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The COMPASS collaboration has collected the currently largest data set on diffractively produced
π−π−πþ final states using a negative pion beam of 190 GeV=c momentum impinging on a stationary
proton target. This data set allows for a systematic partial-wave analysis in 100 bins of three-pion
mass, 0.5 < m3π < 2.5 GeV=c2, and in 11 bins of the reduced four-momentum transfer squared,
0.1 < t0 < 1.0 ðGeV=cÞ2. This two-dimensional analysis offers sensitivity to genuine one-step resonance
production, i.e. the production of a state followed by its decay, as well as to more complex dynamical
effects in nonresonant 3π production. In this paper, we present detailed studies on selected 3π partial
waves with JPC ¼ 0−þ, 1þþ, 2−þ, 2þþ, and 4þþ. In these waves, we observe the well-known ground-
state mesons as well as a new narrow axial-vector meson a1ð1420Þ decaying into f0ð980Þπ. In addition,
we present the results of a novel method to extract the amplitude of the π−πþ subsystem with IGJPC ¼
0þ0þþ in various partial waves from the π−π−πþ data. Evidence is found for correlation of the f0ð980Þ
and f0ð1500Þ appearing as intermediate π−πþ isobars in the decay of the known πð1800Þ and π2ð1880Þ.
DOI: 10.1103/PhysRevD.95.032004

I. INTRODUCTION

In this paper, we report on the results of a partial-wave
analysis of the π−π−πþ system produced by a 190 GeV=c
π− beam impinging on a liquid-hydrogen target. The
reaction of interest is diffractive dissociation of a π− into
a π−π−πþ system,

π− þ p → π−π−πþ þ precoil; ð1Þ

with precoil denoting the recoiling target proton. The data
for this analysis were recorded with the COMPASS experi-
ment at the CERN SPS in 2008.
Despite many decades of research in hadron spectros-

copy, the excitation spectrum of light mesons, which are
made of u, d, and s quarks, is still only partially known. In
the framework of the simple constituent-quark model using
SUð3Þflavor ⊗ SUð2Þspin ⊗ SUð3Þcolor symmetry, a number
of frequently observed states are commonly interpreted in
terms of orbital and radial excitations of quark-antiquark
ground-state mesons, i.e. they are assigned to the multiplets
resulting from the symmetry. Some of these assignments
are still disputed, as e.g. the isovector mesons ρð1450Þ,
ρð1700Þ, πð1300Þ, and πð1800Þ [1], as well as the whole
sector of scalar mesons [2]. In addition, a number of extra
states have been found, which cannot be accommodated by
the constituent-quark model. These extra states appear in
mass ranges where quark-model states have already been
identified, e.g. the π2ð1880Þ which is close to the π2ð1670Þ
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ground state. Other observed states seem to have peculiar
decay modes or decay widths that do not fit well into the
general pattern. Searching for new states beyond the
constituent-quark model, attempts have been made to
establish the existence of gluonic degrees of freedom.
The fingerprints are expected to be so-called exotic spin
quantum numbers1 or decay branching ratios, which could
identify them as hybrids [3,4], glueballs [5,6], or tetra-
quark systems [1]. Potential candidates are e.g. π1ð1600Þ,
πð1800Þ, π2ð1880Þ or f0ð1500Þ, f0ð1710Þ or f0ð980Þ,
a0ð980Þ, f1ð1420Þ, respectively.
The COMPASS collaboration has already studied

properties of isovector 3π resonances [7,8] in the mass
range between 1.1 and 2.1 GeV=c2 using a lead target. In
this paper, isovector mesons decaying into three charged
pions are studied using a hydrogen target with the
emphasis on (i) production kinematics, (ii) separation
of nonresonant processes, (iii) search for new and excited
mesons, and (iv) on properties of the ππ S-wave ampli-
tude. This paper is the first in a planned series of
publications to present precision studies revisiting all
quantum numbers accessible in reaction (1) up to total
spin J ¼ 6. The analysis is limited to states belonging to
the family of πJ and aJ. In addition, the large data set
allows us to apply a novel method for investigating
isoscalar states, which occur as π−πþ subsystems in the
decays of isovector mesons.
The Particle Data Group (PDG) [9] lists a total of eleven

well-established isovector states with masses below
2.1 GeV=c2 (see Table I), where only the a0 states do
not decay into 3π due to parity conservation. The widths of
the a0, a2, and a4 ground states have values of about 10%
of their mass values, while the a1ð1260Þ is much broader.
Pionic excitations are typically broader with values of
their width being about 15% to 20% of their mass values.
In addition, the table contains a number of less well-
established states. Even for some established states, proper-
ties such as mass and width are poorly determined, e.g. for
the a1ð1260Þ as the lightest a1 state, the reported widths
vary between 250 and 600 MeV=c2. Another example is
the inconsistency in the mass measurements of πð1800Þ,
where experimental results cluster around two different
mean values. This has lead to speculations on the existence
of two states, one being an ordinary meson and the other
one a hybrid. Extensive discussions of the light-meson
sector are found in Refs. [1,10].
The partial-wave analysis of the 3π system has a

long history [1]. The technique of partial-wave analysis
(PWA) of 3π systems was established by the work of Ascoli
et al. [11,12] in 1968. The CERN-Munich collaboration
(ACCMOR) [13–16] further developed this method and
measured significant contributions from partial waves up to

J ¼ 2, without including spin-exotic waves. The largest
data set used so far, which is the basis of several
publications on the 3π final state, was obtained and
analyzed by the BNL E852 collaboration [17–19]. They
have studied reaction (1) at beam momenta of 18 GeV=c
and observed significant waves with JPC ¼ 0−þ, 1þþ, 2þþ,
and 2−þ quantum numbers. In addition, they have detected
a 1−þ spin-exotic wave in the ρð770Þπ decay channel with
significant fluctuation in intensity depending on the num-
ber of partial waves used, i.e. with a considerable model
dependence. Also the VES experiment has large data sets,

TABLE I. Resonance parameters of aJ and πJ mesons in the
mass region below 2.1 GeV=c2 as given in PDG [9]. Note that
due to parity conservation the a0 states cannot decay into
π−π−πþ.

Particle JPC Mass [MeV=c2] Width [MeV=c2]

Established states
a0ð980Þ 0þþ 980� 20 50 to 100
a1ð1260Þ 1þþ 1230� 40 250 to 600
a2ð1320Þ 2þþ 1318.3þ0.5

−0.6 107� 5
a0ð1450Þ 0þþ 1474� 19 265� 13
a4ð2040Þ 4þþ 1996þ10

−9 255þ28
−24

πð1300Þ 0−þ 1300� 100 200 to 600
π1ð1400Þ 1−þ 1354� 25 330� 35
π1ð1600Þ 1−þ 1662þ8

−9 241� 40
π2ð1670Þ 2−þ 1672.2� 3.0 260� 9
πð1800Þ 0−þ 1812� 12 208� 12
π2ð1880Þ 2−þ 1895� 16 235� 34

States omitted from summary table
a1ð1640Þ 1þþ 1647� 22 254� 27
a2ð1700Þ 2þþ 1732� 16 194� 40

π2ð2100Þ 2−þ 2090� 29 625� 50

Further states
a3ð1875Þ 3þþ 1874� 43� 96 385� 121� 114
a1ð1930Þ 1þþ 1930þ30

−70 155� 45

a2ð1950Þ 2þþ 1950þ30
−70 180þ30

−70
a2ð1990Þ 2þþ 2050� 10� 40 190� 22� 100

2003� 10� 19 249� 23� 32
a0ð2020Þ 0þþ 2025� 30 330� 75
a2ð2030Þ 2þþ 2030� 20 205� 30
a3ð2030Þ 3þþ 2031� 12 150� 18
a1ð2095Þ 1þþ 2096� 17� 121 451� 41� 81

π2ð2005Þ 2−þ 1974� 14� 83 341� 61� 139
2005� 15 200� 40

π1ð2015Þ 1−þ 2014� 20� 16 230� 32� 73
2001� 30� 92 333� 52� 49

πð2070Þ 0−þ 2070� 35 310þ100
−50

Xð1775Þ ?−þ 1763� 20 192� 60
1787� 18 118� 60

Xð2000Þ ??þ 1964� 35 225� 50
∼2100 ∼500
2214� 15 355� 21
2080� 40 340� 80

1JPC quantum numbers that are forbidden for qq̄ in the
nonrelativistic limit.
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the analysis of which was published mostly in conference
proceedings, see e.g. Refs. [20–23].
As illustrated in Fig. 1, for reaction (1) at 190 GeV beam

energy, the strong interaction can be described by the
exchange of a quasiparticle called Pomeron, P, which is a
flavorless glueball-like object that accounts for diffractive
dissociation and most of the two-body elastic scattering
[24]. The Regge trajectory αPðtÞ of the Pomeron deter-
mines the elastic scattering amplitude

Aðs; tÞ ∝ sαPðtÞ: ð2Þ

Here, s is the squared center-of-mass energy, t the squared
four-momentum transferred between beam particle and
target nucleon, and

αPðtÞ ¼ 1þ ϵP þ α0P t; ð3Þ

where 0.081≲ ϵP ≲ 0.112 and α0P ≈ 0.25 ðGeV=cÞ−2 [24].
The Pomeron is an even-signature Regge trajectory with
JPC ¼ 2þþ, 4þþ, 6þþ;…; and its first Regge pole corre-
sponds to a flavorless hadron with JPC ¼ 2þþ and a mass
of about 1.9 GeV=c2. The parameter α0P modifies the
dependence of the differential cross section on the four-
momentum transfer. Equation (2) implies a dependence of
the cross section on t as

dσ
dt

∝ e−bt: ð4Þ

The slope parameter b is given by

b ¼ b0 þ 4α0P ln
ffiffiffiffiffi
s
s0

r
; ð5Þ

where b0 is a generic slope parameter and the unknown
scale parameter s0 is usually taken to be 1 GeV2. The
reduced four-momentum transfer squared is

t0 ≡ jtj − jtjmin ≥ 0; where jtjmin ≈
�
m2

3π −m2
π

2j~pbeamj
�

2

ð6Þ

is the minimum momentum transfer needed to excite the
beam particle to a mass m3π, which is the invariant mass of
the 3π final state. The beam momentum ~pbeam is measured
in the laboratory frame. For the 3π mass range of 0.5 to
2.5 GeV=c2 considered in this analysis, typical values of
jtjmin are well below 10−3 ðGeV=cÞ2. Different production
mechanisms, i.e. different exchange particles, can lead to
different slopes b. The existence of concurrent exchange
processes thus results in a more complex form of the t0
dependence with coherently and/or incoherently overlap-
ping exponentials. The t0 range for this analysis is 0.1
to 1.0 ðGeV=cÞ2.
Studies of diffractive dissociation of pions, see e.g.

Refs. [8,16,19,22], reveal the existence of nonresonant
background processes such as the Deck effect [25]. These
processes exhibit strongly mass-dependent production
amplitudes that occur in the same partial waves as the
resonances under study. In particular, the analyses pre-
sented in Refs. [16,19] showed the importance of the
kinematic variable t0 in a partial-wave analysis and illus-
trated the power of accounting for the difference in the t0
dependence of the reaction mechanisms and also of the
different resonances. In this work, we take advantage of the
large size of our data sample and develop this approach
further in order to better disentangle resonant and non-
resonant components.
In the case of Pomeron exchange, the partial waves

induced by a pion beam can be assessed as follows: the π−

is an isovector pseudoscalar with negative G parity and the
Pomeron is assumed to be an isoscalar C ¼ þ1 object,
so that the partial waves all have IG ¼ 1−. Possible JPC

quantum numbers2 of partial waves are listed in Table II
for the lowest values of the relative orbital angular
momentum l between the beam particle and a JPC ¼
2þþ Pomeron as an example. As wewill demonstrate in this
paper, almost all partial waves listed in Table II are indeed
observed in our data. Higher-spin waves with J ≥ 5

contribute significantly only at masses above 2 GeV=c2.
The table includes spin-exotic partial waves such as
JPC ¼ 1−þ, 3−þ, and 5−þ. The present paper focuses on
nonexotic spin quantum numbers with the emphasis on
known states. They are extracted from the data by partial-
wave methods that contain an a priori unknown depend-
ence on t0, which is extracted from the data.

FIG. 1. Diffractive dissociation of a beam pion on a target
proton into the three-pion final state. The figure shows the
excitation of an intermediate resonance X− via Pomeron ex-
change and its subsequent decay into 3π.

2Although the C parity is not defined for a charged system, it is
customary to quote the JPC quantum numbers of the correspond-
ing neutral partner state in the isospin multiplet. The C parity
can be generalized to the G parity G≡ CeiπIy, a multiplicative
quantum number, which is defined for the nonstrange states of a
meson multiplet.
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The work related to this topic is subdivided into two
publications, owing to the large amount of material and
various, in parts novel analysis techniques used. This paper
contains details on the experiment in Sec. II A and a
description of the basic event selection criteria in
Secs. II B and II C, where we also present the general
features of our data set and the overall kinematic distribu-
tions for both m3π and t0. Section III contains a detailed
description of our analysis method and the PWA model
used. For clarity, we include a rather extensive mathemati-
cal description summarizing the work of many authors,
who laid the basis for our analysis (see e.g. Refs. [26–32]).
In this scheme, the analysis follows a two-step procedure
described in Ref. [32]. In the first step, a PWA is performed
in bins of m3π and t0. The results of this so-called mass-
independent fit are presented and discussed in Secs. IV
and V. In these and the following sections, the focus lies on
3π resonances with masses below 2.1 GeV=c2. The dis-
cussion on t0 dependences includes the kinematic distri-
butions and JPC-resolved t0 spectra. In Sec. VI, we present a
novel approach that allows us to investigate the amplitude
of π−πþ subsystems in the decay process. In particular,
we address the topic of the scalar sector containing f0
mesons and its complicated relation to ππ S-wave scatter-
ing. The relation of f0ð980Þ and f0ð1500Þ mesons to ππ
scattering will be demonstrated. In this paper, all error
bars shown in the figures represent statistical uncertainties
only. Systematic effects are discussed in Sec. IV F and
Appendix B. In Sec. VII, we conclude by summarizing the
findings based on qualitative arguments. The appendices
contain details about more technical issues.
The analysis methods and results presented in this

paper will serve as a basis for further publications that
will be dedicated to individual partial waves. In the second
step of the analysis, physics parameters will be extracted
from the data presented in this paper by performing a fit
that models the resonance amplitudes and the amplitudes
of nonresonant processes. This involves simultaneous
fitting to many partial-wave amplitudes in all bins of t0.
Such a mass-dependent fit, which will allow us to extract
the t0 dependences of various components, i.e. resonant

and nonresonant contributions for individual partial waves
as well as resonance parameters for the mesonic states
observed with different JPC, will be described in a forth-
coming paper [33].

II. EXPERIMENTAL SETUP AND
EVENT SELECTION

A. COMPASS Setup

The COMPASS spectrometer, which is described in
general in Ref. [34], is situated at the CERN SPS. The setup
used for themeasurement presented here is explained inmore
detail in Ref. [35]. COMPASS uses secondary hadron and
tertiary muon beams that are produced by the 400 GeV=c
SPSprotonbeam impingingona 50cm longberyllium target.
The measurement described in this paper is based on data
recorded during the 2008 COMPASS run. The beam was
tuned to deliver negatively charged hadrons of 190 GeV=c
momentum passing through a pair of beam Cherenkov
detectors (CEDARs) for beam particle identification. The
beam impinged on a 40 cm long liquid-hydrogen target with
an intensity of 5 × 107 particles per SPS spill (10 s extraction
with a repetition time of 45 s). At the target, the hadronic
component of the beam consisted of 96.8% π−, 2.4%K−, and
0.8% p̄. In addition, the beam contained about 1% μ− and an
even smaller amount of electrons.
The target was surrounded by a recoil-proton detector

(RPD) consisting of two concentric, inner and outer, barrels
of scintillators with 12 and 24 azimuthal segments, respec-
tively. Recoil protons emerging from diffraction-like reac-
tions must carry momenta of at least 270 MeV=c in order
to traverse the target containment and to be detected in
the two RPD rings. This leads to a minimum detectable
squared four-momentum transfer t0 of about 0.07 GeV=c2.
Incoming beam particles and outgoing reaction products

that emerge in the forward region were detected by a set of
silicon microstrip detector stations, each consisting of two
double-sided detector modules that were arranged to view
four projections. Particles emerging in the forward direction
were momentum-analyzed by the two-stage magnetic spec-
trometer with a wide angular acceptance of �180 mrad.
Both spectrometer stages are each composed of a bending
magnet, charged-particle tracking, electromagnetic and
hadronic calorimetry, and muon identification. Particles
in the momentum range between 2.5 and 50 GeV=c and
passing through the ring-imaging Cherenkov (RICH)
detector in the first stage can be identified as pion, kaon,
or proton. The experiment offers large acceptance and high
reconstruction efficiency over a wide range of three-pion
mass m3π and squared four-momentum transfer t0.

B. Hardware trigger

A minimum-bias trigger, the so-called diffractive trigger
(DT0) [35,36], was used to preselect events with interacting
beam particles and a recoiling proton emerging from the
target. The trigger elements are shown schematically in

TABLE II. List of allowed JPC quantum numbers for X
assuming that it is produced in the interaction of a JPC ¼ 0−þ

beam pion and a 2þþ Pomeron as an example, with relative
orbital angular momentum l between the two.

l JPC of X

0 2−þ

1 1þþ, 2þþ, 3þþ

2 0−þ, 1−þ, 2−þ, 3−þ, 4−þ

3 1þþ, 2þþ, 3þþ, 4þþ, 5þþ

4 2−þ, 3−þ, 4−þ, 5−þ, 6−þ
..
.
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Fig. 2. The DT0 trigger is a coincidence of three independent
trigger signals: (i) the beam trigger, (ii) the recoil-proton
trigger, and (iii) the veto signal. Incoming beam particles are
selected by the beam trigger requiring a signal in one plane of
the scintillating-fiber detector (SciFi) in coincidence with a
hit in the beam counter, which is a scintillator disc of 32 mm
diameter and 4 mm thickness. Both beam-trigger elements
are located upstream of the target. The proton trigger selects
eventswith protons recoiling from the target. It features target
pointing and discrimination of protons from other charged
particles by measuring the energy loss in each ring of the
RPD. The veto signal has three subcomponents. The veto
hodoscopes reject incoming beam particles with trajectories
far from the nominal one. Similarly, the sandwich scintilla-
tion detector that is positioned downstream close to the target,
vetoes events with particles leaving the target area outside of
the geometrical acceptance of the spectrometer. Lastly, the
beamveto, two scintillator discs of 35mmdiameter and5mm
thickness positioned between the second analyzing magnet
and the second electromagnetic calorimeter, vetoes signals
from noninteracting beam particles. Events recordedwith the
diffractive trigger can be regarded as good candidates for
diffractive dissociation reactions.

C. Event selection

The analysis is based on a data set of about 6.4 × 109

events selected by the hardware trigger (see Sec. II B).
The event selection aims at a clean sample of exclusive
π− þ p → π−π−πþ þ precoil events (see Fig. 1) and consists
of the following criteria (see Ref. [37] for more details):
(1) A vertex is required to be formed by the beam

particle and three charged outgoing tracks with a
total charge sum of −1. The vertex must be located
within the fiducial volume of the liquid-hydrogen
target.

(2) Momentum conservation is applied by requiring
exactly one recoil particle detected in the RPD that
is back-to-back with the outgoing π−π−πþ system
in the plane transverse to the beam (transverse
momentum balance). This suppresses contributions

from double-diffractive processes, in which also the
target proton is excited.

(3) The beam energy Ebeam, which is calculated from
the energy and momentum of the three outgoing
particles corrected for the target recoil, must be
within a window of �3.78 GeV around the nominal
beam energy, which corresponds to two standard
deviations [see Fig. 3(a)].

A number of additional selection criteria is applied in
order to reject background events originating from other
processes. Events are disregarded if the incoming beam
particle is identified by the two beam Cherenkov detectors
(CEDARs) as a kaon. This suppresses kaon-beam induced
events, like e.g. K− þ p → K−π−πþ þ precoil. If at least
one of the three forward-going particles is identified by the
RICH detector as a kaon, proton, electron, muon, or noise,
the event is rejected, thereby suppressing events such as
e.g. π− þ p → π−K−Kþ þ precoil. In order to reject back-
ground events stemming from the central-production
reaction π− þ p → π−fast þ π−πþ þ precoil, in which no
three-pion resonances are formed, the faster π− in the
event is required to have a Feynman-x below 0.9 defined in
the overall center-of-mass frame. The rapidity difference
between the faster π− and the remaining π−πþ pair is
limited to the range from 2.7 to 4.5. Figure 4 shows the
m3π and mπ−πþ distributions of the sample that is cut
away.
After all cuts, the data sample consists of 46 × 106 events

in the analyzed kinematic region of three-pion mass,
0.5 < m3π < 2.5 GeV=c2, and four-momentum transfer
squared, 0.1 < t0 < 1.0 ðGeV=cÞ2. Figures 5(a) and 5(b)
show for all selected events the mass spectrum of π−π−πþ
and of the two π−πþ combinations. The known pattern of
resonances a1ð1260Þ, a2ð1320Þ, and π2ð1670Þ is seen in
the 3π system as well as ρð770Þ, f0ð980Þ, f2ð1270Þ, and
ρ3ð1690Þ in the π−πþ subsystem. From Fig. 5(c), the
correlation of the resonances in the π−π−πþ system and in
the π−πþ subsystem is clearly visible. This correlation is
the basis of our analysis model described in Sec. III. The t0
spectrum is shown in Fig. 5(d).

FIG. 2. Simplified scheme of the diffractive trigger. The main components are the beam trigger, which selects beam particles, and the
RPD, which triggers on slow charged particles leaving the target. The veto system (red) rejects uninteresting events and consists of three
parts: The veto hodoscopes, the sandwich, and the beam veto.
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AMonte Carlo simulation has shown that for the reaction
under study, the 3π mass resolution of the spectrometer
varies between 5.4 MeV=c2 at smallm3π (in the range from
0.5 to 1.0 GeV=c2) and 15.5 MeV=c2 at large m3π (in the
range from 2.0 to 2.5 GeV=c2), respectively. The t0 reso-
lution as obtained from the reconstructed 3π final state
ranges between 7 × 10−3 and 20 × 10−3 ðGeV=c2Þ depend-
ing on the m3π and t0 region. The resolution of the
reconstructed beam energyEbeam is smaller than the intrinsic
energy spread of the beam and varies between 0.6 and
0.9GeV.The position of the primary interactionvertex along
the beam axis is reconstructed with a resolution of approx-
imately 6 mm at small and 1.5 mm at largem3π . The overall
detection efficiency, which includes detector acceptance,
reconstruction efficiency, and event selection, is estimated
for isotropically distributed (phase-space) π−π−πþ events.
Integrated over the analyzed kinematic region, it is 49%
on average. More details are found in Appendix C and
Ref. [37].

III. PARTIAL-WAVE ANALYSIS METHOD

The goal of the analysis described in this paper is to
extract the resonances contributing to the reaction π− þ
p → π−π−πþ þ precoil and to determine their quantum
numbers from the observed kinematic distributions of
the outgoing π−π−πþ system. This is accomplished using
partial-wave analysis techniques. The basic assumption is
that resonances dominate the 3π intermediate states X−

produced in the scattering process, so that the X− produc-
tion can be treated independently of the X− decay (see
Fig. 1). The amplitude for a certain intermediate state X−

is therefore factorized into two terms: (i) the transition
amplitude T describing the production of a state X− with
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FIG. 4. Effect of the central-production (CP) veto. Panel (a):
π−π−πþ invariant mass spectrum without the central-production
veto (yellow histogram) together with the sample that is removed
by the central-production veto (red histogram). The inset shows
the same histogram with magnified ordinate scale. Note that the
partial-wave analysis is performed only in the mass region of
0.5 < m3π < 2.5 GeV=c2 indicated by the vertical red lines.
Panel (b): π−πþ invariant mass distribution (two entries per
event) of the sample that is cut away.

]GeV[beamE
0 50 100 150 200

E
ve

nt
s 

/ (
50

 M
eV

)

310

410

510

610

(a)

]GeV[beamE
180 190 200

E
ve

nt
s 

/ (
50

 M
eV

)

0

0.2

0.4

610×

(b)

FIG. 3. Panels (a) and (b) show the reconstructed beam
energy Ebeam after selection cuts (filled histograms). The open
histogram in (a) represents the energy distribution without the
RPD information. In the zoomed view (b), the vertical red lines
indicate the accepted range.
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specific quantum numbers and (ii) the decay amplitude Ψ
that describes the decay of the X− state into a particular
π−π−πþ final state. For fixed beam energy, the measured
kinematic distribution of the final-state particles depends
on the 3π invariant mass m3π , the four-momentum transfer
squared t0, and a set of five additional phase-space variables
denoted as τ, which fully describe the three-body decay and
are defined below.

A. Isobar model

In order to illustrate the isobar ansatz, we give in Fig. 6
two examples for Dalitz plots for two different regions
of m3π . In the 3π mass region around a2ð1320Þ, which also
includes contributions from a1ð1260Þ, we see a dominant
contribution of the ρð770Þ in the π−πþ subsystem, while for
values of m3π around π2ð1670Þ several 2π resonances
contribute, i.e. ρð770Þ, f0ð980Þ, and f2ð1270Þ.
Because of the strong contribution of resonances in the

π−πþ subsystem, the three-body decay amplitude ~Ψðτ;m3πÞ

is factorized into two two-body decay terms (see Fig. 7).
This factorization is known as the isobar model3 and the
introduced intermediate π−πþ state ξ is called the isobar. In
the first two-body decay, X− → ξ0 þ π−, a relative orbital
angular momentum L is involved in the decay. The decay
amplitude ~Ψðτ; m3πÞ completely describes the kinematic
distribution of the three outgoing pions for particular
quantum numbers of X− and for a particular isobar channel
with a given L.
The two subsequent two-body decays are described in

different right-handed coordinate systems, i.e. the
Gottfried-Jackson and the helicity reference frame (see
Fig. 8). The Gottfried-Jackson (GJ) frame is used to
describe the angular distribution of the decay of the
intermediate state X− into the isobar ξ and the bachelor
pion. It is constructed in the X− rest system, in which the
direction of the beam particle defines the zGJ axis and the
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FIG. 5. Final event sample after all selection cuts: (a) invariant mass spectrum of π−π−πþ in the range used in this analysis [see vertical
lines in Fig. 4(a)], (b) π−πþ mass distribution, (c) correlation of the two, (d) t0 distribution with vertical lines indicating the range of t0
values used in this analysis. The histograms in (b) and (c) have two entries per event. The labels indicate the position of major 3π and 2π
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3An early detailed discussion can be found in Ref. [30].

C. ADOLPH et al. PHYSICAL REVIEW D 95, 032004 (2017)

032004-8



yGJ axis is oriented along the normal to the production
plane (ŷGJ ≡ p̂lab

beam × p̂lab
X ¼ p̂GJ

recoil × p̂GJ
beam, where unit

vectors are indicated by a circumflex). In this system,
the momenta of the isobar and the bachelor pion are back
to back, so that the two-body decay X− → ξ0 þ π− is

described by the polar angle ϑGJ and the azimuthal angle
ϕTY of the isobar, the latter being also referred to as
Treiman-Yang angle.
For the decay of the isobar ξ into π−πþ, the helicity

reference system (HF) is used to describe the angular
distribution. This frame is constructed by boosting from the
Gottfried-Jackson system into the ξ rest frame. The zHF axis
is taken along the original direction of the isobar and
ŷHF ≡ ẑGJ × ẑHF. The two pions are emitted back to back,
so that the ξ0 → π−πþ decay is described by the polar angle
ϑHF and the azimuthal angle ϕHF of the negative pion.
For illustration, Fig. 9 shows the observed, i.e. accep-

tance-uncorrected angular distributions in the two reference
systems for events around the π2ð1670Þ mass region. The
main decay of this resonance is through the f2ð1270Þ
isobar, which is a JPC ¼ 2þþ state decaying into π−πþ in a
relative D-wave in the helicity reference frame. The
f2ð1270Þ and the bachelor pion are emitted in a relative
S or D-wave in the Gottfried-Jackson coordinate system.
Note that the shown distribution is complicated by the fact
that other decay modes of the π2ð1670Þ as well as decays of
other 3π resonances with different angular distributions
interfere with the π2ð1670Þ → f2ð1270Þ π− decay.

B. Parametrization of decay amplitudes

In the helicity formalism [26,27,31], the amplitude AR
M

for a two-body decay of a state R with spin J into particles
1 and 2 can be factorized into a dynamic part
fJλ1λ2ðmR;m1; m2Þ that describes the mass dependence
and an angular part. The latter is related to the rotation
between the rest frame of the parent system R, in which
its spin projection M is defined, and the helicity frame
used to define the daughter spin states, which are given by
the helicities λ1;2. The rotation is described by the Wigner
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FIG. 6. (a) Dalitz plot in the mass regions of the a2ð1320Þ,
which also includes the a1ð1260Þ, (b) around the π2ð1670Þ. The
used 3π mass regions are indicated in Fig. 5(a). The dominant
ρð770Þ π decays of a1ð1260Þ and a2ð1320Þ are clearly visible.
The π2ð1670Þ region exhibits ρð770Þ π, f2ð1270Þ π, and f0ð980Þ
π decay modes.

FIG. 7. The decay of X−, as described in the isobar model,
is assumed to proceed via an intermediate π−πþ state ξ, the
so-called isobar.

FIG. 8. Definition of the Gottfried-Jackson reference frame
(GJ) in the X rest system and of the helicity reference frame (HF)
in the ξ0 rest system as they are used to analyze the angular
distributions of the decays X− → ξ0 þ π− and ξ0 → π− þ πþ,
respectively. Unit vectors are indicated by a circumflex.
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D-function. In addition, there are two Clebsch-Gordan
coefficients arising in the decay R → 1þ 2: (i) for the
coupling of the spins J1;2 of the daughter particles to the
total intrinsic spin S and (ii) for the coupling of the relative
orbital angular momentum L12 between the daughter
particles with S to J. As the orbital angular momentum
L12 in the decay is by definition perpendicular to the
quantization axis in the helicity formalism, its z projection
vanishes.
The amplitudeAξ

λ for the two-body decay of the isobar ξ
with spin Jξ and helicity λ into π−πþ is given by

Aξ
λðϑHF;ϕHF; mξÞ ¼ D

Jξ
λ0

�ðϕHF; ϑHF; 0ÞfJξ00ðmξ;mπ; mπÞ;
ð7Þ

with mξ being the π−πþ invariant mass. The dynamic part
factorizes into several components:

f
Jξ
00ðmξ;mπ; mπÞ
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jξ þ 1
p|fflfflfflfflfflffl{zfflfflfflfflfflffl}
normalization

αξFJξðmξ;mπ; mπÞΔξðmξ;mπ; mπÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dynamics

: ð8Þ

Here, the fact was already used that pions are spinless
isospin-1 particles. Therefore, the L-S coupling Clebsch-
Gordan coefficient is unity and the orbital angular momen-
tum Lξ in the decay is identical to the spin Jξ of the isobar.
The coupling amplitude αξ describes the strength of the

decay and is usually unknown. Parametrizations for the
barrier factor FJξ and the isobar line shape Δξ are discussed
in Sec. IVA.
The amplitudeAX

M for the two-body decay of X− into the
isobar ξ and the bachelor pion is constructed by summing
over the helicity λ of the intermediate isobar:

AX
MðϑGJ;ϕTY; m3πÞ
¼

X
λ

DJ�
MλðϕTY; ϑGJ; 0ÞfJλ0ðm3π;mξ; mπÞ: ð9Þ

Taking into account the quantum numbers of the bachelor
pion the dynamic part of the amplitude reads:

fJλ0ðm3π;mξ; mπÞ
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p|fflfflfflfflffl{zfflfflfflfflffl}
normalization

ðL0JξλjJλÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
L-S coupling

Clebsch-Gordan

αXFLðm3π;mξ; mπÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dynamics

: ð10Þ

This is the nonrelativistic L-S coupling scheme as intro-
duced by Jacob and Wick in Ref. [26], which is equivalent
to the nonrelativistic Zemach tensors [38,39]. Relativistic
corrections as worked out in Ref. [40] are not applied. The
results presented here are therefore comparable to those of
previous analyses. The relativistic corrections are expected
to become important for large breakup momenta in the
X− → ξ0 þ π− decay and will be studied in detail in a
future analysis.

FIG. 9. Example of a 3π angular distribution observed in the mass region 1.6 < m3π < 1.7 GeV=c2 around the π2ð1670Þ indicated by
vertical red lines in the upper left panel. The main decay of this resonance is through the f2ð1270Þ isobar, which is a JPC ¼ 2þþ state,
decaying into π−πþ in a D-wave. The f2ð1270Þ and the bachelor pion are in a relative S or D-wave.
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In Eq. (10), again an unknown coupling amplitude αX
appears. Note that the line shape ΔXðm3πÞ of the X− is
unknown. It is actually the goal of the analysis to extract it
from the data. This is achieved by setting ΔX to unity so
that it does not appear in the above formula and by
performing the analysis in narrow bins of m3π , thereby
neglecting the m3π dependence within each bin.
Combining Eqs. (7) and (9) yields the X− decay

amplitude

ψ i;jðϑHF;ϕHF; mξ; ϑGJ;ϕTY

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{≡τ

;m3πÞ
¼

X
λ

DJ�
MλðϕTY; ϑGJ; 0ÞfJλ0ðm3π;mξ; mπÞ

×Aξ
λðϑHF;ϕHF; mξÞ: ð11Þ

However, the above amplitude does not yet have the correct
Bose symmetry under exchange of the two indistinguish-
able π− in the final state. The symmetrized amplitude is

~Ψi;jðτ13; τ23;m3πÞ ¼
1ffiffiffi
2

p ½ψ i;jðτ13;m3πÞ þ ψ i;jðτ23;m3πÞ�

ð12Þ

where τ13 and τ23 are the sets of phase-space variables
calculated for the two possible π−πþ combinations of the
π−1 π

−
2 π

þ
3 system. Equation (12) takes correctly into account

the self-interference due to the particle-exchange sym-
metry. For better readability, we will use the simplified
notation ~Ψi;jðτ;m3πÞ in the text below.

The X− decay amplitude ~Ψi;j is uniquely defined by two
indices: (a) the set of X− quantum numbers (isospin I, G
parity, spin J, parity P, C parity, and the spin projectionM),
represented here by the index i≡ ðIG; JPC;MÞ, and (b) by
the X− decay mode enumerated by j≡ ðξ; LÞ. In this way
we can describe the decay of a diffractively produced
intermediate state X− with mass m3π decaying into a π−πþ
isobar ξ and a bachelor π−.

C. Partial-wave decomposition

The intensity distribution Iðm3π; t0; τÞ of the final-state
particles is written as a truncated series of partial waves
denoted by the indices i and j, which represent certain
quantum number combinations as discussed in Sec. III B.
The strengths and phases, with which the different inter-
mediate states X− are produced, are described by the
production amplitudes ~T rε

i ðm3π; t0Þ. They depend on the
production kinematics and on the set i ¼ ðIG; JPC;MÞ of
the X− quantum numbers. Together with the decay ampli-
tudes from Eq. (12), the intensity is written as the coherent
sum over the different intermediate X− states represented
by i and the different X− decay modes enumerated by j:

Iðτ;m3π; t0Þ ¼
X
ε¼�1

XNε
r

r¼1

���X
i

~T rε
i ðm3π; t0Þ

X
j

~Ψε
i;jðτ;m3πÞ

���2:
ð13Þ

In the above formula, two additional indices, the so-called
reflectivity ε and the rank index r, are introduced, which are
both summed over incoherently. Before discussing these
two indices, we transform Eq. (13) further.
In the helicity formalism, the isobar-model decay ampli-

tudes are calculable up to the unknown couplings αξ and
αX, which appear at each decay vertex and were introduced
in Sec. III B [see Eqs. (8), (10), and Fig. 7]. Assuming that
these couplings do not depend on the kinematics, these
unknowns can be be pulled out of the decay amplitude in
Eq. (12) and absorbed into the production amplitudes by
the following redefinitions:

Ψ̄ε
i;jðτ;m3πÞ≡

~Ψε
i;jðτ;m3πÞ
αξαX

ð14Þ

and

T̄ rε
i;jðm3π; t0Þ≡ αξαX ~T rε

i ðm3π; t0Þ: ð15Þ

Note that now the amplitudes T̄ rε
i;j carry not only informa-

tion about the production of the state i, but also about its
coupling to a certain decay channel j. Therefore, we will
refer to the T̄ rε

i;j as transition amplitudes in the rest of the
text. We introduce the index

a≡ ði; jÞ: ð16Þ

This notation represents a certain partial wave and contains
all information about the production as well as the decay
(see Sec. III B). With these modifications, we rewrite the
expression for the intensity:

Iðτ;m3π; t0Þ ¼
X
ε¼�1

XNε
r

r¼1

���X
a
T̄ rε

a ðm3π; t0ÞΨ̄ε
aðτ;m3πÞ

���2:
ð17Þ

It is convenient to introduce the spin-density matrix

ϱ̄εabðm3π; t0Þ ¼
XNε

r

r¼1

T̄ rε
a T̄

rε�
b ; ð18Þ

which represents the full information that is obtainable
about X−. The diagonal elements of ϱ̄ are proportional to
the partial-wave intensities and the off-diagonal entries to
the interference terms.
There are several effects that could lead to deviations

from full coherence of the intermediate states, e.g. spin-flip
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and spin-nonflip processes or the excitation of baryon
resonances. Also, performing the analysis over a large
range of four-momentum transfer without taking into
account the different t0 dependences of the intermediate
states may appear like incoherence (see Sec. V). One way
of including these incoherences is the introduction of the
additional rank index r for the transition amplitudes, which
is summed over incoherently [see Eq. (17)]. The parameter
Nr is called the rank of the spin-density matrix.
The constraints due to parity conservation in the pro-

duction process are directly taken into account by working
in the so-called reflectivity basis, where positive and
negative values for the spin projection M are combined
to yield amplitudes characterized by M ≥ 0 and an addi-
tional quantum number ε ¼ �1, called reflectivity. This is
achieved by replacing the D-function in the X− → ξ0 þ π−

two-body decay amplitude of Eq. (9) by

εDJ
MλðϕTY; ϑGJ; 0Þ≡ cðMÞ½DJ

ðþMÞλðϕTY; ϑGJ; 0Þ
− εPð−ÞJ−MDJ

ð−MÞλðϕTY; ϑGJ; 0Þ�;
ð19Þ

with ε ¼ �1, M ≥ 0, and the normalization factor

cðMÞ ¼
�
1=2 for M ¼ 0;

1=
ffiffiffi
2

p
otherwise:

ð20Þ

The reflectivity is the eigenvalue of reflection through
the X production plane. In the high-energy limit, ε
corresponds to the naturality of the exchange in the
scattering process, such that ε ¼ þ1 (−1) corresponds to
natural spin-parity of the exchanged Reggeon, i.e. JP ¼ 1−

or 2þ or 3− … (unnatural spin-parity: JP ¼ 0− or 1þ
or 2− …) transfer to the beam particle. Expressing the
amplitudes in the reflectivity basis brings the spin-density
matrix into a block-diagonal form with respect to ε [29].
Hence states with different reflectivities, i.e. those produced
by Regge-trajectories with different naturalities, do not
interfere and are thus summed up incoherently [see
Eq. (17)]. In general, the rank Nr of the spin-density
matrix may be different in the two reflectivity sectors,
i.e. Nε

r.
Finally, we introduce the phase-space-normalized decay

amplitudes Ψε
aðτ;m3πÞ as

Ψε
aðτ0;m3πÞ≡ Ψ̄ε

aðτ;m3πÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dφ3ðτ0ÞjΨ̄ε

aðτ0;m3πÞj2
q ; ð21Þ

where dφ3ðτ0Þ is the differential three-body phase-space
element. This normalizes the transition amplitudes via

T rε
a ðm3π; t0Þ≡ T̄ rε

a ðm3π; t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

dφ3ðτ0ÞjΨ̄ε
aðτ0;m3πÞj2

s

ð22Þ

with

ϱεabðm3π; t0Þ ¼
XNε

r

r¼1

T rε
a T rε�

b ; ð23Þ

such that the partial-wave intensities, which are the
diagonal elements of the spin-density matrix in Eq. (22),
are given in terms of number of events that would be
observed in a perfect detector.
The goal of the partial-wave analysis is to extract the

unknown transition amplitudes T rε
a ðm3π; t0Þ from the data,

because they contain information about the intermediate 3π
resonances. Since the mass dependence of the transition
amplitudes is unknown, the event sample is divided into
m3π bins much narrower than the width of typical hadronic
resonances. Within each mass bin, the m3π dependence is
assumed to be negligible, so that the T rε

a only depend on t0.
Also the t0 dependence of the transition amplitudes is

a priori unknown. In previous analyses it was often
assumed that the m3π and t0 dependences factorize and
the t0 dependence was modeled by real functions gεaðt0Þ.
These functions were extracted from the analyzed data set
by integrating over wide m3π ranges, often only for groups
of waves. The COMPASS data, however, exhibit a com-
plicated and significant correlation of the t0 and m3π

dependences (see Sec. V), which renders this approach
inapplicable. As it will be shown in Sec. IV C, this is
mainly due to different production processes (resonance
production and nonresonant processes, like e.g. the Deck
process [25]), which contribute with amplitudes that may
have very different dependences on t0. Therefore, the
partial-wave decomposition is performed for each m3π

bin independently in different slices of t0 (see Sec. IV B
and Table IV). Within a t0 bin, the transition amplitude is
assumed to be independent of t0. Taking out the explicit
assumptions about the t0 dependences by virtue of our large
data set is an advantage compared to most previous
analyses (e.g. [8]).
For a given bin in m3π and t0, the intensity has thus a

simpler form as it depends only on the five phase-space
variables τ:

IðτÞ ¼
X
ε¼�1

XNε
r

r¼1

���X
a

T rε
a Ψε

aðτÞ
���2 þ I flat; ð24Þ

with the transition amplitudes appearing as constants. Here,
we introduced an additional incoherently added wave that
is isotropic in τ and from now on is referred to as flat wave.
The purpose of this wave is to absorb intensity of events
with three uncorrelated pions in the final state, e.g.
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nonexclusive background. The flat wave is always part of
the wave set, even if not mentioned explicitly.

D. Maximum-likelihood method

The transition amplitudes T rε
a are determined for each

bin in m3π and t0 by fitting the model intensity IðτÞ of
Eq. (24) to the measured τ distribution. The fit is based
on an extended likelihood function constructed from the
probabilities to observe the N measured events with phase-
space coordinates τi:

L ¼ N̄N

N!
e−N̄|fflfflfflffl{zfflfflfflffl}

Poisson
probability

YN
i¼1

IðτiÞR
dφ3ðτÞηðτÞIðτÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Probability for event i

: ð25Þ

Here, ηðτÞ is the detection efficiency and dφ3ðτÞ the
differential three-body phase-space element. The expected
number of events N̄ in the detector is given by the
normalization integral

N̄ ¼
Z

dφ3ðτÞηðτÞIðτÞ: ð26Þ

By this integral, the detection efficiency is taken into
account in the fit model, thereby avoiding the binning of
the data, which would be impractical given the high
dimensionality of the intensity distribution.
Inserting Eq. (26) into Eq. (25) and dropping all constant

terms as well as taking the logarithm, the expression reads

lnL ¼
XN
i¼1

ln

�X
ε¼�1

XNε
r

r¼1

����X
a

T rε
a Ψε

aðτiÞ
����2 þ I flat

	

−
X
ε¼�1

XNε
r

r¼1

X
a;b

T rε
a T rε�

b

Z
dφ3ðτÞηðτÞΨε

aðτÞΨε�
b ðτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡Iεab

− I flat

Z
dφ3ðτÞηðτÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≡Iflat

: ð27Þ

Here, the complex-valued integral matrix Iεab, which is
independent of the transition amplitudes, is calculated
using Monte Carlo methods. The same is true for the
real-valued integral Iflat for the isotropic flat wave.
In every individual ðm3π; t0Þ bin, the transition ampli-

tudes T rε
a are determined by maximizing the likelihood

function of Eq. (27), which allows the determination of the
spin-density matrix elements

ϱεab ¼
XNε

r

r¼1

T rε
a T rε�

b : ð28Þ

Setting the detection efficiency ηðτÞ ¼ 1 in Eq. (26) gives
the expected acceptance-corrected number of events:

Ncorr ¼
Z

dφ3ðτÞIðτÞ

¼
X
ε¼�1

X
a;b

ϱεab

Z
dφ3ðτÞΨε

aðτÞΨε�
b ðτÞ

þ I flat

Z
dφ3ðτÞ: ð29Þ

Using the fact that the decay amplitudes Ψε
aðτÞ are

normalized via Eq. (21) and that ϱεab is Hermitian, the
expression can be rewritten as

Ncorr ¼
X
ε¼�1

�X
a

ϱεaa|{z}
Intensities

þ
X
a<b

2Re½ϱεab
Z

dφ3ðτÞΨε
aðτÞΨε�

b ðτÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Overlaps




þ I flat

Z
dφ3ðτÞ: ð30Þ

From this equation, the interpretation of the spin-density
matrix elements becomes obvious. The diagonal elements
ϱεaa are the partial wave intensities, i.e. the expected
acceptance-corrected number of events in wave a. The
overlaps are the respective number of events that exhibit
interference between waves a and b. Limiting the summa-
tion in Eq. (30) to a subset of partial waves yields the
expected acceptance-corrected number of events in these
waves including all interferences. Such sums will be
denoted as coherent sums of partial waves in the following
text.
The procedure described in this section is referred to as

mass-independent fit. It is worth stressing that fits in
different kinematic bins are independent of each other.
The fit model of Eq. (24) does not contain any assumptions
about possible 3π resonances. They will be extracted in a
second analysis step from the m3π dependence of the spin-
density matrix. This so-called mass-dependent fit will be
described in a forthcoming paper [33].

IV. PARTIAL-WAVE DECOMPOSITION
IN BINS OF m3π AND t0

In principle, the partial-wave expansion in Eq. (24)
includes an infinite number of waves. In practice, the
expansion series has to be truncated. This means that one
has to define a wave set that describes the data sufficiently
well, without introducing too many free parameters.
Since the intermediate state X− decays into a system of

three charged pions, the G parity of X− is −1 and the
isospin I ¼ 1, ignoring flavor-exotic states with I > 1. The
number of possible partial waves is largely determined by
the maximum allowed spin J of X−, the maximum allowed
orbital angular momentum L in the decay of the X− to the
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isobar and the bachelor π−, and the choice of the isobars.
Since there are no known resonances in the flavor-exotic
π−π− channel, we choose to include only π−πþ isobars. We
include ½ππ�S, ρð770Þ, f0ð980Þ, f2ð1270Þ, f0ð1500Þ, and
ρ3ð1690Þ as isobars into the fit model. This selection is
based on the features observed in the π−πþ invariant mass
spectrum in Figs. 5(b) and 6 and on findings of previous
experiments [17–20,22].

A. Isobar parametrization

In this section, we present the parametrizations of the
mass-dependent amplitudes of the six isobars chosen
above, which enter the analysis via Eqs. (7), (9), and
(11) and are summarized in Table III.
In most cases, the π−πþ isobar resonances are described

using a relativistic Breit-Wigner amplitude [43]

ΔBWðm;m0;Γ0Þ ¼
m0Γ0

m2
0 −m2 − im0ΓðmÞ ; ð31Þ

wherem0 and Γ0 are mass and width of the resonance. For a
single two-body decay channel, the mass-dependent width
ΓðmÞ is given by

ΓðmÞ ¼ Γ0

m0

m
q
q0

F2
lðqÞ

F2
lðq0Þ

: ð32Þ

By applying Eq. (32), we assume that the isobar decays
predominantly into two pions and neglect other decay
modes. Here, qðmÞ is the momentum of π− and πþ in the
rest frame of the isobar with mass m. At the nominal
resonance mass, the breakup momentum is given by
q0 ¼ qðm0Þ. By FlðqÞ we denote the Blatt-Weisskopf
barrier factors [44], which appear also in Eq. (8) and take
into account the centrifugal-barrier effect caused by the
orbital angular momentum l in the isobar decay.4 We use
the parametrization of von Hippel and Quigg [45],
where

F2
0ðqÞ ¼ 1; ð33Þ

F2
1ðqÞ ¼

2z
zþ 1

; ð34Þ

F2
2ðqÞ ¼

13z2

z2 þ 3zþ 9
; ð35Þ

F2
3ðqÞ ¼

277z3

z3 þ 6z2 þ 45zþ 225
; ð36Þ

F2
4ðqÞ ¼

12746z4

z4 þ 10z3 þ 135z2 þ 1575zþ 11025
; ð37Þ

F2
5ðqÞ ¼

998881z5

z5 þ 15z4 þ 315z3 þ 6300z2 þ 99225zþ 893025
; and ð38Þ

F2
6ðqÞ ¼

118394977z6

z6 þ 21z5 þ 630z4 þ 18900z3 þ 496125z2 þ 9823275zþ 108056025
: ð39Þ

Here, z≡ ðq=qRÞ2 with the range parameter qR ¼ 202.4 MeV=c that corresponds to an assumed strong interaction range of
1 fm.5 For small breakup momenta q ≈ 0, the amplitude behaves like FlðqÞ ∝ ql.
The description of the ρð770Þ isobar is slightly improved by modifying Eq. (32) as shown in Refs. [46,47]:

ΓðmÞ ¼ Γ0

q
q0

F2
lðqÞ

F2
lðq0Þ

: ð40Þ

TABLE III. Overview of the isobar parametrizations used in the partial-wave analysis.

Isobar Formula Parameters

½ππ�S M solution from Ref. [41] (see Fig. 10) see text and Table 1 in Ref. [41]
ρð770Þ Eq. (31) with Eq. (40) m0 ¼ 768.5 MeV=c2, Γ0 ¼ 150.7 MeV=c2

f0ð980Þ Eq. (43) (see Ref. [42]) m0 ¼ 965 MeV=c2, gππ ¼ 0.165 ðGeV=c2Þ2, gKK̄=gππ ¼ 4.21
f2ð1270Þ Eq. (31) with Eq. (32) m0 ¼ 1275.4 MeV=c2, Γ0 ¼ 185.2 MeV=c2

f0ð1500Þ Eq. (31) with Eq. (42) m0 ¼ 1507 MeV=c2, Γ0 ¼ 109 MeV=c2

ρ3ð1690Þ Eq. (41) m0 ¼ 1690 MeV=c2, Γ0 ¼ 190 MeV=c2

4For the decay of the isobar into two spinless particles, l is given by the spin Jξ of the isobar.
5Instead of the original normalization of the barrier factors such that FlðqÞ → 1 for q → ∞, von Hippel and Quigg modified the

normalization in a way that FlðqÞ ¼ 1 for z ¼ 1.
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For the ρ3ð1690Þ isobar, a slightly modified Breit-
Wigner amplitude is used:

Δρ3ð1690Þðm;m0;Γ0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
mm0

p Γ0

m2
0 −m2 − im0Γ0

: ð41Þ

Since the π−πþ decay mode of the ρ3ð1690Þ is not
dominant, a constant total width is used.
The most difficult sector is that of the scalar isobars with

JPC ¼ 0þþ, which consists of several overlapping f0
resonances. In this analysis, we consider three independent
isobar amplitudes that have quite different properties. A
broad component with slow phase motion, which
we denote by ½ππ�S, dominates the mass spectrum from
low to intermediate two-pion masses. This component
interferes with the narrow f0ð980Þ. In elastic ππ scattering,
this interference is destructive, so that the f0ð980Þ appears
as a pronounced dip. However, in π−π−πþ decays, the
ππ S-wave subsystem behaves differently. As will be shown
in Sec. VI, the relative phase between the two components
depends on the quantum numbers of the 3π intermediate
state and on its mass. In order to give the model the freedom
to adjust the couplings of the various 3π states to the ½ππ�Sπ
and f0ð980Þπ decay modes separately, the broad ππ S-wave
component and the f0ð980Þ are treated as independent
isobars. Similarly, the f0ð1500Þ is included using a Breit-
Wigner amplitude [see Eq. (31)] with constant width

ΓðmÞ ¼ Γ0: ð42Þ

The Breit-Wigner amplitude is not able to describe the
f0ð980Þ well as it peaks close to the KK̄ threshold.
Therefore, this isobar is described by a Flatté parametriza-
tion [48] that takes into account the coupling to the ππ
and KK̄ decay channels:

ΔFlattéðm;m0; gππ; gKK̄Þ

¼ 1

m2
0 −m2 − iðφππ

2 gππ þ φKK̄
2 gKK̄Þ

: ð43Þ

Here, φi
2 ¼ 2qi=m is the two-body phase space for the two

decay channels i ¼ ππ, KK̄ with the respective breakup
momenta qiðmÞ, which become complex-valued below
threshold. The values for the couplings gππ and gKK̄ as
well as that for the mass m0 are given in Table III as
determined by the BES experiment from a partial-wave
analysis of J=ψ decays into ϕπ−πþ and ϕK−Kþ [42].
The parametrization of the broad ππ S-wave component

is the most complicated one. It is based on the para-
metrization of the ππ S-wave from Ref. [41], which was
extracted from ππ elastic scattering data. We modify the so-
calledM solution (see Table 1 in Ref. [41]) as suggested by
the VES collaboration [49]. In order to remove the f0ð980Þ
from the amplitude, the parameters f11, f

1
2, f

3
1, c

4
11, and c422

as well as the diagonal elements of the M matrix in

Eq. (3.20) of Ref. [41] are set to zero. Figure 10 shows
the resulting ½ππ�S amplitude (T 11 of Eq. (3.15) in
Ref. [41]). It has a broad intensity distribution that extends
to two-pion masses of about 1.5 GeV=c2 accompanied by a
slow phase motion.
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FIG. 10. Parametrization of the ½ππ�S isobar amplitude based on
theM solution described inRef. [41]. Panel (a) shows the intensity,
(b) the phase, and (c) the correspondingArgand diagram. The open
circles in the latter are evenly spaced in mπ−πþ in 20 MeV=c2

intervals. Arbitrary units are denoted by “a. u.”.
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B. Fit model

When using the isobar model, we have in principle to
take into account all observed π−πþ correlations. In
accordance with the π−πþ invariant mass spectrum shown
in Fig. 5(b) and with analyses by previous experiments, we
include ½ππ�S, ρð770Þ, f0ð980Þ, f2ð1270Þ, f0ð1500Þ, and
ρ3ð1690Þ as isobars into the fit model. Based on these six
isobars, we have constructed a set of partial waves that
consists of 88 waves in total, i.e. 80 waves with reflectivity
ε ¼ þ1, seven waves with ε ¼ −1, and one noninterfering
flat wave representing three uncorrelated pions. This wave
set has been derived from a larger set of 128 waves, which
includes mainly positive-reflectivity partial waves with spin
J ≤ 6, orbital angular momentum L ≤ 6, and spin projec-
tionM ¼ 0, 1, and 2. Omission of structureless waves with
relative intensities below approximately 10−3 yields the 88
partial waves that are used in this analysis and given in
Table IX in Appendix A.
The wave set includes waves with spin-exotic JPC ¼

1−þ and 3−þ. These waves have intensities significantly
different from zero. They contribute 1.8% and 0.1%,
respectively, to the observed intensity. Removing the three
1−þ waves from the fit model6 decreases the log-likelihood
value, summed over the 11 t0 bins, by more than 4000 units
in the 3π mass range from 1.1 to 1.7 GeV=c2. If instead the
two 3−þ waves are removed,7 the log-likelihood value,
summed over the 11 t0 bins, decreases by 200 units in the
3π mass range from 1.1 to 1.7 GeV=c2. The spin-exotic
waves will not be discussed any further in this paper.
In the construction of the wave set, problems may arise

when more than one isobar with the same JPC quantum
numbers and a broad overlap of their mass functions are
used simultaneously, causing considerable overlap between
the corresponding decay amplitudes. Such cases have to be
treated with great care as the fit tends to become unstable.
In our fit model, this applies to the 0þþ isobars. Here, the
broad ½ππ�S, the narrow f0ð980Þ, and the f0ð1500Þ do have
considerable overlap. Because of the narrowness of the
f0ð980Þ, the fit is able to separate it well from the broad

½ππ�S, as it is demonstrated in Sec. VI. In contrast, the
inclusion of several waves with f0ð1500Þ π decay modes
tends to destabilize the fit. Therefore, the 88-wave model
includes only one f0ð1500Þ π wave. We decided to include
the 0−þ0þf0ð1500ÞπS wave for m3π > 1.7 GeV=c2 in
order to study a potential signal for the decay πð1800Þ →
f0ð1500Þ þ π. The parametrizations used for the line
shapes of the isobars are based on prior knowledge and
were described in Sec. IVA. The effect of isobars with
uncertain line shapes may lead to spurious results and is
addressed by systematic studies discussed in Sec. IV F and
Appendix B 3. We also apply an extended analysis method,
which partly removes the model bias due to the isobar
parametrizations. Results are presented in Sec. VI.
The likelihood function to be maximized in the fit with

the production amplitudes as free parameters is built
according to Eq. (27). Using such a large wave set to fit
the three-pion system, we have to be concerned about
stability of the results, which in turn may be influenced by
correlations and cross talk of partial waves. In order to
reduce such effects, different subsets of the 88 waves are
used, which grow in size with increasing three-pion mass.
High-spin waves and waves with heavy isobars are typi-
cally omitted from the wave set in the region of low m3π.
This has two reasons: first, the intensity of such waves is
expected to vanish at low m3π, and second, they would
artificially contribute to ambiguities since the phase space
at low masses appears to be too small to find a unique
solution. A disadvantage of introducing the mass thresholds
for particular waves are possible discontinuities induced in
the mass dependence of other partial waves. Therefore,
such thresholds have to be placed as low as possible. In our
analysis, thresholds were applied to 27 of the 88 partial
waves. The threshold values, which were carefully tuned in
order to reduce artificial structures, are listed in Table IX in
Appendix A.
The partial-wave analysis is performed independently in

100 equidistant m3π bins with a width of 20 MeV=c2, each
of which is subdivided into eleven nonequidistant t0 bins
(see Table IV). The t0 bins are chosen such that, except for
the two highest t0 bins, each bin contains approximately the
same number of events. Within each of these 1100 bins, the
transition amplitudes Trε

α ðm3π; t0Þ in Eq. (24) are assumed
to be constant. Figure 11 illustrates the correlation of t0 and

TABLE IV. Borders of the eleven nonequidistant t0 bins, in which the partial-wave analysis is performed (see
Fig. 11). The intervals are chosen such that each bin contains approximately 4.6 × 106 events. Only the last range
from 0.449 to 1.000 ðGeV=cÞ2 is subdivided further into two bins.

Bin 1 2 3 4 5 6

t0½ðGeV=cÞ2� 0.100 0.113 0.127 0.144 0.164 0.189

Bin 7 8 9 10 11

t0½ðGeV=cÞ2� 0.220 0.262 0.326 0.449 0.724 1.000

6This reduces the number of free parameters in the PWA
fit by 6.

7This reduces the number of free parameters in the PWA
fit by 4.
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m3π , where the subdivision into bins of t0 is indicated by
horizontal lines.
In the present analysis, we have limited ourselves

to a rank-1 spin-density matrix for the waves in the

positive-reflectivity sector, which is dominated by
Pomeron exchange (see also discussion in Sec. III C).

The smallest rank, Nðε¼þ1Þ
r ¼ 1, is sufficient mainly

because the analysis is performed in narrow bins of t0,
where the relative phases of the partial waves do not vary
significantly. As part of the systematic studies, a fit with
rank 2 was investigated, which shows enhanced artificial
structures as well as increased instabilities (see Sec. IV F
and Appendix B 1). For the negative-reflectivity waves,
which can be produced by the exchange of various

Reggeons [e.g. b1ð1235Þ], we use Nðε¼−1Þ
r ¼ 2.

C. Selected partial waves with spin
projections M = 0, 1, and 2

In this section, we present the result of the fit in bins of
m3π and t0 for 18 selected waves with positive reflectivity as
listed in Table V. The waves are selected partly in view of
the mass-dependent fit that will be described in a forth-
coming paper, in which all resonance parameters deter-
mined by the fit will be presented [33]. This selection
includes waves with spin projections M ¼ 0, 1, and 2 that
either have large intensities or exhibit clear signals of well-
established resonances or even unexpected signals. In
addition, we have selected large waves with ½ππ�S and
f0ð980Þ isobars, which are related to the detailed study of

]2cGeV/[π3m
0.5 1 1.5 2 2.5

]2 )c
(G

eV
/

[
t'

0.2

0.4

0.6

0.8

1

1

10

210

310

410

FIG. 11. Correlation of the reduced four-momentum transfer
squared t0 and the invariant mass m3π of the 3π system in the
analyzed kinematic region. The partial-wave analysis is per-
formed independently in 100 equidistantm3π bins with a width of
20 MeV=c2, each of which is subdivided into eleven nonequi-
distant t0 bins. The latter are indicated by the dashed horizontal
lines. The numerical values for the t0 bins are listed in Table IV.

TABLE V. Waves selected for presentation in this paper out of the much larger pool of 88 waves used in the mass-
independent fit (see Table IX in Appendix A). The partial waves with ½ππ�S and f0ð980Þ isobars at the bottom of the
table will be discussed in Sec. VI. The intensities are evaluated as a sum over the 11 t0 bins and are normalized to the
total number of acceptance-corrected events. They do not include interference effects between the waves.

JPC Mε Isobaric decay Relative intensity [%] Shown in

1þþ 0þ ρð770ÞπS 32.7 Figs. 14(a), 17(a), and 17(c)
1þþ 1þ ρð770ÞπS 4.1 Fig. 15(a)
1þþ 0þ f2ð1270ÞπP 0.4 Figs. 16(b), 20(a), and 20(c)
2þþ 1þ ρð770ÞπD 7.7 Figs. 15(b), 17(b), and 17(d)
2þþ 2þ ρð770ÞπD 0.3 Fig. 16(a)
2þþ 1þ f2ð1270ÞπP 0.5 Figs. 15(c), 20(b), and 20(d)
2−þ 0þ ρð770ÞπF 2.2 Figs. 21(a), 21(c), and 22(d)
2−þ 0þ f2ð1270ÞπS 6.7 Figs. 14(b), 18(a), 18(c), and 22(a)
2−þ 1þ f2ð1270ÞπS 0.9 Figs. 15(d) and 22(c)
2−þ 0þ f2ð1270ÞπD 0.9 Fig. 22(b)
4þþ 1þ ρð770ÞπG 0.8 Figs. 15(e), 18(b), and 18(d)
4þþ 1þ f2ð1270ÞπF 0.2 Figs. 15(f), 21(b), and 21(d)

0−þ 0þ ½ππ�SπS 8.0 Figs. 24(a), 24(b), and 25(b)
0−þ 0þ f0ð980ÞπS 2.4 Fig. 25(a)
1þþ 0þ ½ππ�SπP 4.1 Fig. 25(f)
1þþ 0þ f0ð980ÞπP 0.3 Fig. 25(e)
2−þ 0þ ½ππ�SπD 3.0 Fig. 25(d)
2−þ 0þ f0ð980ÞπD 0.6 Fig. 25(c)

Intensity Sum 75.8
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the π−πþ subsystem with JPC ¼ 0þþ presented in Sec. VI.
The amplitudes of 17 out of the 18 selected waves are found
to be practically insensitive to systematic effects arising
from the remaining waves, in particular to the truncation of
the partial-wave expansion series in Eq. (24) (see Sec. IV F
and Appendix B). The intensity distributions of the
remaining 69 waves are shown in the Supplemental
Material [50].
The total intensity of all partial waves is defined as the

total number of acceptance-corrected events as given by
Eq. (30). The relative intensity of a given partial wave, as
listed in Table V, is defined as the ratio of its intensity
integral over the analyzed mass range to the integral of the
total intensity. This value is in general different from the
contribution of a wave to the total intensity, owing to
interference effects between the waves. Therefore, the
relative intensities of all 88 partial waves add up to
105.3% instead of 100%. However, self-interference due
to Bose symmetrization is included via Eq. (12).
If not indicated otherwise, the wave intensities shown

in the figures below are the sum of the intensities over the
individual t0 bins. They will be referred to as t0-summed
intensities in the text that follows. The percent numbers
given in the mass spectra are the relative intensities of the
particular partial wave shown. In addition, we show for
some waves the intensity distribution in individual t0 bins.
While mass and width of resonances do not depend on the
production kinematics, coherent nonresonant contributions
may vary in shape and phase with t0. This may lead to
significant t0-dependent shifts of mass peaks. Examples of
such effects are discussed below.
As shown in Fig. 12, waves with negative reflectivity,

which correspond to unnatural-parity exchange processes,
contribute only 2.2% to the total intensity. The dominance
of natural-parity exchange processes is expected at
COMPASS energies because the Pomeron contribution is
considered to be dominant. Therefore, we are only taking
into account positive-reflectivity partial waves in the
following.
The incoherent isotropic flat wave turns out to contribute

about 3.1% to the total observed intensity (see Fig. 13).
This magnitude is roughly consistent with the background
level that one expects from extrapolating the nonexclusive
background component visible in Fig. 3 into the signal
region.
Figure 14 shows the t0-summed intensities of two major

waves with spin projection M ¼ 0, i.e. the 1þþ0þρð770Þ π
S and 2−þ0þf2ð1270ÞπS waves. Both exhibit clear
peaks corresponding to the a1ð1260Þ and the π2ð1670Þ
resonances.
Selecting spin projection M ¼ 1, we have access to the

1þþ1þρð770ÞπS, 2þþ1þρð770ÞπD, 2þþ1þf2ð1270ÞπP,
2−þ1þf2ð1270ÞπS, as well as to the 4þþ1þρð770ÞπG
and 4þþ1þf2ð1270ÞπF waves, as shown in Fig. 15. The
intensity maxima can be identified with the well-known

resonances a1ð1260Þ, a2ð1320Þ, π2ð1670Þ, and a4ð2040Þ.
Comparing Figs. 15(a) and 15(d) to Figs. 14(a) and 14(b),
respectively, a suppression of intensities for waves with
M ¼ 1 by about one order of magnitude as compared to
M ¼ 0 can clearly be observed.
Clear evidence is obtained for an M ¼ 2 component of

the 2þþρð770ÞπD wave [Fig. 16(a)]. Its relative intensity
with respect to the M ¼ 1 wave [Fig. 15(b)] is about 5%.
This is in good agreement with our result for the 2þþ wave
in the ηπ final state, which is dominated by the a2ð1320Þ
[51]. In the analyzed range of 0.1 < t0 < 1.0ðGeV=cÞ2, the
observed suppression is twice as large as the suppression of
M ¼ 1 versus M ¼ 0 waves.
Nonresonant and resonant contributions are expected

to follow different production paths with possibly
different dependences on t0. In order to investigate
possible nonresonant contributions, we show in Figs. 17
and 18 the intensities of four selected waves for two
intervals of t0, i.e. 0.100 < t0 < 0.113 ðGeV=cÞ2 and
0.449 < t0 < 0.724 ðGeV=cÞ2, which represent regions
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FIG. 12. The t0-summed intensity of the coherent sum of all
negative-reflectivity waves (a) and, for comparison, together with
the total intensity of all partial waves (b).
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of low and high t0 in this analysis. When comparing these
two regions, the shapes of the a2ð1320Þ and a4ð2040Þ
resonances in the 2þþ1þρð770Þ π D and 4þþ1þρð770Þ π G
waves, respectively, stay largely unaltered. In contrast, we
observe that the peak in the 1þþ0þρð770Þ π S wave, which
presumably contains the a1ð1260Þ, significantly shifts
toward higher masses with increasing t0. A similar but less
strong effect is observed for the π2ð1670Þ peak in the
2−þ0þf2ð1270ÞπS wave. This shows that the peak struc-
tures in the latter two partial waves are not only due to
ordinary resonances but are distorted by nonresonant
contributions. The Deck process proposed in Ref. [25]
and illustrated in Fig. 19 may provide an explanation for the
t0-dependent nonresonant contributions observed in the
1þþ and 2−þ waves. The t0 dependence of the shape of
the 1þþ0þρð770ÞπS mass spectrum was already observed
by the ACCMOR collaboration [14,16] and our results
confirm their findings.
Weshow inFigs. 20and21 the same t0 regions for the small-

intensity waves 1þþ0þf2ð1270ÞπP, 2þþ1þf2ð1270ÞπP,

2−þ0þρð770ÞπF, and 4þþ1þf2ð1270Þ π F. All waves show
a pronounced dependence of the mass spectrum on t0. In
contrast to the 1þþρð770ÞπS wave, the a1ð1260Þ cannot be
clearly identified in the f2ð1270ÞπPwave. Instead, the latter
wave shows a broad enhancement around 1.8 GeV=c2 [see
also Fig. 16(b)]. In the 2þþf2ð1270ÞπPwave, the a2ð1320Þ
exhibits a high-mass shoulder, which is particularly pro-
nounced at largevalues of t0, although it is clearly identifiable
also at low t0. Such a high-mass shoulder also becomes
prominent for the π2ð1670Þ in the ρð770ÞπF wave, for
which the spectrum exhibits a richer structure than for the
2−þ0þf2ð1270Þ π S wave.
The selective effect of the orbital angular momentum L

in the decay is clearly demonstrated in Figs. 22(a) and
22(b), which show the 2−þ0þf2ð1270Þπ waves with L ¼ 0
and L ¼ 2. The π2ð1670Þ dominates the S-wave, while the
π2ð1880Þ favors theD-wave. The π2ð1880Þ is considerably
lighter than the expected radial excitation of the π2ð1670Þ
ground state and has been rated as a viable hybrid-meson
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FIG. 14. The t0-summed intensities of major waves with spin
projection M ¼ 0 showing in (a) the a1ð1260Þ and in (b) the
π2ð1670Þ. The shaded regions indicate the mass intervals that are
integrated over to generate the t0 spectra [see Fig. 32(a)].
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candidate [1,52]. However, a dominance of S over D-wave
f2ð1270Þπ decay modes was predicted for hybrid mesons
by model calculations [53,54]. This is at variance with the
present observation of a prevailing D-wave decay of the

π2ð1880Þ. The existence of the π2ð1880Þ was questioned
by Ref. [55], which explains it as an interference of the
π2ð1670Þ ground state with the nonresonant Deck process
causing an apparent shift of the peak position. This might
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be counterargued by the observation of two peaks in the
2−þ0þρð770Þ π F wave [see Figs. 21(a), 21(c), and 22(d)].
Studying additional decay modes and the t0 dependence of
the mass spectra should resolve this issue.

D. Partial waves with f 0ð980Þ
and broad ππ S-wave isobars

As discussed in the previous section, the shape of the
peak in the a1ð1260Þ region in the 1þþ0þρð770Þ π S wave
and that in the π2ð1670Þ region in the 2−þ waves change as
a function of t0 [see Figs. 17(a), 17(c), 18(a), and 18(c)]. A
possible explanation for this behavior is the Deck process.
We have therefore investigated partial waves that are

expected to have small contributions from the Deck process.
Owing to the nature and small width of the f0ð980Þ, this is in
particular true for f0ð980Þ π partial waves. Only a fewmeson
resonances have been observed to decay via f0ð980Þ,
such as πð1800Þ → f0ð980Þπ, ϕð1020Þ → f0ð980Þγ,
ϕð2170Þ → f0ð980Þϕ, and ηð1405Þ → f0ð980Þη, where
the latter is a subthreshold decay. Among these, the
πð1800Þ is the only isovector state and thus accessible in
the 3π final state. Because of its small width, the f0ð980Þ
accounts for only a small fraction of the full ππ S-wave. It is
easily separated from the broad ππ S-wave structure, which
is shown in Fig. 10. Compared to the positive-reflectivity
waves containing the ρð770Þ isobar, those with the f0ð980Þ
are suppressed by a factor of approximately 20. Figure 23
shows the t0-summed intensity of the coherent sum of all
partial waves with an f0ð980Þ isobar and positive reflec-
tivity, which amounts to a relative intensity of 3.3%.
The intensity distribution of the 0−þ0þf0ð980Þ π S

wave is dominated by the πð1800Þ peak [see Fig. 25(a)].
The more complicated mass spectrum of the 2−þ0þf0ð980Þ
π D wave is shown in Fig. 25(c). This wave, which
should contain signals of π2ð1670Þ and π2ð1880Þ, is
characterized by pronounced destructive interference
around m3π ¼ 1.8 GeV=c2.
The 1þþ0þf0ð980ÞπP wave is shown in Fig. 25(e). It

exhibits the new axial-vector meson a1ð1420Þ. The reso-
nance features of this signal were presented in Ref. [56]. It
should be noted that the intensity of this wave corresponds
to only about 0.3% of the total number of events. Since the
signal is very small, we conducted several systematic
studies that will be discussed in Sec. IV F.
The same partial waves discussed above are shown in the

right column of Fig. 25 for the broad component of the
ππ S-wave as isobar, which is parametrized as described in
Sec. IVA and denoted by ½ππ�S. The intensity spectrum of
the 0−þ0þ½ππ�SπS wave [see Fig. 25(b)] exhibits two
pronounced maxima and differs considerably from that
of the corresponding f0ð980Þ π wave in Fig. 25(a). The
maximum at 1.8 GeV=c2 corresponds to the πð1800Þ, but
we also observe a broad structure around 1.2 GeV=c2,
which could contain the πð1300Þ. As it will be discussed in
Sec. V B, the latter structure has a very distinct dependence
on t0 with a minimum around t0 ≈ 0.35 ðGeV=cÞ2.
Figure 24 shows as an example the intensity spectrum in
two t0 bins. At high t0, the πð1800Þ peak nearly vanishes
and the structure around 1.2 GeV=c2 is shifted toward
lower m3π. A more detailed analysis discussed in Sec. VI C
indicates that in addition to interference effects with the
πð1800Þ also nonresonant processes seem to contribute to
the 1.2 GeV=c2 mass region.
Another resonance that was observed to couple to the

½ππ�S isobar is the π2ð1670Þ [9], whose main decay mode
into f2ð1270Þπ is discussed above in Sec. IV C. The mass
spectrum of the 2−þ0þ½ππ�SπDwave is shown in Fig. 25(d)
and exhibits marked destructive interference effects at
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FIG. 16. Panel (a): t0-summed intensity of 2þþ2þρð770Þ π D
wave with spin projection M ¼ 2 and the a2ð1320Þ peak. Panel
(b): t0-summed intensity of 1þþ0þf2ð1270Þ π P wave with
spin projection M ¼ 0. In this wave, the mass regions below
1.5 GeV=c2 and above 2.0 GeV=c2 (shown by gray points) are
sensitive to the truncation of the partial-wave expansion series
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mass intervals that are integrated over to generate the t0 spectra
[see Fig. 33(c)].
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masses around 1.8 GeV=c2, similar to the ones observed in
the corresponding wave with the f0ð980Þ decay mode in
Fig. 25(c).
The 1þþ0þ½ππ�SπP wave is even more difficult to

interpret [see Fig. 25(f)]. A significant signal is observed
in the region of a1ð1260Þ. However, as it will be shown
in Sec. V B and Sec. VI, this structure exhibits a strong t0
dependence, which is a signature for significant nonreso-
nant contributions.
Comparing the f0ð980Þ π and ½ππ�Sπ decay modes, the

latter are obviously more affected by nonresonant contri-
butions. We will discuss the sector of partial waves with
ππ S-wave isobars again in Sec. VI in the context of an
extended analysis.

E. Comparison of fit result and real data

In order to estimate the goodness of the mass-
independent fit, three-pion phase-space Monte Carlo
events, which were processed through the detector simu-
lation and reconstruction chain and satisfied the selection

criteria, were weighted with the intensity distribution of
the fit model [see Eq. (24)]. For a good fit, distributions
obtained from these weighted Monte Carlo events are
expected to approximate the real data.
For fixed values of m3π and t0, the phase space of the

three final-state particles is five-dimensional. Therefore, we
can show only projections in certain kinematic regions. For
the comparison we use the same five kinematic variables
that also enter in the decay amplitudes (see Sec. III B), i.e.
cosϑGJ and ϕTY of the isobar in the Gottfried-Jackson
frame, the isobar massmξ ¼ mπ−πþ , and cosϑHF and ϕHF of
the π− in the helicity frame.
Figures 26–29 show as examples the distributions of the

kinematic variables in various regions of m3π and t0. These
kinematic regions contain different resonant and nonreso-
nant contributions leading to different shapes of the angular
distributions and the isobar mass spectrum.
In general, the agreement between the weighted

Monte Carlo and the real-data events is very good, in
particular at intermediate 3π masses. At larger m3π, we
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observe small deviations concerning the description of the
f0ð980Þ and f2ð1270Þ isobars [see Fig. 27(b)] as well as
small localized differences in the angular distribution in the
Gottfried-Jackson frame [see Figs. 27(e) and 29(e)].

F. Systematic studies

Given the high precision of the data, statistical uncer-
tainties are negligibly small in most cases, i.e. systematic
uncertainties are dominant. We have performed several
tests to assess the stability of the result of the mass-
independent fit. Here, we summarize the findings of these
studies; more details can be found in Appendix B.
Possible effects from processes, in which the target

proton is excited, are expected to be negligible. Due to
Pomeron dominance, target excitations will be mostly N�.
The recoil-proton trigger and the momentum-conservation
criterion applied in the event selection (see Secs. II B and
II C) suppress such events on average by about an order of
magnitude. The remaining contributions consist predomi-
nantly of low-mass N� produced at large t0. In diffractive
reactions, target and beam vertex factorize, so that these

events are expected to have only little effect on the
production of the three-pion final state. As we assume
for these events the proton mass for the mass of the
recoiling particle, the calculated values of t0 would be
slightly shifted by values comparable to the t0 resolution.
The same is true for the reconstructed beam energy Ebeam.
In order to reduce the probability for the fit to converge to

a local maximum, the likelihood fit is repeated in each
kinematic bin in m3π and t0 30 times with random starting
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FIG. 18. Same as Fig. 17, but for the 2−þ0þf2ð1270Þ π S and 4þþ1þρð770Þ π G waves.

FIG. 19. Example for a nonresonant production process for the
3π final state as proposed by Deck [25].
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values for the transition amplitudes T rε
a in Eq. (27). From

these 30 fits, the one with the highest likelihood is selected
in order to generate the results presented in Secs. IV C and
IVD. In the 3π mass range above about 1 GeV=c2, the fits
reliably yield a single solution. Only a few fits are trapped in
localmaximawith significantly lower likelihood. In contrast,
for mass bins below about 1 GeV=c2, the fits find multiple
localmaxima that deviate from each other only by a few units
of log-likelihood. We attribute this behavior to the fact that,
due to the smaller phase-space volume at low m3π, mainly
the low-mass tails of the isobars contribute to the decay
amplitudes. Therefore, it is harder to distinguish partial
waves with different isobars. Since we do not expect any
3π resonances below 1 GeV=c2, no efforts were made to
resolve these ambiguous solutions.
We have studied how the truncation of the partial-wave

expansion series in Eq. (24) influences the intensities of the
18 partial waves discussed in this paper (see Table V) by
comparing to a fit with a reduced set of only 53 partial
waves [57]. Except for one wave, the intensities exhibit

only relatively small changes, which typically affect the
high-mass regions. The intensity of the 1þþ0þf2ð1270ÞπP
wave changes significantly in the mass regions above
2.0 GeV=c2 and below 1.5 GeV=c2, the latter of which
is attributed to model leakage from the ρð770Þ π S-wave
decay of the a1ð1260Þ. However, the region around the
enhancement at 1.8 GeV=c2 [marked by the shaded region
in Fig. 16(b)] is only slightly affected.
As mentioned in Sec. III B, we do not apply relativistic

corrections to the decay amplitudes in the partial-wave
analysis. First studies show that the effect on the shapes of
the selected 18 waves is small.
In order to study the effect of the rank of the spin-density

matrix, the data are fit with a rank-2 spin-density matrix
instead of the rank-1 for the positive-reflectivity sector. The
most striking feature of the rank-2 fit, which has nearly
twice the number of free parameters, is that the flat wave
practically disappears. In addition, intensity is shifted from
the negative into the positive-reflectivity sector. However,
the fit shows substantial instabilities and artificial structures
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FIG. 20. Same as Fig. 17, but for the 1þþ0þf2ð1270Þ π P and 2þþ1þf2ð1270Þ π P waves. In the former wave, the mass regions below
1.5 GeV=c2 and above2.0 GeV=c2 (shownbygraypoints) are sensitive to the truncationof thepartial-wave expansion series (see Sec. IV F).
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in the m3π region between 1.0 and 1.3 GeV=c2 in some
partial waves. We therefore conclude that the rank-1 fit
offers a better description of the data using significantly
less parameters. For more details see Appendix B 1.
Omitting the waves with negative reflectivity from the

wave set feeds intensity mostly into the flat wave, but
causes little change of positive-reflectivity waves (see
Appendix B 2). This means that in the given range of
four-momentum transfer, the positive and negative-
reflectivity sectors do not mutually influence each other
and are well-separated by the fit as opposed to the case of
very small t0 < 10−3 ðGeV=cÞ2 [7].
The isobar parametrizations (see Sec. IVA) are an

important input for the PWA model. The ρð770Þ is the
dominant isobar. For most of the waves in Table V, the
intensity distribution is not sensitive to the details of
the ρð770Þ parametrization or to small changes of the used
parameter values. In contrast, the region around the
a1ð1260Þ mass in the 1þþ0þ½ππ�SπP wave and the
a2ð1320Þ signal in the 2þþ1þf2ð1270Þ π P wave change
significantly (see Sec. B 3). Both seem to be contaminated

by model leakage due to the imperfect description of the
ρð770Þ. The dependence of the PWA result on the para-
metrization of the f0ð980Þ and that of the broad ππ S-wave
component is studied as well. Using a simple S-wave Breit-
Wigner amplitude [Eq. (31) with Eq. (42)] instead of the
Flatté parametrization [Eq. (43)] for the f0ð980Þ reduces
the height of the intensity peaks of the resonances decaying
into f0ð980Þ π by about a factor of two (see Appendix B 3).
However, the shapes of the peaks in these partial waves
remain unchanged. In the mass region above 1.3 GeV=c2,
the fit with the f0ð980Þ Flatté parametrization has a
significantly higher likelihood than the one with the S-
wave Breit-Wigner amplitude. This indicates that the data
are better described by the Flatté parametrization.
The influence of the parametrization used for the broad

component of the ππ S-wave on the PWA result is studied
by performing a fit with an alternative description of the
mass-dependence of the isobar amplitude. Instead of the
modifiedM solution from Ref. [41] (see Sec. IVA), the K1

solution from Ref. [41] with the f0ð980Þ pole subtracted
using a simple S-wave Breit-Wigner amplitude is used.
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FIG. 21. Same as Fig. 17, but for the 2−þ0þρð770Þ π F and 4þþ1þf2ð1270Þ π F waves.
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This parametrization was originally used by the VES
experiment [20]. The Breit-Wigner for the f0ð980Þ is
similar to the one employed in the f0ð980Þ study described
above. In order to be consistent, the Breit-Wigner ampli-
tude is also used for all waves with the f0ð980Þ isobar. The
observed variations in the fit result are small.
Performing the PWA on a data sample without the

CEDAR, RICH, and central-production vetos described
in Sec. II C shows that the result is not very sensitive to
backgrounds from kaon diffraction, kaon pairs in the final
state, and central-production reactions (see Appendix B 4).
The partial-wave intensities scale approximately with the
number of events, only the relative intensity of the flat wave
increases. It is very unlikely that the peak around m3π ¼
1.4 GeV=c2 in the 1þþ0þf0ð980Þ π P wave is caused by
kaon-induced reactions or that it stems from kaonic final
states misinterpreted as pionic ones. The CEDAR and
RICH vetos applied in the event selection reduce such
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FIG. 22. The t0-summed intensities of 2−þMþf2ð1270Þ π L waves in panels (a), (b), and (c) and of 2−þ0þρð770Þ π F wave in panel
(d). The π2ð1670Þ dominates the waves shown in (a) and (c), the π2ð1880Þ the one shown in (b). Both resonances appear in the wave
shown in (d). Upper row: comparison of same decay mode but different orbital angular momenta L ¼ 0 and 2 in the decay; Left column:
comparison of same decay mode but different spin projections M ¼ 0 and 1. The shaded regions indicate the mass intervals that are
integrated over to generate the t0 spectra discussed in Sec. V B.
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contaminations considerably. Further studies show that the
signal is not correlated with these cuts.
In summary, the PWA fits converge reliably for 3π

masses above about 1 GeV=c2. The shapes of clear
resonance peaks are stable with respect to changes of
the PWA model. However, in some cases the height of the
intensity peaks is sensitive to the isobar parametrization.
This issue will mostly be resolved for the ππ S-wave isobars
by applying a method introduced in Sec. VI, by which the
isobar amplitudes are extracted from the data.

V. t0 DEPENDENCES

Figures 30(a) and 30(b) illustrate how the shape of the
measured three-pion invariant mass spectrum changes with
t0, while Figs. 30(c) and 30(d) show the change of the
measured t0 distribution with 3π mass. It is apparent that
the t0 spectrum strongly depends on m3π . This observation
has motivated us to perform the PWA in bins of t0 instead
of weighting the partial waves with t0-dependent model
functions, which has been the conventional approach.

In this chapter, we will elaborate on the details of the
observed t0 distributions. We will start with global spectra,
from which we determine the t0 dependence as a function of
m3π . Such an analysis comes closest to the traditional
description of high-energy reactions in terms of Regge
exchange. Using the results from the mass-independent
fit outlined in Sec. IV, we can in addition separate the
contributions of various partial waves to the t0 spectrum.
Comparing different 3π mass regions that are either
dominated by well-established resonances or by nonreso-
nant contributions, various patterns become apparent.

A. Overall t0 dependence

The first extensive study of the 3π mass dependence
of the t0 spectrum was performed by the ACCMOR
collaboration [13,16]. They investigated the reaction
π− þ p → π−π−πþ þ p at 63 and 94 GeV=c incoming
pion momentum and determined the t0 dependence as a
function of m3π in the range t0 < 1.0 ðGeV=cÞ2. The t0

dependence was parametrized for each 50 MeV=c2 wide
3π mass bin by two exponentials:

dN
dt0

ðt0;m3πÞ ¼ A1ðm3πÞe−b1ðm3πÞt0

þ A2ðm3πÞe−b2ðm3πÞt0 ; ð44Þ

with real-valued parameters Ai. The ACCMOR collabora-
tion observed that the two slope parameters b1;2 are
different at small values of m3π and that they vary
significantly up to values of m3π of about 1.2 GeV=c2.
This marks the onset of resonance production. Beyond this
mass value, the slope values of b1 ≈ 12 ðGeV=cÞ−2 and
b2 ≈ 5 ðGeV=cÞ−2 stay almost constant [see open circles in
Fig. 31(a)].
We perform the same study on the present data in a wider

3π mass range and using finer m3π bins of 20 MeV=c2

width. In each mass bin, the acceptance-corrected t0
spectrum, which is obtained from the mass-independent
fit in 11 t0 bins, is fit by Eq. (44). The result is shown as
filled circles in Fig. 31(a). The general pattern and also the
absolute values for the slope parameters agree nicely with
the ACCMOR results. We observe a strong dependence
of both slope parameters on m3π. In the region m3π <
1.0 GeV=c2 below the resonances, only a few partial
waves contribute significantly to the spectrum, i.e. the
1þþ0þρð770ÞπS (57.1%), 0−þ0þ½ππ�SπS (12.8%),
1þþ1þρð770ÞπS (8.3%), 1þþ0þ½ππ�SπP (4.2%), and
0−þ0þρð770Þ π P (4.1%) waves. In this region, the
parameter b1 representing the steeper component shows
a rapid drop with increasing three-pion mass. The
parameter b2 representing the shallower component exhib-
its less variation. Its mass dependence shows a dip by
2 ðGeV=cÞ−2 at around m3π ¼ 1.0 GeV=c2. Approaching
the mass region of a1ð1260Þ and a2ð1320Þ, above
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FIG. 24. Intensity of the 0−þ0þ½ππ�SπS wave in two different t0
regions. (a) low t0; (b) high t0. The shaded regions indicate the
mass intervals that are integrated over to generate the t0 spectra.
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FIG. 25. The t0-summed intensity for selected waves with ππ S-wave isobars. Left column: waves with the narrow f0ð980Þ isobar;
Right column: waves with the broad ½ππ�S isobar. The JPC ¼ 0−þ waves in the top row show the πð1800Þ. The structure at 1.2 GeV=c2

is probably mainly of nonresonant origin. The 2−þ intensities in the center row exhibit a complicated destructive interference pattern
around 1.8 GeV=c2. The bottom row shows an enhancement in the region of the a1ð1260Þ in the 1þþ0þ½ππ�SπP wave and a new state,
the a1ð1420Þ, in 1þþ0þf0ð980Þ π P. The shaded regions indicate the mass intervals that are integrated over to generate the t0 spectra (see
Figs. 35 and 36).
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approximately 1.3 GeV=c2, the m3π dependence of b1 and
b2 changes abruptly: b1 drops much slower, decreasing
from about 12 ðGeV=cÞ−2 at 1.3 GeV=c2 to 8 ðGeV=cÞ−2
at 2.5 GeV=c2, whereas b2 stays nearly constant at about
4 ðGeV=cÞ−2 over the same mass range.

Figure 31(b) shows the ratio of the contributions

I1 ≡ A1

Z
t0max

t0min

dt0e−b1t0 and I2 ≡ A2

Z
t0max

t0min

dt0e−b2t0

ð45Þ
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FIG. 26. Distributions of the five phase-space variables used to calculate the decay amplitudes shown for different 3π mass bins in the
region 0.127 < t0 < 0.144 ðGeV=cÞ2. Each distribution is shown for real data (blue points) and for weighted Monte Carlo events (red
bands), which are generated according to the fit result. Each distribution is normalized to its maximum deviation from its average y
value. Along the ordinate, the average y values for the distributions (indicated by gray lines) are shifted equidistantly with respect to one
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of the two exponentials from Eq. (44), integrated from
t0min¼0.1 ðGeV=cÞ2 to t0max ¼ 1.0 ðGeV=cÞ2. As observed
for the slope parameters, the regions below and above the
resonances show very different behavior. Below the reso-
nance region, the component with the steep slope b1
dominates and its contribution reaches a maximum at

3π masses of approximately 1.0 GeV=c2. From there, it
drops quickly with a shallow minimum around m3π ¼
1.3 GeV=c2. This dip is presumably caused by the onset of
the 2þþ waves with M ¼ 1. Above about 1.3 GeV=c2, the
relative contributions of the two exponentials only depend
weakly on m3π with almost equal relative weights for the
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FIG. 27. Comparison of kinematic distributions of weighted Monte Carlo events, generated according to the fit result, with the
corresponding real-data distributions in the low-t0 region 0.127 < t0 < 0.144 ðGeV=cÞ2. Panel (a) shows the acceptance-corrected 3π
invariant mass distribution. The other panels show kinematic distributions in the mass interval 1.6 < m3π < 1.8 GeV=c2 around the
π2ð1670Þ, which is indicated by vertical red lines in (a). (b) invariant mass spectrum of the π−πþ subsystem; (c) distribution of the
Gottfried-Jackson angles for real data; (e) ratio of the real-data distribution in (c) and that of the weighted Monte Carlo. Panels (d) and
(f) show the respective distributions for the helicity angles. Note that (b), (c), and (d) have two entries per event.
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two terms. The ACCMOR data show a qualitatively similar
behavior. The agreement with the present data is, however,
not as good as that observed for the slopes.
To our knowledge, the complicated mass dependence

of the t0 spectra described above is not well understood. In
the region around 1.3 GeV=c2, nonresonant processes are
known to play an important role.Most available calculations
describe these processes as the dissociation of the beam
pion into the isobar ξ0 and the bachelor π−, followed by
diffractive scattering of one of the beam fragments (typically

the π−) off the target proton (see Fig. 19). These calculations
focus mainly on the 3π mass dependence and are based
on ππ and πp elastic-scattering data [16,25,55,58,59].
The more elaborate three-component Deck model [60–62]
describes the reaction π− þ p → ξ0π− þ precoil by including
ξ as well as π exchanges in addition to direct production of
ξ0π− via Pomeron exchange. In general, such nonresonant
processes exhibit a dependence on t0 that is different from that
of resonant production. Interferences between resonant and
nonresonant processes may in addition modify the t0 spectra.
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The three-component Deck model describes the correlations
between the ξπ invariant mass, the slope of the t0 spectrum,
and the cos ϑGJ distribution in detail andpredicts the existence
of interferenceminima in the t0 spectra. As it will be shown in
the following section, the t0 spectra of some partial waves
exhibit such kind of minima in certain 3π mass regions.

B. t0 dependences of individual partial waves

Using the partial-wave decomposition of the mass
spectrum from the mass-independent fit as presented

in Sec. IV C, we can now study the t0 dependence of
the intensity of individual partial waves in different
mass regions. The selected mass regions are indicated
by shaded bands in the spectral distributions shown
in Sec. IV. The corresponding t0 spectra are obtained
by integrating the partial wave intensities over those
mass regions. The integrated intensities are presented
using horizontal bars, the lengths of which represent
the widths of the given t0 bins. Blue horizontal lines
represent the central values. The height of the gray
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horizontal bars corresponds to the statistical uncertainty
of the intensity.
We compare waves with the same isobars and

angular momentum in the decay but with different spin
projections M. Figure 32 gives an example for the
1þþMþρð770Þ π S intensities with M ¼ 0 and 1 integrated
over the range 1.1 < m3π < 1.3 GeV=c2, which covers part
of the a1ð1260Þ. Figures 33(a) and 33(c) show the analog
comparison for 2þþMþρð770Þ π D waves with M ¼ 1
and 2.
Alternatively, waves with same quantum numbers but

different isobars can be compared, again keeping the mass
interval fixed. Figure 33 shows this for the 2þþ1þwaves with
the ρð770Þ isobar and L ¼ 2 along with waves with the
f2ð1270Þ isobar and L ¼ 1, both in the mass region 1.2 <
m3π < 1.4 GeV=c2 around the a2ð1320Þ. A comparison of
the t0 spectra of the 4þþ1þρð770Þ π G and f2ð1270ÞπF
waves for 1.86 < m3π < 2.06 GeV=c2 is given by Fig. 34.
We may also compare the t0 spectra of the same partial

wave in different mass intervals. In Fig. 35, this is shown
for the 0−þ0þ½ππ�SπS wave using the peak regions
1.1 < m3π < 1.3 GeV=c2 and 1.7 < m3π < 1.9 GeV=c2.
These mass intervals contain the low-mass part of a

potential πð1300Þ contribution and the peak region of
the πð1800Þ, respectively.
From the above figures, we can see that at low t0, all

waves have a large single-exponential component. In
addition, we can distinguish three characteristically differ-
ent patterns in the t0 spectra: (i) for about half the spectra,
the single exponential dominates the full measured t0 range;
(ii) many waves show larger deviations at higher t0,
suggesting additional components; (iii) a few waves exhibit
a minimum in the t0 region between 0.3 and 0.6 ðGeV=cÞ2
[see e.g. Figs. 32(b) and 35(a)]. The position of such
minima is far below the diffractive minima observed in
elastic πp scattering.
Our general ansatz for the description of the observed

t0 spectra is a sum of two terms, each containing an
exponential function multiplied by an M-dependent
term8 of the form ðt0ÞM with M ≥ 0:

dN
dt0

ðt0Þ ¼ ðt0ÞM½A1e−b1t
0 þ A2e−b2t

0 �: ð46Þ
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FIG. 30. The t0 dependence of the measured 3π invariant mass spectrum and vice versa.

8Given by the forward limit of the Wigner D-functions (see
Ref. [63]).
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Here, the Ai are real-valued parameters. The above formula
is not able to describe the behavior of waves that show
minima in their t0 distribution.
For each partial wave, one or two specific 3π mass

ranges are selected, which cover known resonances.
However, the t0 dependence of the intensity in these mass
ranges still reflects the 3π system as a whole in a given
partial wave, with both resonant and nonresonant contri-
butions. Bin migration effects due to the limited t0 reso-
lution of the apparatus are not corrected for. However,
in the analyzed range the t0 resolution is better than
0.02 ðGeV=cÞ2 (see Sec. II C), which renders the observed
t0 spectra only slightly shallower than the true ones.
We perform two kinds of fits: single-slope fits, where the

parameter A2 in Eq. (46) is set to zero, and double-slope
fits, where all four parameters are left free. For cases where
the t0 spectra exhibit more than one component, the range
of the single-slope fits is limited to lower t0 values. Since

Eq. (46) is not able to describe the dip structures appearing
in some t0 spectra, those distributions are fit only with a
single exponential. Details on the fit results are summarized
in Tables VI and VII that show the ranges in m3π , t0 and the
resulting slope parameters, the intensity ratio of the two
components within the fit range, and the fit quality in terms
of χ2=ndf. It should be noted that χ2 is calculated using the
integrals of the model function over the respective t0 bins.
About half of the spectra require a description with two
slopes. For spectra that can be described by a single slope
only, the double-slope fit results in a second component
having a very small relative weight. For these cases, the
values are omitted from Table VII.
Because of the high precision of the data, statistical

uncertainties on the extracted slope parameters are
negligible and therefore the uncertainties are mostly of

(a)

(b)

FIG. 31. Result of a fit to the t0 dependence of events from the
diffractive-dissociation reaction π− þ p → π−π−πþ þ p, as mea-
sured by COMPASS (filled circles) and by the ACCMOR
collaboration [16] (open circles). For each m3π bin, the t0
spectrum was fit using a double-exponential model [see
Eq. (44)]. Panel (a) shows the mass dependence of the two
slope parameters b1 (upper points) and b2 (lower points). Note
the extended mass range of the present measurement as compared
to the ACCMOR data. Panel (b) shows the ratio I1=I2 of the
integrated exponential contributions, see Eq. (45).
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FIG. 32. The t0 dependence of the intensity of the
1þþMþρð770Þ π S waves with spin projections M ¼ 0 (a) and
M ¼ 1 (b), integrated over the mass region around the a1ð1260Þ
as indicated by the shaded regions in Figs. 14(a) and 15(a). The
solid red curve in (a) represents a double-exponential fit using
Eq. (46), the one in (b) a single-exponential fit with parameter
A2 ¼ 0. In (a), the two exponential components are shown by the
dotted lines. In (b), the fitted t0 range is indicated by the solid
curve; the extrapolation is shown as dashed curve. See text for
details.
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systematic nature. The values of the slope parameters
depend, among other things, on the choice of boundaries
of the mass interval and the fit range in t0. Given the
complex interplay between resonant and nonresonant
components, which can only be disentangled later at the
stage of the mass-dependent fit [33], we have not attempted

to quantify the systematic uncertainties. We therefore quote
the slope parameters rounded to two-digit precision and do
not give the respective uncertainties. In the figures, the fit
functions are represented by red curves. For the double-
exponential fits, the full t0 range from 0.1 to 1.0 ðGeV=cÞ2
is used. In contrast, the single-exponential fits are per-
formed using narrower t0 ranges, which are chosen indi-
vidually for each partial wave and mass region (see
Table VI). In this case, the fit ranges are indicated by
solid red curves, while the extrapolations to the full t0 range
are shown as dashed red curves. In every t0 bin, the integral
of the fit function, which enters the χ2 function to be
minimized, is shown as a red horizontal line, while the blue
line represents the data, so that their difference directly
indicates the fit quality. For the double-exponential fits, the
two components are shown in addition as dotted curves:
blue for the steep component and green for the shallow one.
In the following, we shall discuss the observed character-
istics for each JPC sector.
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FIG. 33. The t0 dependence of the intensity of three 2þþ waves
with different isobars and different spin-projectionsM, integrated
over the mass region around the a2ð1320Þ as indicated by the
shaded regions in Figs. 15(b), 15(c), and 16(a). The solid red
curves represent double-exponential fits using Eq. (46); the fit
components are shown as dotted curves. See text for details.
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π G and f2ð1270ÞπF waves, integrated over the mass interval
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Figs. 15(e) and 15(f). The solid red curves represent double-
exponential fits using Eq. (46); the fit components are shown as
dotted curves. See text for details.
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a. JPC ¼ 0−þ: We study the 0−þ waves containing
f0ð980Þ and ½ππ�S as isobars. The intensity spectrum of
the 0−þ0þ½ππ�SπS wave shown in Fig. 25(b) exhibits two
pronounced maxima and differs strongly from the one for
the corresponding wave with a f0ð980Þ isobar shown in
Fig. 25(a). The higher-lying maximum in the ½ππ�SπS decay
mode corresponds to the πð1800Þ and exhibits a slope
parameter of b ≈ 12 ðGeV=cÞ−2 [see Fig. 35(b)], similar to
that for the f0ð980ÞπS decay mode. This is in agreement
with the expectation that a resonance should have the same
slope parameter independent of its decay mode. In both
cases, the t0 spectra are purely exponential. In contrast, the t0
spectrum corresponding to the broad structure in the 1.1 to
1.3 GeV=c2 mass range around the elusive πð1300Þ exhibits
a pronounced intensity minimum around 0.35 ðGeV=cÞ2
and a second maximum around 0.6 ðGeV=cÞ2 [see
Fig. 35(a)]. This behavior suggests that different production
processes are interfering and is similar to predictions by the
three-component Deck model [62]. The single-exponential

fit to the low-t0 region results in an exceptionally steep slope
of b ≈ 22 ðGeV=cÞ−2. The strikingly different t0 depend-
ences of the πð1300Þ and πð1800Þ mass regions are further
illustrated by Fig. 24 and in Sec. VI C.
b. JPC ¼ 1þþ: The mass region around the a1ð1260Þ

peak contains both resonant and nonresonant contributions,
the latter ones dominated by the Deck process. Using a
single slope, we obtain b ≈ 12 ðGeV=cÞ−2 for the a1ð1260Þ
region in the 1þþ0þρð770Þ π S wave, a similar value
of b ≈ 13 ðGeV=cÞ−2 in the 1þþ0þ½ππ�SπP wave [see
Fig. 36(a)], and a steeper slope of b ≈ 16 ðGeV=cÞ−2 for
the 1þþ1þρð770Þ π S wave [Fig. 32(b)]. The t0 distribution
of the M ¼ 0 wave is much better described by two slopes
with nearly equal intensity [Fig. 32(a)]. The one for the
M ¼ 1wave exhibits a dip at approximately 0.5 ðGeV=cÞ2.
However, the slope b1 of the steep component in the
double-exponential fit of the M ¼ 0 wave is similar to that
of the M ¼ 1 wave extracted using the single-exponential
model in the region of lower t0. If we interpret the

]2)c(GeV/[t'

0.2 0.4 0.6 0.8 1

]2− )c
(G

eV
/

[
In

te
ns

ity

410

510

610

710

 Sπ
S
]ππ[+0+−0

2c < 1.30 GeV/π3m1.10 < 
2−)c 22 (GeV/≈1b

(a)

]2)c(GeV/[t'

0.2 0.4 0.6 0.8 1

]2− )c
(G

eV
/

[
In

te
ns

ity

410

510

610

710

 Sπ
S
]ππ[+0+−0

2c < 1.90 GeV/π3m1.70 < 
2−)c 12 (GeV/≈1b

(b)

FIG. 35. The t0 dependence of the intensity of the
0−þ0þ½ππ�SπS wave in two different mass regions, which
correspond to the two peaks that are indicated by the shaded
bands in Fig. 25(b). The red curves represent single-exponential
fits using Eq. (46) with A2 ¼ 0. The fitted t0 ranges are indicated
by the solid curves; the extrapolations are shown as dashed
curves. See text for details.
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components with the steep slopes to be of nonresonant
origin, we would conclude that it contributes about 50% to
the M ¼ 0 intensity and that it dominates theM ¼ 1 wave.
The intensity around the peak in the 1þþ0þf2ð1270ÞπP
wave at 1.8 GeV=c2 exhibits a nearly single-exponential t0
spectrum with a slope similar to that of the a2ð1320Þ and
a4ð2040Þ regions in the respective 2þþ and 4þþ waves. The
a1ð1420Þ peak in the 1þþ0þf0ð980Þ π P wave is well
described by a single exponential [see Fig. 36(b)] and has a
slope parameter of b ≈ 11 ðGeV=cÞ−2 similar to that of the
πð1800Þ in the 0−þ waves with f0ð980Þ and ½ππ�S isobar.
This finding is consistent with a slope parameter of b ≈
10 ðGeV=cÞ−2 that was extracted for the a1ð1420Þ in a
mass-dependent fit [56].
c. JPC ¼ 2þþ: The waves containing the a2ð1320Þ are

best described using two exponentials and show similar
behavior regardless of the type of the isobar and the orbital
angular momentum L in the decay. A shallow component
with b2 ≈ 6 ðGeV=cÞ−2 is accompanied by a steeper com-
ponent of comparable magnitude with b1 ≈ 12 ðGeV=cÞ−2.
Different spin projectionsM are equally well described (see
Fig. 33). In the 2þþ waves, the steep components cannot be
directly identified with nonresonant contributions, because
they are small. It cannot be excluded that the two compo-
nents are caused by the interference of the low-mass tails of
exciteda2 stateswith the ground state,whichmay contribute
to the t0 spectra with different slopes.
d. JPC ¼ 2−þ: This JPC is studied in four partial waves

containing ρð770Þ and f2ð1270Þ isobars and two waves
containing ½ππ�S and f0ð980Þ isobars. The latter two show
striking interference effects and are discussed further in
Sec. VI. The t0 spectra are studied in two different mass
intervals: one containing the π2ð1670Þ, the other the
π2ð1880Þ. The observed pattern is rather irregular.
Single-exponential fits yield slope values from about 6
to 11 ðGeV=cÞ−2. For the mass region around π2ð1670Þ,
the t0 spectra fall into two classes: (i) distributions that are
single-exponential or have only small contributions from
a second slope [2−þ0þρð770Þ π F, 2−þ1þf2ð1270ÞπS,
2−þ0þf2ð1270Þ π D, and 2−þ0þf0ð980Þ π D waves]
and (ii) distributions that need two exponentials
[2−þ0þf2ð1270Þ π S and 2−þ0þ½ππ�SπD waves]. The
latter waves have a shallower component with a slope of
around 7 ðGeV=cÞ−2 accompanied by a steep component
of similar magnitude. The slopes of the single-exponential
spectra vary considerably.
The pattern is different for the π2ð1880Þ mass region.

Here, the 2−þ0þρð770ÞπF, 2−þ0þf0ð980Þ π D, and
2−þ0þ½ππ�SπD waves are nearly single-exponential.
However, the latter has a steeper slope of 11 ðGeV=cÞ−2
compared to b1 ≈ 7 ðGeV=cÞ−2 for the former two. The
2−þ0þf2ð1270ÞπD wave requires two slopes, where the
steep slope is about 11 ðGeV=cÞ−2 and the shallow one
approximately 5.9 ðGeV=cÞ−2.

e. JPC ¼ 4þþ: The waves containing the a4ð2040Þ are
studied in decays into two different isobars. The t0 spectra
follow the pattern observed for JPC ¼ 2þþ, with one slope
of b2 ≈ 6 ðGeV=cÞ−2 and a steeper component described
by b1 ≈ 13 to 14 ðGeV=cÞ2 of about equal strength.
In summary, for single-exponential fits of the t0 spectra,

we find a general trend of shallower slopes with increasing
mass.Waves with dominant resonant contributions, like e.g.
the 2þþ and 4þþ waves, have slopes in the range from 7 to
11 ðGeV=cÞ−2, which are equal for different decay modes.
In contrast, waveswith large nonresonant contributions, like
e.g. the 1þþρð770Þπwaves, show typically steeper slopes in
the range of 12 to 16 ðGeV=cÞ−2. Many waves are better
described by a two-exponential model. However, in general
the two components do not seem to separate nonresonant
from resonant contributions. This may be due to possible
large interference effects or contributions from excited
states. Signs of such interferences are observed in the t0
spectra of somewaves, which exhibit a dip around t0 ≈ 0.3 to
0.6 ðGeV=cÞ−2 and thus can be described by the single-
exponential function only in a limited t0 interval.
Our results of the fits using single exponentials can to some

extent be compared to earlier analyses done on this topic.
The single-slope parameters in the mass region around the
a2ð1320Þ of 7.5 to 8.9 ðGeV=cÞ−2 agreewell with the results
obtained for the ηπ− and η0π− channels studied at the same
incident energy. In the former channel,which is dominated by
the a2ð1320Þ, the slope parameter is 8.45 ðGeV=cÞ−2 [51].
In the η0π− channel, a slope parameter of 8.2 ðGeV=cÞ−2 is
found in the a2ð1320Þ mass region [64]. As in the present
case, natural-parity transfer (M ¼ 1) is strongly dominant.
Hence, all a2ð1320Þ production characteristics are consistent
with being independent on the decay channels, as required
for true resonances. For a4ð2040Þ production, the 3π and
η0π− results (see Table VI and Ref. [64], respectively) are
consistent with this requirement as well.
The ACCMOR collaboration [13–16] has pioneered

such t0 fits for selected waves in the 3π mass region
between 0.8 and 1.9 GeV=c2, describing the t0 spectra in
the range t0 < 1.0 ðGeV=cÞ2. For the 1þþ0þρð770ÞπS
wave, which contains the a1ð1260Þ, the authors quote an
overall slope parameter of b ¼ ð10.1� 0.9Þ ðGeV=cÞ−2,
which is similar to our data. For the 2þþ1þρð770Þ π D
wave, they observe b ¼ ð7.3� 0.1Þ ðGeV=cÞ−2 as com-
pared to b ≈ 8.9 ðGeV=cÞ−2 quoted in Table VI. Finally,
for the waves 2−þ0þf2ð1270Þ π S and 2−þ0þ½ππ�SπS, they
have extracted values of b ¼ ð8.5� 0.3Þ ðGeV=cÞ−2 and
b ¼ ð10.7� 1.1Þ ðGeV=cÞ−2, respectively, while selecting
a mass window from 1.6 to 1.7 GeV=c2. Both values are in
good agreement with our findings (see Table VI). The
authors concluded that owing to strong nonresonant
effects, the true values for b in direct resonance production
might be around b ¼ 7.5 ðGeV=cÞ−2. This value agrees
with our findings of b being in the range of 7 to
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11 ðGeV=cÞ−2 for the 2þþ, 4þþ, as well as for the
0−þ0þf0ð980Þ π S and 1þþ0þf0ð980Þ π P waves, which
we also ascribe to resonant production.
Results from BNL E852 originate from a mass-

independent fit in 12 bins of t0 and are shown
in Ref. [19] for the waves 2−þ0þf2ð1270ÞπS,
2þþ1þρð770Þ π D, 4þþ1þρð770Þ π G, and 1−þ1þρð770Þ
π P for 0.1 < t0 < 0.5 ðGeV=cÞ2, but without discussing a
functional description of the t0 dependence in detail.

VI. DETERMINATION OF ππ S-WAVE
AMPLITUDES

As shown in Sec. IV D, the JPC ¼ 0þþ isobars decaying
into π−πþ in an S-wave are important intermediate states in
3π meson decays. In the considered 3π mass range, they
consist of (i) a broad continuum, which is usually described
by a parametrization extracted from ππ S-wave elastic-
scattering data, and (ii) at least two distinct resonances,
f0ð980Þ and f0ð1500Þ. The much debated f0ð1370Þ was
not included as a separate isobar in the analysis described
in Sec. IV. The key issue is: to what extent the information
extracted from ππ elastic scattering can be used to describe
spectral shapes and phases of the two-pion 0þþ isobars in
many-body decay amplitudes?
As discussed above, the a1ð1420Þ appears only in the

f0ð980Þ π P-wave and its strength (but not its shape) reveals

some dependence on the detailed parametrization used for
the f0ð980Þ, i.e. a Breit-Wigner or a Flatté amplitude (see
Sec. IV F and Appendix B 3). This section addresses in
particular the question whether the observed a1ð1420Þ is
truly related to the narrow f0ð980Þ or whether it is an
artifact of the isobar parametrizations employed in the fit.
This is relevant for the significance of the new observation
as well as for the interpretation of the a1ð1420Þ.
A. Method of extracting isobar amplitudes from data

The conventional isobar model uses fixed amplitudes
for the description of the π−πþ intermediate states ξ (see
Sec. IVA). However, we cannot exclude that the fit results
are biased by the isobar parametrizations used. This is
particularly true for the 0þþ π−πþ isobars, where we have
separated a broad ππ S-wave component from the f0ð980Þ
and f0ð1500Þ resonances. In order to solve this problem,
a novel method inspired by Ref. [65] was developed.
It allows us to determine the overall amplitude of the
0þþ π−πþ isobars directly from the data.
For selected isobars, the new method abandons the fixed

description of the mass-dependent amplitudes ΔξðmξÞ,
which appear in the two-body isobar decay amplitude of
Eq. (8) and are part of the full decay amplitude of the stateX−

defined in Eqs. (11) and (21). The latter amplitude factorizes
into a part, Kε

a, which depends on the spherical angles

TABLE VI. Slope parameters b1 from a single-exponential fit to the t0 spectra in the given t0 ranges. The listedm3π

intervals, over which the intensity is integrated, cover the peak regions of the different partial waves.

Partial Wave m3π Range ½GeV=c2� t0 Range ½ðGeV=cÞ2� b1 ½ðGeV=cÞ−2� χ2=ndf

1þþ0þρð770Þ π S [1.10, 1.30] [0.100, 0.326] 12 120
1þþ1þρð770Þ π S [1.10, 1.30] [0.100, 0.724] 16 6.6
1þþ0þf2ð1270Þ π P [1.68, 1.88] [0.100, 1.000] 8.4 4.3
2þþ1þρð770Þ π D [1.20, 1.40] [0.100, 0.326] 8.9 37
2þþ2þρð770Þ π D [1.20, 1.40] [0.164, 0.724] 8.5 18
2þþ1þf2ð1270Þ π P [1.20, 1.40] [0.127, 0.724] 7.5 5.3
2−þ0þρð770Þ π F [1.56, 1.76] [0.113, 0.724] 9.2 5.1
2−þ0þf2ð1270Þ π S [1.56, 1.76] [0.100, 0.326] 9.8 30
2−þ1þf2ð1270Þ π S [1.56, 1.76] [0.113, 0.724] 6.3 3.5
2−þ0þf2ð1270Þ π D [1.56, 1.76] [0.113, 1.000] 7.8 2.7
2−þ0þρð770Þ π F [1.80, 2.00] [0.113, 0.724] 7.2 3.5
2−þ0þf2ð1270Þ π D [1.80, 2.00] [0.113, 0.724] 8.4 14
4þþ1þρð770Þ π G [1.86, 2.06] [0.164, 0.724] 8.8 25
4þþ1þf2ð1270Þ π F [1.86, 2.06] [0.164, 0.724] 8.4 11

Waves with f0ð980Þ isobar
0−þ0þf0ð980Þ π S [1.70, 1.90] [0.100, 0.724] 11 5.6
1þþ0þf0ð980Þ π P [1.38, 1.58] [0.100, 0.724] 11 2.1
2−þ0þf0ð980Þ π D [1.56, 1.76] [0.100, 0.724] 8.4 4.2
2−þ0þf0ð980Þ π D [1.80, 2.00] [0.100, 0.724] 7.3 4.9

Waves with ½ππ�S isobar
0−þ0þ½ππ�SπS [1.10, 1.30] [0.100, 0.326] 22 55
0−þ0þ½ππ�SπS [1.70, 1.90] [0.100, 0.449] 12 4.1
1þþ0þ½ππ�SπP [1.10, 1.30] [0.100, 0.449] 13 11
2−þ0þ½ππ�SπD [1.56, 1.76] [0.100, 0.724] 11 35
2−þ0þ½ππ�SπD [1.80, 2.00] [0.100, 0.724] 11 5.8
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ΩGJ ≡ ðcosϑGJ;ϕTYÞ in theGottfried-Jackson frame aswell
asΩHF ≡ ðcosϑHF;ϕHFÞ in the helicity frame, and a second
part, Δa, that is the mass-dependent isobar amplitude.
Taking into account the Bose symmetrization according
to Eq. (12), we write for a particular m3π bin

Ψε
aðτ13; τ23Þ ¼ Kε

aðΩGJ
13 ;ΩHF

13 ÞΔaðm13Þ
þKε

aðΩGJ
23 ;ΩHF

23 ÞΔaðm23Þ: ð47Þ

The two terms represent the two possible π−πþ combina-
tions of the π−1 π

−
2 π

þ
3 system. The index a defined in

Eq. (16) represents the quantum numbers of the 3π partial
wave. This includes the quantum numbers of the π−πþ
subsystem ξ.
In our new freed-isobar method, we replace the fixed

parametrizations for ΔaðmξÞ by a set of piecewise constant
functions that fully cover the allowed mass range for mξ.
The isobar line shape is rewritten as:

ΔaðmξÞ ¼
X
k

Ta;kΠk;ξðmξÞ; ð48Þ

where the index k runs over π−πþ mass bins. These bins are
defined by sets of window functions fΠk;ξðmξÞg that are
nonzero only in a narrowmξ interval in the isobar spectrum
given by the bin borders fmk;ξg:

Πk;ξðmξÞ ¼
�
1 if mk;ξ ≤ mξ < mkþ1;ξ;

0 otherwise:
ð49Þ

Here, the bin width δmξ ¼ mkþ1;ξ −mk;ξ may depend on
the mass region of the π−πþ system considered. The Ta;k

are unknown complex numbers that determine the binned
amplitude ΔaðmξÞ.
The intensity distribution in a given 3π mass bin, as

defined in Eq. (24), contains terms of the form

T ε
aΨε

aðτ13; τ23Þ

¼ T ε
a

�
Kε

aðΩGJ
13 ;ΩHF

13 Þ
X
k

Ta;kΠk;ξðm13Þ

þKε
aðΩGJ

23 ;ΩHF
23 Þ

X
k

Ta;kΠk;ξðm23Þ
	
: ð50Þ

TABLE VII. Same as in Table VI, but for the double-exponential fit over the full t0 range of
0.1 < t0 < 1.0 ðGeV=cÞ2. The given intensity ratio is the ratio of the integrals I1=I2 of the exponentials with
slopes b1;2. Partial waves with t0 spectra, which exhibit a clear dip structure (marked with †) or which are already
well described by a single slope as shown in Table VI (marked by ‡) are not fit with the double-exponential model.

m3π Range b1 b2

Partial Wave ½GeV=c2� ½ðGeV=cÞ−2� ½ðGeV=cÞ−2� Intensity ratio I1=I2 χ2=ndf

1þþ0þρð770Þ π S [1.10, 1.30] 15 8.0 1.2 6.9
1þþ1þρð770Þ π S † [1.10, 1.30] — — — —
1þþ0þf2ð1270Þ π P ‡ [1.68, 1.88] — — — —
2þþ1þρð770Þ π D [1.20, 1.40] 12 6.0 0.69 7.3
2þþ2þρð770Þ π D [1.20, 1.40] 12 5.7 1.2 2.2
2þþ1þf2ð1270Þ π P [1.20, 1.40] 13 6.5 0.27 3.1
2−þ0þρð770Þ π F ‡ [1.56, 1.76] — — — —
2−þ0þf2ð1270Þ π S [1.56, 1.76] 14 7.0 0.71 4.1
2−þ1þf2ð1270Þ π S ‡ [1.56, 1.76] — — — —
2−þ0þf2ð1270Þ π D ‡ [1.56, 1.76] — — — —
2−þ0þρð770Þ π F ‡ [1.80, 2.00] — — — —
2−þ0þf2ð1270Þ π D [1.80, 2.00] 11 5.9 1.5 0.47
4þþ1þρð770Þ π G [1.86, 2.06] 13 6.3 1.1 4.1
4þþ1þf2ð1270Þ π F [1.86, 2.06] 14 6.1 0.84 1.9

Waves with f0ð980Þ isobar
0−þ0þf0ð980Þ π S ‡ [1.70, 1.90] — — — —
1þþ0þf0ð980Þ π P ‡ [1.38, 1.58] — — — —
2−þ0þf0ð980Þ π D ‡ [1.56, 1.76] — — — —
2−þ0þf0ð980Þ π D ‡ [1.80, 2.00] — — — —

Waves with ½ππ�S isobar
0−þ0þ½ππ�SπS † [1.10, 1.30] — — — —
0−þ0þ½ππ�SπS ‡ [1.70, 1.90] — — — —
1þþ0þ½ππ�SπP ‡ [1.10, 1.30] — — — —
2−þ0þ½ππ�SπD [1.56, 1.76] 16 7.3 1.2 2.5
2−þ0þ½ππ�SπD ‡ [1.80, 2.00] — — — —
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Absorbing the unknown isobar amplitudes Ta;k into the
transition amplitude T ε

a via

T ε
a;k ≡ T ε

aTa;k; ð51Þ

the mξ bins appear in the intensity via the index k that is
summed over coherently, in the same way as the partial-
wave index a is

IðτÞ ¼
X
ε¼�1

����X
a

X
k

T ε
a;kΨ

ε
a;kðτ13; τ23Þ

����2 þ I flat; ð52Þ

where

Ψε
a;kðτ13; τ23Þ ¼ Kε

aðΩGJ
13 ;ΩHF

13 ÞΠk;ξðm13Þ
þKε

aðΩGJ
23 ;ΩHF

23 ÞΠk;ξðm23Þ: ð53Þ

This means that each 2π mass bin can be treated like an
independent partial wave. In this way, the same procedure as
for the standard mass-independent fit can be used. The fits
in 3π mass bins yield transition amplitudes T ε

a that now
depend on m3π and mπ−πþ . According to Eq. (51), these
amplitudes contain information on the 3π system as well as
on the π−πþ subsystem. It should be noted that themethod is
restricted to rank 1. Therefore, the rank index was omitted in
the above formulas. It was discussed in Sec. IV B that rank 1
is sufficient for the positive-reflectivity waves.
In the ansatz for the decay amplitude in Eq. (47), the

isobar mass-dependent amplitude ΔaðmξÞ depends on the
3π partial-wave index a, i.e. the model permits different
isobar amplitudes for different intermediate states X−. This
is in contrast to the conventional approach, which uses the
same isobar parametrization in different partial waves.
The reduced model dependence of the new method and

the additional information about the π−πþ subsystem lead
to a considerable increase in the number of fit parameters in
the mass-independent fit. Thus, even for large data sets, the
freed-isobar approach can only be applied to a subset of
partial waves. In the analysis presented here, we replace the
fixed parametrizations of the set of JPC ¼ 0þþ isobars,
which consists of ½ππ�S, f0ð980Þ, and f0ð1500Þ, by a set of
single piecewise constant functions representing the overall
dynamical amplitude of all 0þþ isobars as defined in
Eqs. (48) and (49). In the following, we shall denote the
freed 0þþ isobar amplitude by ½ππ�0þþ.
We determine the ½ππ�0þþ amplitudes simultaneously

for the waves 0−þ0þ½ππ�0þþπS, 1þþ0þ½ππ�0þþπP, and

2−þ0þ½ππ�0þþπD, which are the dominant waves with
0þþ isobars. These partial waves replace a set of seven
waves with conventional isobar parametrizations (see
Table IX in Appendix A). For all other amplitudes, we
keep the isobar parametrizations as discussed in Sec. IVA.
The fits are performed in m3π bins with 40 MeV=c2 width,
i.e. twice as wide as used in the conventional analysis. Each
fit results in an Argand diagram for the ½ππ�0þþ amplitude
ranging in the two-pion mass from 2mπ to m3π −mπ . The
bin width in the π−πþ subsystem mass is 40 MeV=c2,
except for the region 920 < mπ−πþ < 1080 MeV=c2

around the f0ð980Þ.9 Here, finer bins of 10 MeV=c2 width
are chosen in order to better resolve the resonance structure.
In total, 62 two-pion mass bins are used. In order to obtain
reasonable statistical accuracy, we perform this analysis in
only four bins of t0, which are listed in Table VIII.
As in the conventional analysis, multiple fit attempts are

performed with randomly chosen starting values for the
decay amplitudes T ε

a;k in Eq. (52). Here, the fit with the
highest likelihood is selected from a set of 50 attempts. For
3π masses below about 1 GeV=c2, the fits tend to be
trapped in local maxima that deviate from each other only
by a few units of log-likelihood. Such a behavior is also
observed in the fixed-isobar fits (see Sec. IV F).

B. Comparison with the fixed-isobar method

In order to compare the new freed-isobar method with
the conventional analysis scheme, the fixed-isobar fit was
repeated with the coarse binning in 3π mass and t0. Based
on this fit, the amplitudes of partial waves with the same
X− quantum numbers but different 0þþ isobars, i.e. ½ππ�S,
f0ð980Þ, and f0ð1500Þ, are added coherently. For
JPC ¼ 0−þ, 1þþ, and 2−þ of the 3π system, the resulting
intensities are shown in Fig. 37 as blue data points in two t0
regions chosen as examples. These spectra are related to
those in Fig. 25, which show the intensity distributions
separately for the ½ππ�S and f0ð980Þ isobars, integrated
over the full range of t0. The striking interference effects
observed in the 2−þ0þ f0ð980Þ π and ½ππ�Sπ isobaric waves
are washed out in the coherent sum of the two.
In our novel approach, we do not separate the different

0þþ isobar components but obtain the overall 0þþ ampli-
tude in bins of mπ−πþ and m3π . This also implies that the
correlation of the relative phases between the components

TABLE VIII. Borders of the four nonequidistant t0 bins, in which the partial-wave analysis with freed isobars is
performed. The intervals are chosen such that each bin contains approximately 11.5 × 106 events.

Bin 1 2 3 4

t0½ðGeV=cÞ2� 0.100 0.141 0.194 0.326 1.000

9Also the first mπ−πþ bin, which covers the mass range from
2mπ to 320 MeV=c2, has a slightly different width.
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across the mπ−πþ spectrum is not predetermined. The red
data points in Fig. 37 show the 3π mass spectra for
JPC ¼ 0−þ, 1þþ, and 2−þ, obtained by coherently sum-
ming over all two-pion mass slices [represented by index
k in Eq. (48)] in the two chosen t0 bins. These intensity
distributions can be compared directly to those obtained
by coherently summing over the 0þþ isobars using the
conventional analysis method shown as blue data points

in Fig. 37. The agreement is good in general, in particular
the πð1800Þ region in the 0−þ wave matches well. In the
1þþ wave, the region m3π < 1.2 GeV=c2 is enhanced in
the fit result for the freed isobars except for the highest t0
bin. This is partly due to the fact that waves with freed
isobars have no 3π mass thresholds in the new fit,
whereas in the conventional fit, the 1þþ0þf0ð980Þ π P
wave was limited to the region of m3π > 1180 MeV=c2
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FIG. 37. Intensities of the coherent sum of partial waves with the same quantum numbers but different 0þþ isobars, as obtained in the
conventional analysis scheme with fixed isobar amplitudes (blue), and the corresponding intensities obtained from the freed-isobar fit
(red). Left column: low t0; Right column: high t0.
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(see Table IX in Appendix A). The largest differences
appear in the 2−þ wave, where we observe in the freed-
isobar fit an increased intensity in the region around
the π2ð1670Þ across all t0 bins. Systematic studies
indicate that imperfections in the description of the other
isobars used in the PWA fit have an influence on the 0þþ
sector. The agreement between the results of the
two methods validates the parametrizations of the ππ S-
wave isobars that are employed in the simpler fixed-
isobar fit.

C. Correlation of 2π and 3π mass spectra
for freed ππ S-wave isobars

It is instructive to look at the correlation of the ½ππ�0þþ

mass spectrum with the 3π mass spectrum in different
partial waves. The examples shown in Figs. 38, 39, and 40
are extracted from the 0−þ0þ½ππ�0þþπS, 1þþ0þ½ππ�0þþπP,
and 2−þ0þ½ππ�0þþπD waves, respectively. The z axis of the
two-dimensional representations (left columns) is given by
jT ε

aðmπ−πþ ; m3πÞj2, which is normalized such that it can
be interpreted as the number of events per unit in mπ−πþ .
The apparent dependence of the shape of the 2π mass
distribution on m3π and on JPC of the 3π system reveals
the different coupling of 3π resonances to the various
0þþ components of the 2π subsystem. In the following,
we will discuss the features for each three-pion JPC in
detail.
a. JPC ¼ 0−þ: In the conventional analysis, the coherent

sum of the waves with fixed 0þþ isobars exhibits two peaks
in the intensity that may be identified with the πð1300Þ and
the πð1800Þ. These two peaks appear very similar in the fit
with freed 0þþ isobars [see Figs. 37(a) and 37(b)]. Since all
three pions are in a relative S-wave in the 0−þ0þ½ππ�0þþ π S
wave, it is very sensitive to nonresonant 3π contributions.
In particular, in the wave with the fixed ½ππ�S isobar, the
region around m3π ¼ 1.3 GeV=c2 seems to have nonreso-
nant components [see Figs. 24, 25(b), and 35(a)].
Also in the freed-isobar fit, the shape of the ½ππ�0þþ

intensity and its considerable t0 dependence in the
πð1300Þ region suggest this to be mostly nonresonant
(see left column of Fig. 38). These observations are in
accordance with quark-model calculations for the first
radial excitation of the pion [52] which predict a strong
suppression of the ½ππ�Sπ decay mode as compared to
ρð770Þπ. Apparent enhancements of this wave in the
πð1300Þ region, which were observed in diffractive pion
scattering by the VES and BNL E852 experiments [18,20],
are consistent with our observations and were attributed to
the Deck mechanism [1,52].
In order to study the role of f0ð980Þ for the 0−þ wave,

we sum up the intensity in the mass region 0.96 <
mπ−πþ < 1.00 GeV=c2, which contains almost the full
f0ð980Þ and which is indicated by a pair of red horizontal
lines in the left column of Fig. 38. The resulting m3π

intensity spectra are shown in the central column of Fig. 38
for the four t0 bins. This simple method does not take into
account the interference of the f0ð980Þ with the broad
ππ S-wave component. The separation of amplitudes
would only be possible by fitting the mπ−πþ and m3π

dependences of the amplitudes. The m3π intensity distri-
butions exhibit a clear signal for the πð1800Þ. In contrast,
no clear correlation with a possible πð1300Þ can be
identified. We observe the low-mass structures in m3π

to vanish with growing t0. This indicates the existence of
considerable nonresonant contributions in this 3π mass
region. In a similar way, the role of the f0ð1500Þ is
investigated by summing the intensity over the range
1.44 < mπ−πþ < 1.56 GeV=c2 as indicated by a pair of
blue horizontal lines in the left column and shown in the
right column of Fig. 38. Again, a clear correlation with the
πð1800Þ is observed.
b. JPC ¼ 1þþ: The intensity correlations shown in the

left column of Fig. 39 are dominated by a broad maximum
between 0.6 and 0.8 GeV=c2 in mπ−πþ . For increasing t0,
this structure shifts from m3π ¼ 1.2 to 1.4 GeV=c2, almost
reaching the a1ð1420Þ region for the highest t0 bin. This
behavior suggests the existence of large nonresonant
contributions, which obstruct the observation of a possible
coupling of the a1ð1260Þ to the broad component of the
ππ S-wave. The right column of Fig. 39 shows the
intensity summed over the f0ð980Þ mass region of
0.96 < mπ−πþ < 1.00 GeV=c2. For all t0 bins, the mass
spectra show a clear a1ð1420Þ peak and no contribution
of the a1ð1260Þ. This demonstrates that the observed
a1ð1420Þ signal in the f0ð980Þ π channel is not an artifact
of the 0þþ isobar parametrizations used in the conven-
tional analysis method.
c. JPC ¼ 2−þ: The 2−þ intensity correlations shown in

the left column of Fig. 40 exhibit a vertical band around
m3π ¼ 1.5 GeV=c2 [below the π2ð1670Þ]. The mπ−πþ

distribution peaks below the f0ð980Þ. This structure
changes its shape and relative strength with t0. The role
of the f0ð980Þ and f0ð1500Þ isobars is again illustrated by
summing the intensities over the respective 2π mass ranges,
which are shown in the central and right columns of
Fig. 40. For both π−πþ mass regions, we observe a clear
signal for the π2ð1880Þ. The intensity maximum around
m3π ¼ 1.6 GeV=c2 in the f0ð980Þ slice changes its shape
and position with t0, and hence looks different from the
π2ð1670Þ peak, as it is, for example, observed in the
f2ð1270Þ π decay mode and shown in Figs. 18(a), 18(c),
22(a), and 22(c). In addition, the position of the peak is t0
dependent, which indicates a nonresonant contribution.
The VES experiment [20] has reported on an excited π2
resonances at 2.09 GeV=c2. It was observed as a
520 MeV=c2 broad enhancement in the ½ππ�S π and
f0ð980Þ π waves. We also observe a similarly broad
structure in the 3π system at m3π ≈ 2.2 GeV=c2 correlated
with a broad bump at 2π masses of approximately
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FIG. 38. Intensity of the ½ππ�0þþ π S-wave component of the JPCMε ¼ 0−þ0þ amplitude resulting from the freed-isobar fits in four t0

bins. Left column: two-dimensional representation of the intensity of the 0−þ0þ½ππ�0þþ π Swave as a function ofmπ−πþ andm3π . Central
and right columns: intensity as a function of m3π summed over selected mπ−πþ intervals around the f0ð980Þ (center) and around the
f0ð1500Þ (right) as indicated by pairs of horizontal dashed lines in the left column. The vertical dashed lines indicate the centers of the
m3π bins discussed in Sec. VI D.

RESONANCE PRODUCTION AND ππ S-WAVE IN … PHYSICAL REVIEW D 95, 032004 (2017)

032004-43



]2cGeV/[π3m
0.5 1 1.5 2 2.5

]2 c
G

eV
/

[
+ π− π

m
0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6
610× Pπ++0

]ππ[+0++1
2)c < 0.141 (GeV/t'0.100 < 

(a) ]2cGeV/[π3m
0.5 1 1.5 2 2.5

)2 c
In

te
ns

ity
 / 

(4
0 

M
eV

/

0

5

10

310×  Pπ++0
]ππ[+0++1

2)c < 0.141 (GeV/t'0.100 < 

 Pπ++0
]ππ[+0++1

2c < 1.00 GeV/+π−πm0.96 < 

(b)

]2cGeV/[π3m
0.5 1 1.5 2 2.5

]2 c
G

eV
/

[
+ π− π

m

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

610× Pπ++0
]ππ[+0++1

2)c < 0.194 (GeV/t'0.141 < 

(c) ]2cGeV/[π3m
0.5 1 1.5 2 2.5

)2 c
In

te
ns

ity
 / 

(4
0 

M
eV

/

0

2

4

6

8

310×  Pπ++0
]ππ[+0++1

2)c < 0.194 (GeV/t'0.141 < 

 Pπ++0
]ππ[+0++1

2c < 1.00 GeV/+π−πm0.96 < 

(d)

]2cGeV/[π3m
0.5 1 1.5 2 2.5

]2 c
G

eV
/

[
+ π− π

m

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

610× Pπ++0
]ππ[+0++1

2)c < 0.326 (GeV/t'0.194 < 

(e) ]2cGeV/[π3m
0.5 1 1.5 2 2.5

)2 c
In

te
ns

ity
 / 

(4
0 

M
eV

/

0

5

10

310×  Pπ++0
]ππ[+0++1

2)c < 0.326 (GeV/t'0.194 < 

 Pπ++0
]ππ[+0++1

2c < 1.00 GeV/+π−πm0.96 < 

(f)

]2cGeV/[π3m
0.5 1 1.5 2 2.5

]2 c
G

eV
/

[
+ π− π

m

0.5

1

1.5

2

0

0.02

0.04

0.06

0.08

0.1

0.12

610× Pπ++0
]ππ[+0++1

2)c < 1.000 (GeV/t'0.326 < 

(g) ]2cGeV/[π3m
0.5 1 1.5 2 2.5

)2 c
In

te
ns

ity
 / 

(4
0 

M
eV

/

0

2

4

6

310×  Pπ++0
]ππ[+0++1

2)c < 1.000 (GeV/t'0.326 < 

 Pπ++0
]ππ[+0++1

2c < 1.00 GeV/+π−πm0.96 < 

(h)

FIG. 39. Same as Fig. 38, but for the 1þþ0þ½ππ�0þþ π P wave, except that the right column shows the mπ−πþ interval around the
f0ð980Þ.
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FIG. 40. Same as Fig. 38, but for the 2−þ0þ½ππ�0þþ π D wave.
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750 MeV=c2. The shape in mπ−πþ seems to change
as a function of t0. With the present analysis, we cannot
confirm the resonance interpretation of this structure.
While a corresponding peak is observed around

m3π ¼ 2.2 GeV=c2 in the conventional fixed-isobar fit
in the 2−þ0þf0ð980Þ π D wave [see Fig. 25(c)], no
pronounced correlation with the 2π system in the
f0ð980Þ mass region is seen in the freed-isobar fit.
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FIG. 41. The freed ½ππ�0þþ amplitude in the 0−þ0þ½ππ�0þþ π S wave in the range 0.194 < t0 < 0.326 ðGeV=cÞ2 for three intervals in
m3π; below (top row), at (center row), and above the πð1800Þ (bottom row). Left column: intensities as a function of mπ−πþ ; Right
column: Argand diagrams. The crosses with error bars are the result of the mass-independent fit. The numbers in the Argand diagrams
show the corresponding mass value of the π−πþ system. The data points are connected by lines in order to indicate the order. The line
segments highlighted in blue correspond to themπ−πþ ranges around the f0ð980Þ from 960 to 1000 MeV=c2 and, if phase space permits,
around the f0ð1500Þ from 1400 to 1560 MeV=c2. The 2π mass is binned in 10 MeV=c2 wide intervals around the f0ð980Þ and in
40 MeV=c2 wide slices elsewhere. The phase of the Argand diagrams is fixed by the 1þþ0þρð770Þ π S wave.
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D. Argand diagrams and 2π mass spectra
for freed ππ S-wave isobars

The previous section discussed mainly the correlation of
the ππ S-wave and the 3π partial-wave intensities. The two-
dimensional transition amplitudes extracted from the data
furthermore contain information about the m3π and the
mπ−πþ dependences of the relative phases. These phases are
measured with respect to the 1þþ0þρð770Þ π S anchor
wave as a function of 2π mass. They give insight into the
composition of the ππ S-wave amplitude. In order to study

the influence of the 3π system, we look at the 2π invariant
mass spectra for three 3π mass bins, chosen below, at, and
above clear 3π resonance signals. The centers of the m3π

bins are indicated by green vertical lines in the left columns
of Figs. 38 to 40.
a. JPC ¼ 0−þ: The wave with the freed ½ππ�0þþ isobar

shows a clear signal for the πð1800Þ coupling to f0ð980Þ π
and f0ð1500Þ π. The left column of Fig. 41 shows the
½ππ�0þþ intensity as a function of mπ−πþ for three different
values of m3π, i.e. below, at, and above the πð1800Þ
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FIG. 42. Same as Fig. 41, but for the 1þþ0þ½ππ�0þþ π P wave in three m3π bins around the a1ð1420Þ.
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resonance for the region of larger t0, where the resonance
signal is clearer. The three mπ−πþ spectra are similar. We
observe prominent signals for f0ð980Þ. Because of phase
space, the f0ð1500Þ peak appears only in the two higher 3π
mass intervals. The enhancement of both states relative to
the broad ππ S-wave component is strongest at the πð1800Þ
mass. The right column of Fig. 41 shows the corre-
sponding Argand diagrams measured with respect to the
1þþ0þρð770Þ π S wave. For a fixed mass of the 3π system,
the Argand diagram describes magnitude and phase of the

2π amplitude. The phase of the ½ππ�0þþ amplitude spans
nearly two full circles about the origin in the 2π mass range
from threshold to about 1.6 GeV=c2. This reflects the
resonance character of the f0ð980Þ and f0ð1500Þ. The
positions of f0ð980Þ and f0ð1500Þ (marked by the blue line
segments in the Argand diagrams) rotate counterclockwise
with increasing m3π , reflecting the growing phase of the
πð1800Þ with respect to the anchor wave. We conclude a
clear coupling of πð1800Þ to both f0 states, which is more
pronounced than that to the broad component of the
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FIG. 43. Same as Fig. 41, but for the 2−þ0þ½ππ�0þþ π D wave in three m3π bins around the π2ð1880Þ.
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ππ S-wave. There is no evidence for the f0ð1370Þ in this
wave. The observed behavior of the ½ππ�0þþ phases cor-
roborates the conclusions drawn from the intensity corre-
lations in Fig. 38. In the πð1800Þ region, the gross features
of the ½ππ�0þþ phase motion are similar to those observed
by the BABAR experiment in the 2π subsystem of Dþ

s →
πþπ−πþ decays [66]. Differences in details are probably
due to different nonresonant contributions in the two
processes.
b. JPC ¼ 1þþ: In this wave, the a1ð1420Þ region is most

interesting. The extracted ½ππ�0þþ intensities are shown in
the left column of Fig. 42 for three different values of m3π

in a similar way as explained above. Form3π values around
1.4 GeV=c2, a signal for the f0ð980Þ appears sitting above
a broad ππ S-wave structure. The complicated shape of the
π−πþ amplitude is again illustrated by the Argand diagrams
shown in the right column of Fig. 42. Here, the f0ð980Þ
contribution can be identified by the semicircle-like struc-
ture with a shifted origin, which appears at the a1ð1420Þ
resonance. Comparing Figs. 42(d) and 42(f), a significant
counterclockwise rotation of this structure by about 90°
with respect to its center is observed above the a1ð1420Þ.
This confirms the resonance interpretation of the a1ð1420Þ
in the f0ð980Þ π decay. For mπ−πþ < 0.8 GeV=c2, the
amplitude does not change much with respect to m3π . As a
consequence, the relative phase of the f0ð980Þ component
with respect to the broad ππ S-wave structure also changes
by about 90%. Hence the interference pattern changes from
partly constructive at the a1ð1420Þ to partly destructive at
the higher m3π bin. This results in a sharp drop of the
intensity in the 2π mass spectrum above the f0ð980Þ, which
is followed by low intensity at higher mπ−πþ.
c. JPC ¼ 2−þ: The clearest signal in this wave is the

π2ð1880Þ that couples to f0ð980Þ π and f0ð1500Þ π. We
again study the 2π subsystem in three 3π mass regions. The
intensity distributions and Argand diagrams are shown in
Fig. 43. Also here we find semicircle-like structures with
shifted origin that correspond to the f0ð980Þ, which is
observed as a clear peak in the corresponding mπ−πþ

distributions. At higher values of mπ−πþ , we observe an
indication of another small circular structure in the Argand
diagram, which is correlated with a rise of the intensity in
the 2π mass distribution attributable to f0ð1500Þ. The
shape of the broad ππ S-wave component at low 2π masses
is somewhat different from that of the other waves,
exhibiting more intensity close to the threshold.

VII. SUMMARY AND CONCLUSIONS

We have presented a detailed partial-wave analysis based
on the world’s currently largest data set of the exclusive
π−π−πþ final state from diffractive pion scattering off a
proton target. The PWA was performed independently in
100 bins of the 3π massm3π , each of which was subdivided
into eleven slices of the reduced four-momentum transfer

squared t0. We refer to this as mass-independent fit. It is
based on the largest wave set used so far in a PWA of this
final state, which contains in total 80 waves with positive
reflectivity, 7 with negative reflectivity, and one incoherent
isotropic wave representing three uncorrelated pions (see
Sec. IV B and Table IX in Appendix A). In this paper, a
subset of 18 partial waves with positive reflectivity
accounting for 75.8% of the total intensity was studied
in detail.
From the study of the general characteristics of partial-

wave intensities, two classes of waves can be identified: for
some waves, the shape of the mass spectrum shows little
dependence on t0 [see e.g. Figs. 17(b) and 17(d)], while for
others moderate [see e.g. Figs. 18(a) and 18(c)] or even
large variations [see e.g. Figs. 17(a) and 17(c)] are seen.
These variations indicate the presence of weak or strong
nonresonant contributions that do interfere with the reso-
nant components and may have a characteristically
different dependence on t0. Among the stable waves, where
the peak positions do not significantly depend on t0,
we find:

(i) 0−þ0þf0ð980Þ π S
(ii) 1þþ0þf0ð980Þ π P
(iii) 2þþ1þρð770Þ π D
(iv) 2þþ2þρð770Þ π D
(v) 2−þ1þf2ð1270Þ π S
(vi) 2−þ0þf2ð1270Þ π D
(vii) 4þþ1þρð770Þ π G
(viii) 4þþ1þf2ð1270Þ π F
The following waves show significant peak shifts or large
variations of the shapes of their mass distribution as a
function of t0:

(i) 0−þ0þ½ππ�SπS
(ii) 1þþ0þ½ππ�SπP
(iii) 1þþ0þρð770Þ π S
(iv) 1þþ1þρð770Þ π S
(v) 1þþ0þf2ð1270Þ π P
(vi) 2þþ1þf2ð1270Þ π P
(vii) 2−þ0þ½ππ�SπD
(viii) 2−þ0þρð770Þ π F
(ix) 2−þ0þf0ð980Þ π D
(x) 2−þ0þf2ð1270Þ π S
In the subset of 18 waves, clear resonance peaks are

found in the partial-wave intensities of the following
decay modes:

(i) πð1800Þ → f0ð980Þπ S-wave
(ii) πð1800Þ → ½ππ�Sπ S-wave
(iii) a1ð1260Þ → ρð770Þπ S-wave
(iv) a1ð1420Þ → f0ð980Þπ P-wave
(v) a2ð1320Þ → ρð770Þπ D-wave
(vi) π2ð1670Þ → f2ð1270Þπ S-wave
(vii) π2ð1880Þ → f2ð1270Þπ D-wave
(viii) a4ð2040Þ → ρð770Þπ G-wave
(ix) a4ð2040Þ → f2ð1270Þπ F-wave
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The new a1ð1420Þ, which was presented in Ref. [56], is
only seen in the 1þþ0þf0ð980Þ π P wave. No evidence
for a corresponding resonance structure is observed in
1þþ0þ½ππ�SπP, nor in waves containing other isobars.
The π2ð1670Þ and π2ð1880Þ seem to have different
couplings to various decay modes. A peak attributable
to the π2ð1670Þ appears, for example, dominantly in
2−þ0þf2ð1270Þ π S, while a π2ð1880Þ peak is dominant
in 2−þ0þf2ð1270Þ π D. Both states seem to couple to the
2−þ0þρð770Þ π F wave, however, with different apparent
strength as a function of t0. In turn, only the π2ð1880Þ shows
a clear coupling to the f0ð980Þ π decay mode. The shape of
the structure observed in this decay mode around m3π ¼
1.6 GeV=c2 changes as a function of t0 (see Sec. VI C).
a. t0 dependences We have investigated the production

characteristics of the π−π−πþ final state by studying the t0
dependence for the overall data sample as a function ofm3π

as well as for individual partial-wave intensities in 3π mass
regions around known resonances. The fits to the overall t0
spectra require two exponential functions in order to
describe the fall-off with t0 [see Figs. 30(c) and 30(d)].
The slopes of the two exponentials and their relative
contributions change with increasing 3π mass, leveling
off for m3π ≳ 1.3 GeV=c2 (see Fig. 31).
The slope parameters for individual waves in 3π mass

regions around resonances exhibit a complex pattern.
Qualitatively, mass regions with strong nonresonant con-
tributions are characterized by a steep drop-off with t0
and thus larger values for the slope parameter up to
22 ðGeV=cÞ−2. Considerable deviations from the single-
exponential behavior are observed for mass regions around
the πð1300Þ in the 0−þ0þ½ππ�SπS wave and around the
a1ð1260Þ in 1þþ1þρð770Þ π S. In these two waves, we find
a minimum of the intensity at values of t0 of about
0.4 ðGeV=cÞ2 [Fig. 35(a)] and 0.6 ðGeV=cÞ2 [Fig. 32(b)],
respectively, which may be attributed to interference effects
of different production processes. Other distributions can
be described well by only a single exponential, a para-
metrization also employed for the fit of the low-t0 region
in the case of dip structures. Mass regions dominated by
resonances show typically a shallower drop-off with slope
parameters between 7 and 11 ðGeV=cÞ−2. However, these
regions are often better described by a double-exponential
model. Hence the observation of a steep component does
not exclude a dominant resonant contribution.
For mass regions with clear resonance signals, e.g.

a2ð1320Þ and a4ð2040Þ, slope parameters are found to be
similar for different waves belonging to the same JPC, even
with different spin projections M. We have studied the
production of waves with JPC ¼ 1þþ, 2−þ, and 2þþ with
different M. We observe a reduction in their production rate
by about an order of magnitude with every unit of M. For
the a2ð1320Þ, the intensity ratio for the two spin projections
is in good agreement with the one observed in the ηπ− decay
channel [51]. At the same time, we confirm that the t0

dependences follow the theoretically expected suppression
factor ðt0ÞM at small values of t0 for M ¼ 0, 1, and 2 (see
Figs. 32 and 33). This observation points to the spin character-
istics of the Pomeron exchange, which is dominant here.
The 1þþ0þf0ð980Þ π P wave is of particular interest.

In the mass region of the new a1ð1420Þ, this wave exhibits
a nearly exponential t0 spectrum with a slope parameter
of about 11 ðGeV=cÞ−2, which is similar to that of the
πð1800Þ in the same decay mode. This supports the
resonance interpretation of the a1ð1420Þ signal. The slope
is in agreement with the slope parameter of about
10 ðGeV=cÞ−2 that was extracted for the a1ð1420Þ in a
mass-dependent fit [56].
The 2−þ waves show no clear pattern. Single-

exponential fits in different decay modes around the
π2ð1670Þ and π2ð1880Þ give slope values between 6 and
11 ðGeV=cÞ−2. For those 2−þ waves that are better
described by two exponentials, the dominant slope has a
similar range.
b. ππ S-wave amplitudes For the first time, a detailed

study of the amplitude of the π−πþ S-wave isobar with
IGJPC ¼ 0þ0þþ in the decay of the π−π−πþ system was
performed. This was achieved by using the freed-isobar
technique (see Sec. VI). The 2π amplitudes are extracted
independently for different 3π partial waves in each bin of
m3π and t0. We have presented the correlations of the
intensities of the independent freed π−πþ isobar amplitudes
with those of the 3π system for 0−þ, 1þþ, and 2−þ three-
pion JPC quantum numbers. These correlations reveal a
selective coupling of 3π resonances to the scalar isobars
f0ð980Þ and f0ð1500Þ and less clear correlations with a
broad ππ S-wave component. The newmethod does not only
yield the two-dimensional intensity distribution, but also
provides information about the full 2π amplitude for each
m3π bin. In the corresponding Argand diagrams, signals for
f0ð980Þ and f0ð1500Þ show up as semicircular structures
with rapid counter-clockwise motion with increasingmπ−πþ .
In the three waves studied, there is no evidence for a distinct
f0ð1370Þ resonance in the π−πþ subsystem.
For JPC ¼ 0−þ and 1þþ of the 3π system, the m3π

spectra connected to the broad component of the ππ S-wave
show enhancements around m3π ¼ 1.2 GeV=c2, which
might naïvely be interpreted as a1ð1260Þ and πð1300Þ,
respectively. These structures significantly change their
shape as a function of t0, thereby suggesting that they are
influenced by nonresonant processes. For the πð1800Þ, we
observe a coupling to f0ð980Þ π and a somewhat weaker
one to f0ð1500Þ π. The Argand diagram shows clear
semicircular structures corresponding to the f0ð980Þ and
f0ð1500Þ. Similarly, in the 2−þ 3π wave, the coupling of
the π2ð1880Þ to f0ð980Þ π and f0ð1500Þ π is seen. For the
3π wave with JPC ¼ 1þþ, we observe a clear correlation of
the f0ð980Þ isobar with the new a1ð1420Þ resonance [56]
in all bins of t0. This is in contrast to the broad component
of the ππ S-wave, which shows a strongly t0-dependent
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correlation with m3π and a shift of the intensity maximum
towards higher values of m3π with increasing t0. A possible
explanation of this shift is the Deck process. At large values
of t0, the rapidity gap between the ½ππ�S system and the
bachelor pion is increased (see Fig. 19), which leads to
higher 3π masses. The shift of intensity across the 3π mass
spectrum with t0 could explain the complicated behavior of
some t0 spectra (see Sec. V).
Based on the analysis described in this paper, we extracted

the properties of resonances and of nonresonant contribu-
tions as well as their production characteristics, which will
be described in detail in a forthcoming paper [33].
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TABLE IX. Wave set used for mass-independent fit: 80 waves
with positive reflectivity, 7 with negative, plus an incoherent
isotropic wave.

JPCMε Isobar L Threshold ½MeV=c2�
0−þ0þ ½ππ�S S —
0−þ0þ ρð770Þ P —
0−þ0þ f0ð980Þ S 1200
0−þ0þ f2ð1270Þ D —
0−þ0þ f0ð1500Þ S 1700
1þþ0þ ½ππ�S P —
1þþ1þ ½ππ�S P 1100
1þþ0þ ρð770Þ S —
1þþ1þ ρð770Þ S —
1þþ0þ ρð770Þ D —
1þþ1þ ρð770Þ D —
1þþ0þ f0ð980Þ P 1180
1þþ1þ f0ð980Þ P 1140
1þþ0þ f2ð1270Þ P 1220
1þþ1þ f2ð1270Þ P —
1þþ0þ f2ð1270Þ F —
1þþ0þ ρ3ð1690Þ D —
1þþ0þ ρ3ð1690Þ G —
1−þ1þ ρð770Þ P —
2þþ1þ ρð770Þ D —
2þþ2þ ρð770Þ D —
2þþ1þ f2ð1270Þ P 1000
2þþ2þ f2ð1270Þ P 1400
2þþ1þ ρ3ð1690Þ D 800
2−þ0þ ½ππ�S D —
2−þ1þ ½ππ�S D —
2−þ0þ ρð770Þ P —
2−þ1þ ρð770Þ P —
2−þ2þ ρð770Þ P —
2−þ0þ ρð770Þ F —
2−þ1þ ρð770Þ F —
2−þ0þ f0ð980Þ D 1160
2−þ0þ f2ð1270Þ S —
2−þ1þ f2ð1270Þ S 1100
2−þ2þ f2ð1270Þ S —
2−þ0þ f2ð1270Þ D —
2−þ1þ f2ð1270Þ D —
2−þ2þ f2ð1270Þ D —
2−þ0þ f2ð1270Þ G —
2−þ0þ ρ3ð1690Þ P 1000
2−þ1þ ρ3ð1690Þ P 1300
3þþ0þ ½ππ�S F 1380
3þþ1þ ½ππ�S F 1380
3þþ0þ ρð770Þ D —
3þþ1þ ρð770Þ D —
3þþ0þ ρð770Þ G —
3þþ1þ ρð770Þ G —
3þþ0þ f2ð1270Þ P 960
3þþ1þ f2ð1270Þ P 1140
3þþ0þ ρ3ð1690Þ S 1380
3þþ1þ ρ3ð1690Þ S 1380
3þþ0þ ρ3ð1690Þ I —

(Table continued)
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APPENDIX A: WAVE SET

Table IX lists the wave set used for the mass-independent
fit. Note that in the reflectivity basis JPC ¼ ðevenÞþþ
waves with Mε ¼ 0þ are mathematically forbidden [see
Eq. (19) on page 18].

APPENDIX B: SYSTEMATIC STUDIES
OF PARTIAL-WAVE ANALYSIS MODEL

1. Rank of spin-density matrix

As pointed out in Sec. III C, ranks Nr > 1 of the spin-
density matrix provide a way of modeling incoherences
between partial waves. This is done by introducing addi-
tional sets of transition amplitudes. These sets are assumed
to correspond to different noninterfering production proc-
esses, each with its own production phase. By performing

the analysis in bins of t0, it was found that Nr ¼ 1 is
sufficient for positive-reflectivity waves. This also leads to
higher stability of the mass-independent fits.
In Fig. 44, we show in red the intensities of selected

partial waves obtained from fits with rank 2 for the positive
and negative-reflectivity waves. This is compared to the
standard fit (blue data points), where rank 2 was used only
for waves with ε ¼ −1. In the rank-2 fit, the flat wave
disappears completely and the intensity of the negative-
reflectivity waves is approximately halved. Slight modifi-
cations of the shape of resonance structures are observed in
some partial waves. Several partial waves exhibit artificial
peak structures in the 1.0 to 1.3 GeV=c2 3π mass region,
like e.g. shown in Fig. 44(d). Altogether, we prefer to use
rank 1 for the positive reflectivity waves.

2. Omission of waves with negative reflectivity

The PWA model defined in Sec. III has two types of
incoherent contributions, rank and reflectivity [seeEq. (24)].
The latter one is determined by the naturality of the
exchange particle (Regge-trajectory) mediating the scatter-
ing process. Including ε ¼ −1 partial waves, we effectively
allow for the exchange of Reggeons other than the
Pomeron, which is expected to be suppressed at beam
energies of 190 GeV. In our PWA model, we have included
seven waves with negative reflectivity (see Table IX in
Appendix A). Negative and positive-reflectivity waves
have different angular distributions. In order to study how
well the fit is able to separate the two sectors, we have
performed fits without any ε ¼ −1 waves. The result is
shown in red in Fig. 45 for two selected waves. With the
exception of the flat wave, the intensities of all waves stay
practically unaltered. This demonstrates that the positive
and negative-reflectivity sectors are well separated by the
analysis method.

3. Variation of the isobar parametrization

In the employed PWA method, the X− decay amplitudes
Ψε

aðτÞ [see Eq. (24)] are not allowed to have any free
parameter. Fixed parametrizations for the isobar amplitudes
ΔξðmξÞ [see Eq. (8)] have to be used, which are taken from
literature (see Table III). While eventually these para-
metrizations could be extracted from our data following
the analysis scheme outlined in Sec. VI, for this paper we
still use the conventional approach.
The ρð770Þ is the dominant isobar. As discussed in

Sec. IVA, different Breit-Wigner parametrizations exist
for the ρð770Þ. Using Eq. (32) instead of Eq. (40) for the
mass-dependent width ΓðmÞ of the ρð770Þ changes the
intensity of the structure in the a1ð1260Þ mass region in
the 1þþ0þ½ππ�SπP wave and that of the a2ð1320Þ signal in
the 2þþ1þf2ð1270Þ π P wave (see Fig. 46). Both structures
seem to be contaminated by model leakage from the
respective dominant ρð770Þπ decay modes. The other 16
waves listed in Table V remain practically unchanged.When

TABLE IX. (Continued)

JPCMε Isobar L Threshold ½MeV=c2�
3−þ1þ ρð770Þ F —
3−þ1þ f2ð1270Þ D 1340
4þþ1þ ρð770Þ G —
4þþ2þ ρð770Þ G —
4þþ1þ f2ð1270Þ F —
4þþ2þ f2ð1270Þ F —
4þþ1þ ρ3ð1690Þ D 1700
4−þ0þ ½ππ�S G 1400
4−þ0þ ρð770Þ F —
4−þ1þ ρð770Þ F —
4−þ0þ f2ð1270Þ D —
4−þ1þ f2ð1270Þ D —
4−þ0þ f2ð1270Þ G 1600
5þþ0þ ½ππ�S H —
5þþ1þ ½ππ�S H —
5þþ0þ ρð770Þ G —
5þþ0þ f2ð1270Þ F 980
5þþ1þ f2ð1270Þ F —
5þþ0þ f2ð1270Þ H —
5þþ0þ ρ3ð1690Þ D 1360
6þþ1þ ρð770Þ I —
6þþ1þ f2ð1270Þ H —
6−þ0þ ½ππ�S I —
6−þ1þ ½ππ�S I —
6−þ0þ ρð770Þ H —
6−þ1þ ρð770Þ H —
6−þ0þ f2ð1270Þ G —
6−þ0þ ρ3ð1690Þ F —
1þþ1− ρð770Þ S —
1−þ0− ρð770Þ P —
1−þ1− ρð770Þ P —
2þþ0− ρð770Þ D —
2þþ0− f2ð1270Þ P 1180
2þþ1− f2ð1270Þ P 1300
2−þ1− f2ð1270Þ S —
Flat —
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using in addition thePDGaverages for theρð770Þparameters
of m0 ¼ 775.26 MeV=c2 and Γ0 ¼ 149.1 MeV=c2 [9], the
log-likelihood values, summed over the 11 t0 bins, decrease
by more than 1000 units in the mass range between 0.95
and 1.35 GeV=c2.

We have also investigated the sensitivity of the PWA
result with respect to changes in the parametrization of
the f0ð980Þ and ½ππ�S isobars. For the f0ð980Þ, the Flatté
parametrization used in the standard analysis is replaced by
a modified S-wave Breit-Wigner amplitude of the form:
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FIG. 44. Comparison of t0-summed partial-wave intensities obtained from the standard mass-independent fit with rank Nr ¼ 1 of the
spin-density matrix for waves with ε ¼ þ1 and rank 2 for the ones with ε ¼ −1 (blue/black) with the intensities from a fit with rank 2 for
both sectors (red/gray).
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FIG. 45. Comparison of t0-summed partial-wave intensities obtained from the mass-independent fits with (blue/black) and without
(red/gray) ε ¼ −1 waves.
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Δf0ð980Þðm;m0;Γ0Þ ¼
mΓ0

m2
0 −m2 − im0ΓðmÞ ; ðB1Þ

where

ΓðmÞ ¼ Γ0

q
q0

: ðB2Þ

The f0ð980Þ parameters are m0 ¼ 980 MeV=c2 and
Γ0 ¼ 40 MeV=c2. Figure 47 shows in red some selected
partial-wave intensities from this study. The Breit-Wigner
parametrization has less pronounced tails and covers a
narrower 2π mass range. This leads to nearly a factor of two
lower intensities in the f0ð980Þ π partial waves. The shapes
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FIG. 46. Comparison of t0-summed partial-wave intensities obtained from mass-independent fits using two different parametrizations
for the ρð770Þ isobar amplitude: a Breit-Wigner with Eq. (40) (blue/black) and one with Eq. (32) (red/gray).
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FIG. 47. Comparison of t0-summed partial-wave intensities obtained from mass-independent fits using two different parametrizations
for the f0ð980Þ isobar amplitude: Flatté parametrization [Eq. (43), blue/black] and modified S-wave Breit-Wigner [Eq. (B1) with
Eq. (B2), red/gray].
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of the resonance structures in these waves remain unaltered.
Interestingly, the πð1800Þ peak in the 0−þ0þ½ππ�SπS wave
also decreases when the Breit-Wigner parametrization is
used for the f0ð980Þ. On the level of the mass-independent
fit, this behavior cannot be explained. In contrast to the
πð1800Þ peak, the structure in the πð1300Þ region remains

unaltered. The fit with the Flatté parametrization has a
higher likelihood than the fit with the Breit-Wigner one.
Also for the broad component of the ππ S-wave ampli-

tude various parametrizations exist. In addition to the
modified M solution from Ref. [41], we tried the K1

solution from Ref. [41] with the f0ð980Þ pole subtracted,
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FIG. 48. Comparison of t0-summed partial-wave intensities obtained from mass-independent fits for standard event selection (blue/
black) and a looser event selection (red/gray), where particle identification and central-production rejection have not been applied.
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FIG. 49. Comparison of t0-summed partial-wave intensities obtained from mass-independent fits using two different t0 binnings: 11 t0
bins (blue/black) and 22 t0 bins (red/gray).
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using the modified S-wave Breit-Wigner amplitude of
Eq. (B1) with Eq. (B2) [20]. In order to be consistent,
the same f0ð980Þ amplitude was also used for the partial
waves with the f0ð980Þ isobar. The result is very similar to
the one of the fit with the modifiedM solution for the ½ππ�S
and the S-wave Breit-Wigner amplitude for the f0ð980Þ
isobar discussed above.

4. Variation of event selection

In order to study the potential influence of backgrounds
fromkaondiffraction, kaon pairs in the final state, and central-
production reactions, themass-independent fitwas performed
on a data sample, in which the particle identification in the

beam and spectrometer was not used and the rejection of
central-production events as described in Sec. II C was not
applied. Therefore, possible background contributions are
expected to be enhanced in this data sample. The effect is
shown in Fig. 48 for selected waves. The data sample with
looser cuts contains approximately 20% more events in the
analyzed range of m3π and t0. Hence, the partial-wave
intensities are larger and typically scale proportionally to
the sample size. The peak shapes of resonances are in general
unaffected by the different event selection. The most note-
worthy effects of the looser cuts are an over-proportional
increase of the flat-wave intensity by nearly a factor of two
and an enhancement of structures at large 3π masses in
some waves.
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FIG. 50. Detection efficiency for π−π−πþ phase-space events in different regions of m3π and t0. Each graph shows the detection
efficiency as a function of the angles, cos ϑGJ (abscissa, from −1 to þ1) and ϕTY (ordinate, from −180° to þ180°), of the isobar in the
Gottfried-Jackson frame.
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5. Variation of t0 binning

In order to study, whether the chosen binning in the four-
momentum transfer squared t0 has any effect on the partial-
wave analysis, the t0 bins defined in Table IV and shown in
Fig. 11 where halved, yielding in total 22 bins. The finer t0
binning has practically no effect on the partial-wave
intensities (see Fig. 49). Only the flat wave has lower
intensity over the full m3π range in the case of finer t0 bins.

APPENDIX C: ACCEPTANCE

In the following, we describe the π−π−πþ detection
efficiency of the COMPASS apparatus in absolute terms.
For this we have generated 3π events distributed

isotropically in phase space and passed them through the
COMPASS detector simulation and reconstruction chain.
The same selection cuts were applied as used for the real
data. For fixed values ofm3π and t0, the acceptance is a five-
dimensional function, of which we show only projections.
Figure 50 shows the π−π−πþ detection efficiency as a

function of the two angles, cos ϑGJ and ϕTY, of the isobar in
the Gottfried-Jackson frame (see Sec. III A for the defi-
nition). The acceptance is shown in four regions of m3π

and t0. The Monte Carlo data show a rather flat acceptance
with a small dip for in-plane events at forward angles. This
structure exhibits some dependence on t0 and mass. The
corresponding distributions in the helicity frame are shown
in Fig. 51. Here, no significant structures are visible.
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FIG. 51. Same as Fig. 50, but for the detection efficiency as a function of the angles, cos ϑHF and ϕHF, of the π− in the helicity frame.
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