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• Evaluation of groundwater quantitative
status using different statistical methods.

• Methods: trend, change-point, percentile
and non-standardized anomalies analysis.

• Comparison of the results, highlighting
methods applicability and limits.

• Identification of the relations between
groundwater and rainfall.

• Using more than one method is the best
solution to have reliable results.
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Monitoring and analysis of groundwater level (GWL) in space and time is one of the tools used to evaluate the
quantitative status of groundwater (GW) resources and identify possible alterations and critical cases due to climate
change and variability, anthropogenic influences and other driving factors.
In this study, four statistical methodologies (trend, change-point, percentile and non-standardized anomaly analyses)
were applied for GWL and rainfall (R) analysis in the Piedmont Plain (western Po Plain, NW Italy). To detect the
interannual variations in the GW maximum annual amplitude, the coefficient of variation was also used.
The aims of the study were 1) to compare the results of different statistical methods, highlighting their applicability
and differences to evaluate the quantitative evolution of GW, 2) to identify the relationship between GWL and R,
3) to investigate the spatiotemporal variation in the GWL of shallow aquifers in the Piedmont Plain, and 4) to describe
critical situations of GW depletion.
The study highlights that the application of a single method for assessing the shallow GW resource status does not
always guarantee a reliable evaluation. For this reason, it is advisable to apply different analysis methods at the
same time. Completeness of data and medium to long time series are prerequisites for meaningful analyses. The use
of the same time interval is always necessary for comparisons between different monitoring wells and between the
results of different statistical analyses. Last, by spatializing the results, it was possible to identify areas characterized
by similar GWL behaviour due to hydrological structure, climate variability, land use and the evolution of
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ercentiles analysis; R, rainfall; R_AN, rainfall anomaly; R_T, rainfall trend; T, trend analysis.
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anthropogenic activities over time. These factors influence vary locally in the Piedmont plain and require local assess-
ments to determine the impact of changes in GWL.
1. Introduction

Groundwater (GW) constitutes the predominant reserve of fresh
water on the planet and is usually large and widely distributed in the
world. Groundwater contributes 42 %, 36 % and 27 % of the water
used for irrigation, households and manufacturing, respectively, during
1998–2002 (Döll et al., 2012). In recent decades, GW depletion has been
detected in different parts of the world (Döll and Fiedler, 2008; Wada
et al., 2010) due to increasing populations, anthropic activities
(e.g., overexploitation), and climate change (Taylor et al., 2013; Voss
et al., 2013; Wu et al., 2020). Increasing temperature and evapotranspi-
ration, snow cover retreat, and changing patterns and/or decreasing
rainfall (R) and snow are among the major consequences attributed to
climate change, and they can negatively impact GW recharge (IPCC,
2022).

The impacts of climate change on GW resources may be even more
severe and amplified by intensive groundwater extraction, that represents
a secondary effect of climate change itself.

Climatic and anthropogenic factors are many, impact GW resources in
different ways, often overlap, and are difficult to separate (EEA, 2018).
For this reason, many GW resource studies separately analyze their effects
(Taylor et al., 2013; Russo and Lall, 2017).

Long-termmonitoring and analysis of groundwater level (GWL) showed
to be important tools for identifying possible alterations in the quantitative
status and for highlighting the response of GW to climate change and the
other anthropogenic global change drivers (IAH, 2016; Whittemore et al.,
2016).

Statistical methods for the investigation of climatic parameters and
hydrogeologically related time series are many.

Trend analysis (T) has been extensively used to assess the potential
impacts of climate change and variability on natural and hydrological data,
such as R, streamflow and GWL time series, in various parts of the world
(Hirsch et al., 1982, Zwilling et al., 1989, Serrano et al., 1999, Zhang et al.,
2001, Burn and Elnur, 2002, Arora et al., 2005, Birsan et al., 2005,
Svensson et al., 2005, Abdul Aziz and Burn, 2006, Polemio and Casarano,
2008, Stahl et al., 2010, Xu et al., 2010, Zheng et al., 2010, Liu et al., 2011,
Panda et al., 2012, Rusi et al., 2013, Lutz et al., 2015, Patle et al., 2015,
Polemio, 2016, Amogne et al., 2018, Ducci and Polemio, 2018, Kumar
et al., 2018, Pathak and Dodamani, 2019, Xia et al., 2019, Bastiancich
et al., 2021). The nonparametric Mann-Kendall trend test (Mann, 1945;
Kendall, 1955) and Sen's slope estimator (Sen, 1968)were applied for analyz-
ing trends of GWL and climatic variables in different studies (Kawamura
et al., 2011; Tabari et al., 2011; Krishan et al., 2015; Ribeiro et al., 2015;
Lasagna et al., 2019).

Indeed, nonparametric statistical tests do not require the data to follow
a particular distribution, and they are not very sensitive to the presence of
possible outliers in the GWL data, compared to the parametric ones
(Caloiero et al., 2011).

However, statistical analyses on time series can provide different results
depending on the time period analyzed (Tomé andMiranda, 2004). Change
point analysis (ChPA) can help identify abrupt changes (change points) in a
time series and then split the time series into subperiods in which the pa-
rameters show homogeneous behaviors. The ChPA has been used in the
field of meteorology for the analysis of changes in climate data (Lanzante,
1996; Beaulieu et al., 2012; Tirogo et al., 2016), such as air temperature,
seasonal R (e.g., Tomozeiu et al., 2000; Reeves et al., 2007; Lasagna et al.,
2020a), precipitation and streamflow (Kiley, 1999; Xiong and Guo,
1994), temperature (Toreti et al., 2010) and carbon dioxide concentration
(Costa et al., 2016).
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Other statistical analyses of fluctuations in GWL are based on the com-
parison of recent data with a reference value (usually a mean level) or
with a range of reference oscillations (usually defined between the first
and third quartile). In these cases, the considered reference values can
vary the magnitude of the results (Helsel et al., 2020).

The Percentiles Method (PCTL), applied to GWL time series, is a stan-
dard groundwater evaluation tool used by the U.S. Geological Survey and
proposed by the Ontario Ministry of Environment (MOE, 2008). PCTL
was considered an integration of the GW drought indicator (Post, 2013).
The 10th, 25th, 75th, and 90th percentiles were used to classify levels
frommuch below normal to much above normal; in general, GWL between
the 25th and 75th percentiles was considered normal, GWL between the
10th and 25th percentiles was considered dry, and GWL below the 10th
or 5th percentile was considered a drought emergency.

The evaluation of standardized and non-standardized anomalies are
methods widely used for the analysis of climatic variables such as R, air
temperature and snowfall (Regione Piemonte, 2020; Asoka et al., 2017).

Analysis of seasonality, maximumannual amplitude offluctuations, and
interannual variability of GWL also provide additional insight into natural
(e.g., climate change/variability) and anthropic (e.g., changes in irrigation
practices) factors influencing the trend in GWL (Lasagna et al., 2020b).
Fluctuation in the GWL occurs due to numerous factors, such as recharge
(net recharge and discharge), evapotranspiration and withdrawal from
wells. Its magnitude also depends on climatic factors, drainage, topogra-
phy, geological and hydrogeological characteristics and anthropogenic in-
fluences (Panda et al., 2007; Krogulec et al., 2020). Sometimes high
fluctuations can result in problems and undesirable effects, such as the al-
teration of GWflow regimes and changes in the volume and quality of avail-
able GW resources (Apaydin, 2009). Indeed, a high variability of annual
average GWL fluctuations over time can lead to critical issues, such as, in
the case of shallow aquifers, interference with anthropogenic infrastruc-
tures or an incorrect assessment of the GW resource, which cannot be de-
tected through a single annual average value.

In this study, different statistical methodologies were applied for GWL
and rainfall (R) analysis in the Piedmont Plain (western Po Plain, NW Italy).

A preliminary study of the hydrodynamic behaviors of the GW, their
spatial distribution and R regime was conducted in this area by Lasagna
et al. (2020b). Moreover, the main change drivers, especially those created
by land use and climate variability in the study area, were analyzed and de-
scribed.

This study represents a continuation and a deepening of Lasagna
et al.'s (2020b) investigation. Starting from the current resource status,
it aims to describe the most useful methods to investigate critical situa-
tions of GW depletion due to climate variability, land use and human
activities. More specifically, four methods of GWL time series analysis
were applied and compared: trend, change-point, percentile and non-
standardized anomaly analysis. The same methodologies were applied
to the R and GWL time series. Although changes in GW levels do not
depend solely on climate data, comparisons and correlations between
GWL and R can help to assess aquifer vulnerability to climate change
(Ng et al., 2010) and to evaluate how R affects changes in the GWL.
The aims of the study were: 1) to compare the results of different statis-
tical methods, highlighting their applicability and differences; 2) to
identify the relationship between GWL and R; 3) to investigate the spa-
tiotemporal variation in the GWL of shallow aquifers in the Piedmont
Plain; and 4) to describe critical situations of GW depletion. Then, the
spatialization of the results of the statistical analyses and elaborations
were discussed, with particular reference to geographical distribution,
identifying the most critical areas.
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2. Materials and methods

2.1. The study area

The study area is the Piedmont Plain (western Po Plain, NW Italy) and
represents the largest and most important GW resources in the Piedmont
Region.

The Piedmont Plain is characterized by different hydrogeological com-
plexes (Fig. 1) listed from top to bottom (Bove et al., 2005; De Luca et al.,
2019; Perotti et al., 2019; De Luca et al., 2020) as follows:

• Recent fluvial deposits (Upper Pleistocene-Holocene): composed of inco-
herent and heterometric sediments of fluvial (Holocene) and fluvioglacial
(Upper Pleistocene) origin, mainly composed of gravel and sandwith sub-
ordinate silty-clay intercalations; these sediments are located in the
bottom of the valleys of the region and in the Piedmont Plain.

• Medio-ancient fluvial deposits (Middle-Lower Pleistocene): composed of
incoherent and heterometric sediments, locally cemented, mainly gravel
and sand, and silty-clay, sometimes in alternation; the fine fraction may
be prevalent. These deposits, which border the Apennine-Alps chains
from Tanaro River to Maggiore Lake, are in contact with the morainic
arches to which they are genetically connected.
Fig. 1. Simplified hydrogeological map of the Piedmont region (NW Italy) (modified fr
32N.
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• Glacial deposits and morainic hills (Pleistocene): constituted by
heterogenic glacial deposits as silt and clay with sand, cobbles and boul-
ders.

• Lacustrine, swamp and fluvial sediments (Villafranchian series) (Upper
Pliocene-Lower Pleistocene): fluvial-lacustrine deposits characterized by
alternations of silty-clayey and gravelly sandy horizons.

• Marine sand and clayey silt (Pliocene): marine sediments that constitute
the substratum of the Villafranchian series.

The Piedmont Plain is surrounded by the crystalline bedrocks (mag-
matic and metamorphic rocks) of the Alps to the N and W and by Tertiary
Piedmont Basin (BTP) Hills (pre-Pliocene marine sediments characterized
by conglomerate, sandy arenaceous formations and evaporitic deposits)
to the S and E. A more detailed description of the geological setting with
simplified cross sections can be found in De Luca et al. (2020) and in
Lasagna et al. (2020b).

The shallow unconfined aquifer is hosted in the Quaternary alluvial
deposits complex (Middle-Lower Pleistocene-Holocene). This complex has
a thickness generally ranging between 20 and 50 m, and the hydraulic
conductivity varies from high values (K > 10−3 m/s) of recent fluvial
deposits to medium (K = 10−5–10−3 m/s) and low values (K = 10−7–
om Regione Piemonte, 2021a). Reference system: EPSG: 32632-WGS84/UTM zone
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10−5 m/s) of medium-ancient fluvial deposits. The lower hydraulic
conductivity is characteristic especially of the oldest and altered levels.

The water table depths from the ground surface are in large areas<5m,
for example, in the northern sector of the Piedmont plain (Vercelli and
Novara plains), in the areas along the main watercourses (Po and Tanaro
rivers) and in the plain between Turin and Cuneo. Along the band of the
foothills and in particular west of Turin and southwest of Cuneo, the
water table is deeper, with values generally >15–20 m from the ground
surface. The highest values (>40 m) are distributed in the Cuneo Plain
and in the northern part of the Turin Plain due to the presence of a high
morphological terrace. In the south-eastern part of the Piedmont Plain
(Alessandria Plain), the water table depths vary between 5 and 15 m from
the ground surface (De Luca et al., 2020). Deep aquifers are located in the
Villafranchian series and in the sandy facies of the Pliocenemarine complex
(Lasagna et al., 2014; Castagna et al., 2015).

In this paper, GWL analysis is conducted in an unconfined shallow aqui-
fer characterized by medium-high hydraulic conductivity. Recharge areas
of the unconfined aquifer are mainly due to infiltration of R and infiltration
from the river leakage from the loosing streams in the high plain sectors.
The low plain sectors are generally discharge areas, and the Po River repre-
sents the main regional discharge axis for the GW flow (Lasagna et al.,
2018).

The physiographic configuration of the Piedmont region, surrounded
on three sides by mountain chains and hills, favors local circulations and
microclimates. The climate classification of the Piedmont Plain identifies
a relatively arid central-southern area (plain of Asti and Alessandria)
surrounded by a more humid area (Biancotti et al., 1998).

The analysis of the annual average temperature anomalies in the Pied-
mont, calculated for the period 1958–2015, shows an increasing trend
over the past twenty years, with an estimated total increase of approxi-
mately 1.2 °C over 50 years (ARPA, 2010). The years after 1985 show a
more marked increase in average temperature, and the increase is mainly
concentrated in the winter, spring and summer months.

The average annual R from 2002 to 2017 in the Piedmont Plain was
over 900 mm. During that period, 2002 was the wettest year, and 2017
was the driest (Fig. 2). The average annual R showed the lowest values
(<750 mm/yr) in the SE part of the Piedmont Plain (Asti and Alessandria
plain), medium values between 750 and 900 mm/yr in the central part
(Cuneo and southern Turin Plains), and the highest values between 750
and 1200 mm/yr in the northern part (Novara, Vercelli and Biella Plains)
(Fig. 3). The highest values of annual R were detected along the border of
Plain with the mountain relief (>900 mm/yr). These values showed a sim-
ilar spatial distribution detected for the period 1959–2009 (ARPA, 2010).

The annual R in the Piedmont Plain showed a seasonal behaviour char-
acterized with a bimodal trend, with 2 maxima (spring and autumn) and
Fig. 2. Average annual R of rain gauges analyzed in the Piedmont Plain (light blue
dashed line: the average annual R from 2002 to 2017).
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2 minima (winter and summer) typical of a continental climate (prealpine
or subalpine) (Acquaotta and Fratianni, 2013; Baronetti et al., 2018).

Regarding snowfall in the Piedmont Mountains, Acquaotta et al. (2013)
evaluated the annual cumulative average snowfall of the reference period
1961–2010, recorded at altitudes higher than 1000m, varying from a min-
imum of approximately 300 cm to a maximum of 700 cm. 2008 was the
year in which snowfall was highest, after 1950, in the last 30 years
(ARPA, 2016).

2.2. Methods

2.2.1. Monitoring network and data analysis
For this study, the GWL of the shallow aquifer in 36 monitoring wells

and the daily R data from 26 rain gauges distributed in the same area
were analyzed (Fig. 4). The monitoring wells, homogeneously distributed
in the Piedmont plain, are part of the automatic monitoring network of
the Regional Agency for the Protection of the Environment (ARPA),
which has been activated since 2000. Daily GWL data are available on the
website of the Regione Piemonte (Regione Piemonte, 2021b).

R data are part of the automatic monitoring network Agrometeorological
network (RAM) managed by Regione Piemonte, which has been activated
since 2000. The R data are available on the RAM website (Regione
Piemonte, 2021c).

The analysis of GWL and R time series was carried out considering a
standard period of 16 years between 1 January 2002 and 31 December
2017. In this period, all the analyzed time series showed a low percentage
of missing data (completeness of >90 % for GWL data and 100 % for R
data). Further information about GWL and R time series are reported in
Lasagna et al. (2020b).

Data were aggregated monthly, obtaining monthly averages of GWL
and cumulative monthly R. Moreover, GWL was also aggregated annually.

2.2.2. Data analysis
The first elaboration in this study aimed to identify the following:

• the maximum amplitude of the GWL annual fluctuation and the average
in the period 2002–2017 to quantify the annual variation in the water
table in each monitoring well;

• the interannual variability in the maximum amplitude of GWL fluctua-
tions (GWL_range) for eachmonitoring well in the analyzed period to dis-
tinguish wells that present a constant amplitude of fluctuation over time
from those characterized by higher variability. These elaborations were
conducted determining the coefficient of variation CV of annual maxi-
mum amplitude of GWL fluctuation (CV_GWL).

These parameters and their spatialization permitted to identify the
areas that contain the greatest annual fluctuations and/or high interannual
variability.

Different statistical methods were applied to the GWL and R time series,
including a) change-point analysis (ChPA); b) trend analysis (T);
c) percentilemethod (PCTL); and d) analysis of the non-standardized anom-
alies (AN). The elaborations of trends, change-points, and percentiles were
performed usingmonthly data. Regarding the non-standardized anomalies,
the analysis was performed on monthly and annually aggregated data.

Finally, comparisons were made between interannual variations,
trends, change points and anomalies evaluated for R and those evaluated
for GWL.

In the following, a detailed description of each adopted methodology is
reported.

2.2.2.1. Interannual variability and amplitude of average annual GWL fluctua-
tions. An accurate estimation of the spatial and temporal fluctuations in
GWL and recharge is important in the management of GW resources (Rai
and Singh., 1985, Cuthbert et al., 2015).



Fig. 3. Spatial distribution of annual R (average 2002–2017) in the Piedmont Plain.
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For each monitoring well, the maximum amplitude of GWL annual fluc-
tuations (GWL_range) was evaluated in the period 2002–2017. The
GWL_range was calculated for each year as the difference between the
highest monthly mean GWL value (GWL_max) and the lowest monthly
mean GWL value (GWL_min) (Fig. S1, in supplementary materials). The
maximum amplitude of annual fluctuation in GWL can vary from year to
year, so for each GWL time series, theminimumandmaximumvalues of an-
nual GWL_range fluctuations were detected (Fig. S2, in supplementary
materials) in the analyzed period.

The interannual variation of annual GWL_range fluctuations weremade
through the coefficient of variation (CV). The CV is independent of both
unit and order of magnitude, and is defined as the dispersion (standard
deviation, σ) normalized by the mean (μ) and is therefore a pure number
(Soliani, 2001):

CV ¼ σ
μ ð1Þ

The interannual variability in the maximum amplitude of annual
GWL_range fluctuations (CV_GWL) was evaluated in each monitoring
5

well. The CV was also computed to evaluate the interannual variations in
the cumulative annual R (CV_R) and compared with the CV_GWL.

Finally, the average GWL_range values, CV_GWL and CV_Rwere plotted
on a map to evaluate their spatial distribution and the magnitude of their
variability over time.

2.2.2.2. Change-point analysis. ChPA is a statistical tool for the identification
of sudden changes (change points) in a time series, determining whether
and when a change has taken place.

In this study, ChPA was applied to search for potential significant
changes in the monthly GWL (ChP_GWL) and cumulative monthly R time
series (ChP_R).

The analysis was performed by ordering the data according to time;
then, the data were tested by the statistical nonparametric Pettitt test
(Pettitt, 1979).

The Pettitt test is based on the values assumed by the following
statistics:

Ut;T ¼ ∑t
i¼1∑

T
j¼tþ1 sgn Xi−Xj

� �
t ¼ 1…T ð2Þ



Fig. 4.Monitoring wells and rain gauges used for the study in the Piedmont Plain.
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where T is the number of data in the series, Xi and Xj are data values at times
i and j (with j > i), respectively, and sgn(Xi − Xj) is the sign function. For
each value of t (instant of the series), a value of U (t, T) is obtained and plot-
ted. The analysis of the graph of the function U (t, T) allows the identifica-
tion of the moment at which a change point may have occurred. The
maximum or minimum point of the function U (t, T) represents the instant
in which a change point occurs if the outcome of the test were such that the
null Hypothesis H0 was rejectable at the level of significance assigned.

For this study, a 95 % confidence interval was required to state that the
change was significant, with a level of significance α of 0.05.

The research and the identification of change points allowed us to
obtain complementary information that could help to deepen the analysis
of time series and their variability over time and the variability of all
other components directly or indirectly connected (Lockwood, 2001).

A change point in a GWL time series (ChP_GWL) corresponds to a shift
in the local recharge and discharge of the aquifer due to a combination of
factors that can be natural (e.g., R, feeding from watercourses, snow melt,
evapotranspiration due to the rise in temperature) or anthropic
(e.g., massive irrigation and paddy fields, and increase/decrease in water
withdrawals during the year). The characteristics of the porous media
that host the aquifer can influence the delay of the response time. The
ChPA was applied over the whole time series 2002–2017, and the most
important ChPs for both GWL and R were identified.
6

Purposes of the ChPA in this work were a) to detect if there is any
change in the sequence of observed time series and when it occurred;
b) to estimate the number of changes and their corresponding locations in
time; c) to identify the points (moments) in which to start or end the
trend (Figs. S3 and S4, in supplementary materials) and to compare the
temporal location of ChP_GWL with the ChP_R and determine the magni-
tude of delays (in months). The ChPA preceded the trend analysis to split
the time series into subperiods inwhich the parameters showhomogeneous
behaviors.

The ChPA was performed using the ANABASI tool version 1.51 beta, a
statistical program developed by ISPRA (Braca et al., 2013).
2.2.2.3. Trend analysis. In this study, the nonparametric Mann-Kendall
test was employed to identify statistically significant positive or nega-
tive monotonic trends in the GWL (GWL_T) and R (R_T) time series,
and Theil-Sens slope estimator allowed us to evaluate the magnitude
of the trends.

The Mann-Kendall test statistic (S) was calculated according to:

S ¼ ∑n−1
k¼1 ∑

n
j¼kþ1 sgn Xj−Xk

� �
t ¼ 1…T ð3Þ
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with sgn ðXÞ ¼
1 if X > 0
0 if X ¼ 0

−1 if X < 1

8<
: and X = Xj − Xk.

A positive value of S is an indicator of an increasing trend, and a very
low negative value indicates a decreasing trend. For the Mann-Kendall
test, when the null Hypothesis H0 is rejected at the level of significance α
(0.05), the data present a statistically significant trend.

If a linear trend was present in a time series, Sen's slope estimator (Qi)
was used to estimate the slope (magnitude of the trend line (i.e., rate of
water level decline, m/yr):

Qi ¼ Xj−Xk

j−k
for i ¼ 1; 2; 3;…N ð4Þ

where Xj and Xk are data values at times j and k (with j > k), respec-
tively. T was conducted defining a 5 % significance level, and trends were
assumed to be real for p values less than this threshold (p value ≤ 0.05).
The trend analysis was performed using the software ProUcl (EPA, 2016).

T was performed on the whole period between 2002 and 2017 and on
two subperiods identified by the presence of a main change point in the
GW and R time series. Studies applied to climate variables (Tomé and
Miranda, 2004) have shown a calculation of the total linear trend as the
weighted average of the partial linear trends with the identified change
points as boundaries.

GWL_T and R_T were then elaborated on the entire period of the time
series (2002–2017) and in shorter periods (2002–2008 and 2009–2017),
delimited by the presence of a main change point in the year 2008
(Figs. S3 and S4, in Supplementary materials). Finally, the spatial distribu-
tions of the GWL and R trends were mapped.

2.2.2.4. Percentiles method. PCTL allowed us to identify, for each measure-
ment station, a threshold limit of GWL below which the GW resource starts
to show issues.

The PCTL method, proposed by ISPRA (ISPRA, 2017), is based on the
measure of the “natural fluctuation band” obtained by interpolating the
monthly values of the 25th and 75th percentiles computed in the time inter-
val 2002–2015 (Fig. S5, in supplementary materials).

GWL below the range of natural oscillation of GWL (less than 25th per-
centile) places the aquifer body in a condition of ‘Alert’ from the point of
view of the quantitative status. Values of GWL below 15–30 % of the natu-
ral annual oscillation band are considered critical conditions for the quanti-
tative status of water body monitoring.

In this study, threshold valueswere set to 15%of the naturalfluctuation
band below the 25th percentile of GWL (GWL_threshold of Fig. S5, in Sup-
plementary materials).

Finally, a spatial distribution of the number of months (for the year
2017 as an example of the method application) below or above the defined
threshold was performed.

2.2.2.5. Non-standardized anomalies. A climatic anomaly is calculated from
the difference between the annual (or monthly) values (X) of the hydrolog-
ical variable (e.g., R) and the average values of the reference period (μXref)
of the hydrological variable considered:

AN ¼ X−μXref ð5Þ

According to theWorldMeteorological Organization (WMO, 2017), the
reference period to detect the level of anomaly of the analyzed variable
should be at least 30 years (i.e., 1961–1990, 1991–2020). However, it
was found that 10–12 years of data provided a predictive skill similar to
that from a standard 30-year period. While such short periods cannot be
considered to be climatological typical standards or references, they are
still useful tomany users, and in many cases, there will be benefits to calcu-
late such averages operationally (WMO, 2007).
7

The non-standardized anomaly (AN) method was applied to the annual
GWL and R data. The reference values (GWLref and Rref) were computed
considering the average values of the period 2002–2015. (Fig. S6, in
Supplementary materials).

A negative anomaly indicates that the observed GWL was lower than
the reference value, while a positive anomaly indicates that the observed
GWL was higher than the reference value. Finally, a spatial distribution of
the positive and negative annual anomaly values for 2017 was performed.

3. Results

3.1. Interannual variability and amplitude of average annual GWL fluctuations

From2002 to 2017, the averageGWL_rangefluctuations in the Piedmont
Plain varied between 0.37 m (monitoring well PII21) and 4.58 m
(T17) (Table 1 in Supplementary materials). The minimum annual
GWL_range fluctuation was 0.19 m (P43 in 2007), whereas the maximum
value was 7.48 m (T17 in 2015).

Most of the monitoring wells showed an average of the maximum
amplitude of GWL annual fluctuations lower than 2 m. More specifically,
36 % of the monitoring wells had an average GWL_range lower than 1 m,
and 44 % had an average GWL_range between 1 and 2 m. Only 11 % of
the monitoring wells showed an average GWL_range between 2 and 3 m,
and the remaining 9 % had values higher than 3 m (Fig. 5).

Monitoring wells located in the Cuneo Plain, in the southern part of the
Turin Plain and at the base of the mountain reliefs showed an average
GWL_range lower than 2 m. Average GWL_range values higher than 2 m
were found in monitoring wells located in the Alessandria Plain and
along the western edge of the paddy field area in the Vercelli Plain.

The CV allowed us to measure the relative variability of interannual
GWL_ranges and thus to compare groups of data according to their degree
of variability. In the study area, the CV of the annual GWL_ranges
(CV_GWL), evaluated for each GW time series, varied from a minimum of
0.11 to a maximum of 0.47. The CV_GWL allows separating the GWL time
series into 3 different groups (Table 1, in Supplementary materials).

The highest interannual variations in the GWL (observed in 25 % of the
total wells) were located in the Alessandria Plain (CV_GWL > 0.40). The
lowest variations (22 % of the total wells) were located in the paddy field
area (Vercelli and Novara plains CV_GWL < 0.20). In the other areas of
the Piedmont plain (the remaining 53 % of wells), the CV has intermediate
values (0.20 < CV_GWL < 0.40) (Fig. 6).

The interannual variation of R in the period 2002–2017 (CV_R) showed,
in some areas, lower values compared to those of GWL amplitudes (Table 2,
in Supplementary materials). The interannual variation in R in the Pied-
mont Plain identified a CV_R that varied between 0.22 and 0.37. Twelve
percent of the annual R time series showed an interannual variation
lower than 0.25 (CV_R < 0.25), 38 % showed CV_R values between 0.25
and 0.30 (0.25 < CV_R < 0.30), and 50 % showed CV_R values higher
than 0.30 (CV_R > 0.30) with a maximum value of 0.37. These values are
in accordance with the global values observed by Fatichi et al. (2012),
ranging between 0.15 and 0.5 in approximately 92 % of worldwide rain
gauges.

The spatial distribution of CV_R showed that the areas with high varia-
tion were located in the Alessandria and Cuneo plains and partially in the
Novara and Vercelli plains (with CV_R≥ 0.30–0.37). A medium variability
of annual R was located along the border with the mountains and in the
Turin Plain (with CV_R≥ 0.22–0.30) (Fig. 7).

3.2. Change point analysis

The GWL and R data from 2002 to 2017 were analyzed to identify
ChP_GWL and ChP_R in the time series.

Three statistically significant ChP_GWLs occurred in >80 % of the mon-
itoring wells. More specifically, the ChP_GWL was observed in 2004–2005
in 81 % of the monitoring wells, in 2008–2009 in 83 % of the monitoring



Fig. 5. Spatial distribution of average 2002–2017 of annual GWL_range fluctuations.
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wells and in 2015–2016 in 86 % of the monitoring wells (Table 3a, b, c, in
Supplementary material).

The most evident ChP-GWL was in 2008–2009, as also observed in the
same study area by Lasagna et al. (2020b), and corresponds to the transition
from a strong lowering followed by a sudden and considerable increase in
the GWL (Fig. 8a). This “leap” was observed in 33 of the 36 investigated
wells. More specifically, the evaluated leap was lower than 0.5 m in 13
monitoring wells, between 0.5 and 1 m in 9 monitoring wells and >1 m
in 11 monitoring wells (Fig. 8b).

In the R time series, statistically significant change points (ChP_R)
occurred in 19 % of the rain gauges for 2004, in 81 % of the rain gauges
for 2008 and in 23 % of the rain gauges for 2015 (Table 4, in Supplemen-
tary materials). The presence of a common change point in most of the
GWL and R time series suggests the close dependence of GWL on R.

The spatial distribution of ChP_GWL of 2008–2009 allowed us to iden-
tify 4 ChP_GWL (Fig. 9a): 1) ChP_GWL in April–May 2008; 2) ChP_GWL
between October and December 2008; 3) ChP_GWL between January and
March 2009; and 4) ChP_GWL in April–June 2009. The first group
8

corresponds to wells located in the northeastern sector of the Piedmont
Plain (in the Biella, Novara and Vercelli areas) (20 % of the total wells).
The second group are wells located mostly in the southeastern sector of
the Piedmont Plain (Alessandria Plain) and subordinately in the southwest-
ern sector (Cuneo Plain) (42 % of the total wells). The third group consists
of wells located in the southwestern sector of the Piedmont Plain (mostly of
the Cuneo Plain) (11 % of the total wells). Last, the fourth group includes
wells located principally in the northern Turin Plain (8 % of the total
wells). Nineteen percent of the GWL time series showed no ChPs in 2009
and were located mostly in the Vercelli and Biella plains.

In the R time series, 57 % of the change points detected in 2008
occurred in March, and 43 % occurred in October. In particular, change
points in March 2008 are referred to as rain gauges located in the central-
northern sector of the Piedmont plain (Vercelli and Novara plain, Turin
plain); change points in October 2008 are observed in the southern sector
of the plain (Alessandria and Cuneo plain) (Fig. 9b).

In all cases, ChP_GWL showed a delay from ChP_R. Fifty percent of the
delays varied from 0 to 2 months and were detected in the Alessandria



Fig. 6. Spatial distribution of the CV_GWL (CV of annual GWL_range in 2002–2017 period).
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Plain and Novara and Vercelli Plains; 22 % of the delays varied from 3 to 6
months and were mostly in the Cuneo Plain and in the Biella area. Only 3
wells showed a delay higher than 1 year (from 13 to 15 months) and
were located in the northern sector of the Turin Plain.
3.3. Trend analysis results

T on GWL (GWL_T) and R (R_T) were conducted for the entire observa-
tion period (2002–2017) and for the two subperiods obtained by dividing
the R and GWL time series at change points ChP_R and ChP_GWL detected
in 2008–2009.

GWL_T in the period 2002–2017 highlighted the presence (Fig. 10) of
an upwards trend at the =0.05 level of significance in 19 % of the total
wells (variation between +0.01 m/yr and +0.09 m/yr) and a downwards
trend at the =0.05 level of significance in 17 % of the total wells
(−0.01 m/yr to −0.14 m/yr). The other 64 % of monitoring wells did
not show a trend (Table 5a, b, c, d, in Supplementary materials). Similar
results were found in a previous research conducted on the same study
area (Lasagna et al., 2019).
9

The spatial distribution of GWL_T (2002–2017) did not show a trend in
the Cuneo and Novara Plains and a variable distribution of positive and
negative GWL_T in the other part of the Piedmont Plain. In the Alessandria
Plain, the general trend (2002–2017) of the GWL showed negative slopes in
almost all cases (even if not statistically significant), with the highest
decrease rate (equal to −0.14 m/yr in T17). Only one well showed a
positive trend (T25 with an increasing rate of 0.01 m/yr).

In the southern part of the Turin Plain, the GWL_T (2002–2017) showed
positive trends (from+0.05 to+0.09m/yr), also in correspondence to the
city of Turin. Groundwater level rise in urban areas was observed in many
cities in Italy. For example, around the city of Naples (southern Italy) a pro-
gressive rising of groundwater levels started since the early 90s, reaching a
maximum value of about 14 m (Allocca and Celico, 2008). The same situa-
tion was observed in correspondence to Milan (northern Italy) (Beretta
et al., 2004). This phenomenon was generally attributed to a drastic reduc-
tion of groundwater withdrawal from public and private wells, formerly
used for drinking water, agriculture and industry supplies.

R did not show a trend in the period 2002–2017 in all cases (Table 6 in
Supplementary materials). The same results for R were obtained on the
same study area by Lasagna et al. (2019).



Fig. 7. Spatial distribution of CV_R (CV of annual R) in 2002–2017 period.
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In the 2002–2008 period, decreasing trends in the GWL series were
observed in 89 % of the monitoring wells. The other 11 % did not show a
trend (Fig. 11a). No increase in GWL_T was detected. The magnitude of
the negative GWL_T varied from −0.61 m/yr to−0.02 m/yr.

The spatial distribution map of GWL_T did not show a trend in the
Vercelli and Novara plains. The remaining points in the Piedmont plain
showed a small decreasing trend (from−0.04 to−0.12 m/yr). Decreasing
GWL_T in the Cuneo Plain ranges between −0.05 and −0.20 m/yr (only
well P2 showed a strong negative trend of−0.61 m/yr). The highest nega-
tive GWL_T was detected in the Alessandria Plain and along the western
foot mountains (from −0.10 to−0.42 m/yr).

Decreasing trends in R in the 2002–2008 period were recorded at 38 %
of the rain gauges (Fig. 11b) and did not show a trend in the other R time
series. The magnitude of decreasing R_T varied between −2.4 mm/yr
and −10.9 mm/yr.

In the 2009–2017 period, a decrease in GWL_Twas observed in 80 % of
the monitoring wells, a positive trend in 3 % of the monitoring wells and
10
there is not a trend in the other GWL time series (Fig. 12a). The magnitude
of decreasing GWL_T varied between −0.02 m/yr and −0.42 m/yr. The
most pronounced lowering of the GWL is in the Alessandria Plain. In the
Vercelli and Novara plains, a decreasing GW_T was present in both the
analyzed intervals (2002–2008 and 2009–2017), except for the paddy
fields area, where there is not a trend in the GWL time series. The same
result was obtained by De Luca et al. (2005) for the period 1968–2004.

In the 2009–2017 period, decreasing trends in R were recorded at 31 %
of the rain gauges, and the other 69 % did not show a trend (Fig. 12b). The
magnitude of decreasing R_T varied between−2.2 mm/yr and−5.6 mm/
yr. The negative R_T valueswere located in the eastern part of the Piedmont
Plain.

3.4. Percentiles method results

The PCTL method for 2017 highlighted a general situation of GW
depletion compared to the natural fluctuation of GWL. More specifically,



Fig. 8. a) Change_point GWL time-series (blue line) and R time series (red bar). The dashed vertical lines correspond to the dates respectively of ChP_R (red) and ChP_GWL
(blue). The delay between R andGWL correspond to the difference between ChP_R andChP_GWL (horizontal black arrow). The vertical black arrow corresponds to the leap of
the ChP_GWL from 2008 to 2009. b) Percent of wells with a rising GWL from 2008 to 2009, and indication of the magnitude of GWL increase (DH) in meter.
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only 8 % of the monitoring wells had all monthly GWLs in the range of the
natural fluctuation (Fig. 13). These monitoring wells are located in the
western part of the Piedmont plain (south of Turin). Ninety-two percent of
Fig. 9. Spatial distribution of 2008 a) ChP_GWL and b) ChP_R in the Piedmont Plain an
occurred.

11
wells showed at least 1 month below the reference threshold (15 % of the
range of the natural fluctuation) and were then considered critical: 25 %
of wells showed from 1 to 4 months, 42 % of wells showed 5–8 months
d percent of wells/rain gauges subdivided according to the date on which the ChP



Fig. 10. Spatial distribution of the GWL_T in the 2002–2017 period in the Piedmont Plain. In the 2002–2017 R did not show a trend.
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and 25 % of wells showed from 9 to 12 months below the reference thresh-
old. The most critical conditions were found in the southeastern sector of
the Piedmont plain (Alessandria Plain). Almost all wells in Alessandria
(with the exception of well T14) and Asti plains showed a minimum of 7
months to the full year 2017 below the identified threshold. In this area,
the months below the threshold always correspond to the summer and au-
tumn seasons (from May to December).

In general, in 2017, wells in the Piedmont plainmost frequently showed
4 to 6 months below the reference threshold in correspondence with the
second part of the year, with more accentuated lowering in the months
from April to December (Fig. 14a, b, d). Some wells located in the Vercelli
paddy field area are an exception, showing above-threshold values in the
summer months (May to September), probably linked to the period of
flooding of the paddy fields (Fig. 14c).

Thewells located in the lowland sector south of Turinmostly showed all
months with GWL values above the threshold values (Fig. 14d).

3.5. Non-standardized anomalies

The non-standardized anomalies (or anomalies) allow us to quantify the
deviation, positive or negative, of the GWL from the reference level for each
monitoring point.
12
Annual GWL anomalies (GWL_AN) allow us to identify years character-
ized by GW deficits or exceeds and to quantify yearly deviations (Fig. 15a,
c, e, g). The annual R anomalies (R_AN) allow the detection of dry and wet
years and the quantification of the yearly deviations (Fig. 15b, d, f, h).

The analysis of annual GWL_AN for 2017 showed values below the
reference levels that varied between −0.06 and −2.80 m in 92 % of wells
(Table 7 in supplementary materials). The most critical conditions were
located in the southeastern sector of the Piedmont Plain (Alessandria)
(Fig. 16a). Only 8% of wells showed an annual GWL_AN above the reference
level, with values that ranged between +0.20 m and +0.40 m.

The R for 2017 showed, in all cases, negative annual R_AN with values
below the rainfall reference levels that vary between −147 and−536 mm
(Fig. 16b and Table 8 in Supplementarymaterials). The greatest pluviometric
deficits in 2017were located in the northeastern sector of the Piedmont Plain
(Novara and Vercelli).

In 2017, the spatial distribution of GWL_AN generally showed different
values in the different sectors of the Piedmont Plain.

In the Novara and Vercelli paddy field areas, the yearly GWL_AN was
close to the reference level (Fig. 15a), and in 2017, all the monitoring
wells, except for PII08, had anomalies <0.6 m (Fig. 16a).

In the Cuneo Plain, the yearly GWL_ANwas nearly the reference level but,
in general, was more pronounced than in the Vercelli Plain (Fig. 15c), and in



Fig. 11. Spatial distribution of a) GWL_T and b) R_T in Piedmont Plain in the period 2002–2008.

Fig. 12. Spatial distribution of a) GWL_T and b) R_T in Piedmont Plain in the period 2009–2017.
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Fig. 13. Spatial distribution of wells with 2017 monthly GWL below the percentile thresholds (15 % of natural fluctuation) and number of months (arrow down). Percent of
wells with number of months with GWL below the percentile threshold.
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2017, all the monitoring wells showed a negative GWL_AN of <0.8 m
(Fig. 16a).

On the Alessandria Plain, the yearly GWL_AN showed the highest nega-
tive values, and in 2017, several monitoring wells showed negative
GWL_AN values of >1.4 m up to 2.8 m (Fig. 16e). The wells located in the
Tanaro valley showed a 2017 GWL_AN of a few tens of centimeters
(0.10–0.30 m) (Fig. 16a).

Positive and negative GWL_AN were detected in some wells in the
southern part of the Turin Plain (Fig. 15g and Fig. 16a) with annual values
lower than 0.4 m in 2017.

The comparison of annual R_AN with GWL_AN shows that large R_AN
values do not always correspond to large GWL_AN values. Generally,
R_AN had the same sign as GWL_AN (Fig. 15b, d, f, h). Sometimes, it was
possible to observe a lag of 1 year.

A positive R_AN corresponded to the wet period and was observed in
2002, 2008–2011 and 2013–2014. Negative R_AN, corresponding to the
dry period, was observed in 2003–2008 and in 2017. The years 2015 and
14
2016 showed a positive R_AN in the Turin and Cuneo Plains (western
Piedmont Plain) and a negative R_AN in the Vercelli and Alessandria
Plains (eastern Piedmont Plain).
4. Discussion

The application of different methods (such as T, ChPA, PCTL, AN and
the analysis of annual fluctuations and their variations over time) to the
GWL series of the Piedmont Plain allowed us to assess the GWL evolution
over time.

Variations in GWLdepend onmany factors related to the hydrogeological
context, climate and anthropogenic pressures and their variability over time.
Moreover, the application of these methods to the R time series also allowed
the comparison between R and GWL results, providing further information
on the hydrodynamic behaviour of groundwater and on its link with R
variability.



Fig. 14. a) Examples of monitoringwells with the indication of the 25th and 75th percentiles (respectively the blue and black dotted lines), the GWL natural fluctuation band
(green area), the “ISPRA” threshold computed as 15 % of natural fluctuation (red dashed line), andmonthly GWL of 2017 (yellow line): a) Cuneo Plain (P4) with 12months
below the threshold; b) Alessandria Plain (T21)with 12months below the threshold; c) Vercelli Plain (PII46) with 3months below the threshold; d) Turin Plain (P26)with 12
months above the threshold.

S. Mancini et al. Science of the Total Environment 846 (2022) 157479
Furthermore, the spatialization of the GWL elaborations allowed us
to identify the most critical areas and the potential factors (anthropic,
geological and hydrogeological) conditioning the hydrodynamic GWL
behaviors.

Finally, this multicriteria approach, considering the same time interval,
allowed us to highlight the advantages and limits of the applied methods.

4.1. The evolution of the GWL

The T conducted in the period 2002–2017 indicate that all rain gauges
and approximately half of themonitoringwells did not show any trend. Nine-
teen percent of the total wells showed a positive trend, and only 17 % of the
total wells showed a negative trend. Since the results of T depend on the time
interval considered, especially in cases where the slopes are not accentuated
and in the case in which the interval is not so long, it was useful to search for
change points to define the beginning or the end of the analysis intervals.

The presence of the change point in 2008 allowed us to divide the time
series into two parts, and T was applied to the two subperiods showing a
general decreasing trend in >80 % of wells and in <35 % of rain gauges.
Generally, the negative GWL_T detected in 2009–2017 showed fewer
negative slopes than those detected in 2002–2008. Moreover, aquifer
responses also seem to be different in similar climatic areas.

The trends obtained for the second subperiod (2009–2017) were
comparable with the results obtained by applying the percentile method
and the non-standardized anomaly method.

The PCTL highlighted a general situation of GW depletion in only 11 %
ofwells showing a piezometric level above the threshold and in the range of
the GWL natural fluctuation. The analysis of GWL_AN for 2017 confirmed
the results of percentiles, showing annual values below the reference
level that vary between 0.2 and 2.8 m in 92 % of wells (Table 7 in Supple-
mentarymaterials). Moreover, percentile analysis for 2017 showed that the
greatest GW deficits generally occurred in the second part of the year.

The R for 2017 showed, at all rain gauges, negative anomalies that
varied between −147.26 mm in the Alessandria Plain and −585.21 mm
15
in the northern area of the Piedmont Plain (Novara and Vercelli areas).
This deficit in the R can be the cause of the GW depletion in 2017.

4.2. Comparisons and relationships between R and GWL fluctuations

The analysis of the maximum amplitude of annual GWL fluctuation
(GWL_range) showed that this value varies over time and that most of the
analyzed wells had an average GWL_range lower than 2 m (80 % of the
wells). During the analyzed period, the maxima of GWL_range were gener-
ally observed in the years 2002–2003 for 47 % of the monitoring wells and
secondarily in 2009 (8 %) and 2013–2014 (14 %); minimum values of
GWL_range were, instead, more distributed over the years. However, a
high presence of the minimum GWL_range in 2007 and 2013 can be
observed (Table 1 in supplementary materials). To explain the periods of
maxima and minima annual amplitude of GWL fluctuations, a comparison
with average annual R was performed.

The high fluctuations in the highlighted periods can be ascribed to
particularly high R (up to 1400 mm/yr) or low R (<800 mm/yr) with
respect to the average annual R in the Piedmont Plain (911 mm/yr,
Fig. 2). Periods of high R are effectively identified in 2002, 2008–2010
and 2014, whereas low R are measured in 2003–2007 and 2017. In
contrast, the minimum amplitude of annual GWL fluctuations seems not
linked to periods of particularly elevated or low R.

The CV_GWL allowed us to evaluate the interannual variation degree of
the GWL_range in each monitoring well. Then, the spatialization of the
CV_GWL allowed us to identify areas with the highest interannual variation
(CV_GWL > 0.40 in the Alessandria Plain), areas with the lowest interan-
nual variation (CV_GWL < 0.20 in the Vercelli and Novara plains) and
areas with intermediate CV_GWL values (0.20 < CV_GWL < 0.40). The
interannual variation in R showed medium-high CV_R values (from 0.22
to 0.37), with the highest variations in the Alessandria, Cuneo, Novara
and Vercelli plains.

By comparing CV_GWL and CV_R, it was possible to distinguish areas
with comparable interannual variability. The highest values of CV_GWL



Fig. 15.Annual GWL_AN (blue bar) and annual R_AN (red bar) of monitoring wells and correspondent rain gauges, respectively: a) and b) in the Novara-Vercelli Plain; c) and
d in the Cuneo Plain; e) and f) in the Alessandria Plain; g) and h) in the Turin Plain.
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and CV_R were detected in the Alessandria Plain, suggesting a rather close
link between R and GWL variation; however, the variation in the annual cu-
mulative R was lower than the variation in the annual excursion of the
water table (CV_GWL > 0.40 and CV_R > 0.30).

In contrast, in the Novara and Vercelli plains, it was observed that the
annual GWL_ranges varied little over time (CV_GWL < 0.20) and, in any
case, were less than the variability in R (CV_R > 0.30). The low CV_GWL
could be explained by systematic paddy field flooding (Lasagna et al.,
2020b), which influences and controls the variations in the water table in
the spring-summer period. The water used for the permanent flooding of
the rice fields is derived from rivers in the northern part of the area and
through a network of channels managed by local irrigation authorities.

The analyses of change points in GWL and R highlighted a common
change point in 2008–2009 for most analyzed series. This testifies that
the water table oscillation is ruled more or less evidence by R, which is
16
expected. Most specifically, the highlighted rise in the GWL in
2008–2009 can be explained by a considerable increase in precipitation.
Observing the annual R in the Piedmont plain, it is possible to point out
that 2007 was a particularly dry year (with average R values below
650 mm), while 2008 was a rainy year (with average R values above
1100 mm). In addition, according to what was reported by ARPA (ARPA,
2016), 2008 was, on a regional scale, the second year with the largest
anomaly of positive snowfall since 1950. Consequently, it cannot be ex-
cluded that the melting of these snows contributed to the rapid rise re-
corded in 2009. However, this does not mean that the variations in the
GWL are due exclusively to precipitation. In all cases, Chp_GWL shows a
delay time compared to the dates of ChP_R. Minor delays (0–3 months in
the Alessandria and Novara and Vercelli Plains) could indicate a speed re-
charge of the aquifer by R, favored by depths of GWL and high permeability
of the unsaturated soil. Higher delays (over 3–6 months) could indicate a



Fig. 16. Spatial distribution for the year 2017 of a) GWL_AN. Negative GWL_AN (red arrow down) and positive GWL_AN (blue arrow up); b) R_AN. R showed, in all cases, a
negative anomaly (yellow arrow).
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higher influence of further factors in addition to rain, such as permeability
of the unsaturated soil, depth of the water table, snowmelt, irrigation, and
anthropic water depletion. For example, well P38 has the greatest depth of
the water table (47 m) and has a delay of >12 months.

4.3. Quantitative status of GW resources in the Piedmont Plain

The analysis of the GWL over time permitted us to define the quantita-
tive status of the GW resources for 2017, identifying 4 different plain areas
with similar behaviors (Fig. 17):

a) Southeastern sector (Alessandria plain),
b) Northeastern sector (Vercelli-Novara plain with rice fields),
c) Northwestern sector (Turin plain),
d) Southwestern sector (Cuneo Plain).

It should be noted that 2017 in the Piedmont Region was the
3rd warmest year in the last 60 years, with a thermal anomaly of approxi-
mately +1.5 °C compared to the climatology of the period 1971–2000
and the 4th driest year of the last 60 years (ARPA, 2018). However, aquifer
responses also seem to be different in similar climatic areas.

4.3.1.1. Southeastern sector (the Alessandria plain). The Alessandria plain is
located on the border with the Apennine chain and is characterized by a
local climate that is different from the other parts of the Piedmont Plain.
More specifically, it is characterized by the lowest average annual R (of
the Piedmont Plain) and the highest summer temperatures (which probably
also intensify water withdrawals in the area as well as affect evapotranspi-
ration). The particular location and geometry of the aquifer are character-
ized by a small areal size, as it is surrounded to the northwest and south
by the BTP sedimentary rocks.

In 2017, all the methods applied to the GWL identified a critical situa-
tion in this plain. R variations and other factors, such as the increase in
17
withdrawals from the aquifer principally due to the drought that character-
ized this area (Regione Piemonte, 2020), are likely to contribute to the pro-
nounced decline in GWL.

All GWL_T analyses showed the maximum negative slope (max =
−0.42 m/yr for GWL_T2008–2017) in the Alessandria Plain, and percentile
analysis and GWL_AN (max=−2.80 m) identified the most critical condi-
tions in this area (for 2017). The analysis of the interannual variation in
GWL_range and annual R amounts showed the highest values in the Ales-
sandria Plain (CV_GWL > 0.40 and CV_R > 0.30), suggesting a rather
close link between R and GWL variation.

The GWL depths in this area are between 5 and 11 m below the ground
surface, and these data can in part justify the low time response (0–2
months) of the GWL to R.
4.3.1.2. Northeastern sector (Vercelli-Novara plain). The northeastern sector
of the Piedmont Plain is characterized by an average depth of the water
table lower than 5mbelow the ground surface and a generally high hydrau-
lic conductivity of soils (De Luca et al., 2020). The aquifer is bounded to the
north by themountain chains of the Alps and to the south by theMonferrato
hills, at the base of which flows the River Po. The Vercelli and Novara areas
were largely characterized by the presence of paddyfields that were subject
to repeated flooding phases during the period from April to August. During
flooding, the water table is artificially fed, thus reducing/masking any crit-
icalities arising from a scarce natural recharge.

The Novara and Vercelli plains showed the highest annual R compared
to other areas of the Piedmont Plain. The GWL_T analysis in this area did
not show a trend for the period (GWL_T2002–2017) but a negative trend in
the second subperiod (GWL_T2008–2017), with most slopes below 0.1 m/yr.
The time response of GWL to R varies from 1 to 2 months and seems to in-
dicate that the effects of R become evident quickly. Despite the shallow
water table and the high hydraulic conductivity of the soils, the time re-
sponse is greater than those evaluated in the Alessandria area, where the



Fig. 17. Summary of themain results of the different statistical elaborations and identification of 4 sectors, of the Piedmont Plain, identified by similar CV, trends, delays and,
GWL_AN.
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water table is mostly deeper and the hydraulic conductivity is similar. Fur-
thermore, the interannual variability in GWL_ranges in this area is the low-
est in the Piedmont Plain (CV_GWL < 0.2).

These effects could be explained by the artificial water supply that influ-
enced and conditioned the course of the GWL during the summer period
and helped to reduce the annual amplitude of GWL fluctuations, which,
under natural conditions, would probably have been much higher
(Lasagna et al., 2020b).

4.3.1.3. North-Western sector (Turin Plain). The Turin Plain, between the
Alpine edge to the west and Turin Hill to the east, is the connecting element
between the Cuneo Plain and the rest of the Po Valley. It is bordered to the
west by the morainic apparatus of Rivoli-Avigliana and to the east by the
hills of Turin. The subsoil has a prevalent permeability for medium grade
porosity, with a frequent lower degree of hydraulic conductivity, especially
in the oldest and altered terms (10–7< k< 10−3m/s) (De Luca et al., 2020).
The average depth of the water table is higher than 10m, up to 40m below
the ground surface. The analyses conducted on thewells present in this area
showed different results compared to those found in the other areas. In the
southern sector, increasing trends have been identified both for the long
period (2002–2017) and for the last subperiod (2009–2017); moreover,
the GWL of 2017 was higher than the reference threshold calculated with
the method of percentiles, and the annual GWL_AN anomalies also showed
positive values (up to 0.4 m), despite the rain presenting negative annual
R_ANs. The average GWL_range was generally <2 m, and CV_GWL had
intermediate values (0.2 < CV < 0.4). This area is where the highest delays
in the response of the GWL to R occur (over 6 months). These data could be
related to deep GWL, with soils characterized by medium-low hydraulic
conductivity. However, other factors could also likely explain this different
behaviour.

The particular position of the lowland area with respect to the Alpine
arc suggests that, perhaps, a nonnegligible water contribution could be
derived from snow melt. This further contribution could partly explain
the positive trends observed in the area and the moderate CV_GWL.

4.3.1.4. South-Western sector (Cuneo Plain). In the Cuneo Plain, the average
depth of the water table is highly variable (from a few meters up to 24 m).
18
In wells with a shallower water table, the amplitude of the GWL_range
oscillation seems to be lower (<1 m) than in wells with a deeper water
table. The interannual variation in the maximum amplitude of GWL fluc-
tuations is intermediate (0.2 < CV_GWL <0.4) and comparable to CV_R
(CV_R=0.3). However, the delays between ChP_R and ChP_GWL varied
from 3 to 6 months. This delay in the GWL response to R may be related
to the depth of the water table.

The GWL_T analysis in this area did not show a trend for the long-term
period observed (2002–2017) but a negative trend in the last subperiod
(2009–2017) with slopes of −0.26 m/yr. The PCTL analysis applied for
2017 showed at least 5 months below the reference threshold in all wells,
and negative GWL_AN was detected (max−0.77 m). The slightly negative
trends recorded in the last period and the more negative anomalies calcu-
lated for 2017 can also be explained in this case, as for the Turin Plain, by
a water contribution that could derive from snow melt.

4.4. Advantages and disadvantages of applied methods for GWL analyses

It is important to emphasize that all the analyzedmethods, to have good
and significant applicability, require a rather high number of years of mea-
surement (on average of at least 5 years, to many decades (ISPRA, 2017)).
Additionally, continuity over time of measurements is necessary, and the
lack of continuity of the data as well as the high presence of missing data
can distort the results. Furthermore, to make comparisons between the re-
sults of the elaborations, it is important to consider the same time interval.

The analysis of change points is useful for determining the moments
when a change in trends is observed and allows the subdivision of the
time series into smaller intervals. In addition, the change points search
can be useful to identify and compare moments common to different time
series (i.e., between R and GWL) and to evaluate the possible delay in
responses. Last, the change points are sensitive to the length and time
period analyzed.

The evaluation of the trends is simple and can be usefully interpreted in
associationwith GW status data. T gives an idea of the evolution of the GWL
over time. However, the evaluation of a statistically significant T, above all
when the T line does not present a high slope and in the presence of not a
very long temporal series, is strongly dependent on the analyzed period
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(Mariani, 2006); thus, the choice of the reference period appears to be a key
element for the analysis of trends. Moreover, it is advisable to evaluate the
presence of change points in the GWL series and to evaluate the trends in
different time intervals. Common change points detected in different time
series can be considered starting (or finishing) points for T. T for the assess-
ment of climate change impacts on groundwater recharge, groundwater
level and resources, requires a long time interval (e.g. >30 years), but the
observation data, e.g., groundwater levels are generally not available.
Moreover, short-term T series can be used to assess the effects of climate
variability and provide useful information on aquifer recharge patterns.

The percentilemethod proposed by ISPRA establishes an alert threshold
below which the GWL is considered critical. Furthermore, the percentile
method shows intuitive diagrams. However, it does not convey the extent
of GW depletion. The warning threshold is determined on the basis of the
amplitude of the “natural fluctuation”. In the cases where the amplitude
of the ‘natural fluctuation’ band is low, the threshold will be close to the
25th percentile, and a GWL below the defined threshold does not always
correspond to a real criticality.

The assessment of the magnitude of the annual GWL_range fluctuation,
of the interannual variation by means of the CV and the calculation of non-
standardized anomalies can improve this method.

The application of non-standardized anomaly analysis allows us to
quantify the critical issues and therefore to determine the “real” potential
critical cases. The GWL_AN furnishes the deviation (positive or negative)
measured in meters of the GWL from the reference GWL and allows us to
examine the nature of the trends, enabling the determination of the dry
and wet years. It is important to have a large reference period and to main-
tain this period for calculating future anomalies. Because the assessment of
anomalies also depends on the reference period, it is advisable to use the
same reference period for the analysis of the other climatic variables that
contribute to the changes in the GWL. The evaluation of GWL_AN is easy
to apply and makes the extent of the lowering more evident. The
GWL_AN analysis allows us to quantify the critical issues and therefore to
determine the “real” potential critical cases.

5. Conclusions

Numerous factors (hydrogeological, meteorological, anthropogenic
activities) play a role in GW behaviour and have to be identified from
time to time. Monitoring networks and collection of data are an important
starting point for analyzing GW behaviour to better manage water
resources. The application of different statistical methods to the GWL series
allows us to describe the evolution of the GWL, and the spatialization of the
results permits to identify areas with a similar hydrodynamic behaviour
and resource evolution.

The main aims of the study were the comparison of different statistical
methods, highlighting their applicability and differences, and the investiga-
tion of the spatiotemporal variation in the GWL of shallow aquifers in the
Piedmont Plain, with the description of critical situations of GW depletion.

This study highlights that the application of a single method for
assessing shallow GW resource evolution does not always guarantee a
reliable evaluation. For this reason, as an integration of the methods, it is
advisable to apply different analysis methods at the same time. Complete-
ness of data and medium to long time series are prerequisites for meaning-
ful analyses, while the use of the same time interval is necessary for
comparisons between different monitoring wells and between the results
of different statistical analyses.

By spatializing the results, it was possible to identify areas characterized
by similar GWL behaviour. These influences vary locally in the Piedmont
plain and require local assessments to determine the impact of changes in
GWL.

Knowledge of current and potential future changes in GWL is important,
not only because they are indicative of the total amount of water stored in
an aquifer but also because they can support the choices of water manage-
ment and can provide indications of the degree of exploitation of an aquifer.
Understanding the mechanisms and factors that regulate GWL fluctuations
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and evaluating the GWL over time represent the basis for assessing the
quantitative status of shallow aquifers.

However, it was seen that the application of different methods provides
a clearer picture of the quantitative status of the GW resource and simulta-
neously highlights the need for further investigation of the recharge
dynamics that should consider other climatic and anthropogenic variables
as well as the local geological/geographical and climatic setting.

Future insights will analyze the effects of other natural factors (climatic,
e.g., air temperature, evapotranspiration, snowmelt) and anthropogenic
variables (extent of withdrawals) with an in-depth analysis of the local
hydrogeological and geological characteristics of the aquifers.

The impacts of these factors on groundwater recharge are, indeed,
among the most important factors to be evaluated because the variations
in GWL depend on the net groundwater recharge and discharge, which
relies on these parameters/factors.
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