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1 Introduction

Entanglement is a defining characteristic of quantum systems, and has far-reaching impli-
cations that range from low- to high-energy physics. On the one hand, condensed-matter
systems close to a quantum critical point are expected to be characterized by a strongly
entangled ground state [1–6]. On the other hand, in strongly coupled gauge theories (such
as quantum chromodynamics, the theory of the strong interaction in the Standard Model
of elementary particle physics), entanglement is expected to reveal whether the theory is in
a deconfined or in a confining phase [7–10] (or whether it has a finite mass gap [11]). In the
context of the physics of black holes, the Hawking radiation [12] is entangled with degrees
of freedom within the black hole, so entanglement is directly relevant for the information
loss paradox [13–15]. In quantum gravity, it was argued that the entanglement even leads
to the emergence of classically connected spacetimes [16].

In addition, entanglement also plays an essential rôle in quantum information science [17];
in particular, being intimately related to the speed-up in information processing and
communication that quantum computers can attain with respect to classical ones (i.e., to
quantum advantage), it has disruptive technological potential.

While defining a quantitative measure of the entanglement of a multipartite state is
not a completely trivial matter [18], the general requirements it has to satisfy (including, in
particular, monotonicity under local transformations of the state) are known [19]; for bipar-
tite systems, the entanglement can be quantified in terms of the entanglement entropy [20],
which is the von Neumann entropy of the reduced density matrix associated with either of
the subsystems that make the system. In turn, the von Neumann entropy can be obtained
as a limit of the Rényi entropy: given a quantum system with density matrix ρ, if one
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considers a bipartition of the system in two parts, A and B, the Rényi entropy of order n
of the subsystem A is defined as

Sn(A) = 1
1− n log Tr ρnA, (1.1)

where ρA = TrB ρ is the reduced density matrix for A. In the limit n→ 1 the Rényi entropy
tends to the von Neumann entropy for the subsystem A,

S(A) = −Tr(ρA log ρA). (1.2)

An interesting feature of the entanglement entropy is that it satisfies an “area law” [21]:
Sn is proportional to the area of the boundary ∂A separating the subsystems A and B,
which is usually called the entangling surface. This property is particularly intriguing, as it
parallels an analogous property of the entropy of black holes [12, 22].

The area term, however, is ultraviolet-divergent, hence a proper computation of the
entanglement entropy requires a suitable regularization and renormalization procedure
(which, in general, depends on the shape of the region A) and the physical information
about the system is contained in the subleading contributions to the entropy. For a system
defined in D = d + 1 spacetime dimensions, if one considers a geometry in which the
entangling surface is independent from the size of the subsystem A, for example if A
is a slab with length l in the direction separating A and B, and maximally extended
in the other directions, the derivative of the entanglement entropy with respect to l is
not ultraviolet-divergent. Accordingly, one can define the entropic (Rényi) c-functions
as [7, 23, 24]

Cn(l) = lD−1

|∂A|
∂Sn
∂l

, (1.3)

where |∂A| is the area of the entangling surface. The entropic c-function encodes the
physical information contained in the Rényi entropies and it has been proven that, in D = 2,
3, 4 and for specific geometries, it is monotonically decreasing along the renormalization
group trajectories [23, 25, 26], hence it provides a suitable measure of the number of degrees
of freedom in the theory [27]; for a discussion about the connection of these quantities with
the irreversibility of the renormalization group flows in quantum field theories with planar
defects, see also the recent ref. [28].

The computation of entanglement entropy is a challenging task: analytically, it can
be carried out only for systems with a large amount of symmetry, such as conformal field
theories (CFT) in low-dimensional systems [29–32], or using the conjectured gauge/gravity
correspondence [33–35], whereby the entanglement entropy is obtained from the area of
minimal surfaces in an anti-de Sitter (AdS) spacetime [36, 37]. The entanglement entropy has
also been studied numerically, using different methods and in different models (an incomplete
list of relevant works includes refs. [38–60]), but also in this case one has to cope with
non-trivial difficulties; part of the problems stem from non-local nature of the observable,
from the fact that several of these numerical techniques are hampered by limited scalability
to systems in more than one spatial dimension, and from the prohibitively large amount of
computational time that is necessary, to properly sample the space of configurations.
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In recent years, our group has published a series of high-precision lattice calculations
of different physical quantities [61–64] using non-equilibrium Monte Carlo simulations
based on Jarzynski’s theorem [65, 66]. The latter is one of the exact equalities that,
during the last decade of the past century, highlighted the connections between deviations
from thermodynamic equilibrium and entropy production [67–72] (see also refs. [73, 74]).
Jarzynski’s theorem has many remarkable implications, including ones that are relevant
for quantum information and quantum chaos [75–81]. For its applications in the context
of numerical simulations, it has been recently stressed [64] that Jarzynski’s theorem has
a direct connection with machine learning approaches (specifically, with a general class
of generative models called stochastic normalizing flows [82]) as well as with annealed
importance sampling [83]. It is becoming increasingly clear that non-equilibrium Monte
Carlo calculations based on this theorem can be a reliable tool for studies of the entanglement
entropy, too [53, 55, 56, 59].

In this work we present a new algorithm, combining Jarzynski’s theorem and the replica
trick [29], for direct Monte Carlo calculations of the entropic c-function on the lattice. Our
algorithm is implemented in the CUDA code and is run on machines equipped with graphics
processing units (GPUs). Being based on Monte Carlo simulations, our algorithm works in
any integer dimension, and we discuss its application to the Ising model [84]. In general,
the latter is defined in terms of a collection of σi variables on the sites i of an arbitrary
lattice and taking values σi = ±1; in our notations (assuming natural units ~ = c = kB = 1),
the reduced Hamiltonian of a configuration is

H(σ)
T

= −β
∑
〈i,j〉

σiσj , (1.4)

where T denotes the temperature, and the sum runs over the nearest-neighbor sites on
the lattice. For simplicity, here we neglect the possibility of a coupling to an external
field, so that the model has a global Z2 symmetry, as the Hamiltonian is invariant under a
transformation in which all spins are flipped. We consider an isotropic square lattice in
D = 2 (testing our algorithm against analytical results) and an isotropic cubic lattice in
D = 3. In the latter case we show that with our algorithm it is possible to efficiently extract
the subleading terms beyond the area law, that have been the subject of intense studies
in recent years [85–95]. In particular, we study how the entropic c-function at the critical
point of the model varies, as a function of the size of the subsystem A. In addition, we also
study the entropic c-function away from the critical point, investigating its dependence on
the coupling of the model.

The structure of this article is the following. In section 2 we briefly review the replica
trick and the analytical results that can be obtained for conformal field theories in two
dimensions, while in section 3 we describe our algorithm. The results for the Ising model in
two and three dimensions are presented in section 4 and in section 5, respectively. Section 6
is devoted to a summary of our findings and to some comments about future generalizations
of this work, in particular for strongly coupled lattice gauge theories. Finally, the appendix
contains a proof of Jarzynski’s theorem (section A), the discussion of a different type of
simulation strategy for the three-dimensional model (section B), and a quantitative analysis
of the systematic uncertainties associated with the derivative discretization in our algorithm
(section C).
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2 Replica trick and exact results

Consider the ground state |0〉 of a generic quantum field theory and the related density matrix
ρ = |0〉 〈0|. Our first aim is to express a generic matrix element 〈ϕ′|ρ|ϕ〉 = 〈ϕ′|0〉 〈0|ϕ〉 in
the path-integral formalism. If one considers two generic field configurations ϕ(x, τ = 0)
and ϕ(x, τ = −T ) one can write

〈
ϕ(x, 0)

∣∣ϕ′(x,−T )
〉

= 1√
Z

∫ φ(x,0)=ϕ(x,0)

φ(x,−T )=ϕ(x,−T )
Dφ e−S[φ] (2.1)

where Z is a normalization constant. In the T →∞ limit, the contribution from excited
states becomes negligible, hence

〈ϕ(x, 0)|0〉 = 1√
Z

∫ φ(x,0)=ϕ(x,0)

φ(x,−∞)=0
Dφ e−S[φ], (2.2)

therefore the matrix element of the density matrix reads

〈
ϕ′
∣∣ρ∣∣ϕ〉 = 1

Z

∫ φ(x,0−)=ϕ(x,0−)

φ(x,−∞)=0

∫ φ(x,∞)=0

φ(x,0+)=ϕ(x,0+)
Dφ e−S[φ] (2.3)

The previous expression can be schematically depicted as in figure 1: one is integrating over
all spacetime, leaving open a cut at τ = 0 where the field configurations are fixed. From
the condition Tr ρ = 1, one can fix the normalization factor to be Z =

∫
Dφe−S[φ], i.e., the

partition function.
Now let us introduce a partition of the system into two subsystems such that

|ϕ〉 = |α〉A ⊕ |β〉B . (2.4)

The reduced density matrix reads

〈
α′
∣∣ρ∣∣α〉 = 1

Z

∫
DβDβ′

〈
α′ ⊕ β′

∣∣ρ∣∣α⊕ β〉 δ(β − β′). (2.5)

Tracing over the degrees of freedom of B corresponds to identifying β(x, 0) = β′(x, 0) and
integrating over β; this can be interpreted as joining the edges of the cut in correspondence
of the subsystem B.

From the previous expression, one can easily obtain the matrix element of the square
of the reduced density matrix as

〈
α′2
∣∣ρ2∣∣α1

〉
= 1
Z2

∫
Dα2Dα

′
1
〈
α′2
∣∣ρ∣∣α2

〉 〈
α′1
∣∣ρ∣∣α1

〉
δ(α2 − α′1). (2.6)

Again this operation can be given a geometric interpretation: one introduces a second cut
space (a replica), with field configurations α′2 and α2 at the upper and lower edges of the
cut, respectively. Then the upper edge of the first replica is joined with the lower edge of
the second one, by identifying α2 = α′1 and integrating over α2.

It is now clear that a matrix element of the n-th power of the reduced density matrix
can be expressed as the path integral over n copies of the cut space, where the upper edge
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φ = ϕ′

φ = ϕ
τ = 0

τ

x

φ = α′

φ = α

B A

Figure 1. Left-hand-side panel: schematic representation of the matrix element of the density
matrix between two field configurations. Right-hand-side panel: a representation of the matrix
element of the reduced density matrix. Gray areas correspond to regions of spacetime where field
configurations are integrated upon.

of the cut i is identified with the lower edge of the cut i + 1, for i = 2, . . . , n − 1, while
in the first and last edges the field configurations are held fixed. Finally, if one joins the
remaining two edges, one obtains the expression

Tr ρn = Zn
Zn

, (2.7)

where Zn is the partition function of the full replica space. Hence, the Rényi entropies can
be written as

Sn = 1
1− n log Zn

Zn
. (2.8)

Accordingly, the derivative of the Rényi entropy with respect to l can be written as

∂Sn
∂l

= 1
n− 1 lim

ε→0

1
ε

log Zn(l)
Zn(l + ε) . (2.9)

The replica trick is a powerful tool for analytical calculations: in two-dimensional conformal
field theories it allows one to determine the scaling form of the Rényi entropies in a number
of different geometries [29, 31]. In a planar geometry, if the subsystem A is a segment of
length l, the Rényi entropies read

Sn(l) = c

6

(
1 + 1

n

)
log

(
l

a

)
+ kn (2.10)

where a is an ultraviolet regulator, c the central charge of the theory and kn a constant
(that depends on n); due to the presence of the logarithm, kn can be modified by rescaling
a, hence its value is not universal.

Starting from eq. (2.10), one can conformally map the plane into a cylinder of spatial
length L, with the cut orthogonal to the axis of the cylinder. This corresponds to a one-
dimensional, finite-size quantum system at zero temperature, and the Rényi entropies become

Sn(l, L) = c

6

(
1 + 1

n

)
log
(
L

πa
sin
(
πl

L

))
+ kn. (2.11)
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Equation (2.11) can be obtained from eq. (2.10) by replacing the length of the cut with the
arc-length, l→ L

π sin
(
πl
L

)
, hence it is invariant under l→ L− l, i.e., if we exchange A and

B. This is a consequence of a much more general property of Rényi entropies, namely, if
A ∪B is in a pure state then [96]

Sn(A) = Sn(B). (2.12)

Equation (2.11) is an expression of fundamental importance for numerical studies, where
only systems of finite size can be simulated.

We conclude this section with the expression of the entropic c-function for a D = 2
CFT. In this case eq. (1.3) becomes (we use |∂A| = 2 since in one spatial dimension the
entangling surface reduces to just two points)

Cn(l) = l

2
∂Sn
∂l

= c

12

(
1 + 1

n

)
, (2.13)

hence the entropic c-function is a constant proportional to the central charge of the theory.
On the cylinder the presence of a multiplicative factor l in the definition of the entropic

c-function spoils the symmetry of the derivative of the Rényi entropy; in this work we use a
symmetrized version of eq. (1.3), trading the prefactor l for the arc-length, i.e.,

Cn(l) =
[
L

π
sin
(
πl

L

)]D−1 1
|∂A|

∂Sn
∂l

. (2.14)

In the following, we will always refer to the entropic c-function as its symmetrized version.
For a D = 2 CFT one obtains

Cn(x) = c

12

(
1 + 1

n

)
cos(πx), (2.15)

with x = l
L . The infinite-size result of eq. (2.13) is recovered at small x, with a leading

correction of order O
(
x2).

3 Simulation algorithm for the entropic c-function

In this section we describe our Monte Carlo algorithm for the calculation of the entropic
c-function. For the sake of clarity we will focus on the particular case of the Ising model,
although the algorithm is easily generalizable to any spin model with nearest-neighbor
interactions.

Firstly, the lattice model has to be embedded in a replica geometry. Given n copies of
the lattice, we introduce a cut C in the dual lattice, lying along the spatial direction, as
shown in figure 2. Then we introduce new links to connect spins on the upper side of the
cut of one replica to the ones on the lower side of the cut of the following replica. The
reduced Hamiltonian of the replica model thus reads

H

T
= −

n∑
k=1

β ∑
〈ij〉6⊥C

σ
(k)
i σ

(k)
j + β(k,k) ∑

〈ij〉⊥C
σ

(k)
i σ

(k)
j + β(k,k+1) ∑

〈ij〉⊥C
σ

(k)
i σ

(k+1)
j

 . (3.1)

We identify three different contributions:
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x

τ

C

Figure 2. A cut along the links of the dual lattice, where two different replicas are joined.

• The first term takes into account interactions between spins in the same replica
connected through links that do not cross the cut.

• The second term represents the coupling between spins in the same replica at opposite
sides of the cut.

• The last term represents couplings between spins in different replicas at opposite sides
of the cut.

A decoupled system corresponds to a situation in which β(k,k) = β and β(k,k+1) = 0 for all
k, while a fully coupled one corresponds to β(k,k) = 0 and β(k,k+1) = β for all k.

Before describing our algorithm for calculations of the entropic c-function, it is useful
to briefly review the algorithm proposed in ref. [53] for the calculation of Rényi entropies,
which is also based on Jarzynski’s equality. In this case the initial partition function Zi

corresponds to the partition function of n decoupled replicas, while Zf is the partition
function of a system of fully coupled replicas through a cut of length l lattice spacings. The
idea is to drive the system out of equilibrium by varying the couplings β(k,k) from β to 0
and, at the same time, the couplings β(k,k+1) from 0 to β. More specifically the couplings
of the model can be written as

β(k,k′) =

 βδk,k′ t < ti

β t−tf
tf−ti (δk+1,k′ − δk,k′) + βδk,k′ t ≥ ti

(3.2)

and the work performed on the system in one Monte Carlo step reads

δW = 1
tf − ti

∑
k,〈ij〉⊥C

{
σ

(k)
i σ

(k+1)
j − σ(k)

i σ
(k)
j

}
. (3.3)

In contrast, the idea of our algorithm is instead to calculate the derivative of the Rényi
entropy in eq. (2.9) by means of finite differences on the lattice; focusing on the case in
which the subsystem A is a slab that is maximally extended in D − 2 spatial directions
and that has length l in the direction orthogonal to the separation between A and B,
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the entangling surface ∂A does not depend on l and the entropic c-function appearing in
eq. (2.14) is finite. Once the subsystem A has been selected, say at Euclidean time τ , all
links emanating from sites belonging to A in the Euclidean-time direction, connecting sites
at time τ to sites at time τ + a, are eliminated by setting the coupling β(k,k) = 0: the cut
is now a D − 2 dimensional slab, orthogonal to the time direction. Then links connecting
the lower side of the cut in one replica to the upper side of the cut of the following one are
introduced, and we set β(k,k+1) = β. Using eq. (2.14), the Rényi entropic c-function can
then be written as

Cn(l) =
[
L

π
sin
(
πl

L

)]D−1 1
|∂A|

1
n− 1 lim

ε→0

1
ε

log Zn(l)
Zn(l + ε) . (3.4)

In practice, we set ε to the lattice spacing a (the shortest distance that can be defined on
the lattice) and evaluate the ratio of partition functions on the right-hand side of eq. (3.4)
using eq. (A.2), by “shifting” one of the two connected components of the entangling surface
by a during each non-equilibrium Monte Carlo evolution of the system. This is done by
linearly reducing the coupling of spins near the entangling surface with spins in another
replica, while at the same time increasing their coupling to spins within the same replica,
as sketched in figure 3. Note that in a D-dimensional lattice of spatial length L the total
number of links that are varied is 2

(
L
a

)D−2
n, regardless of the length of the cut.

Once one has calculated the derivative of the entanglement entropy for all the values
of l, the Rényi entropy can be reconstructed (up to a non-universal constant) simply
by numerical integration. This approach is known in literature as the increment trick
and is used to improve results of simulations using reweighting [47] and non-equilibrium
techniques [56]. However our main interest in this work is to exploit this method, adapted
to out-of-equilibrium simulations, to directly calculate the derivative of the Rényi entropies
that, as we will discuss in section 5, is a valuable tool to unveil universal, subleading
corrections beyond the area law.

Notice also that the simplest way to perform the non-equilibrium evolution changing
the length of A is to vary all couplings in the same way: at time tm = ti + m tf−ti

N all
couplings at the edge of the cut take the value β(k,k) = β

(
1− m

N

)
and β(k,k+1) = βmN , but

other protocols can be used as well. In section B of the appendix, we discuss a different
protocol, which is inspired by recent lattice calculations of the entanglement entropy in
gauge theories [58, 97, 98].

In order to enhance the computational speed of our algorithm, we exploited the higher
level of parallelization achievable by using graphics processing units. To this purpose
we adapted an existing CUDA code [99, 100], which implements a parallelized version of
Swendsen-Wang cluster updates [101] using two different cluster-labeling algorithms [102,
103], to efficiently simulate the 2D and 3D Ising models. We suitably modified the code to
implement the replica geometry and Jarzynski’s algorithm. The parallelization achievable
by exploiting GPUs is significant, since we were able to parallelize not only the updating of
all the spins on a replica system, but also the non-equilibrium trajectories.
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A

∂A

B

L− l − a l + a

L

A

∂A

B

L− l l

Figure 3. Sketch of our algorithm to compute the entropic c-function. The figure shows a spatial
slice of a single replica; sites belonging to A are connected to another replica through links in the
Euclidean-time direction, while those belonging to B are connected to the same replica. The ratio
of partition functions in eq. (3.4) is computed from the exponential average of the work done on the
system by varying the couplings of yellow sites from the initial geometry, where they are connected
to another replica, to the one at the end of the non-equilibrium evolution, where they are connected
to the same replica.

4 Results for the Ising model in two dimensions

In this section we present the results of our simulations in a very simple model, for which
the analytical form of the entropic c-function is known, namely the Ising model in two
dimensions.

In D = 2 the model defined in eq. (1.4) was first solved exactly by Onsager [104] and
has since been solved again, using different techniques, by various other authors [105–108],
becoming a sort of “archetype” for integrable models [109, 110].

At the critical point of the theory, corresponding to βc = 1
2 log

(
1 +
√

2
)
, the entropic

c-function is expected to be described by eq. (2.15) with c = 1
2 , up to finite size corrections

that we will discuss in what follows. Moreover, in this work we focus on the calculation of
the entropic c-function associated to the second Rényi entropy, C2, since it requires a lower
computational effort compared to higher values of n.

The conventions and notations we use in this section are as follows.

• Lτ denotes the extent of the lattice in the Euclidean-time direction, while L denotes
the size of the lattice in the spatial direction. Since we are interested in the behavior
of the entanglement in a quantum system at zero temperature, we work with lattices
where Lτ � L, in particular Lτ = 8L (we will discuss this choice in what follows).

• l denotes the length of the cut; we also define a normalized length as x = l
L .

• Periodic boundary conditions are imposed in all directions.
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(a) (b)

(c) (d)

Figure 4. Consistency checks of Jarzynski’s algorithm: (a) direct and reverse protocols at different
number of Monte Carlo steps (with the inset showing a wider range of N); (b) direct and reverse
calculation of the entropic c-function; (c) distribution of the total off-equilibrium work from eq. (A.1).
Check of the zero-temperature condition: (d) the quantum system is at zero temperature when the
entropic c-function changes its sign under the exchange x→ 1− x; inset: zoom on the region where
the two data sets converge.

• N is the number of discrete time intervals in which the out-of-equilibrium evolution
is divided, while nt is the number of trajectories used to calculate the average in
eq. (A.2).

• All data have been extracted after an initial thermalization of Ntherm = 1000 Monte
Carlo steps; we estimated the integrated autocorrelation time at the critical point to
be of the order of a few of our update steps.

Direct and reverse protocols. A reliable way to test the consistency of Jarzynski’s
algorithm is to compare direct and reverse protocols. From now on, the “direct” realization
will be the one in which we calculate the backward derivative (i.e., we start with a cut of
length l and end with a cut of length l − a), while the “reverse” realization will be the one
defined in terms of the forward derivative (i.e., from l − a to l).

Our data suggest that the average appearing in eq. (A.2) is never biased by poor
statistics; this is not a surprise, since in two dimensions and in a two-replica geometry
the total number of couplings that are varied is equal to 4, regardless of the size of the
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lattice, hence we expect the system to be driven slowly out of equilibrium for almost all
values of N . This is confirmed by the results shown in figure 4a, where direct and reverse
protocols are compared for a range of values of N at fixed nt. After a first range of values,
between 10 and 100, in which results are dominated by statistical noise, direct and reverse
protocols become consistent with each other for almost all values of N , up to some slight
discrepancies that are compatible with statistical fluctuations.

In figure 4b a further comparison of the direct and reverse implementations of the
algorithm is shown, between two set of data at fixed N and nt and with different values
of x. The reduced χ2 is found to be χ2

ν = 1.37, showing a good match between direct and
reverse realizations.

Finally, figure 4c shows the work distributions for different values of N and for direct
and reverse protocols, which are approximately symmetric, as expected from previous
work [63]. Note that, as N increases, the distributions shrink, since one is getting closer to
a quasi-static evolution and, as a consequence, statistical fluctuations are reduced; therefore,
differently from a common Monte Carlo simulation, in this case we have two parameters
to control the statistical uncertainty of our data, namely N and nt. Since the algorithm
seems to be consistent for a large range of N , how to tune N and nt, given the desired
precision, is dictated by numerical convenience, depending also on the available computing
resources. In our implementation, since all trajectories are parallelized, increasing nt means
increasing the memory allocation on the GPU, while increasing N translates into a longer
computing time.

Zero-temperature condition. In this work we are interested in studying the entangle-
ment for systems at zero temperature, a condition that, on the lattice, is satisfied if Lτ is
sufficiently large. The observable itself we are considering provides a way to quantitatively
check if the condition is satisfied. We already mentioned that the Rényi entropies are
symmetric at zero temperature, eq. (2.12). This property is inherited by the derivative,
and, hence, by the symmetrized entropic c-function, which satisfies

Cn(x) = −Cn(1− x). (4.1)

Figure 4d shows two complementary values of the entropic c-function at different values of
the Lτ

L ratio. Error bars take into account both statistical and systematic uncertainties.
We find that for Lτ

L & 7 the data are compatible within their uncertainties.

Entropic c-function at the critical point. Our numerical results for the D = 2 Ising
model can be directly compared with the CFT result, eq. (2.11). However this result is
valid only when L and l are much larger than the lattice spacing a, otherwise finite-size
corrections have to be taken into account. The theory of corrections to scaling for the
Rényi entropies in 1 + 1 dimensions has been developed in ref. [111], where it was shown
that the leading correction scales as O

(
l−2h/n

)
, where n is the number of replicas and h

the conformal dimension of a relevant operator localized at the endpoints of the cut. In
ref. [112] it was shown numerically that, for a large class of theories, h is the conformal
dimension of the energy operator. For the Ising model in an n = 2 replica geometry we
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(a) (b)

(c) (d)

Figure 5. First three plots: entropic c-function at different values of L compared with the CFT
result in the scaling limit and the first scaling correction. Last plot: comparison of the three datasets
for small values of x.

then expect a correction of order O
(
l−1). More precisely, the fit function that we used to

analyze our data is

f(x; k) = 1
16 cos(πx) + k

2La
cot(πx), (4.2)

where the first term on the right-hand side is the scaling function and the second one is
the scaling correction, multiplied by a non-universal constant k. Figure 5 shows data for
L
a = 32, 64 and 128, the scaling function (blue curve) and the fit function (orange curve).
The results are summarized in table 1. Firstly we compared our data with the scaling
function only, i.e., the first term of eq. (4.2), and we collected the χ2 values in the table on
the left. The mid column refers to the whole sets of data displayed in figure 5, while on the
right we excluded the first two and the last two points of each set, as they are those that
are most affected by finite-size effects. As expected, data converge to the scaling curve as L
grows, and in particular we obtain a perfect match for L

a = 128 if we exclude the data at
the boundaries of the interval under consideration.

In the table on the right, the χ2 and the best-fit results are displayed, showing perfect
agreement between the theoretical predictions and our data.
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L
a

χ2

ν
χ2

ν−4

32 9.65 7.17

64 7.17 2.99

128 2.83 1.08

L
a

χ2

ν k

32 1.30 0.162(10)

64 0.77 0.138(7)

128 0.69 0.143(13)

Table 1. Left-hand side: comparison between our data and the scaling function. Right-hand side:
comparison between our data and the fit function (4.2).

(a) (b)

Figure 6. (a): C2 as a function of β for L
a = 32, 64, and 128 and for l

a = 4, 8, and 16 respectively;
N and nt are the same as in figure 5; the inset shows a zoom on the critical region. (b): comparison
between data at β > βc and their dual at β < βc for L

a = 32 (left inset), L
a = 64 (right inset) and

L
a = 128 (main plot).

Variation with β. We conclude this section with a study of the behavior of the entropic
c-function as the coupling β is varied. This quantity is expected to have a maximum
at the critical point and to be monotonically decreasing when one moves away from
criticality [23, 24]. Our data, shown in figure 6a, are in agreement with this prediction up
to finite-size effects, that are pronounced for L

a = 32 and decrease as L grows.
We also studied the behavior of the entropic c-function under the self-dual map of

the Ising model [113]. It is well known that in two dimensions the partition function of
the Ising model at β > βc can be related to the one of the same model at β? < βc via
the relation [114]

exp (−2β) = tanh β?. (4.3)

It is important to note that the self-duality strictly holds only in the infinite-volume limit.
Indeed from figure 6b it is evident that the two data sets have different behavior at small
L, while they tend to converge for larger L. However the convergence is slow and even for
L
a = 128 the reduced χ2 is large, χ2

ν ' 24. It is also important to realize that in a replica
geometry self-duality is also violated by the presence of the cut. As described in ref. [111],
since the cut lies along the links of the dual lattice, the dual spins located at the edges of
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(a) (b)

(c)

Figure 7. Consistency checks of Jarzynski’s algorithm: (a) direct and reverse protocols for a
different number of Monte Carlo steps. (b) Direct and reverse calculation of the entropic c-function;
N and nt span from 2.5× 104 and 50 respectively for values of x close to 0 and 1, to 105 and 100
for values of x close to 1

2 . (c) Zero-temperature condition.

the cut have a larger number of nearest neighbors: for a square lattice the nearest neighbors
are 4n, which induces an explicit local breakdown of the self-duality of the model. However,
it is beyond the goals of this work to analyze the effects of the presence of the cut on the
duality properties of the Ising model, and we leave the study of this issue for future work.

5 Results for the Ising model in three dimensions

In this section we present our results for the Ising model in three dimensions. In contrast with
its two-dimensional counterpart, the three-dimensional Ising model still defies all attempts
towards a complete solution — and, in particular, no analytical result on its entanglement
content is known. In spite of (or, rather, by virtue of) its simplicity, the model remains
relevant for a wide variety of problems, including in high-energy physics (see, e.g., ref. [115,
section 5]). While it is generally believed that in the continuum limit this model should
admit a superstring description [116–127], this intuition has not allowed one to derive explicit
results (and, in fact, it has been pointed out that it entails some non-trivial aspects [128]).
At present, much numerical information about the three-dimensional Ising model is known,
including, in particular, very precise estimates of the critical exponents [129–131] based on
the conformal-bootstrap approach [132].
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Also for the three-dimensional Ising model, that we studied using the same algorithm
discussed in section 4, after consistency checks of Jarzynski’s algorithm, we focused our
attention on the behavior of the entropic c-function at the critical point of the theory
βc = 0.221654626(5) [133] as a function of x, as well as the behavior when β is varied.

The same conventions of the previous section are used here; moreover, we take the
lattice extent to be the same in the two spatial directions, Lx = Ly = L, while the lattice
extent in the remaining, Euclidean-time, direction is Lτ = 4L.

Direct and reverse protocols. Also in the three-dimensional case our results seem
never to be biased by poor statistics. It should be noted that, although in this case the
number of couplings which are varied is proportional to the spatial extent of the lattice, the
relative number, compared to the size of the system, scales as (LLτ )−1, and this is true in
all dimensions.

Figure 7a and figure 7b show that direct and reverse protocols give the same result; in
particular the reduced χ2 for the two sets of data in figure 7b is χ2

ν = 0.70.

Zero-temperature condition. In figure 7c two complementary values of the cut are
shown. The two datasets start converging from Lτ

L ' 3.5: this motivates our choice Lτ = 4L.

Entropic c-function at critical point. Since no analytical solution is known for the
entropic c-function of the three-dimensional Ising model, it is interesting to compare our
data to analytical results that were derived in other simpler models. It is also instructive
to study the second Rényi entropy, obtained by numerical integration of the contributions
∆S2 computed by means of our algorithm, in order to have a more direct comparison with
results existing in the literature.

The fit functions we used to study the Rényi entropy are

g2D(x; c, k) = c log(sin(πx)) + k, (5.1)

gRVB(x; c, k) = −2c log
{

η(τ)2

θ3(2τ)θ3(τ/2)
θ3(2xτ)θ3(2(1− x)τ)
η(2xτ)η(2(1− x)τ)

}
+ k, (5.2)

gAdS(x; c, k) = cχ(x)−
1
3

{∫ 1

0

dy
y2

(
1√

P (χ(x), y)
− 1

)
− 1

}
+ k, (5.3)

where in eq. (5.2) τ is the modular parameter of the torus and in our work τ = i since
Ly = Lx, while in the last function P (χ, y) = 1− χy3 − (1− χ)y4 and

x(χ) = 3
2πχ

1
3 (1− χ)

1
2

∫ 1

0

dyy2

(1− χy3)
1√

P (χ, y)
. (5.4)

According to the definition (2.14), the fit functions for the entropic c-function are,
respectively

f2D(x; c) = c

2π sin(πx) cos(πx), (5.5)

fRVB(x; c) = sin(πx)2

2π2
d

dxgRVB(x; c, k), (5.6)

fAdS(x; c) = sin(πx)2

2π2
d

dxgAdS(x; c, k). (5.7)
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(c) (d)

Figure 8. Comparison between our data and theoretical curves. (a): Rényi entropy for L
a = 48

calculated by numerical integration of ∆S2; inset: Rényi entropy for L
a = 24. (b) and (c): entropic

c-function. (d): comparison between data for L
a = 24 and for L

a = 48 at small values of x. For
L
a = 24 N and nt span from 2.5× 104 and 50 for x close to 0 and 1, to 105 and 100 for x close to 1

2 ,
whereas for L

a = 48 N and nt span from 4× 104 and 50 for x close to 0 and 1, to 2× 105 and 200
for x close to 1

2 .

The functions in eq. (5.1) and in eq. (5.5) are the same functions of the two-dimensional
case, up to a sin(πx) term in the entropic c-function (which arises from our definition), while
the function in eq. (5.2) was found by studying the ground state of resonance-valence-bond
(RVB) dimers [90], a model in the quantum Lifshitz universality class [134] for which the
Zn
Zn ratio appearing in the Rényi entropies reduces to a ratio of partition functions of a free
D = 2 CFT. Inglis and Melko [91] compared the functions in eq. (5.1) and eq. (5.2) to
the Rényi entropy of the transverse-field Ising model in (2 + 1) dimensions, calculated by
means of a quantum Monte Carlo algorithm, finding good agreement particularly in the
latter case. Finally, Chen et al. [92] used the Ryu-Takayanagi formula [36] to determine the
correction to the area law for theories that admit a holographic dual, finding the functional
form in eq. (5.3). Then, they compared this function, as well as the RVB result, to the
entanglement entropy calculated numerically in two different free fermionic theories, finding
good agreement in both cases.

Note that the derivative of both gRVB and gAdS diverges as x−2 for x → 0, hence the
entropic c-function converges to a non-zero constant. The 2D function has a different
behavior, since d

dxg2D diverges as x−1, hence the entropic c-function tends to zero for x→ 0.

– 16 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
0

g2D

L
a

χ2

ν c k

24 1.07 0.139(2) 0.3612(16)

48 19.61 0.198(7) 0.750(8)

gRVB

L
a

χ2

ν c k

24 4.66 0.078(2) 0.331(3)

48 8.89 0.0713(16) 0.692(4)

gAdS

L
a

χ2

ν c k

24 1.55 0.115(2) 0.400(3)

48 5.32 0.1092(19) 0.759(4)

f2D

L
a

χ2

ν c

24 3.42 0.135(5)

48 12.08 0.167(10)

fRVB

L
a

χ2

ν c

24 12.6 0.079(5)

48 8.23 0.074(4)

fAdS

L
a

χ2

ν c

24 3.59 0.120(4)

48 4.23 0.115(4)

Table 2. First three tables: best-fit results for the Rényi entropies (figure 8a). Last three tables:
best fit results for the entropic c-functions (figure 8b and figure 8c).

In recent works it was argued that in three-dimensional systems on a torus a x−2 divergence
is expected [94, 95], hence eq. (5.1) and eq. (5.5) are expected to provide a worse modelling
of the data.

In table 2 we collect the results of the fits shown in figure 8. For L
a = 24 the function

yielding the best approximation of our data is the two-dimensional one, seemingly in
contradiction with the expectations from ref. [91] and with the previous discussion; however
this can be interpreted as a non-universal, finite-size effect: for L

a = 48 the 2D functions fare
more poorly, while the AdS function seems to be the one that provides the best description
of the data.

It is interesting to investigate the behavior of the coefficient c when the lattice size
is varied. As observed in ref. [91], in the 2D case it has a clear dependence on L

a and it
does not seem to converge to a constant for large L

a , while the same constant in the case of
the RVB function has a less pronounced dependence on L

a . Our results exhibit the same
behavior and, additionally, also reveal that the coefficient c in the AdS function has a
milder dependence on L

a compared to the 2D function: these quantities are thus expected
to encode universal information.

In a recent work, Kulchytskyy et al. [95] studied a constant that can be extracted from
the Rényi entropy of a torus in the universality class of the three-dimensional Ising model.
Under the assumption

Sn(x→ 0, L) = an
L

a
− kn

x
+ . . . (5.8)
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Figure 9. C2 as a function of β for L
a = 24, 48 and l

a = 3, 6 respectively. N and nt are equal to
2.5× 104 (8× 104) and 50 (75) for L

a = 24 ( L
a = 48). Inset: zoom on the critical region.

x 2C2, La = 24

0.0625 0.015(2)

0.104167 0.0167(10)

0.145833 0.0181(12)

0.1875 0.0195(12)

x 2C2, La = 48

0.0520833 0.0163(8)

0.0729167 0.0172(8)

0.09375 0.0185(11)

0.114583 0.0200(9)

Table 3. 2C2 for small values of x.

they estimated the coefficient k2 = 0.0174(5); in terms of the entropic c-function, this
coefficient can be evaluated as k2 = 2C2(x → 0). It should be noted that the result of
ref. [95] was obtained in the L → ∞ limit, while in our work we did not perform such
extrapolation, hence we do not have control on finite-size corrections in our data. With
this caveat in mind, we can compare our results for 2C2(x) at small values of x to k2. From
table 3 we can see that our data are close to the estimate of ref. [95].

Variation with β. Finally, let us discuss the behavior of the entropic c-function away
from the criticality. As shown in figure 9, our data suggest that also in three dimensions
C2 behaves as a Zamolodchikov c-function, i.e., it is monotonically decreasing when we
move away from the critical point. The result is non-trivial: while there exist proofs of the
monotonicity of entropic c-functions in three dimensions [25], they are not shape-independent,
and typically assume that A is a circle, not a slab as in our setup.

6 Conclusions

In this work we studied a new numerical algorithm for lattice calculations of the entropic
c-function, a quantity related to the derivative of the Rényi entropy, which is expected to
encode universal information on the ground state of a quantum many-body system and
to provide a suitable measure of the number of effective degrees of freedom of a theory.
Our primary goal consisted in showing that non-equilibrium Monte Carlo simulations
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based on Jarzynski’s theorem [65, 66] provide a reliable and efficient tool to estimate such
quantity numerically.

As a first benchmark of our algorithm, we studied the Ising model in two dimensions,
for which exact analytical predictions for various quantities are known, especially at the
critical point, where the entropic c-function takes the remarkably simple form expressed
by eq. (2.15). Our results perfectly match the theory once finite-size corrections are taken
into account. By exploiting GPU parallelization and running on supercomputing clusters,
we obtained very precise results in a small amount of time: our data for the simulations
of a L

a = 128 lattice, the largest size that we studied in D = 2 (see figure 5 and figure 6),
required approximately 750 hours on the CINECA Marconi100 accelerated cluster, based
on IBM Power9 architecture and Volta NVIDIA GPUs.

Albeit in two dimensions Monte Carlo methods for the calculation of entanglement
entropy and related quantities are outperformed by other techniques (such as the density-
matrix renormalization group), it is in D > 2 that Monte Carlo simulations are expected
to be a highly competitive tool to investigate the entanglement content of strongly corre-
lated systems.

For this reason, we studied the entropic c-function of the D = 3 Ising model. In this
case, no analytical solution is known, and only a few numerical studies are present in
literature [91, 95]. Our analysis matches results of past studies. In addition, we found
that the expression in eq. (5.3), that was derived in ref. [92] using holographic methods, is,
among the functions that we tested, the one that provides the best approximation of the
entropic c-function of the Ising universality class.

As previously stressed, in this work we did not make any extrapolation to the infinite-
volume limit, however our results for large values of the lattice size are close to the ones
obtained from precise studies in the thermodynamic limit [95], therefore we expect that our
algorithm can be a valuable tool for precision studies of universal, subleading corrections
to the entanglement entropy in D ≥ 3 quantum systems. For the three-dimensional Ising
model, the total amount of computing time to obtain our results on the Marconi100 machine
for L

a = 24 was about 270 hours, while for L
a = 48 it was about 620 hours.

Our work opens the path to a number of further studies. In particular, it would be
interesting to apply our algorithm to compute the entropic c-function in gauge theories,
whose study has been severely limited by the high numerical costs that traditional methods
require [38–40, 44, 45, 52, 54] and by the ambiguity of the definition itself of the entanglement
entropy in the presence of a local symmetry (see e.g., refs. [135, 136]). In addition, it would
be interesting to compare the high-precision numerical results that can be obtained using our
algorithm with the analytical predictions derived from the analysis of conformal defects [137].
Finally, it would also be interesting to extend our method to other entanglement measures,
like entanglement negativity [138–140] and/or other recent proposals [141]. We leave these
directions of research for future works.
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A Jarzynski’s theorem

Jarzynski’s theorem is a result of non-equilibrium statistical mechanics that allows one to
express differences of free-energies, or equivalently ratios of partition functions, to averages
over out-of-equilibrium samples [65, 66]. Suppose we want to calculate the free-energy
difference between two statistical systems described respectively by two Hamiltonians Hi

and Hf, that can be continuously connected to each other by tuning a parameter λ, such
that Hλ=0 = Hi and Hλ=1 = Hf. The system, initially at thermal equilibrium, is then
driven out of equilibrium by letting the parameter λ evolve from 0 to 1 at a finite rate, in an
interval of time tf − ti, following a trajectory in the phase space. Along a given trajectory,
we can define the work performed on the system as

W =
∫ tf

ti
dtλ̇∂H

∂λ
(A.1)

Jarzynski’s theorem then states that the exponential average of the work (in units of the
temperature) that is done on the system during its off-equilibrium evolution is equal to the
ratio between the equilibrium partition functions for the system at λ = 0 and λ = 1

〈exp (−W )〉 = Zf

Zi
, (A.2)

where we introduced W = W
T . The average is calculated over the ensemble of trajectories

that the system can follow given the protocol λ(t) which determines its evolution, that is
fixed for all the trajectories. It has to be noted, however, that the result in eq. (A.2) does
not depend on the choice of the protocol that, for this reason, is arbitrary.

Equation (A.2) can be proven as follows. We assume that the system under consideration
is described by a set of degrees of freedom that we collectively denote as φ, and define

πλ[φ] = 1
Zλ
e−Hλ[φ] (A.3)

as the normalized equilibrium distribution at fixed λ. Furthermore, let Pλ[φ, φ′] be the
transition probability at fixed λ, with a normalization∑

φ′

Pλ[φ, φ′] = 1. (A.4)

For all φ, φ′, the detailed-balance condition is satisfied

πλ[φ]Pλ[φ, φ′] = πλ[φ′]Pλ[φ′, φ]. (A.5)

We discretize the time interval [ti, tf] in N subintervals of equal size, such that ε = tf−ti
N and

tk = ti + kε, with k ranging from 0 to N . Furthermore, let φk denote the configuration
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sampled at time tk, when the parameter λ takes the value λk = k
N (without loss of generality

we consider a linear evolution of the parameter). The work done on the system in one
Monte Carlo step is given by

δWk = Hλk+1 [φk]−Hλk [φk], (A.6)

hence the exponential of the work (in units of T ) along a given trajectory reads

exp(−W ) =
N−1∏
k=0

exp
(
−Hλk+1 [φk] +Hλk [φk]

T

)
=

N−1∏
k=0

Zλk+1πλk+1 [φk]
Zλkπλk [φk]

, (A.7)

where in the second equality we used the definition in eq. (A.3). To prove Jarzynski’s
theorem, the previous quantity has to be averaged over the statistical distribution of
out-of-equilibrium trajectories, which can be built iteratively: the initial configuration
is sampled from an equilibrium distribution with probability πλ0 [φ0], while the following
ones are obtained by updating the system through of a sequence of transition probabilities
πλ0 [φ0]Pλ1 [φ0, φ1] . . . Pλk [φk−1, φk]. It follows that the exponential average of W can be
expressed as

〈exp (−W )〉 =
∑
φ0

∑
φ1

· · ·
∑
φN

πλ0 [φ0]
N−1∏
k=0

Zλk+1πλk+1 [φk]Pλk+1 [φk, φk+1]
Zλkπλk [φk]

. (A.8)

As a side remark, note that the discretization introduces an asymmetry in the time evolution,
since the transition probability from time tk to time tk+1 is calculated with respect to the
parameter at time tk+1.

The partition functions appearing on the right-hand side of eq. (A.8) cancel against
each other, except for the ones corresponding to the initial and the final configurations,
leading to a multiplicative factor Zf

Zi
in front of the sums. Then, using the detailed-balance

condition (A.5) in the numerator of eq. (A.8), one obtains

〈exp (−W )〉 = Zf

Zi

∑
φ0

∑
φ1

· · ·
∑
φN

πλ0 [φ0]
N−1∏
k=0

πλk+1 [φk+1]Pλk+1 [φk+1, φk]
πλk [φk]

. (A.9)

In this way all πλ cancel against each other, except for πλN [φN ], and one is left with

〈exp (−W )〉 = Zf

Zi

∑
φ0

∑
φ1

· · ·
∑
φN

πλN [φN ]
N−1∏
k=0

Pλk+1 [φk+1, φk]. (A.10)

In the latter expression the term φ0 appears only in the transition probability Pλ1 [φ1, φ0],
hence one can use the normalization (A.4) to carry out the sum over φ0. The same reasoning
applies for all the sums, except for the last one, ∑φN

. Using the normalization of the
probability distribution ∑φN

πλN [φN ] = 1, one finally obtains

〈exp (−W )〉 = Zf

Zi
, (A.11)

which proves eq. (A.2). This result is crucial for our work and deserves some comments.
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As previously stated, the theorem does not depend on the specific protocol λ(t) that is
used to drive the system out of equilibrium, nor on the rate λ̇ at which the system evolves
(in this case λ̇ = 1

N ). This is true for a sampling with infinite statistics, however in the
case of Monte Carlo simulations with finite statistics, this statement needs some care; in
particular, it is useful to investigate two well known limiting cases of eq. (A.2), namely
N = 1 and N →∞, in order to better understand what happens between these two limits.

Firstly, consider the N = 1 case. In this limit, the parameter λ is switched directly from
λi to λf and, according to the derivation above, no off-equilibrium evolution is needed at all:
the total work expressed by eq. (A.6) is simply given by the difference between initial and
final Hamiltonians, both evaluated on the initial configuration, sampled from a distribution
at equilibrium. In this case, Jarzynski’s theorem reduces to reweighting [142]. Although
reweighting is a method that in principle is exact, it is limited by large uncertainties that
arise when the probability distributions πλi and πλf are poorly overlapping. When this
happens, the average 〈exp(−W )〉 is dominated by very rare configurations in the tail of the
initial distribution, so that (sometimes prohibitively) large statistics is needed to properly
sample the target distribution.

The opposite limit is when N →∞, i.e., when the evolution is infinitely slow and the
system remains in thermal equilibrium at all steps; note that two sources of asymmetry in
the time evolution of the system disappear in this case: firstly, not only the initial one, but
also the configurations at all intermediate steps and the final one are in thermal equilibrium;
secondly, the probability distributions at time tk and tk+1 are essentially overlapping,
meaning that the aforementioned asymmetry, due to the fact that the transition probability
Pλk+1 [φk, φk+1] depends on λk+1, is expected to vanish.

It is now more clear what happens for finite N > 1: in this case the system is driven
out of equilibrium, leading to a statistical distribution of trajectories and fluctuations in the
work calculated. The average appearing in eq. (A.2) is dominated by rare configurations,
however, compared to the reweighting technique, the ensuing potential overlap problem
can be mitigated by increasing N , which makes the distributions πλk and πλk+1 closer to
each other. Note that a simulation algorithm based on Jarzynski’s theorem provides a
natural way to check if the results are biased by poor sampling, simply by checking whether
the results obtained letting the system evolve from λi to λf (direct protocol) or vice versa
(reverse protocol) are consistent with each other (see also ref. [143]):

〈exp (−W )〉direct = 〈exp (−W )〉−1
reverse (A.12)

B A different protocol for the three-dimensional case

Lattice calculations of Rényi entropies and the entropic c-functions present in literature
typically exploit two different techniques. The authors of refs. [41, 47] used reweighting,
whose limitations are discussed in section A of the appendix. The other technique was
typically used in gauge theories [38–40, 44, 45, 52, 54] and is based on the following identity

− log Zf

Zi
= −

∫ 1

0
dλ∂ logZ(λ)

∂λ
=
∫ 1

0
dλ〈Sf − Si〉Z(λ), (B.1)

– 22 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
0

(a) (b) (c)

Figure 10. (a) and (b): off-equilibrium evolution of C2 in D = 3 for protocols 1 and 2, respectively.
(c): comparison of the two protocols close to the end of the out-of-equilibrium evolution. For L

a = 24,
the parameters of the simulations were N = 2.4× 104 and nt = 50, whereas for L

a = 48 they were
N = 7.2× 104 and nt = 75.

where the interpolating partition function is defined as

Z(λ) =
∫
Dφ exp{−(1− λ)Si[φ]− λSf[φ]}. (B.2)

It was pointed out in a recent work [58] that this method is affected by a bad signal-to-noise
ratio since, as λ grows, the algorithm has to sample configurations separated by a large
energy barrier. Motivated by this observation, we also studied the behavior of C2 in D = 3
as a function of the evolution parameter λ during the out-of-equilibrium evolution, finding
an energy barrier also in our case. As shown in figure 10a, the barrier grows with the lattice
size; in particular the ratio between the peak of the barrier and the final value of C2 is
about 10 for L

a = 24, while it is about 50 for L
a = 48 at x close to 0, where C2 takes its

maximum value. While these values of the height of the peak are not extremely large, we
tried to implement a different simulation strategy, inspired by ref. [58], in order to avoid
the barrier.

Notice that in the protocol used in section 5 for the three-dimensional Ising model
(which, from now on, we will call protocol 1) all the 4La couplings at the boundary between
A and B are simultaneously varied. As previously noticed, this is not strictly necessary:
indeed one can divide the couplings in subsets and then let them evolve one subset at a
time. More specifically, in the alternative protocol we tested (protocol 2) we divided the
whole evolution in L

a different subsets, in which only 4 couplings are varied, exactly as in
the two-dimensional case; the number of Monte Carlo steps in which the evolution of a
subset takes place is m = Na

L .
We can then compare the two protocols at fixed N . Using the protocol 2, a single

coupling is driven far from equilibrium more rapidly, however at a given time a smaller
number of couplings is varied, compared to protocol 1.

Figure 10b shows the off-equilibrium evolution of C2 using protocol 2: the energy barrier
has effectively been avoided and the evolution is now characterized by small jumps. However
one can see that at each jump the statistical error increases, in contrast to what happens in
simulations based on the protocol 1. This behavior can be explained as follows: using the
protocol 2, the evolution of each subset can be seen as an independent out-of-equilibrium

– 23 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
0

evolution, but only the first one starts from a thermalized configuration. This implies that
all subsequent configurations are further and further away from equilibrium, leading to a
larger dispersion of trajectories. In particular, one can note that the statistical uncertainties
obtained from simulations based on the protocol 2 are larger than those from protocol 1 by
a factor about 3 for L

a = 24, and about 5 for L
a = 48, see figure 10c. A simple way to fix the

problem is to sample the first step of the evolution from an equilibrium distribution: this is
nothing but the increment trick, with the increment performed in the direction orthogonal
to the entangling surface. Although an explicit study of the performances of such protocol
is beyond the scopes of our work, it would be interesting to compare this algorithm with
protocol 1, as it could further improve the calculation of the entropic c-function in strongly
interacting quantum field theories.

C Systematic uncertainty from the derivative discretization

In our work the derivative of the Rényi entropy was estimated by means of finite differ-
ences. This introduces a systematic error: by using a mid-point approximation the finite
difference reads

S2(l)− S2(l − a)
a

= d
dl S2

∣∣∣∣
l−a2

+ a2

24
d3

dl3 S2

∣∣∣∣
l− l

a

+O
(
a4
)
. (C.1)

Hence the entropic c-function can be written as

CMC
2 (x) = C2(x) + a2

48L2
sin(πx)D−1

πD−1
d3

dx3 S2

∣∣∣∣
x

+O
(
a4

L4

)
, (C.2)

where x = l−a2
L . Therefore we used right-hand side of (C.2) to estimate the systematic

uncertainty associated with the derivative discretization. The third derivative of S2 was
estimated a posteriori : firstly we fitted the data, then we used the best-fit result to calculate
the systematic error. The procedure was repeated until convergence of the systematic
uncertainty.

In all cases that we considered in this work, the third derivative of the fit function
is divergent at x = 0 and at x = 1, then it rapidly becomes zero. Since the divergence
dominates in the sin(πx)D−1 term, the systematic error is expected to become relevant
when x gets close to 0 or to 1.

In D = 2 we chose to estimate the systematic error using the function in eq. (4.2), taking
into account the leading scaling correction; while the scaling function converges to a constant,
the non-universal term is divergent for x = 0 and for x = 1, leading to a larger systematic
uncertainty. To check the validity of our method, we also computed the systematic error by
comparing our results to a higher-order approximation of the derivative, which is accurate
to order O

(
a4): this method has the advantage of being model-independent, but it requires

the evaluation of a larger number of free-energy differences; the systematic error obtained
using this latter approach is nearly equal to the one calculated a posteriori with the function
in eq. (4.2).
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In D = 3 the systematic uncertainties evaluated using the RVB function in eq. (5.2)
and the AdS function in eq. (5.3) are the same, since they both diverge as x−2 for x→ 0,
while the 2D function in eq. (5.1) tends to x−1 in that limit, hence it gives a significantly
smaller contribution to the systematic error. Comparison with higher-order approximations
of the derivative shows that the most accurate estimate of the systematic error is obtained
using the RVB and the AdS functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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