

with field in ωω}
is a regular cardinal. Notice that λ < Θ, and that α ≤ λ by our choice of �. �

Proposition 4.6 (AD). If κ < Θ is an infinite cardinal, then R � Bκ+1(
ω2),

and hence Bκ+1(
ω2) �= P(ω2).

Proof. By Lemma 4.5 let κ < λ < Θ be regular. By Lemma 2.3 we have that
<λ

(ω2) � Bκ+1(
ω2), so it is enough to show that ω2 � <λ

(ω2). This follows from
<λ(ω2) � λ×ω2 � λ2 and Theorem 4.4. �

4.1.2. Borel codes. Let X = (X, τ ) be a topological space and let S be a
basis for τ . An α-Borel code is a pair C = (T, φ) where T is a well-founded
descriptive set-theoretic tree (of height ≤ ω) on some β < α and φ : T →P(X) is
a map such that

φ(t) ∈ τ , if t is a terminal node of T,(4.1a)

φ(t) = X \
⋂
{φ(s) | s is an immediate successor of s in T} , otherwise.(4.1b)

The code C canonically determines a set φ(∅) ∈ Bα(X, τ ), called the α-Borel set
coded by C. A set coded by some C is called an effective α-Borel set , and

Be
α(X, τ )

is the collection of all these sets. If condition (4.1a) is strengthened to

(4.1c) φ(t) ∈ S, if t is a terminal node of T,

we say that the code (T, φ) takes values in S, and write

Be
α(X,S)

for the collection of sets admitting such a code. (As usual, we drop X, τ or S from
our notation when they are clear from the context.)
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Remarks 4.7. (i) The relation x ∈ φ(C) is absolute for transitive models of
enough set theory containing x and C, thus “effective Borelness” is a more
robust notion than that of “Borelness”. Clearly

Be
α(X, τ ) ⊆ Bα(X, τ ),

and the converse inclusion holds under AC. On the other hand, if choice fails
badly the two notions can be quite different — Be

α(R) is always a surjective
image of R if α is countable,1 but in the Feferman-Lévy model (where R is a
countable union of countable sets) it is true that Bω+1(R) = P(R).

(ii) It is immediate that Be
α(X,S) ⊆ Be

α(X, τ ), but the reverse inclusion need not
hold, even if AC is assumed. The problem is that Be

α(X,S) ⊆ Alg(S, α) (and
in fact equality holds under AC), and in order to show that τ ⊆ Alg(S, α),
one needs some further assumptions on the size of a basis of τ . For example,
if (X, τ ) := (κ2, τp) and S := Bp, then ZF proves |Bp| = κ and

Be
κ+1(Bp) = Be

κ+1(τp).

On the other hand, if (X, τ ) := (κ2, τb) and S := Bb, then working in ZFC+

2(2
<κ) > 2κ we have that |τb| = 2(2

<κ) by Lemma 3.10(b) and |Alg(Bb, κ+1)| =
2κ by |Bb| = 2<κ and Lemma 2.3, whence τb � Alg(Bb, κ+ 1) and

Bκ+1(τb) = Be
κ+1(τb) �= Bκ+1(Bb).

Similarly, if (X, τ ) := (κ2, τλ) with ω < λ ≤ cof(κ) and S := Bλ, then

assuming ZFC + 2(2
<λ) > 2κ we have that τλ � Alg(Bλ, κ + 1) and thus

Bκ+1(τλ) = Be
κ+1(τλ) �= Bκ+1(Bλ).

The notion of α+ 1-Borel set can be extended to the case when the ordinal α
is replaced by an arbitrary set.

Definition 4.8. Let X = (X, τ ) be a topological space and let J be an arbi-
trary set.

(i) BJ+1(X, τ ) is the smallest collection of subsets of X, containing all open
sets, and closed under complements and unions of the form

⋃
j∈J Yj with

{Yj | j ∈ J} ⊆ BJ+1(X).
(ii) A code (T, φ) for A ∈ BJ+1(X, τ ) is a well-founded descriptive set-theoretic

tree T (of height ≤ ω) on J together with a map φ with domain T satisfy-
ing (4.1a)–(4.1b), and such that φ(∅) = A. The family of all A ∈ BJ+1(X, τ )
which admit a code is denoted withBe

J+1(X, τ ), and if the codes satisfy (4.1c),
we write Be

J+1(X,S).

The family BJ+1(X) is closed under unions of the form
⋃

j′∈J′ Yj′ where J ′ is

a surjective image of J ; the same applies to Be
J+1(X) provided codes for the Yj′

are explicitly given. Note that

Be
J+1(X,S) ⊆ Be

J+1(X, τ ) ⊆ BJ+1(X, τ ).

Lemma 4.9. Let J := <κ2.

(a) Be
J+1(

κ2, τp) = Be
J+1(

κ2, τb) and BJ+1(
κ2, τp) = BJ+1(

κ2, τb).
(b) Be

κ+1(
κ2, τb) ⊆ Be

J+1(
κ2, τp) and Bκ+1(

κ2, τb) ⊆ BJ+1(
κ2, τp).

1Every effective ω + 1-Borel code for a subset of a second countable topological space is
obtained from a tree on ω, and hence, using the bijection between <ωω and ω, its characteristic
function can be identified with an element of ω2.
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Proof. (a) Any τb-basic open set Ns is the intersection of a <κ-sequence
of τp-basic open sets, in particular it is effective κ + 1-Borel (and therefore also
effective <κ2 + 1-Borel, as <κ2 � κ) with respect to τp. If U is τb-open, then
U =

⋃
s∈S Ns where S := {s ∈ <κ2 | Ns ⊆ U}, and from S a code witnessing that

U is effectively <κ2 + 1-Borel with respect to τp can be constructed, without any
appeal to choice principles. Therefore every (effective) <κ2 + 1-Borel set in the
topology τb is (effective) <κ2 + 1-Borel in the topology τp. The other inclusion
follows from τp ⊆ τb.

(b) follows from (a) and J = <κ2 � κ. �

Corollary 4.10 (AC). If 2<κ = κ, then Bκ+1(
κ2, τp) = Bκ+1(

κ2, τb).

Notice that Corollary 4.10 applies to any cardinal (not just the regular ones). In
particular in models of GCH the κ+1-Borel sets of κ2 with respect to the topologies
τp, τλ, and τb are the same. This should be contrasted with the results on κκ —
see Remark 6.3(iii).

4.2. Intermezzo: the projective ordinals

Proposition 4.6 shows that under AD each general boldface pointclass Bα is
proper, as long as α < Θ. If α is an odd projective ordinal then Bα(

ω2) can be
pinned-down in the projective hierarchy.

Definition 4.11. Given any boldface pointclass Γ, let

δΓ := sup {lh(�) | � is a prewellordering of R in ΔΓ} .
For ease of notation set

δ1n := δΣ1
n

and δ21 := δΣ2
1
.

The δ1n are called projective ordinals.

In the definition above, the set R can be replaced by any other uncountable
Polish space, such as ω2 or ωω, and the pointclass Γ could be replaced with its dual

Γ̆, i.e. δΓ = δΓ̆. In particular δ1n = δΠ1
n
and δ21 = δΠ2

1
. Since the initial segments

of the prewellordering induced by a Γ-norm are in ΔΓ, we have the following

Fact 4.12. The length of a Γ-norm on a set A ∈ Γ(ωω) is ≤ δΓ, and if the
length is δΓ then A /∈ΔΓ(

ωω).

In other words: the ordinal δΓ cannot be attained by a ΔΓ prewellordering of
a set in ΔΓ. For example: from ZF + ACω(R) it follows that δ11 = ω1, and hence
every Π1

1-norm on ω2 (equivalently: every Δ1
1 prewellordering of ω2) has countable

length, but there are Π1
1-norms on (proper) Π1

1 sets of length ω1.
The ordinal δΓ carries a lot of information on the nature of the pointclass

Γ. In particular, the projective ordinals can be used to describe the projective
pointclasses. For example Martin and Moschovakis proved that under AD+ DC

(4.2) Bδ1
2n+1

(ω2) = Δ1
2n+1.

By the late 70’s it became clear that most of the structural problems on the pro-
jective pointclasses can be reduced to questions regarding the projective ordinals,
and the computation (under AD) of the δ1n in terms of the ℵ-function came to the
fore as a crucial problem. Recall that δ11 = ω1. Martin proved that AD implies that
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δ12 = ω2, δ
1
3 = ℵω+1, and δ14 = ℵω+2. By work of Kechris, Martin and Moschovakis

(see [51]), assuming AD:

(A) all δ1n’s are regular cardinals,2 in fact measurable cardinals;
(B) δ12n+2 = (δ12n+1)

+;

(C) δ12n+1 = (λ2n+1)
+, where λ1

2n+1 is a cardinal of countable cofinality.

Recall that κ is measurable if there is a κ-complete non-principal ultrafilter on κ.
The theory ZF proves that if κ is measurable, then it is regular (and therefore it is
a cardinal), but under AD measurable cardinals need not to be limit cardinals, and
successor cardinals need not to be regular: for example ω1 and ω2 are measurable,

and for n ≥ 3 the ωn’s are singular of cofinality ω2. Working in ZFC+ ADL(R), no
(ωn)

L(R) can be a cardinal for n ≥ 3, neither can be (ℵω)L(R), and hence

(4.3) δ13 = (ℵω+1)
L(R) ≤ ℵ3.

By (B) and (C) the computation of the projective cardinals in models of de-
terminacy boils down to determine the value of λ1

2n+1 or, equivalently, of δ12n+1 for
n ≥ 2. This was achieved by Jackson [43] who proved the general formula

λ1
2n+1 = ℵγ(2n−1)

where
γ(1) = ω and γ(n+ 1) = ωγ(n).

En route to proving these results, Jackson verified that every regular cardinal
smaller than δω := supn δ

1
n = ℵε0 is measurable, and was able to compute ex-

actly all these cardinals: between δ12n+1 and δ12n+3 there are 2n+1 − 1 regular (in

fact: measurable) cardinals. From this it follows that δ12n+1 is the (2n+1 − 1)-st
uncountable regular cardinal. By these results, and arguing as for (4.3) we obtain:

Corollary 4.13. Work in ZFC and suppose there is an inner model containing
all reals and satisfying AD. Then δ12n+1 ≤ ℵ2n+1−1.

Remark 4.14. Since δ1n < Θ ≤ (2ℵ0)+, (4.3) and Corollary 4.13 become trivial
if the continuum is small. On the other hand, if the continuum is large, then by (4.2)
large cardinals imply that every projective set is in Bℵω

(ω2).

4.3. *More on generalized Borel sets

4.3.1. The (generalized) Borel hierarchy. The collectionB(X) of all Borel
subsets of a topological space (X, τ ) is stratified in a hierarchy by Σ0

α(X) and
Π0

α(X). A similar result holds for generalized Borel sets: in fact Bκ+1(X) is the
smallest κ + 1-algebra on X containing τ , so with the notation of Section 2.4,
Bκ+1(X) =

⋃
α∈Ord Σα(τ, κ + 1) =

⋃
α∈Ord Πα(τ, κ + 1). For the sake of unifor-

mity of notation, when X = κ2 with the bounded topology, we write Σ0
α(τb) and

Π0
α(τb) instead of Σα(τb, κ+ 1) and Πα(τb, κ+ 1).
A standard result in classical descriptive set theory is that if X is an un-

countable Polish space, then the Borel hierarchy
〈
Σ0

α(X) | 1 ≤ α < ω1

〉
does not

collapse,3 i.e. Σ0
α(X) ⊂ Σ0

β(X) for 1 ≤ α < β < ω1. This follows from the fact

that each Σ0
α(

ωω) has a universal set (Section 2.5.2). Generalizing this notion,
given a boldface pointclass Γ and a topological space X, a set U ∈ Γ(X × X) is

2Thus the δ1
n are also called projective cardinals.

3At least assuming ACω(R) — see [70].
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42 4. GENERALIZED BOREL SETS

universal for Γ(X) if Γ(X) = {U (y) | y ∈ X} where U (y) := {x ∈ X | (x, y) ∈ U}.
Corollary 4.16 below shows that for κ2 with the bounded topology, there may be no
universal sets for Σ0

α(τb), but nevertheless the hierarchy does not collapse (Propo-
sition 4.19).

Lemma 4.15. In the space (κ2, τb), for every 1 ≤ α < β ∈ Ord

Σ0
α(τb) ∪Π0

α(τb) ⊆ Σ0
β(τb) ∩Π0

β(τb).

Proof. By Lemma 2.2 it is enough to show that τb = Σ0
1(τb) ⊆ Σ0

2(τb). Given
U open and ν < κ, the set Dν :=

⋃
{Ns | Ns ⊆ U ∧ lh(s) = ν} is τb-clopen, and

since U =
⋃

ν<κDν , then U ∈ Σ0
2(τb). �

Corollary 4.16. Assume AC and that 2κ < 2(2
<κ). Then for 1 ≤ α < κ+,

neither Σ0
α(τb) nor Π0

α(τb) have a universal set.

Proof. By Lemmas 3.10(b) and 4.15, Σ0
α(τb) has size ≥ 2(2

<κ), while{
U (y) | y ∈ κ2

}
has size ≤ 2κ for all U ⊆ κ2 × κ2. The case of Π0

α(τb) follows
by taking complements. �

Note that Corollary 4.16 applies e.g. when κ = ω1 and MAω1
holds.

Although there may be no universal sets for Σ0
α(τb) and Π0

α(τb), we always
have ≤κ

L-complete sets for such classes. (We use here the notation and terminology
from Section 3.2.1.) For x, y ∈ κ2, let x⊕ y ∈ κ2 be defined by

(x⊕ y)(α) :=

{
x(β) if α = 2β

y(β) if α = 2β + 1.

For A ⊆ κ2 and x ∈ κ2, let

x⊕A := {x⊕ a | a ∈ A} ⊆ κ2.

Using games, it is easy to check that A ≤κ
L x⊕A and that if A has empty interior,

then x⊕A ≤κ
W A.

Lemma 4.17 (AC). Consider the space (κ2, τb). There is a sequence
〈Aα | 1 ≤ α < κ+〉 such that each Aα ⊆ κ2 is ≤κ

L-complete for Σ0
α(τb).

Proof. The set A1 := κ2 \ {0(κ)} is open, and if U is open then II wins
GL(U,A1) by playing 0’s as long as I has not reached a position s ∈ <κ2 such
that Ns ⊆ U — if this ever happens then II plays a 1 and then plays an arbitrary
sequence.

Suppose α > 1. Choose 〈αν | ν < κ〉 such that 1 ≤ αν < α, α = supν<κ(αν+1),
and

|{ν < κ | αν = γ}| ∈ {0, κ}
for all γ < α. Let pν :

κ2 � κ2 be the map pν(x)(β) := x(〈ν, β〉), where 〈·, ·〉 is the
pairing map of (2.1). Let

Aα := {x ∈ κ2 | ∃ν < κ (pν(x) ∈ κ2 \Aαν
)} .

As each pν is continuous, Aα ∈ Σ0
α(τb), so it is enough to show that B ≤κ

L Aα for all

B ∈ Σ0
α(τb). Suppose B =

⋃
ξ<κ Bξ with Bξ ∈ Π0

βξ
(τb) and βξ < α. Let g : κ � κ
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be such that βξ ≤ αg(ξ) — such a g exists by our choice of the αν ’s. Construct a
sequence of Lipschitz functions 〈fν | ν < κ〉 as follows:

if ν ∈ ran g and g(ξ) = ν, then fν witnesses Bξ ≤κ
L

κ2 \Aαν
;(4.4a)

if ν /∈ ran g, then fν is constant and takes value in Aαν
.(4.4b)

The specific bijection 〈·, ·〉 maps κ× κ onto κ and guarantees that the function

f : κ2→ κ2, f(x)(〈ν, β〉) := (fν(x))(β)

is Lipschitz and since pν(f(x))(β) = f(x)(〈ν, β〉) = fν(x)(β), then

∀ν < κ [pν(f(x)) = fν(x)] .

If x ∈ B then x ∈ Bξ for some ξ < κ, so fν(x) /∈ Aαν
by (4.4a) where ν := g(ξ),

and hence f(x) ∈ Aα. Conversely, if pν(f(x)) /∈ Aαν
for some ν < κ, then ν ∈ ran g

by (4.4b), thus ν = g(ξ) for some ξ, and hence x ∈ Bξ by the choice of fν and
therefore x ∈ B. This completes the proof that ∀x ∈ κ2 [x ∈ B ⇔ f(x) ∈ Aα]. �

Note that by Lemma 4.15, if Aα, Aβ are as in Lemma 4.17 then Aα ≤κ
L Aβ for

1 ≤ α ≤ β < κ+.

Theorem 4.18 (AC). For every infinite cardinal κ, Bκ+1(
κ2, τb) �= P(κ2).

Proof. Let 〈rα | α < κ+〉 be distinct elements of κ2. Let

A :=
⋃

α<κ+

rα ⊕Aα

where Aα is as in Lemma 4.17. By Proposition 3.9(a) it is enough to check that A
is ≤κ

L-hard for Bκ+1(
κ2, τb). If B ∈ Bκ+1(

κ2, τb) then B ∈ Σ0
α(τb) for some α < κ+,

and hence B ≤κ
L Aα by Lemma 4.17. Since Aα ≤κ

L A we are done. �

Proposition 4.19 (AC). Consider the space (κ2, τb) and let 1 ≤ α < β < κ+.
Then Σ0

α(τb) �= Π0
α(τb) and Σ0

α(τb) ⊂ Σ0
β(τb).

Proof. For the first part, argue by contradiction and use Lemma 4.17 and
Proposition 3.9(b). The second part follows from the first one and Lemma 4.15. �

This shows that, under AC, the κ+1-Borel hierarchy on (κ2, τb) never collapses,
independently of the choice of the cardinal κ. However, note that Σ0

1(τb) �= Π0
1(τb)

already holds in ZF since e.g. κ2 \ {0(κ)} is open but not closed.
As for the classical case κ = ω, using the fact that the classesΣ0

α(τb) andΠ0
α(τb)

are closed under continuous preimages, we get the following corollary, which is a
strengthening of Proposition 3.9(b) for the special case S := Bκ+1(

κ2, τb).

Corollary 4.20. There is no ≤κ
W-complete set for Bκ+1(

κ2, τb), i.e. there
is no A ∈ Bκ+1(

κ2, τb) such that B ≤κ
W A for every B ∈ Bκ+1(

κ2, τb).

4.3.2. Cardinality of Bκ+1. Cardinality considerations may be useful to
show that the notion of κ+ 1-Borelness is nontrivial.

Proposition 4.21 (AC). Let κ be an infinite cardinal.

(a) |Bκ+1(
ω2)|=min{2κ, 2(2ℵ0 )}. Therefore 2κ < 2(2

ℵ0 ) ⇔ |Bκ+1(
ω2)|< |P(ω2)|.

(b) |Bκ+1(
κ2, τp)| = 2κ = |τp|. Therefore |Bκ+1(

κ2, τp)| < 2(2
κ), and hence, in

particular, Bκ+1(
κ2, τp) �= P(κ2).
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(c) |Bκ+1(
κ2, τb)| = 2(2

<κ) = |τb|. Therefore 2(2
<κ) < 2(2

κ) ⇔ |Bκ+1(
κ2, τb)| <

|P(κ2)|.
Proof. (a) |Bκ+1(

ω2)| ≤ (2ℵ0)κ = 2κ by Lemma 2.3(b), and sinceBκ+1(
ω2) ⊆

P(ω2) then

|Bκ+1(
ω2)| ≤ min{2κ, 2(2ℵ0)}.

To prove the reverse inequality we take cases. If κ ≥ 2ℵ0 then Bκ+1(
ω2) = P(ω2),

and we are done. If κ < 2ℵ0 , let 〈xα | α < κ〉 be distinct elements of ω2: then the
map P(κ)→ Bκ+1(

ω2), A �→ {xα | α ∈ A} is injective.
(b) By Lemmas 3.10(a) and 2.3, we get 2κ = |τp| ≤ |Bκ+1(

κ2, τp)| ≤ (2κ)κ = 2κ.

(c) By Lemmas 3.10(b) and 2.3, and by κ ≤ 2<κ, we get 2(2
<κ) = |τb| ≤

|Bκ+1(
κ2, τb)| ≤ (2(2

<κ))κ = 2(2
<κ). �

Remark 4.22. By parts (b) and (c) of Proposition 4.21, if 2κ < 2(2
<κ) (which

follows from MAω1
when κ = ω1) then Bκ+1(

κ2, τp) �= Bκ+1(
κ2, τb). This should

be contrasted with Corollary 4.10.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



CHAPTER 5

Generalized Borel functions

5.1. Basic facts

5.1.1. Borel measurable functions. We now turn to α-Borel measurable
functions between generalized Cantor spaces. Unless otherwise explicitly stated (see
e.g. the definition of a weakly S-measurable function below), in this section such
spaces are tacitly endowed with the bounded topology τb, so that all other derived
topological notions (such as α-Borelness, and so on) refer to such topology.

Definition 5.1. Let λ, μ be infinite cardinals, let f : λ2 → μ2, and let S ⊆
P(λ2) be an algebra.

• f is S-measurable if and only if the preimage of every τb-open subset of μ2 is
in S.
• f is weakly S-measurable if and only if the preimage of every τp-open subset
of μ2 is in S.
• If α is an infinite ordinal and S = Bα(

λ2), a (weakly) S-measurable function is
called a (weakly) α-Borel function. Therefore f is an α-Borel function if and
only if f−1(B) ∈ Bα(

λ2) for every B ∈ Bα(
μ2).

If in Definition 5.1 α-Borel sets are replaced with their effective versions, we get
the notion of effective (weakly) α-Borelness for functions f : λ2 → μ2. As for
the case of sets, this notion coincides with its non-effective version under AC, but it
may be a stronger notion in a choice-less world. Every (effective) α-Borel function
is (effective) weakly α-Borel because τb refines τp. On the other hand, if f : λ2→ μ2
is weakly α-Borel, then f might fail to be α-Borel (see Proposition 5.2(b) below),
but if α ≥ μ then at least all preimages of τb-basic open sets of μ2 are in Bα(

λ2),
that is

∀U ∈ Bb(μ2)
(
f−1(U) ∈ Bα(

λ2)
)
.

(Use the fact that every τb-basic open set of μ2 can be written as an intersection of
< μ-many τp-clopen sets). This also implies that when α > μ, then the preimage
under f of any set in the μ+1-algebra1 Bμ+1(Bb) on μ2 generated by the canonical

basis Bb(μ2) belongs to Bα(
λ2).

Proposition 5.2(a) shows that under AC the notions α-Borel and weakly α-Borel
may also coincide if certain cardinal conditions are satisfied.

Proposition 5.2. Let λ, μ be cardinals, f : λ2→ μ2, and α ≥ ω.

1In [21, Definition 15] the authors call (μ + 1-)Borel sets the elements of Bμ+1(Bb), rather
than those in Bμ+1(τb), thus the functions f : μ2 → μ2 which are weakly μ + 1-measurable in
our sense are still (generalized) Borel functions in their sense. Note that Definition 15 of [21]
coincides with our Definition 4.1 when μ<μ = μ, which is the setup of that paper.

45
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46 5. GENERALIZED BOREL FUNCTIONS

(a) Assume AC. If 2<μ = μ < α and f is (effective) weakly α-Borel, then f is
(effective) α-Borel. In particular, if μ = ω (here we do not need AC), or if
CH holds and μ = ω1, then f is (effective) weakly α-Borel if and only if f is
(effective) α-Borel.

(b) If λ < μ and Bα(
λ2) �= P(λ2), then the inclusion map i : λ2 ↪→ μ2 is weakly

α-Borel but not α-Borel.

Proof. Part (a) easily follows from the fact that Bb(μ2) has size 2<μ.

(b) The inclusion function is not α-Borel by an argument as in Proposition 3.14.
By Lemma 3.15(a) we get that i : (λ2, τb) ↪→ (μ2, τp) is continuous, and hence i is
trivially weakly α-Borel. �

Since the inclusion map of part (b) of Proposition 5.2 is arguably one of the
simplest functions that one may want to consider, this suggests that weakly α-
Borelness is a more natural and appropriate notion of topological complexity for
functions λ2→ μ2 when λ < μ. On the other hand, it seems that in general there is
no obstruction to the possibility of considering the stronger notion of α-Borelness
when λ ≥ μ (we come back to this point at the beginning of Section 14.1).

As the name suggests, the notion of weakly α-Borelness is quite weak. In
fact there are situations where it becomes vacuous, i.e. every function is weakly α-
Borel. Proposition 5.5 shows that the existence of a non-weakly α-Borel f : λ2→ μ2
depends only on λ and α.

5.1.2. Γ-in-the-codes functions. When considering projective levels in
models of AD, it is natural to code functions of the form f : ω2 → κ2 (for suit-
able κ < Θ) as subsets of (products of) ω2 and ωω, and then require that such a
code be in the projective pointclass under consideration. More precisely, we have
the following general definition, which makes sense in arbitrary models of ZF. To
simplify the presentation, we say that ρ is a Γ-code for κ if ρ is a Γ-norm of length
κ on some A ∈ Γ(ωω).

Definition 5.3. Let Γ be a boldface pointclass, let κ be an infinite cardinal,
and assume that there is a Γ-code ρ for κ. We say that the function f : ω2 → κ2
is Γ-in-the-codes (with respect to ρ) if there is F ∈ Γ(ω2× ωω × 2) such that for
every α < κ and i ∈ 2

f−1(Ñκ
α,i) = {x ∈ ω2 | ∃y ∈ A (ρ(y) = α ∧ (x, y, i) ∈ F )} ,

where Ñκ
α,i is defined as in Remark 3.2(ii).

Remarks 5.4. (i) As we shall see in Remark 5.11(ii), Definition 5.3 does not
really depend on the choice of ρ when Γ is sufficiently closed.

(ii) If there is a Γ-code ρ for κ, then κ ≤ δΓ (see Definition 4.11). Indeed, if α < κ
and z ∈ A is such that ρ(z) = α, then the prewellordering

x � y ⇔
[
y ∈ A ∧ ρ(y) < ρ(z)⇒ x ∈ A ∧ ρ(x) ≤ ρ(y)

]
is in ΔΓ and has length α + 1. On the other hand, if κ < δΓ then there is
a Γ-code ρ for κ: it is enough to let ρ be the Γ-norm associated to any ΔΓ

prewellordering of ωω of length κ, which exists by κ < δΓ.
(iii) Let Γ ⊆ Γ′ be boldface pointclasses. If there is a Γ-code for κ, then there is

also a Γ′-code for any κ′ ≤ κ.
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If Γ = Σ1
1 in Definition 5.3, then κ = δ11 = ω by Remark 5.4(ii) and [72,

Theorem 4A.4], and therefore a function f : ω2 → ω2 is Σ1
1-in-the-codes if and

only if it is (ω + 1-)Borel measurable. More generally, if Γ is a nontrivial boldface
pointclass closed under projections and countable intersections (e.g. if Γ = Σ1

n for
some n ≥ 1), then for all f : ω2→ ω2

f is Γ-in-the-codes ⇔ f is Γ-measurable ⇔ f is ΔΓ-measurable.

To see this, use the fact that under the hypotheses above we have that f is Γ-
measurable if and only if the graph of f is in Γ(ω2×ω2). This result can be partially

generalized to uncountable κ’s. In fact, since ω2 \ f−1(Ñκ
α,i) = f−1(Ñκ

α,1−i), if Γ
is closed under projections and finite intersections then

(5.1) f : ω2→ κ2 is Γ-in-the-codes ⇒ ∀α < κ∀i ∈ {0, 1}
(
f−1(Ñκ

α,i) ∈ΔΓ

)
.

Lemma 5.8 and Proposition 5.10 below show that for certain Γ’s, the implication
can be reversed.

5.2. *Further results

Proposition 5.5. For α an infinite ordinal, the following are equivalent:

(a) Bα(
λ2) �= P(λ2),

(b) for all cardinals μ there is an f : λ2→ μ2 which is not weakly α-Borel,
(c) there is a cardinal μ and there is an f : λ2→ μ2 which is not weakly α-Borel.

Proof. If A ⊆ λ2 is not in Bα(
λ2), then picking distinct y0, y1 ∈ μ2 one easily

sees that the function mapping the points in A to y1 and the points in λ2 \A to y0
is not weakly α-Borel. This proves that (a)⇒(b).

Since (b)⇒(c) is trivial, it is enough to prove that (a) follows from (c): but this
is easy, as if f : λ2→ μ2 is not weakly α-Borel then by definition f−1(U) /∈ Bα(

λ2)
for some τp-open U ⊆ μ2. �

We are mainly interested in (weakly) κ + 1-Borel functions between the Can-
tor space ω2 and (a homeomorphic copy of) κ2, with κ > ω a cardinal. From
Propositions 4.21 and 5.5 we obtain

Corollary 5.6. Assume AC.

(a) If κ ≥ 2ℵ0 , then every f : ω2→ κ2 is κ+ 1-Borel.

(b) If 2κ < 2(2
ℵ0 ), then there is an f : ω2→ κ2 which is not weakly κ+ 1-Borel.

(c) If 2(2
<κ) < 2(2

κ), then there is an f : κ2→ ω2 which is not weakly κ+1-Borel.

Since κ+1-Borel functions are in particular weakly κ+1-Borel, we could have
removed the adjective “weakly” in parts (b) and (c) of Corollary 5.6.

From Propositions 4.6 and 5.5 and equation (4.2) on page 40 we obtain

Corollary 5.7. Assume AD.

(a) If κ < Θ, then there is an f : ω2→ κ2 which is not weakly κ+ 1-Borel.
(b) If κ = λ1

2n+1 as defined in condition (C) on page 41, then f : ω2 → κ2 is

(weakly) κ+ 1-Borel if and only if it is (weakly) Δ1
2n+1-measurable.

We now turn our attention to Γ-in-the-codes functions.
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Lemma 5.8. Let Γ be a nontrivial boldface pointclass closed under projections
and finite intersections and unions. Let κ be an infinite cardinal, and suppose that
Γ is closed under well-ordered unions of length κ and that there is a Γ-code ρ for
κ. Then for every f : ω2→ κ2 the following are equivalent:

(a) f is Γ-in-the-codes (with respect to ρ);

(b) f−1(Ñκ
α,i) ∈ΔΓ for every α < κ and i = 0, 1;

(c) f−1(U) ∈ΔΓ for every U ∈ Bp(κ2).

Proof. The equivalence between (b) and (c) is easy, while (b) follows from (a)
by equation (5.1). So it is enough to show that (b) implies (a). If ρ is as in
the hypotheses and A ∈ Γ(ωω) is its domain, it is enough to prove that the set⋃

α<κ,i∈2 f
−1(Ñκ

α,i)×{y ∈ A | ρ(y) = α}×{i} is in Γ. But this easily follows from

the fact that by (b) each f−1(Ñκ
α,i)×{y ∈ A | ρ(y) = α}×{i} belongs to ΔΓ ⊆ Γ,

together with the fact that Γ is closed under well-ordered unions of length κ. �

Lemma 5.9 (AD+ DC). Let Γ be a nontrivial boldface pointclass closed under
projections, countable unions, and countable intersections. Let κ be an infinite
cardinal, and suppose that there is a Γ-code for κ. Then Γ is closed under well-
ordered unions of length κ.

Proof. Let ρ be a Γ-code for κ and A ∈ Γ(ωω) be its domain. Recall from
Remark 5.4(ii) that the existence of such a ρ implies κ ≤ δΓ. If κ < δΓ we can
apply Moschovakis’ Coding Lemma (see [72, Lemmas 7D.5 and 7D.6]). If κ = δΓ,
then A /∈ Γ̌(ωω) by Fact 4.12 and by Wadge’s lemma every B ∈ Γ(ωω) is of the
form g−1(A) for some continuous function g : ωω → ωω, and hence ρ ◦ g is a Γ-
norm on B. Therefore the pointclass Γ has the prewellordering property, and since
Γ is assumed to be closed under projections and A witnesses Γ(ωω) �= Γ̌(ωω),
this implies that Γ is closed under well-ordered unions of arbitrary length by e.g.
[44, Theorem 2.16]. �

Thus in the AD world Lemma 5.8 can be reformulated as follows.

Proposition 5.10 (AD+DC). Let Γ be a nontrivial boldface pointclass closed
under projections, countable unions, and countable intersections. Let κ be an infi-
nite cardinal, and suppose that there is a Γ-code ρ for κ. Then for every f : ω2→ κ2
the following are equivalent:

(a) f is Γ-in-the-codes (with respect to ρ);

(b) f−1(Ñκ
α,i) ∈ΔΓ for every α < κ and i = 0, 1;

(c) f−1(U) ∈ΔΓ for every U ∈ Bp(κ2).

If Γ is a nontrivial boldface pointclass closed under projections, countable
unions, and countable intersections, the hypotheses of Proposition 5.10 are fulfilled
when:

• κ < δΓ (by definition of δΓ),
• κ = δΓ and Γ is a Spector pointclass closed under co-projections — see [72,
Exercise 4C.14].

In particular, Proposition 5.10 can be applied to Σ1
n and κ+ = δ1n (i.e. κ = λ1

n if n

is odd and κ = δ1n−1 if n > 0 is even), and to Σ2
1 and κ = δ21. As we shall see in

Proposition 9.10 and Corollary 9.29, in all these (and other) interesting cases the
Γ-in-the-codes functions f : ω2 → κ2 turn out to be just a special case of weakly
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κ+ 1-Borel functions, and for the odd levels of the projective hierarchy we further
have that in fact the two notions coincide.

Remarks 5.11. (i) If Γ = Σ1
1 then AD is not needed in Proposition 5.10 and

the proof goes through in ZF+ ACω(R).
(ii) Definition 5.3 seems to depend on the particular choice of the Γ-norm ρ:

however, since Lemma 5.8(b) and Proposition 5.10(b) above do not depend
on ρ, Lemma 5.8 and Proposition 5.10 show that this is not the case for any
sufficiently closed nontrivial boldface pointclass Γ.
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CHAPTER 6

The generalized Baire space and Baire category

6.1. The generalized Baire space

So far we just considered the generalized Cantor space κ2, but similar results
hold for the generalized Baire space κκ, with κ an uncountable cardinal.

Definition 6.1. Let N̂κ
s := {x ∈ κκ | s ⊆ x}, where s : u→ κ and u ⊆ κ.

• The bounded topology τb on κκ is the one generated by the collection

B̂b := {N̂κ
s | s ∈ <κκ}.

The sets N̂κ
s with s : u → κ and u a bounded subset of κ, form a basis for τb as

well.
• The product topology τp on κκ is the product of κ copies of the space κ with
the discrete topology. A basis for τp is

B̂p := {N̂κ
s | s : u→ κ ∧ u ∈ [κ]<ω}.

• For ω ≤ λ ≤ κ, the λ-topology τλ on κκ is the one generated by the collection

B̂λ := {N̂κ
s | s : u→ κ ∧ u ∈ [κ]<λ},

with the proviso as in Convention 3.5 that

(6.1) κ = cof(κ) ⇒ B̂κ := {N̂κ
s | s ∈ <κκ} = B̂b.

If X is a subspace of (κκ, τ∗) where ∗ is one of b, p, or λ, then the relative topol-
ogy on X is still denoted by τ∗, so that when X = κ2 this agrees with Definitions 3.1
and 3.3. Another subspace of κκ of interest to us is

Sym(κ),

the group of all permutations of κ, which turns out to be an intersection of κ-many
τp-open (and hence also τλ-open and τb-open) sets, and hence a Π0

2(τ∗) set, where
∗ ∈ {b, p, λ}.

Most of the observations and results on κ2 seen in the previous sections hold
mutatis mutandis for κκ. We summarize some of them in the following proposition,
in which all the topologies are understood to be on κκ.

Proposition 6.2. Let κ be an uncountable cardinal, and let λ be such that
ω ≤ λ < max(cof(κ)+, κ).

(a) If λ < ν < max(cof(κ)+, κ) then τp = τω ⊆ τλ ⊂ τν ⊆ τcof(κ) ⊆ τb, and
τb = τcof(κ) if and only if κ is regular.

(b) |τp| = |P(κ)|, and |τb| = |P(<κκ)|. Therefore,
• assuming AD, κ < Θ ⇒ |τp| < |τb|,
• assuming AC, |τp| < |τb| ⇔ 2κ < 2(κ

<κ)).

51
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52 6. THE GENERALIZED BAIRE SPACE AND BAIRE CATEGORY

(c) The topologies τp, τλ, τb are perfect, regular Hausdorff, and zero-dimensional,
and they are never κ-compact.

(d) The topology τ∗ is not first countable (and hence neither second countable nor
metrizable) and also not separable, for ∗ ∈ {p, λ}.

(e) The topology τb is neither second countable nor separable, and in fact assuming
AC it has density κ<κ. It is first countable if and only if it is metrizable if
and only if it is completely metrizable if and only if cof(κ) = ω.

(f) The topology τ∗ with ∗ ∈ {p, λ, b} is closed under intersections of length ≤ α
(for some ordinal α) if and only if: α < ω when ∗ = p, α < λ when ∗ = λ
(assuming AC), |α| < cof(κ) when ∗ = b. Therefore the collection of all τ∗-
clopen subsets of κκ is a ω-algebra if ∗ = p, is a λ-algebra (assuming AC) if
∗ = λ, and is a cof(κ)-algebra if ∗ = b.

(g) Assume AC. Then Bκ+1(
κκ, τb) �= P(κκ). Moreover Σ0

α(
κκ, τb) �= Π0

α(
κκ, τb)

and Σ0
α(

κκ, τb) ⊂ Σ0
β(

κκ, τb), for 1 ≤ α < β < κ+.

(h) Assume AC. Then |Bκ+1(
κκ, τp)| = 2κ = |τp| and |Bκ+1(

κκ, τb)| = 2(κ
<κ) =

|τb|. Therefore, |Bκ+1(
κκ, τp)| < 2(2

κ) and |Bκ+1(
κκ, τb)| < |P(κκ)| ⇔

2(κ
<κ) < 2(2

κ). In particular, Bκ+1(
κκ, τp) �= P(κκ) and 2(κ

<κ) < 2(2
κ) ⇒

Bκ+1(
κκ, τb) �= P(κκ).

(i) A subset of κκ is (effective) <κκ+1-Borel with respect to τp if and only if it is
(effective) <κκ+ 1-Borel with respect to τb. Therefore, if we assume AC and
κ<κ = κ then Bκ+1(

κκ, τp) = Bκ+1(
κκ, τb).

Remarks 6.3. (i) Part (d) of Proposition 6.2 should be contrasted with
part (e) of Proposition 3.12: this is one of the few differences between the
generalized Cantor and Baire spaces.

(ii) Part (g) of Proposition 6.2 follows from Theorem 4.18 and Proposition 4.19
together with the fact that κ2 is a closed subspace of κκ and we are dealing
with hereditary general boldface pointclasses.

(iii) If κ < κ<κ, then it may be the case that |Bκ+1(
κκ, τp)| < |Bκ+1(

κκ, τb)| (see
Remark 4.22).

(iv) The proof that (κκ, τb) is (completely) metrizable if and only if cof(κ) = ω
(part (e) of Proposition 6.2) follows the same ideas as the proof of part (h)
of Proposition 3.12: it is enough to identify κκ with κG with G a group of
size κ and then use the Birkhoff-Kakutani theorem, or replace

∏
n∈ω

λn2 with∏
n∈ω

λnκ in the direct proof sketched in Proposition 3.12(h).

The spaces ω2 and ωω are not homeomorphic because ω2 is compact while
ωω not. For the same reason, we have that also (κ2, τp) and (κκ, τp) are never
homeomorphic by Proposition 3.12(b) and Proposition 6.2(c). However, we are
now going to show that in models of choice the situation becomes rather different
when we endow the generalized spaces κ2 and κκ with the bounded topology. Recall
that a regular cardinal κ is weakly compact if and only if it is strong limit (i.e.
such that 2λ < κ for every λ < κ), and has the tree property, that is: for every
T ⊆ <κκ, if 0 < |T ∩ ακ| < κ for all α < κ then there is a κ-branch through T , that
is a point x ∈ κκ such that x�α ∈ T for all α < κ.

Lemma 6.4. Suppose κ is an infinite cardinal with the tree property and such
that for every cardinal λ < κ there is no injection from κ into λ2.

(a) Every well-orderable τb-closed C ⊆ κ2 of size ≥ κ has an accumulation point
in C.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.
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(b) There is no continuous bijection between (κ2, τb) and (κκ, τb).

Proof. (a) Suppose towards a contradiction that all points of C are isolated
in it. For each x ∈ C, let sx ∈ <κ2 be the shortest sequence with C ∩Nsx = {x}
(so that, in particular, sx and sx′ are incomparable whenever x �= x′), and let T be
the tree generated by these sx’s, i.e.

T := {t ∈ <κ2 | t ⊆ sx for some x ∈ C}.

Fix α < κ and let λ := |α| < κ. Since {sx | x ∈ C} is well-orderable, then T ∩ α2
is well-orderable too, and hence |T ∩ α2| = μ for some cardinal μ. Since α2 and
λ2 are in bijection and there is no injection from κ into λ2, we have that μ < κ.
Using a similar argument, we also get T ∩ α2 �= ∅ (otherwise sx ∈ <α2 for each
x ∈ C and we would have an injection from κ ≤ |C| into λ2). Therefore by the tree
property T has a κ-branch x ∈ κ2. It follows from the choice of the sx’s that x is an
accumulation point of C, and hence also x ∈ C because C is closed, a contradiction
with our assumption that C consists only of isolated points.

(b) Let now C ′ := {〈α〉�0(κ) | α < κ} ⊆ κκ, and suppose towards a contra-
diction that there is a continuous bijection f : (κ2, τb) → (κκ, τb). Since C ′ is a
closed well-orderable set of size ≥ κ with no accumulation point, then so would be
C := f−1(C ′) ⊆ κ2: but such a C cannot exists by part (a), and we are done. �

Remark 6.5. Notice that sets C ⊆ κ2 as in part (a) of Lemma 6.4 do exist:
the set

C := {0(α)�1�0(κ) | α < κ} ∪ {0(κ)}
is closed, well-orderable, and of size κ. Moreover, in Lemma 6.4(a) we cannot drop
the assumption that C be closed: the set {0(α)�1�0(κ) | α < κ} is well-orderable
and of size κ, but has no accumulation point in itself.

Proposition 6.6 (AC). Let κ be an infinite cardinal.

(a) If κ is regular, then (κ2, τb) and (κκ, τb) are homeomorphic if and only if κ is
not weakly compact (equivalently, by Remark 3.13(i), κ2 is not κ-compact).

(b) If κ is singular, then (κ2, τb) and (κκ, τb) are homeomorphic if and only if κ
is not strong limit (equivalently, 1 2<κ > κ).

Part (a) follows from the results in [40]. However, for the reader’s convenience
we give here a simple direct proof.

Proof. (a) By Lemma 6.4(b), (κ2, τb) and (κκ, τb) cannot be homeomorphic
if κ is weakly compact. (Alternatively, we could use [74, Theorem 5.6] and the fact
that κκ is never κ-compact by Proposition 6.2(c).) Therefore we have just to show
that there is a homeomorphism f : (κκ, τb) → (κ2, τb) whenever κ is not weakly
compact.

Let us first assume that there is λ < κ with 2λ ≥ κ, so that κλ = 2λ, and fix
a bijection g : λκ → λ2. Given x ∈ κκ, let 〈sxα | α < κ〉 be the unique sequence of
elements of λκ such that x = sx0

�sx1
� . . .�sxα

� . . .. The map

f : κκ→ κ2, x �→ g(sx0)
�g(sx1)

� . . .�g(sxα)
� . . .

1To see that if κ is singular and not strong limit then 2<κ > κ, let cof(κ) ≤ λ < κ be such

that 2λ ≥ κ. Then κ < κcof(κ) ≤ (2λ)cof(κ) = 2λ ≤ 2<κ.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



54 6. THE GENERALIZED BAIRE SPACE AND BAIRE CATEGORY

is a well-defined bijection. Moreover, since the families

{N̂s | s ∈ <κκ, lh s = λ · α for some α < κ} ⊆ B̂b(κκ)
and

{Ns | s ∈ <κ2, lh s = λ · α for some α < κ} ⊆ Bb(κ2)
are bases for the bounded topologies on, respectively, κκ and κ2, we get that
f : (κκ, τb)→ (κ2, τb) is a homeomorphism.

Let us now assume that κ is strong limit, so that 2<κ = κ. As κ is not weakly
compact, there is a tree T ⊆ κ2 of height κ without a κ-branch. Let

∂T := {s ∈ <κ2 \ T | s�α ∈ T for all α < lh s}
be the boundary of T . The sequences in ∂T are pairwise incomparable, and as T
has no κ-branches, {Ns | s ∈ ∂T} is a partition of κ2. We claim that such partition
has size κ: towards a contradiction if |∂T | < κ, then ∂T ⊆ λ2 for some λ < κ
because κ is regular, and since each sequence in T can be extended to some s ∈ ∂T ,
this contradicts the fact that T has height κ. If g : κ→ ∂T is a bijection, the map

f : κκ→ κ2, x �→ g(x(0))�g(x(1))� . . .�g(x(α))� . . .

is a homeomorphism between (κκ, τb) and (κ2, τb), as required.
(b) If κ is not strong limit, then there is λ < κ such that 2λ ≥ κ. Arguing as in

part (a), we have that there is a homeomorphism f : (κκ, τb)→ (κ2, τb). Conversely,
assume that κ is strong limit, so that 2<κ = κ. If 〈Uα | α < λ〉 is a τb-open partition
of κ2, then λ ≤ κ: in fact, the map assigning to each α < λ some sα ∈ <κ2 such

that Nsα ⊆ Uα is injective and witnesses λ ≤ 2<κ = κ. Since {N̂s | s ∈ cof(κ)κ} is a
τb-open partition of κκ of size > κ, this shows that there is no continuous surjection
f : (κ2, τb)→ (κκ, τb). �

Proposition 6.6 shows that under AC the spaces (κ2, τb) and (κκ, τb) are in
most cases homeomorphic, including e.g. when κ = ω1. The situation is quite
different in models of determinacy. Assuming AD, the cardinal ω1 is measurable,
so it has the tree property. Moreover, ω1 �� ω2 by the PSP, and therefore (ω12, τb)
and (ω1ω1, τb) are not homeomorphic by Lemma 6.4(b). This argument can be
generalized to larger regular cardinals: in fact, Steel and Woodin have shown that
AD + V = L(R) implies that every uncountable regular κ < Θ is measurable, and
hence it has the tree property, and λ+ �� λ2 for all λ < Θ — see [84,87]. Woodin
(unpublished) has weakened the hypothesis AD+V = L(R) to AD++V = L(P(R))
— see Definition 9.24 for AD+. Therefore by the argument above we have that:

Proposition 6.7. Assume AD+ +V = L(P(R)). Then for every regular car-
dinal κ < Θ, the spaces (κ2, τb) and (κκ, τb) are not homeomorphic.

Therefore AC is a necessary assumption for Proposition 6.6. In fact, Propo-
sitions 6.6 and 6.7 show that it is independent of ZF + DC whether (ω12, τb) is
homeomorphic to (ω1ω1, τb).

6.2. Baire category

Definition 6.8. Let μ be an infinite cardinal. A subset A of a topological
space (X, τ ) is said to be μ-meager if it is the union of μ-many nowhere dense
sets, where a set is nowhere dense if it is disjoint from some open dense subset of X.
A set A ⊆ X is said to be μ-comeager if its complement is μ-meager. If U ⊆ X is
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a nonempty open set, then A ⊆ X is μ-meager in U (respectively, μ-comeager
in U) if A ∩ U is μ-meager (respectively, μ-comeager) in the (topological) space U
endowed with the relative topology induced by τ .

Every subset of a μ-meager set is μ-meager as well. If μ ≤ μ′ are infinite cardinal
and U ⊆ V are open sets of (X, τ ), then every set A ⊆ X which is μ-(co)meager in
V is also μ′-(co)meager in U .

Definition 6.9. Let μ be an infinite cardinal. A topological space X is said
to be μ-Baire if the intersection of μ-many open dense subsets of X is dense in X.

As for the classical notion of a Baire space (which corresponds to the case
μ = ω), it is easy to check that the space X is μ-Baire if and only if every μ-
comeager subset of X is dense, if and only if every nonempty open subset of X
is not μ-meager. Moreover, if μ ≤ μ′ then every μ′-Baire space is automatically
μ-Baire, and every open subspace of a μ-Baire space is μ-Baire as well.

Theorem 6.10. Let κ, λ be cardinals such that ω < λ < min(cof(κ)+, κ).

(a) The space (κκ, τp) is ω-Baire.
(b) Assume AC. Then the space (κκ, τλ) is cof(λ)-Baire.
(c) Assume AC. Then the space (κκ, τb) is cof(κ)-Baire.

All of (a)–(c) holds true when κκ is replaced by κ2.

Theorem 6.10 can be restated (and easily proved) in the language of forcing. If
P is a forcing notion (i.e. a quasi-order), then FAμ(P), the μ-forcing axiom for
P, says that for any sequence 〈Dα | α < μ〉 of dense subsets of P there is a filter G
intersecting all Dα’s. Recalling that the set of partial functions is a forcing notion
with reverse inclusion (see Section 2.1.2), the preceding result asserts that certain
forcing axioms hold:

(a*) FAω(Fn(κ, κ;ω)) and FAω(Fn(κ, 2;ω)).
(b*) Assume AC. Then FAcof(λ)(Fn(κ, κ;λ)) and FAcof(λ)(Fn(κ, 2;λ)).
(c*) Assume AC. Then FAcof(κ)(Fn(κ, κ; b)) and FAcof(κ)(Fn(κ, 2; b)).

Theorem 6.10 cannot be extended to arbitrary closed subspaces of κκ, as shown
by the next example.

Example 6.11. Given a cardinal κ of uncountable cofinality, let C ⊆ κκ be
the collection of those x ∈ κ2 such that |{α < κ | x(α) = 0}| < ω. Then C is
τω1

-closed, and hence also τb-closed and τλ-closed for every ω1 ≤ λ ≤ cof(κ). We
claim that C is not ω-Baire with respect to any of the topologies τp, τλ, or τb.
For each n ∈ ω, let Un := {x ∈ κκ | |{α < κ | x(α) = 0}| ≥ n}. Each Un is open
and dense with respect to any of the above topologies, and Un ∩ C �= ∅. However⋂

n∈ω(Un ∩ C) =
(⋂

n∈ω Un

)
∩ C = ∅, and hence C is not ω-Baire.

For the results of this paper, we need to show that also Sym(κ), which is a
Π0

2-subset of κκ with respect to any of our topologies, is μ-Baire for appropriate
cardinals μ. However, since Example 6.11 shows that there may be even simple
closed sets that are not ω-Baire, the μ-Baireness of Sym(κ) needs to be proved
independently of Theorem 6.10. To state the next result in the forcing jargon we
need the following definition: for κ, λ infinite cardinals, let

Inj(κ, κ;λ) := {s ∈ Fn(κ, κ;λ) | s is injective},
Inj(κ, κ; b) := {s ∈ Fn(κ, κ; b) | s is injective} = <κ(κ).
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Theorem 6.12. Let κ, λ be cardinals such that ω < λ < min(cof(κ)+, κ).

(a) The space (Sym(κ), τp) is ω-Baire, i.e. FAω(Inj(κ, κ;ω)).
(b) Assume AC. Then the space (Sym(κ), τλ) is cof(λ)-Baire, i.e.

FAcof(λ)(Inj(κ, κ;λ)).

(c) Assume AC. Then the space (Sym(κ), τb) is cof(κ)-Baire, i.e.

FAcof(κ)(Inj(κ, κ; b)).

At first glance, the forcing axioms in the second part of (a)–(c) may seem
weaker than their counterparts for μ-Baireness of Sym(κ) because in all the three
cases an arbitrary generic intersecting a given family of μ-many dense subsets of
the corresponding forcing poset may fail to be surjective. However, the arguments
presented in the proof below show that the two formulations of each point are
indeed equivalent: the existence of an arbitrary generic granted by the forcing
axiom implies the existence of a surjective one, thus yielding the corresponding
μ-Baireness property for Sym(κ).

Proof of Theorem 6.12. Let us first consider (b). The argument is es-
sentially the same as the one used in the classical Baire category theorem (see
e.g. [53, Theorem 8.4]) — we present it here for the reader’s convenience. Let
U ⊆ Sym(κ) be open and nonempty, and let 〈Uα | α < cof(λ)〉 be a sequence of
open dense subsets of Sym(κ). Recursively define sα ∈ Inj(κ, κ;λ), for α < cof(λ),

so that N̂sα ∩ Sym(κ) ⊆ U ∩
⋂

β<α Uβ, and sβ ⊆ sα for β ≤ α < cof(λ). Let

s0 ∈ Inj(κ, κ;λ) be such that N̂s0 ∩ Sym(κ) ⊆ U . Let now α := γ + 1: since Uα is

open and dense in Sym(κ) and sγ ∈ Inj(κ, κ;λ), Uα ∩ N̂sγ is nonempty and open

in Sym(κ). Pick s′ ∈ Inj(κ, κ;λ) so that N̂s′ ∩Sym(κ) ⊆ Uα∩N̂sγ , and notice that
s′ is necessarily compatible with sγ . Then sα := sγ ∪ s′ has the required properties.
Finally, let α < cof(λ) be limit. Since all the sβ ’s for β < α are compatible and
belong to Inj(κ, κ;λ), sα :=

⋃
β<α sβ ∈ Inj(κ, κ;λ) has the required properties. Let

now t :=
⋃

α<cof(λ) sα, so that t is an injective (partial) function from κ into itself.

Since |dom(t)| = |ran(t)| ≤ λ < κ, we can pick a bijection t′ between κ \ dom(t)
and κ \ ran(t): then x := t ∪ t′ ∈ Sym(κ), and x witnesses U ∩

⋃
α<cof(λ) Uα �= ∅.

(a) can be proved in a similar way, using the fact that κ > ω — just notice
that when dealing with the product topology we do not need the Axiom of Choice

to recursively pick the sequences sα because |[κ]<ω| = κ implies that B̂p(κκ) is
well-orderable.

Finally, to prove (c) we use a sort of back-and-forth argument. Let U ⊆ Sym(κ)
be open and nonempty, and let 〈Uα | α < cof(κ)〉 be a sequence of open dense
subsets of Sym(κ). Fix an increasing sequence 〈λα | α < cof(κ)〉 of ordinals cofinal
in κ. Let s0 ∈ <κκ be an injective sequence such that N̂s0∩Sym(κ) ⊆ U , and for α a
limit ordinal let sα :=

⋃
β<α sβ , which is injective whenever all the sβ’s are injective.

Let now γ be either 0 or a limit ordinal < cof(κ). For n ∈ ω and i ∈ {1, 2}, we
recursively define sγ+2n+i as follows. If i = 1 we let sγ+2n+i ∈ <κκ be any injective

sequence extending sγ+2n such that N̂sγ+2n+1
⊆ Uγ+n (which exists because the

Uα’s are open and dense in Sym(κ)). If instead i = 2, let η := lh sγ+2n+1, and let
〈jl | l < δ〉 be a strictly increasing enumeration of λγ+n\ran(sγ+2n+1) (for a suitable
δ ≤ λγ+n). Let sγ+2n+2 be the extension of sγ+2n+1 of length η + δ obtained by
setting sγ+2n+2(η + l) := jl for every l < δ, so that sγ+2n+2 is still injective and
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λγ+2n ⊆ ran(sγ+2n+2). Then it is easy to check that x :=
⋃

α<cof(κ) sα ∈ Sym(κ)

and x ∈ U ∩
⋃

α<cof(λ) Uα. �

The following is a variant of the classical Baire property, corresponding to the
case μ = ω.

Definition 6.13. Let μ be an infinite cardinal and X be a topological space.
We say that A ⊆ X has the μ-Baire property if there is an open set U ⊆ X such
that the symmetric difference A�U is μ-meager.

As shown in [28], arguing as in the classical case one easily gets the following
results (see also e.g. [53, Proposition 8.22] and [53, Proposition 8.26]).

Proposition 6.14. Let μ be an infinite cardinal and X be a topological space.
The class of all subsets of X having the μ-Baire property is a μ+ 1-algebra on X,
and in fact it is the μ+1-algebra on X generated by all open sets and all μ-meager
sets. In particular, all sets in Bμ+1(X) have the μ-Baire property.

Proposition 6.15. Let μ be an infinite cardinal and let X be a topological
space. If A ⊆ X has the μ-Baire property and is not μ-meager, then there is a
nonempty open set U ⊆ X such that A is μ-comeager in U .
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CHAPTER 7

Standard Borel κ-spaces, κ-analytic quasi-orders,
and spaces of codes

7.1. κ-analytic sets

Recall that a subset A of a Polish space X is called analytic if it is a continuous
image of a closed subset of the Baire space ωω. Here are some reformulations of this
notion, where p denotes the projection on the first coordinate, as defined in (2.8):

• A ⊆ X is analytic if and only if it is either empty or a continuous image of the
whole Baire space ωω;
• A ⊆ X is analytic if and only if it is a continuous image of a Borel subset of ωω;
• A ⊆ X is analytic if and only if A = pF for some closed F ⊆ X × ωω;
• A ⊆ X is analytic if and only if A = pB for some Borel B ⊆ X × ωω.

It is not hard to see that the class of analytic sets contains all Borel sets and is
closed under countable unions, countable intersections, and images and preimages
under Borel functions. In Chapter 9 the collection of analytic sets will be identified
with S(ω), the class of ω-Souslin sets.

We now generalize the notion of analytic set to the uncountable context. To
simplify the presentation, in the subsequent definition and results we endow the
generalized Baire space κκ with the bounded topology, so that all the related topo-
logical notions (such as continuous functions, κ + 1-Borel sets, and so on) tacitly
refer to τb. Of course analogous notions can be obtained by replacing, mutatis
mutandis, the topology τb with any of the topologies introduced in Definition 6.1.
However, since we have no use for these variants in the rest of the paper, for the sake
of simplicity we leave to the reader the burden of checking which of the properties
stated below transfer to these topologies.

Definition 7.1. A set A ⊆ κκ is called κ-analytic if it is a continuous image
of a closed subset of κκ.

Unlike in the classical case κ = ω, when κ > ω it is no more true in general
that nonempty κ-analytic sets are continuous images of the whole κκ — see [65].
However, all the other equivalent reformulations mentioned above remain true also
in our new context. The key result to prove this is the following proposition.

Proposition 7.2. Every effective κ+ 1-Borel subset of κκ is κ-analytic.

Proof. We modify the proof of [74, Lemma 3.9 and Proposition 3.10], where
the desired result is proved under1 AC and the extra cardinal assumption κ<κ = κ.
In particular, in that proof it is argued in ZF that given a family {Cα | α < κ}
of closed subsets of κκ and a family of continuous maps fα : Cα → κκ with range

1Under choice all κ+ 1-Borel sets are effective.

59
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Aα, one can canonically construct two closed sets C∩, C∪ ⊆ κκ and continuous
maps f∩ : C∩ → κκ and f∪ : C∪ → κκ such that f∩ surjects onto

⋂
α<κ Aα and f∪

surjects onto
⋃

α<κ Aα. Moreover, the identity function witnesses that every closed
subset of κκ is κ-analytic. We now show (in ZF, and without assuming κ<κ = κ)
that also all open sets are κ-analytic. Let U ⊆ κκ be open, and for every α < κ set

Sα := {s ∈ ακ | N̂κ
s ⊆ U}, so that U =

⋃
α<κ Uα with Uα :=

⋃
s∈Sα

N̂κ
s . Notice that

each Uα is clopen, and therefore κ-analytic. Setting Cα := Uα and fα := id�Uα, we
get that the map f∪ : C∪ �

⋃
α<κ Uα ⊆ κκ as above witnesses that U is κ-analytic.

Let now B ⊆ κκ be effective κ + 1-Borel and let (T, φ) be a κ + 1-Borel code
for it. Using the facts mentioned in the previous paragraph, one can easily build
by recursion on the rank of the nodes of the well-founded tree T a map g on T
assigning to each t ∈ T two closed sets Ct, C

′
t ⊆ κκ and two continuous functions

ft : Ct → κκ and f ′
t : C

′
t → κκ such that ft surjects onto φ(t) and f ′

t surjects onto
κκ \ φ(t). In particular, C∅ and f∅ witness that B is κ-analytic. �

The proof of Proposition 7.2 also implies that the class of κ-analytic subsets
of κκ is closed under finite intersections and finite unions. It is also closed under
intersections and unions of length α ≤ κ as long as given a family of κ-analytic
sets {Aβ | β < α} one can choose witnesses fβ : Cβ � Aβ of this. Therefore if we
assume ACκ the class of κ-analytic subsets of κκ is closed under intersections and
unions of length ≤ κ.

Corollary 7.3. The following are equivalent for a set A ⊆ κκ:

(a) A is κ-analytic;
(b) A is a continuous image of an effective κ+ 1-Borel subset of κκ;
(c) A = pF for some closed F ⊆ κκ× κκ;
(d) A = pB for some effective κ+ 1-Borel B ⊆ κκ× κκ.

Proof. (a) implies (b) and (c) implies (d) because every closed set is effective
κ + 1-Borel. Moreover, (b) implies (a) by Proposition 7.2, and (d) implies (b)
because κκ× κκ is homeomorphic to κκ and the projection map is continuous. So
it is enough to show that (a) implies (c). Let f : C → κκ be a continuous surjection
onto A with C ⊆ κκ closed. Since κκ is an Hausdorff space, this implies that the
graph F of f is closed in C × κκ, and hence also closed in κκ× κκ. As A = p(F−1)
the result is proved. �

One of the main uses of Corollary 7.3 is that it allows us to use (a generalization
of) the Tarski-Kuratowski algorithm (see e.g. [53, Appendix C]) to establish that
a given set A ⊆ κκ is κ-analytic by inspecting the “logical form” of its definition.

The definition of κ-analyticity can be extended to subsets of an arbitrary sub-
space S of κκ: A ⊆ S is κ-analytic (in S) if and only if there is a κ-analytic subset
A′ of κκ such that A = A′ ∩S. Notice that if S is an effective κ+1-Borel subset of
κκ, then by Proposition 7.2 and the observation following it we get that A ⊆ S is κ-
analytic in S if and only if it is κ-analytic in the whole κκ. This allows us to have a
natural definition of κ-analytic subset for any space which is effectively κ+1-Borel
isomorphic to some B ∈ Be

κ+1(
κκ, τb), leading to the following definitions which

generalize the case κ = ω.
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Definition 7.4. Let B ⊆P(X) be an algebra on a nonempty set X. We say
that (X,B) is a standard Borel κ-space2 if there is a topology τ on X such that
B = Be

κ+1(X, τ ) and (X, τ ) is homeomorphic to an effective κ+ 1-Borel subset of
κκ. If the algebra B is clear from the context, we say that X is a standard Borel
κ-space.

The collection of standard Borel κ-spaces is closed under effective κ+ 1-Borel
subsets, that is: if (X,B) is a standard Borel κ-space then for every B ∈ B the
space (B,B�B) is a standard Borel κ-space as well, where

B�B := {B′ ∩B | B′ ∈ B}.
In particular, for every B ∈ Be

κ+1(
κκ, τb) the space

(B,Be
κ+1(

κκ, τb)�B) = (B,Be
κ+1(B, τb))

is a standard Borel κ-space. Moreover, the product and the disjoint union of finitely
many standard Borel κ-spaces are again standard Borel κ-spaces (where a product
X ×X ′ is equipped with the product B ⊗B′ of the algebras B and B′ on X and
X ′, and a disjoint union X �X ′ is equipped with the corresponding union algebra
B⊕B′). Assuming enough choice (ACκ suffices), the same is true for products and
unions of length ≤ κ.

Notice that Definitions 7.5 and 7.7 are independent from the choice of the
witness that X is a standard Borel κ-space.

Definition 7.5. Let X be a standard Borel κ-space. A set A ⊆ X is κ-
analytic if for any topology τ , any set B ∈ Be

κ+1(
κκ, τb), and any homeomorphism

f : (X, τ ) → (B, τb�B) witnessing that X is standard Borel, the set f(A) is a
κ-analytic subset of κκ (equivalently, of B).

The above definition directly implies that analogues of Proposition 7.2 and
Corollary 7.3 hold in the broader context of standard Borel κ-spaces.

Proposition 7.6. Let (X,B) be a standard Borel κ-space.

(a) Every B ∈ B is κ-analytic.
(b) The following are equivalent for A ⊆ X:

• A is κ-analytic;
• A is a continuous image of an effective κ + 1-Borel subset of κκ (where
continuity refers to any topology τ on X witnessing that it is a standard
Borel κ-space);
• A = pF for some closed F ⊆ X × κκ (where X is endowed with any τ as
above);
• A = pB for some B ∈ B ⊗Be

κ+1(
κκ, τb).

Definition 7.7. A κ-analytic quasi-order S on a standard Borel κ-space X
is a quasi-order on X which is κ-analytic as a subset of X × X. If moreover S is
symmetric, then it is called a κ-analytic equivalence relation (on X).

Examples of natural κ-analytic quasi-orders and equivalence relations are given
in Section 7.2.

2Our definition of a standard Borel κ-space slightly differs from the one introduced in [74,
Definition 3.6]; however, the two definitions essentially coincide in the setup of [74], i.e. when
assuming AC and κ<κ = κ.
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7.2. Spaces of type κ and spaces of codes

In this section the notion of a space of type κ is defined — these are spaces
which are homeomorphic to κ2 in a canonical way. This notion is introduced to
ease the study of spaces of codes for L-structures of size κ for some finite relational
language L, for complete metric spaces of density character κ, and for Banach
spaces of density κ. All spaces of type κ and their effective κ + 1-Borel subsets
are also standard Borel κ-spaces when equipped with the algebra of their effective
κ+ 1-Borel subsets.

7.2.1. Spaces of type κ. Let A be a set of size κ. Any bijection f : κ → A
induces a bijection between κ2 and A2, so the product topology, the λ-topology
(for ω ≤ λ < max(cof(κ)+, κ)), and the bounded topology can be copied on A2,
and are denoted with τp(

A2), τλ(
A2), and τb(

A2), respectively. The bases for these
topologies are given by

Bp(A2) := {NA
s | |s| < ω}

Bλ(A2) := {NA
s | |s| < λ}

Bb(A2) := {NA
s | ∃α < κ (f“α = dom s)}

where
NA

s := {x ∈ A2 | s ⊆ x}
for s a partial function from A to 2. Note that τp(

A2) = τω(
A2), since Bp(A2) =

Bω(A2). As in Remark 3.2(ii), the collection of all

(7.1) Ñ
A

a,i := {x ∈ A2 | x(a) = i} (a ∈ A, i ∈ {0, 1})
is a subbasis (generating Bp(A2)) for τp(A2).

The definitions of τλ(
A2) and Bλ(A2) (which includes the case of the product

topology) are independent of the chosen f . The situation for τb(
A2) is rather

different — its definition is again independent of f when κ is regular, but this is no
more true when κ is singular. Moreover, the canonical basis Bb(A2) always depends
on f , even when κ is regular. This is an unpleasant situation; however, in our
applications this will not be an issue, as there will always be a canonical bijection
between A and κ. To illustrate this, let us consider two representative examples.

Examples 7.8. (A) Consider the set A := <ω2 × κ (the topological space
(A2, τp) plays an important role in Section 12). Let θ : <ω2 → ω be the
unique isomorphism between (<ω2,�) and (ω,≤), where � is defined by

u � v ⇔ lhu < lh v ∨ (lhu = lh v ∧ u ≤lex v)

with ≤lex the usual lexicographical order. Then

f : <ω2× κ→ κ, (u, α) �→ ω · α+ θ(u)

can be taken to be a standard bijection between A and κ, as it orders A
antilexicographically. With this bijection the notions of “boundness” and
“initial segment” on A become natural and unambiguous.

(B) Recall from (2.1) the standard pairing function for ordinals 〈·, ·〉 : Ord×Ord→
Ord. For n ≥ 2 define the bijections fn :

nκ→ κ by setting

f2(α0, α1) := 〈α0, α1〉,
fn+1(α0, . . . , αn) := 〈fn(α0, . . . , αn−1), αn〉.
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Each fn can be considered as the standard bijection between A := nκ and κ.

The next definition tries to capture the content of Examples 7.8.

Definition 7.9. Let κ be an infinite cardinal. A space of type κ is a set of
the form X =

∏
i∈I

Ai2, where I is a finite set and each Ai is a set of cardinality κ.
The bounded topology τb(X ) on X is the product of the bounded topologies

τb(
Ai2) on Ai2, and is generated by the canonical basis

BXb := {
∏

i∈I N
Ai
si | NAi

si ∈ Bb(
Ai2) for all i ∈ I}.

Similarly, τp(X ) and τλ(X ) are defined as the product of the corresponding topolo-
gies on each factor, and their bases Bp(X ) and Bλ(X ) are defined as the products
of the corresponding bases.

All definitions, observations, and results concerning κ2 considered in Sections 3–
5 can be applied to an arbitrary space X of type κ as well, including the following:

• The collection Bα(X , τ∗) = Bα(τ∗) of α-Borel subsets of X , where τ∗ is one of
the topologies τp(X ), τλ(X ), or τb(X ) (Definition 4.1), together with its effective
counterpart Be

α(X , τ∗) (Section 4.1.2).
• The (weakly) α-Borel functions f : Y → Z, where Y and Z are arbitrary spaces
of type λ and μ, respectively (Definition 5.1).
• The Γ-in-the-codes function f : ω2 → X for Γ a suitable boldface pointclass
(Definition 5.3).
• The fact that the collection of all τb(X )-clopen subsets is a cof(κ)-algebra on X
(Proposition 3.12(j)).
• The fact that assuming AC, if 2<κ = κ then Bκ+1(τp(X )) = Bκ+1(τb(X ))
(Corollary 4.10), and therefore Bκ+1(τλ(X )) = Bκ+1(τb(X )) for every ω ≤ λ <
max(cof(κ)+, κ).

Remark 7.10. We often consider (weakly) α-Borel functions f : A → B (for
suitable ordinals α) where A and B are arbitrary subspaces of two spaces Y and
Z of type λ and μ, respectively, each endowed with τb. By this we mean that f
is (weakly) S-measurable when B is endowed with the relative topologies inherited
from Z and S is the algebra of subsets of A consisting of the traces on A of the
α-Borel subsets of Y . Notice that:

(i) When A ∈ Bα(Y), the notion of a (weakly) α-Borel function f : A → Z is
unambiguous since a set C ⊆ A is α-Borel in A if and only if it is α-Borel
as a subset of the entire space Y . In fact, a function f : A → Z is (weakly)
α-Borel if and only if f = g�A for some (weakly) α-Borel function g : Y → Z.

(ii) A function f : Y → B is (weakly) α-Borel if and only if it is (weakly) α-Borel
as a function between Y and Z.

Any space X of type κ is, by definition, homeomorphic to κ2, which is a closed
(and hence effective κ+1-Borel) subset of κκ as long as all these spaces are endowed
with the same kind of topology. Thus X equipped with the algebra of its effective
κ+1-Borel subsets with respect to τb is also a standard Borel κ-space, and therefore
we can consider the notions of a κ-analytic subset of X and of a κ-analytic quasi-
order on X (or on one of its effective κ + 1-Borel subsets) as in Definitions 7.5
and 7.7.
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7.2.2. Space of codes for (L-)structures of size κ. For I a finite set, let

L = {Ri | i ∈ I}
be a relational3 signature. For the sake of definiteness assume that I ∈ ω and that ni

is the arity of Ri, for i ∈ I. A structure or model for L, sometimes called simply
L-structure, is an object of the form A = 〈A;RA

i 〉i∈I , where A is a nonempty set
and RA

i is the interpretation of the symbol Ri in A. If ∅ �= B ⊆ A then we denote
by A�B the restriction of A to its subdomain B, i.e. A�B = 〈B;RA

i ∩ niB〉i∈I .
When there is no danger of confusion, with abuse of notation the structure A is
identified with its domain A. Since the nature of the elements of A is irrelevant, a
model of size κ is taken to have domain κ, so that each RA

i can be identified with
its characteristic function niκ → 2 = {0, 1}. Therefore any model of size κ can be
identified, up to isomorphism, with a map⋃

i∈I{i} × niκ→ 2,

and hence

(7.2) ModκL :=
∏

i∈I
(niκ)2

can be regarded as the space of (codes for) all L-structures of size κ (up to
isomorphism). We also set

Mod<κ
L :=

⋃
λ<κ ModλL and Mod∞L :=

⋃
κ∈Card ModκL .

For example, if L is a relational language consisting of just one relational symbol of
arity n, then ModκL = (nκ)2, and hence by Example 7.8(B) it can be topologized by
τp, τλ (for ω ≤ λ < max(cof(κ)+, κ)), or τb. For richer languages L = {Ri | i ∈ I},
the space of models ModκL in (7.2) is just a finite product of spaces of the form
(nκ)2: thus it is a space of type κ, and hence a standard Borel κ-space.

Strictly speaking an X ∈ModκL is a function, but it is more convenient to think
of it as an L-structure

X = 〈κ;RX
i 〉i∈I .

The embeddability relation �∼ on ModκL is given by

(7.3) X �∼ Y ⇔ ∃g ∈ κ
(κ)∀i ∈ I ∀〈x1, . . . , xni

〉 ∈ niκ[
〈x1, . . . , xni

〉 ∈ RX
i ⇔ 〈g(x1), . . . , g(xni

)〉 ∈ RY
i

]
where κ(κ) is the set of injective functions from κ into κ (see (2.3)). The equivalence
relation induced by the quasi-order �∼ is the bi-embeddability relation ≈. If
κ
(κ) in (7.3) is replaced by Sym(κ), the group of all bijections from κ to κ, the

isomorphism relation ∼= is obtained. Thus ∼= can be seen as induced by the
continuous action

(7.4) Sym(κ)×ModκL → ModκL, (g,X) �→ g.X

where g.X ∈ ModκL is defined by

(7.5) Rg.X
i := {〈y1, . . . , yni

〉 ∈ niκ | 〈g−1(y1), . . . , g
−1(yni

)〉 ∈ RX
i } (i ∈ I).

The embeddability relation �∼ on ModκL is an example of a κ-analytic quasi-order.
To see this, observe that

κ
(κ) is a closed (and hence effective κ + 1-Borel) sub-

set of κκ, so that �∼ is the projection on ModκL×ModκL of a closed subset of

3To simplify the presentation we retreat to relational signatures. This is not restrictive since
any n-ary function may be identified with its graph, which is a relation of arity n+ 1.
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ModκL×ModκL× κκ by (7.3). It follows that ≈ is a κ-analytic equivalence rela-
tion on the standard Borel κ-space ModκL. Similarly, using the fact that Sym(κ) is
an effective κ + 1-Borel subset of κκ (in fact: an effective intersection of κ-many
open sets) one sees that ∼= is a κ-analytic equivalence relation on ModκL.

7.2.3. Space of codes for complete metric spaces of density character
κ. In the classical case κ = ω, there are essentially two ways for coding separable
complete metric spaces, usually called Polish metric spaces, as elements of a
standard Borel space.

The first, and more common one [15,25,64], uses the fact that the (separable)
Urysohn space U is universal for this class, that is to say: U is itself a Polish
metric space (so that all its closed subsets are Polish metric spaces as well), and
every Polish metric space is isometric to some closed subset of U. Thus the space
F (U) of all closed subsets of U endowed with its Effros-Borel structure, which is
standard Borel (see e.g. [53, Section 12.C]), may be regarded as a space of codes
for all separable complete metric spaces. If this approach is to be generalized to
an uncountable κ, a space which is universal for complete metric spaces of density
character κ must be constructed. By [50] analogues of the Urysohn space for larger
density characters may be obtained only assuming AC and for cardinals κ satisfying
κ<κ = κ. Thus this technique for coding metric spaces cannot be used here, since
we want to study also choice-less models (such as models of AD), and even in the
AC context we are interested in cardinals smaller than the continuum. To the
best of our knowledge, there are no other kinds of universal spaces for complete
metric spaces of density character κ in the literature, so we are forced to drop this
approach.

The second way to code Polish metric spaces is to identify each of them with
any of its dense subspaces, so that the original space may be recovered, up to
isometry, as the completion of such a subspace (see e.g. [14,94]). Fortunately, this
approach does generalize in ZF to any infinite cardinal κ, naturally yielding to the
set of codes Mκ described below. Notice that the space of codes Mκ, being an
effective κ+ 1-Borel subset of a space of type κ, carries a natural topology τb, and
its effective κ+ 1-Borel structure turns it into a standard Borel κ-space.

Let Q+ be the set of positive rational numbers, and let X be the space of

type κ defined by X := κ×κ×Q+

2. Given a complete metric space (M,d) of density
character κ and a dense subset D = {mα | α < κ} of it, we can identify M with
the unique element xM ∈ X such that for all α, β < κ and q ∈ Q+

(7.6) xM (α, β, q) = 1 ⇔ dM (mα,mβ) < q.

In fact, M is isometric to the completion of the metric space (κ, dxM
) where

dxM
(α, β) := inf{q ∈ Q+ | xM (α, β, q) = 1} for α, β < κ, so that dxM

(α, β) =
dM (mα,mβ) for all α, β < κ. Consider now the space Mκ ⊆ X consisting of those

x ∈ κ×κ×Q+

2 satisfying the following seven conditions:

∀α, β < κ∀q, q′ ∈ Q+ [q ≤ q′ ⇒ x(α, β, q) ≤ x(α, β, q′)]

∀α, β < κ ∃q ∈ Q+ [x(α, β, q) = 1]

∀α < κ ∀q ∈ Q+ [x(α, α, q) = 1]
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∀α < β < κ∃q ∈ Q+ [x(α, β, q) = 0]

∀α, β < κ∀q ∈ Q+ [x(α, β, q) = 1 ⇔ x(β, α, q) = 1]

∀α, β, γ<κ∀q, q′∈Q+ [x(α, β, q)=1 ∧ x(β, γ, q′)=1⇒ x(α, γ, q+q′)=1]

∀α < κ ∃β < κ∃q ∈ Q+ ∀γ < α [x(γ, β, q) = 0].

The first six conditions are designed so that given any x ∈ Mκ, the (well-defined)
map dx : κ× κ→ R defined by setting

dx(α, β) := inf{q ∈ Q+ | x(α, β, q) = 1}
is a metric on κ; denote by Mx the completion of (κ, dx), and notice that the last
condition ensures that Mx has density character κ. It is straightforward to check
that the code xM from (7.6) of any complete metric space M of density character
κ belongs to Mκ, and is such that M is isometric to MxM

; conversely, for each
x ∈Mκ the space Mx is a complete metric space of density character κ. Moreover,
the explicit definition given above shows that Mκ ∈ Be

κ+1(X , τb), so that Mκ is a

standard Borel κ-space. Thus we can regard Mκ ⊆ κ×κ×Q+

2, endowed with the
inherited topologies and the corresponding (effective) κ+ 1-Borel structure, as the
space of (codes for) all complete metric spaces of density character κ (up
to isometry).

The isometric embeddability relation �i on Mκ is given by

x �i y ⇔ there is a metric-preserving map from Mx into My,

while the isometry relation ∼=i on Mκ is given by

x ∼=i y ⇔ there is a metric-preserving bijection between Mx and My.

Notice that for every x, y ∈Mκ one has

x �i y ⇔ there is a metric-preserving map i : (κ, dx)→My.

This allows us to check, using the Tarski-Kuratowski algorithm and some standard
computations, that the relation �i is a κ-analytic quasi-order on Mκ, and a similar
observation shows that ∼=i is a κ-analytic equivalence relation on Mκ. (For a
blueprint of such computations, see [14, Lemma 4].)

We consider some natural subclasses of Mκ, such as

Dκ := {x ∈Mκ | Mx is discrete}
or

Uκ := {x ∈Mκ | Mx is ultrametric}.
Notice however that not all these subclasses are standard Borel: for example, Uκ is
a standard Borel κ-space (since it is a closed subset of Mκ), while it can be shown
that Dκ is not.

7.2.4. Space of codes for Banach spaces of density κ. In analogy with
what was done in Section 7.2.3 for complete metric spaces of density character κ,
we code Banach spaces of density κ by identifying each of them with any of its
dense subspaces closed under rational4 linear combinations; this gives rise to an
effective κ+ 1-Borel subset Bκ of a space of type κ, which can be regarded as the
standard Borel κ-space of all Banach spaces of density κ.

4To simplify the presentation, in this paper we focus on real Banach spaces. However, by
replacing Q with Q+ iQ one can extend our results to complex Banach spaces of density κ.
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∀α, β < κ∃!γ < κ [x+(α, β, γ) = 1]
∀α < κ ∀p ∈ Q ∃!β < κ [xQ(α, p, β) = 1]
∀α, β, γ, δ, ε, ζ < κ [x+(β, γ, δ) = 1 ∧ x+(α, δ, ε) = 1 ∧ x+(α, β, ζ) = 1 ⇒ x+(ζ, γ, ε) = 1]
∀α, β, γ < κ [x+(α, β, γ) = 1 ⇔ x+(β, α, γ) = 1]
∀α < κ [x+(α, 0, α) = 1]
∀α < κ ∃β < κ [x+(α, β, 0) = 1]
∀α, β, γ < κ ∀p, p′ ∈ Q [xQ(α, p, β) = 1 ∧ xQ(β, p′, γ) = 1 ⇒ xQ(α, pp′, γ) = 1]
∀α < κ [xQ(α, 1, α) = 1]

∀α, β, γ, δ, ε, ζ < κ ∀p ∈ Q [x+(α, β, γ) = 1 ∧ xQ(γ, p, δ) = 1 ∧ xQ(α, p, ε) = 1 ∧ xQ(β, p, ζ) = 1
⇒ x+(ε, ζ, δ) = 1]

∀α, β, γ, δ < κ ∀p, p′ ∈ Q+ [xQ(α, p+ p′, β) = 1 ∧ xQ(α, p, γ) = 1 ∧ xQ(α, p′, δ) = 1
⇒ x+(γ, δ, β) = 1]

∀α < κ ∀q, q′ ∈ Q+ [q ≤ q′ ⇒ x‖·‖(α, q) ≤ x‖·‖(α, q′)]
∀α < κ ∃q ∈ Q+ [x‖·‖(α, q) = 1]

∀0 < α < κ∃q ∈ Q+ [x‖·‖(α, q) = 0]

∀q ∈ Q+ [x‖·‖(0, q) = 1]

∀α, β < κ∀p ∈ Q ∀q ∈ Q+ [xQ(α, p, β) = 1 ⇒ (x‖·‖(β, q) = 1 ⇔ x‖·‖(α, q/|p|) = 1)]

∀α, β, γ < κ ∀q, q′ ∈ Q+ [x+(α, β, γ) = 1 ∧ x‖·‖(α, q) = 1 ∧ x‖·‖(β, q′) = 1

⇒ x‖·‖(γ, q + q′) = 1]

∀α < κ ∃β < κ ∃q ∈ Q+ ∀γ < α ∀δ, ε < κ [xQ(γ,−1, δ) = 1 ∧ x+(β, δ, ε) = 1 ⇒ x‖·‖(ε, q) = 0]

Table 1. The conditions defining Bκ.

Let B be a (real) Banach space of density κ with norm ‖ · ‖B, and let D =
{bα | α < κ} be a dense subset of B which is also closed under rational linear
combinations. Without loss of generality, we can assume that b0 is the zero vector
of B (so that b0 is the unique element of D with B-norm 0). Then we can identify

B with an element xB = (x+
B, x

Q
B, x

‖·‖
B ) of the space X := κ×κ×κ2×κ×Q×κ2×κ×Q+

2
by setting for α, β, γ < κ, p ∈ Q, and q ∈ Q+

(7.7)

x+
B(α, β, γ) = 1⇔ bα + bβ = bγ

xQ
B(α, p, β) = 1⇔ p · bα = bβ

x
‖·‖
B (α, q) = 1⇔‖bα‖B < q.

The function xB codes all the necessary informations to retrieve the normed vector
space structure of D, and hence of the whole B. This suggests to consider the
space Bκ ⊆ X consisting of those x = (x+, xQ, x‖·‖) ∈ X satisfying the conditions
in Table 1. The meaning of the conditions in this table is clear: given x ∈ Bκ, we
can consider the normed Q-vector space Dx on κ equipped with the (well-defined)
operations +x and ·x and the (well-defined) norm ‖ · ‖x obtained by setting for
α, β < κ and p ∈ Q

α+x β = γ⇔x+(α, β, γ) = 1

p ·x α = β⇔xQ(α, p, β) = 1

‖α‖x := inf{q ∈ Q+ | x‖·‖(α, q) = 1}.
The Banach space obtained by completing the norm ‖ · ‖x is denoted by Bx. Then
for every Banach space B of density κ we get that its code xB ∈ X defined in (7.7)
belongs to Bκ (and is such that B and BxB

are linearly isometric), and, conversely,
for every x ∈ Bκ the space Bx is a Banach space of density κ. Moreover, the
explicit definition from Table 1 shows that Bκ is an effective κ+ 1-Borel subset of

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



68 7. STANDARD BOREL κ-SPACES, QUASI-ORDERS, AND SPACES OF CODES

X , and hence it inherits from it the topology τb and the corresponding (effective)
κ + 1-Borel structure, which turns it into a standard Borel κ-space. Thus we can
regard Bκ as the space of (codes for) all Banach spaces of density κ (up to
linear isometry).

The linear isometric embeddability relation �li on Bκ is given by

x �li y ⇔ there is a linear norm-preserving map from Bx into By,

while the linear isometry relation ∼=li on Bκ is given by

x ∼=li y ⇔ there is a linear norm-preserving bijection between Bx and By.

For every x, y ∈ Bκ one has that x �li y if and only if there is a linear norm-
preserving map i : Dx → By. Using the Tarski-Kuratowski algorithm, the relation

�li is a κ-analytic quasi-order on Bκ, and ∼=li is a κ-analytic equivalence relation
on Bκ.
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CHAPTER 8

Infinitary logics and models

The topic of this chapter is infinitary logics (as presented e.g. in [3]) and models
of infinitary sentences. As in Section 7.2.2, L = {Ri | i ∈ I} with I ∈ ω denotes
a finite relational signature, and ni is the arity of the symbol Ri. As usual λ, κ
denote infinite cardinals.

8.1. Infinitary logics

8.1.1. Syntax.

Definition 8.1. For λ ≤ κ the set Lκλ of infinitary formulæ for the signature
L is defined as follows.

• Fix a list of objects 〈vα | α < λ〉 called variables.
• The atomic formulæ are finite sequences of the form 〈	, vα1

, vα2
〉 and〈

Ri, vα1
, . . . , vαni

〉
, with i < I and α1, . . . , αni

< λ.1

• Lκλ is the smallest collection containing the atomic formulæ and closed under
the following operations:
negation: ϕ �→ 〈¬〉�ϕ;
generalized conjunctions: if ϕα ∈ Lκλ (for α < ν < κ), and if the total

number of variables that occur free in some ϕα is strictly smaller than λ,
then 〈

∧
〉� 〈ϕα | α < ν〉 ∈ Lκλ;

generalized existential quantification: ϕ �→ 〈∃〉�
〈
vu(α) | α<ν

〉�ϕ, for an
increasing u : ν → λ and ν < λ.

Remarks 8.2. (i) Each formula in Lκλ has <λ free variables occurring in it.
In fact the formal definition of ϕ ∈ Lκλ requires the simultaneous definition
of

Fv(ϕ) ∈ [λ]<λ,

the set of all α ∈ λ such that vα occurs free in ϕ.
(ii) Formally, the generalized conjunction of the formulæ ϕα ∈ Lκλ (for α < ν <

κ) should be defined as the concatenation 〈
∧
〉�ϕ0

�ϕ1
� . . .�ϕα

� . . . rather
than 〈

∧
〉� 〈ϕα | α < ν〉, so that each formula in Lκλ is always a(n infinite)

sequence of logical symbols and symbols from L. However, this other approach
would then require us to prove a unique readability lemma to ensure that
each of the formulæ ϕα can be recovered from their conjunction, something
which is clear with our current definition. This formal presentation would be
considerably more opaque, so we decided to abandon it in favor of clarity.

(iii) Lωω is ordinary first-order logic.

1We use the symbol 	 for the equality predicate in the infinitary logic, to distinguish it from
the usual = used in the language of set theory.

69
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70 8. INFINITARY LOGICS AND MODELS

The usual syntactical notions (subformula, sentence, etc.) are defined in the
obvious way, and each ϕ is completely described by the tree of its subformulæ
Subf(ϕ), which is called the syntactical tree of ϕ.

It is convenient to assume that all symbols of Lκλ are construed as fixed el-
ements of λ — for example we can encode vα by the ordinal 〈0, α〉, the equality
predicate 	 by 〈1, 0〉, the negation ¬ by 〈1, 1〉, the generalized conjunction

∧
by

〈1, 2〉, and Ri by 〈i+ 2, ni〉, where 〈·, ·〉 is the pairing function of (2.1). In this
way, any atomic formula can be encoded by a finite sequence of ordinals <λ (and
therefore by an ordinal <λ by (2.2)), and an arbitrary ϕ ∈ Lκλ can be encoded
via Subf(ϕ) with a tree on κ. In fact: Subf(ϕ) can be construed as a labelled < κ-
branching descriptive set-theoretic tree on κ of height ≤ ω, with labels in [λ]<λ.
Notice that also formulæ in Lκ+λ may be encoded through their syntactical tree as
(labelled) tree on κ — the difference with the previous case is that now we have to
consider κ-branching trees. Thus:

• the set Lκλ can be defined in every transitive model of ZF containing κ,
• the predicate “ϕ ∈ Lκλ” is absolute for such models,
• Lκ′λ′ ⊆ Lκλ whenever κ′ ≤ κ and λ′ ≤ λ.

We forsake the official, but awkward, notation for a language in favor of a more
relaxed (if a bit inaccurate) one. Thus:

• the atomic formulæ are written as vα1
	 vα2

and Ri(vα1
, . . . , vαni

), and vα1
�	 vα2

is the negation of vα1
	 vα2

;
• the letters ϕ,ψ range over formulæ, while σ ranges over sentences;
• the negation, the generalized conjunction, and the generalized existential quan-
tification are written as ¬ϕ,

∧
α<ν ϕα, and ∃〈vu(α) | α < ν〉ϕ or ∃vu(0)∃vu(1) · · · ϕ

or2 ∃vu ϕ (with u ∈ [λ]<λ). The generalized disjunction
∨

α<ν ϕα and general-
ized universal quantification ∀〈vu(α) | α < ν〉ϕ or ∀vu(0)∀vu(1) · · · ϕ or ∀vu ϕ are
defined by means of the de Morgan’s laws. Ordinary conjunctions and disjunc-
tions are obtained from generalized ones by setting ν = 2, and from these all
other connectives are defined. Similarly, ordinary quantifications are obtained
from generalized ones by setting ν = 1;
• the letters x, y, z, . . . range over {vα | α < λ}, so that ∃〈xα | α < ν〉ϕ is
∃〈vu(α) | α < ν〉ϕ for some u : ν → λ. Since cardinals are additively closed,

∃〈xα | α < ν〉 ∃〈yβ | β < ξ〉ϕ is identified with ∃〈xα | α < ν〉�〈yβ | β < ξ〉ϕ,
• the expression ϕ(〈xα | α < ν〉) means that the variables that occur free in ϕ

are among the {xα | α < ν}, and we will also assume that the xα are distinct
and listed in an increasing order with respect to the official list. Therefore
〈xα | α < ν〉 =

〈
vu(α) | α < ν

〉
for some unique increasing u : ν → λ. Such u can

be identified with its range, which is an element of [λ]ν , so we write ϕ(vu) with
u ∈ [λ]ν to say that if vα occurs free in ϕ, then α ∈ u.

Definition 8.3. (i) The set L0
κλ of all propositional formulæ consists of

those ϕ ∈ Lκλ obtained from the atomic formulæ using only negation and
generalized conjunctions.

(ii) The set Lb
κλ of all bounded formulæ consists of those ϕ ∈ Lκλ such that:

if ∃〈xα | α < ν〉ψ ∈ Subf(ϕ) and ν ≥ ω, then ψ ∈ L0
κ′λ for some κ′ < κ.

2Recall from Section 2.1.2 that we are identifying each u ∈ [λ]<λ with its increasing enumer-
ating function.
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8.1. INFINITARY LOGICS 71

Thus Lb
κλ is closed under negation, infinitary conjunctions and disjunctions

(of size <κ), finite quantifications, but not under infinitary quantifications. The
reason for investigating this technical notion is that Lb

κλ avoids the counterexamples
related to (the relevant direction of) the generalized Lopez-Escobar theorem (see
Remark 8.12). This feature of Lb

κλ is crucial for the results of Section 14.1 (see
Theorems 14.8 and 14.10).

Remarks 8.4. (i) We are mostly interested in logics of the form Lκ+κ, Lb
κ+κ

and Lκ+λ for λ < κ.
(ii) As for α-Borel sets, one could define the logics Lαβ for arbitrary β ≤ α ∈ Ord

in the obvious way, and with such definition one could write L(κ+1)κ, Lb
(κ+1)κ

and L(κ+1)λ instead of Lκ+κ, Lb
κ+κ and Lκ+λ. In principle, this would be

preferable, as κ+1 is absolute while κ+ is not. However, there are two reasons
to eschew such move. Firstly, this would run against standard notation in the
literature. Secondly, this could be source of endless minor notational quibbles
regarding the use of variables in the generalized existential quantification.

(iii) A more substantial move would be to extend the definition of Lκλ to LA+1B+1

with A,B arbitrary sets, just like BJ+1 is a generalization of Bα (Defini-
tion 4.8). This would allow us to give a ZF-formulation of certain results
(Proposition 8.13 parts (b) and (c), and Proposition 8.14). On the other
hand, besides the technical problems already mentioned for Lαβ , this would
render the notation quite opaque. As we have no use for LA+1B+1, we decided
to abandon them altogether.

8.1.2. Semantics. If A =
〈
A;RA

i

〉
i∈I

is an L-structure, ϕ(vu) ∈ Lκλ with

u ∈ [λ]<λ, and s : u→ A, then
A |= ϕ[s]

means that the formula obtained from ϕ(vu) by substituting each vα with s(α) for
all α ∈ u, holds true in the structureA. This notion is defined recursively on the tree
Subf(ϕ) of all subformulæ of ϕ. For example, if ϕ is vα 	 vβ or Ri(vα1

, . . . , vαn
),

then A |= ϕ[s] if and only if s(α) = s(β) or 〈s(α1), . . . , s(αn)〉 ∈ RA
i . If instead

∃vuψ, then letting w := u ∪ Fv(ψ)

(8.1) A |= ϕ[s] ⇔ ∃t ∈ wA (t�Fv(ϕ) = s�Fv(ϕ) ∧ A |= ψ[t]) .

As in the first-order case, if s�Fv(ϕ) = t�Fv(ϕ) then A |= ϕ[s] ⇔ A |= ϕ[t], so if
ϕ is a sentence, i.e. Fv(ϕ) = ∅, then the truth A |= ϕ[s] does not depend on s and
we write A |= ϕ.

Remarks 8.5. (i) First-order formulæ can be identified with specific natural
numbers and Lωω can be identified with a subset of ω. In particular, both
Lωω and its members are well-orderable. This fails badly for Lκλ when κ > ω.
In fact, while atomic formulæ (and their negations) can be coded as ordinals
<λ, by taking countable conjunctions it is possible to inject ω2 into L0

κλ.
(ii) By (8.1), when λ ≥ ω1 the existence of Skolem functions for A requires AC

(or at least a well-ordering of <λλ), even when A is well-orderable.
(iii) The satisfaction relation for Lκλ with κ ≥ ω2 and λ ≥ ω1 is not absolute for

transitive models of ZFC. In fact there can be a countable structure A with
domain ω and an Lω2ω1

-sentence σ such that A |= σ in the universe V, but
A �|= σ in a suitable forcing extension V[G] of V. To see this, assume that
ZFC+CH holds in V, let L = {P} be a language consisting of just one unary
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relational symbol, and let A =
〈
ω;PA〉 ∈ V be such that PA is infinite and

coinfinite. For the sake of definiteness set PA(i) ⇔ i is even (for i ∈ ω), so
that A belongs to any model of ZF. Let

D := {D ∈ V | V |= “D is Fn(ω, 2;ω)-dense”},
so that D has size ω1 in V by CH. The plan is to define an Lω2ω1

-sentence σ

coding the existence of a D-generic for the Cohen forcing Fn(ω, 2;ω). Given
s ∈ <ω2, let ψs = ψs(v0, . . . , vlh(s)−1) be the Lωω-formula∧

i<lh s
s(i)=1

P (vi) ∧
∧

i<lh s
s(i)=0

¬P (vi).

Finally, let σ be the Lω2ω1
-sentence ∃〈vi | i ∈ ω〉ϕ, where ϕ = ϕ(〈vi | i ∈ ω〉)

is the formula( ∧
i<j<ω

vi �	 vj
)
∧
∧

D∈D

∨
s∈D

ψs(v0, . . . , vlh(s)−1).

It is not hard to check that working in any ZF-model W ⊇ V, if 〈ai | i ∈ ω〉
is a sequence of elements of A such that A |= ϕ(〈ai | i ∈ ω〉), then the
function G : ω → 2 defined by G(i) = 1⇔ PA(ai) is D-generic for Fn(ω, 2;ω).
Conversely, if G : ω → 2 is D-generic for Fn(ω, 2;ω) then, using the fact that{
i ∈ ω | PA(i)

}
is infinite and coinfinite, one can find a sequence 〈ai | i ∈ ω〉

of elements of A such that A |= ϕ(〈ai | i ∈ ω〉). Therefore, in any W as above
it holds

A |= σ ⇔ ∃G : ω → 2 (G is D-generic for Fn(ω, 2;ω)).

Therefore A �|= σ in V, but A |= σ in any Fn(ω, 2;ω)-generic extension of V.

As seen in Section 7.2.2, any L-structure of size κ can be identified with an
element of ModκL (which is a typical example of a space of type κ). For ϕ(vu) ∈ Lνμ

and u ∈ [μ]<μ we set

(8.2) Mϕ,u := {(X, s) ∈ ModκL× uκ | X |= ϕ[s]} ,
and if σ is a sentence, we set

(8.3) Modκσ := {X ∈ ModκL | X |= σ} .
Thus Modκσ is the space of all L-structures with domain κ which satisfy σ. We also
let

Mod<κ
σ :=

⋃
λ<κ

Modλσ and Mod∞σ :=
⋃

κ∈Card

Modκσ .

Notice that sets of the form Modκσ, Mod<κ
σ , and Mod∞σ are always invariant under

isomorphism.

Notation. From now on we use �∼
κ
σ and ∼=κ

σ for the embeddability and isomor-
phism relations restricted to the space of models Modκσ. Similarly, we denote the
restriction of the embeddability (respectively, isomorphism) relation to the spaces

Mod<κ
σ and Mod∞σ by �∼

<κ
σ and �∼

∞
σ (respectively, ∼=<κ

σ and ∼=∞
σ ). A similar nota-

tion is adopted for the less frequently used bi-embeddability relation ≈ as well: in
this case we write ≈κ

σ, ≈<κ
σ , and ≈∞

σ to denote the restriction of ≈ to, respectively,
Modκσ, Mod<κ

σ , and Mod∞σ .
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Remark 8.6. Fix any σ ∈ Lκ+κ. As we shall see in the next section, when
κ < κ<κ (or when the assumption AC is dropped) the set Modκσ may fail to be
a κ + 1-Borel subset of ModκL, even when considering the finest topology τb, see
Remark 8.12. However, if κ is regular and either σ ∈ Lb

κ+κ or AC + κ<κ = κ
holds, then Modκσ ∈ Be

κ+1(ModκL, τb) by Corollary 8.10(b) and Theorem 8.7. In

this case Modκσ is a standard Borel κ-space and the relations �∼
κ
σ,
∼=κ

σ, and ≈κ
σ are,

respectively, a κ-analytic quasi-order and two κ-analytic equivalence relations.

The topological complexity of Modκσ as a subspace of the space ModκL of type
κ (with respect to the various natural topologies on it, see Definition 7.9) is the
subject of Section 8.2. Towards this goal, we equip the spaces ModκL× uκ in (8.2)
with the product of the topology τ on ModκL and σ on uκ, where τ is either the
product topology, the λ-topology (ω ≤ λ < max(cof(κ)+, κ)), or the bounded
topology, and σ is the discrete topology on uκ. As before, the resulting topologies
are called, respectively, product topology, λ-topology, and bounded topology, and
are denoted by τp, τλ, and τb. The bijection

(8.4) ModκL× ∅κ→ ModκL, (X, ∅) �→ X

is a homeomorphism (when on both sides ModκL is endowed with the same topology)
witnessing the identification between Mσ,∅ and Modκσ for every σ ∈ Lκλ.

8.2. Some generalizations of the Lopez-Escobar theorem

A theorem of Lopez-Escobar (see e.g. [53, Theorem 16.8]) says that A ⊆ ModωL
is Borel and invariant under isomorphism if and only if A = Modωσ for some σ ∈
Lω1ω. The aim of this section is to extend this to an arbitrary infinite cardinal
κ. Full generalizations of the Lopez-Escobar theorem have been obtained in [93,
Theorem 4.1] when κ = κ<κ, yielding the next result which follows immediately
from Corollary 8.11 with λ = κ, and Proposition 8.14(c) below.

Theorem 8.7 (AC). If κ<κ = κ, then a set A ⊆ ModκL is κ + 1-Borel (with
respect to τb) and closed under isomorphism if and only if A = Modκσ for some
σ ∈ Lκ+κ.

Since Bκ+1(τp) ⊆ Bκ+1(τλ) ⊆ Bκ+1(τb), Theorem 8.7 concerns the largest
possible class of κ+1-Borel sets, but in fact under κ<κ = κ all the above classes co-
incide by Corollary 4.10. Remarks 8.12 and 8.17 show that without the assumption
κ<κ = κ both directions of the equivalence in Theorem 8.7 may fail. The assump-
tion κ<κ = κ in Theorem 8.7 is inconvenient for our work because, as already
explained in the introduction:

• we need to apply a generalization of the Lopez-Escobar theorem in models where
AC fails (e.g. in models of determinacy);
• even when working in models satisfying AC, our results concern uncountable
cardinals κ < |ω2|, which cannot satisfy κ<κ = κ.

However, a careful analysis of the proof of Theorem 8.7 reveals some new interme-
diate results that may be useful. In one direction, Corollaries 8.10 and 8.11 show
that if the sentence σ is chosen in a suitable fragment of Lκ+κ, then Modκσ may
turn out to be κ+1-Borel even if the assumptions AC and κ<κ = κ are dropped —
in fact, the bounded version Lb

κ+κ of the logic Lκ+κ has been introduced for this
purpose. In another direction, Proposition 8.14 gives some interesting results even
in situations when Theorem 8.7 cannot be applied. For example, part (a) yields in

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



74 8. INFINITARY LOGICS AND MODELS

ZFC that if Modω1

L is endowed with the product topology, then every ω1 + 1-Borel
set A ⊆ Modω1

L which is invariant under isomorphism is of the form Modω1
σ for some

σ ∈ L(2ℵ0)+ω1
, independently of CH. More generally, when κ = μ+ and ModκL is

endowed with the product topology, then every κ+1-Borel set A ⊆ ModκL invariant
under isomorphism is always of the form Modκσ for some L(2μ)+κ-sentence σ. Sim-

ilarly, if 2ℵ0 = ℵ2 and 2ℵ1 = ℵ3 then Theorem 8.7 cannot be applied with κ = ω2.
However Proposition 8.14(b) gives that if Modω2

L is endowed with the ω1-topology,
then every ω2 +1-Borel set A ⊆ Modω2

L invariant under isomorphism is of the form
Modω2

σ for some σ ∈ Lω4ω2
.

8.2.1. From formulæ to invariant Borel sets. In the next results we use
the setsMϕ,u defined in (8.2). The proof of the following lemma is a straightforward
adaptation of the proof of [53, Proposition 16.17].

Lemma 8.8. Let λ ≤ κ and ϕ(vu) ∈ Lκλ with u ∈ [λ]<λ. The following hold:

(a) If ϕ is atomic then Mϕ,u is a basic clopen set with respect to τp (and hence
also with respect to τλ and τb).

(b) If ϕ = ¬ψ then Mϕ,u = (ModκL× uκ) \Mψ,u.
(c) If ϕ =

∧
α<ν ψα, where ν < κ, then Mϕ,u =

⋂
α<ν Mψα,u.

(d) If ϕ = ∃vu ψ for some u ∈ [λ]<λ, let w := u ∪ Fv(ψ). Then

Mϕ,u =
⋃

t∈wκ

π−1
t (Mψ,w),

where πt : ModκL× uκ→ ModκL×wκ is the continuous function

(x, s) �→ (x, s�Fv(ϕ) ∪ t� (w \ Fv(ϕ))).

In the following results of this section, the ambient space, unless otherwise
indicated, is ModκL. Recall from Definition 4.8 that for J an arbitrary set and B∗
the canonical basis for the topology τ∗ ∈ {τp, τλ, τb}, we denote by Be

J+1(B∗) the
collection of all effective J + 1-Borel subsets of ModκL with codes taking value in
B∗.

Proposition 8.9. Let λ ≤ κ and ϕ(vu) ∈ Lκ+λ with u ∈ [λ]<λ. Then the
following hold:

(a) Mϕ,u ∈ Be
J+1(τp) ⊆ Be

J+1(τλ) ⊆ Be
J+1(τb), where J := <λκ.

(b) If κ is regular and ϕ ∈ L0
κλ, then Mϕ,u is τb-clopen.

(c) If κ is regular and ϕ ∈ Lb
κ+λ, then Mϕ,u ∈ Be

κ+1(τb).
(d) If λ = ω, then Mϕ,u ∈ Be

κ+1(τp).

Proof. For part (a) it is enough to argue by induction on the complexity of
the subformulæ of ϕ and use Lemma 8.8 to construct an effective <λκ+1-Borel code
(T, φ) forMϕ,u. We inductively define a function f from the set of the subformulæ ψ

of ϕ to the set of effective <λκ+1-Borel codes such that f(ψ) gives a code for Mψ,u.
(The function f allows to avoid the use of AC in the inductive steps.) The tree T is
obtained from Subf(ϕ), the syntactical tree of the subformulæ of ϕ, by replacing
every non-splitting node given by an infinitary existential quantifier ∃ 〈xα | α < μ〉
with a splitting node of T with (at most) μκ-many immediate successors, each
corresponding to a possible witness of the existential quantification.

For part (b) argue as follows. By inductively applying Lemma 8.8 to the subfor-
mulæ of ϕ as in part (a), we obtain that Mϕ,u ∈ Alg(C, κ) where C is the collection
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of all basic τp-clopen subsets of ModκL× uκ. Each of these sets is thus τb-clopen by
equation (3.1) on page 27 (see the comments following Definition 7.9).

The proof of part (c) is similar to that of part (a). In constructing an effective
κ + 1-Borel code for Mϕ,u, unions of size > κ are taken only when an infinitary
existential quantification is encountered. By the way Lb

κ+λ is defined (see Defini-
tion 8.3), the quantified subformula must be in L0

κλ, and hence such a union is in
τb by part (b). The result then follows by inductively applying Lemma 8.8 again.

Part (d) follows from part (a) and the fact that <ωκ is in bijection with κ. �

By (8.4), setting u = ∅ in Proposition 8.9 we get:

Corollary 8.10. Suppose λ ≤ κ.

(a) If σ ∈ Lκ+λ, then Modκσ ∈ Be
J+1(τp) ⊆ Be

J+1(τb), where J := <λκ.

(b) If κ is regular and σ ∈ Lb
κ+κ, then Modκσ ∈ Be

κ+1(τb).
(c) If σ ∈ Lκ+ω, then Modκσ ∈ Be

κ+1(τp).

Using Proposition 8.9(a) and Corollary 8.10(a) we also have:

Corollary 8.11 (AC). Suppose λ ≤ κ and κ<λ = κ, and let ϕ(vu) ∈ Lκ+λ

with u ∈ [λ]<λ. Then Mϕ,u ∈ Be
κ+1(τp) ⊆ Be

κ+1(τb).
Similarly, if σ ∈ Lκ+λ is a sentence, then Modκσ ∈ Be

κ+1(τp) ⊆ Be
κ+1(τb).

Remark 8.12. If AC holds and κ<κ �= κ, then there may be sentences σ ∈ Lκ+κ

such that Modκσ is not κ + 1-Borel with respect to the finest topology considered
here, namely the bounded topology τb. As observed in [21, Remark 25], by work
of Väänänen and Shelah, if λ+ = κ < κ<κ and λ<λ = λ and a forcing axiom holds
(and ωL

1 = ω1 if λ = ω), then for some σ ∈ Lκκ ⊆ Lκ+κ the set Modκσ does not have
the κ-Baire property, so it is not κ+1-Borel with respect to τb by Proposition 6.14.
Corollary 8.10(b) is thus one of the main reasons to introduce the bounded logic
Lb
κ+κ.

8.2.2. From invariant Borel sets to formulæ. Let

InvκL := {A ⊆ ModκL | ∀X,Y ∈ ModκL (X ∈ A ∧ Y ∼= X ⇒ Y ∈ A)}

be the family of all subsets of ModκL which are invariant under isomorphism.
For every σ ∈ Lνμ and μ ≤ ν′ infinite cardinals, Modκσ ∈ InvκL. The following
propositions provide a partial converse to Corollaries 8.10 and 8.11.

Proposition 8.13. Suppose κ and λ are infinite cardinals satisfying the con-
dition ω ≤ λ < max(cof(κ)+, κ).

(a) Be
ω+1(Bp) ∩ InvκL ⊆ {Modκσ | σ ∈ Lκ+ω}.

(b) Assume AC. Then Bcof(λ)+1(Bλ) ∩ InvκL ⊆
{
Modκσ | σ ∈ L(κ<λ)+λ

}
.

(c) Assume AC. Then Bcof(κ)+1(Bb) ∩ InvκL ⊆
{
Modκσ | σ ∈ L(κ<κ)+κ

}
.

Proposition 8.14 (AC). Suppose κ is regular.

(a) Bκ+1(τp) ∩ InvκL ⊆
{
Modκσ | σ ∈ L(κ<κ)+κ

}
.

(b) Let ω < λ < κ be such that κ<λ = κ. Then

Bκ+1(τλ) ∩ InvκL ⊆
{
Modκσ | σ ∈ L(κ<κ)+κ

}
.

(c) Assume that κ<κ = κ. Then Bκ+1(τb) ∩ InvκL ⊆ {Modκσ | σ ∈ Lκ+κ}.
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The proofs of Propositions 8.13 and 8.14 are a careful refinement of an argument
already implicit in the work of Vaught [93] — see [53, Proposition 16.9].

Recall from Section 6.1 that κκ and its subspaces can be equipped with several
topologies, namely τp = τω, τμ with ω ≤ μ < max(cof(κ)+, κ), and τb. When κ is

regular then τκ = τb and B̂κ = B̂b as agreed in (6.1), so that the notation τμ and

B̂μ encompass all possibilities. If κ is singular, then this is not the case and the
bounded topology and its canonical basis should be treated separately. This would
cause a lot of notational inconveniences in the results that follow, so we stipulate
the following:

Convention 8.15. For the rest of this section, we agree that τκ = τb and

B̂κ = B̂b, independently of whether κ is regular or not. Thus the topologies and

bases relevant for us are of the form τμ and B̂μ with μ in the set

(8.5) {ν ∈ Card | ω ≤ ν ≤ cof(κ) ∨ ν = κ} .

The group Sym(κ) inherits the relative topology (denoted again by τμ), whose
basic open sets can be written as

[s] := N̂s−1 ∩ Sym(κ) =
{
g ∈ Sym(κ) | s ⊆ g−1

}
with s ∈ u(κ) (i.e. s is an injection from u to κ, see Section 2.1.2) and u ∈ D(μ),
where

(8.6) D(μ) :=

{
[κ]<μ if μ �= κ,

κ if μ = κ.

Given a property ϕ for the elements of Sym(κ) and a nonempty τμ-open set U ⊆
Sym(κ), we write

∀∗μg ∈ U ϕ(g)

to abbreviate the statement:

{g ∈ Sym(κ) | ϕ(g)} is cof(μ)-comeager in U,

where the notion of μ-comeagerness is defined in Section 6.2. Next we define the
(local) Vaught transform of a set A ⊆ ModκL: given u ∈ D(μ), let

A∗u
μ :=

{
(X, s) ∈ModκL×

u(κ) | ∀∗μg ∈ [s] (g.X ∈ A)
}
,

where g.X is as in (7.5).
We are now going to prove Lemma 8.16, an analogue of [53, Proposition 16.9],

from which both Propositions 8.13 and 8.14 follow. The direct adaptation of the
proof of [53, Proposition 16.9] to our context yields a formula ϕu whose variables
range in {vα | α < κ}, while in the logic Lνμ of Lemma 8.16 we can use only
variables from the (possibly smaller) set {vα | α < μ} (see Definition 8.1). Such an
argument would yield a ϕu which is essentially what we require, but not quite an
element of Lνμ. To overcome this purely technical difficulty, a somewhat artificial
fragment L↓

νκ of Lνκ is introduced (see the beginning of the proof of Lemma 8.16).
In order to define such fragment, we need a few preliminary definitions.

Let D(μ) be as in (8.6), and fix u ∈ D(μ). Set

u↓μ :=

{
the unique ν < μ such that u ∈ [κ]ν if μ �= κ,

u if μ = κ
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so that in either case u↓μ ∈ [μ]<μ. Recalling from Section 2.1.2 that every element
of [κ]<μ is identified with its enumerating function, for any s ∈ u(κ) let

s↓μ :=

{
s ◦ u if μ �= κ,

s if μ = κ,

so that in either case s↓μ ∈
⋃

ν<μ
ν
(κ). Notice that when u = s = ∅ we have

u↓μ = s↓μ = ∅ (for any cardinal μ as above).

Lemma 8.16. Suppose λ ≤ μ both belong to the set in (8.5), and endow the
spaces Sym(κ) and ModκL with the topologies τμ and τλ, respectively. Let A ⊆ ModκL
be in Be

cof(μ)+1(Bλ), and let u ∈ D(μ). Let ν := |<μκ|+, assuming AC if μ > ω.

Then there is some Lνμ-formula ϕu(vu↓μ) such that for every X ∈ ModκL and
s ∈ u

(κ)

(X, s) ∈ A∗u
μ ⇔ (X, s↓μ) ∈Mϕu,u↓μ,

where Mϕ,u is as in (8.2).

Proof. Let L↓μ
νκ be the fragment of Lνκ obtained by adding to Definition 8.1

the following restrictions:

• the generalized conjunction of the formulæ ϕα (for α < ν < ν) may be formed
only when the total number of variables occurring free in some of the ϕα’s is
< μ;
• a generalized existential quantification ∃vu ϕ may be formed only when u ∈
[κ]<μ.

Equivalently, L↓μ
νκ can be defined similarly to the logic Lνμ except that we may

use variables from a longer list 〈vα | α < κ〉 of length κ instead of using μ-many
variables. (When μ = κ we get L↓μ

νκ = Lνκ.) It follows in particular that each
formula in L↓μ

νκ has < μ-many free variables occurring in it. In order to simplify
the notation, for the rest of the proof we write L↓

νκ, u↓, and s↓ instead of L↓μ
νκ, u↓μ

and s↓μ.
By a suitable variable substitution, any ψ′(vu) ∈ L↓

νκ can be easily transformed
into a corresponding ψ(vu↓) ∈ Lνμ such that for all (X, s) ∈ ModκL×

u(κ)

(X, s) ∈Mψ′,u ⇔ (X, s↓) ∈Mψ,u↓.

Thus it is enough to find, for any given A as in its hypotheses of the lemma, an
L↓
νκ-formula ϕ′

u(vu) such that A∗u
μ = Mϕ′

u,u
: setting ϕ′

u := G(∅, u) in the following
construction we will be done.

Let (T, φ) be a cof(μ)+1-Borel code for A ⊆ ModκL such that φ(t) ∈ Bλ(ModκL)
for every terminal node t ∈ T . We shall define a map

G : T ×D(μ)→ L↓
νκ

such that Fv(G(t, u)) = u and

φ(t)∗uμ = MG(t,u),u.

The map G is defined inductively on the well-founded relation

(t, u) ≤ (t′, u′) ⇔ t′ precedes t in the ordering of T,

using that (Sym(κ), τμ) is cof(μ)-Baire (Theorem 6.12).
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Case 1: t is a terminal node of T , so that φ(t) ∈ Bλ(ModκL). Then it is easy
to check that there are3 θ(vw) ∈ L↓

νκ with w ∈ D(μ), and h ∈ w(κ), such that

φ(t) = {X ∈ ModκL | X |= θ[h]} .
Then for every u ∈ D(μ) we have

(X, s) ∈ φ(t)∗uμ ⇔ s ∈ u
(κ) ∧ ∀∗μg ∈ [s] (g.X |= θ[h])

⇔ s ∈ u
(κ) ∧ ∀∗μg ∈ [s]

(
X |= θ[g−1 ◦ h]

)
.

(8.7)

Let w′ := {h(α) | α ∈ w}, and let θ′(vw′) be the formula obtained from θ(vw) by
substituting each (free) occurrence of vα in θ(vw) with vh(α) (for each α ∈ w). Now
there are two cases:

• if w′ ⊆ u then since g ∈ [s] ⇔ s ⊆ g−1 we have g−1 ◦ h = s ◦ h = s�w′, so
φ(t)∗uμ = Mϕ,u with ϕ(vu) ∈ L↓

νκ being the formula∧
α,β∈u
α<β

vα �	 vβ ∧ θ′(vw′).

In fact if (X, s) ∈ φ(t)∗uμ then by (8.7) there is g ∈ [s] such that X |= θ[g−1 ◦ h],
and hence X |= θ[s ◦ h]. From this it follows that X |= ϕ[s], i.e. (X, s) ∈Mϕ,u.
Conversely, if (X, s) ∈Mϕ,u then X |= ϕ[s]. Therefore X |= θ[g−1 ◦ h] for every
g ∈ [s], and hence (X, s) ∈ φ(t)∗uμ since [s] is trivially cof(μ)-comeager in itself.
• if w′ �⊆ u, let w′′ ∈ D(μ) be smallest such that u ∪ w′ ⊆ w′′ (i.e. w′′ := u ∪ w′ if
λ = μ = κ or λ ≤ μ < κ, while w′′ := sup {α < κ | α ∈ u ∪ w′} if λ < μ = κ).

As every cof(μ)-comeager subset of [s] must intersect every [r] with r ∈ w′′
(κ)

and s ⊆ r, and since (Sym(κ), τμ) is cof(μ)-Baire, then

∀∗μg ∈ [s]
(
X 
 θ[g−1 ◦ h]

)
⇔ ∀r ∈ w′′

(κ) (r ⊇ s⇒ X |= θ′[r�w′]).

Arguing as in the previous case, φ(t)∗uμ = Mϕ,u with ϕ(vu) ∈ L↓
νκ being the

formula(∧
α,β∈u
α<β

vα �	 vβ
)
∧ ∀ 〈vα | α ∈ w′′ \ u〉

(∧
α,β∈w′′

α<β

vα �	 vβ ⇒ θ′(vw′)
)
.

In either case let G(t, u) := ϕ(vu).

Case 2: otherwise. Let

Succ(t) := {t′ ∈ T | t′ is an immediate successor of t} ,
which is a set of size ≤ cof(μ). By inductive hypothesis, for every t′ ∈ Succ(t)
and every w ∈ D(μ) we have that G(t′, w) ∈ L↓

νκ and φ(t′)∗wμ = MG(t′,w),w. As
(Sym(κ), τμ) is cof(μ)-Baire, then(⋂

t′∈Succ(t)
φ(t′)
)∗w
μ

=
⋂

t′∈Succ(t)
φ(t′)∗wμ =

⋂
t′∈Succ(t)

MG(t′,w),w = Mψw,w,

where ψw(vw) is
∧

t′∈Succ(t) G(t′, w). Given X ∈ ModκL, the map

Sym(κ)→ ModκL, g �→ g.X

is continuous when both spaces are endowed with the topology τλ, and hence it is
also continuous as a function between (Sym(κ), τμ) and (ModκL, τλ), as τμ refines τλ.

3In fact θ is a Boolean combination of atomic formulæ of L using conjunctions and disjunc-
tions of size <λ.
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Since φ(t) ∈ Be
cof(μ)+1(τλ) ⊆ Bcof(μ)+1(τλ) and Bcof(μ)+1 is closed under continuous

preimages, we get that

(8.8) {g ∈ Sym(κ) | g.X ∈ φ(t)} ∈ Bcof(μ)+1(Sym(κ), τμ).

Now fix an arbitrary u ∈ D(μ) in order to define G(t, u). By (8.8) and Propo-
sition 6.14, for every s ∈ u

(κ) the set {g ∈ [s] | g.X ∈ φ(t)} has the cof(μ)-Baire
property. Using Proposition 6.15,

(X, s) ∈ (φ(t))∗uμ ⇔ (X, s) ∈
(
ModκL \

⋂
t′∈Succ(t)

φ(t′)
)∗u
μ

⇔ ∀u ⊆ w ∈ D(μ)∀s ⊆ r ∈ w(κ)
[
(X, r) /∈

(⋂
t′∈Succ(t)

φ(t′)
)∗w
μ

]
⇔ ∀u ⊆ w ∈ D(μ)∀s ⊆ r ∈ w

(κ) [(X, r) /∈Mψw,w] ,

so that φ(t)∗uμ = Mϕ,u where ϕ(vu) is the formula(∧
α,β∈u
α<β

(vα �	 vβ)
)

∧
∧

u⊆w∈D(μ)
∀ 〈vα | α ∈ w \ u〉

[(∧
α,β∈w
α<β

vα �	 vβ
)
⇒ ¬ψw(vw)

]
.

Therefore it is enough to put G(t, u) := ϕ(vu). �
Varying the parameters μ and λ in Lemma 8.16 and taking u = ∅, we can now

prove Propositions 8.13 and 8.14.

Proof of Proposition 8.13. First notice that if A ⊆ ModκL is invariant un-
der isomorphism, then for every infinite cardinal μ belonging to the set in (8.5)
and every X ∈ ModκL we have X ∈ A ⇔ (X, ∅) ∈ A∗∅

μ by Theorem 6.12. Recall
also from (8.4) that for every sentence σ ∈ L|<μκ|+μ and every X ∈ ModκL we have

(X, ∅) ∈ Mσ,∅ ⇔ X ∈ Modκσ, and that ∅↓μ = ∅. Then it is enough to set μ = λ
and u = ∅ in Lemma 8.16, and then further set λ = ω to get (a) and λ = κ to
get (c). �

Proof of Proposition 8.14. The proof is analogous to that of
Proposition 8.13: it is enough to set μ = κ and u = ∅ in Lemma 8.16, and then fur-
ther set λ = ω for (a) and λ = κ for (c). The assumption κ<λ = κ in part (b) guar-
antees that |Bλ| = κ, so that τλ ⊆ Be

κ+1(Bλ), and therefore Bκ+1(τλ) = Be
κ+1(Bλ).

Similarly κ<κ = κ in part (c) ensures that Bκ+1(τb) = Be
κ+1(Bb). �

Remark 8.17. As for Corollary 8.11 (see Remark 8.12), if we drop the assump-
tion κ<κ = κ then also Proposition 8.14(c) may fail. Work in ZFC. As observed
in [74, Theorem 4.4], if μ is regular and μ < κ, then there are 2(2

μ)-many τb-open
subsets of ModκL invariant under isomorphism, while there are (κ<κ)κ = 2κ for-
mulæ in Lκ+κ. Thus if there is e.g. a regular μ < κ such that 2(2

μ) > 2κ (which
can happen if κ<κ > κ), then there is also an (effective) invariant κ + 1-Borel
subset of ModκL which cannot be of the form Modκσ for σ an Lκ+κ-sentence. In
particular, if 2ℵ0 = 2ℵ1 , as it is the case in models of forcing axioms like MAω1

or
PFA, then there is an invariant τb-open subset of Modω1

L which is not of the form
Modω1

σ for any σ ∈ Lω2ω1
([74, Corollary 4.6]). A similar argument shows that also

Proposition 8.14(b) may fail if we do not assume that κ<λ = κ.
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CHAPTER 9

κ-Souslin sets

9.1. Basic facts

The following definition generalizes (in a different direction from the one con-
sidered in Section 7.1) the notion of an analytic subset of a Polish space.

Definition 9.1. Let κ be an infinite cardinal, ωκ be endowed with the product
of the discrete topology on κ, and X be a Polish space. A set A ⊆ X is called κ-
Souslin if it is a continuous image of a closed subset of ωκ, and is called∞-Souslin
if there is an infinite cardinal κ such that A is κ-Souslin. The class of all κ-Souslin
sets is denoted by S(κ), and S(∞) :=

⋃
κ∈Card S(κ) is the collection of all∞-Souslin

sets.

Thus S(ω) = Σ1
1 and Σ1

2 ⊆ S(ω1), but the reverse inclusion S(ω1) ⊆ Σ1
2

depends on the axioms we assume: it is true in models of AD+ DC, but it is false
in models of AC + CH. Under choice every subset of a Polish space is 2ℵ0-Souslin
(see Proposition 9.14), so the notion of an ∞-Souslin set makes sense only if we
work in models where AC fails.

The class S(κ) is a hereditary boldface pointclass, it is closed under countable
unions and countable intersections (assuming ACω), it contains all Borel sets, and it
is closed under images and preimages of Borel functions (Lemma 9.7). In particular,
S(κ) ⊇ Σ1

1 for every infinite κ. Moreover, every κ-Souslin set is automatically κ′-
Souslin for every κ′ ≥ κ, so that S(κ) ⊆ S(κ′) (although it is not true in general
that κ < κ′ ⇒ S(κ) ⊂ S(κ′): by Corollary 9.15 this is true under AC for all
κ′ ≤ 2ℵ0 , but under AD + DC we e.g. have S(ω1) = S(ω2) — see Section 9.4).
However, it is maybe worth noticing that the pointclasses S(κ), κ ∈ Card, may not
form a well behaved hierarchy in models of AC as it may happen that Š(κ) � S(κ′)
for ω1 ≤ κ < κ′ (see Remark 9.17). This pathology is absent in models of AD,
where we have

S(κ) ∪ Š(κ) ⊆ S(κ′) ∩ Š(κ′)

for all Souslin cardinals κ < κ′ (see Definition 9.11).

Remark 9.2. Using standard arguments and the closure properties of S(κ)
mentioned above, the notion of κ-Souslin set may be reformulated in several ways.
For any subset A of a Polish spaces X and any infinite cardinal κ the following are
equivalent:

• A is κ-Souslin;
• A is either empty or a continuous image of ωκ;
• A is a continuous image of a Borel subset of ωκ;
• A = pF for some closed F ⊆ X × ωκ;
• A = pB for some Borel B ⊆ X × ωκ,

where p is the projection map defined in (2.8) on page 24.

81
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Since S(κ) is closed under countable unions, κ-Souslinness becomes trivial when
considering a countable Polish space X, as any A ⊆ X is countable, and therefore
A ∈ S(ω) ⊆ S(κ) for every infinite cardinal κ. Moreover, any two uncountable
Polish spaces are Borel isomorphic, the closure under images and preimages of
Borel functions of S(κ) yields that it is enough to study κ-Souslin subsets of some
specific uncountable Polish space. Therefore, unless otherwise specified, from now
on we confine our analysis to κ-Souslin subsets of (countable products of) ω2. The
choice of these canonical spaces is motivated by the fact that the κ-Souslin subsets
of (ω2)N (for 1 ≤ N ≤ ω) admit a particularly nice representation in terms of
projections of the trees introduced in the following

Notation. Recall from (2.7) on page 24 that Tr(Y ) is the set of all descriptive
set-theoretic trees (of height ≤ ω) on Y . When Y = (2× 2× · · ·︸ ︷︷ ︸

N

)×κ we often write
Tr(N ; 2, κ) instead of Tr(Y ).

Remark 9.3. As Y := (2× 2× · · ·︸ ︷︷ ︸
N

)× κ has size κ, the elements of Tr(Y ) can

be identified (in ZF) with elements of κ2.

The usual representation of analytic (i.e. ω-Souslin) sets (see [53, Proposition
25.2]) extends to an arbitrary cardinal κ, so that for every A ⊆ (ω2)N

A ∈ S(κ) ⇔ ∃T ∈ Tr(N ; 2, κ)
(
A = p[T ]

)
.

A similar tree representation holds for κ-Souslin subsets of ωω, or more generally, of
any countable power ωX of a discrete countable set X. As hinted in Section 2.5.3,
using such representation and the notion of leftmost branch through trees on well-
orderable sets, one can easily reformulate the notion of a κ-Souslin set in terms of
scales (see e.g. [45, Lemma 2.5]):

Fact 9.4. A set A ⊆ ωX is κ-Souslin if and only if it admits a scale all of
whose norms map into κ.

The fact that a set A ⊆ (ω2)N is κ-Souslin gives us some structural information
on it: for example, we have the following property, which is meaningful whenever
κ is small enough compared to ω2 (see [72, Theorem 2C.2]).

Proposition 9.5. Let κ be an infinite cardinal and let A ⊆ (ω2)N . If A ∈ S(κ)
then A has the κ-Perfect Set Property (κ-PSP for short): either A has at most
κ-many elements, or else it contains a perfect set (equivalently, a homeomorphic
copy of ω2).

This property is used in Section 9.3 to show that the pointclass S(κ) is not
trivial for small κ. Another way to obtain nontrivial pointclasses is to relativize
κ-Sousliness to some inner model, as explained in the following remark — this
approach is exploited in Section 14.3.

Remarks 9.6. (i) If W is an inner model (i.e. a transitive proper class
model of ZF) and κ is a cardinal in it, by absoluteness of existence of infinite
branches, the relativization1 of S(κ) to W is

(S(κ))
W

=
{
A ∩ (ω2)W | A ∈ SW (κ)

}
⊇ SW (κ) ∩P((ω2)W )

1To simplify the notation, we consider here only subsets of ω2: the generalization of this
notion to subsets of countable products (ω2)N (and to arbitrary Polish spaces) is straightforward.
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where2

SW (κ) := {p[T ] | T is a tree on 2× κ belonging to W} .

In particular, if ω2 ⊆W (and hence L(R) ⊆W ) then

(S(κ))
W

= SW (κ).

(ii) If ω2 ⊆ W (equivalently, L(R) ⊆ W ), then SW (κ) is a boldface pointclass in
V because any continuous function belongs to L(R) ⊆ W . Moreover, SW (κ)
contains all Borel sets and is closed under continuous images, so that Σ1

1 ⊆
SW (κ) ⊆ S(κ).

9.2. More on Souslin sets and Souslin cardinals

The following lemma collects some well-known facts on S(κ).

Lemma 9.7 (ACω). Let κ be an infinite cardinal.

(a) S(κ) is a hereditary boldface pointclass containing all closed and open sets,
closed under countable unions and countable intersections (and hence contain-
ing all Borel sets), and closed under projections (equivalently, under continu-
ous images). In particular, S(κ) contains all analytic sets.

(b) S(κ) is closed under images and preimages of (partial) functions with κ-
Souslin graph.

Notice that the assumption ACω can be relaxed to ACω(R) if AD is assumed
and κ < Θ. Moreover, since a function between two Polish spaces is Borel if and
only if its graph is ω-Souslin (i.e. analytic), Lemma 9.7 implies that every pointclass
S(κ) is closed under Borel images and Borel preimages.

Proof. The proof of (a) is standard — see [72, Theorem 2B.2].

(b) Let X,Y be Polish spaces, A ⊆ X be κ-Souslin, and f be a partial function
from X to Y with κ-Souslin graph. We must show that

B := {y ∈ Y | ∃x ∈ A ∩ dom(f) (f(x) = y)} ∈ S(κ).

We can assume without loss of generality that both A and graph(f) are nonempty,
so let g : ωκ → X and h : ωκ → X × Y be continuous surjections onto A and
graph(f), respectively. For i = 0, 1, let πi :

ωκ � ωκ, s �→ 〈s(2n+ i) | n ∈ ω〉, and
let πX and πY be the projections of X × Y onto the spaces X and Y , respectively.
Set

C := {s ∈ ωκ | g(π0(s)) = πX(h(π1(s)))} .
Since all the functions involved in its definition are continuous and X is Hausdorff,
C ⊆ ωκ is a closed set, and hence there is a continuous r : ωκ→ C such that r�C
is the identity map by [53, Proposition 2.8]. Then πY ◦ h ◦ π1 ◦ r : ωκ � B is
continuous, whence B ∈ S(κ). �

Remark 9.8. If κ is an infinite cardinal and we assume ACκ, then S(κ) is
further closed under unions of length (at most) κ. This is because if 〈Aα | α < κ〉

2In the definition of SW (κ), the tree T must belong to W but its projection p[T ] is computed
in V.
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is a sequence of κ-Souslin subsets of a Polish space X, using ACκ we can chose for
each α < κ a continuous surjection pα :

ωκ � Aα ⊆ X. The surjection

ωκ �
⋃
α<κ

Aα, 〈α0, α1, α2, . . .〉 �→ pα0
(〈α1, α2, . . .〉)

is continuous, whence
⋃

α<κ Aα ∈ S(κ). In fact, assuming AC one can further show
that for every 0 �= n ∈ ω and every subset A of a Polish space X, A is ωn-Souslin if
and only if A is a union of ℵn-many Borel sets (see e.g. [47, Proposition 13.13(f)]).

The following lemma collects some classical facts relating κ-Sousliness to κ+1-
Borelness.

Lemma 9.9 (Folklore). Every A ∈ S(κ) is effective κ+ + 1-Borel (in fact, A
is an effective κ+-union of effective κ + 1-Borel sets), and if κ has uncountable
cofinality then A is an effective κ-union of effective κ-Borel sets (thus it is effective

κ+1-Borel). In particular, S(κ) ⊆ B
(e)
κ++1 and if κ has uncountable cofinality then

also S(κ) ⊆ B
(e)
κ+1. Moreover, ΔS(κ) ⊆ Bκ+1 (independently of κ).

Proof. Use the characterization of κ-Souslin subsets of ω2 in terms of projec-
tion of trees in Tr(2 × κ) (see [44, Lemma 2.12]). For the part concerning ΔS(κ),
use the classical Lusin separation argument (see [72, Theorem 2E.2]). �

Proposition 9.10. Suppose that there is an S(κ)-code for κ, so that it makes
sense to speak of a S(κ)-in-the-codes Borel function from ω2 to κ2. Then every
S(κ)-in-the-codes function f : ω2→ κ2 is weakly κ+ 1-Borel.

Proof. By Lemma 9.7, S(κ) is closed under projections and finite intersections
(notice that for these closure properties ACω is not needed). By (5.1) on page 47, for

every α < κ and every i ∈ {0, 1}, the set f−1(Ñκ
α,i) is inΔS(κ). Since by Lemma 9.9

every set in ΔS(κ) is κ + 1-Borel, this means that each f−1(Ñκ
α,i) is κ + 1-Borel.

Since the sets Ñκ
α,i generates (by taking finite intersections) the canonical basis Bp

for the product topology τp on κ2, and since Bp, being in bijection with Fn(κ, 2;ω),
is a well-orderable set size κ, this implies that f−1(U) is κ + 1-Borel for every
τp-open U ⊆ κ2, i.e. that f is weakly κ+ 1-Borel. �

Definition 9.11. A cardinal κ is a Souslin cardinal if S(κ)\
⋃

λ<κ S(λ) �= ∅,
i.e. if there is a κ-Souslin set which is not λ-Souslin for any λ < κ. Let

Ξ := sup {κ ∈ Card | κ is a Souslin cardinal} .

By definition S(∞) = S(Ξ), and by Lemma 9.9 S(∞) ⊆ B∞. The converse
inclusion may fail, for example AD + V = L(R) implies that S(∞) = Σ2

1 and that
every set of reals is ∞-Borel. The next folklore result shows that Ξ ≤ Θ.

Lemma 9.12. If κ is a Souslin cardinal, then κ < Θ. In particular, Θ is not a
Souslin cardinal.

Proof. Let A ⊆ ωω witness that κ is a Souslin cardinal. Then by Fact 9.4
there is a scale 〈ρn | n ∈ ω〉 on A such that each ρn maps into a cardinal κn ≤ κ.
Let λ := supn∈ω κn ≤ κ. If λ < κ then A would be λ-Souslin by Fact 9.4 again,
contradicting the choice of A: then λ = κ, and the map ϕ : ωω → κ sending each
n�x to ρn(x) if x ∈ A and to 0 otherwise is surjective, whence κ < Θ. �
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As Σ1
2 \ Σ1

1 �= ∅ and as Σ1
1 = S(ω) and Σ1

2 ⊆ S(ω1), then ω1 is a Souslin
cardinal. The existence of a Souslin cardinal greater than ω1, and whether Ξ is a
Souslin cardinal (and hence the largest Souslin cardinal) or, equivalently, whether
S(Ξ) �=

⋃
κ<Ξ S(κ), both depend on the underlying set-theoretic assumptions —

see Sections 9.3 and 9.4.

9.3. Souslin sets and cardinals in models with choice

Under choice Ξ ≤ 2ℵ0 because every set of reals is trivially 2ℵ0-Souslin (Propo-
sition 9.14). Therefore CH implies that Ξ = ω1 (and hence Ξ is a Souslin cardinal)
and that S(Ξ) = S(ω1) = P(ω2), so the pointclass S(ω1) and the notion of ω1-
Souslin set are uninteresting in this context. Assuming instead ¬CH, the condition
κ < 2ℵ0 guarantees that S(κ) is a proper pointclass.

Proposition 9.13 (AC). P(ω2) \
⋃

κ<2ℵ0 S(κ) �= ∅, so 2ℵ0 is a Souslin cardi-
nal.

Proof. The standard construction of a Bernstein set [53, p. 38] yields a
set B ⊆ ω2 of size 2ℵ0 which does not contain any perfect set, and hence B /∈⋃

κ<2ℵ0 S(κ) by Proposition 9.5. �

The next result shows that in models of AC all cardinals smaller than the
continuum are Souslin cardinals, whence

∀ω ≤ κ, κ′ < 2ℵ0 (κ ≤ κ′ ⇔ S(κ) ⊆ S(κ′)) .

Proposition 9.14. Let κ be an infinite cardinal. If A ⊆ ω2 is an infinite set
of size κ, then A ∈ S(κ). If moreover |ω2| � κ, then A ∈ S(κ) \

⋃
λ<κ S(λ). In

particular, if κ is a small cardinal such that |ω2| � κ and we assume ACκ(R), then
κ is a Souslin cardinal.

Proof. Given A = {xα | α < κ} ⊆ ω2, let

T := {(xα�n, α(n)) | α < κ, n ∈ ω},

where α(n) is the sequence formed by n-many α’s. It is straightforward to check
that A = p[T ], so that A ∈ S(κ).

Assume now that |ω2| � κ, so that A cannot contain a perfect set. If A ∈ S(λ)
for some infinite λ < κ, then the set A would have cardinality ≤ λ by the λ-PSP
(Proposition 9.5), a contradiction. Thus A ∈ S(κ) \

⋃
λ<κ S(λ).

Finally let κ be an infinite small cardinal, and let p : ω2 � κ be a surjection.
Then by ACκ(R) there is a choice function for the sequence

〈
p−1(α) | α ∈ κ

〉
, and

the range A of such a function is a subset of ω2 of cardinality κ: the result then
follows from the first part of the proposition. �

Corollary 9.15 (AC). All infinite κ ≤ 2ℵ0 are Souslin cardinals. In particu-
lar, Ξ = 2ℵ0 .

Thus under e.g. ZFC+ PFA, the Souslin cardinals are exactly ω, ω1, and ω2 =
Ξ = 2ℵ0 . As for the cardinality of S(κ), notice that under choice |S(κ)| = 2κ.
In fact |S(κ)| ≤ 2κ by Remark 9.3; for the other inequality use the fact that all
subsets of a given A ⊆ ω2 of size κ are κ-Souslin by Proposition 9.14. Thus it may
happen that |S(κ)| < |S(κ′)| for some κ < κ′ ≤ Ξ.
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The following proposition computes the value of δS(κ) (for various κ ≤ 2ℵ0) in
models of AC, and should be contrasted with Proposition 9.25 providing analogous
computations in the AD-context.

Proposition 9.16 (AC). Let κ ≤ 2ℵ0 be an infinite cardinal.

(a) δS(κ) ≤ κ+.

(b) δS(ω) = ω1, δS(ω1) = ω2 and δS(2ℵ0 ) = (2ℵ0)+ = Θ. In particular, δS(ω2) ≥
ω2.

(c) There are models M of ZFC in which 2ℵ0 is as large as desired and δS(κ) = κ+

for all infinite κ ≤ 2ℵ0 .

Proof. (a) This directly follows from the Kunen-Martin’s theorem [72, The-
orem 2G.2], which holds in ZF.

(b) δS(ω) = ω1 is trivial, so let us show that δS(ω1) = ω2. It is enough to show
that for every ω1 ≤ α < ω2 there is a ΔS(ω1) prewellordering � of length α of

LO ⊆ ω×ω2, the set of codes for linear orderings of ω [53, Section 27.C]. For every
ω ≤ β < ω1, let WOβ be the set of codes for well-orders on ω of length β, and let
NWO be the set of codes for non-well-founded linear orderings of ω. Notice that
LO is the disjoint union of the WOβ ’s and NWO, which are all Σ1

1 sets. Given α
as above, let i : α→ ω1 \ ω be a bijection and for every x, y ∈ LO set

x � y ⇔ x ∈ NWO ∨ ∃β ≤ γ < α (x ∈WOi(β) ∧ y ∈WOi(γ)).

Then � is a prewellordering of LO of length α. As WOβ ,NWO ∈ Σ1
1 ⊆ S(ω1) and

since under AC the pointclass S(ω1) is closed under unions of size ω1 (Remark 9.8),
it follows that � is ΔS(ω1), as required.

Finally, to show δS(2ℵ0) = (2ℵ0)+, fix 2ℵ0 ≤ α < (2ℵ0)+ and let i : ω2 → α be
a bijection: then the relation

x � y ⇔ i(x) ≤ i(y)

is a prewellordering of ω2 of length α, and is in ΔS(2ℵ0 ) because every subset of
ω2× ω2 is trivially 2ℵ0-Souslin.

(c) By part (b) it is enough to consider the case ω1 ≤ κ < 2ℵ0 . By [29, Theorem
B], there is a model M of ZFC in which 2ℵ0 is as large as desired and every set
A ⊆ ω2 of size < 2ℵ0 is Π1

2: we claim that M is as required. Let A ⊆ ω2 be a set
of size κ. Fix κ ≤ α < κ+ and a bijection i : A → α. Then the binary relation �
on ω2 defined by

x � y ⇔ x /∈ A ∨ (x, y ∈ A ∧ i(x) ≤ i(y))

is a prewellordering of ω2 of length α. Since S(κ) is closed under unions of size κ,
to show that � is ΔS(κ) it is enough to check that ω2 \A ∈ S(κ). But this follows

from the fact that since |A| < 2ℵ0 , our choice of M ensures ω2 \A ∈ Σ1
2 ⊆ S(ω1) ⊆

S(κ). �

Remark 9.17. Although it is always the case that3 Š(ω) ⊆ S(ω1) and S(κ) ⊆
S(κ′) for all infinite κ ≤ κ′ ≤ 2ℵ0 , there are models of ZFC in which 2ℵ0 is as large
as desired but for every cardinal κ such that κ+ < 2ℵ0 there is A ⊆ ω2 in S(ω1)
such that ω2 \A /∈ S(κ), so that in general Š(κ) �⊆ S(κ+) when κ > ω. To see this
let M be a model of ZFC as in the proof of Proposition 9.16(c), fix κ as above, and

3In fact, Š(ω) = Π1
1 ⊆ Σ1

2 ⊆ S(ω1).
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let A ⊆ ω2 be such that |ω2 \A| = κ+. Then A ∈ Σ1
2 ⊆ S(ω1) by our choice of M ,

but the set ω2 \A does not belong to S(κ) because it cannot satisfy the κ-PSP by
κ < |ω2 \A| < 2ℵ0 (see Proposition 9.5).

Assuming ∀x ∈ ωω (x# exists), the assumption δ12 = ω2 has high consistency
strength. The next result shows that this is not the case if we drop the existence
of sharps.

Proposition 9.18 (AC). Assume MA + ¬CH + ∃a ∈ ωω (ω
L[a]
1 = ω1). Then

S(ω1) = Σ1
2, and hence δ12 = ω2 by Proposition 9.16(b).

Proof. As already observed, Σ1
2 ⊆ S(ω1). For the converse, recall from Re-

mark 9.8 that each A ∈ S(ω1) is a union of ℵ1-many Borel sets. Since Martin and
Solovay showed in [67] that under the assumptions above every union of at most
ℵ1-many Borel sets is in Σ1

2, we get A ∈ Σ1
2 and we are done. �

Let us now turn our attention to S(κ)-in-the-codes functions in models with
choice. By Proposition 9.16(b) and Remark 5.4(ii), in models of ZFC it always
makes sense to speak of S(κ)-in-the-codes functions f : ω2→ κ2 (see Definition 5.3)
for κ = ω, κ = ω1, or κ = 2ℵ0 , but in some models this could well be the case for all
κ ≤ 2ℵ0 , see Proposition 9.16(c). Notice also that it always makes sense to speak of
Σ1

2-in-the-codes (and hence S(ω1)-in-the-codes) functions f :
ω2→ ω12 even when

working in ZF + DC. This is because δS(ω1) ≥ δ12 ≥ ω1 (by S(ω) = Σ1
1 ⊆ Σ1

2 ⊆
S(ω1)), and the norm ρ : WO =

⋃
ω≤β<ω1

WOβ � ω1 sending x ∈ WO to the

unique α < ω1 such that x ∈ WOω+α is easily seen to be a Σ1
2-norm on the set

WO ∈ Π1
1 ⊆ Σ1

2 ⊆ S(ω1). Notice that the definition of S(κ)-in-the-codes functions
does not depend on the particular choice of the S(κ)-norm ρ by Remark 5.11(ii).
In fact, in models of AC the pointclass S(κ) is closed under projections and finite
unions by Lemma 9.7, and it is closed under well-ordered unions of length κ by
Remark 9.8: thus it always satisfies the hypothesis of Lemma 5.8 as soon as there
is an S(κ)-code for κ (i.e. as soon as it makes sense to speak of S(κ)-in-the-codes
functions). Using these facts, we can reformulate Lemma 5.8 as follows.

Proposition 9.19 (AC). Let κ ≤ 2ℵ0 be such that there is an S(κ)-code for κ.
For every f : ω2→ κ2 the following are equivalent:

(a) f is S(κ)-in-the-codes;

(b) f−1(Ñα,i) ∈ΔS(κ) for every α < κ and i = 0, 1;

(c) f−1(U) ∈ΔS(κ) for every U ∈ Bp(κ2).

This in particular shows that in models of ZFC the notion of an S(κ)-in-the-
codes function is nontrivial as soon as ΔS(κ) �= P(ω2): indeed, by Proposition 9.19
if A ⊆ ω2 does not belong to ΔS(κ) and y0, y1 are distinct points of κ2, the function
f : ω2→ κ2 sending all points of A to y0 and all points of ω2 \A to y1 is not S(κ)-
in-the-codes. By Proposition 9.13, this applies to all κ < 2ℵ0 . Moreover, using
Remark 9.8 for small cardinals κ we further have:

Corollary 9.20 (AC). Let 0 �= n ∈ ω be such that there is an S(ωn)-code for
ωn. For every f : ω2→ ωn2 the following are equivalent:

(a) f is S(ωn)-in-the-codes;

(b) the set f−1(Ñα,i) is the union of ℵn-many Borel sets, for every α < κ and
i = 0, 1.
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Finally, using Proposition 9.18 and Corollary 9.20 we also get the following
corollary characterizing Σ1

2-in-the-codes functions in certain models of ZFC.

Corollary 9.21 (AC). Assume MA + ¬CH + ∃a ∈ ωω (ω
L[a]
1 = ω1). Then a

function f : ω2→ ω12 is Σ1
2-in-the-codes if and only if for every α < ω1 and i = 0, 1

the set f−1(Ñα,i) is the union of ℵ1-many Borel sets.

Note that in Proposition 9.19 and in Corollaries 9.20 and 9.21 above we can
replace κ2 with any space of type κ — see the discussion after Definition 7.9.

9.4. Souslin sets and cardinals in models of determinacy

The structure of the pointclasses S(κ) had been extensively studied under
AD + DC. Here we summarize the most important results, referring the reader
to [44,45] for proofs and further results.

Lemma 9.22 (AD). If κ < Θ then S(κ) �= P(ω2).

Proof. By Remark 9.3, Tr(2× κ) � P(κ), and therefore P(κ) � S(κ). By
Theorem 4.4 ω2 � P(κ), so the result follows from Cantor’s theorem that ω2 does
not surject onto P(ω2). �

Recall that Ξ ≤ Θ by Lemma 9.12. By Corollary 9.15, under AC we have that
Ξ = 2ℵ0 < (2ℵ0)+ = Θ, so the inequality between Ξ and Θ is strict, but in the
context of AD the situation is different as both the cases Ξ = Θ and Ξ < Θ can
occur.

Proposition 9.23 (AD+ DC). The following are equivalent:

(a) Ξ = Θ (i.e. Souslin cardinals are unbounded below Θ);
(b) every set of reals is κ-Souslin for some cardinal κ (i.e. S(∞) = S(Ξ) =

P(ω2));
(c) Unif (see Section 2.2);
(d) ADR.

Proof. For the equivalence of (b), (c) and (d) see [58, Corollary 5.12]. The
implication (a) ⇒ (b) is [96, Remark 9.21]. For ¬(a) ⇒ ¬(b) apply Lemma 9.22
with κ = Ξ. �

On the other hand, if Ξ < Θ then by Lemma 9.22 the hereditary boldface
pointclass S(∞) = S(Ξ) is proper, but it can happen that Ξ is a Souslin cardinal

or not. For example, AD+V = L(R) implies that Ξ = δ21 and that δ21 is a Souslin
cardinal — in fact it is the δ21-th Souslin cardinal by (9.1) below. More generally,
by results of Steel and Woodin AD+ DC(R) implies that the Souslin cardinals are
closed below Ξ (see [58]). Woodin has isolated the following natural strengthening
of AD.

Definition 9.24. AD+ is the conjunction of the following statements:

• DC(R),
• B∞(ω2) = P(ω2),
• Ordinal Determinacy : if λ < Θ and π : ωλ→ ωω is a continuous surjection,
then π−1(A) is determined, for all A ⊆ ωω.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



9.4. SOUSLIN SETS AND CARDINALS IN MODELS OF DETERMINACY 89

The axiom AD+ is equivalent (under AD + DC(R)) to the fact that Souslin
cardinals are closed below Θ (see [58, Theorem 7.2] for a proof). Thus assuming
AD+,

Ξ < Θ ⇔ Ξ is a Souslin cardinal.

Both ADR+DC and AD+V = L(R) imply AD+. Every model of AD known to date
does satisfy AD+, but it is open whether AD⇒ AD+. It is known that the theory
AD+¬AD+ has very high consistency strength, if consistent at all (see [60, Section
8]).

If Ξ is a Souslin cardinal, then Souslin cardinals are unbounded below Ξ (a
fact which is trivially true if Ξ is not a Souslin cardinal), Ξ is regular, and S(Ξ) is
closed also under coprojections (equivalently, the dual pointclass Š(Ξ) of S(Ξ) is
closed under projections). In particular,

(9.1) Ξ is the Ξ-th Souslin cardinal.

Since Souslin cardinals are closed below Ξ they are also closed below every Souslin
cardinal κ, and hence by a result of Kechris S(κ) is always a nonselfdual pointclass
for such κ’s; thus S(κ) can be selfdual only if κ = Ξ and Ξ is not a Souslin cardinal.

A particular (and important) kind of Souslin cardinals are the ones related to
the projective hierarchy:4 assuming AD + DC the Souslin cardinals below δω :=
supn∈ω δ1n = ℵε0 are exactly the λ1

2n+1’s and the δ12n+1’s, and we have that

S(λ1
2n+1) = Σ1

2n+1 and S(δ12n+1) = Σ1
2n+2 [45, Theorem 2.18], and if κ is one

of these Souslin cardinals, then δS(κ) = κ+ (see Section 4.2). This is general-
ized by the following Proposition 9.25 (compare it with Proposition 9.16, where
an analogous result is proved under AC). Recall from [45] that if κ is a limit
of Souslin cardinals and has uncountable cofinality, then we can associate to it a
canonical Steel pointclass Γ0 (whose existence is granted by the analysis in [86]),
namely: Γ0 is a nonselfdual boldface pointclass closed under coprojections and such
that ΔΓ0

=
⋃

λ<κ S(λ). By [45, Lemma 3.8], S(κ) is the closure under projec-
tions of Γ0, and both S(κ) and Γ0 have the scale property (and hence also the
prewellordering property). The proof of the mentioned [45, Lemma 3.8] further
shows that κ = δΓ0 .

Proposition 9.25 (AD+ DC). Let κ be a Souslin cardinal.

(a) Either δS(κ) = κ or δS(κ) = κ+.
(b) There is an S(κ)-code for κ.
(c) The following are equivalent:

(1) δS(κ) = κ;
(2) S(κ) is closed under coprojections;
(3) either κ = Ξ, or else κ < Ξ is a limit of uncountable cofinality of Souslin

cardinals falling in Case III of [45, Theorem 3.28], i.e. such that its
associated Steel pointclass Γ0 is closed under projections;

(4) κ is a regular limit of Souslin cardinals and its associated Steel pointclass
Γ0 is closed under projections;

(5) κ is a regular limit of Souslin cardinals and S(κ) coincides with its
associated Steel pointclass Γ0.

4As explained in [45, Theorem 3.28], the “pattern” of Souslin cardinals we are going to
describe can be somehow reproduced above any κ < Ξ which is a limit of Souslin cardinals. We
repeatedly use this fact in the proof of Proposition 9.25.
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In particular, δS(κ) = κ+ whenever κ is not a regular limit of Souslin cardi-
nals.

Proof. (a) By [45, Theorem 2.18] (see the paragraph preceding this proposi-
tion), we can assume without loss of generality that κ is above a limit of Souslin
cardinals, so that we can use the deep and remarkable classification of the Souslin
cardinals presented e.g. in [45, Theorem 3.28]. The inequality δS(κ) ≤ κ+ imme-
diately follows from the Kunen-Martin’s theorem (see e.g. [72, Theorem 2G.2]),
so that we just need to show κ ≤ δS(κ). From [72, Theorem 7D.8] we have that
δS(κ) is a cardinal, and that it is of uncountable cofinality by closure of S(κ) under
countable unions (Lemma 9.7).

Assume first that κ is not a limit of Souslin cardinals itself (so that, in particu-
lar, there is a largest κ′ < κ which is a limit of Souslin cardinals, which can be taken
as basis to carry out the analysis provided in [45, Theorem 3.28]). We consider
two distinct cases, depending on whether κ has countable cofinality or not. In the
former case, it follows from [45, Theorem 3.28] that κ = λ2i+1 for some i ∈ ω and
that Š(κ) = Π2i+1 has the scale property. Since the (regular) Š(κ)-norms consti-
tuting a Š(κ)-scale on an arbitrary set A ⊆ ωω in Š(κ) are into δS(κ), if δS(κ) ≤ κ
then the mentioned scale would canonically yield a κ-Souslin representation of A,
and therefore we would get Š(κ) ⊆ S(κ): but this contradicts the fact that S(κ)
is nonselfdual. Thus we get κ < δS(κ), and thus also δS(κ) = κ+ because δS(κ) is a
cardinal. If instead κ has uncountable cofinality, then S(κ) has the scale property
by [45, Lemma 3.7]. Let A ⊆ ωω be such that A ∈ S(κ) \ Š(κ), and consider an
arbitrary S(κ)-scale 〈ρn | n ∈ ω〉 on it. Arguing as in the proof of Lemma 9.12, by
our choice of A we get

sup {α ∈ Ord | ∃n ∈ ω ∃x ∈ A (ρn(x) = α)} = κ.

Moreover, since κ has uncountable cofinality there is n̄ ∈ ω such that the S(κ)-norm
ρn̄ on A is onto κ. Then for every α < κ we can construct a ΔS(κ) prewellordering
� of ωω of length α+ 2 by fixing z ∈ A such that ρn̄(z) = α and then setting

x � y ⇔ y /∈ A′ ∨ (x ∈ A′ ∧ y ∈ A′ ∧ ρn̄(x) ≤ ρn̄(y)),

where A′ = {x ∈ ωω | x ∈ A ∧ ρn̄(x) ≤ ρn̄(z)} ∈ΔS(κ). Therefore κ ≤ δS(κ) again.
Assume now that κ is a limit of Souslin cardinals. Then for every α < κ there

is α < λ < κ such that λ is a Souslin cardinal and is not a limit of Souslin cardinals,
so that δS(λ) ≥ λ by the above proof. Since λ ≤ κ implies δS(κ) ≥ δS(λ), we get
δS(κ) > α, whence κ ≤ δS(κ).

(b) If κ < δS(κ) then we are done by Remark 5.4(ii), so let us assume κ = δS(κ).
Notice that this implies that κ is of uncountable cofinality because, as recalled at the
beginning of the proof of part (a), cof(δS(κ)) > ω. By5 [45, Lemmas 3.7 and 3.8],
we then get that S(κ) has the scale property. Let A ⊆ ωω be in S(κ) \

⋃
λ<κ S(λ),

and let 〈ρn | n ∈ ω〉 be an S(κ)-scale on A. Arguing as in the proof of Lemma 9.12
and using again the fact that κ has uncountable cofinality, by the choice of A there
is at least one n̄ ∈ ω such that ρn̄ has length κ: setting ρ := ρn̄ we get the desired
result.

5In fact we show in part (c) that if κ = δS(κ) then κ is a regular limit of Souslin cardinals,

so only [45, Lemma 3.8] needs to be applied in this case. However, since the proof of (c) partially
relies on (b), here we mentioned also [45, Lemma 3.7] to make it evident that there is no circularity
in the argument.
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(c) First we prove the equivalence between the conditions (2)–(5). Assume (2),
so that in particular κ > ω. Then κ is a regular limit of Souslin cardinals by [45,
Lemma 3.6]. As recalled before this proposition, in this situation S(κ) is the closure
under projection of its associated Steel pointclass Γ0, so that in particular S(κ) ⊇
Γ0. If this inclusion were proper, then Γ0 could not be closed under projections,
and thus κ would fall in Case II of [45, Theorem 3.28]: but this would contradict
the closure under coprojections of S(κ). It follows that S(κ) = Γ0, i.e. (5). The
implications from (5) to (4) and from (4) to (3) are obvious (recall that under our
assumptions S(κ) is always closed under projections by Lemma 9.7), so let us show
that (3) implies (2). If κ = Ξ then the result follows from [44, Lemma 2.20]. In
the remaining case, S(κ) = Γ0 because S(κ) is the closure under projections of Γ0,
and thus (2) follows from the fact that Γ0 is closed under coprojections.

Since (5) easily implies (1) (because κ = δΓ0
), to conclude our proof it is enough

to show that (1) implies (4).

Claim 9.25.1. If κ = δS(κ), then κ is a regular limit of Souslin cardinals.

Proof of the claim. We prove the contrapositive, i.e. that if κ is not a
regular limit of Souslin cardinals then δS(κ) �= κ (whence δS(κ) = κ+ by (a)). This
is trivial for Souslin cardinals κ of countable cofinality: as observed in the proof of
part (b), in such case δS(κ) �= κ because δS(κ) has uncountable cofinality by closure
of S(κ) under countable unions. Now assume that κ has uncountable cofinality and
is not a limit of Souslin cardinals, and let λ be the largest Souslin cardinal smaller
than κ. By (the proof of) [45, Lemma 3.7], λ is of countable cofinality, κ = λ+,
and Š(λ) has the prewellordering property. Since Š(λ), being nonselfdual, admits
a universal set and is closed under coprojections, we get from e.g. [44, Lemma 1.3]
that for every A ⊆ ωω such that A ∈ Š(λ) \ S(λ) there is an Š(λ)-norm ρ on A of
length δS(λ). Since κ is a Souslin cardinal, S(κ) is nonselfdual and S(λ) ⊂ S(κ),

whence S(λ) ∪ Š(λ) ⊆ΔS(κ). Therefore, the prewellordering � of ωω defined by

(9.2) x � y ⇔ y /∈ A ∨ (x ∈ A ∧ y ∈ A ∧ ρ(x) ≤ ρ(y))

is in ΔS(κ) and has length δS(λ)+1. Since δS(λ) = λ+ (because λ, being a Souslin
cardinal of countable cofinality, falls in the already considered trivial case), this
implies δS(κ) > λ+ = κ.

Finally, let us assume that κ is a limit of Souslin cardinals such that ω <
cof(κ) < κ, and fix a cofinal map f : cof(κ) → κ. By part (b), for some κ-
Souslin A ⊆ ωω there is a S(κ)-norm ρ on A of length κ. Fix a Souslin cardinal
cof(κ) < λ < κ and some ΔS(λ)-norm σ : ωω � cof(κ) (which exists because by
part (a) we have cof(κ) < λ ≤ δS(λ)), so that the strict well-founded relation on
ωω associated to σ is in S(λ). Then apply the first Coding Lemma [45, Theorem
2.12] to

R := {(z, w) ∈ ωω × ωω | w ∈ A ∧ ρ(w) = f(σ(z))}

to obtain an S(λ)-set C ⊆ ωω × ωω such that

• for every α < cof(κ) there is (z, w) ∈ C with σ(z) = α, and
• for every (z, w) ∈ C, w ∈ A and ρ(w) = f(σ(z)).
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Then the prewellordering � of ωω × ωω defined by setting (x, y) � (x′, y′) if and
only if

σ(x) < σ(x′) ∨
[
σ(x) = σ(x′) ∧

(
∃(z, w) ∈ C (σ(z) = σ(x) ∧ ρ(y′) > ρ(w))∨
∃(z, w) ∈ C (σ(z) = σ(x) ∧ ρ(y) ≤ ρ(y′) ≤ ρ(w))

)]
has length

∑
α<cof(κ)(f(α) + 2) = κ. Moreover, by our choice of C we also have

that (x, y) � (x′, y′) if and only if

σ(x) < σ(x′) ∨
[
σ(x) = σ(x′) ∧

(
∀(z, w) ∈ C (σ(z) = σ(x) ⇒ ρ(y′) > ρ(w))∨
∀(z, w)∈C (σ(z)=σ(x) ⇒ ρ(y)≤ρ(y′)≤ρ(w))

)]
,

and hence � is in ΔS(κ) (here we are using the fact that S(λ) ∪ Š(λ) ⊆ ΔS(κ)).
Since ωω and ωω × ωω are homeomorphic, this shows that δS(κ) > κ, so we are
done. �

Now assume (1), so that κ is a regular limit of Souslin cardinals by the above
Claim 9.25.1. As observed in [44], from this and [86, Theorem 2.1] it follows that
Γ0 is closed under finite unions. Since Γ0 is also closed under coprojections and
admits a universal set (being nonselfdual), by the prewellordering property for Γ0

and e.g. [44, Lemma 1.3] we get that for any A ∈ Γ0 \ Γ̌0 there is a Γ0-norm ρ on
A of length δΓ0 = κ. Assume towards a contradiction that Γ0 is not closed under
projections. Then S(κ), which is the closure under projections of Γ0, would contain
both Γ0 and its dual Γ̌0, so that Γ0 ∪ Γ̌0 ⊆ΔS(κ). But then then prewellordering
� obtained from the Γ0-norm ρ as in (9.2) would be in ΔS(κ): since its length is
κ + 1, this would contradict our assumption κ = δS(κ). Thus Γ0 is closed under
projections and (4) holds. �

Remark 9.26. We currently do not know whether there are regular limits
of Souslin cardinals which may actually fall into Case II of [45, Theorem 3.28],
i.e. whether all regular limits of Souslin cardinals need to satisfy the equivalent
conditions of Proposition 9.25(c).

As we already observed, Souslin cardinals are always closed and unbounded
below Ξ: for our purposes, it is important to notice that the analysis of [45] shows
that also the regular Souslin cardinals are unbounded below Ξ.

Lemma 9.27 (AD+DC). Regular Souslin cardinals are unbounded below Ξ. In
particular, for every Souslin cardinal κ there is a regular Souslin cardinal κ′ ≥ κ.

Proof. Given α < Ξ, let κ̄ be the smallest Souslin cardinal above α and
κ be the largest limit of Souslin cardinals ≤ κ̄ (such κ̄ and κ exists because, as
already recalled in the discussion preceding this lemma, there are club-many Souslin
cardinals below Ξ). Applying [45, Theorem 3.28] to such κ, we obtain that there
is i ∈ ω such that κ̄ ≤ δ2i+1, where δ2i+1 = (λ2i+1)

+ is as in any of Case I–III
of [45, Theorem 3.28]. Since in all these cases

δ2i+1 = δΠ2i+1
= δΣ2i+1

= δS(λ2i+1),

by the Kunen-Martin’s theorem (see e.g. [72, Theorem 2G.2]) the Souslin cardinal
δ2i+1 is the supremum of the lengths of the λ2i+1-Souslin strict well-founded rela-
tions on ωω, and thus it is a regular cardinal by [45, Lemma 2.16]. Therefore since
α < κ̄ ≤ δ2i+1 < Ξ we are done. The second part of the lemma follows from the
first one and the fact that if Ξ is a Souslin cardinal then it is also regular. �
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We now consider S(κ)-in-the-codes functions in models of determinacy. By
Proposition 9.25(b), if κ is a Souslin cardinal then it always makes sense to speak
about S(κ)-in-the-codes functions f : ω2 → κ2. Notice also that the definition of
S(κ)-in-the-codes functions does not depend on the particular choice of the S(κ)-
norm ρ by Remark 5.11(ii) and Lemma 9.7. Using these facts, we can reformulate
Proposition 5.10 as follows. (When κ = ω we can dispense with all determinacy
assumptions in Proposition 9.28 and Corollary 9.29.)

Proposition 9.28 (AD+DC). Let κ be a Souslin cardinal. For every function
f : ω2→ κ2 the following are equivalent:

(a) f is S(κ)-in-the-codes:

(b) f−1(Ñα,i) ∈ΔS(κ) for every α < κ and i = 0, 1;

(c) f−1(U) ∈ΔS(κ) for every U ∈ Bp(κ2).

Proof. The pointclass S(κ) satisfies the hypotheses of Proposition 5.10 by
Lemma 9.7. �

Notice that in Proposition 9.28 (as well as in the subsequent Corollary 9.29) we
can replace κ2 with any space of type κ — see the discussion after Definition 7.9.
Moreover, arguing as in the paragraph after Proposition 9.19 one may observe
that the above proposition implies in particular that also in models of AD + DC
the notion of an S(κ)-in-the-codes function f : ω2 → κ2 is nontrivial as soon as
ΔS(κ) �= P(ω2): by Proposition 9.23, this is the case for all Souslin cardinals κ.

Recall that by Proposition 9.10, every S(κ)-in-the-codes function f : ω2 → κ2
is weakly κ+1-Borel. Since when κ = λ1

2n+1 for some n ∈ ω we have S(κ) = Σ1
2n+1,

the next corollary shows that in certain cases the two notions coincide.

Corollary 9.29 (AD+DC). Let κ = λ1
2n+1 for some n ∈ ω. Then a function

f : ω2→ κ2 is Σ1
2n+1-in-the-codes if and only if it is weakly κ+ 1-Borel.

Proof. SinceΣ1
2n+1 = S(λ1

2n+1), the forward direction is just an instantiation
of Proposition 9.10, while the other direction follows from Corollary 5.7(b) and
Proposition 9.28. �
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CHAPTER 10

The main construction

In [64], the main technical construction for proving the completeness (for ana-
lytic quasi-orders) of the relation �∼

ω
CT of embeddability between countable combi-

natorial trees is a map which given an arbitrary S ∈ Tr(2×ω) provides a combina-
torial tree GS . The tree GS is constructed in two steps: first a fixed combinatorial
tree G0 is defined, independent of S, and then certain auxiliary combinatorial trees,
called forks, coding the tree S are added to G0. In order to prove the invariant
universality of the embeddability relation between countable structures, in [23] this
construction is improved so that the resulting GS is rigid, i.e. without nontrivial
automorphisms. As explained in that paper, there are at least two ways to ensure
that the resulting structure is rigid:

(1) enrich the language for graphs L = {E} with an additional binary relational
symbol �, and then expand GS to a so-called ordered combinatorial tree
ḠS by interpreting � as a well-order on the vertices of GS (see the proof
of [23, Theorem 2.4]);

(2) enlarge G0 to a rigid combinatorial tree G1, and then add the forks to G1 (see
the proof of [23, Theorem 2.4] or [7, Section 3]).

Although the construction in (1) is simpler, such approach is slightly unnatural
because it forces us to consider more complex structures, while one of the motiva-
tions in using combinatorial trees in [64] was that they are rather simple objects.
The approach (2), even if technically more involved, gives instead the stronger re-
sult that already �∼

ω
CT is invariantly universal, and it has proven to be quite useful

in the applications to infinite combinatorics, topology, analysis, and Banach space
theory [7].

In this monograph we generalize both constructions (1) and (2) to uncount-
able cardinals κ. As in the classical case, the approach using combinatorial trees
(which is developed in this section and in the subsequent Sections 11–12) is prefer-
able as it deals with more elementary objects, and it yields full generalizations of
Theorems 1.1 and 1.4, as well as most of the applications, including results on
non-separable (discrete, ultrametric) complete metric spaces and on non-separable
Banach spaces. A generalization of Theorem 1.5 seems to require the approach via
ordered combinatorial trees and is postponed to Section 13.

Fix an infinite cardinal κ. We adapt the constructions from [7,23,64] to define
a map

Tr(2× κ)→ CTκ, S �→ GS ,

where CTκ is the set of (codes for) all combinatorial trees of size κ from (2.5)
on page 23. Such map will then be used in Chapters 11 and 12 to prove that
�∼

κ
CT, the embeddability relation on CTκ, is invariantly universal1 — and hence

1The notion of invariant universality is given in Definition 12.1.

95
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96 10. THE MAIN CONSTRUCTION

also complete — for κ-Souslin quasi-orders. Since as explained in the previous
paragraph we want to work just with combinatorial trees (without any additional
order on their vertices), we will follow the approach (2) briefly described above,
that is:

• construct a basicG0 ∈ CTκ which is independent of the given input S ∈ Tr(2×κ);
• enlarge G0 to a suitable G1 ∈ CTκ (still independent of S) to get a sufficiently
rigid structure;
• to get the final GS ∈ CTκ, add to G1 some forks which code enough information
on S.

Remark 10.1. As already observed in [64], it is easy to check that we could
systematically replace combinatorial trees with rooted combinatorial trees in all the
constructions and results below — just define the empty sequence ∅ to be the root
of the combinatorial tree G0 (and hence also of G1 and of every combinatorial tree
of the form GS for S ∈ Tr(2× κ)), and check that all proofs go through.

Notice that as for the basic case κ = ω considered in [7,23,64], the prepara-
tory enlargement from G0 to G1 is necessary only for the proof of the invariant
universality of �∼

κ
CT: a variant of the main construction in which we attach the

forks directly to G0 would already enable us to prove the completeness of �∼
κ
CT (see

Remark 11.9).
Let us first fix some notation concerning combinatorial trees. The language of

graphs L = {E} consists of one binary relational symbol, and each graphG = (V,E)
(see Section 2.6.1) is identified with the L-structure X =

〈
X;EX

〉
with X := V and

EX :=
{
(v0, v1) ∈ V 2 | {v0, v1} ∈ E

}
(so that EX is an irreflexive and symmetric

relation on X). Recall from page (2.5) that CTκ is the collection of (codes for) all
combinatorial trees of the form (κ,E) with E ⊆ [κ]2. In fact,

CTκ = ModκσCT
,

where ModκσCT
is defined as in (8.3) with σCT the Lω1ω-sentence axiomatizing

combinatorial trees:

(σCT) ∀v0 ¬(v0 E v0) ∧ ∀v0∀v1
(
v0 E v1 ⇒ v1 E v0

)
∧∧

n∈ω

¬∃〈vi | i ≤ n+ 2〉
[(∧
i<j≤n+2

vi �	 vj
)
∧
(∧
i<n+2

vi E vi+1

)
∧ v0 E vn+2

]
∧

∀v0∀v1
[∨
n∈ω

∃〈vi+2 | i ≤ n+ 1〉
(
v0 	 v2 ∧ v1 	 vn+3 ∧

∧
i<n+1

vi+2 E vi+3

)]
.

In order to simplify the notation, we will further abbreviate the embeddability
and isomorphism relations �∼

κ
σCT

and ∼=κ
σCT

on CTκ (see page 72) with �∼
κ
CT and

∼=κ
CT, respectively.

10.1. The combinatorial trees G0 and G1

We now start our main construction. The doubling of a descriptive set-
theoretic tree T is the tree T d obtained by replacing each node s of T different
from ∅ with two nodes s− < s+ in T d. Figure 10.1 shows the doubling of a finite
tree. In order to simplify the notation, the nodes s+ of T d will simply be denoted
by s. Moreover, T d will be always identified with a combinatorial tree on the set
of its nodes.
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∅

a b

c d

T

∅

a−

a+

b−

b+

c−

c+

d−

d+

T d

Figure 10.1. The doubling of a tree T .

Applying the doubling procedure to <ωκ, we obtain the combinatorial tree G0.
Formally:

Definition 10.2. G0 is the graph on the disjoint union

G0 := <ωκ �
{
s− | ∅ �= s ∈ <ωκ

}
with edges

EG0 :=
{
{s, s−} | s ∈ <ωκ \ {∅}

}
∪
{
{s, (s�α)−} | s ∈ <ωκ, α < κ

}
.

We next enlarge G0 to the new combinatorial tree G1. Given a descriptive
set-theoretic tree U ⊆ <ωκ, the width of U is the ordinal

w(U) := sup {γ + 1 | 〈γ〉 ∈ U} .
We construct a sequence 〈Uα | α < κ〉 of descriptive set-theoretic trees on κ as
follows (see Figure 10.2):

U0 = 33,

Uα+1 = Uα ∪
{
〈w(Uα)〉�s | s ∈ Uα

}
Uα =

⋃
β<α

Uβ α limit.

By construction, for every α < κ

(10.1) w(Uα) = 3 + α < κ and Uα ⊆ <ω(w(Uα)) =
<ω(3 + α).

Each Uα is identified with the corresponding combinatorial tree (that is with the
graph on the nodes of Uα obtained by linking with an edge all pairs of nodes
x, y ∈ Uα such that x = y�, for y� as in (2.4)). The vertex ∅ is called the root of
Uα.

Remark 10.3. Each Uα can be construed as a combinatorial tree (with root
∅). If κ = λ+, then using (10.1) we get that |Uα| ≤ λ for all α < κ, so each Uα is
isomorphic to an element of CTλ (at least when λ ≤ α). Therefore by choosing a
bijection between Uα and λ we could construct the Uα’s so that they belong to CTλ,
when α ≥ λ. The appeal to AC cannot be avoided — if the PSP holds and κ = ω1,
then there is no ω1-sequence of distinct elements of CTω. In our construction we

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



98 10. THE MAIN CONSTRUCTION

∅

Uα

〈3 + α〉

Uα

Uα+1

∅

U0 〈3〉

U0

〈4〉

U1 · · ·

〈3 + β〉

Uβ
· · ·

Uα, α limit

Figure 10.2. The trees Uα.

avoided this issue by relaxing the requirement that a combinatorial tree of size λ
have domain equal to λ.

We now define the combinatorial tree G1 by connecting a new vertex ŝ to each
s ∈ <ωκ ⊆ G0 and then appending a copy of U〈〈s〉〉 to ŝ (where 〈〈·〉〉 is the function
coding sequences by ordinals from (2.2)) by adding an edge between such vertex
and the root of U〈〈s〉〉. More formally,

Definition 10.4. G1 is the combinatorial tree with set of vertices

G1 := G0 �
{
ŝ | s ∈ <ωκ

}
�
{
(s, t) ∈ <ωκ× <ωκ | t ∈ U〈〈s〉〉

}
and edge relation EG1 defined by:

• if x, y ∈ G0, x EG1 y ⇔ x EG0 y;
• s EG1 ŝ and ŝ EG1 s for every s ∈ <ωκ;
• ŝ EG1 (s, ∅) and (s, ∅) EG1 ŝ for every s ∈ <ωκ;
• for every s ∈ <ωκ and t, t′ ∈ U〈〈s〉〉, (s, t) E

G1 (s, t′) ⇔ t EU〈〈s〉〉 t′;

• no other EG1 -relation holds.

As explained above, the purpose of moving from G0 to G1 is to obtain a more
rigid structure. In order to prove that G1 has few nontrivial automorphisms, we first
need to consider some technical properties of the Uα’s which will also be useful in
the proof of our invariant universality result (Section 12). Such technical analysis is
further complicated by the fact that for our applications we need to work in ZF, and
hence we have to ensure that all “choices” needed in the constructions can be done
in a canonical way. However these technical details are only needed for the proof
of invariantly universality: the reader who is just interested in the completeness
result (Section 11) may safely skip the rest of this section and directly jump to
Section 10.2.

The relevant properties of the graphs Uα are summarized in the next lemma.

Lemma 10.5. Let α, β < κ.

(a) Except for the root ∅ (which has degree 3 if α = 0 and ≥ 4 otherwise), all
vertices of Uα are either terminal (i.e. they have a unique neighbor) or have
degree ≥ 4. Moreover, each vertex of Uα has degree ≤ 1+w(Uα) = 4+α < κ.

(b) If α ≤ β, then Uα ⊆ Uβ. In particular, the identity map embeds Uα into Uβ

and fixes the root ∅.
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(c) For β < α < κ there is no embedding of Uα into Uβ sending ∅ to itself. In
particular, there is an isomorphism between Uα and Uβ fixing ∅ if and only if
α = β.

(d) There is no infinite path through Uα. (Equivalently, Uα is well-founded when
construed as a descriptive set-theoretic tree on κ of height ≤ ω.)

(e) Let i be an automorphism of Uα. If α = γ + 1 is a successor ordinal, then
either i(∅) = ∅ or i(∅) = 〈w(Uγ)〉 (and both the possibilities may be realized),
while if α = 0 or α is limit then i(∅) = ∅.

(f) Let Xα be the set of all trees X with domain ⊆ κ that are isomorphic to Uα.
Then there is a definable map Xα & X �→ iX,α such that iX,α : X → Uα is an
isomorphism. (We call such iX,α the canonical isomorphism between X and
Uα.)

Proof. Parts (a), (b) and (d) are obvious and directly follow from the con-
struction of the Uα’s and (10.1).

A combinatorial tree G with root r and without infinite paths can be seen
as a well-founded descriptive set-theoretic tree, and hence it has a rank function
ρG,r : G→ Ord defined by

ρG,r(a) := sup {ρG,r(b) + 1 | b �= a and the unique path joining r to b

passes through a}.
Thus ρG,r(a) = 0 if and only if a has degree 1 in G, and then set

ρ(G, r) := sup {ρG,r(a) + 1 | a ∈ G, a �= r} = ρG,r(r).

Notice that for every two rooted combinatorial trees (G, r), (G′, r′), if (G, r) �∼
(G′, r′) then ρ(G, r) ≤ ρ(G′, r′) (whence in particular ρ(G, r) = ρ(G′, r′) whenever
(G, r) ∼= (G′, r′)). Then (c) easily follows from the fact that one can show by
induction on α that ρ(Uα, ∅) = 3 + α.

We now prove (e). Assume first α = γ + 1, and let r ∈ Uα be arbitrary.
Then either ρUα,r(∅) = ρUα,∅(∅) (if 〈w(Uγ)〉 � r), or else ρUα,r(w(Uγ)) = ρUα,∅(∅)
(if 〈w(Uγ)〉 ⊆ r). Thus if r /∈ {∅, 〈w(Uγ)〉}, in both cases we would easily get
ρUα,r(r) > ρUα,∅(∅), and hence ρ(Uα, r) > ρ(Uα, ∅). Since i witnesses (Uα, ∅) ∼=
(Uα, i(∅)), so that ρ(Uα, ∅) = ρ(Uα, i(∅)), setting r := i(∅) in the argument above
we get that i(∅) ∈ {∅, 〈w(Uγ)〉}, as required. To see that both the possibilities can
be realized, consider the identity map and the isomorphism i : Uα → Uα defined by

i(s) :=

{
w(Uγ)

�s if s ∈ Uγ

t if s = w(Uγ)
�t.

The case of α = 0 or α limit is similar: by construction, ρUα,i(∅)(∅) = ρUα,∅(∅)
independently of the value of i(∅), and therefore if i(∅) �= ∅ then ρ(Uα, i(∅)) >
ρ(Uα, ∅), contradicting the fact that i witnesses (Uα, ∅) ∼= (Uα, i(∅)).

Finally we prove (f) by induction on α < κ. First a technical claim.

Claim 10.5.1. Let ı̄ : X → Uα be an arbitrary isomorphism.

(i) Assume α = γ + 1 is a successor ordinal. For any isomorphism i : X → Uα

{ı̄−1(∅), ı̄−1(〈w(Uγ)〉)} = {i−1(∅), i−1(〈w(Uγ)〉)}.
(ii) Assume that α is either 0 or a limit ordinal, and set δ̄ := ı̄−1(∅). Then i(δ̄) = ∅

for every isomorphism i : X → Uα.
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100 10. THE MAIN CONSTRUCTION

Proof of the Claim. (i) Assume towards a contradiction that the claim fails
for some isomorphism i : X → Uα. Using the fact that by (e) there is an automor-
phism of Uα sending 〈w(Uγ)〉 to ∅, we may assume without loss of generality that
i−1(∅) �= ı̄−1(∅), ı̄−1(〈w(Uγ)〉). But then i′ := ı̄ ◦ i−1 would be an automorphism of
Uα such that i′(∅) /∈ {∅, 〈w(Uγ)〉}, contradicting part (e).

(ii) The case α = 0 is trivial. The limit case can be treated similarly to the
successor one: if i(δ̄) �= ∅ for some isomorphism i, then we would also have an
automorphism of Uα which does not fix its root ∅, contradicting again part (e). �

We now come back to the proof of part (f) of the lemma. The case α = 0 is triv-
ial since U0 is finite. Let α = γ +1. Fix ı̄ : X → Uα an arbitrary isomorphism, and
let δ̄0 = min

{
ı̄−1(∅), ı̄−1(〈w(Uγ)〉)

}
and δ̄1 = max

{
ı̄−1(∅), ı̄−1(〈w(Uγ)〉)

}
. (The

choice of δ̄0, δ̄1 is uniquely determined by Claim 10.5.1(i).) For the sake of def-
initeness, assume δ̄0 = ı̄−1(∅) — if this is not the case, just swap the following
definitions of X0 and X1. Set X0 := ı̄−1(Uγ) and X1 := X \X0, so that δ̄0 ∈ X0

and δ̄1 ∈ X1. Notice that by Claim 10.5.1(i) the definition of X0, X1 is indepen-
dent of the choice of ı̄, therefore no choice is needed here. Since ı̄ witnesses that
both X0 and X1 are isomorphic to Uγ , by inductive hypothesis there are canonical
isomorphisms iX0,γ : X0 → Uγ and iX1,γ : X1 → Uγ . Notice that the isomorphism
between Xj and Uγ induced by ı̄�Xj sends δ̄j to ∅, so by Claim 10.5.1 (applied
to γ) and part (e) of the lemma we may assume without loss of generality that
iXj ,γ(δ̄j) = ∅ (for j = 0, 1). Setting for δ ∈ X

iX,α(δ) :=

{
iX0,γ(δ) if δ ∈ X0

〈w(Uγ)〉�iX1,γ(δ) if δ ∈ X1

we get the desired canonical isomorphism between X and Uα.
Finally, assume that α is limit, and notice that in this case Uα is the disjoint

union of U0 and all subtrees of Uα with domain 〈3 + β〉�Uβ =
{
〈3 + β〉�t | t ∈ Uβ

}
for β < α. Fix an arbitrary isomorphism ı̄ : X → Uα, and let δ̄ := ı̄−1(∅) be
as in Claim 10.5.1(ii). Set also, Xβ := ı̄−1(〈3 + β〉�Uβ) (for every β < α) and
X−1 := X \

⋃
β<α Xβ, so that

(10.2) Xβ
∼= Uβ and X−1

∼= U0.

Claim 10.5.2. For every isomorphism i : X → Uα and every β < α, i(δ̄) = ∅,
i(Xβ) = 〈3 + β〉�Uβ and i(X−1) = U0.

Proof. Fix an arbitrary β < α. Since i(δ̄) = ∅ by Claim 10.5.1(ii), we have
that i(Xβ) = {t ∈ Uα | 〈β′〉 ⊆ t} for some β′ < 3 + α = w(Uα). Thus we just need
to show that β′ = 3+β. Since Xβ contains at least |U0| = 13 points we have β′ ≥ 3,
and thus i(Xβ) = β′�Uβ′′ where β′ = 3 + β′′. Using i, ı̄, and (10.2), we get that
Uβ′′ ∼= Xβ

∼= Uβ via an isomorphism sending ∅ to itself, so β = β′′ by part (c) of
the lemma. Thus β′ = 3 + β, as required. The final part concerning X−1 and U0

follows from the preceding one, so we are done. �
By Claims 10.5.1 and 10.5.2, the definition of δ̄, of the Xβ’s, and of X−1

is independent of the chosen ı̄, so no choice is needed to define them. For every
β < α, let δ̄β be the unique point inXβ which is connected by an edge ofX to δ̄, and
apply the inductive hypothesis to get canonical isomorphisms iX−1,0 : X−1 → U0

and iXβ ,β : Xβ → Uβ . Since ı̄ induces an isomorphism between Xβ and Uβ sending

δ̄β to ∅, by Claim 10.5.1 (applied to β) and part (e) of the lemma we may assume
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10.2. THE COMBINATORIAL TREES GS 101

without loss of generality that iXβ ,β(δ̄β) = ∅ as well. Similarly, using the fact that

ῑ�X−1 is an isomorphism between X−1 and U0 sending δ̄ to ∅, we also have that
iX−1,0(δ̄) = ∅. Therefore setting

iX,α(δ) :=

{
iX−1,0(δ) if δ ∈ X−1

〈3 + β〉�iXβ ,β(δ) if δ ∈ Xβ for some β < α,

we get the desired canonical isomorphism iX,α : X → Uα. �

We next use some of the properties of the Uα’s described in Lemma 10.5 to
obtain a rigidity property of G1 which will be crucial in the proof of the invariant
universality of �∼

κ
CT.

Lemma 10.6. Every automorphism of G1 is the identity on G0.

Proof. Let j be an automorphism of G1, and for every s ∈ <ωκ let Us ⊆ G1 be
the copy of U〈〈s〉〉 in G1, that is the substructure of G1 with domain{
(s, t) ∈ <ωκ× <ωκ | t ∈ U〈〈s〉〉

}
(see Definition 10.4). It suffices to prove that

j(s) = s for every s ∈ <ωκ ⊆ G0 ⊆ G1. First notice that j(<ωκ) = <ωκ be-
cause <ωκ ⊆ G1 is the set of all elements of G1 of degree κ (by Lemma 10.5(a)
and the fact that all vertices of the form s− or ŝ have degree 2, see also the sub-
sequent Lemma 10.8). In particular, j maps G1 \ <ωκ in itself. Consider the
point (s, ∅) ∈ G1 \ <ωκ, which is the root of Us: since it has degree ≥ 4 and dis-
tance 2 from s, we must have j(s, ∅) = (j(s), ∅) ∈ Uj(s) (recall that necessarily
j(G1 \ <ωκ) ⊆ G1 \ <ωκ). It follows that j�Us is an isomorphism between Us and
Uj(s) which sends the root of Us to the root of Uj(s). Therefore 〈〈s〉〉 = 〈〈j(s)〉〉 by
Lemma 10.5(c), and thus j(s) = s by injectivity of 〈〈·〉〉. �

10.2. The combinatorial trees GS

As described at the beginning of this section, the combinatorial tree GS asso-
ciated to some S ∈ Tr(2× κ) is obtained by adding some forks to G1.

Fix any injection θ : <ω2→ ω such that

θ(u) is odd for all u ∈ <ω2,(10.3a)

θ(∅) = 3 and θ(u) > θ(∅) for all u ∈ <ω2 \ {∅},(10.3b)

|θ(u)− θ(v)| > 4 ·max {lhu, lh v} for all distinct u, v ∈ <ω2.(10.3c)

Such an injection can be easily constructed by induction on the length of u ∈ <ω2
by e.g. setting θ(∅) := 3 and by letting θ� n+12 be an arbitrary injection into the
set {

max {θ(u) | u ∈ n2}+ 5k(n+ 1) | 1 ≤ k ≤ 2n+1
}
.

For u ∈ <ω2 we define the fork (coding u) to be the graph Fu on{
w ∈ <ω2 | w ⊆ 0(ω) ∨ w = 0(θ(u))�1

}
connecting each sequence w �= {∅} to its immediate predecessor w� = w� (lhw)− 1
(Figure 10.3). Then Fu is a combinatorial tree consisting of three disjoint branches
departing from 0(θ(u)), which is the unique vertex of degree 3; one branch is infinite,
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0(3)1

∅ 0(1) 0(2) 0(3) 0(4) 0(5) 0(6) 0(7)

Figure 10.3. The fork Fu, when θ(u) = 3 (i.e. u = ∅)

one has length 1, and one has odd length θ(u) > 1. Since any embedding respects
degrees,

u �= v ⇒ there is no embedding of Fu into Fv fixing ∅,(10.4a)

Fu is rigid, i.e. its unique automorphism is the identity,(10.4b)

u = v ⇔ Fu
∼= Fv.(10.4c)

Using the fact that the domain of Fu is an infinite subset of <ω2, the graph Fu can
be then identified with a graph on ω via a canonical bijection

(10.5) eu : dom(Fu)→ ω,

sending ∅ to 0.
For each (u, s) ∈ <ω(2× ω), we fix an isomorphic copy Fu,s of Fu, so that the

sets of vertices of Fu,s and Fv,t are disjoint whenever (u, s) �= (v, t), and such that
each Fu,s is also disjoint from the domain G1 of G1. More precisely, we let

(10.6) Fu,s = {(u, s)} × Fu

be the graph on {(u, s, w) | w ⊆ 0(ω) ∨ w = 0(θ(u))�1} with set of edges defined by

(u, s, w) Fu,s (u, s, z) ⇔ w Fu z.

Following [64, Theorem 3.1] and [23, Theorem 3.9], to each S ∈ Tr(2 × κ) we
now associate the combinatorial tree GS obtained by joining G1 and the Fu,s for
(u, s) ∈ S via the identification of any vertex s ∈ <ωκ ⊆ G1 with each vertex of the
form (u, s, ∅). Thus the domain GS of GS can be identified with

<ωκ�
{
s− | ∅ �= s ∈ <ωκ

}
�
{
ŝ | ∅ �= s ∈ <ωκ

}
�
{
(s, t) ∈ <ωκ× <ωκ | t ∈ U〈〈s〉〉

}
� {(u, s, w) | (u, s) ∈ S ∧ (u, s, w) ∈ Fu,s ∧ w �= ∅} .

(Figure 10.4 is a clumsy attempt to visualize GS in the three-dimensional space: G1

is the grey area in the xy-plane, s ∈ <ωκ is a vertex of G1 in the set <ωκ ⊆ G0 ⊆ G1,
and the forks Fu,s, Fv,s are growing vertically.)

To simplify the presentation, we also introduce the following notation for the
relevant subsets of the domain GS of GS (when necessary, each of these sets is also
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x

z

y G1

s

Fu,s Fv,s

Figure 10.4. The graph GS .

identified with the corresponding substructure of GS):

Seq(GS) :=
{
s ∈ GS | s ∈ <ωκ

}
;(10.7a)

Seq−(GS) :=
{
s− ∈ GS | s ∈ <ωκ

}
;(10.7b)

Ŝeq(GS) :=
{
ŝ ∈ GS | s ∈ <ωκ

}
;(10.7c)

Us(GS) :=
{
(s, t) ∈ <ωκ× <ωκ | t ∈ U〈〈s〉〉

}
for every s ∈ <ωκ;(10.7d)

U(GS) :=
⋃{

Us(GS) | s ∈ <ωκ
}
;(10.7e)

F′
u,s(GS) := {(u, s, w) ∈ Fu,s | w �= ∅} for every (u, s) ∈ S;(10.7f)

F(GS) :=
⋃{

F′
u,s(GS) | (u, s) ∈ S

}
.(10.7g)

Remark 10.7. The subsets and the corresponding substructures of GS defined
in (10.7a)–(10.7f) do not depend at all on the specific S ∈ Tr(2× κ) under consid-
eration, but only on the parameters s and u (when they appear in the notation).
Therefore, to further simplify the notation we can safely set

Seq := Seq(GS) (for some/any S ∈ Tr(2× κ)),

and define in a similar way the structures Seq−, Ŝeq, Us, U, F′
u,s, and F.

In particular, we have G0 = Seq� Seq−, G1 = G0 � Ŝeq�U, and GS = G1 �F.
Finally, the graph GS is then further identified in a canonical way with its copy on
κ (which is thus an element of CTκ), using the bijections 〈〈·〉〉, 〈·, ·〉, and eu in the
obvious way.

We end this section by listing some properties of the vertices of GS in term of
distances and degrees which will be useful in the subsequent proofs (Sections 11
and 12), leaving to the reader to check their validity (using when necessary
Lemma 10.5). Given a combinatorial tree G ∈ CTκ, a Z-chain of G is a se-
quence 〈xz | z ∈ Z〉 of pairwise distinct elements of G such that xz EG xz+1 for
every z ∈ Z.

Lemma 10.8. Let S ∈ Tr(2× κ).
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104 10. THE MAIN CONSTRUCTION

(a) The vertices in Seq are the unique vertices of GS having degree κ; they are
also the unique vertices of GS with degree ≥ 4 all of whose neighbors have
degree = 2. The distance between two elements of Seq is always even.

(b) The vertices in Seq− are the unique vertices of GS with degree 2 and all of
whose neighbors are in Seq.

(c) The vertices of the form (u, s, 0(θ(u))) (for some (u, s) ∈ S) are the unique
vertices of GS having degree (at least) 3, odd distance from the vertices in
Seq, and belonging to a Z-chain of GS. All other vertices in F′

u,s have degree
at most 2.

(d) The vertices in F are the unique vertices in GS with the following three prop-
erties:
• they have degree < 4;
• all their neighbors are either in Seq or have degree < 4 as well;
• at least one of their neighbors has degree < 4.

(e) The vertices in U are the unique vertices of GS with the following two prop-
erties:
• they have degree �= 2;
• they are adjacent to a vertex of degree ≥ 4 which in turn has another
neighbor (distinct from the described one) with degree ≥ 4 as well.

They do not belong to any Z-chain of GS, and they have degree strictly smaller
than κ.

(f) The vertices in Ŝeq are the unique vertices in GS with the following three
properties:
• they have degree 2;
• at least one of their neighbors has degree ≥ 4 and belongs to U;
• all their neighbors have degree ≥ 4.

Remark 10.9. In many cases, the list of conditions in Lemma 10.8 for charac-
terizing the vertices belonging to the various substructures of GS is overkill. For ex-
ample, by suppressing the condition “all their neighbors have degree ≥ 4” in (f) we

would still get a correct characterization of the vertices in Ŝeq; however, such extra
requirement is what makes the conjunction of the conditions from (f) incompatible
with the conjunction of the conditions from (d). This “pairwise incompatibility”
of the characterizations of the various substructures of GS will become a very use-
ful feature when we will have to render them with corresponding Lκ+κ-formulæ in
order to prove our invariant universality result — see Remark 12.4.
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CHAPTER 11

Completeness

In this chapter we will show that from any tree T on 2× 2× κ witnessing that
R = p[T ] is a κ-Souslin quasi-order, one can build a function fT : ω2 → CTκ that
reduces R to �∼

κ
CT. The function fT is constructed in three steps:

• firstly the tree T is replaced by a better tree T̃ called faithful representation of
R (Lemma 11.4);
• a function ΣT : ω2 → Tr(2 × κ) is constructed, so that ΣT reduces R to ≤κ

max,
where the latter is a quasi-order on Tr(2 × κ) which is independent of T
(Lemma 11.6);
• finally, we compose ΣT with the map Tr(2 × κ) → CTκ, S �→ GS defined in
Section 10, and then check that the resulting function fT (x) = GΣT (x) is the
required reduction (Theorem 11.8).

11.1. Faithful representations of κ-Souslin quasi-orders

Let 〈·, ·〉 : Ord×Ord→ Ord be the pairing function as in (2.1), and let

�(α, β) := 2 + 〈α, β〉.
Then � : Ord×Ord→ Ord \ {0, 1} is a bijection that maps κ×κ onto κ \ {0, 1} for
all cardinals κ ≥ ω, and it satisfies �(n,m) > n,m for all n,m ∈ ω. Thus the map

(11.1) �̄ :
≤ω

(Ord×Ord)→ ≤ω
(Ord \ {0, 1})

defined using � coordinate-wise

�̄
(
〈(α0, β0), (α1, β1), . . .〉

)
:= 〈�(α0, β0),�(α1, β1), . . .〉

is a bijection.

Definition 11.1. For κ an infinite cardinal, let

Tκ := Tr(2× 2× κ)

and T :=
⋃

κ∈Card Tκ.

Given a κ-Souslin quasi-order R on ω2, we would like to have a witness T̃ ∈ Tκ

of the fact that R is κ-Souslin which also witnesses transitivity and reflexivity of R
at all finite levels in a uniform way. To be more specific, we want reflexivity to be
witnessed by almost all elements in ωκ and that witnesses of transitivity are given
by �̄.

Definition 11.2. Let κ be an infinite cardinal, and R be a κ-Souslin quasi-
order on ω2. A tree T̃ ∈ Tκ is called faithful representation of R if the following
conditions hold:

(1) R = p[T̃ ];

105
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106 11. COMPLETENESS

(2) ∀u, n, s
(
lhu = lh s+ 1 ⇒ (u, u, n�s) ∈ T̃

)
(reflexivity);

(3) ∀u, v, w, s, t
(
(u, v, s), (v, w, t) ∈ T̃ ⇒ (u,w, �̄(s, t)) ∈ T̃

)
(transitivity);

(4) ∀u, v ((u, v, 0(lhu)) ∈ T̃ ⇒ u = v).

Remark 11.3. Notice that the statement “T̃ ∈ Tκ is a faithful representation
(of R = p[T̃ ])” is absolute for transitive models M of ZF containing T̃ and such

that κ ∈ CardM . Moreover, a faithful representation T̃ not only “combinatorially”
reflects the properties of the quasi-order R = p[T̃ ], but it makes the κ-Sousliness

of R more robust because in every ZF-model M as above the tree T̃ continues to
define a canonical κ-Souslin quasi-order RM

T̃
:= (p[T̃ ])M which is coherent with R

in the following sense:

(11.2) ∀x, y ∈ ω2 ∩M (x R y ⇔ x RM
T̃

y).

In fact, by Definition 11.2(2)–(3) we get that for all x, y, z ∈ (ω2)M :

(i) every ξ ∈ (ωκ)M with ξ(0) ∈ ω witnesses (x, x) ∈ (p[T̃ ])M ;

(ii) if ξ0, ξ1 ∈ (ωκ)M witness, respectively, (x, y) ∈ (p[T̃ ])M and (y, z) ∈ (p[T̃ ])M ,

then �̄(ξ0, ξ1) witnesses (x, z) ∈ (p[T̃ ])M .

Therefore RM
T̃

= (p[T̃ ])M is a quasi-order. The coherence condition (11.2) easily

follows by absoluteness of the existence of infinite branches through T̃ .
These absoluteness properties of faithful representations T̃ will be exploited in

Section 14.2.

We are now going to show that every κ-Souslin quasi-order R on ω2 admits a

faithful representation T̃ . Indeed, the following variation of the construction given
in the proof of [64, Theorem 2.4] shows how to construct such a T̃ starting from
an arbitrary T ∈ Tκ with R = p[T ].

For T ∈ Tκ let

T̂ := T ∪
{
(u, u, s) ∈ <ω2× <ω2× <ωκ | lhu = lh s

}
.

Then T̂ ∈ Tκ, and p[T ] = p[T̂ ] whenever p[T ] is a reflexive relation on ω2. Recall
from (2.4) that if u �= ∅ then u� = u� (lhu− 1). Inductively define:

T̃0 := {(∅, ∅, ∅)} ∪ {(u, v, 0�s) | (u�, v�, s) ∈ T̂}
T̃n+1 := {(∅, ∅, ∅)} ∪ {(u, v, (n+ 1)�s) | (u, v, n�s) ∈ T̃n} ∪

∪ {(u,w, (n+ 1)��̄(s, t)) | ∃v
(
(u, v, n�s), (v, w, n�t) ∈ T̃n

)
}.

It is immediate to check that for all n ∈ ω

• s �= ∅ ∧ (u, v, s) ∈ T̃n ⇒ s(0) = n,

• T̃n ∈ Tκ,
• s �= ∅ ∧ (u, v, s) ∈ T̂ ⇒ (u, v, n�s�) ∈ T̃n, and in particular p[T̂ ] ⊆ p[T̃n].

Then

(11.3) T̃ :=
(⋃

n∈ω
T̃n

)
\ {(u, v, 0(k)) | u, v ∈ k2 ∧ u �= v ∧ k > 0} ∈ Tκ.

By construction, if (u, v, s) ∈ T̃ and s �= ∅ then s(0) ∈ ω and (u, v, s) ∈ T̃s(0) \⋃
j<s(0) T̃j , so

T̃ =
(⋃

n≥1
T̃n

)
∪ (T̃0 \ {(u, v, 0(k)) | u, v ∈ k2 ∧ u �= v ∧ k > 0}).
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Lemma 11.4. Let κ be an infinite cardinal, and let T ∈ Tκ. If R = p[T ] is a

quasi-order, then the tree T̃ ∈ Tκ defined in (11.3) is a faithful representation of R.

Proof. We have to show that T̃ satisfies the four conditions (1)–(4) of Defi-
nition 11.2.

The tree T̃ satisfies (4), and it satisfies also (2) by definition of T̂ . To prove (3),

we can assume that s, t �= ∅ and set n := s(0) and m := t(0), so that (u, v, s) ∈ T̃n

and (v, w, t) ∈ T̃m. We also let s̄ := 〈s(i) | 1 ≤ i < lh s〉 and t̄ := 〈t(i) | 1 ≤ i < lh t〉.
Then (u, v, k�s̄), (v, w, k�t̄) ∈ T̃k for all k ≥ max{n,m}, and in particular for
k := �(n,m)− 1. Therefore

(u,w, (k + 1)��̄(s̄, t̄)) = (u,w,�(n,m)��̄(s̄, t̄))

= (u,w, �̄(s, t)) ∈ T̃�(n,m) ⊆
⋃

n∈ω
T̃n.

Since � never takes value 0 then �̄(s, t) �= 0(lhu), thus (u,w, �̄(s, t)) ∈ T̃ , as required.

It remains to prove (1). One direction is easy: R = p[T̂ ] (since R is reflexive)

and p[T̂ ] = p[T̃0] ⊆ p[T̃1] ⊆ p[T̃ ]. Since p[T̃ ] ⊆ p[
⋃

n T̃n] it is enough to prove that

p[
⋃

n T̃n] ⊆ R, so we may assume that (x, y) ∈ p[
⋃

n T̃n] and let ξ ∈ ωκ be a witness

of this. Then ∀k(x� k, y� k, ξ� k) ∈ T̃ξ(0), so that (x, y) ∈ p[T̃ξ(0)]. Therefore it is
enough to prove by induction on n that

Claim 11.4.1. For every n ∈ ω, p[T̃n] ⊆ R, and in fact p[T̃n] = R since

R ⊆ p[T̃0] ⊆ p[T̃n].

Proof of Claim. The proof is by induction on n ∈ ω. The case n = 0 is
obvious as p[T̃0] = p[T̂ ] = R (by reflexivity of R), so assume p[T̃n] ⊆ R, choose an

arbitrary (x, y) ∈ p[T̃n+1] and let ξ̄ ∈ ωκ be such that (x, y, (n + 1)�ξ̄) ∈ [T̃n+1].

Because of the definition of T̃n+1 we have to distinguish two cases:

Case 1: ∃∞k [(x� k, y� k, n�(ξ̄� (k − 1))) ∈ T̃n]. Then (x, y, n�ξ̄) ∈ [T̃n], so that

(x, y) ∈ p[T̃n] ⊆ R (by inductive hypothesis).

Case 2: ∀∞k ∃vk [(x� k, vk, n�ξ̄0� (k − 1)), (vk, y� k, n�ξ̄1� (k − 1)) ∈ T̃n], where
ξ̄0, ξ̄1 ∈ ωκ are the unique elements such that ξ̄ = �̄(ξ̄0, ξ̄1). Now notice
that the collection of all possible vk’s as above form an infinite finitely-
branching tree (there are infinitely many vk’s because such witnesses must
be distinct for different k > 0 as lh vk = k), so by König’s lemma there
is an infinite branch z ∈ ω2 through it which has the property that

(x� k, z� k, n�ξ̄0� (k − 1)), (z� k, y� k, n�ξ̄1� (k − 1)) ∈ T̃n for every k > 0.

Therefore ξ0 := n�ξ̄0 and ξ1 := n�ξ̄1 witness (x, z), (z, y) ∈ p[T̃n] ⊆ R, so
that (x, y) ∈ R by the transitivity of R. �

This concludes the proof of the lemma. �

11.2. The quasi-order ≤max and the reduction ΣT

Definition 11.5. Given trees S, S′ ∈ Tr(2× κ), let

S ≤κ
max S′

if and only if there is a Lipschitz (i.e. a monotone and length-preserving) function
ϕ : <ωκ→ <ωκ such that for all u ∈ <ω2 and s ∈ <ωκ of the same length

(u, s) ∈ S ⇒ (u, ϕ(s)) ∈ S′.

If ϕ can be taken to be injective, we write S �κ
max S′.
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As observed in [64], if we restrict our attention to normal trees on 2×κ (that is
trees S such that (u, t) ∈ S whenever there is s ∈ lh tκ such that t is pointwise bigger
then s and (u, s) ∈ S) then the quasi-orders ≤κ

max and �κ
max coincide. However,

unlike the case κ = ω considered in [64], in the uncountable case we cannot require

the tree T̃ defined in (11.3) to be normal, so the two quasi-orders ≤κ
max and �κ

max

must be dealt with separately.

Definition 11.6. For T ∈ Tκ, let ΣT : ω2→ Tr(2× κ) be defined as

ΣT (x) :=
{
(u, s) | (u, x� lhu, s) ∈ T̃

}
,

where T̃ is as in (11.3).

Recall that 〈〈·〉〉 : <ωOrd → Ord is the bijection of (2.2) and that it maps <ωκ
onto κ.

Lemma 11.7. Let T ∈ Tκ be such that R = p[T ] is a quasi-order.

(a) ΣT simultaneously reduces R to ≤κ
max and �κ

max. In particular, both ≤κ
max

and �κ
max are complete for κ-Souslin quasi-orders.

(b) If x R y, then there is a witness ϕ to ΣT (x) �κ
max ΣT (y) such that 〈〈s〉〉 ≤

〈〈ϕ(s)〉〉 for every s ∈ <ωκ.
(c) ΣT is injective.

Proof. (a) Since �κ
max refines ≤κ

max, it is enough to show that if R = p[T ] is

a quasi-order (so that T̃ is a faithful representation of R by Lemma 11.4) then for
every x, y ∈ ω2,

ΣT (x) ≤κ
max ΣT (y) ⇒ x R y ⇒ ΣT (x) �κ

max ΣT (y).

The proof is identical to the one of [64, Theorem 2.5]. Suppose first that ϕ witnesses

ΣT (x) ≤κ
max ΣT (y). Let ξ :=

⋃
k∈ω ϕ(0(k)). By reflexivity of T̃ (Definition 11.2(2)),

(x� k, 0(k)) ∈ ΣT (x), and hence (x� k, ϕ(0(k))) ∈ ΣT (y) for all k. But this means

that (x, y, ξ) ∈ [T̃ ], and hence (x, y) ∈ R = p[T̃ ] (where for the last equality we use
Definition 11.2(1)).

Assume now that ξ ∈ ωκ witnesses (x, y) ∈ p[T̃ ] = R. Then ξ(0) ∈ ω. For
s ∈ <ωκ, let

(11.4) ϕ(s) := �̄(s, ξ� lh s).
Since the function � used to define �̄ is injective, then ϕ is injective as well. Suppose
now that (u, s) ∈ ΣT (x) and let k := lhu = lh s. Then s(0) ∈ ω and (u, x� k, s) ∈
T̃ . On the other hand (x� k, y� k, ξ� k) ∈ T̃ , therefore (u, y� k, �̄(s, ξ� k)) ∈ T̃ by

transitivity of T̃ (Definition 11.2(3)), so (u, ϕ(s)) ∈ ΣT (y).

(b) The map ϕ defined in (11.4) will do.

(c) This follows from the fact that T̃ satisfies Definition 11.2(4), as if x �= y
and k ∈ ω is such that x� k �= y� k, then (x� k, 0(k)) ∈ ΣT (x) \ ΣT (y). �

11.3. Reducing ≤κ
max to �∼

κ
CT

Now we are ready to prove the main result of this section. Given an infinite
cardinal κ and T ∈ Tκ, define the function

(11.5) fT : ω2→ CTκ, x �→ GΣT (x),
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where ΣT is as in Definition 11.6 and the combinatorial tree GΣT (x) associated to
ΣT (x) ∈ Tr(2× κ) is defined as in Section 10.2.

Theorem 11.8. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then the map fT defined in (11.5) is such that:

(a) fT reduces R to the embeddability relation �∼
κ
CT;

(b) fT reduces = on ω2 to the isomorphism relation ∼=κ
CT.

In particular, �∼
κ
CT is complete for κ-Souslin quasi-orders on ω2, i.e. every κ-Souslin

quasi-order on ω2 is reducible to the embeddability relation on CTκ.

Proof. The proof of (a) is similar to the ones of [64, Theorem 3.1] and [23,
Theorem 3.9], but it is simplified a little bit by our different choice of the map
θ. Let x, y ∈ ω2, and assume first that x R y. By Lemma 11.7(b), there is a
ϕ : <ωκ → <ωκ witnessing ΣT (x) �κ

max ΣT (y) such that 〈〈s〉〉 ≤ 〈〈ϕ(s)〉〉 for every
s ∈ <ωκ. Set

• i(s) := ϕ(s), i(s−) := (ϕ(s))−, and i(ŝ) := ϕ̂(s) for every s ∈ <ωκ;
• i(s, t) := (ϕ(s), t) for every s ∈ <ωκ and t ∈ U〈〈s〉〉 (this definition is well given
by 〈〈s〉〉 ≤ 〈〈ϕ(s)〉〉 and Proposition 10.5(b));
• i(u, s, w) := (u, ϕ(s), w) for every (u, s) ∈ ΣT (x), (u, s, w) ∈ Fu,s, and w �= ∅.
(This is well-defined because (u, s) ∈ ΣT (x) ⇒ (u, ϕ(s)) ∈ ΣT (y) by our choice
of ϕ).

It is easy to check that i is the desired embedding of fT (x) into fT (y).
Conversely, let j be an embedding of fT (x) = GΣT (x) into fT (y) = GΣT (y). By

Lemma 11.7 it is enough to show that ΣT (x) �κ
max ΣT (y). Since embeddings cannot

decrease degrees, by Lemma 10.8(a) we get j(Seq) ⊆ Seq. Moreover, Lemma 10.8
implies that each vertex of the form (u, s, 0(θ(u))) is sent into a vertex of the same
form because the properties characterizing these vertices listed in Lemma 10.8(c)
are preserved by embeddings (and j(Seq) ⊆ Seq). In particular it follows that
j(G0 ∪ F(GΣT (x))) ⊆ G0 ∪ F(GΣT (y)). Since (∅, ∅, 0(3)) has distance 3 (which is

the minimal value attained by θ) from ∅ ∈ Seq by (10.3b), we get j(∅, ∅, 0(3)) =
(∅, ∅, 0(3)), whence j(∅) = ∅. Arguing by induction on lh s (and using injectivity
of j and j(Seq) ⊆ Seq) we then get that ϕ := j� Seq: <ωκ → <ωκ is an injective
Lipschitz map.

Claim 11.8.1. For each (u, s) ∈ ΣT (x), j(u, s, 0
(θ(u))) = (u, ϕ(s), 0(θ(u))) (recall

that ϕ(s) := j(s)).

Proof of Claim. Recall that j must send (u, s, 0(θ(u))) into a vertex of the
same form, so let (v, t) ∈ ΣT (y) be such that j(u, s, 0(θ(u))) = (v, t, 0(θ(v))). Note
that θ(u) is the distance in fT (x) between s and (u, s, 0(θ(u))) and θ(v) is the
distance in fT (y) between t and (v, t, 0(θ(v))). Moreover, the path in fT (x) between
the nodes s and (u, s, 0(θ(u))) is mapped by j to the (unique) path in fT (x) between
the vertices ϕ(s) := j(s) and (v, t, 0(θ(t))), which necessarily passes through t. This
implies that θ(u) − θ(v) is the distance in fT (y) between ϕ(s) and t: but such
distance is ≤ 4 · max {lhϕ(s), lh t} (because the latter is an upper bound for the
length of the path in fT (y) which goes from ϕ(s) to ∅ and then back to t), and
since lhu = lh s = lhϕ(s) and lh v = lh t, this implies u = v by (10.3c), whence
also ϕ(s) = t because such vertices have then distance θ(u)− θ(v) = 0. �
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Claim 11.8.1 easily implies that (u, s) ∈ ΣT (x) ⇒ (u, ϕ(s)) ∈ ΣT (y), i.e. that
ϕ witnesses ΣT (x) �κ

max ΣT (y).

(b) Fix an isomorphism j between fT (x) = GΣT (x) and fT (y) = GΣT (y). It
follows from parts (a), (c), and (e) of Lemma 10.8 that j(Seq) = Seq, j(G0) = G0,
and j(G1) = G1. In particular, j�G1 is an automorphism of G1. Therefore by
Lemma 10.6, j�G0 is the identity, and so is ϕ := j� Seq. Thus the second part
of the proof of (a) shows that ΣT (x) ⊆ ΣT (y) (because ϕ is now the identity
map). Replacing j with j−1 in this argument, we obtain ΣT (y) ⊆ ΣT (x), so that
ΣT (x) = ΣT (y). Since x �→ ΣT (x) is injective by Lemma 11.7(c), this implies that
fT reduces = to ∼=, as required. �

Remark 11.9. Notice that the second half of the proof of part (a) shows that
x R y whenever there is an embedding of the subgraph of fT (x) with domain
G0 ∪ F(GΣT (x)) into the subgraph of fT (y) with domain G0 ∪ F(GΣT (y)). This
feature will be used in Sections 13 and 16.2.1 — see the proofs of Theorems 13.3
and 16.8.

11.4. Some absoluteness results

By closely inspecting the constructions provided in Sections 10 and 11, one
easily sees that the definition of the map fT from (11.5) only requires the knowledge
of the parameters T and κ, and that such definition is uniform in those parameters
and independent of the transitive model of ZF we are working in. In fact, since the
tree T̃ in (11.3) is definable from T and κ, then the function sending (κ, T ) to the
map fT is definable (without parameters) via an LST-formula, which moreover is
absolute for transitive models of ZF. To be more precise, let M be an arbitrary
transitive model of ZF, κ be a cardinal in M , and T ∈ (Tκ)

M : then, working
inside M , we can define the function fM

T := fT as in (11.5), which continues to be
a reduction of RM := (p[T ])M to (�∼

κ
CT)

M as long as RM is a quasi-order in M
(because Theorem 11.8, which is proved in ZF, holds in M). With this notation,
we then get the definability and absoluteness results briefly discussed below, which
will be used in Section 14.2.

Fact 11.10. There is an LST-formula ΨfT (x0, x1, z0, z1) with the following
properties.

(a) For every transitive model M of ZF, κ ∈ CardM and T ∈ (Tκ)
M , the formula

ΨfT (x0, x1, κ, T ) defines in M (the graph of) fM
T , that is: for every x ∈ (ω2)M

and X ∈ (CTκ)
M

fM
T (x) = X ⇔ M |= ΨfT [x,X, κ, T ].

(b) Let N be another transitive model of ZF with κ ∈ CardN and T ∈ (Tκ)
N , and

let fN
T be the function defined in N by the formula ΨfT (x0, x1, κ, T ) — see

part (a). Then

∀x ∈ (ω2)M ∩ (ω2)N (fM
T (x) = fN

T (x)),

i.e. fM
T and fN

T coincide on the common part of their domain.

Indeed, ΨfT (x0, x1, z0, z1) is the formalization in the language of set theory
of the construction of the combinatorial tree x1 := fT (x0) = GΣT (x0) ∈ CTκ

starting from the parameters x0 ∈ ω2, z0 := κ, and z1 := T . We leave to the
reader to check that such formalization is indeed possible. For part (b), notice that

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



11.4. SOME ABSOLUTENESS RESULTS 111

for every x ∈ (ω2)M ∩ (ω2)N the two combinatorial trees fM
T (x) = (GΣT (x))

M and

fN
T (x) = (GΣT (x))

N must coincide because they are explicitly computed in ZF using
just x, κ and T as parameters and all the bijections 〈〈·〉〉, 〈·, ·〉, and eu involved in
their coding as structures on κ are absolute between transitive models of ZF.

Lemma 11.11. Given an infinite cardinal κ and a tree T ∈ Tκ such that R =
p[T ] is a quasi-order, let fT be the map defined in (11.5). Then for arbitrary
x, y ∈ ω2, if fT (x) �∼ fT (y) then there is a (canonical) witness of this fact which is
explicitly LST-definable ZF using only x, y, κ, and T as parameters.

Proof. If fT (x) �∼ fT (y), then x R y by Theorem 11.8(a). Pick the leftmost

branch bx,y such that (x, y, bx,y) ∈ [T̃ ] (where T̃ is the faithful representation of R
constructed from T as in (11.3)), and apply (11.4) to ξ := bx,y to get a (canonical)
ϕ : <ωκ → <ωκ witnessing ΣT (x) �κ

max ΣT (y). Then use this ϕ to define the
desired canonical embedding i of fT (x) into fT (y) as in the first part of the proof
of Theorem 11.8(a). �

Given an infinite cardinal κ, the embeddability relation on ModκL, being defined
by a Σ1 LST-formula, is upward absolute but in general not downward absolute: for
example, for suitable X,Y ∈ CTκ one may be able to add by forcing an embedding
of X into Y (so that X �∼ Y holds in a suitable generic extension) even if X does
not embed into Y in the ground model. In contrast, we are now going to show that
the embeddability relation on the range of an fT as in (11.5) is always absolute for
transitive models of ZF containing κ and T .

Proposition 11.12. Let M0, M1 be transitive models of ZF, and let κ and T
be such that κ ∈ CardMi , T ∈ (Tκ)

Mi , and RMi := (p[T ])Mi is a quasi-order in

Mi (for i = 0, 1). Recall that fM0

T (z) = fM1

T (z) for all z ∈ (ω2)M0 ∩ (ω2)M1 by

Fact 11.10(b), so that we can unambiguously set fT (z) := fM0

T (z) = fM1

T (z) for all
such z. Then for every x, y ∈ (ω2)M0 ∩ (ω2)M1

M0 |= fT (x) �∼ fT (y) ⇔ M1 |= fT (x) �∼ fT (y).

Proof. By Theorem 11.8(a) (which holds both in M0 and M1) and absolute-
ness of existence of infinite branches through descriptive set-theoretic trees on κ,
we have that

M0 |= fT (x) �∼ fT (y) ⇔ M0 |= ∃ξ ∈ ωκ ((x, y, ξ) ∈ [T ])

⇔ M1 |= ∃ξ ∈ ωκ ((x, y, ξ) ∈ [T ])

⇔ M1 |= fT (x) �∼ fT (y). �
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CHAPTER 12

Invariant universality

As mentioned in the introduction, the isomorphism relation ∼=ω
σ on the set Modωσ

of countable models of an Lω1ω-sentence σ is an analytic equivalence relation, and
these equivalence relations have been extensively studied in the literature (see [4,93]
and the references therein). In [64] the analytic quasi-order �∼

ω
σ of embeddability

between countable models of σ (where e.g. σ := σCT is the Lω1ω-sentence axioma-
tizing combinatorial trees from page 96) has been shown to be ≤B-complete for the
class of analytic quasi-orders. In [23] a strengthening of Borel-completeness (called
invariant universality in [7]) which bears on both ∼= and �∼ has been introduced.
Here this notion is generalized to arbitrary infinite cardinals.

Definition 12.1. Let C be a class of quasi-orders, L be a finite relational lan-
guage, and κ be an infinite cardinal. The embeddability relation �∼

κ
L is invariantly

universal for C if for every R ∈ C there is an Lκ+κ-sentence σ such that R ∼ �∼
κ
σ.

A localized version of invariant universality can be defined in a similar way.

Definition 12.2. Let C, L, and κ be as in Definition 12.1. Given an Lκ+κ-
sentence τ, the embeddability relation �∼

κ
τ is invariantly universal for C if for

every R ∈ C there is an Lκ+κ-sentence σ such that Modκσ ⊆ Modκτ and R ∼ �∼
κ
σ.

As for the case of (≤∗-)completeness, when in Definitions 12.1 and 12.2 the
reducibility ≤ is replaced by one of its restricted forms≤∗ we speak of ≤∗-invariant
universality.

In order to establish the invariant universality of �∼
κ
CT for κ-Souslin quasi-orders

on ω2, in this section we will have to construct some infinitary sentences, denoted
by Ψ and σT , and some maps between their sets of models of size κ: the reader is
advised to refer to Figure 12.1 in order to keep track of these functions.

12.1. An Lκ+κ-sentence Ψ describing the structures GS.

Henceforth we fix an uncountable cardinal κ. We will now begin the definition
of a sequence of nine Lκ+κ-sentences Φ0, . . . ,Φ8 which will be crucial for the proof
of our main result. These sentences try to describe with some accuracy the common
properties of the structures of the form GS for S ∈ Tr(2× κ) defined in Section 10.
To help in understanding the intended meaning of such sentences, we will freely use
the following two conventions (besides the ones already explained in Section 8.1.1):

• we will use metavariables x, y, z, xα, yα, zα (possibly with various decorations or
different subscripts) instead of the vα’s;
• we will consider (infinitary) conjunctions and disjunctions over sets of formulæ
of size ≤ κ (instead of conjunctions and disjunctions over sequences of length
< κ+, as Definition 8.1 would officially require), as long as it is clear that such
sets can be well-ordered in a canonical way in ZF (usually by means of the coding

113
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κ2 CTκ

hT

ran(fT )

fT

(<ω2×κ)2

ModκσT
ModκΨ

g

Figure 12.1. The reductions used in Section 12. The set ModκσT

is the saturation of ran(fT ), where fT is the map defined in (11.5).

functions 〈〈·〉〉, 〈·, ·〉, and eu for u ∈ <ω2 from (2.2), (2.1) and (10.5), respectively,
which are absolute for transitive models of ZF).

This means that, formally, the Lκ+κ-sentence Φi is obtained from the displayed one
by substituting in the natural way each metavariable with a corresponding variable
in the official list 〈vα | α < κ〉, and by well-ordering in a canonical way all the sets
of subformulæ to which an (infinitary) conjunction or disjunction is applied. We
will explicitly perform this formalization just for the first few formulæ, leaving to
the reader all other cases.

Given a variable x and 0 �= n ∈ ω, let d<n(x) denote the Lωω-formula

(d<n(x)) ∀〈xi | i < n〉
(∧
i<n

xi E x ⇒
∨

i<j<n

xi 	 xj

)
(where if n = 1 we agree that

∨
i<j<n xi 	 xj is any inconsistent sentence), and ab-

breviate the Lωω-formulæ ¬(d<n(x)), d<n+1(x)∧d≥n(x), and ¬(d=n(x)) by d≥n(x),
d=n(x), and d �=n(x), respectively. If a is a vertex of a graph X, then X |= d<n[a] if
and only if a has degree < n in X. To completely formalize the formula d<n(x), one

should first fix α < κ and enumeration
〈
cm | m < n(n−1)

2

〉
of all pairs (i, j) ∈ ω2

with i < j < n, and then define d<n(vα) as

∀〈vα+i+1 | i < n〉
(∧
i<n

vα+i+1 E vα ⇒
∨

m<n(n−1)
2

vα+im+1 	 vα+jm+1

)
,

where (im, jm) ∈ ω2 is the unique pair such that cm = (im, jm). A similar formal-
ization may easily be obtained for the following auxiliary Lωω-formulæ:

(Seq(x)) d≥4(x) ∧ ∀y (x E y ⇒ d=2(x));
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(Seq−(x)) d=2(x) ∧ ∀y (x E y ⇒ Seq(y));

(F(x)) d<4(x) ∧ ∀y [x E y ⇒ (d<4(y) ∨ Seq(y))] ∧ ∃z [x E z ∧ d<4(z)].

(U(x)) d �=2(x) ∧ ∃y, z [z �	 x ∧ x E y ∧ y E z ∧ d≥4(y) ∧ d≥4(z)];

(Ŝeq(x)) d=2(x) ∧ ∃y [U(y) ∧ x E y ∧ d≥4(y)] ∧ ∀z [z E x ⇒ d≥4(z)];

Remark 12.3. It is not hard to check that for every S ∈ Tr(2× κ) and every
vertex a ∈ GS (where GS is defined as in Section 10.2) we have

GS |= Seq[a] ⇔ a ∈ Seq(GS),

and analogous results hold for the other formulæ Seq−(x), U(x), Ŝeq(x), and F(x)

and the corresponding substructures Seq−(GS), U(GS), Ŝeq(GS), and F(GS) of GS

defined in (10.7a)–(10.7g).

We are now ready to introduce the first Lκ+κ-sentence Φ0 (which is actually
an Lω1ω-sentence):

(Φ0) ϕCT ∧ ∀x [Seq(x) ∨ Seq−(x) ∨ Ŝeq(x) ∨ U(x) ∨ F(x)].

Remark 12.4. Notice that the formulæ appearing in the disjunction of Φ0 are
mutually exclusive: each element of an arbitrary L-structure X satisfying Φ0 can

realize at most one of Seq(x), Seq−(x), Ŝeq(x), U(x), or F(x).

In any combinatorial tree of the form GS (for S ∈ Tr(2× κ)) one has that for

every vertex a in U(GS) there is a unique b ∈ Ŝeq(GS) such that a is connected to
b by a (finite) chain all of whose intermediate points are in U(GS) as well. This
property of a and b is rendered by the following Lω1ω-formula:

(root(y, x)) U(y) ∧ Ŝeq(x) ∧
∨
n<ω

∃〈xi | i ≤ n〉[ ∧
0<i≤n

U(xi) ∧ x 	 x0 ∧ xn E y ∧
∧
i<n

xi E xi+1

]
.

This allows us to write the Lω1ω-formula Φ1, which expresses the above mentioned
property of the structures GS (the symbol ∃! denotes the quantifier “there exists
a unique”, which may be expressed using the other quantifiers and connectives in
the usual way):

(Φ1) ∀y [U(y) ⇒ ∃!x (root(y, x))].
Let now X be an arbitrary L-structure of size < κ, and i : X → κ be any

injection. We denote by
τiqf(X)(〈vα | α ∈ ran(i)〉)

the quantifier-free type of X (induced by i), i.e. the L0
κκ-formula∧

x,y∈X
x�=y

(vi(x) �	 vi(y)) ∧
∧

x,y∈X

xEXy

(vi(x) E vi(y)) ∧
∧

x,y∈X

¬(xEXy)

¬(vi(x) E vi(y)).
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To completely formalize this sentence, one of course need to well-order the infinitary
conjunctions above using the given injection i. Notice that if Y is an L-structure
and 〈aα | α ∈ ran(i)〉, 〈bα | α ∈ ran(i)〉 are two sequences of elements of Y such
that both Y |= τiqf(X)[〈aα | α ∈ ran(i)〉] and Y |= τiqf(X)[〈bα | α ∈ ran(i)〉], then
Y � {aα | α ∈ ran(i)} and Y � {bα | α ∈ ran(i)} are isomorphic via the map aα �→ bα
(in fact, they are both isomorphic to X). In this paper, the previous procedure will
be applied only to structures X which are canonically well-orderable in ZF using
the coding maps 〈〈·〉〉, 〈·, ·〉, and eu for u ∈ <ω2 in the obvious way — in fact, the
domains of these structures will in general be subsets of size < κ of <ωκ. In all
such cases we will thus have a canonical injection i = iX : X → κ (namely, the one
induced by the coding map 〈〈·〉〉): in order to simplify the notation, we will then
safely drop the reference to such i, replace variables with metavariables, and call
the resulting expression qf-type of X. In the formulæ below we will denote the
qf-type of such an L-structure X simply by

τqf(X)(〈xi | i ∈ X〉).

The next Lκ+κ-sentences Φ2, Φ3, and Φ4 will complete the description of the
substructure G1 of any GS (see Lemma 12.5). To this aim, for each s ∈ <ωκ we
first introduce the following auxiliary Lκ+κ-formulæ:

(Ŝeqs(x)) Ŝeq(x) ∧ ∃〈xi | i ∈ U〈〈s〉〉〉
[ ∧
i∈U〈〈s〉〉

root(xi, x) ∧

∀y
(
rooty, x) ⇒

∨
i∈U〈〈s〉〉

y 	 xi

)
∧ x E x∅ ∧

(∧
∅�=i∈U〈〈s〉〉

¬(x E xi)
)
∧ τqf(U〈〈s〉〉)(

〈
xi | i ∈ U〈〈s〉〉

〉)]
;

(Seqs(x)) Seq(x) ∧ ∃y (Ŝeqs(y) ∧ x E y);

(Seq−s (x)) Seq−(x) ∧ ∃y, z (Seqs
(y) ∧ Seqs(z) ∧ y E x ∧ x E z).

Recall from (2.4) that for ∅ �= s ∈ <ωκ we set s� = s� (lh s − 1), so Seq−s (x) is
defined only for s �= ∅.

Notice that if S ∈ Tr(2× κ) and a ∈ GS , then

GS |= Ŝeqs[a] ⇔ a = ŝ.

Similarly,

GS |= Seqs[a] ⇔ a = s and GS |= Seq−s [a] ⇔ a = s−.

Now let

(Φ2) ∀x
[
Ŝeq(x) ⇒

∨
s∈<ωκ

Ŝeqs(x)
]
∧
∧

s∈<ωκ

∃!x (Ŝeqs(x));

(Φ3) ∀x [Seq(x) ⇒ ∃!y (Ŝeq(y) ∧ x E y)] ∧
∧

s∈<ωκ

∃!x Seqs(x);
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(Φ4) ∀x
[
Seq−(x) ⇒

∨
∅�=s∈<ωκ

Seq−s (x)
]
∧
∧

∅�=s∈<ωκ

∃!x (Seq−s (x)).

It is not hard to see that GS |=
∧

i≤4 Φi for every S ∈ Tr(2× ω). We are now

going to show in Lemma 12.5 that every model of
∧

i≤4 Φi contains a substructure

(canonically) isomorphic to G1. Let us first fix some notation. For X ∈ ModκL, set

Seq(X) := {a ∈ X | X |= Seq[a]}(12.1a)

Seq−(X) :=
{
a ∈ X | X |= Seq−[a]

}
(12.1b)

Ŝeq(X) :=
{
a ∈ X | X |= Ŝeq[a]

}
(12.1c)

U(X) := {a ∈ X | X |= U[a]}(12.1d)

F(X) := {a ∈ X | X |= F[a]}(12.1e)

G0(X) := Seq(X) ∪ Seq−(X)(12.1f)

G1(X) := G0(X) ∪ Ŝeq(X) ∪ U(x).(12.1g)

(Notice that when X = GS for some S ∈ Tr(2 × κ) this notation is coherent with
the one established in (10.7a)–(10.7c), (10.7e) and (10.7g), and that the unions in
the definition of G0(X) and G1(X) are necessarily disjoint by Remark 12.4.)

Lemma 12.5. For every X ∈ CTκ, if X |=
∧

i≤4 Φi, then G1(X) ∼= G1. More-

over this is witnessed by a specific ιX : G1(X) → G1, which we call the canonical
isomorphism.

Proof. Recall the L-structures Seq, Seq−, Ŝeq, Us, and U defined in Re-
mark 10.7. We will canonically define some partial isomorphisms

ι
̂Seq

: Ŝeq(X)→ Ŝeq

ιU : U(X)→ U

ιSeq : Seq(X)→ Seq

ιSeq− : Seq−(X)→ Seq−.

and then show that the union ιX of these maps is the desired canonical isomorphism.

By X |= Φ2, we get that there is a bijection j : Ŝeq(X) → <ωκ (namely, the

map sending a ∈ Ŝeq(X) to the unique s ∈ <ωκ such that X |= Ŝeqs[a]), so we can

define the bijection ι
̂Seq

: Ŝeq(X)→ Ŝeq : a �→ ĵ(a).

For each s ∈ <ωκ, let

Us(X) :=
{
a ∈ X | X |= root[a, j−1(s)]

}
.

(Notice that this notation is again coherent with (10.7d) when X = GS for some
S ∈ Tr(2 × κ).) Then {Us(X) | s ∈ <ωκ} is a partition of U(X) by X |= Φ1.

Moreover, using X |= Ŝeqs[j
−1(s)] we have that each Us(X) is isomorphic to Us

via some canonical ιs which maps the unique vertex in Us(X) adjacent to j−1(s) to
the point (s, ∅). (To see that we do not need any choice to pick the isomorphisms
ιs, use Lemma 10.5(f) to first get a canonical isomorphism iUs(X),〈〈s〉〉 : Us(X) →
U〈〈s〉〉, notice that by Lemma 10.5(e) we can always assume that the map iUs(X),〈〈s〉〉
sends the unique vertex in Us(X) adjacent to j−1(s) to ∅, and then set ιs(a) :=
(s, iUs(X),〈〈s〉〉(a)) for every a ∈ Us(X).) Set ιU :=

⋃
s∈<ωκ ιs, and notice that it
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is a well-defined bijection between U(X) and U because the Us(X) are pairwise
disjoint.

Claim 12.5.1. ι′ := ι
̂Seq
∪ιU is a partial isomorphism between G1(X)\G0(X) =

Ŝeq(X) ∪U(X) and G1 \G0 = Ŝeq ∪U.

Proof of the Claim. The fact that ι′ is a bijection between G1(X)\G0(X)
and G1 \G0 is obvious, so we just need to show that it preserves the edge relation.

Let a, b ∈ Ŝeq(X)∪U(X). If X |= Ŝeq[a], then all neighbors of a must have degree

≥ 4, so if a EX b, then X �|= Ŝeq[b]: this shows that any two points in Ŝeq(X) are
not connected by en edge.

Suppose now a, b ∈ U(X). If a ∈ Us(X) and b ∈ Ut(X) for distinct s, t ∈ <ωκ,
then ¬(a EX b), because otherwise X |= root[a, j−1(s)]∧ root[a, j−1(t)], contradict-
ing X |= Φ1. If instead a, b ∈ Us(X) for the same s ∈ <ωX, then ι′(a) = ιs(a) ∈ Us

and ι′(b) = ιs(b) ∈ Us, so

a EX b ⇔ ι′(a) EUs ι′(b) ⇔ ι′(a) EG1 ι′(b)

by the choice of ιs and G1�Us = Us.

Finally, assume that a ∈ Ŝeq(X) and b ∈ U(X), and let s ∈ <ωκ be such that
j(a) = s (so that ι′(a) = ι

̂Seq
(a) = ŝ). If b ∈ Ut(X) for some s �= t ∈ <ωκ, then

¬(a EX b), as otherwise X |= root[b, j−1(s)]∧ root[b, j−1(t)], contradicting X |= Φ1

again. If instead b ∈ Us(X), then a EX b ⇔ ι′(b) = ιs(b) = (s, ∅) by our choice of
ιs, so that a EX b ⇔ ι′(a) EG1 ι′(b) by Definition 10.4.

By checking the definition of EG1 in Definition 10.4, the previous observations
suffice to show the desired result. �

Let us now consider an arbitrary point a ∈ Seq(X). Since X |= Φ3, there is a

unique b ∈ Ŝeq(X) with b EX a: therefore, we can unambiguously set ιSeq(a) :=
j(b), and check that by X |= Φ3 the map ιSeq(X) : Seq(X) → Seq is a bijection.
Moreover, for every a ∈ X and s ∈ <ωκ we have X |= Seqs[a]⇔ ιSeq(a) = s.

Finally, if a ∈ Seq−(X), then by X |= Φ4 there is a unique ∅ �= s ∈ <ωκ such
that X |= Seq−s [a], so that the map ιSeq− sending a to ιSeq−(a) := s− is a bijection

between Seq−(X) and Seq−.
Consider now the canonical bijection ιX : G1(X)→ G1 defined by

(12.2) ιX := ιSeq ∪ ιSeq− ∪ ι
̂Seq
∪ ιU ,

which is well-defined since the functions appearing in the union have pairwise
disjoint domains. We claim that ιX is an isomorphism between G1(X) and G1,
so let us fix arbitrary a, b ∈ G1(X). Since by Claim 12.5.1 we already know
that ιX� (G1(X) \ G0(X)) = ι′ is an isomorphism between G1(X) \ G0(X) and
G1 \ G0, we may assume without loss of generality that a ∈ G0(X). Suppose
first that b ∈ G1(X) \ G0(X). If a ∈ Seq−(X), then ¬(a EX b) because a has
only two neighbors each of which must be in Seq(X) (by X |= Seq−[a]), while

b /∈ G0(X) ⊇ Seq(X) by case assumption. If instead a ∈ Seq(X) and b ∈ Ŝeq(X),

then a EX b⇔ ιX(b) = ι̂X(a) by definition of ιSeq and ι
̂Seq

. Finally, if a ∈ Seq(X)

and b ∈ U(x), then ¬(a EX b) because a must have only neighbors of degree 2 by
X |= Seq[a], while b has degree �= 2 in X by X |= U[b].

Suppose now that a, b ∈ G0(X), and let us assume that in fact a ∈ Seq−(X).
Then X |= Seq−s [a] for some ∅ �= s ∈ <ωκ, and ιX(a) = ιSeq−(a) = s− by definition
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of ιSeq− . This implies that a has only two neighbors c0, c1 in X, and they are
such that X |= Seqs
 [c0] ∧ Seqs[c1]: therefore ιX(c0) = ιSeq(c0) = s� and ιX(c1) =
ιSeq(c1) = s. It follows that b is connected by an edge to a if and only if b =
c0 ∨ b = c1 if and only if ιX(b) = s� ∨ ιX(b) = s. The same argument (with a and b
switched) takes care of the case b ∈ Seq−(X), so we just need to consider the case
a, b ∈ Seq(X). But then ¬(a EX b) because b has degree ≥ 4 by X |= Seq[b], while
all neighbors of a must have degree 2 by X |= Seq[a].

Checking the definition of EG1 in Definition 10.4 again, it is now easy to check
that the above observations suffice to show that ιX : G1(X) → G1 is an isomor-
phism. �

Given u ∈ <ω2 and a sequence 〈xi | i ∈ Fu〉 of variables, let Fu(〈xi | i ∈ Fu〉)
abbreviate the following Lω1ω-formula:

(Fu(〈xi | i ∈ Fu〉))
( ∧
∅�=i∈Fu

F(xi)
)
∧ Seq(x∅) ∧ τqf(Fu)(〈xi | i ∈ Fu〉).

Given X ∈ ModκL and u ∈ <ω2, we call X-fork (coding u) any substruc-
ture of X determined by a sequence of points 〈ai ∈ X | i ∈ Fu〉 such that X |=
Fu[〈ai | i ∈ Fu〉], and the point a∅ is called root of such an X-fork.

We now provide Lω1ω1
-sentences Φ5, . . . ,Φ8 which, together with the previous

ones Φ0, . . . ,Φ4, complete the description of an L-structure of the from GS (for
any S ∈ Tr(2× ω)):

(Φ5) ∀x
[
F(x) ⇒

∨
u∈<ω2

∃〈xi | i ∈ Fu〉
(
Fu(〈xi | i ∈ Fu〉) ∧

∨
∅�=i∈Fu

x 	 xi

)]
;

(Φ6) ∀x
∧

u∈<ω2

∀ 〈yi | i ∈ Fu〉
[
Fu(〈yi | i ∈ Fu〉) ∧

∧
i∈Fu

x �	 yi

⇒
∧

∅�=i∈Fu

(
¬(x E yi) ∧ ¬(yi E x)

)]
;

(Φ7)
∧

u∈<ω2

v∈<ω2

∀〈xi | i ∈ Fu〉 ∀〈yj | j ∈ Fv〉
[
Fu(〈xi | i ∈ Fu〉) ∧ Fv(〈yj | j ∈ Fv〉)

⇒
∧

∅�=i∈Fu

∅�=j∈Fv

(xi �	 yj) ∨
(( ∧

i∈Fu

∨
j∈Fv

(xi 	 yj)
)
∧
( ∧
j∈Fv

∨
i∈Fu

(yj 	 xi)
))]

;

(Φ8)
∧

u∈<ω2

∀〈xi | i ∈ Fu〉 ∀〈yj | j ∈ Fu〉
[
Fu(〈xi | i ∈ Fu〉) ∧ Fu(〈yi | i ∈ Fu〉)

⇒
( ∧
i,j∈Fu

(xi �	 yj)
)
∨
( ∧
i∈Fu

(xi 	 yi)
)]
.

To understand the meaning of the above sentences, observe that for every X in
ModκL we have:
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• X |= Φ5 if and only if every a ∈ F(X) belongs to an X-fork (coding some
u ∈ <ω2);
• X |= Φ6 if and only if given an arbitrary X-fork, if a point a ∈ X does not
belong to that fork then it can be connected by an edge only to its root;
• X |= Φ7 if and only if any two distinct X-forks may share only their roots;
• X |= Φ8 if and only if any two distinct X-forks coding the same u ∈ <ω2 must
be disjoint.

Finally, let Ψ be the Lκ+κ-sentence

(12.3)
∧

0≤i≤8

Φi.

The following lemma is straightforward (see also Remark 12.3).

Lemma 12.6. Let T ∈ Tκ, fT be as in (11.5), and Ψ be the Lκ+κ-sentence
in (12.3). Then fT (x) |= Ψ for every x ∈ ω2, whence ran(fT ) ⊆ ModκΨ (see
Figure 12.1).

12.2. A classification of the structures in ModκΨ up to isomorphism

Define the map

(12.4) g : ModκΨ →
<ω2×κ2

(see Figure 12.1) as follows: givenX ∈ ModκΨ and (u, α) ∈ <ω2×κ, set g(X)(u, α) =
1 if and only if there is an X-fork coding u whose root a∅ ∈ X is such that
X |= Seqs[a∅] for the unique s := sα ∈ <ωκ with 〈〈s〉〉 = α, that is:

(12.5) g(X)(u, α) = 1 ⇔ X |= ∃〈xi | i ∈ Fu〉 [Fu(〈xi | i ∈ Fu〉) ∧ Seqsα(x∅)].

Proposition 12.7. The map g from (12.4) reduces ∼= to =.

Proof. Let X,Y ∈ ModκΨ be isomorphic via some map ι, fix (u, α) ∈ <ω2×κ,
and let s = sα ∈ <ωκ be such that 〈〈s〉〉 = α. Then for every sequence 〈ai | i ∈ Fu〉

X |= Fu[〈ai | i ∈ Fu〉] ∧ Seqs[a∅]⇔ Y |= Fu[〈ι(ai) | i ∈ Fu〉] ∧ Seqs[ι(a∅)].

It follows that g(X) = g(Y ) by (12.5).
Conversely, let X,Y ∈ ModκΨ, so that they both satisfy Φi for 0 ≤ i ≤ 8,

and assume that g(X) = g(Y ). By Lemma 12.5, there are canonical isomorphisms
ιX : G1(X) → G1 and ιY : G1(Y ) → G1, where G1(X) and G1(Y ) are defined as
in (12.1g) and ιX , ιY are the maps from (12.2). We will now extend the isomorphism
ι−1
Y ◦ ιX : G1(X)→ G1(Y ) to an isomorphism

ιX,Y : X → Y.

Let a ∈ X \ G1(X). By X |= Φ0 we have X |= F[a], and hence by X |= Φ5

there are u ∈ <ω2 and 〈ai | i ∈ Fu〉 such that X |= Fu[〈ai | i ∈ Fu〉] and a = aı̄
for some ∅ �= ı̄ ∈ Fu. In particular, X |= Seq[a∅], so that by X |= Φ2 ∧ Φ3

there is (a unique) s ∈ <ωκ such that X |= Seqs[a∅] (see also the definition of ιSeq
in the proof of Lemma 12.5). By definition of g we have g(X)(u, 〈〈s〉〉) = 1, so
g(Y )(u, 〈〈s〉〉) = 1 by g(X) = g(Y ). Let 〈bi | i ∈ Fu〉 be a sequence of elements of Y
such that Y |= Fu[〈bi | i ∈ Fu〉] ∧ Seqs[b∅], and set ιX,Y (a) := bı̄. The definition of
ιX,Y (a) seems to depend on the choice of the sequence 〈bi | i ∈ Fu〉, but the next
claim shows that this is not the case.
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Claim 12.7.1. Suppose s ∈ <ωκ, u ∈ <ω2, and 〈ai | i ∈ Fu〉 is a sequence of
elements of X such that X |= Fu[〈ai | i ∈ Fu〉] ∧ Seqs[a∅]. Then there is a unique
sequence 〈bi | i ∈ Fu〉 of elements of Y such that Y |= Fu[〈bi | i ∈ Fu〉] ∧ Seqs[b∅].
Therefore ιX,Y (ai) = bi for every i ∈ Fu.

Proof of the Claim. Given two sequences 〈bi | i ∈ Fu〉 and 〈b′i | i ∈ Fu〉 as
above, then b∅ = b′∅ by Y |= Seqs[b∅] ∧ Seqs[b

′
∅] and Y |= Φ3. This, together with

Y |= Fu[〈bi | i ∈ Fu〉] and Y |= Fu[〈b′i | i ∈ Fu〉], implies bi = b′i for all i ∈ Fu by
Y |= Φ8. �

This shows that ιX,Y : X → Y is a well-defined map. We next check that it is
a bijection.

Claim 12.7.2. ιX,Y is injective.

Proof of the Claim. Let a, a′ ∈ X be distinct. If at least one of a, a′ be-
longs to G1(X), then ιX,Y (a) �= ιX,Y (a

′) because ιX,Y �G1(X) = ι−1
Y ◦ ιX is a

bijection between G1(X) and G1(Y ), and ιX,Y (X \ G1(X)) ⊆ Y \ G1(Y ) by con-
struction.

Thus we can assume a, a′ /∈ G1(X), so that X |= F[a] and X |= F[a′] by
X |= Φ0. Assume towards a contradiction that ιX,Y (a) = ιX,Y (a

′). Since X |=
Φ5, there are u, v ∈ <ω2 and sequences 〈ai | i ∈ Fu〉 and 〈a′i | j ∈ Fv〉 such that
X |= Fu[〈ai | i ∈ Fu〉], X |= Fv[〈a′i | j ∈ Fv〉], and a = aı̄, a′ = a′j̄ for suitable
∅ �= ı̄ ∈ Fu and ∅ �= j̄ ∈ Fv. Moreover, by X |= Φ2 ∧ Φ3 there are s, t ∈ <ωκ
such that X |= Seqs[a∅] and X |= Seqt[a

′
∅]. Since g(X) = g(Y ) there are two

sequences 〈bi | i ∈ Fu〉 and
〈
b′j | j ∈ Fv

〉
such that Y |= Fu[〈bi | i ∈ Fu〉] ∧ Seqs[b∅]

and Y |= Fv[
〈
b′j | j ∈ Fv

〉
] ∧ Seqt[b

′
∅] (and moreover such sequences are unique by

Claim 12.7.1). Then by definition of ιX,Y we get ιX,Y (ai) = bi and ιX,Y (a
′
j) = b′j

for every i ∈ Fu and j ∈ Fv, so that in particular ιX,Y (a) = bı̄ and ιX,Y (a
′) = b′j̄.

Since Y |= Φ7 and

(12.6) bı̄ = ιX,Y (a) = ιX,Y (a
′) = b′j̄,

it follows that

(12.7) {bi | i ∈ Fu} =
{
b′j | j ∈ Fv

}
,

Since Y |= τqf(Fu)[〈bi | i ∈ Fu〉]∧τqf(Fv)[
〈
b′j | j ∈ Fv

〉
], the substructure of Y with

domain {bi | i ∈ Fu} =
{
b′j | j ∈ Fv

}
is isomorphic to Fu via the map bi �→ i and

to Fv via the map b′j �→ j, so that Fu
∼= Fv. Thus u = v by (10.4c), and by (12.6)

and Y |= Φ8 we get that bi = b′i for all i ∈ Fu = Fv. Notice that this fact, together
with (12.6) and the fact that all the bi’s are necessarily distinct, also implies ı̄ = j̄.
Moreover, b∅ = b′∅. Since a∅, a

′
∅ ∈ G1(X), ιX,Y (a∅) = b∅, ιX,Y (a

′
∅) = b′∅, and

ιX,Y �G1(X) = ι−1
Y ◦ ιX is a bijection, we get a∅ = a′∅. Since X |= Φ8 and u = v, we

then get ai = a′i for all i ∈ Fu = Fv, and recalling that we showed ı̄ = j̄ we finally
get a = aı̄ = a′ı̄ = a′j̄ = a′, a contradiction. �

Claim 12.7.3. ιX,Y is surjective.

Proof of the Claim. Given b ∈ Y we want to find a ∈ X with ιX,Y (a) = b.
If b ∈ G1(Y ), then this follows from the fact that ιX,Y �G1(X) is a bijection between
G1(X) and G1(Y ), so we may assume b ∈ Y \ G1(Y ). Since Y |= Φ0 ∧ Φ5, this
implies that there is u ∈ <ω2 and a sequence 〈bi | i ∈ Fu〉 of elements of Y such that
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Y |= Fu[〈bi | i ∈ Fu〉] and b = bı̄ for some ∅ �= ı̄ ∈ Fu. Moreover, by Y |= Φ2∧Φ3 we
know that there is also s ∈ <ωκ such that Y |= Seqs[b∅], so g(Y )(u, 〈〈s〉〉) = 1. Since
we are assuming g(X) = g(Y ), this means that there is a sequence 〈ai | i ∈ Fu〉 of
elements of X such that X |= Fu[〈ai | i ∈ Fu〉]∧ Seqs[a∅]. By our definition of ιX,Y

and Claim 12.7.1 we then have ιX,Y (aı̄) = bı̄ = b. �

It remains to show that ιX,Y is also an isomorphism, i.e. that it preserves

the edge relation. Fix a, a′ ∈ X. Since ιX,Y �G1(X) = ι−1
Y ◦ ιX is already an

isomorphism between G1(X) and G1(Y ), we may assume without loss of generality
that a /∈ G1(X). By the usual argument repeatedly used above, we then get
from g(X) = g(Y ) that there are u ∈ <ω2, s ∈ <ωκ, a sequence 〈ai | i ∈ Fu〉
of points of X, and ı̄ ∈ Fu such that X |= Fu[〈ai | i ∈ Fu〉] ∧ Seqs[a∅] and a =
aı̄, together with a (unique) sequence of points 〈bi | i ∈ Fu〉 of Y such that Y |=
Fu[〈bi | i ∈ Fu〉]∧Seqs[b∅], so that ιX,Y (ai) = bi for every i ∈ Fu by construction (in
particular, ιX,Y (a) = bı̄). We distinguish two cases. If a′ �= ai for every i ∈ Fu, then
ιX,Y (a

′) �= bi for every i ∈ Fu by injectivity of ιX,Y and the fact that ιX,Y (ai) = bi
for all i ∈ Fu. But since both X and Y satisfy Φ6, this implies that a = aı̄ is not
EX -related to a′ and ιX,Y (a) = bı̄ is not E

Y -related to ιX,Y (a
′). If instead a′ = aj̄

for some j̄ ∈ Fu, then ιX,Y (a
′) = bj̄, and hence

a = aı̄ E
X aj̄ = a′ ⇔ ı̄ EFu j̄ ⇔ ιX,Y (a) = bı̄ E

Y bj̄ = ιX,Y (a
′). �

Recall from (12.5) that for every X ∈ ModκΨ and (u, α) ∈ <ω2× κ, we have set
g(X)(u, α) = 1 if and only if X satisfies the Lκ+κ-sentence

∃〈xi | i ∈ Fu〉 [Fu(〈xi | i ∈ Fu〉) ∧ Seqs(x∅)]

where s = sα ∈ <ωκ is such that 〈〈s〉〉 = α. For technical reasons we need to
replace such a sentence with one belonging to the bounded version Lb

κ+κ of Lκ+κ

(see Definition 8.3(ii)) — this will be crucial for the results in Section 14.1.

Lemma 12.8. Let X ∈ ModκΨ and (u, α) ∈ <ω2 × κ. Then g(X)(u, α) =
1 ⇔ X |= σu,α, where σu,α is the Lb

κ+κ-sentence

(σu,α) ∃x ∃y
[
Seq(x) ∧ Ŝeq(y) ∧ x E y ∧

∃〈zi | i ∈ Uα〉
(
y E z∅ ∧ τqf(Uα)(〈zi | i ∈ Uα〉)

)
∧

¬∃〈wj | j ∈ Uα+1〉
(
y E w∅ ∧ τqf(Uα+1)(〈wj | j ∈ Uα+1〉)

)
∧

∃〈lk | k ∈ F θ(u)
u 〉

(
l∅ 	 x ∧

(∧
∅�=k∈F

θ(u)
u

F(lk)
)
∧

τqf(F
θ(u)
u )(〈lk | k ∈ F θ(u)

u 〉)
)]

,

where we set F
θ(u)
u := Fu ∩ θ(u)+12.

Proof. Using Proposition 10.5(c), it is not hard to see that if g(X)(u, α) = 1
then X |= σu,α. For the other direction, assume that X |= σu,α, and let a, â,
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〈bi | i ∈ Uα〉, and
〈
ck | k ∈ F

θ(u)
u

〉
be (sequences of) elements of X such that

X |= Seq[a] ∧ Ŝeq[â] ∧
(
a E â ∧ â E b∅ ∧ τqf(Uα)[〈bi | i ∈ Uα〉]

)
∧ ¬∃〈wj | j ∈ Uα+1〉

(
â E w∅ ∧ τqf(Uα+1)(〈wj | j ∈ Uα+1〉)

)
∧
(
c∅ 	 a ∧

(∧
∅�=k∈F

θ(u)
u

F[ck]
)
∧ τqf(F

θ(u)
u )

[〈
ck | k ∈ F θ(u)

u

〉])
.

It follows from X |= Φ2∧Φ3 and X |= Seq[a]∧ Ŝeq[â]∧a E â that X |= Seqs[a] and

X |= Ŝeqs[â] for one and the same s ∈ <ωκ: we claim that 〈〈s〉〉 = α. Indeed, from
X |= τqf(Uα)(〈bi | i ∈ Uα〉) and â EX b∅ it easily follows that X |= U[bi]∧ root[bi, â]
for every i ∈ Uα. Arguing by contradiction, one sees that Lemma 10.5(c) together

with X |= Ŝeqs[â] and X |= τqf(Uα)(〈bi | i ∈ Uα〉) imply 〈〈s〉〉 ≥ α. Moreover, by
Lemma 10.5(b) we get that 〈〈s〉〉 > α would contradict

X |= ¬∃〈wj | j ∈ Uα+1〉
(
â E w∅ ∧ τqf(Uα+1)(〈wj | j ∈ Uα+1〉)

)
.

Therefore, 〈〈s〉〉 = α. Since X |= c∅ 	 a, we have also showed that X |= Seqs[c∅] for
the unique s ∈ <ωκ such that 〈〈s〉〉 = α.

Fix any ∅ �= k ∈ F
θ(u)
u . Since X |= F[ck], by X |= Φ5 we get that there are

vk ∈ <ω2 and a sequence
〈
dki | i ∈ Fvk

〉
of elements of X such that X satisfies

Fvk [
〈
dki | i ∈ Fvk

〉
] and X |= ck 	 dkik for some ∅ �= ik ∈ Fvk . In particular,

X |= Seq[dk∅ ]: we claim that dk∅ = c∅. If not, then by X |=
∧

i≤4 Φi and Lemma 12.5

there would be a path of length ≥ 2 connecting c∅ to dk∅ which is totally contained in

G0(X) ⊆ G1(X). On the other hand, the set of vertices {ck′ | k′ ⊆ k}∪
{
dki | i ⊆ ik

}
would contain a path of length ≥ 2 connecting c∅ to dk∅ which, except for its extreme
points, is totally contained in F(X). Since G1(X) ∩ F(X) = ∅ by Remark 12.4,
the two paths would then be distinct, contradicting the fact that X is acyclic
by X |= Φ0. A similar argument shows that by acyclicity of X the two paths
〈ck′ | k′ ⊆ k〉 and

〈
dki | i ⊆ ik

〉
joining c∅ = dk∅ to ck = dkik must coincide. Thus, in

particular, c〈0〉 = dk〈0〉 for every ∅ �= k ∈ F
θ(u)
u . Fix now k, k′ ∈ F

θ(u)
u \ {∅}. Since

dk〈0〉 = c〈0〉 = dk
′

〈0〉, by X |= Φ7 it follows that{
dki | i ∈ Fvk

}
=
{
dk

′

i | i ∈ Fvk′

}
.

Since the maps i �→ dki and i �→ dk
′

i witness that both Fvk and Fvk′ are isomorphic

to the same structure X�
{
dki | i ∈ Fvk

}
= X�

{
dk

′

i | i ∈ Fvk′

}
, we have Fvk

∼= Fvk′ ,

whence vk = vk′ by (10.4c). It then follows from X |= Φ8 and dk〈0〉 = dk
′

〈0〉 that

dki = dk
′

i for all i ∈ Fvk = Fvk′ . Set v := vk and di := dki for some/any ∅ �= k ∈ F
θ(u)
u

and all i ∈ Fv. Since
{
ck | k ∈ F

θ(u)
u

}
⊆ {di | i ∈ Fv} and c0θ(u) has three distinct

neighbors among the ck’s, necessarily c0θ(u) = d0θ(v) . From this and c∅ = d∅ it also
follows that

{
ck | k ⊆ 0θ(u)

}
=
{
di | i ⊆ 0θ(v)

}
(here we use again the fact that X

is acyclic), whence θ(u) = θ(v), and hence also u = v by injectivity of θ. Since
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d∅ = c∅ and X |= Seqs[c∅], it thus follows that 〈di | i ∈ Fu〉 witnesses that
X |= ∃〈xi | i ∈ Fu〉 [Fu(〈xi | i ∈ Fu〉) ∧ Seqs(x∅)],

and since 〈〈s〉〉 = α we have g(X)(u, α) = 1, as desired. �

12.3. The invariant universality of �∼
κ
CT

Endow
<ω2×κ2 with the product topology τp, so that

(
<ω2×κ2, τp

)
is homeo-

morphic to (κ2, τp) (see Section 7.2.1 and, in particular, Example 7.8(A)).

Lemma 12.9. For every (τp-)open set V ⊆ <ω2×κ2 there is an Lb
κ+κ-sentence

σV such that g−1(V ) = ModκσV
∩ModκΨ (equivalently, g−1(V ) = ModκσV ∧Ψ).

The fact that the sentence σV belongs to the fragment Lb
κ+κ (and not just to

Lκ+κ) will be crucially used in Section 14.1 to prove that certain maps are (effective)
κ+ 1-Borel — see Lemma 14.7 and Theorem 14.8.

Proof. Recall from (7.1) that S =
{
Ñ

A

(u,α),i | (u, α) ∈ <ω2× κ ∧ i = 0, 1
}

is

a subbasis for the product topology on A2, where A := <ω2×κ. The map V �→ σV

will be defined first on S, then on the canonical basis Bp (which is generated by S
by taking finite intersections), and finally on all τp-open sets.

When V = Ñ
A

(u,α),i let σV be σu,α if i = 1 or ¬σu,α otherwise. By Lemma 12.8

we get g−1(V ) = ModκσV
∩ModκΨ.

Pick V ∈ Bp and let U1, . . . , Un ∈ S be such that V = U1 ∩ · · · ∩ Un. Then
g−1(V ) = ModκσV

∩ModκΨ, where σV is σU1
∧ · · · ∧ σUn

.

Given now an arbitrary τp-open set V ⊆ <ω2×κ2, let BV be the collection of
those U ∈ Bp which are contained in V : since the cardinality of BV is at most
|[κ]<ω| = κ (which is the cardinality of Bp), we get the desired result letting σV be∨

U∈BV
σU . �

Lemma 12.10. Let T ∈ Tκ and fT be the map from (11.5). Then the map

g ◦ fT : ω2→ <ω2×κ2 is continuous.

Proof. Fix (u, α) ∈ A = <ω2× κ, and let s ∈ <ωκ be such that 〈〈s〉〉 = α. Let

D1 :=
{
v ∈ lhu2 | (u, v, s) ∈ T̃

}
,

where T̃ is the tree obtained from T as in (11.3), and let D0 := lhu2 \D1. Then by

definition of fT and g we get (g ◦ fT )−1(Ñ
A

(u,α),i) =
⋃

v∈Di
Nv. �

Corollary 12.11. Let T ∈ Tκ and fT be as in (11.5). For every closed set
C ⊆ ω2, (g ◦ fT )(C) is closed.

Proof. The set C is compact since it is a closed subset of the compact space
ω2. Therefore, since g ◦ fT is continuous by Lemma 12.10, (g ◦ fT )(C) is compact

as well: but then it is also closed because
<ω2×κ2 is a Hausdorff space. �

Corollary 12.12. Let T ∈ Tκ and fT be as in (11.5). Then there is an
Lκ+κ-sentence σT such that the closure under isomorphism of ran(fT ) is ModκσT

,
i.e.

ModκσT
= {X ∈ ModκL | X ∼= fT (x) for some x ∈ ω2} .
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Notice that since ran(fT ) ⊆ ModκΨ by Lemma 12.6, we thus have in particular
(see Figure 12.1)

ran(fT ) ⊆ ModκσT
⊆ ModκΨ .

Proof. Let V be the complement of ran(g ◦ fT ) = (g ◦ fT )(ω2), which is open
by Corollary 12.11. Use Lemma 12.9 to find an Lb

κ+κ-sentence σ̂ := σV such that
g−1(V ) = Modκσ̂ ∩ModκΨ. Finally, let σT be Ψ ∧ ¬σ̂, so that

(12.8) g−1(ran(g ◦ fT )) = ModκσT
.

If X ∈ ModκL is such that X ∼= fT (x) for some x ∈ ω2, then X ∈ ModκΨ (use
the fact that fT (X) ∈ ModκΨ by Lemma 12.6 and that ModκΨ is invariant under
isomorphism): therefore g(X) is defined and equals (g ◦fT )(x) by Proposition 12.7,
so that X ∈ g−1(ran(g ◦ fT )) and hence X |= σT by (12.8). Conversely, if X ∈
ModκσT

= ModκΨ∧¬σ̂ ⊆ ModκΨ then by (12.8) there must be x ∈ ω2 such that
g(X) = (g ◦ fT )(x): but then X ∼= fT (x) by Proposition 12.7 again. �

We now define the last reduction hT : ModκσT
→ ω2 of Figure 12.1.

Definition 12.13. Let T ∈ Tκ be such that R = p [T ] is a quasi-order, fT be as
in (11.5), and σT as in Corollary 12.12. Then we define the map hT : ModκσT

→ ω2
by setting for all X ∈ ModκσT

(12.9) hT (X) = x⇔ fT (x) ∼= X.

Notice that the function hT is well-defined: by Corollary 12.12, if X |= σT then
there is at least one x satisfying (12.9), and by Theorem 11.8(b) such x is unique
because if y ∈ ω2 is distinct from x, then fT (x) �∼= fT (y), whence fT (y) �∼= X.

Corollary 12.14. Let T ∈ Tκ, fT be as in (11.5), and σT be as in Corol-
lary 12.12. If R = p [T ] is a quasi-order, then the map hT : ModκσT

→ ω2 from
Definition 12.13 simultaneously reduces �∼ to R and ∼= to =.

Proof. Let X,Y ∈ ModκσT
and assume that R = p[T ] is a quasi-order. Let

x := hT (X) and y := hT (Y ). Since fT (x) ∼= X and fT (y) ∼= Y by (12.9), by
Theorem 11.8 we have

X �∼ Y ⇔ fT (x) �∼ fT (y)⇔ x R y,

and

X ∼= Y ⇔ fT (x) ∼= fT (Y )⇔ x = y. �

Summing up what we obtained in this section, we have the following theorem
(see also Figure 12.1).

Theorem 12.15. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then there are σT , fT , hT such that:

(a) σT is an Lκ+κ sentence;
(b) fT reduces R to �∼

κ
σT

and = to ∼=κ
σT

;

(c) hT reduces �∼
κ
σT

to R and ∼=κ
σT

to =;

(d) hT ◦ fT = id and (fT ◦ hT )(X) ∼= X for every X ∈ ModκσT
.

In particular, �∼
κ
CT is invariantly universal for κ-Souslin quasi-orders on ω2, that

is to say: for every κ-Souslin quasi-order R on ω2 there is an Lκ+κ sentence σ all
of whose models are combinatorial trees such that R ∼ �∼

κ
σ.
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Proof. For part (d), observe that for every x ∈ ω2 we must have

fT ((hT ◦ fT )(x)) ∼= fT (x) and (hT ◦ fT )(x) = x

by (12.9). The other condition on fT ◦ hT is just a rewriting of (12.9), so we are
done. �

Since R ∼ �∼
κ
σT

by (b) and (c), it follows that the quotient order of R is bi-

embeddable with the quotient order of �∼
κ
σT

. However, (d) implies the following
stronger result.

Corollary 12.16. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then there is an Lκ+κ-sentence σT (all of whose models are combina-
torial trees) such that the quotient orders of R and �∼

κ
σT

are isomorphic.

Notice also that using Corollary 12.16 all results on invariant universality of
Sections 14, 15, and 16.2.1 could be reformulated in terms of (definable) isomor-
phisms between the induced quotient orders.

Remarks 12.17. (i) It is not hard to check that all models of the Lκ+κ-
sentence Ψ, and hence also the models of the sentence σT from Corollary 12.12,
are necessarily of size κ. Therefore Ψ characterizes the cardinal κ in the sense
of [59, p. 59], once in the original definition we replace the logic Lω1ω with
the more powerful Lκ+κ. This also implies that Mod∞σT

= ModκσT
, so that the

conclusion of Theorem 12.15 could also be reformulated as follows:
For every κ-Souslin quasi-order R on ω2 there is an Lκ+κ-sentence
σ all of whose models are combinatorial trees such that R ∼ �∼

∞
σ .

Notice that all results on invariant universality of Sections 14, 15, and 16.2.1
could be reformulated analogously.

(ii) Every model X of Ψ (and hence every model of σT for T ∈ Tκ) admits an
Lκ+κ-Scott sentence, i.e. an Lκ+κ-sentence σX such that for every Y ∈
ModκL

Y |= σX ⇔ Y ∼= X.

The sentence σX is obtained by applying an argument similar to that of

Corollary 12.12: Let V :=
<ω2×κ2 \ {g(X)} (which is open since

<ω2×κ2 is a
Hausdorff space), and let σX be the Lκ+κ-sentence Ψ ∧ ¬σV , where σV is as
in Lemma 12.9.

It is a well-known classical result due to D. Scott that when κ = ω then Re-
mark 12.17(ii) is true for every X ∈ModωL, see e.g. [53, Corollary 16.10]. However,
it is an old result, probably due to the Finnish school, that when κ is uncount-
able such condition may fail for some X ∈ ModκL. The next example from [92]
shows this. (We thank S. D. Friedman and the referee for having brought it to our
attention.)

Example 12.18. Let L be the order language consisting of one binary relational
symbol, set κ = ω1, and consider the collection of all ω1-like dense linear orders on
ω1 without a minimum (briefly, ω1-DLO), where a linear order is called ω1-like if
all its proper initial segments are countable [92, Definition 9.6]. We build two ω1-
DLOs X,Y using the construction from [92, Definition 9.8]. Equip Q0 := Q∩(0; 1),
Q1 := Q ∩ [0; 1), and ω1 with the usual orders, and let

X := ω1 ×Q0
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and

Y := {0} ×Q0 ∪ (ω1 \ {0})×Q1

be endowed with the lexicographical ordering. Then, after identifying them with
corresponding structures on ω1, X and Y are easily seen to be ω1-DLO. Moreover,
they are not isomorphic because Y contains a closed unbounded (with respect to
its ordering) set of order type ω1, while X does not contain such a substructure
(see [92, Lemma 9.9], where X and Y are denoted by Φ(∅) and Φ(ω1)). Player II
has a winning strategy in the Ehrenfeuch-Fräıssé game EFω1

ω (X,Y ) by [92, Lemma
9.10], and thus X and Y are Lω2ω1

-equivalent (i.e. they satisfy exactly the same
Lω2ω1

-sentences) by [92, Theorem 9.26]. Since X and Y are non-isomorphic but
Lω2ω1

-equivalent, none of X and Y admits an Lω2ω1
-Scott sentence.

Working in ZFC and assuming κ<κ = κ > ω, easier counterexamples may be
isolated. However, the construction in Example 12.18 has the further merit of being
carried out in ZF and without further assumptions on κ = ω1 — it is easy to check
that when applying to our setup the (proofs of the) relevant results from [92] no
choice is needed, as X,Y have well-ordered domains. In particular, Example 12.18
works also in models of ZFC+ ¬CH.

12.4. More absoluteness results

Continuing the work in Section 11.4 on absoluteness of the definition of the map
fT from (11.5), we are now going to observe that also the Lκ+κ-sentence σT from
Corollary 12.12 and the map hT from Definition 12.13 are (essentially) absolute
between transitive models of ZF containing all the relevant parameters. These
results, together with those from Section 11.4, will be crucially used in Section 14.2.

Given an arbitrary transitive model M of ZF, κ ∈ CardM , and T ∈ (Tκ)
M ,

carry out the constructions from Section 12 inside M (this is possible by our choice
of M), i.e. let

gM := (g)M : (ModκΨ)
M → (

<ω2×κ2)M

be defined as in (12.4)–(12.5), and let

σM
T := (σT )

M ∈ (Lκ+κ)
M

be the sentence obtained in the proof of Corollary 12.12 (where all objects involved
are now computed in M). Note that by Corollary 12.12, which holds in M , we have
that (ModκσM )M is the saturation of the range of the map fM

T from Section 11.4
(as computed in M), and that M |= “ModκσM = (gM )−1(ran(gM ◦ fM

T ))”. With
this notation, we then get the following absoluteness result for the sentence σT .

Proposition 12.19. Let M0, M1 be transitive models of ZF, and let κ and T
be such that κ ∈ CardMi and T ∈ (Tκ)

Mi (for i = 0, 1). Then σM0

T = σM1

T .

Proof. First notice that the set Fn(<ω2 × κ, 2;ω) is absolute for transitive
models of ZF containing κ. Since the elements of this set determine (both inM0 and

in M1) the canonical basis Bp = Bp(
<ω2×κ2) for the product topology τp on

<ω2×κ2,

by the way we defined σMi

T it is enough to show that for every s ∈ Fn(<ω2×κ, 2;ω)

M0 |= “ ran(gM0 ◦ fM0

T ) ∩NA
s �= ∅” if and only if

M1 |= “ ran(gM1 ◦ fM1

T ) ∩NA
s �= ∅”,

(12.10)
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where A := <ω2 × κ (see Section 7.2.1). In fact, in the proof of Corollary 12.12

we have set σMi

T := Ψ ∧ ¬σMi

Vi
with Vi = (A2)Mi \ ran(gMi ◦ fMi

T ), where σMi

Vi
is

computed in Mi according to the proof of Lemma 12.9. By inspecting such proof,
it is easy to check that the (Lκ+κ)

Mi-sentence σMi

Vi
only depends on the set of

s ∈ Fn(<ω2 × κ, 2;ω) for which Mi |= NA
s ⊆ Vi: thus if the equivalence in (12.10)

is true, this set is the same when computed in M0 or M1, whence

σM0

T = Ψ ∧ ¬σM0

V0
= Ψ ∧ ¬σM1

V1
= σM1

T ,

as desired.
We now prove (12.10), starting with the implication from left to right. By

Lemma 12.10 (which holds in M0), the function gM0 ◦ fM0

T is continuous in M0.

Therefore, if M0 |= “ ran(gM0 ◦ fM0

T ) ∩NA
s �= ∅”, then there is t ∈ <ω2 such that

M0 |= “Nω
t ⊆ (gM0 ◦ fM0

T )−1(NA
s )”, in particular M0 |= “(gM0 ◦ fM0

T )(x̄) ∈ NA
s ”

with x̄ := t�0(ω). Since (<ω2)M0 = (<ω2)M1 , it follows that x̄ ∈ (ω2)M0 ∩ (ω2)M1

and hence fM0

T (x̄) = fM1

T (x̄) by Fact 11.10(b). By Lemma 12.6 (which holds in
both M0 and M1) and the definition of the map g given in (12.4)–(12.5), both gM0

and gM1 are defined on X := fM0

T (x̄) = fM1

T (x̄) and gM0(X) = gM1(X). Therefore

M1 |= “(gM1◦fM1

T )(x̄) ∈NA
s ” as well, witnessingM1 |= “ ran(gM1◦fM1

T )∩NA
s �= ∅”.

The reverse implication is proved in a similar way by switching the role of M0

and M1. �

Let M , κ, T , and σM
T be as in the paragraph preceding Proposition 12.19.

Applying Definition 12.13 in M , we also get the map

hM
T := (hT )

M : (ModκσM
T
)M → (ω2)M .

Notice that since Corollary 12.14 holds in M , the map hM
T reduces, in the sense

of M , the embeddability relation (�∼
κ
σM )M to RM := (p[T ])M (as long as RM is a

quasi-order in M).

Proposition 12.20. (a) There is an LST-formula ΨhT
(x0, x1, z0, z1) such

that for every transitive model M of ZF with κ ∈ CardM and T ∈ (Tκ)
M ,

the graph of hM
T is defined in M by ΨhT

(x0, x1, κ, T ), that is: for every
X ∈ (ModκσM

T
)M and x ∈ (ω2)M

hM
T (X) = x⇔M |= ΨhT

[X, x, κ, T ].

(b) Let M0, M1 be transitive models of ZF, and let κ and T be such that κ ∈
CardMi and T ∈ (Tκ)

Mi (for i = 0, 1), so that σM0

T = σM1

T by Proposi-
tion 12.19. If

(12.11) (κκ)M0 ⊆ (κκ)M1 ,

then setting σ := σM0

T = σM1

T we have that for every X ∈ (Modκσ)
M0 ∩

(Modκσ)
M1

(12.12) hM0

T (X) = hM1

T (X).

Proof. For part (a) it is enough to observe that equation (12.9) is rendered
by the LST-formula ΨhT

(x0, x1, z0, z1)

x0 ∈ Modz0L ∧ x1 ∈ ω2 ∧ ∃i ∈ Sym(z0)∀x2

(ΨfT (x1, x2, z0, z1)⇒ i witnesses x2
∼= x0),
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12.4. MORE ABSOLUTENESS RESULTS 129

where ΨfT (x1, x2, z0, z1) is as in Fact 11.10 and “i witnesses x2
∼= x0” stands for

(12.13) ∀α, β < κ
(
α Ex2 β ⇔ i(α) Ex0 i(β)

)
.

We now prove part (b). LetX ∈ (Modκσ)
M0∩(Modκσ)

M1 and set x := hM1

T (X) ∈
(ω2)M1 and x′ := hM0

T (X) ∈ (ω2)M0 ⊆ (ω2)M1 (the latter inclusion follows from
our assumption (κκ)M0 ⊆ (κκ)M1). Then there is i ∈ (Sym(κ))M0 such that

M0 |= “i witnesses fM0

T (x′) ∼= X”. Notice that since (Sym(κ))M0 ⊆ (Sym(κ))M1

(again by our assumption (κκ)M0 ⊆ (κκ)M1), then i ∈ (Sym(κ))M1 as well. Since

fM0

T (x′) = fM1

T (x′) by Fact 11.10(b), and since fM1

T (x′) ∈M1, the sentence “i is an

isomorphism between the structures fM0

T (x′) and X ∈ ModκL” can be formalized

by the Δ0 LST-formula with parameters i, fM0

T (x′), X, and κ in M0∩M1 provided

in (12.13) (where we replace x2 and x0 by, respectively, fM0

T (x′) and X), and is

therefore absolute between M0 and M1. Therefore M1 |= “fM1

T (x′) ∼= X”. By

our choice of x we also have M1 |= “fM1

T (x) ∼= X”, and therefore it follows from
Theorem 11.8(b), which holds in the ZF-model M1, that x′ = x. Thus (12.12) is
satisfied and we are done. �

Remark 12.21. Condition (12.11) is artificial and can be removed in many
cases. For example, if M0,M1 satisfy all hypotheses of Proposition 12.20(b) except
for (12.11), but there is a transitive model N of ZF containing both M0,M1, then

the conclusion still holds. In fact, since (κκ)Mi ⊆ (κκ)N then hMi

T (X) = hN
T (X) by

Proposition 12.20(b), whence hM0

T (X) = hM1

T (X). In particular this applies when

• M0,M1 ⊆ V are transitive models of ZF — take N = V;
• M0,M1 are generic extensions of V — if Mi = V[Gi] with Gi ⊆ Pi generic
over V, then take N = V[G] with G ⊆ P0 ×P1 generic over V.
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CHAPTER 13

An alternative approach

As explained at the beginning of Section 10, two different approaches have
been employed in the literature to show that the embeddability relation on count-
able structures is invariantly universal, namely the approaches (1) and (2) briefly
described on page 95. In Sections 10–12 we successfully followed approach (2),
and this will provide generalizations to uncountable cardinals κ of Theorems 1.1
and 1.4 (see Sections 14 and 15). However, our proof of Theorem 12.15 does not
yield a generalization of Theorem 1.5: the reason is that the Lκ+κ-sentence σT

from Corollary 12.12 is quite complex, and hence ModκσT
is usually far from being

a κ+1-Borel subset of ModκL (unless we assume AC+κ<κ = κ, see Section 8.2 and,
in particular, Remark 8.12).

In this section we are going to show that although approach (1) forces us to
consider a less natural kind of structures, it allows us to further obtain some sort of
generalization of Theorem 1.5 to uncountable κ’s: this is essentially because with
this alternative approach we will be able to associate to each κ-Souslin quasi order
R = p [T ] a sentence σ̄T in the bounded logic L̄b

κ+κ still having the property that

R ∼ �∼
κ
σ̄T

, thus further obtaining that when κ is regular Modκσ̄T
is a κ + 1-Borel

subset of ModκL̄ by Corollary 8.10(b).
The alternative construction we are going to provide consists of the following

steps:

• we expand the L-structure G0 ∈ CTκ defined in Section 10.1 to a so-called
ordered combinatorial tree Ḡ0 by interpreting the new symbol � in the extended
language L̄ = {E,�} as a well-founded order on (the nodes of) G0;
• given S ∈ Tr(2× κ), we directly add to Ḡ0 some forks as in Section 10.2 (with-
out first enlarging Ḡ0 to an analogue of G1), leaving the interpretation of �

unchanged.

Let us now fix some further notation concerning the L̄-structures that we are
going to consider. Following [23], a combinatorial tree with a supplementary tran-
sitive relation defined on a subset of its set of vertices will be called an ordered
combinatorial tree. This is a bit of a misnomer, since this extra relation need not
be an ordering, although in what follows this will always be the case. To formal-
ize this concept, consider the expansion L̄ = {E,�} of the graph language L (see
page 96) with � a binary relational symbol. Then OCTκ ⊆ ModκL̄ is the collection
of all ordered combinatorial trees of size κ (up to isomorphism), i.e. the set of all
X =

〈
κ;EX ,�X

〉
such that

〈
κ;EX

〉
is a combinatorial tree and �

X is a transitive

relation. Formally, OCTκ := ModκσOCT
, where σOCT is the following L̄ω1ω-sentence

axiomatizing ordered combinatorial trees:

(σOCT) σCT ∧ ∀v0∀v1∀v2 (v0 � v1 ∧ v1 � v2 ⇒ v0 � v2) .

131
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Similarly to the case of combinatorial trees, in order to simplify the notation
we will abbreviate the embeddability relation �∼�ModκσOCT

and the isomorphism

relation ∼=�ModκσOCT
(see page 72) with �∼

κ
OCT and ∼=κ

OCT, respectively.

13.1. Completeness

To begin with, we slightly modify the construction presented in Section 10 by
first adding a well-founded order on the vertices of the combinatorial tree G0 from
Definition 10.2. Such order is essentially obtained using in the obvious way the
bijection 〈〈·〉〉 : <ωOrd→ Ord from (2.2). More precisely, define

(13.1) #: <ωκ �
{
s− | ∅ �= s ∈ <ωκ

}
→ κ

by letting

#(s) := 2〈〈s〉〉

#(s−) :=

{
2〈〈s〉〉 − 1 if 〈〈s〉〉 ∈ ω,

2〈〈s〉〉+ 1 otherwise.

Letting sα := #−1(α), one gets that sα ∈ <ωκ (i.e. sα is not of the form s−) if and
only if α is even. The ordered combinatorial tree Ḡ0 is then the expansion of the
structure G0 =

〈
G0;E

G0
〉
obtained by interpreting � as the well-order induced on

G0 by the above map #. Formally:

Definition 13.1. Ḡ0 is the L̄-structure on

Ḡ0 := G0 = <ωκ �
{
s− | ∅ �= s ∈ <ωκ

}
with edge relation EḠ0 defined by

a EḠ0 b ⇔ a EG0 b

and order relation �
Ḡ0 defined by

a �
Ḡ0 b ⇔ #(a) ≤ #(b),

where a, b ∈ Ḡ0, E
G0 is as in Definition 10.2, and # is the map from (13.1).

Notice that �Ḡ0 is isomorphic to κ, so Ḡ0 is rigid. We next obtain the structures
ḠS (for S ∈ Tr(2 × κ)) by joining Ḡ0 and the forks Fu,s from (10.6) (for every
(u, s) ∈ S) via the identification of s ∈ Ḡ0 with the vertex (u, s, ∅) of Fu,s — note
that this construction is exactly the same described in Section 10.2 except that now
we are avoiding the enlargement to the structure G1.

Definition 13.2. Let S ∈ Tr(2× κ). Then ḠS is the L̄-structure on

ḠS := Ḡ0 � {(u, s, w) | (u, s) ∈ S ∧ (u, s, w) ∈ Fu,s ∧ w �= ∅}

with edge relation EḠS defined by

a EḠS b ⇔ a EGS b

and order relation �ḠS defined by

a �
ḠS b⇔ a, b ∈ Ḡ0 ∧ a �

Ḡ0 b,

where a, b ∈ ḠS and EGS is the edge relation on GS defined in Section 10.2.
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Notice that the above is well-defined because ḠS ⊆ GS : in fact, using the
notation introduced in (10.7a)–(10.7g) and Remark 10.7

ḠS = Seq � Seq− �
⋃{

F′
u,s | (u, s) ∈ S

}
= GS \ Ŝeq.

Each structure GS is then further identified in a canonical way with its copy on
κ (which is thus an element of OCTκ), using the bijections 〈〈·〉〉, 〈·, ·〉, and eu
from (2.2), (2.1), and (10.5) in the obvious way.

Finally, given an infinite cardinal κ and T ∈ Tκ we let f̄T be the variant of the
function fT from (11.5) obtained by composing the map ΣT : ω2→ Tr(2× κ) from
Definition 11.6 with the modified map S �→ ḠS , that is:

(13.2) f̄T : ω2→ OCTκ, x �→ ḠΣT (x).

Theorem 13.3. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then the map f̄T defined in (13.2) is such that:

(a) f̄T reduces R to the embeddability relation �∼
κ
OCT;

(b) f̄T reduces = on ω2 to the isomorphism relation ∼=κ
OCT.

In particular, �∼
κ
OCT is complete for κ-Souslin quasi-orders.

Proof. For part (a) just check that the same proof of Theorem 11.8(a) goes
through also with the new construction with the following minor modifications:

• in the forward direction, to get the embedding between f̄T (x) = ḠΣT (x) and

f̄T (y) = ḠΣT (y) when x R y we of course just consider the restriction of i to

ḠΣT (x) ⊆ GΣT (x) instead of the full embedding i : GΣT (x) → GΣT (y) described in
the original proof;
• for the backward direction, we use Remark 11.9 and the fact that ḠΣT (x) and

ḠΣT (y) are just L̄-expansions of
GΣT (x)� (G0 ∪ F(GΣT (x))) and GΣT (y)� (G0 ∪ F(GΣT (y))),

respectively.

For part (b), fix an isomorphism j between f̄T (x) = ḠΣT (x) and f̄T (y) =

ḠΣT (y). Then j(Ḡ0) = Ḡ0 because the vertices in Ḡ0 ⊆ ḠΣT (x), ḠΣT (y) are the

unique ones which are in the domain of the orders �
ḠΣT (x) and �

ḠΣT (y) , respectively.
Since the relational symbol � is interpreted in both ḠΣT (x) and ḠΣT (y) as the same

well-order on Ḡ0 (of the same order type κ), we get that j� Ḡ0 is the identity
function. Arguing as in Theorem 11.8(b), we then get that this implies ΣT (x) =
ΣT (y), and hence that x = y by injectivity of ΣT (Lemma 11.7(c)). �

13.2. Invariant universality

Henceforth we again fix an uncountable cardinal κ, and show that �∼
κ
OCT is

invariantly universal for κ-Souslin quasi-orders. Following Chapter 12, we will
first provide an L̄κ+κ-formula Ψ̄ describing the common parts of the ḠS (for S ∈
Tr(2× κ)), and then classify the structures in ModκΨ̄ up to isomorphism using the

elements of
<ω2×κ2 as invariants. The main improvement of the new construction

is that Ψ̄ will be a sentence in the bounded logic L̄b
κ+κ, so that when κ is regular

ModκΨ̄ is an effective κ + 1-Borel set by Corollary 8.10(b). As in Chapter 12, to
simplify the presentation we will freely use metavariables and consider (infinitary)
conjunctions and disjunctions over (canonically) well-orderable sets of formulæ of
size ≤ κ.
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134 13. AN ALTERNATIVE APPROACH

Given an ordinal α<κ and a sequence of variables 〈xβ | β<α〉, let ρ̄(〈xβ | β<α〉)
be the L̄0

|α|+ω-formula

(ρ̄)
∧

β<γ<α

(xβ �	 xγ ∧ xβ � xγ ∧ ¬(xγ � xβ)) .

Notice that for any L̄-structure X with domain κ and any assignment s ∈ ακ,
X |= ρ̄[s] if and only if s is injective and ran(s) is well-ordered by �

X in order type
α. Now let Φ̄1 be the L̄b

κ+κ-sentence given by the conjunction of the following:

(i) ∀x, y
[
∃z (x � z ∨ z � x) ∧ ∃z (y � z ∨ z � y) ⇒ x � y ∨ y � x

]
;

(ii) ∀x, y, z(x � y ∧ y � z ⇒ x � z);
(iii) ∀x, y(x � y ∧ y � x⇒ x 	 y);
(iv) ¬∃ 〈xn | n < ω〉 [

∧
n<m<ω(xm �	 xn ∧ xm � xn)];

(v)
∧

α<κ ∃ 〈xβ | β < α〉 ρ̄(〈xβ | β < α〉);
(vi) ¬∃x

∧
α<κ ∃ 〈yβ | β < α〉 ρ̄(〈yβ | β < α〉�x).

If X is a structure as above and satisfies (i)–(iv) then �X is a well-order.1 If
moreover it satisfies (v) the length of �X is ≥ κ, and if it satisfies (vi) the length is
<κ+ 1. Therefore if X |= Φ̄1 then �X is a well-order of length κ, possibly defined
just on a subset of the domain of X.

For every ordinal α < κ let ρ̄α(x) be the L̄b
κ+κ-formula

(ρ̄α) ∃〈xβ | β < α〉ρ̄(〈xβ | β < α〉�x) ∧
¬∃ 〈xβ | β < α+ 1〉 ρ̄(〈xβ | β < α+ 1〉�x).

stating that x is the α-th element in the order �, at least whenever � is (interpreted
in) a well-order of length greater than α. Given ordinals α, β < κ and two variables

x0, x1, let ψ̄α,β(x0, x1) be the formula x0 E x1 if sα EḠ0 sβ or ¬(x0 E x1) otherwise,
where sα := #−1(α) and # is as in (13.1). Let Φ̄2 be the L̄b

κ+κ-sentence:

(Φ̄2)
∧

α<β<κ

∀x, y
(
ρ̄α(x) ∧ ρ̄β(y)⇒ ψ̄α,β(x, y) ∧ ψ̄β,α(y, x)

)
.

Notice that if an L̄-structure X satisfies Φ̄1 ∧ Φ̄2, then its restriction to the field
of �

X is isomorphic to Ḡ0, and moreover such an isomorphism is unique by the
rigidity of Ḡ0.

For every u ∈ <ω2, let F̄u be the L̄-expansion of Fu in which ∅ �
F̄u ∅ and no

other �
F̄u -relation holds. We call ∅ the root of F̄u. Notice that F̄u still satisfies

analogues of (10.4a)–(10.4c). In particular, for any L̄-structure X ∼= F̄u the iso-
morphism between X and F̄u is unique, and we can thus unambiguously call root
of X the unique element of X which is mapped by such isomorphism to the root ∅
of F̄u.

Given n,m ∈ ω, u ∈ <ω2, and two variables x0, x1, let χ̄u
n,m(x0, x1) be the

L̄-formula x0 E x1 if e−1
u (n) EFu e−1

u (m) and ¬(x0 E x1) otherwise, where eu is

1We don’t need to assume DC to have the equivalence between “well-foundness” and “absence
of descending chains” because in our situation the domain of the structure X is always assumed
to be the cardinal κ, which carries a natural well-order.
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the bijection of (10.5). Then χ̄u(〈xn | n ∈ ω〉) denotes the L̄0
ω1ω-formula

(χ̄u)
∧

n<m<ω

(xn �	 xm) ∧
∧

n,m<ω

χ̄u
n,m(xn, xm)

∧ (x0 � x0) ∧
∧

n,m<ω
n>0

(¬(xn � xm) ∧ ¬(xm � xn)).

Notice that for any L̄-structure X and any 〈an | n ∈ ω〉 ∈ ωX,

X |= χ̄u[〈an | n ∈ ω〉]⇔ the substructure of X with domain {an | n ∈ ω}
is isomorphic to F̄u (via the map an �→ e−1

u (n)).
(13.3)

Moreover such isomorphism must again be unique by (10.4b). Let now Φ̄3 be the
following Lb

ω1ω1
-sentence:

(Φ̄3) ∀x
[
¬(x � x)⇒

∨
u∈<ω2

∃ 〈yn | n < ω〉
(
χ̄u(〈yn | n < ω〉) ∧

∨
0�=i<ω

x 	 yi

)]
.

This means that if an L̄-structure X satisfies Φ̄1 ∧ Φ̄3, then each element of X
which is not in the field of �

X belongs to some substructure which is isomorphic
to F̄u (for some u ∈ <ω2).

Let now Φ̄4 be the following L̄b
ω1ω1

-sentence:

(Φ̄4) ∀x ∀〈yn | n < ω〉
[ ∨
u∈<ω2

χ̄u(〈yn | n < ω〉) ∧
∧
n<ω

(x �	 yn)

⇒
∧

0�=n<ω

(¬(x E yn) ∧ ¬(x � yn) ∧ ¬(yn � x))

]
.

Note that if X is an L̄-structure such that X |= σOCT∧Φ̄4, then any of its substruc-
tures which is isomorphic to some F̄u is “isolated” from the rest of X, meaning that
each element of such substructure (except for its root) is neither EX -related nor
�X -related to any other element of X which does not belong to said substructure.

Let Φ̄5 be the following L̄b
ω1ω1

-sentence:

(Φ̄5) ∀ 〈xn | n < ω〉 ∀ 〈ym | m < ω〉
[ ∨
u∈<ω2

χ̄u(〈xn | n < ω〉) ∧

∨
v∈<ω2

χ̄v(〈ym | m < ω〉)⇒
∧
n<ω

(xn 	 yn) ∨
∧

n,m<ω
(n,m) �=(0,0)

(xn �	 ym)

]
.

This means that if an L̄-structure X satisfies Φ̄5, then any two of its substructures
which are isomorphic to, say, F̄u and F̄v, either coincide or else share at most the
same root.

Finally, let Φ̄6 be the following L̄b
ω1ω1

-sentence:

(Φ̄6) ∀ 〈xn | n < ω〉 ∀ 〈ym | m < ω〉
[ ∨
u∈<ω2

(χ̄u(〈xn | n ∈ ω〉) ∧ χ̄u(〈ym | m ∈ ω〉))

⇒
∧
n∈ω

(xn 	 yn) ∨
∧

n,m∈ω

(xn �	 ym)

]
.
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This means that if X |= Φ̄6, where X is an L̄-structure, then any two of its
substructures which are isomorphic to the same F̄u, either they coincide or else
they are completely disjoint.

Let finally Ψ̄ be the L̄b
κ+κ-sentence

(13.4) σOCT ∧ Φ̄1 ∧ Φ̄2 ∧ Φ̄3 ∧ Φ̄4 ∧ Φ̄5 ∧ Φ̄6.

It is easy to check that:

Lemma 13.4. Let T ∈ Tκ and f̄T be as in (13.2). Then ran(f̄T ) ⊆ ModκΨ̄.

We now classify again the structures in ModκΨ̄ using the elements of
<ω2×κ2 as

invariant. For X ∈ ModκΨ̄, define ḡ(X) : <ω2 × κ → 2 by letting g(X)(u, α) = 1 if
and only if there is a substructure of X isomorphic to F̄u whose root is the α-th
element with respect to the order �X . Formally,

(13.5) ḡ : ModκΨ̄ →
<ω2×κ2, ḡ(X)(u, α) = 1 ⇔ X |= σ̄u,α,

where σ̄u,α is the L̄b
κ+κ-sentence

(σ̄u,α) ∃x [ρ̄α(x) ∧ ∃〈zn | n < ω〉 (χ̄u(〈zn | n < ω〉) ∧ x 	 z0)] .

The following proposition is the analogue in the new context of Proposition 12.7,
and its proof is quite similar to (but simpler than) the original one. However, for
the reader’s convenience we fully reprove it here because such classification result
lies at the core of the proof of the invariant universality of �∼

κ
OCT.

Proposition 13.5. The map ḡ defined in (13.5) reduces ∼= to =.

Proof. Let X,Y ∈ ModκΨ̄ be isomorphic. Then for every (u, α) ∈ <ω2 × κ,
X |= σ̄u,α ⇔ Y |= σ̄u,α, whence ḡ(X) = ḡ(Y ) by (13.5).

Conversely, assume ḡ(X) = ḡ(Y ) for some X,Y ∈ ModκΨ̄. Since X and Y are
models of Ψ̄ they satisfy σOCT and Φ̄1, . . . , Φ̄6. Let X

′ and Y ′ be the substructures
of X and Y whose domains are the fields of the orderings �

X and �
Y , respectively.

As X and Y satisfy Φ̄1 ∧ Φ̄2, then X ′ ∼= Y ′ via a (unique) isomorphism ιX′,Y ′ . We
will now extend ιX′,Y ′ to an isomorphism

ιX,Y : X → Y.

Let a ∈ X \ X ′. Since X |= Φ̄3, there are 〈an | n < ω〉 ∈ ωX and 0 �= ı̄ < ω
such that a = aı̄ and X |= χ̄u[〈an | n < ω〉] for some u ∈ <ω2. In particular, a0
is in the field X ′ of �X , which is a well-order of length κ since X |= Φ̄1. Let
α < κ be such that a0 is the α-th element in this order: then by definition of ḡ we
have ḡ(X)(u, α) = 1, so ḡ(Y )(u, α) = 1 by case assumption. Let b0 ∈ Y ′ be the
α-th element with respect to the order �

Y — b0 is well-defined because Y |= Φ̄1.
Choose 〈b1, b2, . . .〉 ∈ ωY such that Y |= χ̄u[〈bn | n < ω〉], and set ιX,Y (a) := bı̄.
The definition of ιX,Y (a) seems to depend on the choice of the bn’s, but the next
claim shows that this is not the case.

Claim 13.5.1. Suppose α < κ, u ∈ <ω2, and 〈an | n < ω〉 is a sequence of
elements of X such that a0 is the α-th element in �

X and X |= χ̄u[〈an | n < ω〉].
Then there is a unique sequence 〈bn | n < ω〉 of elements of Y such that b0 is the
α-th element in �

Y and Y |= χ̄u[〈bn | n < ω〉]. Therefore ιX,Y (an) = bn for every
n < ω.
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Proof of the Claim. Given two sequences 〈bn | n < ω〉 and 〈b′n | n < ω〉 as
in the conclusion of the claim, we have that b0 = b′0 and both Y |= χ̄u[〈bn | n < ω〉]
and Y |= χ̄u[〈b′n | n < ω〉]. Since Y |= Φ̄6, it follows that bn = b′n for all n < ω. �

Claim 13.5.2. ιX,Y is injective.

Proof of the Claim. Let a, a′ ∈ X be distinct. If either a or a′ belongs to
X ′, then ιX,Y (a) �= ιX,Y (a

′) because ιX,Y �X ′ = ιX′,Y ′ is a bijection between X ′

and Y ′, and ιX,Y (X \X ′) ⊆ Y \ Y ′ by construction. So we can assume a, a′ /∈ X ′.
Assume towards a contradiction that ιX,Y (a) = ιX,Y (a

′). Since X |= Φ̄1 ∧ Φ̄3,
let α, β < κ, u, v ∈ <ω2, 〈an | n < ω〉 , 〈a′n | n < ω〉 ∈ ωX, and 0 < ı̄, j̄ < ω be
such that a0 and a′0 are, respectively, the α-th and β-th elements of �X , X |=
χ̄u[〈an | n < ω〉], X |= χ̄v[〈a′n | n < ω〉], a = aı̄, and a′ = a′j̄. By Claim 13.5.1
let 〈bn | n < ω〉 and 〈b′n | n < ω〉 be the unique sequences such that b0 and b′0 are,
respectively, the α-th and β-th elements of �

Y , Y |= χ̄u[〈bn | n < ω〉], and Y |=
χ̄v[〈b′n | n < ω〉]. Then bn = ιX,Y (an) and b′n = ιX,Y (a

′
n) for every n, so that

ιX,Y (a) = bı̄ and ιX,Y (a
′) = b′j̄. Since Y |= Φ̄5 and

(13.6) bı̄ = ιX,Y (a) = ιX,Y (a
′) = b′j̄,

it follows that

(13.7) ∀n (bn = b′n) .

Let Z be the substructure of Y with domain {bn | n ∈ ω}. Since we have that
Y |= (χ̄u ∧ χ̄v)[〈bn | n < ω〉], then F̄u

∼= Z ∼= F̄v by (13.3). Thus u = v by (the
analogue of) (10.4c).

Notice that a0, a
′
0 ∈ X ′ and b0, b

′
0 ∈ Y ′, thus b0 = b′0 by (13.7), and hence

a0 = a′0 as ιX,Y �X ′ = ιX′,Y ′ is a bijection between X ′ and Y ′. Moreover, Y |=
χ̄u[〈bn | n < ω〉] implies that the bn’s are all distinct. Therefore ı̄ = j̄ because
bı̄ = bj̄ by (13.6) and (13.7). Since u = v, it follows that X |= χ̄u[〈an | n < ω〉]
and X |= χ̄u[〈a′n | n < ω〉]. Therefore, a0 = a′0 and X |= Φ̄6 imply ∀n(an = a′n),
whence a = aı̄ = a′ı̄ = a′j̄ = a′, a contradiction. �

Claim 13.5.3. ιX,Y is surjective and ιY,X = ι−1
X,Y .

Proof of the Claim. First notice that ιY,X�Y ′ = ιY ′,X′ is an isomorphism
between Y ′ and X ′ and is the inverse of ιX′,Y ′ = ιX,Y �X ′ (by the uniqueness of the
isomorphism betweenX ′ and Y ′). Let now b ∈ Y \Y ′. Since Y |= Φ̄1∧Φ̄3, there are
α < κ, u ∈ <ω2, 〈bn | n ∈ ω〉 ∈ ωY , and 0 �= ı̄ < ω such that b0 is the α-th element
in the order �

Y , Y |= χ̄u[〈bn | n < ω〉], and b = bı̄. Applying Claim 13.5.1 with the
role of X and Y interchanged, there is a unique sequence 〈an | n ∈ ω〉 ∈ ωX such
that a0 is the α-th element in �X and X |= χ̄u[〈an | n < ω〉]. Then ιY,X(b) = aı̄
by definition. Using Claim 13.5.1, it is easy to check that ιX,Y (aı̄) = b, so we are
done. �

We have shown that ιX,Y : X → Y is a bijection. It remains to be proved that

it is also an isomorphism. Since ι−1
X,Y = ιY,X , it is enough to show just one direction

of each equivalence, i.e. that for every a, a′ ∈ X

a EX a′ ⇒ ιX,Y (a) E
Y ιX,Y (a

′)

a �
X a′ ⇒ ιX,Y (a) �

Y ιX,Y (a
′).
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If a, a′ ∈ X ′ the result follows from the fact that ιX,Y �X ′ = ιX′,Y ′ is an isomor-

phism. In particular, since a �X a′ implies a, a′ ∈ X ′, the second implication holds.
Thus it is enough to focus on the first implication and assume, without loss of gen-
erality, that a /∈ X ′ (both EX and EY are symmetric relations by X |= σOCT and
Y |= σOCT). Since X |= Φ̄1 ∧ Φ̄3, there are α < κ, u ∈ <ω2, 〈an | n ∈ ω〉 ∈ ωX,
and 0 �= ı̄ < ω such that a0 is the α-th element in �X , X |= χ̄u[〈an | n < ω〉],
and a = aı̄. If a EX a′, then X |= σOCT ∧ Φ̄4 implies a′ = aj̄ for some j̄ �= ı̄.
By Claim 13.5.1, let 〈bn | n ∈ ω〉 be the unique sequence such that b0 is the α-th
element in �

Y and Y |= χ̄u[〈bn | n < ω〉], so that bn = ιX,Y (an) for all n ∈ ω by
definition. Since aı̄ = a EX a′ = aj̄ and X |= χ̄u[〈an | n < ω〉] imply that the sub-
formula χ̄u

ı̄,j̄(xı̄, xj̄) of χ̄u(〈xn | n < ω〉) is xı̄ E xj̄, and since Y |= χ̄u[〈bn | n < ω〉],
we get ιX,Y (a) = bı̄ E

Y bj̄ = ιX,Y (a
′). �

Endow
<ω2×κ2 with the product topology τp (see Section 7.2.1 and, in partic-

ular, Example 7.8(A)). The following is the analogue of Lemma 12.9 and can be
proven in the same way (just replace the Lb

κ+κ-sentence σu,α with the L̄b
κ+κ-sentence

σ̄u,α).

Lemma 13.6. For every (τp-)open set V ⊆ <ω2×κ2 there is an L̄b
κ+κ-sentence

σ̄V such that g−1(V ) = Modκσ̄V ∧Ψ̄.

The following lemma, which corresponds to Lemma 12.10, requires instead a
slightly different argument due to the different coding we used.

Lemma 13.7. Let T ∈ Tκ and f̄T be the map defined in (13.2). Then the map

ḡ ◦ f̄T : ω2→ <ω2×κ2 is continuous.

Proof. Arguing as in the proof of Lemma 12.10, since S = {Ñ
A

(u,α),i | (u, α) ∈
<ω2×κ∧i = 0, 1} is a subbasis for the product topology on A2 (where A := <ω2×κ),
it is enough to check that (ḡ◦f̄T )−1(Ñ

A

(u,α),i) is open in ω2 for every (u, α) ∈ <ω2×κ
and i = 0, 1. Fix (u, α) ∈ <ω2 × κ. If α is odd then (ḡ ◦ f̄T )−1(Ñ

A

(u,α),1) = ∅ and
(ḡ ◦ f̄T )−1(Ñ(u,α),0) =

ω2. If α is even let

A1 :=
{
v ∈ lhu2 | (u, v, sα) ∈ T̃

}
,

where T̃ is the tree obtained from T as in (11.3) and sα = #−1(α), and let A0 :=
lhu2\A1. Then by definition of f̄T and ḡ we get (ḡ◦f̄T )−1(Ñ(u,α),i) =

⋃
v∈Ai

Nv. �

Finally, the next corollaries are the counterparts of Corollaries 12.11 and 12.12:
their proofs are obtained from the original ones by systematically replacing Lem-
mas 12.6, 12.9, and 12.10, Proposition 12.7, and Corollary 12.11, with Lemmas 13.4,
13.6, and 13.7, Proposition 13.5, and Corollary 13.8, respectively.

Corollary 13.8. Let T ∈ Tκ and f̄T be as in (13.2). For every closed set
C ⊆ ω2, (ḡ ◦ f̄T )(C) is closed.

Corollary 13.9. Let T ∈ Tκ and f̄T be as in (13.2). There is an L̄b
κ+κ-

sentence σ̄T such that the closure under isomorphism of ran(f̄T ) is Modκσ̄T
.

We finally defined the “inverse” map of f̄T analogously to Definition 12.13.
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Definition 13.10. For T ∈ Tκ, f̄T as in (13.2) and σ̄T as in Corollary 13.9 ,
let h̄T : Modκσ̄T

→ ω2 be defined by

(13.8) h̄T (X) = x⇔ f̄T (x) ∼= X.

Note that the function h̄T is well-defined by Corollary 13.9 and Theorem 13.3.
The following corollary is analogous to Corollary 12.14, and it completes the proof
of Theorem 13.12: it can be proved with an argument similar to the original one
(but replacing Theorem 11.8 with Theorem 13.3).

Corollary 13.11. Let T ∈ Tκ, f̄T be as in (13.2), σ̄T as in Corollary 13.9,
and h̄T as in Definition 13.10. If R = p[T ] is a quasi-order then h̄T simultaneously
reduces �∼ to R and ∼= to =.

The following is the analogue of Theorem 12.15.

Theorem 13.12. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then there are σ̄T , f̄T , h̄T such that:

(a) σ̄T is an L̄b
κ+κ sentence;

(b) f̄T reduces R to �∼
κ
σ̄T

and = to ∼=κ
σ̄T

;

(c) h̄T reduces �∼
κ
σ̄T

to R and ∼=κ
σ̄T

to =;

(d) h̄T ◦ f̄T = id and (f̄T ◦ h̄T )(X) ∼= X for every X ∈ Modκσ̄T
.

In particular, �∼
κ
OCT is invariantly universal for κ-Souslin quasi-orders on ω2 (equiv-

alently, on any uncountable Polish or standard Borel space).

By Theorem 13.12(d) we further have:

Corollary 13.13. Let κ be an infinite cardinal and T ∈ Tκ. If R = p[T ] is a
quasi-order, then there is an L̄b

κ+κ-sentence σ̄T such that the quotient orders of R

and �∼
κ
σ̄T

are isomorphic.

Theorem 13.12(a) should be contrasted with Theorem 12.15(a), in that it in-
volves a formula belonging to the fragment L̄b

κ+κ of L̄κ+κ: this yields to the fact
that by Corollary 8.10(b)

(13.9) if κ is regular, Modκσ̄T
is an effective κ+ 1-Borel subset of

ModκL̄ (with respect to τb).

This important observation will allow us to get generalizations of Theorem 1.5 to
all uncountable regular κ’s (see Theorem 14.10).

Moreover, Remark 12.17(i) still holds after replacing the corresponding Lκ+κ-
sentence Ψ with the L̄b

κ+κ-sentence Ψ̄. Remark 12.17(ii) can be improved to the
following Remark 13.14(i), and since only bonded formulæ are now involved in it,
we further get Remark 13.14(ii)

Remarks 13.14. (i) Every model X of Ψ̄ (and hence every model of σ̄T

for T ∈ Tκ) admits an L̄b
κ+κ-Scott sentence σ̄X . The sentence σ̄X is again

obtained by applying the argument of Corollary 13.9 (see also Corollary 12.12)
to the singleton of h̄T (X).

(ii) By the previous observation and Corollary 8.10(b), it follows that if κ is
regular then the isomorphism type {Y ∈ ModκL̄ | Y ∼= X} of every X ∈ ModκΨ̄
is an effective κ+ 1-Borel set with respect to the bounded topology.
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Notice that if κ<κ = κ, then by the generalized Lopez-Escobar theorem (i.e.
Theorem 8.7) a structure X ∈ ModκL admits an Lκ+κ-Scott sentence (for L and
arbitrary finite relational language) if and only if its isomorphism type is κ+1-Borel
with respect to the bounded (equivalently, to the product, or to the λ-)topology,
i.e. (i) and (ii) are essentially equivalent once we drop the restriction σ̄X ∈ L̄b

κ+κ.
However, recall that in most of the applications considered in this paper, either we
will work in models of AD (where AC fails), or we will deal with cardinals κ which
are strictly smaller than 2ℵ0 (see the discussions in Sections 1 and 9), so in both
cases we lack the crucial condition κ<κ = κ, even when e.g. κ = ω1. This is why we
preferred to consider separately the two statements (i) and (ii) of Remark 13.14.

As in the case of Remark 13.14(i) (see the discussion after Remarks 12.17),
Remark 13.14(ii) is again well-known when κ = ω (for any countable language L
and any countable structure X ∈ ModωL, see e.g. [53, Theorem 16.6]). However,
when κ is uncountable then such condition may fail again for some X ∈ ModκL:
when κ<κ = κ and AC is assumed this already follows from Example 12.18 and
Theorem 8.7, but since as discussed above we will often work in a different context
we point out the following independent counterexample due to S. D. Friedman.

Example 13.15. Let L be the order language, κ = ω1, and endow both ω12
and Modω1

L with the bounded topology. Consider the structure

X := ω1 ×Q1,

where Q1 is defined as in Example 12.18 and X is endowed with the lexicographical
ordering: we claim that the isomorphism type of X is not κ+ 1-Borel. Otherwise,
it would be κ+ 1-Borel also the club filter CUB ⊆ ω12 defined by

CUB := {x ∈ ω12 | {α < ω1 | x(α) = 1} contains a club of ω1}
(because there is a continuous map f : ω12→ Modω1

L such that

f−1({Y ∈ Modω1

L | Y ∼= X}) = CUB,

see below). But this is impossible, because every κ + 1-Borel subset B ⊆ ω12 has
the κ-Baire property by Proposition 6.14, while CUB does not have the κ-Baire
property (see [28]): in fact, for every intersection C ⊆ ω12 of at most ω1-many open
dense subsets of ω12 and every s ∈ <ω12 there are x, y ∈ C such that x ∈Ns \CUB
(which implies that U�CUB is non-meager for every nonempty open set U) and
y ∈ CUB (which implies that CUB itself is non-meager), so Proposition 6.15 gives
the desired result. The reduction f of CUB to the isomorphism class of X is defined
as follows: given x ∈ ω12, let f(x) be (an isomorphic copy on ω1 of) the structure
Yx obtained by ordering lexicographically the set2

{0} ×Q1 ∪ ({α | x(α) = 1} ×Q1) ∪ ({α | x(α) = 0} ×Q0) ,

where Q0,Q1 are again defined as in Example 12.18 (it is left to the reader to
verify that we can identify each Yx with an isomorphic copy on ω1 in such a way
that the resulting f is continuous). Notice that, in particular, when x ∈ ω12 is
constantly equal to 1 then Yx = X. If x ∈ CUB, let C ⊆ ω1 be a club of ω1

such that 0 ∈ C and x(α) = 1 for every 0 �= α ∈ C, and fix an order preserving
bijection j : C → ω1. Then the map i sending (α, 0) to (j(α), 0) (for α ∈ C) can
be extended to an isomorphism between Yx and X (using the fact that any two

2We define the initial segment {0} × Q1 of Yx independently from x because we want to
guarantee that Yx always has a minimal element, as X does.
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countable dense linear orders without maximum and minimum are isomorphic to
Q, and hence to each other). Conversely, if Yx

∼= X then Yx contains a closed
unbounded (with respect to its ordering) set of order type ω1, whence x ∈ CUB.
Therefore x ∈ CUB⇔ f(x) ∼= X, as required.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



CHAPTER 14

Definable cardinality and reducibility

As recalled in Section 2.3, under AC the cardinality |X| is defined to be the
unique cardinal κ in bijection with X. The resulting theory, though, is somewhat
unsatisfactory, since there are no universally accepted methods to settle simple
questions like e.g. the continuum problem: by work of Gödel [26] and Cohen [16]
the theory ZFC does not settle the statement 2ℵ0 = ℵ1. Moreover, knowing that
|R| = κ for some cardinal κ, gives little information on such κ or on the possible
bijections between R and κ: in fact, there is no definable or natural way to explicitly
well-order the reals in ZFC (see e.g. [82]). This should be contrasted with the fact
that, in practice, when |I| ≤ |J | one would like to have an explicit witness for
this fact, namely a reasonably defined injection from I to J . These observations
yield the notion of definable cardinality. Several definitions of this concept have
been considered in the literature (usually depending on the kind of problem one is
dealing with), and they all amount to restricting the objects under consideration
and the functions used to compute cardinalities to some reasonably simple class,
e.g. to the class of functions belonging to some inner model such as L(R), OD(R),
and so on. It is quite remarkable that when replacing the notion of cardinality
with its definable version, all obstacles (i.e. the independence results on the size of
simple sets) simply disappear (see Section 14.3).

As for cardinalities, also the notion of reducibility is not completely satisfactory
unless we impose some sort of definability condition on (i.e. we restrict the class of)
the reductions that can be used. For example, let us consider the Vitali equivalence
relation E0 on the real line R defined by

(14.1) r E0 r′ ⇔ r − r′ ∈ Q.

Under AC we have that E0 ≤ id(R), but on the other hand there is no Baire-
measurable (in particular, no Borel) witness for this reduction. This kind of phe-
nomenon suggests that it could be more interesting to consider what could be called
definable reducibility. Again, this is a vague notion and we will need to specify which
definability conditions we are interested in.

By the observations contained in Section 2.6.4, the notions of (definable) car-
dinality and of (definable) reducibility are strictly related, and all results about
(definable) reducibility can be immediately translated into results about (definable)
cardinality. For example, we can e.g. derive from the subsequent Theorem 15.15
and Remark 15.16 a nice characterization of small cardinalities (see Section 2.6.4) in
terms of infinitary sentences, or, to be more precise, in terms of the bi-embeddability
relation on the models of such sentences: in fact, under ADR the cardinality of any
set A is small if and only if there is a (regular) cardinal κ < Θ and an Lκ+κ-sentence
σ such that |A| = |Modκσ /≈|, where ≈ denotes as usual the bi-embeddability re-
lation. In other words, under ADR the set of small cardinalities can be written

143
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as

{|Modκσ /≈| | κ < Θ,σ ∈ Lκ+κ} .
In this chapter we will consider many different incarnations of definable cardi-

nality and definable reducibility which have appeared in the literature, and using
these notions (or naturally adapting them to our new setup) we will show that the
completeness and invariant universality results obtained in Sections 11–13 can be
interpreted as results on definable reducibility and hence, by the discussion above,
also on definable cardinality.

14.1. Topological complexity

The first case of definable reducibility we will analyze is the Borel reducibility
≤B: as discussed in the introduction, in this case the objects are analytic relations
on ω2 or, equivalently, on any uncountable Polish or standard Borel space, and the
reductions are Borel functions between such spaces. This is nowadays the standard
reducibility notion between Σ1

1 quasi-orders and equivalence relations — see e.g. [4,
24,37,49,55]. We will generalize this notion to our context by considering κ+ 1-
Borel functions (instead of just Borel functions) as reductions between quasi-orders
defined on (subsets of) spaces of type λ, with λ an infinite cardinal. From this point
onward, unless otherwise explicitly stated, we will conform to the standard practice
in the existing literature of endowing all such spaces with the bounded topology τb,
and hence continuity and κ + 1-Borelness (of both functions and sets) will always
tacitly refer to this topology.

When replacing Borel functions with κ+ 1-Borel functions, we have to decide
whether we want to use the strong or the weak formulation of such class of functions
(see Definition 5.1). Of course the smaller is the class of reducing functions, the
stronger are the results asserting that a certain quasi-order is reducible to another:
so in general we should prefer κ+1-Borel reductions to the weakly κ+1-Borel ones.
However, as discussed after Proposition 5.2, when considering functions f : λ2→ μ2
with λ < μ it is often more meaningful to consider the weaker notion of κ + 1-
Borelness — even the inclusion map f defined in Proposition 5.2(b) can fail to be
(non-weakly) κ + 1-Borel. The next example shows that a similar phenomenon
appears when considering reducibilities between quasi-orders.

Example 14.1. Let κ and λ < μ be infinite cardinals, and assume that
Bκ+1(

λ2, τb) �= P(λ2). Let E be the identity relation on λ2 (i.e. x E y ⇔ x = y),
and let F be its “extension” to the space μ2, that is set for x, y ∈ μ2

x F y ⇔ x�λ = y�λ.
The map μ2→ λ2 sending x ∈ μ2 to x�λ is continuous (and hence also κ+1-Borel),
and reduces F to E. However, there is no κ+1-Borel reduction of E to F . Indeed,
let f : λ2→ μ2 be a reduction of E to F , A ⊆ λ2 be a set not in Bκ+1(

λ2, τb), and
set

A′ := {f(x)�λ | x ∈ A} .
Then U :=

⋃
s∈A′ Nμ

s is τb-open, but f
−1(U) = A since f reduces E to F , whence

f−1(U) /∈ Bκ+1(
λ2, τb).

Example 14.1 shows that if we decide to consider only (non-weakly) κ+1-Borel
functions as reductions, then the identity relation E on λ2 would be strictly more
complex than its “extension” F to μ2: this contradicts our intuition, which suggests
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that E and F should have the same complexity with respect to any reasonable
notion of reducibility. All this discussion justifies the forthcoming definition of
κ+1-Borel reducibility, and our choice of the reducing functions should then appear
quite natural.

Definition 14.2. Let λ, μ, κ be infinite cardinals, and let X ,Y be spaces of
type λ and μ, respectively. Let R and S be quasi-orders defined on (subsets of)
X and Y , respectively. We say that R is κ+ 1-Borel reducible to S (in symbols
R ≤κ

B S) if and only if:1

case λ ≥ μ: there is a κ+ 1-Borel reduction f : dom(R)→ dom(S) of R to S;
case λ < μ: there is a weakly κ+1-Borel function f : dom(R)→ dom(S) reducing

the quasi-order R to S.

The quasi-orders R and S are κ+1-Borel bi-reducible (in symbols R ∼κ
B S)

if both R ≤κ
B S and S ≤κ

B R.
Finally, when replacing (weakly) κ+1-Borel functions with their effective coun-

terparts in the previous definitions, we get the notions of effective κ + 1-Borel
(bi-)reducibility, denoted by ≤κ

B and ∼κ
B, respectively.

Notice that when λ = μ = κ = ω, the quasi-order ≤κ
B coincides with the

usual Borel reducibility ≤B mentioned in the introduction and at the beginning
of this subsection. Therefore the next completeness result naturally generalizes
Theorem 1.1 to uncountable κ’s.

Theorem 14.3. Let κ be an infinite cardinal and R be a κ-Souslin quasi-order
on ω2. Then R ≤κ

B
�∼

κ
CT. In particular, �∼

κ
CT is ≤κ

B-complete for the class of
κ-Souslin quasi-orders on ω2, and the same is true when replacing ≤κ

B with ≤κ
B.

Proof. The function fT : ω2 → CTκ defined in (11.5) is easily seen to be
continuous when both spaces are endowed with the product topology τp. Since
the topologies τp and τb coincide on ω2, this shows that fT is (effective) weakly
κ + 1-Borel (indeed, it is even effective weakly α-Borel for any α ≥ ω). Since by
Theorem 11.8(a) the function fT reduces R to �∼

κ
CT, the result follows. �

As observed in Section 5.1.2, there is another natural generalization of the
notion of Borel functions, namely Γ-in-the-codes functions (for suitable boldface
pointclasses Γ): this yields a corresponding generalization of the Borel reducibility
≤B.

Definition 14.4. Let Γ be a boldface pointclass, κ be an infinite cardinal for
which there is a Γ-code (so that κ ≤ δΓ by Remark 5.4(ii)), and X be a space of
type κ. Given two quasi-orders R and S on, respectively, ω2 and (a subset of) X ,
we say that R is Γ-reducible to S (in symbols, R ≤Γ S) if there is a Γ-in-the-codes
function f : ω2→ dom(S) ⊆ X which reduces R to S.

Remark 14.5. Since one can speak of Γ-in-the-codes functions only if there is a
Γ-code for κ, in all the results mentioning the reducibility ≤Γ we will tacitly assume
that such a code exists. When assuming AD this is actually granted by Proposi-
tion 9.25(b). Similarly, in the AC world this implicit assumption will in most cases
follow from the other hypotheses (see e.g. Theorem 15.7 and the ensuing remark),
although there are some cases, such as Theorem 15.5, in which the situation is less
clear.

1See Remark 7.10 for more on partial (weakly) κ+ 1-Borel functions.
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Thus, in particular, ≤Σ1
1
coincides with ≤B (notice that Γ = Σ1

1 automatically
implies κ = ω in Definition 14.4, so that in this case X is homeomorphic to the
classical Cantor space ω2). The next theorem can thus be seen as another natural
generalization to uncountable κ’s of Theorem 1.1.

Theorem 14.6. (a) (AC) Let κ ≤ 2ℵ0 be such that there is a S(κ)-code for
it. Then the embeddability relation �∼

κ
CT is ≤S(κ)-complete for the class of κ-

Souslin quasi-orders on ω2, i.e. R ≤S(κ)
�∼

κ
CT for every κ-Souslin quasi-order

R on ω2.
(b) (AD+ DC) Let κ be a Souslin cardinal. Then the embeddability relation �∼

κ
CT

is ≤S(κ)-complete for the class of κ-Souslin quasi-orders on ω2.

Observe that in Theorem 14.6 it always makes sense to consider the notion of
≤S(κ)-reducibility (for part (b) use Proposition 9.25(b)). Moreover, recall that the

condition on κ in part (a) is automatically satisfied if κ = ω1, κ = ω2, or κ = 2ℵ0

by Proposition 9.16(b).

Proof. Let R = p [T ] be a κ-Souslin quasi-order on ω2. As noticed at the
beginning of the proof of Theorem 14.3, the function fT : ω2 → CTκ ⊆ ModκL
defined in (11.5) is easily seen to be continuous when both spaces are endowed with
the product topology τp, so for every U in the canonical basis Bp(ModκL) for the
product topology we have

f−1
T (U) ∈ Σ0

1(
ω2) ⊆Δ1

1(
ω2) ⊆ΔS(κ)(

ω2).

By Propositions 9.19 and 9.28, under our assumptions fT is then S(κ)-in-the-
codes. Since fT reduces R to �∼

κ
CT by Theorem 11.8(a), we get R ≤S(κ)

�∼
κ
CT, as

required. �

We now consider some results concerning invariant universality which generalize
Theorems 1.4 and 1.5 to regular uncountable κ’s. Given an Lκ+κ-sentence σ, say
that a map h : Modκσ → ω2 is Lκ+κ-measurable if for every open set U ⊆ ω2
(equivalently, for every basic open set U = Nω

s with s ∈ <ω2) there is an Lκ+κ-
sentence σU such that h−1(U) = ModκσU

∩Modκσ = ModκσU∧σ. Similarly, we can

define the notion of Lb
κ+κ-measurability.

Notice that by Corollary 8.10(b), if κ is regular and h : Modκσ → ω2 is Lb
κ+κ-

measurable, then h is also (effective) κ+ 1-Borel measurable.

Lemma 14.7. The map hT : ModκσT
→ ω2 from Definition 12.13 is Lb

κ+κ-
measurable, and also (effective) κ+ 1-Borel measurable when κ is regular,.

Proof. Let fT be the function defined in (11.5), and Ψ be the Lκ+κ-sentence
defined in (12.3). Then for every open set U ⊆ ω2

h−1
T (U) = {X ∈ModκΨ | ∃x ∈ U(X ∼= fT (x))} = g−1((g ◦ fT )(U)).

Since C := ω2\U is closed, (g◦fT )(C) is closed as well by Corollary 12.11, so let σV

be the Lb
κ+κ-sentence given by Lemma 12.9 applied to V :=

<ω2×κ2 \ (g ◦ fT )(C).

Then h−1
T (U) = g−1((g ◦ fT )(U)) = g−1(V ) ∩ModκσT

= ModκσV
∩ModκσT

. �

The next theorem generalizes Theorem 1.4 to regular uncountable κ’s.

Theorem 14.8. Let κ be an infinite regular cardinal. Then �∼
κ
CT is ≤κ

B-
invariantly universal for κ-Souslin quasi-orders on ω2, that is: for every κ-Souslin
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quasi-order R on ω2 there is an Lκ+κ-sentence σ all of whose models are combina-
torial trees such that R ∼κ

B
�∼

κ
σ, and in fact even R ∼κ

B
�∼

κ
σ.

Proof. Let T ∈ Tκ be such that R = p[T ], let σT , fT and hT be as in
Theorem 12.15, and set σ := σT . Since by Theorem 12.15 we already know that fT
and hT reduce R and �∼

κ
σ to each other, it remains to show that they are (weakly)

κ + 1-Borel functions: arguing as in the proof of Theorem 14.3, we get that the
function fT is (effective) weakly κ + 1-Borel (and in fact also effective weakly α-
Borel for any α ≥ ω), while the function hT is (effective) κ+ 1-Borel by regularity
of κ and Lemma 14.7. �

Notice that the Lκ+κ-sentence σ we provided in the proof of Theorem 14.8
(which is the Lκ+κ-sentence σT from Theorem 12.15, see also Corollary 12.12)
does not belong to the fragment Lb

κ+κ,
2 and hence we cannot in general guarantee

that Modκσ be a κ + 1-Borel subset of ModκL (see Section 8.2, and in particular
Remark 8.12). Therefore, if one aims at generalizing Theorem 1.5 to (regular)
uncountable κ’s, then Theorem 12.15 needs to be replaced with Theorem 13.12 (and
CTκ with OCTκ). First notice that by replacing in the proof of Lemma 14.7 the
map fT with the function f̄T from (13.2), Ψ with the L̄b

κ+κ-sentence Ψ̄ from (13.4),
Corollary 12.11 with Corollary 13.8, and Lemma 12.9 with Lemma 13.6, we get the
following variant of it.

Lemma 14.9. The map h̄T : Modκσ̄T
→ ω2 from Definition 13.10 is L̄b

κ+κ-
measurable, and hence, if κ is regular, also (effective) κ+ 1-Borel measurable.

Then arguing as in the proof of Theorem 14.8 we get the following generalization
of Theorem 1.5.

Theorem 14.10. Let κ be an infinite regular cardinal. Then for every κ-
Souslin quasi-order R on ω2 there is an effective κ+ 1-Borel set B ⊆ ModκL̄ closed
under isomorphism (all of whose elements are ordered combinatorial trees) such
that R ∼κ

B
�∼�B, and in fact even R ∼κ

B
�∼�B.

Proof. Let T ∈ Tκ be such that R = p[T ], let σ̄T , f̄T and h̄T be as in
Theorem 13.12, and set σ̄ := σ̄T . Then B := Modκσ̄T

⊆ ModκL̄ is effective κ + 1-

Borel by (13.9). Since by Theorem 13.12 we know that f̄T and h̄T reduce R and �∼
κ
σ̄

to each other, it remains to show that they are both (weakly) κ+1-Borel functions.
For the function f̄T we argue as in the proof of Theorem 14.3: f̄T : ω2 → ModκL̄
is easily seen to be continuous when both spaces are endowed with the product
topology τp, and hence it is (effective) weakly κ + 1-Borel (in fact, even effective
weakly α-Borel for any α ≥ ω). The function h̄T is effective κ+1-Borel by regularity
of κ and Lemma 14.9, so we are done. �

14.2. Absolutely definable reducibilities

Even if Borel reducibility (i.e. Σ1
1-reducibility) is probably the most natural

way to compare the complexity of Σ1
1 equivalence relations and quasi-orders, one

sometimes needs to generalize this notion to the projective levels: for example,
in [37,38] the so-called absolutely Δ1

2-reducibility ≤aΔ1
2
, i.e. the reducibility notion

2More precisely: the sentence σT provided in the proof of Corollary 12.12 is the conjunction
of an Lb

κ+κ
-sentence with the Ψ ∈ Lκ+κ from (12.3). Since the latter does not belong to the

bounded logic Lb
κ+κ

, the same applies to σT .
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obtained using absolutely Δ1
2 maps as reductions, has proven to be useful in this

area. Here we recall the definition of such functions as presented in [37].

Definition 14.11 ([37, Definition 9.1]). Let HC be the collection of heredi-
tarily countable sets. A function f : ωω → HC is absolutely Δ1

2 if there is some
parameter p ∈ ωω and an LST-formula Ψ(x0, x1, z0) such that:

(1) for all x ∈ ωω and y ∈ HC, f(x) = y if and only if there is some countable
transitive setM with x, y, p ∈M such that (M,∈) |= Ψ[x, y, p];

(2) Ψ(x0, x1, p) absolutely defines a function, in the sense that in all generic ex-
tensions of the universe V it continues to be the case that for all x ∈ ωω there
exists3 y ∈ HC and a countable transitiveM with (M,∈) |= Ψ[x, y, p].

Such definition is then naturally extended to cover all functions of interest
in [37, Section 9], including functions between arbitrary Polish spaces, functions
between ω1 and HC, and so on.

Remark 14.12. The reference to the countable transitiveM in Definition 14.11
is added to have a Δ1

2 definition of f , but if we are only interested in the absolute
definability of f (without specifying the complexity of such a definition) then it is
natural to only require that the LST-formula Ψ(x0, x1, p) defines (in V) the graph
of f : ωω → HC, and it continues to define a function between ωω and HC in all
generic extensions of the universe V in a coherent way, that is, if x ∈ V[G0]∩V[G1],
then V[G0] |= Ψ[x, y, p] and V[G1] |= Ψ[x, y, p] for the same y.

In the realm of standard Borel spaces, (ω+1-)Borel functions are absolutelyΔ1
2-

definable, so ≤aΔ1
2
is used only whenever suitable Δ1

1-reductions are not available.
In contrast, when κ is uncountable κ+ 1-Borel functions need not be absolute, so
one might wonder whether the reductions appearing in our main results are indeed
absolute. In this section we generalize Hjorth’s approach and show that, essentially,
the reductions obtained in the proof of Theorem 12.15 cannot be destroyed by
passing to set-forcing extensions or to inner models. Since these are the two main
techniques for proving the independence of a given mathematical assertion from
the chosen set-theoretic axiomatization, Theorems 14.16 and 14.19 essentially show
that the invariant universality of the embeddability relation �∼

κ
CT is absolute for

transitive models of ZF containing all relevant parameters.
Before stating the main results of this section (Theorems 14.16 and 14.19),

we first need to adapt Definition 14.11 to our context. As done by Hjorth, also
Definition 14.13 is given just for the specific functions which are relevant to the
results of this paper. However, with some extra work such a definition could be
easily adapted to a general definition of an absolutely definable function f between
(definable subsets) of spaces X ,Y of type, respectively, λ, μ ∈ Card.

Definition 14.13. Let κ be an infinite cardinal and σ ∈ Lκ+κ. A function
f : ω2→ Modκσ is absolutely (p-)definable if there is a parameter p ∈ κκ and an
LST-formula Ψf (x0, x1, z0, z1) such that for all forcing notions P0,P1 ∈ V and all

V-generic Gi ⊆ Pi such that κ ∈ CardV[Gi], the following conditions hold:

(1) for all x ∈ ω2 and y ∈Modκσ, f(x) = y if and only if V |= Ψf [x, y, κ, p];
(2) Pi forces that Ψf (x0, x1, κ, p) defines (the graph of) a function

fV[Gi] : (ω2)V[Gi] → (Modκσ)
V[Gi],

3Such y is unique by Σ1
2-absoluteness.
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that is
V[Gi] |= ∀x ∈ ω2∃!X ∈ Modκσ Ψf [x,X, κ, p]

(3) fV[G0] and fV[G1] are coherent, that is for all x ∈ (ω2)V[G0] ∩ (ω2)V[G1]

(14.2) fV[G0](x) = fV[G1](x).

Absolutely (p-)definable functions Modκσ → ω2 are defined similarly.

Remarks 14.14. (i) The coherence condition (14.2) does not explicitly ap-
pear in Hjorth’s Definition 14.11 since in that case it is automatically satisfied—
see Remark 14.12.

(ii) The restriction of fV[G] to (ω2)V[G] \ (ω2)V depends in general on the chosen
p and Ψf (but fV[G]� (ω2)V does not by (14.2)). Similar considerations hold
for an absolutely definable f : Modκσ → ω2.

Using absolutely definable functions as reductions (in V) between a quasi-order
R on ω2 and an embeddability relation �∼

κ
σ (for some Lκ+κ-sentence σ) would yield

an analogue of Hjorth’s absolutely Δ1
2 reducibility, which may be dubbed absolutely

definable reducibility. However, when R is a κ-Souslin quasi-order and T ∈ Tκ is a
faithful representation of it (see Definition 11.2), then by Remark 11.3 in all forcing

extensions V[G] of V we have a canonical extension R
V[G]
T := (p[T ])V[G] of R which

is still a κ-Souslin quasi-order and is coherent with R, i.e. R
V[G]
T coincides with R

on their common domain (ω2)V. Therefore when comparing such an R with an
embeddability relation �∼

κ
σ, it is natural to require that the absolutely definable

functions involved continue to be reductions between R
V[G]
T and (�∼

κ
σ)

V[G] in all
forcing extensions as in Definition 14.13 (and not just in V). This leads us to the
following stronger definition.

Definition 14.15. Let κ be an infinite cardinal, T ∈ Tκ be a faithful repre-
sentation of a κ-Souslin quasi-order R, and σ be an Lκ+κ-sentence. We say that R
is absolutely (p-)definably reducible to �∼

κ
σ, in symbols

R ≤aD
�∼

κ
σ,

if there is a reduction f : ω2 → Modκσ of R to �∼
κ
σ such that for some parameter

p ∈ κκ and some LST-formula Ψf (x0, x1, z0, z1) the following hold:

(1) Ψf (x0, x1, κ, p) absolutely defines f ;

(2) for all forcing notions P and all V-generic G ⊆ P such that κ ∈ CardV[G]

V[G] |= “fV[G] reduces R
V[G]
T to �∼

κ
σ ”,

where as in Definition 14.13 we denote by fV[G] the map defined in V[G] by
Ψf (x0, x1, κ, p).

The notions of absolutely definable reducibility of �∼
κ
σ to R and of absolutely

definable bi-reducibility ∼aD are defined similarly.

We are now ready to reformulate our main invariant universality result Theo-
rem 12.15 in terms of absolutely definable reducibility.

Theorem 14.16. Let κ be an infinite cardinal. Then �∼
κ
CT is ≤aD-invariantly

universal for κ-Souslin quasi-orders on ω2.
More precisely: for every faithful representation T ∈ Tκ of a κ-Souslin quasi-

order R on ω2 there is an Lκ+κ-sentence σ and two LST-formulæ ΨfT (x0, x1, z0, z1)
and ΨhT

(x0, x1, z0, z1) such that:
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(a) ΨfT (x0, x1, κ, T ) absolutely defines a function fT : ω2 → Modκσ witnessing
R ≤aD

�∼
κ
σ;

4

(b) ΨhT
(x0, x1, κ, T ) absolutely defines a function hT : Modκσ → ω2 witnessing

�∼
κ
σ ≤aD R;

(c) for all forcing notions P and all V-generic G ⊆ P such that κ ∈ CardV[G],

we have h
V[G]
T ◦ fV[G]

T = idV[G] and V[G] |= (f
V[G]
T ◦ hV[G]

T )(X) ∼= X for every

X ∈ (Modκσ)
V[G].

Proof. Let σ be the Lκ+κ-sentence obtained in the proof of Corollary 12.12,
ΨfT (x0, x1, κ, T ) be the LST-formula from Fact 11.10, and ΨhT

(x0, x1, z0, z1) be
the LST-formula from Proposition 12.20(a): we claim that σ, ΨfT , and ΨhT

are as
required.

Fix any forcing notion P and a V-generic G ⊆ P such that κ ∈ CardV[G].

Observe that if σ
V[G]
T := (σT )

V[G] is the (Lκ+κ)
V[G]-sentence coming from (the

proof of) Corollary 12.12 when applied in V[G] (see Section 12.4), then

(14.3) σ = σ
V[G]
T

by Proposition 12.19. By Fact 11.10, the LST-formula ΨfT (x0, x1, κ, T ) absolutely

defines fT in the strong sense that: the function f
V[G]
T defined by ΨfT (x0, x1, κ, T )

in V[G] is exactly the function (fT )
V[G] obtained as in (11.5) once all the construc-

tion is carried out in V[G]. In particular, since Theorem 11.8(a) holds in V[G],
condition (a) of the present theorem is satisfied. By Proposition 12.20, the LST-
formula ΨhT

(x0, x1, κ, T ) absolutely defines hT (the coherence condition (14.2) in
Definition 14.13 is guaranteed by Proposition 12.20(b), whose extra condition can
be removed in our setup by Remark 12.21). More precisely, when evaluated in V[G]

the formula ΨhT
(x0, x1, κ, T ) defines the function h

V[G]
T = (hT )

V[G] computed (in

V[G]) according to Definition 12.13, whose domain is (Modκ
σ

V[G]
T

)V[G] = (Modκσ)
V[G]

(the latter equality follows from (14.3)). Since Theorem 12.15 holds in V[G], both
conditions (b) and (c) of the present theorem are satisfied. �

Remarks 14.17. (i) Recall that when κ > ω neither the embeddability rela-
tion �∼�ModκL nor the statement “X |= σ” (for X ∈ ModκL and σ an arbitrary
Lκ+κ-sentence) are in general absolute for transitive models of ZF (see the
observation before Proposition 11.12 and Remark 8.5(iii)). However, for the
specific Lκ+κ-sentences considered in Theorem 14.16 (that is, for those sen-
tences constructed as in the proof of Corollary 12.12) one can show, using
Proposition 11.12, that the embeddability relations (�∼

κ
σ)

V and (�∼
κ
σ)

V[G] are
coherent in the following strong sense:
(1) (Modκσ)

V = (Modκσ)
V[G] ∩ V;

(2) (�∼
κ
σ)

V[G] and (�∼
κ
σ)

V coincide on their common domain (Modκσ)
V, that

is: for every X,Y ∈ Modκσ

V |= X �∼ Y ⇔ V[G] |= X �∼ Y .

(ii) It follows from the absoluteness results above that if σ is an Lκ+κ-sentence
obtained as in Corollary 12.12 and P does not add new reals, then every
X ∈ (ModκσT

)V[G] has an isomorphic copy in the ground model V.

4Here T is identified with a parameter in κκ via its characteristic functions and the bijection
〈〈·〉〉 from (2.2). The same identification is tacitly applied every time that T is used as a parameter
in an LST-formula absolutely defining a function.
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So far we just considered generic (or upward) absoluteness, that is absoluteness
with respect to forcing extensions. However, similar results hold when considering
e.g. absoluteness with respect to transitive ZF-models M ⊆ V (thus including in-
ner models as a particular case). In this new setup, Definition 14.13 might be
reformulated as follows.

Definition 14.18. Let κ be an infinite cardinal and σ ∈ Lκ+κ. A function
f : ω2→ Modκσ is (downward) absolutely (p-)definable if there is a parameter
p ∈ κκ and an LST-formula Ψf (x0, x1, z0, z1) such that for every transitive ZF-
model M ⊆ V with κ, p,σ ∈M , the following hold:

(1) Ψf (x0, x1, κ, p) defines inM (the graph of) a function fM : (ω2)M → (Modκσ)
M ,

that is

(M,∈) |= ∀x ∈ ω2 ∃!X ∈ Modκσ Ψf [x,X, κ, p];

(2) for every x ∈ ω2 ∩M and every X ∈ Modκσ ∩M ,

f(x) = X ⇔ (M,∈) |= Ψf [x,X, κ, p].

Notice that the fact that Ψ defines f in V is included in part (2) by taking M =
V. The same condition also yields the analogue of the coherence condition (14.2)
in Definition 14.13: indeed, each fM is required to be the restriction of f to (ω2)M .

Using Definition 14.18, one could then introduce a notion of (downward) ab-
solute definable reducibility ≤dw

aD mirroring in the natural way Definition 14.15
— the unique thing to notice here is that in this case RM

T will be the restriction
of the quasi-order R to (ω2)M . Theorem 14.16 would then turn into the following
“downward absoluteness” result, which can be proved in the same vein. (Part (a),
which must explicitly be added here because M is now a subclass of V which in
principle might not contain the desired σ, follows from the analogue of (14.3).)

Theorem 14.19. Let κ be an infinite cardinal. Then �∼
κ
CT is ≤dw

aD-invariantly
universal for κ-Souslin quasi-orders on ω2.

More precisely: for every faithful representation T ∈ Tκ of a κ-Souslin quasi-
order R on ω2 there is an Lκ+κ-sentence σ and two LST-formulæ ΨfT (x0, x1, z0, z1)
and ΨhT

(x0, x1, z0, z1) such that for every transitive ZF-model M ⊆ V with T ∈M
(and hence κ ∈M) the following conditions hold:

(a) σ ∈ (Lκ+κ)
M (equivalently, by absoluteness of the statement “σ ∈ Lκ+κ”,

σ ∈M);
(b) ΨfT (x0, x1, κ, T ) (downward) absolutely defines a function fT : ω2 → Modκσ

witnessing R ≤dw
aD

�∼
κ
σ;

(c) ΨhT
(x0, x1, κ, T ) (downward) absolutely defines a function hT : Modκσ → ω2

witnessing �∼
κ
σ ≤dw

aD R;

(d) hM
T ◦ fM

T = idM and M |= (fM
T ◦ hM

T )(X) ∼= X for every X ∈ (Modκσ)
M .

Remarks 14.20. Considerations similar to those in Remark 14.17 can be made
also in this new context. If M ⊆ V is any transitive ZF-model and σT is an Lκ+κ-
sentence obtained as in Corollary 12.12 starting from some T ∈ Tκ ∩M , then

(i) (Modκσ)
M = (Modκσ)

V ∩M and for every X,Y ∈ (Modκσ)
M ⊆ Modκσ

V |= X �∼ Y ⇔ M |= X �∼ Y .

(ii) if M contains all the reals of V, then every X ∈ ModκσT
has an isomorphic

copy in M , that is, (ModκσT
)M meets all isomorphism classes of ModκσT

. In
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particular, ModκσT
is always faithfully represented in every inner model con-

taining L(R).

We conclude this section by pointing out that we just considered absoluteness
with respect to generic extensions or transitive ZF-submodels of V only for the sake
of simplicity. However, it is easily seen that our absoluteness results naturally ex-
tend to much wider contexts, such as the generic multiverse investigated by several
people (including J.D. Hamkins, S.D. Friedman, W.H. Woodin). Unfortunately, it
is difficult (if not impossible) to coherently define a unique setup encompassing all
these possibilities, so we explicitly considered only two of the most relevant setups.

14.3. Reducibilities in an inner model

As a further generalization of absolutely Δ1
2-reducibility, one could consider

reducibility under determinacy within L(R); in other words, assuming ADL(R) and
working inside L(R) we consider arbitrary reductions between quasi-orders. The
rationale for this is that L(R) includes anything one could consider reasonably defin-
able, like e.g. all Polish spaces up to homeomorphism, all separable Banach spaces
up to linear isometry, all Borel and projective sets and functions, and so forth.

Moreover ADL(R) yields a very detailed picture of L(R), much akin to what the
axiom of constructibility V = L does for L. This approach to definable reducibility
has been explicitly considered e.g. in [35,36] and [37, Chapter 9].

14.3.1. Cardinality and reducibility in L(R). Because of the special na-
ture of L(R) (see the subsequent Remark 14.22(i)), many results about L(R)-
reducibility can be recast in terms of L(R)-cardinality and conversely (see also
Section 2.6.4, the introduction to Section 14, and point (D) below).

Definition 14.21. For A,B ∈ L(R) we let

|A|L(R) ≤ |B|L(R) ⇔ ∃f ∈ L(R) (f : A � B)

⇔ L(R) |= |A| ≤ |B|.

The following are a sample of results in this context which are relevant for
our discussion. By Definition 14.21, comparing L(R)-cardinalities amounts to work
inside L(R), so for ease of notation we will now step into this model, assume AD,
and drop the subscripts, writing |A| instead of |A|L(R).
(A) Every subset of R is either countable or else it contains a copy of ω2 (so there

is no intermediate cardinality between ω and |R|), and since R is not well-
orderable, then |R| is incomparable with (the cardinality of) any uncountable
ordinal. This, in a sense, solves the continuum problem under AD.

(B) More generally, Woodin showed that R is essentially the unique obstruction for
a set A to be well-orderable: either |A| ≤ |α| for some ordinal α, or |R| ≤ |A|
(see e.g. [36, Theorem 2.8 and Corollary 2.9]). Note that this generalizes
Silver’s dichotomy [83] to arbitrary sets.

(C) Similarly, Hjorth [35, Theorem 2.6] extended the Glimm-Effros dichotomy
[31] to arbitrary sets A by showing that either |A| ≤ |P(α)| for some ordinal
α, or else |R/E0| ≤ |A|, where E0 is as in (14.1).

(D) Furthermore, every set is of the form
⋃

α<κ Aα, where κ ∈ Card and each Aα

is of small cardinality, i.e. for every α < κ there is an equivalence relation Eα

on R such that |Aα| = |R/Eα| (see [35, proof of Theorem 2.6] and [36, Lemma
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2.13]). Therefore all cardinalities in L(R) can be analyzed in terms of ordinals
and reducibility between quasi-orders on R (or, equivalently, on ω2).

Remarks 14.22. (i) In (B)–(D) above, it is crucial that we work in L(R),
so that, in particular, every set is definable using only reals and ordinals as
parameters. However, under AD alone one still has that (B)–(D) are true
e.g. for sets of small cardinality, i.e. for sets A such that |A| = |R/E| for some
equivalence relation E on R (without definability conditions on E), or even
in the wider context of real-ordinal definable sets.

(ii) Dichotomy (B) shows that under AD if A is arbitrary, X is a separable space,

and AX is endowed with the product topology,
AX is separable ⇔ |A| ≤ ω ∨ |A| = |R|.

Stepping-back into the universe of sets V (where we may assume that AC holds),
all the results above can be restated as assertions about L(R)-cardinalities (as

introduced in Definition 14.21) under the assumption ADL(R). For example (B)

reads as follows: assuming ADL(R), for all A ∈ L(R) either |A|L(R) ≤ |α|L(R) or else
|R|L(R) ≤ |A|L(R).

14.3.2. Cardinality and reducibility in an inner model. The approach
above can be generalized by considering any inner model W of ZF containing all the
reals, so that in particular W ⊇ L(R). If W is constructed in a canonical, explicit
way, such as L(R) or OD(R), then it is reasonable to describe the objects in W as
definable. Assuming e.g. sufficiently large cardinal axioms or determinacy assump-
tions, or working in some special model of set theory (like the Solovay models),
this approach gives in general a nice definable reducibility and cardinality theory.
Therefore in what follows we will construe “reasonably definable” as “belonging
to the inner model W ⊇ L(R)” under consideration. The resulting relations of
W -reducibility ≤W and W -bi-reducibility ∼W are defined in the obvious way,
namely:

Definition 14.23. Let W ⊇ R be an inner model and R,S ∈ W be quasi-
orders. Then

R ≤W S ⇔ ∃f ∈W (f reduces R to S)

⇔ W |= R ≤ S,

and R ∼W S ⇔ R ≤W S ∧ S ≤W R.5

Using the fact that they hold in the ZF-model W , Theorems 11.8 and 12.15
can be reformulated as follows:

Theorem 14.24. Let W ⊇ R be an inner model and suppose that κ ∈ CardW

and R ∈ SW (κ).6 Let S := (�∼
κ
CT)

W be the embeddability relation between com-
binatorial trees of size κ in W , i.e. S is the unique quasi-order (in V) such that
W |= “S = �∼

κ
CT”. Then R ≤W S. Therefore S is ≤W -complete for quasi-orders

in SW (κ).

Theorem 14.25. Let W ⊇ R be an inner model and let κ ∈ CardW . Then for
every R ∈ SW (κ) there is σ ∈ (Lκ+κ)

W ⊆ Lκ+κ such that R ∼W
�∼

κ
σ.

5The symbol ≤W , which is a reducibility for quasi-orders, should not be confused with ≤κ
W,

the Wadge reducibility between subsets of 2κ from Sections 3 and 4.
6See Remark 9.6 for the definition of SW (κ).
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Remark 14.26. As in [37, Chapter 9], all terms in the statement of Theorem
14.25 must be relativized to W . Thus e.g. R ≤W

�∼
κ
σ is construed as: there is

f : R→ (Modκσ)
W such that for every x, y ∈ R

x R y ⇔ W |= f(x) �∼ f(y).

Unfortunately, the fact that we are forced to use (Modκσ)
W instead of Modκσ (and

that, in general, (Modκσ)
W ⊂ Modκσ) forbids to formally restate Theorem 14.25 in

terms of ≤W -invariant universality as introduced in Definitions 12.1 and 12.2. No-
tice also that in (the statement of) Theorem 14.25 we have (Modκσ)

W = Modκσ ∩W
by Remark 14.20(i): this is because in this case the formula σ provided by Theo-
rem 12.15 is obtained as in Corollary 12.12, that is it is of the form σT for some
T ∈ (Tκ)

W . Moreover, by Remark 14.20(ii) we also get that the Lκ+κ-sentence
σ := σT under consideration has the remarkable property that every model (in V)
of σ has an isomorphic copy belonging to the inner model W , so that even though
they may fail to belong to M , the V-relations ∼=κ

σ and �∼
κ
σ are at least faithfully

represented in W .

The preorder ≤W from Definition 14.23 can be in principle extended to compare
quasi-orders which are not necessarily in W , namely for arbitrary quasi-orders R,S
of V we can set

R ≤′
W S ⇔ ∃f ∈W (f reduces R to S).

However, by definition R ≤′
W S can hold only if dom(R) = dom(f) ∈ W for

some/any f witnessing R ≤′
W S. For this reason, we can restate in this more

general context only the completeness result (Theorem 11.8) and not the invariant
universality one (Theorem 12.15), as in the latter case ModκσT

need not to belong
to W — as recalled in Remark 14.26, we are just guaranteed that ModκσT

∩W =

(ModκσT
)W ∈W .

Theorem 14.27. Let W ⊇ R be an inner model, κ be a cardinal, and let
R ∈ SW (κ). Then R ≤′

W
�∼

κ
CT. Therefore �∼

κ
CT is ≤′

W -complete for quasi-orders
in SW (κ).

Proof. Let T ∈ (Tκ)
W be such that R = p[T ]. Since κ ∈ CardW (because W

is an inner model) and T ∈ W , by (the proof of) Theorem 14.16 the function fT
from (11.5) is absolutely definable (using only T ∈W as a parameter) and reduces
R to �∼

κ
CT. Since R ⊆ W , by (14.2) we get fW

T = fT , whence fT ∈ W . Therefore,
fT witnesses R ≤′

W
�∼

κ
CT, as required. �
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CHAPTER 15

Some applications

As we will see in this section, the results obtained in Sections 11–14 yield
several corollaries: inside any model where the κ-Souslin quasi-orders on ω2 (or,
equivalently, on any Polish or standard Borel space) form an interesting class, we
get a completeness and invariant universality result for the embeddability relation
on combinatorial trees of size κ. Since there are lot of situations of this kind, in
what follows we will just explicitly state a few of them which correspond to some
of the most relevant cases. All these results admit several variants which will not
be explicitly mentioned but that could be of interest on their own, namely:

(1) the relations ≤κ
B and ∼κ

B could systematically be replaced by their effective
counterparts ≤κ

B and ∼κ
B;

(2) in each statement, we could equivalently consider the wider class of κ-Souslin
quasi-orders defined on arbitrary Polish spaces (or even on arbitrary standard
Borel spaces) instead of its restriction to the κ-Souslin quasi-orders on ω2 —
this is because every two uncountable Polish or standard Borel spaces are
Borel isomorphic and S(κ) is closed under Borel (pre)images by Lemma 9.7;

(3) elementary classes of the form Modκσ for some Lκ+κ-sentence σ obtained as
in Corollary 12.12 could always be equivalently substituted by Mod∞σ by Re-
mark 12.17(i);

(4) by Corollary 12.16, in all the subsequent results concerning the bi-reducibility
between two quasi-orders R and S we could further add that the quotient
orders of R and S are in fact isomorphic.

15.1. Σ1
2 quasi-orders

Recall that since the ≤Σ1
1
-reducibility (see Definition 14.4), which is the same

as the ≤S(ω)-reducibility, coincides with the classical Borel reducibility ≤ω
B, by

Theorems 1.1 and 1.4 we have that:

Completeness: �∼
ω
CT is≤Σ1

1
-complete (equivalently, ≤S(ω)-complete) forΣ1

1 quasi-

orders on ω2, i.e. R ≤Σ1
1

�∼
ω
CT (equivalently, R ≤S(ω)

�∼
ω
CT) for every Σ1

1 quasi-
order R on ω2;

Invariant universality: �∼
ω
CT is also ≤ω

B-invariantly universal (and hence also

≤ω
B-complete) for Σ1

1 quasi-orders on ω2, i.e. for every such R there is an Lω1ω-
sentence σ such that R ∼ω

B
�∼

ω
σ.

The following theorems generalize the above results to the next level of the projec-
tive hierarchy. (It is easy to check that in all the situations below it always makes
sense to considerΣ1

2-in the-codes and S(ω1)-in-the-codes functions f :
ω2→ Modω1

L
by the observations following Proposition 9.18 and Lemma 9.27.)

155
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Theorem 15.1. Assume either AC or AD + DC. Then the relation �∼
ω1

CT is

≤S(ω1)-complete1 for Σ1
2 quasi-orders on ω2.

Proof. Apply Theorem 14.6, using the fact that Σ1
2 ⊆ S(ω1). �

Notice that in Theorem 15.1 when assuming AD + DC we could replace the
somewhat artificial notion of ≤S(ω1)-completeness with the more natural notion

of ≤Σ1
2
-completeness because in this case S(ω1) = Σ1

2 (see the paragraph before

Proposition 9.25). A similar strengthening can be obtained in models of AC as well
under some additional set-theoretic assumptions.

Theorem 15.2 (AC). Assume either MA + ¬CH + ∃a ∈ ωω (ω
L[a]
1 = ω1) or

ADL(R). Then �∼
ω1

CT is ≤Σ1
2
-complete for Σ1

2 quasi-orders on ω2.

Proof. Under ZFC +MA + ¬CH + ∃a ∈ ωω (ω
L[a]
1 = ω1) we get S(ω1) = Σ1

2

by Proposition 9.18, so the result follows from Theorem 15.1.

Let us now assume ADL(R), and recall that ω
L(R)
1 = ω1 and (ω2)L(R) = ω2. Let

R be a Σ1
2 quasi-order on

ω2, so that R is Σ1
2 also in L(R) and hence R ∈ SL(R)(ω1).

Let T ∈ (Tω1
)L(R) be such that R = p[T ]. Then by (the proof of) Theorem 14.27

the function fT from (11.5) is a reduction of R to �∼
ω1

CT and belongs to L(R). Under

our assumptions, ZF+AD+DC holds in L(R) (whence also L(R) |= “S(ω1) = Σ1
2”),

so applying Theorem 14.6(b) in L(R) we have that

L(R) |= fT is Σ1
2-in-the-codes.

Thus fT is actually Σ1
2-in-the-codes (in V) by Shoenfield’s Σ1

2-absoluteness. �

As for invariant universality, we get the following result in ZF+ ACω(R).

Theorem 15.3 (ACω(R)). The relation �∼
ω1

CT is ≤ω1

B -invariantly universal (and

hence also ≤ω1

B -complete) for Σ1
2 quasi-orders on ω2.

Proof. Since Σ1
2 ⊆ S(ω1), it is enough to use Theorem 14.8, which can be

applied because ACω(R) implies that ω1 is a regular cardinal. �

Theorems 15.1–15.3 are more interesting in all cases in which the topological
notions involved (such as S(ω1)-in-the-codes functions, ω1 +1-Borel sets and func-
tions, and so on) are nontrivial, i.e. when ω1 is “small enough” with respect to the
cardinality of the continuum. This is the case if we work in models of AD. If instead
we work in models of ZFC, then as observed in Sections 3–6 and 9 all the relevant
topological notions trivialize under CH. Thus we are naturally lead to work in
models of ZFC+ ¬CH. By the observation following Proposition 9.19, this already
gives that the notion of a S(ω1)-in-the-code function f : ω2→ Modω1

L is nontrivial.

Moreover, if we further assume that the inequality 2ℵ1 < 2(2
ℵ0) holds (which is e.g.

the case in models of forcing axioms like MAω1
, PFA, and so on), then also the

notions of a (weakly) ω1 + 1-Borel function f : ω2 → Modω1

L becomes interesting
(see Corollary 5.6(b)). This discussion shows that the following instantiation of
Theorems 15.1 and 15.2 is nontrivial.

1By Proposition 9.10, we could replace ≤S(ω1)-completeness with ≤ω1
B -completeness. How-

ever the latter is a weaker notion, and in fact the corresponding completeness result can be proved
already in ZF+ ACω(R) — see Theorem 15.3.
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Corollary 15.4 (AC+ PFA). The relation �∼
ω1

CT is ≤Σ1
2
-complete (and hence

also ≤S(ω1)- and ≤
ω1

B -complete) for Σ1
2 quasi-orders on ω2.

Proof. ADL(R) follows from PFA by [85], so Theorem 15.2 can be applied. �

If besides 2ℵ1 < 2(2
ℵ0 ) we further assume2 that 2(2

<ℵ1) < 2(2
ℵ1), then also

the notion of an ω1 + 1-Borel function f : Modω1

L → ω2 becomes nontrivial (see
Corollary 5.6(c)). Therefore, a situation of interest in which Theorem 15.3 can be
applied is 2κ = κ++ for every κ ≤ ℵ3.

15.2. Projective quasi-orders

In this section we will generalize Theorems 1.1 and 1.4 to even larger projective
levels (under suitable assumptions).

15.2.1. Models of AC. Martin showed in [66] that ZFC+∀x ∈ ωω (x# exists)
implies that allΣ1

3 sets are ω2-Souslin. Using this fact and applying Theorems 14.6(a)
and 14.8, we get the following further generalizations of Theorems 1.1 and 1.4. (Re-
call that in models with choice it always makes sense to speak of S(ω2)-in-the-codes
functions f : ω2→ Modω2

L by the observation following Proposition 9.18, and that
every such f is automatically weakly ω2 + 1-Borel by Proposition 9.10.)

Theorem 15.5 (AC). Assume that x# exists for all x ∈ ωω.

(a) The relation �∼
ω2

CT is ≤S(ω2)-complete for Σ1
3 quasi-orders on ω2.

(b) The relation �∼
ω2

CT is ≤ω2

B -invariantly universal (and hence also ≤ω2

B -complete)

for Σ1
3 quasi-orders on ω2.

An interesting application of this theorem is when considering the quasi-order
(Q,≤B) of Example 1.6, that is the relation of Borel reducibility between analytic
quasi-orders. As recalled in the introduction, such quasi-order may be seen as a
(definable) embeddability relation between structures of size the continuum 2ℵ0 :
the next result shows that (Q,≤B) can be turned into an embeddability relation
on structures of size ℵ2, independently of the actual value of 2ℵ0 .

Theorem 15.6 (AC). Assume that x# exists for all x ∈ ωω. Then the quotient

order of (Q,≤B) (definably) embeds into the quotient order of �∼
ℵ2

CT.
Moreover there is an Lℵ3 ℵ2

-sentence σ such that the quotient orders of (Q,≤B)

and �∼
ℵ2

σ are even (definably) isomorphic.

Proof. For the additional part about the Lℵ3 ℵ2
-sentence σ, we use Corol-

lary 12.16. �
Recall that the assumption ∀x ∈ ωω (x# exists) is equivalent over ZFC to Σ1

1-
determinacy (in fact, even to <ω2-Π1

1-determinacy) by results of Harrington and
Martin (see [30]). Assuming more determinacy, we can extend Theorem 15.5 to all

projective levels (recall that the axiom ADL(R) used in Theorem 15.7 follows both
from the existence of infinitely many Woodin cardinals with a measurable above,
and from strong forcing axioms such as PFA).

2Since 2ℵ0 = 2ℵ1 implies 2(2
<ℵ1 ) = 2(2

ℵ1 ), MAω1 (and even the stronger PFA, MM, and so
on) are not sufficient to ensure the extra cardinal condition under discussion. However, it could
still be the case that the notion of an ω1 + 1-Borel function f : Modω1

L → ω2 is nontrivial also in

models of forcing axioms for reasons different from the cardinality considerations of Corollary 5.6.
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Theorem 15.7 (AC). Assume ADL(R). Then there is a monotone function
r : ω → ω such that:

(a) the relation �∼
ωr(n)

CT is ≤S(ωr(n))-complete for Σ1
n quasi-orders on ω2;

(b) the relation �∼
ωr(n)

CT is ≤ωr(n)

B -invariantly universal (and hence also ≤ωr(n)

B -

complete) for Σ1
n quasi-orders on ω2.

An upper bound for r is given by:

r(n) ≤
{
2k+1 − 2 if n = 2k + 1,

2k+1 − 1 if n = 2k + 2.

The proof below will in particular show that, under the hypotheses of the
theorem, there is an S(ωr(n))-code for ωr(n) for each n, so that in part (a) it makes
sense to speak of S(ωr(n))-in-the-codes functions.

Proof. As every element of L(R) is definable reals and ordinals, and since any

ω-sequence of reals belongs to L(R), then AC implies DCL(R). Therefore under our
assumptions L(R) |= AD+ DC. Recall that projective sets are absolute between V
and L(R), in particular δ1n = (δ1n)

L(R), but while δ1n is always a cardinal in L(R) by
L(R) |= AD+DC, it may be just an ordinal in V). Let κn := δ1n−1 = (δ1n−1)

L(R) if n

is even and κn := (λ1
n)

L(R) if n is odd, and let r(n) be such that ωr(n) = |κn| (where
the cardinality of κn is computed in V). By Corollary 4.13 we get the above upper
bound for the function r : ω → ω (in the odd case we use the fact that (λ1

n)
L(R) has

countable cofinality in L(R), and hence its V-cardinality is collapsed at least to the
V-cardinality of the largest regular cardinal of L(R) below it). Since L(R) satisfies
AD + DC, by [45, Theorem 2.18] (see the observation before Proposition 9.25) we
get

Σ1
n = (S(κn))

L(R) ⊆ SL(R)(κn) ⊆ S(ωr(n)).

Notice that since (S(κn))
L(R) ⊆ S(ωr(n)) and κn ≥ ωr(n), it follows from Proposi-

tion 9.25(b) (applied in the model L(R) with κ := κn) and Remark 5.4(iii) that it

always makes sense to speak of S(ωr(n))-in-the-codes functions f :
ω2→ Mod

ωr(n)

L
and that, in particular, the hypotheses of Theorems 14.6(a) are satisfied for κ :=
ωr(n), although it may happen that ωr(n) = 2ℵ0 if the continuum is smaller than
ℵω. Moreover, the ωr(n) are always successor cardinals, and thus regular in model
of AC, so that the hypotheses of Theorem 14.8 are satisfied for κ := ωr(n). Thus,
to obtain the desired results it is enough to apply Theorems 14.6(a) and 14.8. �

15.2.2. Models of AD. By [45, Theorem 2.18], assuming ZF+ AD+ DC we
get that Σ1

n = S(κn), where κn is such that δ1n = κ+
n , that is κn := λ1

n if n is odd
and κn := δ1n−1 otherwise. Therefore, applying Theorems 14.6(b) and 14.8 we get
the following AD-analogue of Theorem 15.7.

Theorem 15.8 (AD+ DC). Let 0 �= n ∈ ω.

(a) The relation �∼
κn

CT is ≤Σ1
n
-complete for Σ1

n quasi-orders on ω2.

(b) Let n be an even number. Then the relation �∼
δ1
n−1

CT is ≤δ1
n−1

B -invariantly uni-

versal (and hence also ≤δ1
n−1

B -complete) for Σ1
n quasi-orders on ω2.
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Remarks 15.9. (i) In part (a) we can speak of ≤Σ1
n
-completeness because

in the AD-world S(κn) = Σ1
n. Notice that ≤Σ1

n
-completeness implies ≤κn

B -
completeness by Proposition 9.10, and that the two notions coincide if n is
odd by Corollary 9.29.

(ii) The restriction in part (b) comes from the fact that κn is regular if and only
if n is even, and therefore Theorem 14.8 can be applied only to the even levels
of the projective hierarchy. However, if we drop the requirement that the
reductions be (weakly) κn + 1-Borel, then Theorem 15.8(b) would be true
also for the odd levels by Theorem 12.15.

As for Theorem 15.5, also Theorem 15.8 can be applied with n = 3 to the quasi-
order (Q,≤B) of Borel reducibility between analytic quasi-orders: in this case,
such definable embeddability is turned into the embeddability relation between
structures of size κ3 = ℵω. Since ℵω is a singular cardinal, to get the second
part of the following theorem use the observation in Remark 15.9(ii) together with
Corollary 12.16, rather than Theorem 15.8(b).

Theorem 15.10 (AD+DC). The quotient order of (Q,≤B) (definably) embeds

into the quotient order of �∼
ℵω

CT.
Moreover there is an Lℵω+1 ℵω

-sentence σ such that the quotient orders of

(Q,≤B) and �∼
ℵω

σ are even (definably) isomorphic.

15.3. More complex quasi-orders in models of determinacy

Assuming ZF+AD+DC, it is natural to consider the largest boldface pointclass
to which our results can be applied, namely the collection S(Ξ) = S(∞) of all ∞-
Souslin sets, where Ξ is the supremum of all Suslin cardinals (Definition 9.11).

Assuming AD in L(R), we have that Ξ = δ21 and S(Ξ) = Σ2
1. In this case δ21 is

a Souslin cardinal, so applying again Theorems 14.6 and 14.8 we get the following
completeness and invariant universality results.

Theorem 15.11 (AD+V = L(R)). (a) The relation �∼
δ2
1

CT is ≤Σ2
1
-complete

for Σ2
1 quasi-orders (equivalently, ∞-Souslin quasi-orders) on ω2.

(b) The relation �∼
δ2
1

CT is ≤δ2
1

B -invariantly universal (and hence also ≤δ2
1

B -complete)

for Σ2
1 quasi-orders (equivalently, ∞-Souslin quasi-orders) on ω2.

Remarks 15.12. (i) In Theorem 15.11 we need not explicitly assume DC as
this follows from AD in L(R) by [52].

(ii) Theorem 14.8 can be applied to get part (b) as Σ2
1 is also closed under co-

projections and therefore the cardinal δ21 is regular by [72, Theorem 7D.8] (in
fact, it is a weakly inaccessible cardinal).

Theorem 15.11 can be analogously reformulated in every model of ZF+ AD+
DC in which Ξ is a Souslin cardinal, i.e. in every model of ZF + AD+ + DC (see
Section 9.4): in fact, in this case Ξ is always a (limit) regular cardinal (see e.g.
[44, Lemma 2.20]).

Theorem 15.13 (AD+ + DC). (a) The embeddability relation �∼
Ξ
CT is ≤S(Ξ)-

complete for ∞-Souslin quasi-orders on ω2.

(b) The relation �∼
Ξ
CT is ≤Ξ

B-invariantly universal (and hence also ≤Ξ
B-complete)

for ∞-Souslin quasi-orders on ω2.
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Remark 15.14. Applying Theorem 14.6 and 14.8, a level-by-level version of
Theorem 15.13 is obtained. Assuming AD + DC it is possible to assign to every
quasi-order R in ΔS(Ξ) a regular Souslin cardinal κR < Ξ such that:

(a) R ≤S(κR)
�∼

κR

CT;

(b) R ∼κR

B
�∼

κR

σ for some Lκ+
R κR

-sentence σ all of whose models are combinatorial

trees.

To see this, it is enough to let κR < Ξ be the smallest regular Souslin cardinal such
that R ∈ S(κR), whose existence is granted by Lemma 9.27.

Further assuming ADR, we get global completeness and invariant universality
results. Notice that in this case it does not make much sense to consider ≤S(Θ)-
reducibility, since under ZF+ADR+DC every subset of a Polish space is in S(∞) =
S(Θ) by Proposition 9.23, and hence ≤S(Θ) would coincide with the reducibility ≤
(without any definability condition on the reductions).

Theorem 15.15 (ADR + DC). (a) The embeddability relation �∼
Θ
CT is

≤Θ
B-complete for arbitrary quasi-orders on ω2.

(b) Assume that Θ is regular. Then the relation �∼
Θ
CT is also ≤Θ

B-invariantly
universal for arbitrary quasi-orders on ω2.

Proof. By Proposition 9.23, under ADR+DC every subset of ω2 is∞-Souslin
and Ξ = Θ. So it is enough to apply Theorems 14.3 and 14.8. �

Remark 15.16. As for Theorem 15.13, also in this case one can formulate and
prove level-by-level versions of Theorem 15.15, namely: under ADR + DC (which
implies Ξ = Θ by Proposition 9.23), one can assign to every quasi-order R on ω2 a
regular Souslin cardinal κR < Θ such that:

(a) R ≤S(κR)
�∼

κR

CT;

(b) R ∼κR

B
�∼

κR

σ for some Lκ+
R κR

-sentence σ all of whose models are combinatorial

trees.

(Notice that in this case we necessarily have κR < Θ by Lemma 9.12.)

15.4. L(R)-reducibility

In this section we present some results concerning the L(R)-reducibility con-
sidered in [35–37] — see Example 1.13 and Section 14.3. We recall once more

that the axiom ADL(R) used in Theorem 15.17 follows from both large cardinals
and forcing axioms. Notice also that the pointclass Γ2

1 := (Σ2
1)

L(R) is closed (in
V) under preimages and images of continuous functions because all such functions
belong to L(R).

Theorem 15.17 (AC). Assume ADL(R).

(a) The relation �∼
δ2
1

CT is ≤L(R)-complete (and also ≤′
L(R)-complete) for quasi-

orders on ω2 belonging to Γ2
1 := (Σ2

1)
L(R).

(b) For every Γ2
1 quasi-order R there is an L(δ2

1)
+ δ2

1
-sentence σ (in L(R)) such

that R ∼L(R)
�∼

δ2
1

σ .

Proof. Use Theorems 14.24, 14.27 and 14.25. �
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Remarks 15.18. (i) When dealing with L(R)-reducibility, the embeddabil-
ity relations �∼

κ
CT and �∼

κ
σ (for κ ∈ (Card)L(R) and σ ∈ (Lκ+κ)

L(R)) must be

construed as (�∼
κ
CT)

L(R) and (�∼
κ
σ)

L(R), respectively — see Remark 14.26.
(ii) As already noticed in the introduction after Theorem 1.19, Theorem 15.17

implies that every equivalence relation in Γ2
1, a quite large boldface point-

class in V which includes e.g. all projective levels, is L(R)-reducible to a
bi-embeddability relation ≈κ

L (on structures of an appropriate uncountable
size κ). This should be strongly contrasted with the case of the isomorphism
relation: by Example 1.13 (see [37, Theorem 9.18]), there are even Σ1

1 equiv-
alence relations E such that E �L(R)

∼=κ
L for every κ ∈ (Card)L(R) (and hence

also for every cardinal in V).
(iii) In the statement of Theorem 15.17 we could replace L(R) with any inner

model W containing all the reals of the universe.
(iv) Working inside inner models satisfying stronger forms of determinacy, one

can extend Theorem 15.17 to more complex quasi-orders. For example if
W is an inner model of ADR containing all the reals of the universe, then
Theorem 15.17 holds for all quasi-orders on ω2 belonging to W , with δ21 and
≤L(R) replaced by ΘW and ≤W respectively. In this case we also get a char-
acterization of the quasi-orders in W in terms of ≤W -reducibility, namely: a

quasi-order R on ω2 belongs to W if and only if R ≤W
�∼

ΘW

CT .
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CHAPTER 16

Further completeness results

16.1. Representing arbitrary partial orders as embeddability relations

The methods developed in this paper yield also some purely combinatorial
results, showing that embeddability relations can be quite complex. Recall from
Example 1.3 that in ZFC, every partial order of size κ = ℵ1 can be embedded into
(the quotient order of) �∼

ω
CT: this is shown by proving that the relation (P(ω),⊆∗)

of inclusion modulo finite subsets on P(ω) is Borel reducible to�∼
ω
CT, and then using

Parovicenko’s theorem to embed any partial order P of size ℵ1 into the inclusion
relation on P(ω)/Fin. If we assume enough choice, weak forms of the above fact
can be obtained for all uncountable small cardinals — for larger cardinals see [5].

Proposition 16.1. Let ω < κ ≤ 2ℵ0 and assume ACκ(R). Then every partial
order P of size κ can be embedded into the quotient order of �∼

κ
CT. In fact, for every

such P there is an Lκ+κ-sentence σ (all of whose models are combinatorial trees)
such that the quotient order of �∼

κ
σ is isomorphic to P .

Proof. Without loss of generality we may assume that P is (κ,�) . We will
now assign to each α < κ a combinatorial tree Gα of size κ such that for all α, β < κ

(16.1) α� β ⇔ Gα
�∼ Gβ.

The map α �→ Gα yields the desired embedding of P into the quotient order of
�∼

κ
CT.

Since by Theorem 1.1 the relation of equality on R is (Borel) reducible to �∼
ω
CT

and κ ≤ 2ℵ0 , using ACκ(R) we can pick a sequence 〈Sδ | δ < κ〉 of countable
combinatorial trees (with disjoint domains) such that Sδ ��∼ Sδ′ for all distinct
δ, δ′ < κ, and fix an arbitrary element xδ ∈ Sδ. Given α < κ, set

Cα := {2 · γ | γ < κ} ∪ {2 · γ + 1 | γ < κ, γ � α} .

The combinatorial tree Gα is then (an isomorphic copy with domain κ of the graph)
defined on the disjoint union

{rα} �
⋃
{Sδ | δ ∈ Cα}

by connecting the vertex rα with each xδ ∈ Sδ (for δ ∈ Cα). Using the fact that
embeddings cannot decrease degrees of vertices, that rα has always degree κ and
all other vertices of Gα have degree ≤ ω < κ, and that for all α, β < κ

α� β ⇔ {γ < κ | γ � α} ⊆ {γ < κ | γ � α} ⇔ Cα ⊆ Cβ,

we easily get that (16.1) is satisfied.
For the second part, one first check that the structure Gα admits a Scott sen-

tence σα ∈ Lκ+κ (see Remark 12.17(ii) for the definition). Such a Scott sentence

163
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164 16. FURTHER COMPLETENESS RESULTS

is obtained by formalizing as in Section 12.1 the conjunction of the following state-
ments (here we use that κ ≥ ω1 and that each Sδ, being countable, can be described
by its quantifier-free type, which is an L0

ω1ω-formula):

(1) the structure is a combinatorial tree;
(2) there is a unique vertex of degree > ω;
(3) all other vertices belong to a unique countable substructure of Gα which is

isomorphic to some Sδ, and all these substructures are “disjoint” (vertices of
different substructures are never connected by an edge);

(4) the vertex with degree > ω is connected to a unique vertex in each of the
substructures described in (3), and such vertex “corresponds” to rδ ∈ Sδ;

(5) for each δ < κ, there is at most one substructure as in (3) which is isomorphic
to Sδ;

(6) for each δ < κ, there is a substructure as in (3) which is isomorphic to Sδ just
in case δ ∈ Cα.

Then letting σ be the Lκ+κ sentence
∨

α<κ σα, we get that Modκσ is the closure
under isomorphism (inside CTκ) of the family {Gα | α < κ}. Therefore P and the
quotient order of �∼

κ
σ are isomorphic by (16.1). �

The first part of Proposition 16.1 may be improved to the following result,
in which we denote by ⊆∗

κ the relation (P(κ),⊆∗) of inclusion modulo bounded
subsets on P(κ).

Proposition 16.2. Let ω < κ ≤ 2ℵ0 and assume ACκ(R). Then ⊆∗
κ ≤κ

B
�∼

κ
CT.

Proof. Let T0, T1, and 〈Sδ | δ < κ〉 be countable combinatorial trees such
that:

• Sδ ��∼ Sδ′ for all distinct δ, δ
′ < κ;

• Sδ �� Ti and Ti �� Sδ for every δ < κ and i = 0, 1;
• T0 � T1 but T1 �� T0.

Combinatorial trees as above can easily be obtained by applying Theorem 1.1 to
the Borel quasi-order on R×{0, 1} defined by setting (r, i) R (s, j)⇔ r = s ∧ i ≤ j,
and then using ACκ(R). For each δ < κ and i = 0, 1 fix arbitrary elements xδ ∈ Sδ

and yi ∈ Ti.
To each X ⊆ κ we now associate a combinatorial tree GX of size κ as follows.

Fix distinct vertices r, rα, and pα,δ for α, δ < κ. For each α, δ < κ set

iXα,δ :=

{
1 if δ < α or δ ∈ X

0 otherwise.

Append distinct copies of Sδ and TiXα,δ
to the vertex pα,δ by connecting it with

distinct edges to the (copies of the) distinguished vertices xδ and yiXα,δ
of Sδ and

TiXα,δ
, respectively. Then append all the combinatorial trees obtained in this way

(for a fixed α and arbitrary δ < κ) to the vertex rα by connecting to it with an
edge the vertices pα,δ. Finally, add an edge between r and each rα: the resulting
combinatorial tree is GX .

The map associating (a suitable copy on κ of) the combinatorial tree GX to
eachX ∈P(κ) is κ+1-Borel (in fact: continuous): we claim that it also reduces ⊆∗

κ

to �∼. Fix X,Y ⊆ κ and assume first that there is β < κ such that δ ∈ X ⇒ δ ∈ Y
for all β ≤ δ < κ. Consider the partial map e between GX and GY sending r
to itself, each rα to rβ+α, and, accordingly, each pα,δ to pβ+α,δ. Since the choice
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of β ensures that iXα,δ ≤ iYβ+α,δ for all δ < κ, the map e can be completed to an
embedding of GX into GY . Conversely, let e be an embedding of GX into GY . Since
r is the unique vertex in both GX and GY having κ-many neighbors of degree κ,
the embedding e must send r to itself and, consequently, r0 to rβ for some β < κ.
Our choice of the Sδ and Ti then implies that e(p0,δ) = pβ,δ and that e embeds TiX0,δ

into TiYβ,δ
(for all δ < κ). Since Ti � Tj ⇔ i ≤ j, this shows that iX0,δ ≤ iYβ,δ for all

δ < κ, i.e. that δ ∈ X ⇒ δ ∈ Y for all β ≤ δ < κ: thus X ⊆∗ Y , as desired. �
From Proposition 16.2 we in particular obtain that, under its assumptions,

any partial order that can be embedded into (the quotient order of) (P(κ),⊆∗)
can also be embedded into (the quotient order of) �κ

CT. This = applies to all
partial orders of size κ, but also to many other interesting cases. For example, P.
Schlicht and K. Thompson have recently verified (personal communication) that a
straightforward adaptation to the uncountable case of Parovicenko’s proof shows
that under AC every linear order of size ℵn+1 can be embedded into the quotient
order of (P(ℵn),⊆∗).

In Theorem 16.4 below we provide a counterpart to Proposition 16.1 in the
AD-world. The proof relies on the methods and results developed in this paper,
and currently we do not see any simpler argument.

Lemma 16.3 (AD + DC). Let κ be a Souslin cardinal, and P be an arbitrary
partial order of size κ. Then there is a κ-Souslin quasi-order R on ω2 such that P
embeds into the quotient order of R. If κ < δS(κ) then R can be chosen so that its
quotient order is isomorphic to P .

Proof. We can assume that P is of the form (κ,�) itself. Since ω2 and ωω
are Borel isomorphic and S(κ) is closed under Borel preimages by Lemma 9.7, it
is enough to find a quasi-order R as in the statement, but defined on ωω instead of
ω2. Let ρ be an S(κ)-norm of length κ defined on a set A ⊆ ωω belonging to S(κ)
(which exists by Proposition 9.25(b)), and let < be it strict part, i.e. for x, y ∈ ωω
set

x < y ⇔ x, y ∈ A ∧ ρ(x) < ρ(y).

Then < ∈ S(κ), and its rank function (which is just the S(κ)-norm ρ) is onto κ.
Now consider the function f : κ× κ→P(ω2) defined by

f(α, β) :=

{
ω2 if α� β,

∅ otherwise.

By Moschovakis’ first coding lemma [72, Lemma 7D.5], there is an S(κ) set C ⊆
ωω × ωω × ω2 which is a choice set for f , i.e. such that for all x1, x2 ∈ ωω, y ∈ ω2,
and α, β < κ the following hold:

(1) (x1, x2, y) ∈ C ⇒ x1, x2 ∈ A ∧ y ∈ f(ρ(x1), ρ(x2));
(2) f(α, β) �= ∅ ⇒ ∃x1, x2 ∈ A∃y ∈ ω2 [ρ(x1) = α ∧ ρ(x2) = β ∧ (x1, x2, y) ∈ C].

Let R be the quasi-order on ωω defined by

z1 R z1 ⇔ z1 = z2 ∨ [z1, z2 ∈ A ∧ ∃x1, x2 ∈ A∃y ∈ ω2 (ρ(x1) = ρ(z1)∧
ρ(x2) = ρ(z2) ∧ (x1, x2, y) ∈ C)].

Then R is κ-Souslin by the closure properties of S(κ) (see Lemma 9.7), and it is
straightforward to check that, by definition of C and the fact that it is a choice
set for f , the map α �→ {z ∈ A | ρ(z) = α} is an isomorphism between P and the
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quotient order of R� (A× A), and hence it is an embedding of P into the quotient
order of the whole R.

The additional part concerning those κ which are smaller than δS(κ) follows
from the fact that in this case in the argument above we can we can let ρ be the
rank function of any ΔS(κ) prewellordering of the whole ωω of length κ, so that
A = ωω. �

Theorem 16.4 (AD + DC). Let κ be a Souslin cardinal. Then every partial
order P of size κ can be embedded into the quotient order of �∼

κ
CT. In fact, if

κ < δS(κ), then for every such P there is an Lκ+κ-sentence σ (all of whose models

are combinatorial trees) such that the quotient order of �∼
κ
σ is isomorphic to P .

Notice that by Proposition 9.25(c) the second part of Theorem 16.4 can be
applied exactly when κ is such that S(κ) is not closed under coprojections, and
thus, in particular, when κ is one of the projective cardinals δ1n or, more generally,
when κ is not a regular limit of Souslin cardinals.

Proof. Let R be as in Lemma 16.3, and let T ∈ Tκ be such that R = p[T ].
By Theorem 11.8, the function fT defined in (11.5) reduces R to �∼

κ
CT, and thus its

quotient map

f̂T : ωω/R→ CTκ/≈κ
CT, [x]ER

�→ [fT (x)]≈κ
CT

where ≈κ
CT is the bi-embeddability relation on CTκ, embeds the quotient order

ωω/R into the quotient order CTκ/≈κ
CT. Therefore, composing the embedding of

P into ωω/R with f̂T gives the desired embedding.
If κ < δS(κ), then by Lemma 16.3 there is a κ-Souslin quasi-order R on ω2

whose quotient order is isomorphic to P . By Corollary 12.16, there is an Lκ+κ-
sentence σ (all of whose models are combinatorial trees) such that the quotient
order of �∼

κ
σ is isomorphic to ωω/R, and hence also to P . �

Currently we do not know if it is possible to obtain an analogue of Proposi-
tion 16.2 in the AD-context.

16.2. Other model theoretic examples

In this section we consider some model theoretic variants of our results on
the embeddability relation between combinatorial trees. We consider two kinds of
variations: in the first one, we change the morphism between combinatorial trees
under consideration by replacing embeddings with full homomorphisms, while in
the second one we consider the embeddability relation again but we change the
nature of the underlying structures. Of course these are only a few examples of
the many interesting model theoretic variants of the problem considered in this
paper (namely, the descriptive set-theoretic complexity of natural relations between
uncountable structures) which would deserve some attention in the near future.

16.2.1. Changing the morphism: full homomorphisms between com-
binatorial trees. Recall that L = {E} is the language of graphs consisting of a
single binary relational symbol.

Definition 16.5. Let X = 〈X;EX〉 and Y = 〈Y ;EY 〉 be two L-structures. A
map f : X → Y is called full homomorphism between X and Y if for all a, b ∈ X

a EX b ⇔ f(a) EY f(b).
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Thus embeddings are just injective full homomorphisms. Moreover, since the
identity function on an L-structure is a full homomorphism, and since the compo-
sition of two full homomorphisms is still a full homomorphism, the binary relation
defined below is reflexive and transitive, i.e. a quasi-order.

Notation. Given two L-structures X = 〈X;EX〉 and Y = 〈Y ;EY 〉, we set

X �∼
h
Y if and only if there exists a full homomorphism between X and Y .

Replacing �∼ with �∼
h
in Definitions 12.1 and 12.2 we get a corresponding notion

of invariant universality for �∼
h
.

Definition 16.6. Let C be a class of quasi-orders, L be the graph language,

and κ be an infinite cardinal. Given an Lκ+κ-sentence τ, the relation �∼
h�Modκτ is

invariantly universal for C if for every R ∈ C there is an Lκ+κ-sentence σ such

that Modκσ ⊆ Modκτ and R ∼ �∼
h�Modκσ.

As usual, when the reducibility ≤ is replaced by one of its restricted form ≤∗
we speak of ≤∗-invariant universality.

We are now going to show that for every infinite cardinal κ and every T ∈ Tκ,

the relations �∼ and �∼
h
coincide on ModκσT

, where σT is as in Corollary 12.12. To
prove this, we will use the following variant of [23, Proposition 3.10], which can be
proved in the same way.

Lemma 16.7. Suppose that G,G′ are combinatorial trees and f : G → G′ is a
full homomorphism. If a, b ∈ G are distinct and f(a) = f(b), then a and b have
both degree 1 in G and have geodesic distance 2 from each other (i.e. they share
their unique adjacent vertex).

This essentially shows that a full homomorphism between combinatorial trees
is already almost injective, and allows us to prove the following.

Theorem 16.8. Let κ be an uncountable cardinal, T ∈ Tκ be such that R = p[T ]

is a quasi-order, and σT be as in Corollary 12.12. Then the relation �∼
h�ModκσT

coincides with �∼
κ
σT

(that is, with the embeddability relation �∼�ModκσT
).

Proof. First recall that by Corollary 12.12 the set ModκσT
is the closure under

isomorphism of ran(fT ), where fT is as in (11.5). Since embeddings are in particular
full homomorphisms, it is enough to show that for every x, y ∈ ω2

fT (x) �∼
h
fT (y) ⇒ fT (x) �∼ fT (y).

Let j be a full homomorphism between fT (x) = GΣT (x) and fT (y) = GΣT (y).
By Lemma 16.7, its restriction to G0 ∪ F(GΣT (x)) (see Definition 10.2 and the
notation introduced in (10.7a)–(10.7g) of Section 10.2) is injective, and hence an
embedding. Arguing as in the second half of the proof of Theorem 11.8(a), we
thus get that j� (G0 ∪ F(GΣT (x))) is an embedding of the subgraph of fT (x) with
domain G0 ∪ F(GΣT (x)) into the subgraph of fT (y) with domain G0 ∪ F(GΣT (y)).
By the proof of Theorem 11.8(a) (see Remark 11.9), this implies that x R y, whence
fT (x) �∼ fT (y) by Theorem 11.8(a) again. �

Remark 16.9. By adapting in the obvious way Definitions 16.5 and 16.6 to the
language L̄ of ordered combinatorial trees (see Section 13), one can easily check that
in Theorem 16.8 we can also replace σT with the sentence σ̄T from Corollary 13.9.
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In fact, the ordered combinatorial trees f̄T (x) and f̄T (y) (where f̄T is as in (13.2))
already have domain G0 ∪ F(GΣT (x)) and G0 ∪ F(GΣT (y)), respectively. Thus any

full homomorphism between f̄T (x) and f̄T (y) is an embedding by Lemma 16.7
(which holds for ordered combinatorial trees as well, since these are L̄-expansions
of combinatorial trees).

Theorem 16.8 and Remark 16.9 show that in all the completeness and invariant
universality results from Sections 11–15 and 16.1 we could systematically replace

the embeddability relation �∼ with the one induced by full homomorphisms �∼
h
.

16.2.2. Changing the structures: partial orders and lattices. At the
end of [64, Section 3.1], Louveau and Rosendal provided a continuous map from
countable connected graphs to lattices (viewed as partial orders) which reduces
the embeddability relation to itself. Such a construction can straightforwardly be
adapted to the uncountable case. For technical reasons which will be clear shortly
we have to modify the construction a bit.

Definition 16.10. Let κ be any infinite cardinal. To any graph G on κ we
associate the following lattice LG = (κ,�G):

• 0 �G α �G 1 for every α ∈ κ
• if in G there is an edge between α, β ∈ κ, then both 2+(2·α) �G 2+(2·〈α, β〉+1)
and 2+(2·β) �G 2+(2·〈α, β〉+1) (where 〈·, ·〉 is the pairing function from (2.1));
• no other �G-relation holds.

Notice that the LG’s are actually complete lattices.

Remark 16.11. The map G �→ LG is continuous when both spaces of models
(namely, the space of graphs of size κ and the space of lattices of size κ) are endowed
with the same topology τp or τb. Our modification of the original Louveau-Rosendal
construction is required to obtain continuity with respect to the topology τp.

Theorem 16.12. The map G �→ LG from Definition 16.10 reduces the em-
beddability (respectively, the isomorphism) relation between connected graphs to the
embeddability (respectively, the isomorphism) relation between lattices.

Proof. This is just a minor variation of the proof of [64, Theorem 3.3]. If j
is an embedding between the connected graphs G and G′, then the map defined by

0 �→ 0

1 �→ 1

2 + (2 · α) �→ 2 + (2 · j(α))
2 + (2 · 〈α, β〉+ 1) �→ 2 + (2 · 〈j(α), j(β)〉+ 1)

is an embedding of LG into LG′ .
Conversely, let j be an embedding of LG into LG′ . Notice that in both LG and

LG′ we have that an ordinal 1 �= α ∈ κ is an immediate predecessor of the maximum
1 if and only if it is odd (here we use the fact that G and G′ are connected). Since
j is an embedding, we thus get that for every α ∈ κ there is γα ∈ κ such that
j(2 + (2 · α)) = 2 + (2 · γα). Since α, β ∈ κ are connected by an edge in G if and
only if 2 + (2 · α) and 2 + (2 · β) share a �G-successor distinct from the maximum
1 (and the same is true for G′), it follows that the map α �→ γα is an embedding of
G into G′.
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The same proof works for the case of the isomorphism relation, so we are
done. �

Theorem 16.12 and Remark 16.11 show that in all the completeness results
from Sections 11–15 and 16.1 we could systematically replace combinatorial trees
with (complete) lattices, and hence, in particular, with partial orders. Moreover,
both Theorem 16.12 and Remark 16.11 remain true if the lattice LG associated to
the graph G is construed as a bounded lattice in the algebraic sense, that is as a
structure in the language consisting of two binary function symbols (the join and
the meet operations ∨ and ∧) and two constant symbols (the minimum and the
maximum 0 and 1). Thus we could also further replace combinatorial trees with
such algebraic structures.

16.3. Isometry and isometric embeddability between complete metric
spaces of density character κ

Recall from Section 7.2.3 the standard Borel κ-space Mκ of (codes for) com-
plete metric spaces of density character κ, and its subspaces Dκ and Uκ consisting
of, respectively, discrete and ultrametric spaces. In this section we will provide
some informations on the complexity of the isometry relation ∼=i, and the isometric
embeddability relation �i, which are both κ-analytic quasi-orders on Mκ, and on
their restrictions to Dκ and Uκ. Some of the results concerning ∼=i already appeared
in [75], but we include them in our presentation as well for the reader’s convenience.

16.3.1. The discrete case. We first consider the case of discrete metric
spaces of density character (equivalently, of size) κ. Fix strictly positive r0, r1 ∈ R
such that r0 < r1 ≤ 2r0. To each graph G on κ we associate the discrete metric
space DG on κ with distance dG defined by

dG(α, β) :=

⎧⎪⎨⎪⎩
0 if α = β

r0 if α �= β and α and β are adjacent in G

r1 if α �= β and α and β are not adjacent in G.

Our choice of r0 and r1 guarantees that the triangular inequality is satisfied by dG.
Since the space DG is already defined on κ, it can canonically be identified with its
code xG ∈ Dκ obtained by setting, as in (7.6), xG(α, β, q) = 1 ⇔ dG(α, β) < q for
every α, β < κ and q ∈ Q+ .

Remark 16.13. Let ModκGRAPH be the space of all graphs on κ. Then the map

(16.2) θD : ModκGRAPH → Dκ ⊆Mκ, G �→ xG

is continuous when both ModκGRAPH and Mκ are endowed with the same topology
τp or τb.

Lemma 16.14. The map θD from (16.2) simultaneously reduces ∼= to ∼=i and �∼
to �i.

Proof. It is easy to check that given any G,G′ ∈ModκGRAPH and any function
ϕ : κ → κ, the map ϕ is an isomorphism (respectively, an embedding) between G
andG′ if and only if it is an isometry (respectively, an isometric embedding) between
DG and DG′ . �
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This yields the following lower bounds for the complexity of ∼=i�Dκ and �i�Dκ.
As usual, we endow both ModκGRAPH and Mκ with the bounded topology and
Dκ with the induced relative topology. Moreover, to simplify the notation we
denote by ∼=κ

GRAPH and �∼
κ
GRAPH the isomorphism and the embeddability relation

on ModκGRAPH, respectively.

Theorem 16.15. Let κ be any infinite cardinal.

(a) ∼=κ
GRAPH ≤κ

B
∼=i�Dκ and �∼

κ
GRAPH ≤κ

B �i�Dκ.
(b) The relation �i�Dκ is ≤κ

B-complete for the class of κ-Souslin quasi-orders
on Polish or standard Borel spaces.

(c) (AC) If κ ≤ 2ℵ0 and there is an S(κ)-code for κ (which is always the case for
κ = ω, κ = ω1, and κ = 2ℵ0), then �i�Dκ is ≤S(κ)-complete for κ-Souslin
quasi-orders on Polish or standard Borel spaces.

(d) (AD + DC) If κ is a Souslin cardinal, then �i�Dκ is ≤S(κ)-complete for κ-
Souslin quasi-orders on Polish or standard Borel spaces.

(e) Let W ⊇ R be an inner model and let κ ∈ CardW . Then �i�Dκ is ≤W -
complete for quasi-orders in SW (κ).

Proof. (a) By Lemma 16.14, this is witnessed by the map from (16.2), which
is τb-continuous (and hence κ+ 1-Borel) by Remark 16.13.

(b) We argue as in the proof of Theorem 14.3. Let R = p [T ] be an arbitrary
κ-Souslin quasi-order on ω2, and consider the map θD ◦fT : ω2→ Dκ ⊆Mκ, where
fT is as in (11.5) and θD is as in (16.2). By Remark 16.13, such map is continuous
when both ω2 and Mκ are endowed with the product topology, and hence it is
(effective) weakly κ+ 1-Borel. Moreover, it reduces R to �i by Theorem 11.8 and
Lemma 16.14, so we are done.

(c)–(d) Argue as in the proof of Theorem 14.6, using again the fact that
θD ◦ fT : ω2 → Dκ is continuous when both spaces are endowed with the prod-
uct topology and that it reduces the κ-Souslin quasi-order R = p [T ] to �i.

(e) Use Theorem 14.24 together with the fact that the map θD from (16.2) is
definable in W and that Lemma 16.14, which is a theorem of ZF, is true in W as
well. �

By Theorem 16.15, in all the completeness results from Sections 14, 15, and 16.1
we may systematically replace �∼

κ
CT with �i�Dκ; a sample of (stronger forms) of

these variants will be presented in Section 16.3.2 (see Theorems 16.20, 16.21 and
Remark 16.22).

16.3.2. The ultrametric case. In this section we consider the case of com-
plete ultrametric spaces of density character κ and prove some strengthenings of
the results from the previous section. Most of the definitions and results are direct
generalizations to the uncountable context of the material from [8] — see also [75].

Let U = (U, dU ) be an ultrametric space. Then by [75, Lemma 2.20] for every
non-negative r ∈ R and every dense D ⊆ U

(16.3) ∃x, y ∈ U (dU (x, y) = r) ⇔ ∃x, y ∈ D (dU (x, y) = r).

It follows that if U has density character κ, then its set of (realized) distances

D(U) := {r ∈ R | ∃x, y ∈ U (dU (x, y) = r)}
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has size at most κ. Conversely, given any set A ⊆ R of non-negative reals containing
0 and of size ≤ κ, we can form a complete1 ultrametric space U(A) = (UA, dA) of
density character κ such that D(U(A)) = A by setting UA := {(r, α) | r ∈ A,α < κ}
and for every r, r′ ∈ A and α, β < κ

(16.4) dA((r, α), (r
′, β)) :=

{
0 if r = r′ and α = β

max {r, r′} otherwise.

Thus we have that a set A ⊆ R is the set of (realized) distances of a complete
ultrametric space of density character κ if and only if 0 ∈ A ⊆ [0; +∞) and A
has size ≤ κ. This suggests to consider the following subclasses of Uκ (where for
simplicity we denote by Ux the complete space coded by x ∈ Uκ — see Section 7.2.3).

Definition 16.16. Let κ be an infinite cardinal and A ⊆ R be such that
0 ∈ A ⊆ [0; +∞) and |A| ≤ κ. Then we set

Uκ(A) := {x ∈ Uκ | D(Ux) ⊆ A}
and

U
�
κ(A) := {x ∈ Uκ | D(Ux) = A} .

Using (16.3), it is easy to see that both Uκ(A) and U�
κ(A) are effective κ + 1-

Borel subsets of Uκ: thus since the latter is a standard Borel κ-space, Uκ(A) and

U�
κ(A) are standard Borel κ-spaces as well. Notice also that the spaces U

(�)
κ (A)

are always nonempty because U(A) ∈ U�
κ(A) ⊆ Uκ(A). However, the sets A that

can be considered in these constructions may vary from a model of set theory to
another: for example, in models of AD only countable A’s can satisfy the conditions
in Definition 16.16 because there are no uncountable well-orderable subsets of R by
the (ω-)PSP.

We are now going to show that when a set A as in Definition 16.16 is ill-founded
with respect to the usual ordering of R, then the restriction of the isometry relation
∼=i and of the isometric embeddability relation �i to U�

κ(A) are quite complex. This
in particular yields strengthenings of the results from Section 16.3.1 because when
0 is not an accumulation point of A we have

U�
κ(A) ⊆ Uκ(A) ⊆ Uκ ∩Dκ.

The following construction essentially corresponds to the special case α = ω
in [75, Section 3], where it is shown that it yields a reduction from isomorphism
to isometry; here we are going to show that the same construction yields also a
reduction of embeddability to isometric embeddability. Fix a strictly decreasing
sequence �r = 〈rn | n ∈ ω〉 of positive real numbers. Given a rooted combinatorial
tree G on κ, define a partial order �G on κ by setting

α �G β ⇔ the unique path in G connecting

the root r of G to β passes through α.

Define a metric d�rG on κ by setting d�rG(α, β) := rn(α,β), where

n(α, β) := max{lG(γ) | γ ∈ κ, γ �G α, β}
and lG(γ) is the length of the path connecting r to γ, and then consider the com-
pletion U�r

G = (UG, d
�r
G) of the space (κ, d�rG). It is clear from the construction that

1Completeness follows automatically from the fact that U(A) is discrete.
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U�r
G is a complete ultrametric space of density character κ, and that its canonical

code u�rG ∈ Uκ defined by setting for every α, β < κ and q ∈ Q+

u�rG(α, β, q) = 1 ⇔ d�rG(α, β) < q

belongs to Uκ(A) for any A as in Definition 16.16 containing all the rn’s.

Remark 16.17. Let RCTκ be the space of (codes for) all rooted combinatorial
trees on κ, A be as in Defintion 16.16 and ill-founded, and �r be a strictly decreasing
sequence of elements of A. Then the map

(16.5) θ�rU : RCTκ → Uκ(A) ⊆Mκ, G �→ u�rG

is continuous when both RCTκ and Uκ(A) ⊆ Mκ are endowed with the same
topology τp or τb.

Lemma 16.18. The map θ�rU from (16.5) simultaneously reduces ∼= to ∼=i and �∼
to �i.

Proof. If inf �r > 0, then U�r
G = (κ, d�rG) and one can simply use the straight-

forward adaptation to the uncountable context of the proof of [8, Theorem 5.2] —
the construction provided in this paper coincide with the one from [8, Section 5.1]
once we identify each element of RCTκ with any of its isomorphic copies having
domain a subset of <ωκ closed under subsequences and root the empty sequence ∅.

If instead inf �r = 0, the construction used in this paper is slightly different from
the ones used in [25, Theorem 4.4] and [64, Proposition 4.2]. In fact, in this case
U�r
G may be identified with a space on G � [G], where

[G] :=
{
b ∈ ωκ | b(0) = r ∧ ∀n ∈ ω

(
b(n) G b(n+ 1)

)}
is the set of all infinite ω-branches through G starting from its root r, while in [25]
and [64] the authors (essentially) considered only G ∈ RCTκ without terminal
vertices and associated to each of them only the subspace [G] of U�r

G. Although the
two constructions are very close to each other (and in fact essentially equivalent),
for the reader’s convenience we give a sketch of the proof of the desired result based
only on our new construction.

Let G,G′ ∈ RCTκ. We first deal with isomorphism and isometry, giving just
the main ideas and referring the reader to [75, Section 3] for more details. By con-
struction, any isomorphism (respectively, embedding) between G and G′ naturally
extends to an isometry (respectively, isometric embedding) between U�r

G = G � [G]
and U�r

G′ = G′ � [G′]. For the other direction, first notice that the (adapta-
tion to the uncountable context of the) proof of [8, Theorem 5.2] shows that if
there exists an isometry (respectively, an isometric embedding) ψ between (κ, d�rG)
and (κ, d�rG′), then G is isomorphic to (respectively, embeds into) G′. It is thus
enough to show that if there is an isometry (respectively, an isometric embedding)
ϕ : U�r

G → U�r
G′ , then there is also an isometry (respectively, an isometric embedding)

ψ : (κ, d�rG) → (κ, d�rG′). Let ϕ : U�r
G → U�r

G′ be a metric-preserving map, and assume
first that it is surjective, and therefore hence an isometry. Since by construction a
point is isolated in U�r

G if and only if it belongs to G (and the same is true when
replacing G with G′), then ϕ(G) = G′: thus ψ := ϕ�G is an isometry between
(κ, d�rG) and (κ, d�rG′) and we are done.

Assume now that ϕ is just an isometric embedding (i.e. not necessarily surjec-
tive). Then for some α ∈ G we may have ϕ(α) = bα ∈ [G′]. However, since α is
isolated in U�r

G, then bα must be isolated in the range of ϕ: this implies that there
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is nα ∈ ω such that ranϕ does not contain any γ ∈ G′ with bα(nα) �G′ γ nor any
b′ ∈ [G′] such that bα(nα) = b′(nα). By our choice of nα, it easily follows that for
every β ∈ G distinct from α we have d�rG′(bα, ϕ(β)) = d�rG′(bα(nα), ϕ(β)). Thus the
map ψ : G→ G′ defined by setting for every α ∈ G

ψ(α) :=

{
ϕ(α) if ϕ(α) ∈ G′

bα(nα) if ϕ(α) ∈ [G′]

is a well-defined isometric embedding between (κ, d�rG) and (κ, d�rG′), so we are done.
�

Similarly to the discrete case, Remark 16.17 and Lemma 16.18 yields the fol-
lowing lower bounds for the complexity of ∼=i�Uκ(A) and �i�Uκ(A). As usual, we
endow both RCTκ and Mκ with the bounded topology and Uκ(A) with the induced
relative topology. Moreover, to simplify the notation we denote by ∼=κ

RCT and �∼
κ
RCT

the isomorphism and the embeddability relation on RCTκ, respectively.

Theorem 16.19. Let κ be an infinite cardinal and A be an ill-founded subset
of R satisfying the conditions of Definition 16.16.

(a) ∼=κ
RCT ≤κ

B
∼=i�Uκ(A) and �∼

κ
RCT ≤κ

B �i�Uκ(A).
(b) The relation �i�Uκ(A) is ≤κ

B-complete for the class of κ-Souslin quasi-orders
on Polish or standard Borel spaces.

(c) (AC) If κ ≤ 2ℵ0 and there is an S(κ)-code for κ (which is always the case for
κ = ω, κ = ω1, and κ = 2ℵ0), then �i�Uκ(A) is ≤S(κ)-complete for κ-Souslin
quasi-orders on Polish or standard Borel spaces.

(d) (AD + DC) If κ is a Souslin cardinal, then �i�Uκ(A) is ≤S(κ)-complete for
κ-Souslin quasi-orders on Polish or standard Borel spaces.

(e) Let W ⊇ R be an inner model and let κ ∈ CardW . Then �i�Uκ(A) is ≤W -
complete for quasi-orders in SW (κ).

Proof. As observed in Remark 10.1, in all the constructions and results from
Sections 10–12 and 14 we could systematically replace combinatorial trees with
rooted combinatorial trees. Then it is enough to argue as in the proof of Theo-
rem 16.15 but replacing Remark 16.13 and Lemma 16.14 with Remark 16.17 and
Lemma 16.18, respectively. �

By Theorem 16.19, in all the completeness results from Sections 14, 15, and 16.1
we may systematically replace �∼

κ
CT with �i�Uκ: here is a sample of the statements

that one may obtain in this way.

Theorem 16.20. (a) (AC) The relation �i�Uω1
is ≤ω1

B -complete for Σ1
2 quasi-

orders on Polish or standard Borel spaces. If moreover we assume either

ADL(R) or MA + ¬CH + ∃a ∈ ωω (ω
L[a]
1 = ω1), then �i�Uω1

is also ≤Σ1
2
-

complete for Σ1
2 quasi-orders on Polish or standard Borel spaces.

(b) (AC) Assume that x# exists for all x ∈ ωω. Then the relation �i�Uω2
is

≤ω2

B -complete for Σ1
3 quasi-orders on Polish or standard Borel spaces. In

particular, the quotient order of (Q,≤B) (definably) embeds into the quotient
order of �i�Uℵ2

.

(c) (AC) Assume ADL(R). Then the relation �i�Uωr(n)
is ≤ωr(n)

B -complete for Σ1
n

quasi-orders on Polish or standard Borel spaces, where r : ω → ω is as in
Theorem 15.7.

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



174 16. FURTHER COMPLETENESS RESULTS

(d) (AD+ DC) For 0 �= n ∈ ω, let κn be such that δ1n = κ+
n (see Section 15.2.2).

Then the relation �i�Uκn
is both ≤κn

B -complete and ≤Σ1
n
-complete for Σ1

n

quasi-orders on Polish or standard Borel spaces. In particular, the quotient
order of (Q,≤B) (definably) embeds into the quotient order of �i�Uℵω

.

(e) (AC) Assume ADL(R). Then the relation ��Uδ2
1
is ≤L(R)-complete for quasi-

orders on ω2 (or on arbitrary Polish or standard Borel spaces in L(R)) be-
longing to Γ2

1 := (Σ2
1)

L(R).
(f) (AC) Let W be a transitive inner model containing R and satisfying ADR, and

let κ := ΘW . (The existence of such a W follows from a Woodin cardinal
which is limit of Woodin cardinals, or even less.) Then the relation �i�Uκ is
≤W -complete for quasi-orders on ω2 (or on arbitrary Polish or standard Borel
spaces in W ) belonging to W . In fact, for every quasi-order R on ω2

R ∈W ⇔ R ≤W �i�Uκ.

Moreover, combining Theorem 16.19 with the results from Section 16.1 we get
that the quasi-order �i�Uκ is complex also from the combinatorial point of view.

Theorem 16.21. (a) Let ω < κ ≤ 2ℵ0 and assume ACκ(R). Then the rela-
tion ⊆∗

κ on P(κ) of inclusion modulo bounded subsets is κ+1-Borel reducible
to �i�Uκ. In particular, every partial order P of size κ can be embedded into
the quotient order of �i�Uκ. Further assuming AC and 2ℵ0 ≥ ℵn (for some
n ∈ ω), we also get that every linear order of size ℵn+1 can be embedded into
the quotient order of �i�Uℵn

.
(b) Assume AD+DC and let κ be a Souslin cardinal. Then every partial order P

of size κ can be embedded into the quotient order of �i�Uκ.

Proof. Use again the fact that in Proposition 16.2 and Theorem 16.4 we could
have replaced combinatorial trees with rooted combinatorial trees, and then apply
Theorem 16.19(a). �

Remark 16.22. In Theorems 16.20 and 16.21 we may also consider just iso-
metric embeddability between ultrametric spaces in Uκ(A) for any ill-founded set
of distances A (provided that A is as in Definition 16.16). As already observed,
when A is bounded away from 0 then all spaces in Uκ(A) are discrete (and hence of
size κ). This implies that in Theorems 16.20 and 16.21 we may replace the collec-
tion of complete ultrametric spaces of density character κ with any subclass of Mκ

containing one of these Uκ(A), including the following notable examples (all spaces
below are intended to be complete metric and of density character κ):

• discrete (ultrametric) spaces;
• (ultrametric) spaces of size κ;
• locally compact (ultrametric) spaces;
• zero-dimensional spaces.

We conclude this section by observing that in Theorem 16.19 we could also sys-
tematically replace all occurrences of Uκ(A) with the smaller U�

κ(A). This is because
one can find (for any ill-founded A satisfying the conditions of Definition 16.16) a
modification θ�U,A : RCTκ → U�

κ(A) of the map θ�rU from (16.5) such that:

(1) the map θ�U,A is continuous when both RCTκ and U�
κ(A) are endowed with

the same topology τp or τb;
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(2) the map θ�U,A simultaneously reduces isomorphism to isometry and embed-
dability to isometric embeddability.

In fact, given such an A ⊆ R fix a strictly decreasing sequence �r = 〈rn | n ∈ ω〉
of points from A such that there is r̄ ∈ A with r̄ > r0. Given G ∈ RCTκ, consider
the space U�r

G coded by θ�rU (G) = u�rG ∈ Uκ(A), and notice that since G has size
κ (in particular, it has vertices distinct from its root) each point of U�r

G realizes
the distance r0. Then let UA

G be the disjoint union of U�r
G and U(A \ {r0}) (where

U(A \ {r0}) = (UA\{r0}, dA\{r0}) is defined as in (16.4)), and endow it with the

metric dAG extending both d�rG and dA\{r0} obtained by setting for every x ∈ U�r
G,

r ∈ A \ {r0}, and α < κ

dAG(x, (r, α)) := max{r̄, r}.
A code uA

G ∈ U�(A) for UA
G can be obtained in a continuous-in-G way by e.g. copying

the code u�rG on the odd ordinal numbers and (a code for) the space U(A \ {r0})
on the even ordinal numbers — we leave to the reader to carry out the details of
such coding procedure. Consider the map θ�U,A : RCTκ → U�

κ(A) ⊆ Mκ defined

by setting θ�U,A(G) := uA
G for every G ∈ RCTκ. By the coding procedure briefly

sketched above, condition (1) is satisfied. To show that also (2) is satisfied, first
notice that by Lemma 16.18 we only need to check that for all G,G′ ∈ RCTκ

θ�rU (G) ∼=i θ�rU (G
′) ⇔ θ�U,A(G) ∼=i θ�U,A(G

′) and

θ�rU (G) �i θ�rU (G
′) ⇔ θ�U,A(G) �i θ�U,A(G

′).

The forward direction is obvious, so assume that θ�U,A(G) ∼=i θ�U,A(G
′) (respectively,

θ�U,A(G) �i θ�U,A(G
′)) and let ϕ be an isometry (respectively, an isometric embed-

ding) between the spaces UA
G and UA

G′ coded by θ�U,A(G) and θ�U,A(G
′). Then since

by construction the points in U�r
G ⊆ UA

G are the unique realizing the distance r0 in
UA
G (and the same is true when replacing G with G′), then ϕ�U�r

G is an isometry (re-
spectively, an isometric embedding) between U�r

G and U�r
G′ , so that θ�rU (G) ∼=i θ�rU (G

′)
(respectively, θ�rU (G) �i θ�rU (G

′)).

16.4. Linear isometry and linear isometric embeddability between
Banach spaces of density κ

Let c0 = (c0, ‖ · ‖∞) be the separable (real) Banach space of vanishing ω-
sequences of reals endowed with the usual pointwise operations and the sup norm
‖ ·‖∞. Building on previous work by Louveau and Rosendal [64], in [7, Section 5.6]
it was defined a Borel map simultaneously reducing isomorphism and embeddabil-
ity between countable graphs to, respectively, linear isometry and linear isometric
embeddability between separable Banach spaces isomorphic to c0. We are now
going to adapt such construction to the uncountable context in order to study the
complexity of the relations of linear isometry ∼=li and linear isometric embeddability
�li between non-separable Banach spaces. To this aim we first have to define the
right analogue of the space c0.

Definition 16.23. Given an infinite cardinal κ, let cκ0 ⊆ κR be the collection
of all κ-sequences x = 〈xα | α < κ〉 of reals such that for all ε ∈ R+ we have
|xα| < ε for all but finitely many α < κ.

The Banach space cκ0 = (cκ0 , ‖ · ‖∞) is then obtained by endowing cκ0 with the
usual pointwise operations and the sup norm ‖ · ‖∞.
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In particular, cω0 = c0. A basis 〈eα | α < κ〉 for cκ0 is obtained by letting eα be
the κ-sequence with value 1 on coordinate α and 0 elsewhere; then each element
x ∈ cκ0 may be uniquely written as

∑
α xαeα. Notice that cκ0 has density κ (a

dense subset is given by the collection of all x ∈ cκ0 ∩ κQ having only finitely many
non-null coordinates), and that each x ∈ cκ0 has countable support, that is it has
at most countably many non-null coordinates.

Given any graph G on κ, let XG = (cκ0 , ‖ · ‖G) be the (real) Banach space on
cκ0 equipped with the pointwise operations and the norm defined by∥∥∥∑

α
xαeα

∥∥∥
G
:= sup

{
|xi|+ |xj |

3−χG(i,j) | i �= j ∈ κ
}
,

where χG : κ × κ → {0, 1} is the characteristic function of the graph relation of
G. It is easy to verify that ‖ · ‖G is equivalent to ‖ · ‖∞, as ‖

∑
α xαeα‖∞ ≤

‖
∑

α xαeα‖G ≤ 3
2‖
∑

α xαeα‖∞. Moreover, XG has density κ and thus it can be

coded as in (7.7) by an element xXG
= (x+

XG
, xQ

XG
, x

‖·‖
XG

) of the standard Borel
κ-space Bκ introduced in Section 7.2.4.

Remark 16.24. The map

(16.6) θB : ModκGRAPH → Bκ, G �→ xXG

is continuous when both ModκGRAPH and Bκ are endowed with the same topology
τp or τb.

The proof of the next lemma is identical2 to the one of [7, Lemma 5.20], so we
omit it here.

Lemma 16.25. The map θB from (16.6) simultaneously reduces ∼= to ∼=li and
�∼ to �li.

Arguing as in the case of metric spaces one can straightforwardly check that
Remark 16.24 and Lemma 16.25 yield the following lower bounds for the complexity
of ∼=li�Bκ and �li�Bκ. (As usual, in what follows both ModκGRAPH and Bκ are
endowed with the bounded topology.)

Theorem 16.26. Let κ be an infinite cardinal.

(a) ∼=κ
GRAPH ≤κ

B
∼=li�Bκ and �∼

κ
GRAPH ≤κ

B �li�Bκ.

(b) The relation �li�Bκ is ≤κ
B-complete for the class of κ-Souslin quasi-orders

on Polish or standard Borel spaces.
(c) (AC) If κ ≤ 2ℵ0 and there is an S(κ)-code for κ (which is always the case for

κ = ω, κ = ω1, and κ = 2ℵ0), then �li�Bκ is ≤S(κ)-complete for κ-Souslin
quasi-orders on Polish or standard Borel spaces.

(d) (AD + DC) If κ is a Souslin cardinal, then �li�Bκ is ≤S(κ)-complete for
κ-Souslin quasi-orders on Polish or standard Borel spaces.

(e) Let W ⊇ R be an inner model and let κ ∈ CardW . Then �li�Bκ is ≤W -
complete for quasi-orders in SW (κ).

2It is enough to check that all the properties of the norm ‖ · ‖G used in the original proof
are maintained when passing to the uncountable context, including e.g. the fact that the sup in
the definition of ‖ · ‖G is attained, or the fact that when ‖

∑
α xαeα‖G ≥ ε for some ε ∈ R+, then

there are only finitely many coordinates i, j ∈ κ for which |xi|+
|xj |

3−χG(i,j)
> ε.
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Theorem 16.26 shows in particular that in all the completeness results from
Sections 14, 15 and 16.1 we may further replace �∼

κ
CT with �li�Bκ. To see a sample

of the statements that one may obtain in this way just systematically replace �i�Uκ

with �li�Bκ in Theorems 16.20 and 16.21.

16.5. *Further results on the classification of nonseparable metric and
Banach spaces

We collect some facts that follow easily by combining theorems from the liter-
ature with the constructions developed insofar. Although some of the results are
not strictly related to the main topic of this paper, they do fit naturally into our
framework and they do not require much extra work.

First we notice that many of the relations considered in the previous section,
including the isometry relation ∼=i, the isometric embeddability relation �i, and
their analogue for Banach spaces ∼=li and �li are consistently as complex as possible,
even when restricted to some specific subclasses.

Theorem 16.27. (a) Assume V = L, and let κ = λ+ be such that λω = λ
(equivalently: λ is either a successor cardinal or a limit cardinal of uncountable
cofinality). Then the following relations are ≤κ

B-complete for the collection of
all κ-analytic equivalence relations on standard Borel κ-spaces:
• ∼=i�Dκ;
• ∼=i�Uκ(A), where A ⊆ R satisfies the conditions of Definition 16.16 and
contains a strictly decreasing chain of length 2 · ω + 1 (with respect to the
usual ordering of R);
• ∼=li�Bκ.

(b) Assume AC and let κ be a weakly compact3 cardinal. Then the following
relations are ≤κ

B-complete for the collection of all κ-analytic quasi-orders on
standard Borel κ-spaces:
• �i�Dκ;
• �li�Bκ.

Proof. (a) In [41, Corollary 2.15] it is proved that under our assumptions
there is a first-order theory T such that the isomorphism relation on the collection
ModκT of models of size κ of T is ≤κ

B-complete for κ-analytic equivalence rela-
tions on κ2. This can be extended to κ-analytic equivalence relations on arbitrary
standard Borel κ-spaces by adapting the proof of [74, Lemma 6.8] to our context,
using the fact that any standard Borel κ-space is κ + 1-Borel isomorphic to some
B ∈ Bκ+1(

κ2, τb). By [39, Theorem 5.5.1], T can be interpreted in the theory of
graphs: more precisely, there is a τb-continuous map ModκT → ModκGRAPH which
simultaneously reduces ∼=�ModκT to ∼=κ

GRAPH and �∼�ModκT to �∼
κ
GRAPH. In particu-

lar, this shows that under our assumptions ∼=κ
GRAPH is ≤κ

B-complete for κ-analytic
equivalence relations on κ2 as well. Thus the result concerning discrete metric
spaces follows from Theorem 16.15(a), while the one for Banach spaces follows
from Theorem 16.26(a). The case of ultrametric spaces follows the same reasoning
lines but is slightly more complex: a full proof can be found in [75, Sections 3 and
4].

3[5] shows that the same is true for any cardinal κ satisfying the equality κ<κ = κ.
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(b) The argument is similar to that of part (a). In [74, Corollary 9.5] it is proved
that under our assumptions the embeddability relation on generalized trees4 of size
κ is ≤κ

B-complete for κ-analytic quasi-orders on standard Borel κ-spaces. By the
above argument, this implies that the same is true for �∼

κ
GRAPH. Thus the result

follows again from Theorem 16.15(a) and Theorem 16.26(a). �

Remark 16.28. Since in Theorem 16.27(a) the set A can be chosen to be
bounded away from 0, Remark 16.22 applies here as well: as a consequence, the
isometry relation on any of the classes of metric spaces mentioned in that remark is
consistently as complex as possible. Moreover, arguing as at the end of Section 16.3
one sees that we may as well replace Uκ(A) with U�

κ(A) in Theorem 16.27(a).

Whether �i�Uκ may consistently have maximal complexity (i.e. whether it can
be added to Theorem 16.27(b)) seems to be open: the main problem is that we do
not know e.g. whether �∼

κ
RCT can be ≤κ

B-complete for κ-analytic quasi-orders on
κ2 (equivalently, whether it has the same complexity as �∼

κ
GRAPH). However, we

can at least observe that ∼=κ
GRAPH and �∼

κ
GRAPH are always upper bounds for the

complexity of ∼=i�Uκ and �i�Uκ, respectively.

Theorem 16.29. Let κ be any infinite cardinal. Then ∼=i�Uκ ≤κ
B
∼=κ

GRAPH and
�i�Uκ ≤κ

B
�∼

κ
GRAPH.

Proof. Argue as in the proof of [25, Theorem 4.4] and use the fact that
∼=�ModκL̂ ≤

κ
B
∼=κ

GRAPH and �∼�ModκL̂ ≤
κ
B

�∼
κ
GRAPH for any countable language L̂

by [39, Theorem 5.5.1] (see also the proof of Theorem 16.27(a)). �

In contrast, for discrete metric spaces we can complement Theorem 16.15(a)
and determine the exact complexity with respect to ≤κ

B of both ∼=i�Dκ and ��Dκ.

Theorem 16.30. Let κ be any infinite cardinal. Then ∼=i�Dκ ∼κ
B
∼=κ

GRAPH and
�i�Dκ ∼κ

B
�∼

κ
GRAPH.

Proof. By Theorem 16.15(a), we only need to show that ∼=i�Dκ ≤κ
B
∼=κ

GRAPH

and �i�Dκ ≤κ
B

�∼
κ
GRAPH. Consider the countable language L̂ := {Pq | q ∈ Q+},

where each Pq is a binary relational symbol. To each x ∈ Dκ associate the L̂-
structure Ax on κ defined by setting for each q ∈ Q+ and α, β < κ

PAx
q (α, β) ⇔ x(α, β, q) = 1.

Then the map x �→ Ax is continuous when both Dκ and ModκL̂ are endowed with
the bounded topology, and moreover for every x, y ∈ Dκ

x ∼=i y ⇔ Ax
∼= Ay and x �i y ⇔ Ax

�∼ Ay.

Indeed, using the notation from Section 7.2.3, a map f : κ → κ is an isometry
(respectively, an isometric embedding) between Mx = (κ, dx) and My = (κ, dy)
if and only if it is an isomorphism (respectively, an embedding) between Ax and
Ay. This shows that ∼=i�Dκ ≤κ

B
∼=�ModκL̂ and �i�Dκ ≤κ

B
�∼�ModκL̂. Since as

discussed in the proof of Theorem 16.27(a) we have ∼=�ModκL̂ ≤
κ
B
∼=κ

GRAPH and
�∼�ModκL̂ ≤

κ
B
∼=κ

GRAPH by [39, Theorem 5.5.1], we are done. �

4We call generalized tree any partial order T = (T,≤T ) that is a tree in the model theoretic
sense, that is: for every t ∈ T , the set {t′ ∈ T | t′ ≤T t} is linearly ordered by ≤T .

Licensed to University di Torino.  Prepared on Thu Dec  5 09:33:50 EST 2024for download from IP 130.192.193.114.



16.5. *CLASSIFICATION OF NONSEPARABLE SPACES 179

Since Theorems 16.29 and 16.30 are proved in ZF, it follows that their con-

clusions are true in L(R). This shows that in models of ADL(R) the relation of
isometric bi-embeddability between ultrametric or discrete complete metric spaces
of uncountable density character is way more complex than the isometry relation
on the same class. In fact, by Theorem 16.20(e) every equivalence relation in Γ2

1

(a quite large boldface pointclass in V which includes e.g. all projective levels) is
L(R)-reducible to the isometric bi-embeddability relation relation on Uκ ∩Dκ (for
a suitable cardinal κ), while by Example 1.13 (see [37, Theorem 9.18]) and Theo-
rems 16.30 and 16.29 there areΣ1

1 equivalence relations E such that E �L(R)
∼=i�Dκ

and E �L(R)
∼=i�Uκ for every κ ∈ (Card)L(R), and therefore for every κ ∈ Card.

Combining this observation with Theorem 16.27 we further get the following
interesting independence result.

Corollary 16.31. It is independent of ZF + DC whether for κ = ω2 (or for
any κ which is a successor of some λ satisfying λω = λ) the relation of isometric
bi-embeddability between ultrametric (respectively, discrete) complete metric spaces
of density character κ is ≤κ

B-reducible to the isometry relation on the same class of
spaces.

Proof. Since the relation of isometric bi-embeddability is a κ-analytic equiva-
lence relation on the standard Borel κ-space Mκ, under V = L it is ≤κ

B-reducible to∼=i� (Uκ ∩Dκ) by Theorem 16.27(a) (and the ensuing remark). On the other hand,
by the observation preceding this corollary we get that under AD+V = L(R) there
are Σ1

1 equivalence relations on R which are not reducible (even without definabil-
ity conditions on the reductions that may be used) to ∼=i�Dκ or to ∼=i�Uκ, while
all such relations are ≤κ

B-reducible to the isometric bi-embeddability relation on
Uκ ∩Dκ by Theorem 16.19(b) (and Remark 16.22). Thus in this case the isometric
bi-embeddability relation is not ≤κ

B-reducible to ∼=i�Dκ or ∼=i�Uκ. �
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Indexes

Here you will find two indexes, one for the concepts and one for the symbols.
The index of symbols is essentially divided in two parts: in the first part we listed
in the order they appear in the text all those symbols (such as 	) that cannot easily
be placed in alphabetical order, and in the second part we list lexicographically all
the other symbols (such as ΣT ).

Concepts

α-algebra, 19
analytic sets Σ1

1, 22
Axiom of Choice, and its weak forms
κ-choices ACκ, ACκ(R), 18
countable choice ACω, ACω(R), 18
dependent choice DC, DC(R), 18
full choice AC, 18

Borel
α-Borel code, 38
α-Borel sets Bα, 37
∞-Borel sets B∞, 37
effective α-Borel sets Be

α, 38
function, 45
sets B, 37
standard Borel κ-space, 61

boundary of a tree ∂T , 54
bounded formulæ (infinitary logic),

70

cardinals and cardinalities, 17, 19
small, 26

coding of pairs/sequences of
ordinals, 〈α, β〉 and 〈〈s〉〉, 17

combinatorial tree, 23
rooted, 23

descriptive set-theoretic tree, 24
of height κ, 27

determinacy axioms
AD, ADR, 18
AD+, 88

Γ-code for κ, 46
Γ-in-the-codes function, 46
generalized Baire space, 51
generalized Cantor space, 27

inclusion map between generalized
Cantor spaces, 35

invariant universality, 3, 113

Lipschitz reducibility, 30
Lopez-Escobar’s theorem, 73

measurable function, 45

norm on a set, 22

Perfect Set Property PSP, 18
pointclass
boldface, 22
dual Γ̌, 21
hereditary, 21
normed, 23
scaled, 23

Polish space, 21
metric, 65

prewellordering property, see also
normed pointclass

projective ordinals, 40

scale, 23
space
κ-analytic space, 59

181
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of type κ, 63
perfect, zero-dimensional, 21
standard Borel κ-space, 61
ultrametric, 21

topology
λ-topology τλ, 28

bounded τb, 27
product τp, 27

Uniformization Property Unif, 19

weakly α-Borel function, see also
measurable function

Symbols

[α]β, [α]≤β, [α]<β, 18
〈〈s〉〉, 17
f“A, 17
〈α, β〉, 17
X(Y ), 18
�, 17
�, 17
u �→ u�, 18
x(α), 18
|X|, 19
[T ], 24
≤κ

L, ≤κ
W, 30

∂T , 54
≈, 64
�∼, 64
�i, 66
�li, ∼=li, 68
	, 69
≈κ

σ, ≈<κ
σ , ≈∞

σ , 72
∼=κ

σ,
∼=<κ

σ , ∼=∞
σ , 72

�∼
κ
σ,

�∼
<κ
σ , �∼

∞
σ , 72

s �→ s−, 97
≤κ

max, �κ
max, 107

#, 132
�, 131
≤κ

B, ≤κ
B, ∼κ

B, ∼κ
B, 145

≤aD, ∼aD, 149

ACκ, ACκ(R), 18
AD, ADR, 18
AD+, 88
Alg(G, α), 19

Bα, B∞, 37
Be

α, 38
Bb, Bp, 27
Bλ, 28
B̂b, 51

Bκ, 67

Cb, Cλ, Cp, 32
CTκ, 23

δΓ, δ
1
n, δ

2
1, 40

ΔΓ, 21
DC, DC(R), 18
Dκ, 66

E, 96

FAμ(P), 55
Fn(X,Y ;κ), 18
f̄T , 133
fT , 108
Fv(ϕ), 69

Γ̌, 21
Gκ

L(A,B), Gκ
W(A,B), 30

G0, 97
G1, 98
GS , 101
ḠS , 132

Inj, 55

Lκλ, 69
L0
κλ, Lb

κλ, 70

λ1
2n+1, 41

LST, 17

Mκ, 65
ModκL, 64
Modκσ, Mod<κ

σ , Mod∞σ , 72
Mϕ,u, 72

Nκ
s , 27

Ñα,i, 28

N̂κ
s , 51
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OCTκ, 131

p, 24
Π0

α, 21
Ψ, 120
ΨfT , 110
Ψ̄, 136
PSP, 18

�, �̄, 105

Σ0
α, 21

σOCT, 131
ΣT , 108
S(κ), S(∞), 81
Sym(κ), 51

τb, τp, 27
τλ, 28
T d, 96
Θ, 37
Tr, 24
Tκ, T, 105

Uα, 97
Uκ, 66
Unif, 19

vα, 69

w, 97

Ξ, 84
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[76] I. I. Parovičenko, On a universal bicompactum of weight ℵ, Dokl. Akad. Nauk SSSR 150
(1963), 36–39. MR0150732

[77] S. Shelah, On co-κ-Souslin relations, Israel J. Math. 47 (1984), no. 2-3, 139–153, DOI
10.1007/BF02760513. MR738165

[78] S. Shelah, Strong dichotomy of cardinality, Results Math. 39 (2001), no. 1-2, 131–154, DOI

10.1007/BF03322680. MR1817405
[79] S. Shelah, On nice equivalence relations on λ2, Arch. Math. Logic 43 (2004), no. 1, 31–64,

DOI 10.1007/s00153-003-0183-1. MR2036248
[80] S. Shelah and J. Väänänen, Stationary sets and infinitary logic, J. Symbolic Logic 65 (2000),

no. 3, 1311–1320, DOI 10.2307/2586701. MR1791377
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