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Chapter 1

Introduction

1.1 Description of the content

This thesis consists of three chapters, which correspond to three articles. The first

appears in [12] and the second is under review [1]. We include them here without

modifications, except for some footnotes. The third chapter is part of a work in

progress.

In the first chapter we introduce a new method. This method uses basic concepts

from model theory to prove old and new Ramsey theorems. It is versatile and easy

to learn. A concise summary of this method is given in Section 3.5.

In Chapter 4 we improve upon the results of Chapter 3, but at the cost of introducing

more technical definitions.

The rest of this introduction is devoted to motivating this work and highlighting

the main results.

1.2 Results

1.2.1 Motivation

We study monoid actions on (partial) semigroups by endomorphisms, a very broad

subject that is of interest to many mathematicians. To motivate our theorems, we

first review the existing literature.

One of the most celebrated theorems in Ramsey theory is due to Hindman [27]:

it states that for every semigroup (S, ·), for every finite coloring of S there is an
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infinite sequence s̄ = (si)i∈ω such that the following set is monochromatic 1

fp(s̄) = {si0 · . . . · sin : n ∈ ω, i0 < · · · < in}.

The original theorem is stated for (N,+), but it is easy to see that if the statement

holds for (N,+) then it holds for any semigroup. 2

The set fp(s̄) has the following closure property: if two elements s = si0 · . . . · sim

and t = sim+1 · . . . · sin belong to fp(s̄), where i0 < · · · < in, then s · t belongs to fp(s̄).

When there is an action on a semigroup, we would like a monochromatic set which

is also closed under the action.

In this thesis, we study the case where a monoid M acts by endomorphisms on a

partial semigroup3 S. Ideally, for every finite coloring of S we would like to find a

sequence (sn)n∈ω of elements of S such that the following set is monochromatic

∗ =
{

m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ M
}

.

This is not always possible (see the discussion right after corollary 3.6.2). Therefore,

we require that suitable subsets of ∗ are monochromatic.

To sum up, let S be a partial semigroup and let M act on S by endomorphisms. Our

problem is to find for every coloring of S large monochromatic subsets of a set of

the form ∗. The definition of these subsets is postponed for some paragraphs.

This problem is far from new. Many theorems in Ramsey theory can be interpreted

as an answer to this problem. Each theorem answers the problem for a particu-

lar choice of M, S, and a subset of ∗. These are e.g. Bergelson-Blass-Hindman

theorem [6], Carlson’s theorem [9], Furstenberg and Katznelson’s Ramsey theorem

[19], Gowers’ FINk theorem[24], Hales-Jewett theorem, ([26]), Lupini’s theorem [33],

which is an infinitary version of Bartosova and Kwiatkowska’s theorem [4], and

Solecki’s theorem [43]. Hindman’s theorem can also be interpreted in this setting,

taking M as the trivial monoid and S as (N,+).

The results above play an important role in many fields of mathematics. Carlson’s

theorem is the motivating example to introduce the notion of topological Ramsey

space [9]. In the same direction, it is the motivating example for the notion of Ram-

sey space, which is deeply studied in the monograph of Todorcevic [47]. Gowers

proved his FINk theorem (and its symmetric version) as a tool to solve an old prob-

lem in Banach spaces [24]. Hales-Jewett theorem has among its corollaries Van der

1A finite coloring of S is a map from S to a finite set {0, . . . , k − 1}, and a monochromatic set is a

subset of S which is contained in the preimage of some i < k.
2Given a semigroup S and an element s ∈ S one can consider the map n 7→ sn to define a coloring on

N and then derive the theorem for the semigroup S.
3A partial semigroup is a set S with an operation (S ∪ {⊥})2 → S ∪ {⊥} -where ⊥ stands for "not

defined"- such that ⊥ x =⊥= x ⊥ and such that if (xy)z ̸=⊥ or x(yz) ̸=⊥ then (xy)z = x(yz). An

endomorphism is a map x 7→ mx such that if xy ̸=⊥ then m(xy) = (mx)y ̸=⊥.
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Waerden’s theorem [48]. Its density version, proved by Furstenberg and Katznel-

son with techniques from ergodic theory [20], is one of the highest peaks of the

area, being stronger than Szemeredi’s theorem on arithmetic progressions [44]. An-

other important generalization of Hales-Jewett theorem is its polynomial extension,

found by Bergelson and Leibman [7]. Bartosova and Kwiatkowska applied their re-

sults to prove that a certain group of homeomorphisms of the Lelek fan is extremely

amenable. Lupini continued his work in a slightly different direction. He studied

actions of trees on semigroups, and applied his results to amenable groups [34].

1.2.2 Ramsey monoids

Let us introduce a partial semigroup, together with a monoid action, which is uni-

versal in a sense explained in the proposition below.

For a monoid M, let FINM be the set of all partial functions with finite domain from

N to M. Elements of FINM are called located words. There is a partial associative

operation on FINM: given f and g such that all elements of the domain of f are

smaller than all elements of the domain of g, define the product to be the union of

the two functions. We consider FINM together with the coordinate-wise action of

M on FINM, i.e. the action f 7→ a f such that (a f )(n) = a f (n) for every f ∈ FINM

and n ∈ N. A variable located word is an element of FINM that has at least a 1 in its

range.

We say that a sequence t̄ in a partial semigroup S with an action of M on S is basic

if m0ti0 · . . . · mntin is defined for every i0 < . . . < in and m0, . . ., mn ∈ M.

Let us introduce one of the most important subsets of ∗: it is closely related to the

notion of block subspace in Banach space theory, which is pervasive in the work of

Gowers (see for example [22], [23]).

Definition Let M be a monoid acting by endomorphisms on a partial semigroup S, and let

s̄ be a basic sequence of elements of S. The (combinatorial) M-span of s̄ is the set

⟨s̄⟩M =
{

m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ M, at least one mi is 1M
}

.4

The next definition introduces a quasi-order which is central in the definition of

topological Ramsey space by Carlson [9].

Definition Given a partial semigroup S and two infinite sequences s̄, t̄ of elements of S,

we say that s̄ is extracted from t̄, or s̄ ≤M t̄, if there is an increasing sequence (in)n∈ω of

natural numbers such that sn ∈ ⟨tin , . . . , t(in+1)−1⟩M
.

As mentioned above, FINM is universal: the existence of monochromatic M-spans

4Notice that if s̄ = s0 . . . sk−1 is a sequence of variable located words then every element of ⟨s̄⟩M can

be written as m0si0 · . . . · mnsin in an unique way. This implies that ⟨s̄⟩M is as large as possible.
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in FINM implies the existence of monochromatic M-spans in every other semigroup

on which M acts.

Proposition (Proposition 3.6.1) For a monoid M the following are equivalent.

1. For every finite coloring of FINM there is an infinite basic sequence of variable located

words with monochromatic M-span.

2. For every partial semigroup S on which M acts by endomorphisms, for every basic

sequence t̄ ∈ Sω, for every finite coloring of S there is a sequence s̄ ≤M t̄ such that

⟨s̄⟩M is monochromatic.

Finally, one of the main definitions of this work:

Definition We say that a monoid is Ramsey if one of the equivalent statements in the

Proposition above holds.5

If a monoid is Ramsey then apparently stronger statements hold. For example, one

can always find a sequence s̄ such that the set ∗ is partitioned in at most |X(M)|
many monochromatic subsets, where X(M) = {aM : a ∈ M} (see Corollary 3.6.2).

Carlson’s theorem and Gowers’ FINk theorem correspond to the statement that cer-

tain monoids are Ramsey. It can be shown that Bergelson-Blass-Hindman theorem

and Hales-Jewett theorem are a consequence of Carlson’s theorem.

After Carlson’s and Gowers’ theorems, the main result about Ramsey monoids was

found by Solecki. A monoid is said almost R-trivial if aM = bM and a ̸= b imply

Ma = a.

Theorem (Solecki, [43]) If a monoid is finite, almost R-trivial, and X(M) is linearly

ordered by inclusion, then M is Ramsey. If M is Ramsey then X(M) is linearly ordered by

inclusion.

Our theorem generalizes Solecki’s theorem and gives an algebraic characterization

of Ramsey monoids. A monoid M is aperiodic if for every a ∈ M there is n such that

an = an+1: one of our main results is the following theorem.

Theorem (Corollary 4.3.8) A monoid is Ramsey if and only it is finite, aperiodic and

X(M) is linearly ordered by inclusion.

1.2.3 Y-controllable monoids

Being Ramsey is a very strong condition. Some theorems have a weaker statement,

such as Furstenberg and Katznelson’s Ramsey theorem [19]. Inspired by this theo-

5The original definition, given by Solecki, has some advantages but is slightly longer: we postpone it

to Chapter 3. It is equivalent, as shown in Proposition 3.6.1.
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rem, Solecki isolated a condition for monoids, weaker than being Ramsey. We call

the monoids satisfying this condition Y-controllable. Furstenberg and Katznelson’s

theorem is a consequence of the fact that some monoids are Y-controllable.

Roughly speaking, a monoid M is Y-controllable if in a big portion of a set of the

form ∗, the colors are easily controlled by a partial order, called (Y(M),≤Y). This

partial order captures the behaviour of the linear parts of (X(M),⊆).

We will see that a monoid is Ramsey if and only if it is Y-controllable and X(M) is

linearly ordered by inclusion. If a monoid M is Y-controllable we have a Ramsey

theorem even if X(M) is not linearly ordered by inclusion.

Definition Given a monoid M, Y(M)⊆ P(X(M)) consists of the non-empty subsets of

X(M) which are linearly ordered by inclusion. Given x, y ∈ Y(M), define x ≤Y(M) y if

x ⊆ y and all elements of y \ x are larger with respect to ⊆ than all elements of x.

Let ⟨Y(M)⟩, with operation ∨, be the semigroup freely generated by Y(M) modulo

the relations

p ∨ q = q = q ∨ p for p ≤Y(M) q.

Definition A monoid M is Y-controllable if for every finite F ⊆ ⟨Y(M)⟩, for every y

maximal element in Y(M), and for every finite coloring of FINM there is a sequence s̄ ∈
(FINM)ω of variable words such that for every f ∈ F the following set is monochromatic

∗ f =
{

m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ M, m0y ∨ · · · ∨ mny = f
}

.

Solecki proved the following.

Theorem (Solecki, [43]) If a monoid is finite and almost R-trivial then it is Y-controllable.

In a monoid M, define the equivalence relation R as aRb if and only if aM = bM.

Let XR(M)= {aM : [a]R has more than one element}.

Our main results on Y-controllable monoids are summarized in the following the-

orem. Our theorem gives examples of Y-controllable monoids of any cardinality.

Theorem (Theorem 4.5.4) Let M be an aperiodic monoid such that XR(M) is linearly

ordered by inclusion. Assume that there are no infinite chains in (X(M),⊆) and there are

no infinite R-classes. Then, M is Y-controllable.

In the other direction, let M be a Y-controllable monoid. Then, M is aperiodic. Also, for

every element a ∈ M and maximal y ∈ ⟨Y(M)⟩ the set {a′y : a′y ≤Y ay} is finite.

In the following proposition (Proposition 3.7.1) we find Y-controllable monoids

where XR(M) is not linear.

Proposition Let M be a finite, aperiodic monoid, such that for every distinct a, b ∈ M with

aR b, we have a2 = a and ax = bx for every x ∈ M \ {1}. Then, M is Y-controllable.
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1.2.4 Locally Ramsey, locally Y-controllable

One of the most immediate questions at this point is what can be said for infinite

monoids. To obtain monochromatic M-spans, our techniques require finiteness at

a certain point. Namely, we have to encode the monoid action with a first-order

formula (see methods section 1.3).

The most natural approach for infinite monoids is to search for monochromatic

subsets of ∗, where the action is limited to finite subsets of the monoid. Follow-

ing what has been done for Carson’s theorem, also called infinitary Hales-Jewett

theorem ([47], Theorem 4.21), we give the following definitions.

Definition Let M be a monoid acting on a partial semigroup S and let s̄ ∈ Sω be a basic

sequence. Let (Mi)i∈ω be a sequence of finite subsets of M. The (Mi)-span of S is the set

⟨s̄⟩(Mi)
=

{
m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ Mi, at least one mi is 1M

}
.

Definition A monoid M is locally Ramsey if for every finite coloring of FINM and for

every sequence (Mi)i∈ω of finite subsets of M there is an infinite sequence s̄ of variable

located words with monochromatic (Mi)-span.

In Chapter 3, we obtain the following characterization.

Theorem (Theorem 4.5.5) Let M be a monoid. Then, M is locally Ramsey if and only if

M is aperiodic and X(M) is finite and linearly ordered by inclusion.

The next definition is a natural generalization of Y-controllable. As before, we

require mi ∈ Mi, where Mi are finite subsets of M.

Definition A monoid M is locally Y-controllable if for every finite F ⊆ ⟨Y(M)⟩, for

every y maximal element in Y(M), for every sequence (Mi)i∈ω of finite subsets of M, and

for every finite coloring of FINM there is a sequence s̄ ∈ (FINM)ω of variable words such

that for every f ∈ F the following set is monochromatic

∗ f ,(Mi)
=

{
m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ Mi, m0y ∨ · · · ∨ mny = f

}
.

As in the case of Y-controllable monoids, we do not have an algebraic character-

ization of locally Y-controllable monoids. However, our results may suggest the

possible final characterization (see open problems section).

Theorem (Theorem 4.5.3) Let M be an aperiodic monoid such that XR(M) is linearly

ordered by inclusion. Assume that there are no infinite chains in (X(M),⊆). Then, M

is locally Y-controllable. In the other direction, let M be a locally Y-controllable monoid.

Then, M is aperiodic. Also, for every a ∈ M and maximal y ∈ ⟨Y(M)⟩ the set {a′y :

a′y ≤Y ay} is finite.

Proposition 3.7.1 gives examples of (locally) Y-controllable monoids where XR(M)
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is not linear.

1.2.5 Other results

In Chapter 2, we introduce a relation−< in order to strengthen some classical results.

We further require that the sequence s̄ ∈ Sω with monochromatic span can be taken

such that sn−< sn+1 for every n ∈ ω.

Taking Hindman’s theorem as example,−< can be any relation satisfying the follow-

ing two conditions:

1. for every finite A ⊆ S there is a c such that A−< c.

2. a−< b−< c implies a−< b·c for all a, b, c ∈ S.

In Lemma 2.8.1 a generalization of Gowers’ FINk Theorem is found. There, we

consider a semigroup together with a set of endomorphisms. This set of endomor-

phisms may be not closed under composition. Hence, Lemma 2.8.1 does not fit

easily in the context of monoid actions.

1.3 Methods

The most celebrated proof of Hindman’s theorem is due to Galvin and Glazer.

It was first published in Comfort’s survey [13]. Galvin and Glazer’s proof uses

idempotents in βN, the space of ultrafilters over N. The space βN is a compact

right topological semigroup6, with product defined by

U ∗ V =
{

A ⊆ N : {x ∈ N : {y ∈ N : xy ∈ A} ∈ V} ∈ U
}

.

Idempotents in compact right topological semigroups continue to have a central role

in this area of Ramsey theory. Meanwhile, new techniques have emerged to avoid

the use of ultrafilters and to bring new insights from other areas of mathematics.

Most notably, two disciplines play an important role in Ramsey theory: ergodic

theory [5], and methods from non-standard analysis [14].

In this thesis, we use model theory instead of ultrafilters, and the space of types

instead of βN.

We define a semigroup operation ·G on the space of types S(G) over a semigroup

G. It is convenient to use a saturated elementary extension G of the semigroup G.

The extension G is often called a monster model.

We write a ⌣G b, for a, b ∈ G, if tp(a/Gb) is finitely satisfied in G. We think ⌣G as

a form of independence. We assume it is 1-stationary, which is defined as follows.
6A compact right topological semigroup is a semigroup U with a compact topology such that the

map x 7→ xu is continuous, for every u ∈ U.
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Definition If a ≡G x ⌣G b is a complete type (over G, b) for every a ∈ G and b ∈ G<ω

we say that ⌣G is 1-stationary.

Now we define the product of two types. It corresponds to the product of ultrafilters

but it is arguably more intuitive. The product of two types is the type of two

independent realizations of the types.

Definition Assume ⌣G is 1-stationary. Let a, b ∈ G, then tp(a/G) ·G tp(b/G) is the

type tp(a′ · b′/G), for any couple a′ ≡G a, b′ ≡G b such that a′ ⌣G b′.

If ⌣G is 1-stationary, then the product ·G is well-defined. In this case, (S(G), ·G) is

a compact right topological semigroup (Proposition 3.5.2).

If the theory of G is stable, then ⌣G is 1-stationary. A trick allows us to work

with any semigroup G. If we add every subset of G to the language, then ⌣G is

1-stationary.

The key notion for this method is an old one: a coheir sequence.

Definition We say that the tuple c̄ is a coheir sequence of p(x) over G if cn ⊨ p(x) and

cn ⌣G c̄↾n and cn+1 ≡G, c̄↾n cn for every n < ω.

In particular, a coheir sequence c̄ is indiscernible over G, i.e. c̄↾I0 ≡G c̄↾I1 for every

I0, I1 ⊆ ω of equal finite cardinality.

Here, we outline the strategy we use to prove that a monoid M is Ramsey.

▷ Find an idempotent type u ∈ S(FINM) such that mu ·G u = u = u ·G mu for

every m ∈ M. We require that elements satisfying u are variable words. 7

▷ Consider a coheir sequence of u, with reverse order. Prove that this sequence

has a monochromatic M-span.

▷ Use the coheir sequence to obtain a sequence of words in FINM with the same

properties, i.e. a sequence of variable words with monochromatic M-span.

A coheir sequence has two key features for the last two steps of this strategy to

work.

▷ ci ⌣G ci−1 · . . . · c0 for every i ∈ ω: this implies that tp(∏
i≤n

ci/G) = ∏
i≤n

tp(ci/G).

It also implies that tp(∏
i≤n

mici/G) = ∏
i≤n

tp(mici/G) for any mi ∈ M, i ≤ n.

▷ tp(cn/Gcn−1 . . . c0) is finitely satisfied in G: this can be used to find a sequence

in the model with the same first-order properties of the coheir sequence. Here

we need that the colors and the monoid action are definable.

7We prove a more general statement. In fact, there is an idempotent with these properties for every

action of M by continuous endomorphisms on any compact right topological semigroup. The variable

word condition becomes an ideal condition.
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This strategy was first developed to prove Ramsey’s theorem, Hindman’s theorem,

and Carlson’s theorem. This strategy is versatile. For example, we use it to prove

that some monoids are Y-controllable, even in the elaborate context of sequences of

M-pointed sets.

Our method has connections with the non-standard method. There, the product is

defined through the star map b 7→∗ b. Given two elements a and b in a semigroup

(S, ·), they consider the product a ·∗ b (see [15]). This corresponds to considering

the product of two independent elements, in the sense of ⌣G. The non-standard

method proved to be a powerful tool in Ramsey theory. This work wants to show

that model theory may have a similar role.

1.4 Open problems

The following open problems are a natural continuation of our work.

Conjecture A monoid M is Y-controllable if and only if it is aperiodic, there are no infinite

chains in (X(M),⊆), and there are no infinite R-classes.

From this conjecture would follow that a finite monoid is aperiodic if and only

it is Y-controllable. This could uncover an interesting connection with automata

theory, since the class of finite aperiodic monoids corresponds to the class of star-

free languages, through the celebrated Schützenberger’s theorem [41]. A partial

connection with Schützenberger’s theorem is already given by the characterization

of Ramsey monoids.

Conjecture A monoid M is locally Y-controllable if and only if it is aperiodic and there

are no infinite chains in (X(M),⊆).

In this thesis, we characterize Ramsey monoids. This does not characterize all the

monoid actions on a semigroup S such that for every finite coloring of S there is a

monochromatic span. Hence, the following is an interesting research line.

Open Problem Characterize the couples (S, M), where S is a partial semigroup, and M

is a monoid acting on S by endomorphisms, for which for every finite coloring of S, and for

every ideal I ⊆ S there is a sequence s̄ of elements of I such that ⟨s̄⟩M is monochromatic8.

This problem is particularly appealing in the case of S = FINM for some M.

Lupini’s theorem exemplifies an action of a monoid M′ on FINM such that M′

is not Ramsey, and such that there is always a monochromatic M′-span [33].

8An ideal I of a semigroup S is a set I ⊆ S such that IS ⊆ I and SI ⊆ I.

12



Chapter 2

Ramsey’s coheirs

Abstract

We use the model theoretic notion of coheir to give short proofs of old and new

theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem

itself. Then we prove Hindman’s theorem and the Hales-Jewett theorem. Finally, we

prove two Ramsey theoretic principles that have among their consequences partition

theorems due to Carlson and to Gowers.

2.1 Introduction

Ramsey theory has substantial and diverse applications to many parts of mathemat-

ics. In particular, Ramsey’s theorem has foundational applications to model theory

through the Ehrenfeucth-Mostowski construction of indiscernibles and generaliza-

tions thereof. In this paper we explore the converse direction, that is, we use model

theory to obtain new proofs of classical results in Ramsey Theory.

The Stone-Čech compactification, obtained via ultrafilters, is a widely employed

method for proving Ramsey theoretic results. One of its first major applications is

the celebrated Galvin-Glazer proof of Hindman’s theorem, see e.g. [8]. Our meth-

ods are related, but alternative, to the ultrafilter approach. We replace βG (the

Stone-Čech compactification of a semigroup G) with a large saturated elementary

extension of G, i.e. a monster model of Th(G/G). One immediate advantage is

that we work with elements of a natural semigroup with a natural operation. In

contrast, elements of βG are ultrafilters, that is, sets of sets, and the semigroup

operation among ultrafilters is far from straightforward.

This idea is not completely new: in his seminal work on the applications of topolog-

ical dynamics to model theory [37, 38], Newelski replaces the semigroup βG with

the space of types over G with a suitably defined operation. Our approach is sim-
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ilar, except that, unlike Newelski, we do not pursue connections with topological

dynamics, but rather offer an alternative realm of application. The investigation of

alternative methods in the study of regularity phenomena has been called for by Di

Nasso [14, Open problem #1]. This article contains a possible answer.

The model theoretic tools employed in this paper are relatively basic. Section 2.2 is

meant to give an accessible overview of the necessary notions for readers whose ex-

pertise is not primarily in model theory. Our results do not require assumptions of

model theoretic tameness such as stability, NIP, etc., much like those that use non-

standard analysis, for example in [15]. Investigating the effect of such assumptions

remains as future work.

The second author is grateful to Pierre Simon for suggesting the comparison with

nonstandard analysis. Both authors would like to thank Vassilis Kanellopoulos for

helpful conversation. When this paper was essentially complete, we became aware

of [2], which is worth mentioning since it employs similar methods in a related

context.

***

The paper is divided into two parts. In the first part we prove that the notion of

coheir leads to short and elegant proofs of well-known results. Most proofs in this

part may be considered folklore, though they have not appeared in the literature so

far. They are included here to provide a self-contained, gentle introduction to the

techniques that are used in the second part.

As a preliminary illustrative step, we present a proof of Ramsey’s theorem (Theo-

rem 2.3.1). Then we prove a generalization of Hindman’s theorem (Theorem 2.5.1),

which is required in the second part of the paper. We also show how to combine

Ramsey’s and Hindman’s theorems in a single proposition – the Milliken–Taylor

theorem (Theorem 2.5.3). Finally, we prove an abstract algebraic version of the

Hales-Jewett theorem (Theorem 2.6.4) due to Sabine Koppelberg [31].

In the second part of the paper we prove two Ramsey-theoretic properties of semi-

groups (Lemmas 2.7.1 and 2.8.1). As an application, we derive a generalization of

Carlson’s theorem on colourings of variable words which we present in the style of

Koppelberg (Theorem 2.7.2) and in its classical form (Corollary 2.7.3). Lemma 2.8.1

is a partition theorem that generalizes Gowers’ FINk Theorem [24] in a different

direction than [33].

The extent of the generalizations mentioned above is limited, and they could be

obtained in other ways, but our motivation here is to show the use and relevance

of model theoretic methods. Numerous papers in the literature strengthen or gen-

eralize the partition theorems considered here. The comparison of the results that

appear in these papers is not always straightforward – a few are compared in Chap-
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ter 31

***

The proofs in this paper require a modicum of familiarity with model theory. How-

ever, the results can be stated in an elementary language, and in the rest of this

introduction we introduce the necessary terminology.

Throughout the paper G is a semigroup and Σ a non-empty set of endomorphisms

of G. For ā ∈ G≤ω we write

fpΣ ā=
{

σ0 ai0 · · · · · σk aik : i0 < · · · < ik < |ā|, σ̄ ∈
(
Σ ∪ {idG}

)k+1, k < |ā|
}

Overlined symbols, such as ā or σ̄, always denote a tuple, and ai, σi denotes the i-th

entry of that tuple.

When Σ is empty, we write fp ā.

2.1.1 Example For future reference, we instantiate the definition above in the context of

free semigroups. Let G be the set of words on a finite alphabet A ∪ {x}, where x is

a symbol not in A which we call variable. Let C be the set of words on the alphabet

A. Words in C are called constant words, while those in G ∖ C are called variable

words. When G is endowed with the operation of concatenation of words, C and

G ∖ C are subsemigroups of G. For t ∈ G and a ∈ A, let t(a) be the word obtained

by replacing all the occurrences of x in t by a. Note that the map σa : t 7→ t(a) is an

endomorphism of G. In the literature, when G is as above and Σ = {σa : a ∈ A},

the elements of fpΣ s̄ are called extracted words. We say that a tuple ā ∈
(
fpΣ s̄

)ω is

an extracted sequence if ai ∈ fpΣs↾ [ni ,ni+1)
for some increasing sequence of positive

integers ⟨ni : i < ω⟩. If, moreover, ai /∈ C for all i, we say that ā is an extracted

variable sequence of s̄. □

The following definition will be used to express our results in the general context

of semigroups.

2.1.2 Definition Let −< be a binary relation on G. We say that G is −<-covered if for every

finite A ⊆ G there is a c such that A−< c. If c can be found in some fixed B ⊆ G, we say

−<-covered by B. We say that G is ·−<-closed if a−< b−< c implies a−< b·c for all a, b, c ∈ G.

A−<-chain in G is a tuple ā ∈ G≤ω such that ai−< ai+1.

The preorder relation given by the length of the words on a free semigroup G is

a natural example that is both ·−<-closed and −<-covered. A less straightforward

relation is used in the proof of Theorem 2.7.2.

Finally, we recall two standard notions. Let C ⊆ G be a subsemigroup. We say that

C is nice if a · b ∈ C implies a, b ∈ C2. A homomorphism σ : G → C such that

σ↾C = idC is called retraction of G onto C. Note that the set of constant words in

1See Proposition 3.6.1 and the discussion after Open Problem 3.7.2.
2Equivalently, if G \ C is a both-sided ideal.
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Example 2.1.1 is a nice subsemigroup and that the maps σa are retractions.

We are now ready to state Lemma 2.7.1.

Lemma Let Σ be a finite set of retractions of G onto a nice subsemigroup C. Let

−< be a relation on G that makes it ·−<-closed and −<-covered by G ∖ C. Then, for

every finite coloring of G, there is a −<-chain ā ∈ (G ∖ C)ω such that fpΣ ā ∖ C is

monochromatic. □

When C and Σ are empty and−< holds for all pairs, the lemma reduces to Hind-

man’s theorem (Theorem 2.5.1).

The appropriate choice of G, C, Σ and−< yields Carlson’s partition theorem (in par-

ticular no model theoretic argument is necessary, see Theorem 2.7.2 and its Corol-

lary 2.7.3).

In the last section we prove Lemma 2.8.1 which is similar to the lemma above but

deals with composition of homomorphisms. This is also stated in an elementary

language and a general version of a partition theorem by Gowers is derived from it.

2.2 Coheirs, and coheir sequences

We assume that the reader is familiar with undergraduate model theory and in

this section we only review the few prerequisites that go beyond that. Proofs are

omitted. The reader may consult any standard model theory textbook e.g. [46] (the

intrepid reader may consult [49], some lecture notes which use the same notation

and quirks as this paper). The notation and terminology are standard with the

possible exception of Definitions 2.2.3 and 2.2.5.

A sequence is a function whose domain is a linear order. A tuple is a sequence whose

domain is an ordinal. The domain of the tuple c is denoted by |c| and is called the

length of c.

2.2.1 Notation Sometimes (i.e. not always) we may overline tuples as mnemonic. When

a tuple c̄ is introduced, ci denotes the i-th element of c̄. We write c↾I , where I ⊆ |c̄|,
for the tuple which is naturally associated to the restriction of c̄ to I. The bar is

dropped for ease of notation. □

We denote the monster model by U or, when dealing with semigroups, by G. We

always work over a fixed set of parameters A ⊆ U. When this set is a model, as it

will often be, we denote it by M, or G in the case of semigroups.

We say that a type p(x) is finitely satisfied in A if every conjunction of formulas in

p(x) has a solution in A|x|. A global type that is finitely satisfiable in A is invariant

over A.

If M is a model every consistent type p(x) ⊆ L(M) is finitely satisfied in M. For
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this reason in a few points in this paper it is necessary to work over a model. For

simplicity, we always assume this.

The following is an easy, well-known fact.

2.2.2 Proposition Every type q(x) ⊆ L(U) that is finitely satisfiable in M has an extension to

a global type finitely satisfiable in M. □

If p(x) is finitely satisfied in M, the extensions of p(x) that are also finitely satisfied

in M are called coheirs of p(x).

In many cases it is useful to focus on elements instead of their types. We introduce

the following notation to express that tp(a/M, b) is finitely satisfied in M. (The

notion is standard in model-theory, it has no standard notation though.)

2.2.3 Definition For every a ∈ U|x| and b ∈ U|z| we define

a ⌣M b⇔φ(a ; b) for all φ(x ; z) ∈ L(M) such that M|x| ⊆ φ(U|x| ; b)

We call this the coheir-heir relation. We define the type

x ⌣M b=
{

φ(x; b) : φ(x; b) ∈ L(M) and M|x| ⊆ φ(U|x|; b)
}

.

The tuples a realizing this type are those such that a ⌣M b. We will use the symbol

a ≡M x ⌣M b for the union of the types x ⌣M b and tp(a/M). □

We imagine a ⌣M b as saying that a is independent from b over M. This is a very

strong form of independence. In general it is not symmetric, that is, a ⌣M b is not

the same as b ⌣M a (symmetry is equivalent to stability).

We shall use, sometimes without reference, the following easy lemma.

2.2.4 Lemma The following properties hold for all small M, a, b, and c

1. a ⌣M b ⇒ f a ⌣M f b for every f ∈ Aut(U/M) invariance

2. a ⌣M b ⇔ a0 ⌣M b0 for all finite a0 ⊆ a and b0 ⊆ b finite character

3. a ⌣M b, c and b ⌣M c ⇒ a, b ⌣M c transitivity

4. a ⌣M b ⇒ there exists a′ ≡M, b a such that a′ ⌣M b, c coheir extension □

Note that a ≡M x ⌣M b is the intersection of all types in S(M, b) that are coheirs of

tp(a/M). As there may be more than one of such coheirs, a ≡M x ⌣M b need not

be a complete over M, b. In fact, completeness is a rather strong property.

2.2.5 Definition If a ≡M x ⌣M b is a complete type (over M, b) for every a ∈ U|x|, every

b ∈ U<ω, and every tuple of variables x, then we say that ⌣M is stationary. We say
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n-stationary if the requirement above is restricted to |x| = n. □

Stationarity is often ensured by the following property.

2.2.6 Proposition Fix a tuple of variable x of length n. If for every φ(x) ∈ L(U) there is a

formula ψ(x) ∈ L(M) such that φ(M|x|) = ψ(M|x|) then ⌣M is n-stationary. □

2.2.7 Remark Stationarity of ⌣M over every model M is equivalent to the stability of T.

However, in unstable theories the assumption may hold for some particular model.

For example, if every subset of Mn is the trace of a definable set, then ⌣M is n-

stationary by the proposition above. This simple observation will be of help in the

proof of Theorem 2.5.1. For natural example let T = Tdlo and let M ⊆ U have the

order-type of R. By quantifier elimination every definable of U is union of finitely

many intervals. By Dedekind completeness, the trace on A of any interval of U

coincides with that of an M-definable interval. □

Let p(x) ∈ S(U) be a global type that is finitely satisfiable in M. We say that the

tuple c̄ is a coheir sequence of p(x) over M if for every i < |c̄|

ci⊨p↾M,c↾i (x).

The following is a convenient characterization of coheir sequences.

2.2.8 Lemma For c̄ a tuple of length ω, the following are equivalent

1. c̄ is a coheir sequence over M;

2. cn ⌣M c↾n and cn+1 ≡M, c↾n cn for every n < ω. □

Let I,<I be a linear order. We call a function ā : I → U|x| an I-sequence, or simply a

sequence when I is clear.

If I0 ⊆ I we call a↾I0 , the restriction of ā to I0, a subsequence of ā. When I0 is finite

we identify a↾I0 with a tuple of length |I0|.

2.2.9 Definition Let I,<I be an infinite linear order and let ā be an I-sequence. We say that a is

a sequence of indiscernibles over A or, a sequence of A-indiscernibles, if a↾I0 ≡A a↾I1

for every I0, I1 ⊆ I of equal finite cardinality. □

The following can be easily derived from the lemma above by induction.

2.2.10 Proposition Every sequence of coheirs over M is M-indiscernible. □
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2.3 Ramsey’s theorem from coheir sequences

We illustrate the relation between coheirs and Ramsey phenomena in the simplest

possible case: Ramsey’s theorem. The subsequent sections build on this proof for

more sophisticated results.

In this chapter we deal with finite partitions. The partition of a set X into k subsets

is often represented by a map f : X → [k]. The elements of [k] = {1, . . . , k} are also

called colors, and the partition a coloring, or k-coloring, of X. We say that Y ⊆ X is

monochromatic if f is constant on Y.

Let M be an arbitrary infinite set. Fix n, k < ω and fix a coloring f of the set of all

n-subsets of M, aleas the complete n-uniform hypergraph with vertex set M,

f :
(

M
n

)
→ [k].

We say that H ⊆ M is a monochromatic subgraph if the subgraph induced by H is

monochromatic. In the literature monochromatic subgraphs are also called homoge-

neous sets.

The following is a very famous theorem which we prove here in an unusual way.

The proof will serve as a blueprint for other constructions in this paper.

2.3.1 Theorem Let M be an infinite set. Then for every positive integer n and every finite color-

ing of the complete n-uniform hypergraph with vertex set M there is an infinite monochro-

matic subgraph.

Proof Let L be a language that contains k relation symbols r1, . . . , rk of arity n.

Given a k-coloring f we define a structure with domain M. The interpretation of

the relation symbols is

rM
i =

{
a1, . . . , an ∈ M : f

(
{a1, . . . , an}

)
= i

}
.

We may assume that M is an elementary substructure of some large saturated model

U. Pick any type p(x) ∈ S(U) finitely satisfied in M but not realized in M and let

c̄ = ⟨ci : i < ω⟩ be a coheir sequence of p(x).

There is a first-order sentence saying that the formulas ri(x1, . . . , xn) are a coloring

of (M
n ). Then by elementarity the same holds in U. By indiscernibility, all tuples of

n distinct elements of c̄ have the same color, say 1. We now prove that there is a

sequence ā = ⟨ai : i < ω⟩ in M with the same property.

We construct a↾i by induction on i as follows.

Assume as induction hypothesis that the subsequences of length n of a↾i, c↾n all have

color 1. Our goal is to find ai ∈ M such that the same property holds for a↾i, ai, c↾n.

By the indiscernibility of c̄, the property holds for a↾i, c↾n, cn. And this can be written
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by a formula φ(a↾i, c↾n, cn). As c̄ is a coheir sequence, by Lemma 2.2.8 we can find

ai ∈ M such that φ(a↾i, c↾n, ai). So, as the order is irrelevant, a↾i, ai, c↾n satisfies the

induction hypothesis. □

2.4 Idempotent orbits in semigroups

In this and the following sections we fix a semigroup G which we identify with a

first-order structure. The language contains, among others, the symbol · which is

interpreted as a binary associative operation on G. We write G for a large saturated

elementary extension of G.

For any two sets A,B ⊆ G we define

A ·G B =
{

a·b : a ∈ A, b ∈ B and a ⌣G b
}

In this and the next section we abbreviate O(a/G), the orbit of a under Aut(G/G),

with aG. We write a ·G B for O(a/G) ·G B. Similarly for A ·G b and a ·G b.

2.4.1 Lemma If A is type definable over G then so is A ·G b for any b.

Proof The set A ·G b is the union of A ·G {c} as c ranges in bG. The set A ·G {c} is

type definable, say by the the type ∃y p(x, y, c) where

p(x, y, c) = y ⌣G c ∧ y·c = x ∧ y ∈ A

Note that, by the invariance of ⌣G, if f ∈ Aut(G/G), then ∃y p(x, y, f c) defines

A ·G { f c}. Therefore if q(z) = tp(b/G) then ∃y, z
[
q(z) ∪ p(x, y, z)

]
defines A ·G b. □

By the invariance of ⌣G, for every f ∈ Aut(G/G) we have f [A ·G B] = f [A] ·G f [B].

Therefore when A and B are invariant over G, also A ·G B is invariant over G. Below

we mainly deal with invariant sets.

2.4.2 Proposition For all G-invariant sets A, B, and C

A ·G
(
B ·G C

)
⊆

(
A ·G B

)
·G C.

Proof Let a·b·c be an arbitrary element of the l.h.s. where a ⌣G b·c and b ⌣G c.

By extension (Lemma 2.2.4), there exists a′ such that a ≡G, b·c a′ ⌣G b·c, b, c. By

transitivity (again Lemma 2.2.4), a′·b ⌣G c. Therefore a′·b·c belongs to the r.h.s.

Finally, as a′ ≡G, b·c a, also a·b·c belongs to the r.h.s. by invariance. □

Let A be a non-empty set. When A ·G A ⊆ A, we say that it is idempotent (over G).

2.4.3 Corollary Assume B ⊆ A are both G-invariant. Then if A is idempotent, also A ·G B is

idempotent.

Proof We check that if A is idempotent so is A ·G B(
A ·G B

)
·G

(
A ·G B

)
⊆ A ·G

(
A ·G B

)
because A ·G B ⊆ A

⊆
(
A ·G A

)
·G B by the lemma above
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⊆ A ·G B □

We show that, under the assumption of stationarity, the operation ·G is associative.

The quotient map G → G/≡G is almost a homomorphism.

2.4.4 Proposition Assume ⌣G is 1-stationary, see Definition 2.2.5. Fix a ⌣G b arbitrarily.

Then a′·b′ ≡G a·b for every a′ ≡G a and b′ ≡G b such that a′ ⌣G b′. Or, in other words,

(a·b)G = a ·G b.3

Proof We prove two inclusions, only the second one requires stationarity.

⊆ As a ⌣G b holds by hypothesis, a·b ∈ a ·G b. The inclusion follows by invariance.

⊇ By invariance it suffices to show that the l.h.s. contains a ·G {b}. Let a′ ∈ aG such

that a′ ⌣G b. We claim that a′·b ∈ (a·b)G. Both a and a′ satisfy a ≡G x ⌣G b. By

1-stationarity, a ≡G, b a′. Hence a·b ≡G a′·b. □

2.4.5 Corollary (associativity) Assume ⌣G is 1-stationary. Then for all G-invariant sets A,

B and C

A ·G
(
B ·G C

)
=

(
A ·G B

)
·G C.

Proof We can assume that A, B and C are G-orbits. Say of a, b, and c respectively.

We can assume that a ⌣G b·c and b ⌣G c. By Proposition 2.4.4 the set on the l.h.s.

equals (a·b·c)G. By a similar argument the set on the r.h.s. equals (a′·b′·c′)G for

some elements a′, b′, and c′. Proposition 2.4.2 proves that inclusion ⊆ holds in

general. But inclusion between orbits amounts to equality. □

The following lemma proves the existence of idempotent orbits. The proof is self-

contained, i.e. it does not use Ellis’s theorem on the existence of idempotents in

compact left topological semigroups (however, the argument is very similar). As a

comparison, finding a proof in the setting of nonstandard analysis is listed as an

open problem in [14].

2.4.6 Lemma Assume ⌣G is 1-stationary. If A is minimal among the idempotent sets that are

type-definable over G, then A = bG for some (any) b ∈ A.

Proof Fix arbitrarily some b ∈ A. By Corollary 2.4.3, the set A ·G b is contained in

A, idempotent and type-definable over G by Lemma 2.4.1. Therefore by minimality

A ·G b = A. Let A′ ⊆ A be the set of those a such that a ·G b = bG. This set is

non-empty because b ∈ A ·G b. It is easy to verify that A′ is type-definable over G, b.

As it is clearly invariant over G, it is type-definable over G. By associativity it is

idempotent. Hence, by minimality, A′ = A. Then b ∈ A′, which implies b ·G b = bG.

That is, b has idempotent orbit. Finally, by minimality, A = bG. □

3Notice that in this proposition we do not need · to be associative.
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2.4.7 Corollary Under the same assumptions of the lemma above, every idempotent set that is

type-definable over G contains an element with an idempotent orbit. □

2.5 Hindman’s theorem

In this section we merge the theory of idempotents presented in Section 2.4 with

the proof of Ramsey’s theorem to obtain Hindman’s theorem.

Let ā be a tuple of elements of G of length ≤ ω. In Section 2.1 we defined fp ā

and the notions of ·−<-closed and−<-covered. The relation−< is introduced mainly

for future reference. The classical Hindman’s theorem is obtained with the positive

integers (as an additive semigroup) for G and < for−<.

2.5.1 Hindman Theorem Let−< be a relation on G that makes it ·−<-closed and−<-covered. Then

for every finite coloring of G there is a−<-chain ā such that fp ā is monochromatic. If there

is no g ∈ G such that G−< g, we may futher assume that the elements of the−<-chain are all

distinct. 4

Proof We interpret G as a structure in a language that extends the language of

semigroups with a symbol for−< and one for each subset of G. Let G be a saturated

elementary superstucture of G. As observed in Remark 2.2.7, the language makes

⌣G trivially 1-stationary.

We write G′ for the type-definable set {g : G−< g}, which is non-empty because G is

−<-covered. We claim that G′ is idempotent. In fact, if a, b ∈ G′ then, as G−< a, b and

a ⌣G b, we must have that a−< b. Therefore, from the ·−<-closedness of G we infer

a·b ∈ G′.

Let g0 be an element of G′ with idempotent orbit as given by Corollary 2.4.7. We can

assume that g0 /∈ G otherwise the sequence that is identically g0 trivially proves the

theorem. If we want the elements of the chain ā to be distinct it suffices require that

g0 /∈ G. By definition of g0, this can be directly assumed when there is no g ∈ G

such that G−< g. Let p(x) ∈ S(G) be a global coheir of tp(g0/G). Let ḡ be a coheir

sequence of p(x), that is

gi ⊨ p↾G, g↾i (x).

We write ⃗g↾i for the tuple gi−1, . . . , g0. By the idempotency of (g0)G and Proposi-

tion 2.4.4, h ≡G g0 for all h ∈ fp ⃗g↾i and all i. It follows in particular that fp ⃗g↾i is

monochromatic, say all its elements have color 1. Now, we use the sequence ḡ to

define ā ∈ Gω such that all elements of fp ā have color 1.

Assume as induction hypothesis that fp(a↾i, g0) is monochromatic of color 1. Our

goal is to find ai such that the same property holds for fp(a↾i+1, g0).

First we claim that from the induction hypothesis it follows that, for all j, all el-
4In [21] it is discussed when such elements are all distinct.
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ements of fp(a↾i, ⃗g↾j) have color 1. In fact, the elements of fp(a↾i, ⃗g↾j) have the

form b · h for some b ∈ fp(a↾i) and h ∈ fp( ⃗g↾j). As h ≡G g0, we conclude that

b · h ≡G b · g0, which proves the claim.

Let φ(a↾i, gi+1, g↾i+1) say that all elements of fp(a↾i, ⃗g↾i+2) have color 1. As ḡ is

a coheir sequence we can find ai such that φ(a↾i, ai, g↾i+1). Hence all elements of

fp(a↾i+1, ⃗g↾i+1) have color 1. Therefore ai is as required. □

Hindman’s theorem generalizes to a proposition that subsumes Ramsey’s theorem.

It is usually referred to as the Milliken–Taylor theorem [36] and [45]. By the follow-

ing observation, we may use virtually the same proof.

2.5.2 Proposition Assume ⌣G is 1-stationary. Let ḡ ∈ Gω be a coheir sequence of some global

coheir of tp(g/G) where g has idempotent orbit. Let h̄ ∈ Gω be such that hi ∈ fp( ⃗g↾Ii
) for

some finite non-empty Ii ⊆ ω such that Ii < Ii+1. Then h̄ ≡G ḡ.

Proof Write ni for the minimum of Ii. It suffices to prove that hi ≡G,g↾ni
gni . Note

that the type g ≡G x ⌣G g↾ni is satisfied both by hi and gni , hence the claim follows

by stationarity. □

Write fp(ā)n for the n-uniform hypergraph with vertex set fp(ā) and as edges those

sets {h1, . . . , hn} such that hi ∈ fp(a↾Ii ) for some finite sets I1 < · · · < In.

2.5.3 Milliken-Taylor Theorem Let −< be a relation on G that makes it ·−<-closed and −<-

covered. Then for every positive integer n and every finite coloring of the complete n-uniform

hypergraph with vertex set G there is a−<-chain ā such that fp(ā)n is monochromatic. □

Proof Given a coheir sequence ḡ as in the proof of Theorem 2.5.1 we want to define

ā ∈ Gω such that fp(ā)n is monochromatic. By the proposition above, fp( ⃗g↾i)n

is monochromatic for every i ≥ n. As in the proof of Theorem 2.5.1, we define

by induction ā ∈ Gω in such a way that fp(a↾i, ⃗g↾n)n is a finite monochromatic

subgraph of G. □

2.6 The Hales-Jewett theorem

The Hales-Jewett theorem is a purely combinatorial statement that implies the van

der Waerden theorem. The original proof by Alfred Hales and Robert Jewett is

combinatorial [26]. An alternative proof, also combinatorial, is due by Saharon

Shelah [42]. Our proof is similar to the proof by Andreas Blass in [8] (based on ideas

from [6]), but we use saturated models where he uses Stone-Čech compactification.

We present three versions of the main theorem.

First we prove an abstract algebraic version due to Sabine Koppelberg [31] which

is easier to state and to prove (this version comes in two variants). The classical

version follows easily from the algebraic one.
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We work with the same notation as in Section 2.4. We say that an element c is

left-minimal (w.r.t. A) if c ∈ A ·G g for every g ∈ A ·G c.

2.6.1 Proposition Assume ⌣G is 1-stationary. Let A be idempotent and type-definable over G.

Then A contains a left-minimal element c with idempotent orbit.

Proof Construct by induction a chain of type-definable idempotent sets Bα ⊆ A

and elements bα ∈ Bα such that B0 = A and Bα+1 = A ·G bα. For α limit take the

intersection. By idempotency of A, it is straightforward to check that Bα+1 ⊆ Bα.

The sets Bα are type-definable and idempotent by 2.4.1 and 2.4.3. For α limit Bα is

non-empty by compactness, as it is intersection of a chain of closed sets.

For some α we cannot properly extend this construction. For this α, for every

c, g ∈ Bα we have A ·G c = Bα = A ·G g . Hence every c ∈ Bα is left-minimal. As Bα

is idempotent, by Corollary 2.4.7 there is some c ∈ Bα with idempotent orbit. □

2.6.2 Proposition Assume ⌣G is 1-stationary. Let A be idempotent and type-definable over G.

Let cG be idempotent and such that c ·G A, A ·G c ⊆ A. Then

1. c ·G A ·G c contains some g with idempotent orbit;

2. if moreover c is left-minimal, then c ≡G g for every g as in 1.

Note, parenthetically, that the set in 1 may not be type-definable, therefore Corol-

lary 2.4.7 does not apply directly and we need an indirect argument.

Proof 1. From c ·G A ⊆ A we obtain that A ·G c is idempotent. As it is also

type-definable, A ·G c contains a b with idempotent orbit by Corollary 2.4.7. There

is an a ∈ A such that bG = a ·G c, then b ·G c = bG. From this we obtain that c ·G b is

idempotent and contained in c ·G A ·G c.

2. From g ∈ c ·G A ·G c and the idempotency of cG we obtain gG = c ·G g. As

g ∈ A ·G c, from the left-minimality of cG we obtain c ∈ A ·G g. Hence cG = c ·G g,

by the idempotency of gG. Therefore cG = gG, which proves 2. □

The following is a technical lemma that is required in many proofs below.

2.6.3 Proposition Assume ⌣G is 1-stationary. Let σ : G → G be a semigroup homomorphism

definable over G. Then for every a, b ∈ G

1. σ
[
aG

]
= (σ a)G

2. σ
[
a ·G b

]
= σ a ·G σ b.

Proof 1. As a ≡G a′ implies σ a ≡G σ a′, inclusion ⊆ is clear. For the converse,

note that the type ∃y
[
σ y = x ∧ y ≡G a

]
is trivially realized by σ a. Therefore it

is realized by all elements of (σ a)G. Hence all elements of (σ a)G are the image of

some element in aG.
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2. Let a ≡G a′ ⌣G b′ ≡G b. By Proposition 2.4.4 we have σ
[
a ·G b

]
= σ

[
(a′ ·

b′)G
]
. Then it suffices to prove that σ

[
(a′ · b′)G

]
⊆ σ a ·G σ b, because by 1 and

Proposition 2.4.4 both sides of the equality are orbits. As σ preserves ⌣G and orbits,

we obtain that σ(a′ · b′) is in σ a ·G σ b, as well as all other elements of σ
[
(a′ · b′)G

]
. □

2.6.4 Hales-Jewett Theorem (Koppelberg’s version) Let G be an infinite semigroup and let

C ⊆ G be a nice subsemigroup. Let Σ be a finite set of retractions of G onto C. Then, for

every finite coloring of C, there is an a ∈ G ∖C such that {σ a : σ ∈ Σ} is monochromatic.

Proof Let G ⪯ G. Here G is a monster model in a language that expands the natural

one with a symbol for all subsets of G and for every retraction in Σ. As observed

in Remark 2.2.7, this makes ⌣G trivially 1-stationary. Let C be the definable set

such that C = G ∩ C. By elementarity, C is a nice subsemigroup of G. The language

contains also symbols for the retractions σ : G → C.

By Proposition 2.6.1, there is a left-minimal c ∈ C with idempotent orbit.

By niceness, G∖ C and c satisfy the assumptions of Proposition 2.6.2. Hence, by

the first claim of that proposition, there is an idempotent g ∈ c ·G (G∖ C) ·G c. In

particular, g ∈ G∖ C. Now apply the second claim of Proposition 2.6.3, with C for

A to obtain σ g ∈ c ·G C ·G c for all σ ∈ Σ. As σ g is also idempotent, we apply

Proposition 2.6.2 to conclude that σ g ≡G c. In particular the set {σ g : σ ∈ Σ} is

monochromatic.

Though the element g above need not belong to G ∖ C, by elementarity G ∖ C

contains some a with the same property and this proves the theorem. □

Finally we show how the classical Hales-Jewett theorem follows from its abstract

version.

If C and X are two semigroups we denote by C ∗ X their free product. That is, C ∗ X

contains finite sequences of elements of C ∪ X, below called words, that alternate

elements in C with elements in X. The product of two words is obtained concate-

nating them and, when it applies, replacing two contiguous elements of the same

semigroup by their product. Note that C and X are nice subsemigroups of C ∗ X.

When X is the free semigroup generated by a variable x, we denote C ∗ X by C[x].

If w(x) is an element of C[x] and a ∈ C we denote by w(a) the result of replacing x

by a in w(x).

2.6.5 Hales-Jewett Theorem (classical version) Let C be a semigroup generated by some finite

set A. Let x be a variable. Then for every finite coloring of C[x] there is a w(x) ∈ C[x]∖ C

such that {w(a) : a ∈ A} is monochromatic.

Proof Let G = C[x]. For every a ∈ A the homomorphism σa : w(x) 7→ w(a) is a

retraction of G onto C. Hence we can apply the theorem above. □

We conclude with a variant of Theorem 2.6.4 that applies to a broader class of
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semigroup homomorphisms. This result is not required for the following.

For Σ a set of maps σ : G → C and c ∈ C we define

Σ−1[c] =
⋂

σ∈Σ
σ−1[c]

Clearly, when the maps in Σ are retractions, Σ−1[c] is non-empty for all c ∈ C

because it contains at least c.

2.6.6 Hales-Jewett Theorem (yet another variant) Let C be a semigroup and let Σ be a finite

set of homomorphisms σ : G → C such that Σ−1[c] is non-empty for all c ∈ C. Then,

for every finite coloring of C, there is a g ∈ G such that the set {σ g : σ ∈ Σ} is

monochromatic.

Proof Let G ∗ C be the free product of the two semigroups. Any homomorphism

σ : G → C extends canonically to a retraction of G ∗ C onto C. The elements of G

that occur in a word are replaced by their image under σ, finally the elements in the

resulting sequence are multiplied. This extension is denoted by the same symbol σ.

Apply Theorem 2.6.4 to obtain some w ∈ G ∗ C such that {σ w : σ ∈ Σ} is

monochromatic. Suppose w = c0 · g0 · · · · · · cn · gn for some gi ∈ G and ci ∈ C,

where one or both of c0 or gn could be absent. Pick some hi ∈ Σ−1[ci] and let

g = h0 · g0 · · · · · · hn · gn. Then {σ g : σ ∈ Σ} is monochromatic as required to

complete the proof. □

2.7 Carlson’s theorem

This section is devoted to the following lemma and some of its consequences.

2.7.1 Lemma Let Σ be a finite set of retractions of G onto a nice subsemigroup C. Let −< be

a relation on G that makes it ·−<-closed and −<-covered by G ∖ C. Then, for every finite

coloring of G, there is a−<-chain ā ∈ (G ∖ C)ω such that fpΣ ā ∖ C is monochromatic.

Proof The models G and C are as in the proof of Theorem 2.6.4. The language is

the same with −< included. Let B = {g ∈ G∖ C : G−< g}. By Proposition 2.6.1

there is some left-minimal c ∈ C with idempotent orbit. As G is −<-covered by

G ∖ C, the set B is non-empty. As G is ·−<-closed and C is nice, B and c satisfy the

assumptions of Proposition 2.6.2. Then, c ·G B ·G c contains some g0 with idempotent

orbit. By Proposition 2.6.3, we obtain that σ g0 ∈ c ·G C ·G c for all σ ∈ Σ. As

(σ g0)G is also idempotent, we apply the second claim of Proposition 2.6.3, with C

for A to conclude that σ g0 ≡G c for all σ ∈ Σ. Now, let ḡ be a coheir sequence

as in Theorem 2.5.1, and assume the notation thereof. As g0 ∈ c ·G B ·G c then

c ·G g0 = g0 ·G c = (g0)G. Hence h ≡G g0 for all i and all h ∈ fp ⃗g↾i ∖ C. In particular

all these h have the same color, say color 1. Now, we can use the sequence ḡ to

define ā ∈ (G ∖C)ω such that all elements of fpΣ ā∖C have color 1 by reasoning as

in the proof of Theorem 2.5.1. □
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Carlson’s theorem is a result that combines the theorems of Hindman and Hales-

Jewett and has a number of important consequences. We refer the reader to [17] for

a discussion of some of these consequences. The definitions in Example 2.1.1 will

help matching the notation.

We first present a Koppelberg-style version of the theorem. It is obtained from the

lemma above applying a suitable coding.

2.7.2 Carlson Theorem (à la Koppelberg) Let Σ be a finite set of retractions of G onto a

nice subsemigroup C. Let s̄ ∈ (G ∖ C)ω. Then for every finite coloring of G, there is an

increasing sequence of positive integers ⟨ni : i < ω⟩ and some ai ∈ fpΣs↾ [ni ,ni+1)
∖ C such

that fpΣ ā ∖ C is monochromatic.

Proof Let G∗ be the free semigroup generated by the alphabet

{⟨σ, g⟩ : σ ∈ Σ ∪ {idG}, g ∈ G ∖ C}.

The semigroup C∗ is defined as G∗, only σ is restricted to range over Σ. Clearly C∗

is a nice subsemigroup of G∗. We associate to each σ ∈ Σ the endomorphism of

G∗ that substitutes σ for every occurrence of idG in a word. These maps, which we

denote by σ∗, are retractions of G∗ onto C∗.

If g∗ ∈ G∗ has the form ⟨σ1, g1⟩ · · · ⟨σn, gn⟩ we call σ1 g1 · · · σn gn ∈ G the evaluation

of g∗. We denote the evaluation by eval(g∗). As τ σ = σ for every τ, σ ∈ Σ, we have

that eval(σ∗ g∗) = σ eval(g∗). The evaluation of g∗ ∈ C∗ belongs to C and, as C is

nice, the evaluation of g∗ ∈ G∗ ∖ C∗ belongs to G ∖ C.

We color each element of G∗ with the color of its evaluation.

We define the relation−< on G∗. First, we need to define the well-formed elements of

G∗. These are elements of the form ⟨σ1, si1⟩ · · · ⟨σn, sin⟩ for some i1 < · · · < in. Now,

for h∗, g∗ ∈ G∗ we define h∗−< g∗ if one of the following holds

1. h∗ is not well-formed while g∗ is;

2. the product (i.e., concatenation) h∗g∗ is well-formed.

It is immediate to verify that−< is G∗ is ·−<-closed and−<-covered by G∗ ∖C∗. There-

fore by Lemma 2.7.1 there is a −<-chain ā∗ ∈ (G∗ ∖ C∗)ω such that fpΣ ā∗ ∖ C∗

is monochromatic. We can assume that all elements of ā∗ are well-formed (only

the first element might be ill-formed, but we can drop it). Then the sequence

⟨eval(ai∗) : i ∈ ω⟩ is as required by the lemma. □

From the algebraic version of Carlson’s theorem we obtain the classical one in the

same way as for the Hales-Jewett theorem (Theorem 2.6.5), which we refer to for

the notation.

2.7.3 Corollary (Carlson’s theorem, classical version) Let C be a semigroup generated by

some finite set A. Let x be a variable. Let s̄ ∈
(
C[x]∖ C

)ω. Let Σ contain, for every

a ∈ A, the function w(x) 7→ w(a). Then, for every finite coloring of C[x], there is an
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increasing sequence of positive integers ⟨ni : i < ω⟩ and some ai ∈ fpΣs↾ [ni ,ni+1)
∖ C such

that fpΣ ā ∖ C is monochromatic (with the terminology of Example 2.1.1, ā is an extracted

variable sequence of s̄). □

2.8 Gowers’s partition theorem

The following is similar to Lemma 2.7.1 but here Σ contains compositions of homo-

morphisms.

2.8.1 Lemma For 0 < i < n, let Gi be a nice subsemigroup of Gi+1 and let σi : Gi+1 → Gi

be surjective homomorphisms. Let−< be a relation on Gn that makes it ·−<-closed and−<-

covered by Gn ∖ Gn−1. Finally, let Σ =
{

σi ◦ · · · ◦ σn−1 : 0 < i < n
}

. Then, for every

finite coloring of Gn, there is a −<-chain ā ∈
(
Gn ∖ Gn−1

)ω such that fpΣ ā ∖ Gn−1 is

monochromatic.

Proof For convenience, we let i run from 0, hence we agree that σ0 : G1 → G0 = G1

is the identity. Let Bn = {b ∈ Gn ∖ Gn−1 : Gn−< b} and Bi = σi[Bi+1]. Note that

the Bi are non-empty because Gn is−<-covered by Gn ∖ Gn−1. Also, as Gi is a nice

subsemigroup of Gi+1, we have that Bi ·G Bi+1, Bi+1 ·G Bi ⊆ Bi+1.

We claim there is some bn ∈ Bn with idempotent orbit such that, if we define

bi = σi bi+1 for 0 ≤ i < n, the following holds

bn ·G bi = bi ·G bn = (bn)G.

Note that these equalities may be replaced by

♯i bi ·G bi+1 = bi+1 ·G bi = (bi+1)G.

Let b0 = b1 be any element of B0 with idempotent orbit. We assume as induction

hypothesis that we have bi ∈ Bi for i ≤ k, with idempotent orbits, such that bi =

σi bi+1 and ♯i hold for all i < k. We show how to find bk+1.

We prove that bk and the set Bk+1 ∩ σ−1
k [bk], which below we denote by A for short,

satisfy the assumptions of Proposition 2.6.2.5 The proof of the idempotency of A is

left to the reader. We prove that bk ·G A ⊆ A, the proof of A ·G bk ⊆ A is similar.

As bk ·G Bk+1 ⊆ Bk+1 by nicety, it suffices to prove that bk ·G σ−1
k [bk] is contained in

σ−1
k [bk]. This latter inclusion holds because, by the induction hypothesis,

σk

[
bk ·G σ−1

k [bk]
]

= σk[bk] ·G bk = bk−1 ·G bk = (bk)G.

Now we apply Proposition 2.6.2 to find an idempotent bk+1 ∈ bk ·G A ·G bk. There-

fore ♯k is satisfied. Moreover σk bk+1 ∈ (bk)G by Proposition 2.6.3, hence we can

assume bk = σk bk+1 as claimed above.

Finally, as in the proof of Theorem 2.5.1, the required chain ā is obtained from a

coheir sequence of a global coheir of tp(bn/G). □

5We need the hypothesis that homomorphisms are surjective to say that A is non empty.
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2.8.2 Remark The lemma above continues to hold, with essentially the same proof, if for

Σ we take a set of the form

Σ =
n−1⋃
i=1

Σi ◦ · · · ◦ Σn−1

where

Σi ◦ · · · ◦ Σn−1 =
{

σi ◦ · · · ◦ σn−1 : σi ∈ Σi, . . . , σn−1 ∈ Σn−1

}
and where Σi are some finite sets of homomorphisms Gi+1 → Gi such that for every

g ∈ Gi the set Σ−1
i [g] is non-empty. □

Let Gi be the set of functions a : ω → {0, . . . , i} with finite support that is, the set

supp(a)= {x ∈ ω : a x ̸= 0} is finite. We introduce a semigroup operation on Gi

by defining (a·b) x = max{ax, bx}. This makes Gi a nice subsemigroup of Gi+1.

2.8.3 Corollary (Gowers Partition Theorem) With Gi as above, let σi : Gi+1 → Gi be homo-

morphisms and let Σ be as in Lemma 2.8.1. Then for every finite coloring of Gn there is an

ā ∈
(
Gn ∖Gn−1

)ω such that fpΣ ā∖Gn−1 is monochromatic and supp(ai) < supp(ai+1).

The homomorphisms σi usually considered in the literature are so-called tetris op-

erations i.e. (σi a)x = max{a x − 1, 0}, or generalizations thereof. However the

theorem is more general.

Proof Let−< be the relation supp(a) < supp(b) and apply Theorem 2.8.1. □
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Chapter 3

Ramsey monoids

Abstract

Recently, Solecki introduced the notion of Ramsey monoid to produce a common

generalization to theorems such as Hindman’s theorem, Carlson’s theorem, and

Gowers’ FINk theorem. He proved that an entire class of finite monoids is Ram-

sey. Here we improve this result, enlarging this class and finding a simple alge-

braic characterization of finite Ramsey monoids. We extend in a similar way a

result of Solecki regarding a second class of monoids connected to the Furstenberg-

Katznelson Ramsey Theorem. The results obtained suggest a possible connection

with Schützenberger’s theorem and finite automata theory.

3.1 Introduction

One of the most celebrated theorems in Ramsey theory is due to Hindman [27].

It states that for every semigroup (S, ·), for every finite coloring of S there is an

infinite sequence s̄ = (si)i∈ω ∈ Sω such that the following set is monochromatic

fp(s̄) = {si0 · · · · · sin : n ∈ ω, i0 < · · · < in}.

A natural question is whether a theorem of this kind can be proved if we allow the

elements of the semigroup to be moved by some action.

The first answers to this question were given by Carlson [9] and Gowers [24] who

studied actions of specific monoids. They used analogues of the following notion:

3.1.1 Definition Let M be a monoid acting by endomorphisms on a partial semigroup S, and let

s̄ be a sequence of elements of S. The (combinatorial) M-span of s̄ is the set

⟨s̄⟩M =
{

m0 si0 · · ·mn sin : n ∈ ω, i0 < · · · < in, mi ∈ M, at least one mi is 1M
}

.
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Solecki realized that these theorems share the same underlying structure, from

which he isolated the notion of Ramsey monoid. We report here the original defi-

nition as stated in [43]. We refer the reader to Proposition 3.6.1 for other equivalent

definitions.

Let M be a monoid and X be a set. If M acts on X, we say that X is an M-set.

Suppose (Xn)n∈ω is a family of M-sets. We say that the action of M on (Xn)n∈ω

is uniform if for every k, n ∈ ω, m ∈ M and x ∈ Xk ∩ Xn, if mkx and mnx are

the results of the action of m on x respectively in Xk and in Xn, then mkx = mnx.

Notice that the action of M on (Xn)n∈ω is uniform if and only if it extends to⋃
n∈ω Xn. Let X =

⋃
n∈ω Xn. Define WX = (X<ω, ⌢) to be the free semigroup on

the alphabet X, with ⌢ the concatenation of sequences. Define ⟨(Xn)n∈ω⟩ to be the

partial subsemigroup of WX consisting of all sequences x1
⌢ ... ⌢ xn ∈ WX for which

there exists i1 < ... < in ∈ ω such that xk ∈ Xik . If the action of M is uniform

on (Xn)n∈ω, it is possible to define the coordinate-wise action of M on ⟨(Xn)n∈ω⟩ by

setting m(x1
⌢ ... ⌢ xn) = m(x1)

⌢ ... ⌢ m(xn). This is an action by endomorphisms.

An infinite sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω is said basic if the product si0
⌢ . . . ⌢ sin is in

⟨(Xn)n∈ω⟩ for every i0 < · · · < in. This implies that if M acts uniformly on (Xn)n∈ω

and s̄ is basic, then every product in ⟨s̄⟩M is defined. A pointed M-set is an M-set X

together with a distinguished point x ∈ X such that Mx = {mx : m ∈ M} = X.

3.1.2 Definition A monoid M is said Ramsey if for all sequences of pointed M-sets (Xn)n∈ω on

which M acts uniformly and for all finite colorings of ⟨(Xn)n∈ω⟩ there is a basic sequence

s̄ ∈ (⟨(Xn)n∈ω⟩)ω such that sn has a distinguished point for every n ∈ ω and the span

⟨s̄⟩M is monochromatic.

The notion of Ramsey monoid provides a common framework for many theorems

in combinatorics. For example, Hindman’s theorem can be restated as "The trivial

monoid {1} is Ramsey". Similarly, Carlson’s theorem and Gowers’ FINk theorem can

be seen just as two examples of Ramsey monoids (see also Proposition 3.6.1). Hence,

every new Ramsey monoid gives a new generalization of Hindman’s theorem as

powerful as Carlson’s and Gowers’ theorems.

Furthermore, from Carlson’s and Gowers’ theorems one can get examples of Ram-

sey spaces, see [47, Section 4.4]. In the same way, one can show that any new

example of Ramsey monoid gives new examples of Ramsey spaces.

Let us recall some notation from [43]. Given a monoid M, define X(M) = {aM :

a ∈ M}. We say that X(M) is linear if it is linearly ordered by inclusion. Let R
be the equivalence relation on M defined by aR b if aM = bM. A monoid M is

called almost R-trivial if for every R-class [a]R with more than one element we have

Ma = {a}.

To the best of our knowledge, the only known examples of Ramsey monoids before

Solecki’s paper were given by Carlson’s and Gowers’ theorems. Solecki in [43,
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Corollary 4.5] proved that the class of finite almost R-trivial monoids with linear

X(M), that includes Carlson’s and Gowers’ monoids, is Ramsey. Also, he proved

that Ramsey monoids have a linear X(M).

We work here with a well-known class of monoids that extends the one of almost

R-trivial monoids. A monoid is said aperiodic if for every a ∈ M there exists

n ∈ ω such that an = an+1 (see [40]). The first main achievement of this paper is

an improvement of Solecki’s result: first, we extend [43, Corollary 4.5] to the wider

class of finite aperiodic monoids with linear X(M), and secondly, we prove that

aperiodicity is also a necessary condition for being Ramsey, giving thus a complete

characterization of finite Ramsey monoids.

3.1.3 Theorem (main theorem 1) A finite monoid M is Ramsey if and only if it is aperiodic

and X(M) is linear.

To introduce the other peak of this paper we need some more notions from [43].

Given a monoid M, Y(M)⊆ P(X(M)) consists of the non-empty subsets of X(M)

which are linearly ordered by inclusion. Given x, y ∈ Y(M), define x ≤Y(M) y if

x ⊆ y and all elements of y \ x are larger with respect to ⊆ than all elements of x.

Let ⟨Y(M)⟩, with operation ∨, be the semigroup freely generated by Y(M) modulo

the relations

p ∨ q = q = q ∨ p for p ≤Y(M) q.

We say that M is Y-controllable if for every finite F ⊆ ⟨Y(M)⟩, for every y maximal

element in Y(M), for every sequence of pointed M-sets (Xn)n∈ω on which M acts

uniformly and for every finite coloring of ⟨(Xn)n∈ω⟩ there is a basic sequence s̄ ∈
(⟨(Xn)n∈ω⟩)ω such that sn has a distinguished point for every n ∈ ω and such that

for every m, n ∈ ω and for every ai, bj ∈ M if a0y ∨ · · · ∨ any ∈ F and a0y ∨ · · · ∨
any = b0y ∨ · · · ∨ bmy, then a0si0 · . . . · ansin has the same color of b0sj0 · . . . · bmsjm ,

for every i0 < · · · < in, j0 < · · · < jm.

Another major result of Solecki [43, Corollary 4.3] is that almost R-trivial monoids

are Y-controllable. This has amongst its consequences a theorem of Furstenberg

and Katznelson [19]. We refer the reader to [43, Section 4] for a detailed discussion

about this connection. We extend Solecki’s result to a larger class of monoids and

we prove that aperiodicity is a necessary condition for being Y-controllable.

Given a monoid M, define XR(M)= {aM : [a]R has more than one element}. We

say that XR(M) is linear if it is linearly ordered by inclusion.

3.1.4 Theorem (main theorem 2) Let M be a finite monoid. If M is aperiodic and XR(M) is

linear, then M is Y-controllable. If M is Y-controllable, then it is aperiodic.

The proof of Theorem 3.1.4 is first presented as divided into two parts: a new

result about monoid actions on compact topological right topological semigroups
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and a reformulation of known results by Solecki (the latter are then re-proved in

Section 3.5 using model theory). Namely, the main technical novelty of this paper,

which allows us to prove one direction of Theorem 3.1.4 and consequently one

direction of Theorem 3.1.3, is the following result. Relevant notions are defined in

Section 3.3.

3.1.5 Theorem Let M be a finite aperiodic monoid. Let U be a compact right topological semi-

group on which M acts by continuous endomorphisms. If XR(M) is linear, then there

exists a minimal idempotent u ∈ U such that a(u) = b(u) for all couples a, b ∈ M such

that aR b.

The notion of aperiodic monoid plays a central role in both our main results. This

class of monoids is also involved in one of the most important theorems in finite

automata theory, also dealing with the semigroup of words, due to Schützenberger

[41]. This suggests there might be a possible connection between automata theory

and Ramsey theory.

From now on, we review the structure of the paper section by section.

Section 3.2 is introductory to the theory of monoids and Green’s relations. First,

we recall some basic properties of the class of aperiodic monoids and of the class

of monoids with linear X(M). This is meant to provide alternative necessary or

sufficient conditions for a monoid to be Ramsey, using Theorem 3.1.3. Then, we

introduce the class of aperiodic monoids with linear XR(M), and show that this

class properly extends both the one of almost R-trivial monoids introduced by

Solecki in [43] and that of aperiodic monoids with linear X(M).

In Section 3.3, we study actions of aperiodic monoids with linear XR(M) on com-

pact right topological semigroups, proving Theorem 3.1.5. This theorem and Corol-

lary 3.3.6 seem to show that aperiodicity plays a relevant role in dynamic theory. We

complete the proofs of Theorems 3.1.3 and 3.1.4 in two different ways in Section 3.4

and Section 3.5.

In Section 3.4 we guide the reader to a rephrasing of Solecki’s work, to show how

one implication of Theorem 3.1.3 and one of Theorem 3.1.4 follow from Theo-

rem 3.1.5. This is done in two steps. First, we use a lemma of Solecki [43, Lemma

2.5]. Secondly, we guide the reader through the ultrafilter proof of Solecki. In

Theorem 3.4.6 we prove the remaining implication of Theorem 3.1.4, i.e. that ev-

ery Y-controllable monoid is aperiodic. The same argument shows that Ramsey

monoids are aperiodic.

In section 3.5, we give an alternative to the ultrafilter proof of Solecki, using model

theory. Here we use the space of types where Solecki uses the space of ultrafilters.

Model theory is limited to Section 3.5, Theorem 3.6.3, and Proposition 3.7.1 and just

basic notions are assumed.
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In Section 3.6, first we explain in detail the relation between Ramsey monoids and

Carlson’s and Gowers’ theorems. We show that the definition of Ramsey monoid

presented so far can be reformulated in many equivalent ways, and in particular

one can choose semigroups other than ⟨(Xn)n∈ω⟩. Secondly, we point out that

Ramsey monoids satisfy stronger properties than being Ramsey. In particular, in

Theorem 3.6.3 we prove a common generalization of Milliken-Taylor theorem [36],

[45] and Theorem 3.1.3, combining Ramsey’s theorem and the definition of Ramsey

monoid.

In Section 3.7, we provide further examples of Y-controllable monoids, through

Proposition 3.7.1. This shows that there are Y-controllable monoids such that

XR(M) is not linear. Finally, we collect some open questions in the area.

3.2 Aperiodic monoids, X(M) and XR(M)

In this section, we introduce the basic notions and definitions about monoids we

are going to use throughout the paper.

One of the best ways to describe monoids and semigroups is using Green’s relations.

They were first introduced by Green in his doctoral thesis and in [25]. The Green’s

relations R, L and J on a monoid M are the equivalence relations defined by,

respectively, aR b if aM = bM, aL b if Ma = Mb and a J b if MaM = MbM. The

Green’s relation H is the intersection of R and L, while the Green’s relation D is

the smallest equivalence relation containing both L and R. In every finite monoid,

we have D = J. The Green’s relations induce quasi-orders on the monoid. Given

two element a, b ∈ M, define a ≤R b if aM ⊆ bM, a ≤L b if Ma ⊆ Mb, a ≤J b

if MaM ⊆ MbM, and finally a ≤H b if both a ≤R b and a ≤L b hold. If K is an

equivalence relation, we say that an equivalence class [a]K is trivial if it contains

exactly one element, and we say that a monoid M is K-trivial if every K-class is

trivial. For more information about Green’s relations, see e.g. [11].

A monoid is said aperiodic if for all a ∈ M there exists n ∈ ω such that an = an+1.

The class of finite aperiodic monoids has been widely studied, as it is involved in

one of the most important theorems in finite automata theory, due to Schützen-

berger [41]. It states that star-free languages are exactly those languages whose

syntactic monoid is finite and aperiodic. By a result of McNaughton and Papert,

these also correspond to the languages definable in FO[<], i.e. first-order logic with

signature < [35].

Among finite monoids, the class of aperiodic monoids can be characterized in many

ways. We report here some of the most famous options used in literature. Among

all possibilities, we isolate the notion of R-rigid monoid as the operative definition

we are going to use in the proofs of the next section.
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3.2.1 Definition A monoid is said R-rigid if for every a, b ∈ M, if abR b, then ab = b.

3.2.2 Proposition Let M be a finite monoid. The following are equivalent:

1. M is aperiodic.

2. For every g, a, g′ ∈ M, if gag′ = a, then ga = ag′ = a.

3. M is R-rigid.

4. M is H-trivial.

5. M contains no non-trivial subgroup.

For the ease of the reader, we report also a short proof of the equivalence.

Proof First, assume 1, and let g, a, g′ ∈ M be such that gag′ = a. By induction

this implies gna(g′)n = a for every n ∈ ω. Choose n such that gn+1 = gn and

(g′)n+1 = (g′)n. Then, 2 holds since

ga = g(gna(g′)n) = gn+1a(g′)n = gna(g′)n = a

and similarly,

ag′ = (gna(g′)n)g′ = gna(g′)n+1 = gna(g′)n = a.

If abR b, then by definition of R there exists a′ ∈ M such that b = aba′, hence 2

implies 3.

Notice that if a, b ∈ M are such that aH b, then in particular aR b and there is

x ∈ M such that xb = a, hence 3 implies 4.

Now if G ⊆ M is a subgroup of M, then for every a, b ∈ G there are x, y such that

ax = ya = b, and symmetrically there are x′, y′ such that bx′ = y′b = a, hence aH b

and G is contained inside one single H-class. Therefore, 4 implies 5.

Finally, notice that if M is finite, then for every a ∈ M there are minimal n, k ∈ ω

such that an+k = an. Then, the set {an+i : i < k} is a subgroup of M, and it is trivial

if and only if k = 1, hence 5 implies 1. □

The class of aperiodic monoids is closed under most basic operations. For example,

the following holds:

3.2.3 Proposition Let (S1, ∗1), . . . , (Sn, ∗n) be aperiodic semigroups. Then, the following are

aperiodic:

1. The product monoid S1 × · · · × Sn with coordinate-wise operation.

2. The disjoint union S1 ⊔ · · · ⊔ Sn with operation a ∗ b = a ∗i b when a, b ∈ Si, and

a ∗ b = b ∗ a = a if a ∈ Si and b ∈ Sj with i < j.
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For more information about aperiodic monoids and their relations with languages

and automata, see for example [32] or [40].

Let us move to the next class. Given a monoid M, define X(M) = {aM : a ∈ M}.

We say that X(M) is linear if it is linearly ordered by inclusion (equivalently, if ≤R

is a total quasi-order). The existence of a total quasi-order affects the behaviour of

Green’s relations, and having that ≤R is total has even stronger consequences. The

next proposition collects some well-known properties of monoids where ≤R is total

(see [28, Proposition 3.18-3.20]).

3.2.4 Proposition Let M be a finite monoid with linear X(M). Then, the following hold:

1. For every a ∈ M, the principal right ideal aM is a both-sided ideal.

2. J = D = R and L = H, while ≤R = ≤J and ≤L = ≤H.

3. R is a congruence relation.

4. ≤R is translation-invariant on both sides.

For more information about monoids with linear X(M), see for example [28].

Combining results about aperiodic monoids with results about monoids with linear

X(M), one can obtain further properties and characterizations of the class of finite

aperiodic monoid with linear X(M). For example, a finite monoid with linear X(M)

is aperiodic if and only if it is L-trivial. Notice that in light of Theorem 3.1.3, every

property of this class of monoids will give a necessary condition for a monoid to be

Ramsey.

Finally, let us introduce a seemingly new class of monoids, the class of aperiodic

monoids with linear XR(M). It is one of the key notions for the other main result

of this paper, Theorem 3.1.4.

Let XR(M) be the subset of X(M) of those aM such that [a]R is non-trivial. We

say that XR(M) is linear if it is linearly ordered by inclusion. Recall also that M is

called almost R-trivial if for every non-trivial R-class [a]R we have Ma = {a} (see

[43] and [30]).

3.2.5 Proposition Every finite almost R-trivial monoid M is aperiodic and has linear XR(M).

Proof Let M be a finite almost R-trivial monoid. First, we want to show that

XR(M) has at most one element that is the minimum of X(M) (and so XR(M) is

in particular linearly ordered by inclusion). If [a]R is a non-trivial R-class then, for

every m ∈ M we have ma = a, that means a ∈ mM and aM ⊆ mM. Hence, if [a]R
and [b]R are non-trivial R-classes, then we have aM = bM. Now let us prove that

M is aperiodic. Since M almost R-trivial, then Mb = {b} holds for every non-trivial

R-class. This in particular implies that (Mb) ∩ [b]R = {b} holds for every R-class,
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and this is just a rephrasing of the R-rigid condition. Then the claim follows from

Proposition 3.2.2. □

Notice that the converse does not hold, as it is easy to show that there are aperi-

odic monoids with linear XR(M) that have more than one non-trivial R-class (for

example, by combining almost R-trivial monoids with point 2 of Proposition 3.2.3;

see also Example 3.2.6). Also, there are aperiodic monoids that have non-trivial

R-classes [a]R such that a is not idempotent (a minimal example is given by the

monoid in Table 3.1, see also Example 3.2.6). These conditions are impossible for al-

most R-trivial monoids, as shown in the proof of Proposition 3.2.5. Finally, there are

examples of aperiodic monoids with linear XR(M) that do not have linear X(M)

(the easiest examples coming from R-trivial monoids). Thus, the class of aperiodic

monoids with linear XR(M) properly extends both the class of almost R-trivial

monoids and the class of aperiodic monoids with linear X(M).

3.2.6 Example Consider the Gowers’ monoid Gk = ({0, . . . , k − 1}, +̄) with operation

i +̄ j = min(i + j, k − 1). Consider also the Carlson’s semigroup CA = (A, ∗), i.e. a

finite set A with operation a ∗ b = b for every a, b ∈ A. Let C1
A = CA ∪ {1C1

A
} be

the corresponding monoid. Then, for every k and A the monoid M = (Gk × C1
A)

is aperiodic and has linear XR(M), while M̃ = (Gk × CA) ∪ {1M̃} is aperiodic, has

linear X(M̃) and all its R-classes other than [1M̃]R are non-trivial. If k ≥ 2, neither

of these monoids is almost R-trivial.

For those familiar with finite automata theory, Schützenberger Theorem provides

a wonderful way to produce examples of aperiodic monoids. Starting from a star-

free language S, or from a formula in FO[<], we always generate a finite aperiodic

syntactic monoid. For example, the monoid from Table 3.1 is the syntactic monoid

of the star-free language S in the alphabet A = {a, g, h} defined as

S = {g, h}∗h ∪ {g, h}∗a{g, h}∗g ∪ A∗aA∗aA∗

or, equivalently, defined by the formula in FO[<] that says “the word is non-empty,

and if there are no letters a, then the word ends with h, and if there is exactly one letter a,

then the word ends with g”.

1 0 a b g h

0 0 0 0 0 0

a 0 0 0 b a

b 0 0 0 b a

g 0 a b g h

h 0 a b g h

Table 3.1: Syntactic monoid of the language S.
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3.3 Dynamic theory

In this section, we study actions of aperiodic monoids with linear XR(M) on com-

pact right topological semigroups. The main objective is to prove Theorem 3.3.5,

i.e. Theorem 3.1.5 from the introduction. This result reveals the relation between

aperiodic monoids and dynamic theory and it will be the key point to prove one di-

rection of Theorem 3.1.3 and one direction of Theorem 3.1.4. The advantage to work

with compact right topological semigroups is that they are the common ground for

many different techniques, either from logic or ergodic theory (see e.g. [6], [19],

[34], [43], [47]).

Let us recall some notions. A semigroup (U, ·) with a topology τ is a right topo-

logical semigroup if the map x 7→ x · u is continuous from U to U for every u ∈ U.

It is called compact if τ is compact. A element u in a semigroup (U, ·) is called

idempotent if u · u = u. The set of idempotents of U is denoted by E(U). We define

a partial order ≤U in E(U) by

u ≤U v ⇐⇒ uv = u = vu.

Finally, let I(U) be the smallest compact both-sided ideal of U. It exists by com-

pactness of U.

We report some facts about idempotents, corresponding to [47, Lemma 2.1, Lemma

2.3, Corollary 2.5].

3.3.1 Proposition Let U be a compact right topological semigroup. Then,

1. E(U) is non-empty.

2. For every idempotent v there is a ≤U-minimal idempotent u such that u ≤U v.

3. Any both-sided ideal of U contains all the minimal idempotents of U.

3.3.2 Fact Let M be a monoid, let U be any set, and fix a left action of M on U. Then, for every

a, b ∈ M such that aM ⊆ bM we have a(U) ⊆ b(U).

Proof In fact, if bm = a for some m ∈ M, then a(U) = b(m(U)) ⊆ b(U). □

In particular, if aR b, then a(U) = b(U).

3.3.3 Lemma Let M be a finite aperiodic monoid such that XR(M) is linear. Then, for every

distinct a, b ∈ M with aR b there are two distinct g, h ∈ M such that ag = b, bh = a and

gh = h, hg = g. This in particular implies gM = hM.

Proof Fix a non-trivial R-class [c]R and let a, b ∈ [c]R with a ̸= b. For every

y, z ∈ M, define

Gy,z = {gy,z ∈ M : ygy,z = z}.
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Notice that if yR z, then Gy,z is non-empty. Let g ∈ Ga,b be such that gM is minimal

in {xM : x ∈ Ga,b}, and similarly let h ∈ Gb,a be such that hM is minimal in

{xM : x ∈ Gb,a}.

We claim that gR h. Notice that hgh ∈ Gb,a since bhgh = agh = bh = a. Since

hghM ⊆ hgM ⊆ hM, by minimality of hM we have hghM = hgM = hM, so hR hg

and hR hgh. Notice that hg ∈ Gb,b and that Gb,a ∩ Gb,b = ∅, so h ̸= hg and the

class [h]R is non-trivial. Similarly, gR ghR ghg, gh ∈ Ga,a and so the class [g]R is

non-trivial. By hypothesis this implies either gM ⊆ hM or hM ⊆ gM. Suppose for

example gM ⊆ hM. Then,

|h(gM)| ≤ |gM| ≤ |hM| = |hgM|

and so |hM| = |gM| and hM = gM. This implies that h, hg, g, gh, are all in the same

R-class, hence gh = h and hg = g, by definition of R-rigid and Proposition 3.2.2. □

3.3.4 Lemma Let M be a finite aperiodic monoid such that XR(M) is linear. Then, for every

a ∈ M, if there are b, c ∈ [a]R such that bc = c, then for every b, c ∈ [a]R we have bc = c.

Proof First, notice that if xy = y for some x, y ∈ M, then xz = z for every z ∈ [y]R
since xzM = xyM = yM = zM and since M is R-rigid by Proposition 3.2.2.

Hence, we just need to prove that given a non-trivial R-class [a]R such that ax = x

for every x ∈ [a]R, and given an element b ∈ [a]R with b ̸= a, then we have ba = a.

Let g, h be such that ag = b and bh = a. Notice that haR hb since haM = hbM, and

also ha ̸= hb since bha = a ̸= b = bhb. Then haM ∈ XR(M) and so haM ⊆ aM or

aM ⊆ haM. We have |aM| = |bhaM| ≤ |haM| ≤ |aM|, hence |haM| = |aM| and by

linearity of XR(M) we must have haM = aM. Since M is R-rigid, ha = a holds and

we have ba = bha = a. □

With this, we are ready to prove Theorem 3.1.5.

3.3.5 Theorem Let M be a finite aperiodic monoid. Let U be a compact right topological semi-

group on which M acts by continuous endomorphisms. If XR(M) is linear, then there exists

a minimal idempotent u ∈ E(U) ∩ I(U) such that a(u) = b(u) for all couples a, b ∈ M

such that aR b.

Proof Let a0M ⊊ ... ⊊ an M be an increasing enumeration of XR(M) and define

an+1 = 1. Every ai(U) is a semigroup, since ai(u1) · ai(u2) = ai(u1 · u2), and it

is compact because it is a continuous image of a compact space. Then, ai(U) is a

compact subsemigroup of the compact semigroup ai+1(U). We want to find a chain

of idempotents ui such that ui+1 ≤U ui and such that ui is minimal in E(ai(U)) with

respect to ≤ai(U), for every i ≤ n + 1.

First, by points 1 and 2 of Proposition 3.3.1, we can find u0 ∈ a0(U) satisfying the

requirement. Then, suppose we have ui ∈ ai(U) idempotent. Since ai(U) ⊆ ai+1(U)
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we may apply point 2 of Proposition 3.3.1 to find ui+1 ∈ ai+1(U) idempotent such

that ui+1 ≤ai+1(U) ui and ui+1 is minimal in E(ai+1(U)), and this concludes the con-

struction. Since an+1 = 1 and E(an+1(U)) = E(U), by point 3 of Proposition 3.3.1

we also know that un+1 ∈ I(U).

We claim that u = un+1 satisfies the requirements of the thesis.

First, we want to show that for each R-class [ai]R with aiai = ai we have

b(u) = ui for all b ∈ [ai]R.

By Lemma 3.3.4, for every b ∈ [ai]R we have bai = ai, and this implies that for every

v ∈ ai(U), say v = ai(uv), we have b(v) = b(ai(uv)) = ai(uv) = v. In particular

for v = ui, we have b(ui) = ui. Notice that the action of M is order preserving on

(U,≤U), since it is by endomorphisms. Since u ≤U ui we get

b(u) ≤U b(ui) = ui.

Thus, b(u) ≤ai(U) ui, and since ui is minimal in ai(U), we get b(u) = ui.

Now consider a non trivial R-class [ai]R such that aiai /∈ [ai]R, and let a, b ∈ [ai]R.

Let g, h be given as in Lemma 3.3.3 such that ag = b and bh = a and hg = g. Notice

that this implies bg = bhg = ag = b and also h(u) = g(u), since [g]R belongs to the

previous case. Then, a(u) = bh(u) = bg(u) = b(u). □

We take the opportunity to state a corollary of Lemma 3.3.3.

3.3.6 Corollary Let M be a finite aperiodic monoid such that XR(M) is linear, let U be a set and

fix a left action of M on U. Then, for every a, b ∈ M with aR b and for every u ∈ a(U)

we have a(u) = b(u).

Proof Let a, b ∈ M be such that aR b and a ̸= b, and let g, h ∈ M be given by

Lemma 3.3.3 such that ag = b and bh = a, and gh = h and hg = g. This in particular

implies gg = ghg = hg = g, and bg = bhg = ag = b. Notice that by linearity of

XR(M) either a(M) ⊆ g(M) or g(M) ⊆ a(M) holds, since both [a]R and [g]R are

non-trivial. Then, we have a(M) ⊆ g(M), since |aM| = |bhM| ≤ |hM| = |gM|, and

also a(U) ⊆ g(U), by Fact 3.3.2. Fix u ∈ a(U) and find v ∈ U such that u = g(v).

We have

a(u) = a(g(v)) = a((gg)(v))) = ag(g(v))) = b(g(v)) = b(u). □

3.4 Coloring theorems and aperiodic monoids

In this section, we discuss how from Theorem 3.3.5 one can prove Theorems 3.1.3

and 3.1.4 following ideas from Solecki’s paper. The main novelty introduced here

is the proof that Y-controllable monoids and Ramsey monoids are aperiodic.
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Let us recall some relevant notions for this section. Given a monoid M, the set

Y(M)⊆ P(X(M)) consists of the non-empty subsets of X(M) which are linearly

ordered by inclusion. Define x ≤Y(M) y, for x, y ∈ Y(M), if and only if x ⊆ y and

all elements of y \ x are larger with respect to ⊆ than all elements of x.

There is a natural left M-action on Y(M) defined as x 7→ mx = {maM : aM ∈ x}.

Given two left actions of M on U and U′, a map f : U → U′ is said M-equivariant if

it preserves the action of M, i.e. f (ma) = m f (a).

For ease of notation, we isolate the following class of monoids.

3.4.1 Definition A monoid M is called good if for every left action of M by continuous endo-

morphisms on a compact right topological semigroup U there exists a function g : Y(M) →
E(U) such that

(i) g is M-equivariant;

(ii) g is order reversing with respect to ≤Y(M) and ≤U ;

(iii) g maps maximal elements of Y(M) to I(U).

The notion of good monoids was first used by Solecki in [43]. We borrow here three

results that are contained or essentially proved therein.

The following useful lemma has the same function as two other lemmas by Lupini

[33, Lemma 2.2] and Barrett [3, Theorem 5.8], i.e. to get stronger conclusions from

results like Theorem 3.1.5.

3.4.2 Lemma [43, Lemma 2.5] Let M be a finite monoid. Assume that for every left action of

M by continuous endomorphisms on a compact right topological semigroup U there is a

M-equivariant f from Y(M) to U such that f maps maximal elements of Y(M) to I(U).

Then, M is good.

We isolate the following lemma from the proof of [43, Theorem 2.4] since it gives a

sufficient condition for a monoid to be good.

3.4.3 Lemma Let M be a finite monoid and assume that for every action by continuous endomor-

phisms of M on a compact right topological semigroup U there exists a minimal idempotent

u ∈ E(U) ∩ I(U) such that a(u) = b(u) for all couples a, b ∈ M such that aR b. Then,

M is good.

Proof Let π : Y(M) → X(M) be the function that maps a set y ⊆ Y(M) to the

maximal element in y with respect to ⊆. Let u ∈ E(U) ∩ I(U) be given by hypothe-

sis. The function f : X(M) → E(U) that maps aM to a(u) is well-defined, and maps

1M to u ∈ E(U) ∩ I(U). Also, notice that if y is a maximal element of Y(M), then

1M ∈ y and so π ◦ f (y) = u ∈ E(U) ∩ I(U). Since both f and π are M-equivariant

the map f ◦ π : Y(M) → E(U) satisfies the assumptions of Lemma 3.4.2, from

which we get that M is good. □
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Solecki in [43, Corollary 4.3] states that every finite almost R-trivial monoid is Y-

controllable, but in the proof he shows something stronger. In fact, the hypothesis

that M is almost R-trivial is used only to apply [43, Theorem 2.4], which states that

every finite almost R-trivial monoid is good. The remaining part of the proof never

uses this hypothesis again, and relies instead on the fact that M is good. In other

words, from the proof of [43, Corollary 4.3] one can derive also the following result.

3.4.4 Theorem Let M be a finite monoid. If M is good, then it is Y-controllable.

However, the reader can find a short model-theoretic proof of this result in Sec-

tion 3.5.

Finally, the following is a restatement of part of the proof of [43, Corollary 4.5 (i)].

3.4.5 Fact If M is Y-controllable and X(M) is linear, then M is Ramsey.

Proof Notice that X(M) is linear if and only if X(M) ∈ Y(M). We want to use the

definition of Y-controllable with y = X(M) and F = {y}. It is enough to notice

that for every a ∈ M we have

aX(M) = {amM : mM ∈ X(M)} = {xM : xM ⊆ aM}.

Hence, if aM ⊆ bM, then ay ∨ by = by = by ∨ ay, and so a1y ∨ · · · ∨ any = y ∈ F

for every a1, .., an ∈ M with at least one i such that ai = 1. □

3.4.6 Theorem Let M be a finite monoid.

1. If M is aperiodic and has a linear XR(M), then it is Y-controllable.

2. If M is Y-controllable, then it is aperiodic.

Proof First, let M be a finite aperiodic monoid with linear XR(M). By Theo-

rem 3.3.5 and Lemma 3.4.3, we get that M is good. Hence, Theorem 3.4.4 implies

that M is Y-controllable, and statement 1 holds.

In order to prove 2, let (M<ω, ⌢) be the free semigroup over M, with coordinate-

wise action. Notice that (M<ω, ⌢) can be seen as ⟨(Xn)n<ω⟩ setting all Xn = M,

with 1 as distinguished point, and a word w has a distinguished point if and only

if 1 ∈ ran w (in which case we call w a variable word).

Suppose M is not aperiodic, and let a ∈ M be such that an+1 ̸= an for every n ∈ ω.

Let A = {an : n ∈ ω}, and let C = {m ∈ M : anm ∈ A for some n ∈ ω}. Then, we

have ac ̸= c for every c ∈ C, and ac ∈ C if and only if c ∈ C.

Let y = {an M : n ∈ ω}, where we set a0 = 1, and let F = {y}. Then, y is a maximal

element of Y(M), and y ∨ y = y = ay ∨ y.

Let C ∪ {⊥} be the set of colors. Given a word w ∈ M<ω, let m be the first letter of

w in C, if any. If there is such m, color w by m. Otherwise, color w by ⊥. Consider
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any sequence of variable words ȳ ∈ (M<ω)ω, and consider the words y0
⌢ y1 and

a(y0)
⌢ y1 with colors c1 and c2 respectively. Then, c1 ∈ C, since y0 is a variable

word and 1 ∈ ran(y0). Hence, by definition of C we have c2 = ac1. Therefore,

c2 = ac1 ̸= c1, contradicting the fact that M is Y-controllable. □

3.4.7 Theorem Let M be a finite monoid. The following are equivalent:

1. M is Ramsey.

2. M is aperiodic and X(M) is linear.

Proof Proof of point 2 of Theorem 3.4.6 also shows that if M is Ramsey then it is

aperiodic. If M is Ramsey, then X(M) is linear by [43, Corollary 4.5 (ii)]. Theo-

rem 3.4.6 and Fact 3.4.5 prove that 2 implies 1. □

3.4.8 Corollary Let M be a finite monoid. Then, M is Ramsey if and only if it is Y-controllable

and X(M) is linear.

We conclude this chapter with a corollary concerning the definition of Ramsey

monoid. It is not clear to the authors whether the following result can be proved

with methods similar to those developed in Section 3.6, without passing through

Theorem 3.4.7.

Recall that a variable words is a word w such that 1 ∈ ran(w).

3.4.9 Corollary Let M be a finite monoid. The following are equivalent:

1. M is Ramsey.

2. For all finite coloring of M<ω there are two variable words y0 and y1 such that

My0
⌢ y1 is monochromatic.

Proof The exact same proofs of [43, Corollary 4.5 (ii)] and point 2 of Theorem 3.4.6

show that if condition 2 hold, then M is aperiodic and X(M) is linear. The rest

follows from Theorem 3.4.7 and by definition of Ramsey monoid. □

3.5 A model-theoretic approach

In this section, we give a short explicit proof of Theorem 3.4.4. We shall use Proposi-

tion 3.5.2, which says that the space of types S(G) over a semigroup G is a compact

right topological semigroup if we add some symbol to the signature. This approach

is discussed in [12] and is further developed here. The one difference in exposition

is that here we define a product between types, while in [12] we define a product

between type-definable sets. We assume some basic knowledge of model theory.

We refer the reader to Tent’s and Ziegler’s book [46].
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In what follows, we consider a semigroup G such that M acts by endomorphisms

on G, and a monster model G.

We say that a type p(x) is finitely satisfied in G if every finite conjunction of formulas

in p(x) has a solution in G|x|. We write a ⌣G b if tp(a/Gb) is finitely satisfied in G.

In literature this relation is also denoted by a |⌣
U
G b.

We say that the tuple c̄ is a coheir sequence of p(x) over G if cn ⊨ p(x) and cn ⌣G c̄↾n

and cn+1 ≡G, c̄↾n cn for every n < ω. In particular, c̄ is indiscernible over G, i.e.

c̄↾I0 ≡G c̄↾I1 for every I0, I1 ⊆ ω of equal finite cardinality.

The following is an easy well-known fact.

3.5.1 Fact For every type p(x) ∈ S(G) there is a coheir sequence of p(x).

In order to define a product between types, we need some stationarity. Here, we

obtain it by adding sets to the signature.

Let G be a semigroup on which a monoid M acts by endomorphisms and let L be

its signature. Let L+ = L ∪ {A : A ⊆ Gn, n ∈ ω} ∪ {m : m ∈ M} be the expansion

of L where the symbol A is interpreted in G as the set A, and m is interpreted as

the unary function a 7→ ma.

From now on we consider G with this augmented signature.

For a, b ∈ S(G) define a ·G b as tp(a′ · b′/G), for any a′, b′ ∈ G such that a′ ⊨ a, b′ ⊨ b

and a′ ⌣G b′.

As usual, we will consider the compact topology on S(G) generated by the basic

open sets {t ∈ S(G) : φ(x) ∈ t}, for φ(x) ∈ L+(G).

3.5.2 Proposition If G is a model as above, then (S(G), ·G) is a compact right topological semi-

group and the action of M defined by mtp(a/G) = tp(ma/G) is by continuous endomor-

phisms.

Proof Proposition 4.4 and Remark 2.7 of [12] prove that if G is considered with

signature L+ then a ·G b is well-defined for every a, b ∈ S(G) and (S(G), ·G) is a

semigroup. In [12, Proposition 6.3] it is proved that the action of M on (S(G), ·G)
defined by mtp(a/G) = tp(ma/G) gives well-defined endomorphisms of (S(G), ·G).
It is straightforward to check that the maps mtp(a/G) are continuous. The one

missing proof is that x 7→ x ·G r is continuous from S(G) to S(G), for any r ∈ S(G).

Let b ∈ G and let q(x, y) be the type in S(G) such that a ⊨ q(x, b) if and only if

a ⌣G b, i.e.

q(x, y) = {φ(x; y) : φ(x ; y) ∈ L+(G) and G|x| = φ(G|x| ; b)}.

Notice that if b′ ≡G b, then a ⊨ q(x, b′) ⇐⇒ a ⌣G b′.
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Let p(z) be a partial type over G and let r(y) = tp(b/G). The type

∃y, z r(y) ∧ q(x, y) ∧ z = x · y ∧ p(z)

is satisfied by those a ∈ G such that tp(a/G) ·G r satisfies p(z). Hence, the preimage

of the closed set p(S(G)) is closed. □

We are ready to prove Theorem 3.4.4. Let us introduce the following auxiliary

definition to simplify the notation of the next proof.

3.5.3 Definition Let F be a finite subset of the semigroup ⟨Y(M)⟩, let y be a maximal element

in Y(M), and let c be a finite coloring of a semigroup S on which M acts. We say that a

sequence s̄ ∈ S≤ω is (F, y, c)-controllable if for every m, n ≤ |s̄| and for every ai, bj ∈ M if

a0y∨ · · · ∨ any belongs to F and a0y∨ · · · ∨ any = b0y∨ · · · ∨ bmy, then a0si0 · . . . · ansin

has the same color of b0sj0 · . . . · bmsjm , for every i0 < · · · < in, j0 < · · · < jm.

Proof of Theorem 3.4.4 Let (Xn)n∈ω be a sequence of pointed M-sets on which M

acts uniformly, and let ⊥ be not in
⋃

n∈ω Xn. Define G = (⟨(Xn)n∈ω⟩ ∪ {⊥}, ⌢) to be

the semigroup extending (⟨(Xn)n∈ω⟩, ⌢) defining x ⌢ y = ⊥ if x ⌢ y is not defined

in the partial semigroup ⟨(Xn)n∈ω⟩. In particular, x ⌢⊥ = ⊥⌢ x = ⊥. We write

x−< y if and only if x ⌢ y ̸= ⊥ or x = ⊥.

It is enough to prove that for every finite subset F of ⟨Y(M)⟩, for every maximal

element y in Y(M), and for every c finite coloring of G there is a basic sequence

s̄ ∈ (⟨(Xn)n∈ω⟩)ω that is (F, y, c)-controllable and such that sn has a distinguished

point for every n ∈ ω.

Let L = {⌢,−<} and consider G with augmented signature L+. Let

U = {p ∈ S(G) : G−< p}

where G−< p is a shorthand for {g−< x : g ∈ G} ⊆ p(x).

Notice that U is non-empty, since for every finite set A ⊆ G there is a b ∈ G such

that A−< tp(b/G). Also, ⊥ /∈ U. We claim that U is a compact subsemigroup of

(S(G), ·G). Let G be a monster model in the language L+. Let a, b ∈ G such that

tp(a/G) ∈ U, tp(b/G) ∈ U and a ⌣G b. Then, we must have that a−< b, since

G−< tp(b/G) and a ⌣G b. Now, let g ∈ G such that g ̸= ⊥. Then, g ⌢ a ⌣G b and

hence g ⌢ a−< b. Since g ̸= ⊥ and g−< a we also have g ⌢ a ̸= ⊥. Hence,

g ⌢(a ⌢ b) = (g ⌢ a)⌢ b ̸= ⊥.

Therefore, we have that g−< (a ⌢ b) from which we get tp(a/G)·Gtp(b/G) ∈ U. Also,

U is type-definable over G and hence compact. Finally, notice that a−< mb for every

m ∈ M and for every a, b ∈ G such that a−< b. Hence, U is closed under the action

of M. By Proposition 3.5.2, it is a compact right topological semigroup such that M

acts on U by continuous endomorphisms.
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Let u = g(y) ∈ E(U) ∩ I(U), where g : Y(M) → E(U) is the function given by

definition of good monoid. Let DP be the set of elements of ⟨(Xn)n∈ω⟩ that have at

least one distinguished point, and let J = {p ∈ S(G) : DP ∈ p}. Since J ∩ U is a

non-empty both-sided ideal of U, and u ∈ I(U), we have that u is in J. Let (un)n∈ω

be a coheir sequence of u. We write ⃗u↾i for the tuple ui−1, . . . , u0. Notice that since

the map g is order-reversing and M-equivariant, for every a0, . . . , an, b0, . . . , bm ∈ M

if a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bmy then also a0u ·G . . . ·G anu = b0u ·G . . . ·G bmu.

Hence, it is straightforward to check that ⃗u↾i is (F, y, c)-controllable for every i ∈ ω.

Notice that ⃗u↾i is a basic sequence since products stay in U and ⊥ /∈ U. Finally, un

are elements of DP since u ∈ J. Now, we use the sequence ⃗u to define s̄ ∈ Gω with

same properties as ⃗u.

Let k ∈ ω be such that for every element f ∈ F there are k′ < κ and a0, . . . , ak′ ∈ M

such that f = a0y∨ · · · ∨ ak′y. Notice that this implies that for every f , f ′ ∈ ⟨Y(M)⟩
such that f ∨ f ′ ∈ F there are c0, . . . cj ∈ M with j < k such that f ′ = c0y ∨ · · · ∨ cjy.

This follows from the property that the set of predecessors of any element of Y(M)

is linearly ordered by ≤Y(M).

Assume as induction hypothesis that the tuple obtained by concatenation s↾i ⌢ ⃗u↾k

is (F, y, c)-controllable and s↾i is a basic sequence of elements of DP. Our goal is to

find si ∈ G such that the same properties hold for s↾i+1.

From the induction hypothesis it follows that s↾i ⌢ ⃗u↾l is (F, y, c)-controllable for

any l ∈ ω. In fact, let w = b0si0
⌢ . . . ⌢ bmsim

⌢ bm+1uim+1
⌢ . . . ⌢ bnuin be such that

b0y ∨ · · · ∨ bmy ∨ bm+1y ∨ · · · ∨ bny ∈ F. Let j < k and c0, . . . , cj ∈ M be such that

bm+1y ∨ · · · ∨ bny = c0y ∨ · · · ∨ cjy. Since ⃗u is a coheir sequence, we have that

⃗u↾I0 ≡G ⃗u↾j+1 for any I0 ⊆ l of size j + 1. Hence, the type over G of w is equal to

the type over G of b0si0
⌢ . . . ⌢ bmsim

⌢ c0uj
⌢ . . . ⌢ cju0. Therefore, we may use the

induction hypothesis to conclude that s↾i ⌢ ⃗u↾l is (F, y, c)-controllable. Also, s↾i ⌢ ⃗u↾l

is a basic sequence by induction hypothesis and idempotence of u.

Let φ(s↾i, ui+1, u↾i+1) say that s↾i ⌢ ⃗u↾i+2 is (F, y, c)-controllable and that s↾i ⌢ ⃗u↾i+2 is

a basic sequence of elements of DP. As ū is a coheir sequence we can find si ∈ G

such that φ(s↾i+1, u↾i+1). Hence, si has the desired properties. □

3.6 Equivalent definitions of Ramsey monoid

In this section, we briefly prove the equivalence between different notions of being

Ramsey.

First, in Proposition 3.6.1 we show that in this context results on located words

are not stronger than results on words, but rather equivalent, since one can derive

results about located words from results about words. While the converse is well-

known, this implication apparently has been overlooked. For example, Bergelson-
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Blass-Hindman theorem on located words [6] can be derived from Carlson’s theo-

rem on variable words [9], since Carlson’s Theorem implies condition 3 in Proposi-

tion 3.6.1. Conditions 3 and 4 of Proposition 3.6.1 also show that Carlson’s Theorem

and Gowers’ Theorem are indeed equivalent to the statement that a certain monoid

is Ramsey.

Secondly, in Corollary 3.6.2 and Theorem 3.6.3 we state some equivalent definitions

of Ramsey monoid which may be useful for applications.

First, let us recall some basic definitions. (S, ·) is a partial semigroup if · is a partial

binary function · : S2 → S such that (s1 · s2) · s3 = s1 · (s2 · s3) whenever (s1 · s2) · s3

and s1 · (s2 · s3) are both defined. An endomorphism on a partial semigroup S is a

function m : S → S, denoted by s 7→ ms, such that for all s1, s2 ∈ S for which s1 · s2

is defined, then ms1 · ms2 is defined and m(s1 · s2) = (ms1) · (ms2).

Given a partial semigroup S and two sequences s̄ and t̄ in Sω, we say that s̄ is

extracted from t̄, or s̄ ≤M t̄, if there is an increasing sequence (in)n∈ω of natural

numbers such that sn ∈ ⟨tin , . . . , t(in+1)−1⟩M
. As for pointed M-sets, we say that t̄ is

basic if m0ti0 · . . . · mntin is defined for every i0 < . . . < in and m0, . . ., mn ∈ M.

An infinite sequence t̄ ∈ Mω is rapidly increasing if |tn| > Σn−1
i=0 |ti| for all n ∈ ω.

Let FINM be the partial semigroup of located words, i.e. FINM = ⟨(Xn)n∈ω⟩ where

Xn = {n} × M with the usual action. As for words, a variable located word is a

located word w such that (n, 1M) ∈ ran w for some n.

3.6.1 Proposition The following are equivalent for a monoid M:

1. M is Ramsey.

2. For every partial semigroup S on which M acts by endomorphisms, for every basic

sequence t̄ ∈ Sω, for every finite coloring of S there is a sequence s̄ ≤M t̄ such that

⟨s̄⟩M is monochromatic.

3. There is a rapidly increasing sequence of variable words x̄ ∈ (M<ω)ω such that for

all finite colorings of M<ω there is a sequence s̄ ≤M x̄ with ⟨s̄⟩M monochromatic.

4. For all finite colorings of FINM there is a sequence of variable located words with

monochromatic M-span.

Proof It is easy to check that points 1 and 2 are equivalent. Indeed, ⟨(Xn)n∈ω⟩ is a

partial semigroup for every (Xn)n∈ω, hence 2 implies 1. Conversely, given a partial

semigroup S and a basic sequence (tn)n∈ω ∈ Sω, we may obtain results about S

from ⟨(Xn)n∈ω⟩ choosing the sets Xn = Mtn ⊆ S with distinguished point tn.

It is also straightforward to check that 2 implies 3 and 4. Hence, it remains to prove

that 3 implies 2 and 4 implies 2.

So let us show that 3 implies 2. Let x̄ be the sequence given by 3, let S be a partial
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semigroup and let t̄ be a basic sequence in Sω. We write ⌢ to denote the operation

of M<ω and • to denote the operation of S.

By definition of rapidly increasing sequence and since each xn is a variable word,

every element of ⟨x̄⟩M can be written as m1xi1
⌢ . . . ⌢ mnxin in a unique way. Hence,

there is a function f : ⟨x̄⟩M → ⟨t̄⟩M defined as the surjective homomorphism of

partial semigroups such that for every n ∈ ω, m1 . . . mn ∈ M, and i1 < · · · < in,

f (m1xi1
⌢ . . . ⌢ mnxin) = m1ti1 • . . . • mntin .

Let {Bi : i < n} be a coloring of S into finitely many pieces. Define Ai = f−1[Bi],

then {Ai : i < n} ∪ {M<ω \ ⟨x̄⟩M} is a finite coloring of M<ω. By 3 we may find

ȳ ≤M x̄ such that ⟨ȳ⟩M is monochromatic. Notice that ⟨ȳ⟩M ⊆ ⟨x̄⟩M, so there is

k < n such that ⟨ȳ⟩M ⊆ Ak.

Set f (ȳ) = ( f (yi))i∈ω. Then, f (ȳ) ≤M f (x̄) = t̄. It is enough to prove that

⟨ f (ȳ)⟩M = f [⟨ȳ⟩M] and then we are done, since f [⟨ȳ⟩M] ⊆ f [Ak] = Bk.

Notice that m f (yj) = f (myj) for all m ∈ M. In fact, if yj = m1xi1
⌢ . . . ⌢ mnxin , then

m f (yj) = m(m1ti1) • . . . • m(mktin) = f (myj).

Let g ∈ ⟨ f (ȳ)⟩M, say

g = m1 f (yi1) • . . . • mn f (yin) = f (m1yi1) • . . . • f (mnyin).

Then, g = f (m1yi1
⌢ . . . ⌢ mnyin).

The proof of 4 implies 2 proceeds in a similar manner, starting from the sequence

x̄ = ((n, 1M))n∈ω from which every sequence of variable located words can be

extracted. □

Notice that in the proof of Proposition 3.6.1, with the same notation and assump-

tions, we showed that the color of g = m1 f (yi1) • . . . • mn f (yin) is controlled by

the color of m1yi1 · . . . · mnyin . Proposition 3.6.1 can be extended to Y-controllable

monoids, providing three equivalent definitions for this notion as well.

In the definition of M-span, we ask that at least one element of the basic sequence

is moved by 1. Here, we show how to relax this condition.

3.6.2 Corollary Let M be a finite Ramsey monoid. Then, for any partial semigroup S, for any

finite coloring of S and for every sequence t̄ ∈ Sω there is s̄ ≤M t̄ such that for every a ∈ M

the set {
m0 si0 · · ·mn sin : i0 < · · · < in, mi ∈ aM, mi R a for at least one i

}
is monochromatic.

Proof By Corollary 3.4.8, M is Y-controllable. Then, the thesis follows from the

definition of Y-controllable monoid applied to the maximal element y = X(M) and

to F = {ay : a ∈ M}, and the arguments of Proposition 3.6.1. □
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In previous corollary, the action of M can be controlled with |X(M)|-many col-

ors. This is optimal, as in general it is not possible to get less than |X(M)|-many

monochromatic sets. For example, choose X(M) as set of colors, and color each

word w ∈ M<ω by the minimum aM such that ran(w) ⊆ aM: then, if t̄ is a se-

quence of variable words, for any s̄ ≤M t̄ each set defined above has a different

color.

When instead M is Y-controllable but X(M) is not linear, it is not difficult to see

that for any k ∈ ω there are y and F ⊆ Y(M) and colorings of, say, M<ω such that

for every sequence of variable words s̄ there are more than k-many f ∈ F such that

the sets

⟨s̄⟩ f = {a0si0 · . . . · ansim : ai ∈ M, i0 < · · · < im, a0y ∨ · · · ∨ any = f }

have different colors.

The next theorem is a generalization of both Theorem 3.4.7 and Milliken-Taylor

theorem [36], [45]. It is a combination of Ramsey’s theorem and Theorem 3.4.7, in

the same way as Milliken-Taylor theorem is a combination of Ramsey’s theorem and

Hindman’s theorem. For a sequence s̄ ∈ Sω let s̄(n) be the collection of n-subsets of

{a ∈ S : a = si for some i ∈ ω}. Notice that for n = 1 the following is the content

of Theorem 3.4.7.

3.6.3 Theorem Let M be a finite Ramsey monoid. Then, for any n ≥ 1, for all sequences of

pointed M-sets (Xn)n∈ω on which M acts uniformly, for any finite coloring of n-subsets of

⟨(Xn)n∈ω⟩ there is a basic sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω such that sn has a distinguished

point for every n ∈ ω and such that
⋃

r̄≤M s̄
r̄(n) is monochromatic.

Proof The proof goes as in Theorem 3.4.4, in section 3.5. Let G and u = g(y) be

defined as in Theorem 3.4.4, with y = X(M), and let (un)n∈ω be a coheir sequence

of u. It is straightforward to check that all elements of the span of ⃗u↾i satisfy the

type u for every i ∈ ω. Also, notice that with signature L+, for every a, a′, b ∈ G<ω if

a ≡G a′, a′ ⌣G b, and a ⌣G b, then a ≡Mb a′. Then, for any ⃗h ≤M ⃗u we have ⃗h ≡G ⃗u,

by the remark above and the definition of coheir sequence. All the n-subsets of an

indiscernible sequence have the same color, for any n ∈ ω. The rest of the proof is

the same as in Theorem 3.4.4. □

The same arguments of Proposition 3.6.1 allow to extend this result to any partial

semigroup.

It can be easily seen that if a monoid satisfies the conclusions of Corollary 3.6.2 or

the conclusions of Theorem 3.6.3, then it is Ramsey. Conversely, Corollary 3.6.2 and

Theorem 3.6.3 hold for all finite Ramsey monoids. Hence, their conclusions hold

for a finite monoid if and only if it is Ramsey.
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3.7 Final remarks and open problems

We conclude with some open questions and remarks concerning the work done so

far.

Our main theorems suggest a possible connection between Ramsey theory and au-

tomata theory, passing through Schützenberger’s Theorem. Any result in that di-

rection would be of the highest interest.

Limiting ourselves to Ramsey theory, there are still several challenging open ques-

tions in the context of monoid actions on semigroups.

One of the most immediate questions is what can be proven for infinite monoids. In

a fore-coming paper, the authors prove that there are not infinite Ramsey monoids,

and thus a monoid is Ramsey if and only if it is finite, aperiodic and has linear

X(M).

Theorem 3.4.6 provides a sufficient condition for a monoid to be Y-controllable.

This condition is not necessary, as there are Y-controllable monoids for which

XR(M) is not linear.

3.7.1 Proposition Let M be a finite aperiodic monoid such that for every distinct a, b ∈ M with

aR b, we have a2 = a and ax = bx for every x ∈ M \ {1}. Then, M is Y-controllable.

Proof To show that M is Y-controllable is enough to work with M<ω, by the argu-

ments of Proposition 3.6.1.

Consider the monoid M̃ = (M, ∗) where x ∗ y = y for all x, y ̸= 1. It acts coordinate-

wise on M<ω, considered as M̃<ω.

Let G be M<ω with the signature L+ used in the proof of Theorem 3.4.4, plus an

unary function ã for any a ∈ M, which is interpreted in G as the action of M̃. Since

M̃ is Ramsey and since every element in M̃ different from 1 is in the same R-class,

one can find an idempotent u in the space of types S(G) such that ãu = b̃u for every

a, b ̸= 1. Let v be an element of the monster model satisfying u. Then, if aR b, we

have

av = aãv ≡G ab̃v = bv,

where we use the fact that for every x ∈ M<ω, and hence for every x in the monster

model, we have aãx = ax and ab̃x = bx, by hypothesis. Hence, we can conclude

that M is Y-controllable, by the arguments of Theorem 3.4.4. □

An example of a monoid satisfying the hypothesis of Proposition 3.7.1 for which

XR(M) is not linear is given by the following Cayley table.

On the other hand, it seems possible that the necessary condition of Theorem 3.4.6 is

also sufficient, and that a finite monoid is aperiodic if and only if it is Y-controllable.

If true, this would suggest an even stronger connection between Ramsey theory and
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1 a b c d

a a b a b

b a b a b

c c d c d

d c d c d

Table 3.2: Example of (aperiodic) Y-controllable monoid M such that XR(M) is not

linear.

Schützenberger’s Theorem.

3.7.2 Open Problem Find an algebraic characterization of Y-controllable monoids.

If M is a Ramsey monoid, then for every action of M on every partial semigroup you

have a monochromatic set as described in the definition. Lupini’s in [33] gave exam-

ples of non-Ramsey monoids where the same statement holds for certain actions on

certain partial semigroups (actually, he proved a stronger statement that can be seen

as the analogue of Corollary 3.6.2).

Define Ik to be the set of functions f from k to k such that f (0) = 0 and such that

if f (i) = j then either f (i + 1) = j or f (i + 1) = j + 1. Then, Ik is a monoid with

composition of functions as operation, and k is an Ik-set with distinguished point

k − 1, where the action is defined by f i = f (i). This action induces a coordinate-

wise action on FINk = ⟨({n} × k)n∈ω⟩ (i.e. the set of all partial functions with

finite domain from N to k). Lupini in [33] showed that for every k ∈ ω and for

every finite coloring of FINk there is an infinite sequence of words in FINk each

containing k − 1 such that its Ik-span is monochromatic. Notice that this result

implies that every R-trivial monoid is Ramsey. In fact, let N be a R-trivial monoid

with linear X(N). Without loss of generality, we may assume that N = {0, . . . , k −
1} and that 0N ⊆ · · · ⊆ (k − 1)N is an increasing enumeration of X(N). Then, the

coordinate-wise action of N on FINk coincides with the action of a submonoid of Ik,

by Proposition 3.2.4, and Lupini’s theorem implies point 4 of Proposition 3.6.1.

All monoids Ik are R-trivial, but X(Ik) is linear if and only if k ≤ 3 (see [43, Section

4 .4]). In particular, if k > 3 these monoids are not Ramsey, and Lupini’s result does

not follow from the theory of Ramsey monoids. It would be interesting to see if a

similar statement holds for other (non-Ramsey) monoids.

3.7.3 Open Problem Classify the couples (M, k) such that k ∈ ω is a pointed M-set and

for every finite coloring of FINk there is a basic sequence s̄ in FINk such that sn has a

distinguished point for every n ∈ ω and such that the M-span of s̄ is monochromatic.

In the same direction, the following seems a challenging problem.

3.7.4 Open Problem Characterize the class of triples (S, M, t̄), where S is a partial semigroup,
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M is a monoid acting on S by endomorphisms and t̄ is a basic sequence in S, for which

for every finite coloring of S there is a sequence s̄ ≤M t̄ in S such that its M-span is

monochromatic.

One can check that every finite Ramsey monoid generates examples of Ramsey

spaces. However, an even nicer property might be true: there are topological Ram-

sey spaces that induce a collection of projected spaces such that every metrically

Baire set has the Ramsey property. A sufficient condition for the latter has been

found by Dobrinen and Mijares in [16]. An example of a space of this form is

Carlson-Simpson space, see [10] and [47, section 5.6]). See also [16, section 4] for

generalizations of the latter.

3.7.5 Open Problem Which topological Ramsey spaces given by finite Ramsey monoids meet

the sufficient conditions given in [16]?

Hales-Jewett theorem [26] is a corollary of Corollary 3.6.2 for the special case of

monoids M such that ab = b for every a, b ∈ M \ {1}. In Ramsey theory, two

of the strongest known results are a polynomial generalization [7] and a density

generalization [20] of Hales-Jewett theorem for these monoids.

3.7.6 Open Problem Do polynomial or density results hold for other finite Ramsey monoids?

Ojeda-Aristizabal in [39] obtained upper bounds for the finite version of Gowers’

FINk theorem, giving a constructive proof. It would be interesting to know if these

upper bounds hold for other Ramsey monoids.

The work of Gowers on FINk and the related space FIN±k was the key to his solu-

tion of an old problem in Banach spaces [24]. Also, the aforementioned example of

Bartošova and Kwiatkowska found applications in metric spaces. Finally, a discus-

sion about the connection between Ramsey spaces and Banach spaces can be found

in Todorcevic’s monograph. In this paper, we found new Ramsey monoids, and

consequently new Ramsey spaces. Hence, it might be possible to find applications

of these new results to metric spaces.

Recently various papers have found different common generalizations of Carlson’s

and Gowers’ theorems, see [3], [29], [34]. Of particular interest is the context of

adequate layered semigroups, introduced by Farah, Hindman, and McLeod [18]

and recently studied by Lupini [34] and Barrett [3]. Barrett’s paper [3] describes a

framework which seems well suited for a connection between Ramsey monoids and

layered semigroups. His work and ours are independent from each other and were

written concurrently, so we did not investigate this research line. Nevertheless, in

Example 3.7.7 and in the following paragraph we show a possible connection.

3.7.7 Example Let M be a monoid with linear X(M), and let a0M ⊆ · · · ⊆ an M be an
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increasing enumeration of X(M). Define ℓ : FINM → n + 1 by

ℓ(w) = min{i : ran(w) ⊆ ai M}.

Then, (FINM, ℓ) is an adequate partial layered semigroup as defined in [3, Defini-

tion 3.7]. Furthermore, the canonical action Fcw of M on FINM is made of regressive

maps, by Proposition 3.2.4.

This example shows that every monoid with linear X(M) generates an adequate

partial layered semigroup, FINM, and a family of regressive functions Fcw. On the

other hand, every family of regressive functions F on an adequate partial layered

semigroup generates a monoid MF with composition, acting on S by endomor-

phisms.
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Chapter 4

Actions of infinite monoids

4.1 Introduction

In this chapter, we expand upon the results of Chapter 3, and we introduce two

new notions for monoids: locally Ramsey and locally Y-controllable.

In Chapter 3, we study Ramsey monoids and Y-controllable monoids, but we focus

on finite monoids. In particular, in Theorem 3.1.3 we characterize finite Ramsey

monoids as those finite aperiodic monoids such that X(M) is linearly ordered by

inclusion. In this chapter, when possible, we extend the results of Chapter 3 to

infinite monoids.

One of our first results is the following.

4.1.1 Theorem (Theorem 4.3.7) Let M be a Ramsey monoid. Then, M is finite.

Together with Theorem 3.1.3, Theorem 4.1.1 leads to a full characterization of Ram-

sey monoids.

4.1.2 Corollary A monoid M is Ramsey if and only if it is finite, aperiodic, and X(M) is linear.

Theorem 4.1.1 forces us to study properties for infinite monoids that are weaker

than Ramsey. Motivated by [47, Theorem 4.21], we introduce the notion of locally

Ramsey monoid. Theorem 4.21 of [47] is an infinite version of Hales-Jewett Theorem

and Carlson’s theorem, and it is equivalent to saying that any countable monoid

such that ab = b for every a, b ̸= 1 is locally Ramsey.

To give definitions of locally Ramsey and locally Y-controllable, we work with se-

quences of pointed M-sets, as defined in the introduction of Chapter 3. One could

also work with FINM, as in the introduction of this thesis (see section 1.2.4). The two

approaches are equivalent. This can be shown with the arguments of Proposition

3.6.1.
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4.1.3 Definition Let M be a monoid acting on a partial semigroup S and let s̄ ∈ Sω be a basic

sequence. Let (Mi)i∈ω be a sequence of finite subsets of M. The (Mi)-span of S is the set

⟨s̄⟩(Mi)
=

{
m0 si0 · . . . · mn sin : n ∈ ω, i0 < · · · < in, mi ∈ Mi, at least one mi is 1M

}
.

4.1.4 Definition We say that a monoid M is locally Ramsey if for every sequence of pointed

M-sets (Xn)n∈ω on which M acts uniformly, for every finite coloring of ⟨(Xn)n∈ω⟩, and for

every sequence (Mi)i∈ω of finite subsets of M there is a basic sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω

such that sn has a distinguished point for every n ∈ ω and such that ⟨s̄⟩(Mi)
is monochro-

matic.

Notice that for every sequence (Mi)i∈ω of finite subsets of M, the (Mi)-span of a

sequence s̄ is contained in the M-span of the same sequence, i.e. ⟨s̄⟩(Mi)
⊆ ⟨s̄⟩M.

Hence, the following fact trivially holds.

4.1.5 Fact If a monoid is Ramsey then it is locally Ramsey.

One of the main results of this chapter is the following characterization.

4.1.6 Theorem (Theorem 4.5.5) Let M be a monoid. Then, M is locally Ramsey if and only if

M is aperiodic and X(M) is linear and finite.

The notion of locally Ramsey monoid generalizes the notion of Ramsey monoid by

limiting the action to finite sets of the monoid. The same idea leads to the notion

of locally Y-controllable monoid, which generalizes that of Y-controllable monoid.

We recall here the definition of ⟨Y(M)⟩.

Given a monoid M, Y(M)⊆ P(X(M)) consists of the non-empty subsets of X(M)

which are linearly ordered by inclusion. Given x, y ∈ Y(M), define x ≤Y(M) y if

x ⊆ y and all elements of y \ x are larger with respect to ⊆ than all elements of x.

Let ⟨Y(M)⟩, with operation ∨, be the semigroup freely generated by Y(M) modulo

the relations

p ∨ q = q = q ∨ p for p ≤Y(M) q.

4.1.7 Definition Say that M is locally Y-controllable if for every finite F ⊆ ⟨Y(M)⟩, for

every y maximal element in Y(M), for every sequence of pointed M-sets (Xn)n∈ω on

which M acts uniformly, for every finite coloring of ⟨(Xn)n∈ω⟩, and for every sequence

(Mi)i∈ω of finite subsets of M there is a basic sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω such that

sn has a distinguished point for every n ∈ ω and such that for every m, n ∈ ω and

for every ai, bj ∈ M if a0y ∨ · · · ∨ any ∈ F and a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bmy,

then a0si0 · . . . · ansin has the same color of b0sj0 · . . . · bmsjm , for every i0 < · · · < in,

j0 < · · · < jm such that ak ∈ Mik and bk ∈ Mjk .

The same remark as before leads to the following easy fact.

4.1.8 Fact If a monoid is Y-controllable then it is locally Y-controllable.

55



The following is the "local" version of Fact 3.4.5, which states that if a monoid M is

Y-controllable and X(M) is linear then M is Ramsey.

4.1.9 Fact If M is locally Y-controllable and X(M) is linear then M is locally Ramsey.

Proof Notice that X(M) is linear if and only if X(M) ∈ Y(M). Assume X(M)

is linear and fix a sequence (Mi)i∈ω of finite subsets of M. We want to use the

definition of locally Y-controllable with y = X(M) and F = {y}. It is enough to

notice that for every a ∈ M we have

aX(M) = {amM : m ∈ M} = {xM : xM ⊆ aM}.

Hence, if aM ⊆ bM, then ay∨ by = by = by∨ ay. Therefore, a1y∨ · · · ∨ any = y ∈ F

for every a1, .., an ∈ M such that there is i such that ai = 1. Hence, when X(M) is

linear, the definition of locally Y-controllable gives a basic sequence s̄ which has

monochromatic (Mi)-span. □

Our results on locally Y-controllable are summarized in Theorem 4.5.3.

Finally, we improve the results of Chapter 3 on Y-controllable monoids. In fact, in

Theorem 4.5.4 we prove that there is a large class of infinite Y-controllable monoids,

which is not noted in Chapter 3.

4.2 Chain conditions in X(M)

Towards an algebraic characterization of locally Ramsey monoids, our theorems can

be divided in two sorts: necessary conditions and sufficient conditions.

In the case of locally Y-controllable monoids, we do not reach an algebraic charac-

terization, and our necessary conditions are different from our sufficient conditions.

The absence of infinite chains in X(M) turns out to be a very relevant condition for

locally Y-controllable monoids. However, we do not know whether it is a necessary

condition, and weaker conditions appear in our lemmas. In this section, we are

going to list these weaker conditions, in Proposition 4.2.1.

We work with these weaker conditions because our lemmas may themselves be

of interest. Also, this might help to reach an algebraic characterization of Y-

controllable monoids and locally Y-controllable monoids, in some future work.

4.2.1 Proposition Let M be a monoid. Assume that there are no infinite chains in X(M). Then,

the following statements hold:

1. There are no a ∈ M and maximal y ∈ ⟨Y(M)⟩ such that {a′y : a′y ≤Y ay} is

infinite.

2. There is no maximal y ∈ ⟨Y(M)⟩ such that {a′y : a′y ≤Y y} is infinite.

3. There are no infinite decreasing chains in X(M).
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4. For every y ∈ ⟨Y(M)⟩ the set {z : z ≤Y y} is finite.

5. There are no infinite increasing chains in X(M).

Proof Let us prove 1. The other proofs are either trivial or similar to the proof of 1.

Let us show that if 1 does not hold, then there is an infinite chain in X(M).

Assume there is an element a ∈ M and a maximal y ∈ ⟨Y(M)⟩ such that the set

{a′y : a′ ∈ M, a′y ≤Y ay} is infinite. Then, {z : z ∈ Y(M), z ≤Y ay} is infinite.

Then, by definition of ≤Y, the set {bM : bM ∈ ay} is infinite. It is linearly ordered

by inclusion since ay ∈ Y(M). □

4.2.2 Remark Condition 4 is actually equivalent to the absence of infinite chains in

X(M). In fact, assume there is an infinite chain in X(M), and let y ∈ Y(M) be

that chain. Then, y witnesses not 4.

Recall that a monoid is said R-rigid if for every a, b ∈ M, if abR b, then ab = b.

Finite aperiodic monoids are exactly finite R-rigid monoids. Aperiodic and R-rigid

monoids do not coincide in general. For example, (N,+, 0) is R-rigid, since it is

R-trivial, but it is not aperiodic. The next proposition shows that the two classes

coincide when there are no chains of a certain kind.

4.2.3 Proposition Let M be a monoid. If a condition between 1, 2, 3, 4 of Proposition 4.2.1 hold,

then the following are equivalent

1. M is aperiodic.

2. For every g, a, g′ ∈ M, if gag′ = a, then ga = ag′ = a.

3. M is R-rigid.

Furthermore, 1 implies 2 and 2 implies 3 without any assumption on M.

Proof If M is aperiodic then point 2 holds, and if point 2 holds then M is R-rigid,

without any further assumption on M. This is shown in the proof of Proposition

3.2.2.

Assume that for every a ∈ M the set {an M : n ∈ ω} is not an infinite chain, where

we convene that a0M = 1M = M. This assumption is implied by any condition

between 1, 2, 3, 4 of Proposition 4.2.1. We want to show that if M is R-rigid then it

is aperiodic.

Let a ∈ M and let n be such that an+1 R an. This n exists since {an M : n ∈ ω} is

finite. Since M is R-rigid and aan R an we have an+1 = an. □

We need the following technical proposition for the proof of Theorem 4.5.2. Notice

that the second condition is the condition 1 of Proposition 4.2.1.

4.2.4 Proposition The following are equivalent for a monoid M:
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1. For every finite F ⊆ ⟨Y(M)⟩, for every y maximal element in Y(M) there is a finite

B ⊆ {ay : a ∈ M} such that if a0y ∨ · · · ∨ any ∈ F then {aiy : i ≤ n} ⊆ B.

2. There are no a ∈ M and maximal y ∈ ⟨Y(M)⟩ such that {a′y : a′y ≤Y ay} is

infinite.

Proof "not 2 implies not 1" Assume there are such a and y. It is enough to choose

F = {ay} to show that 1 does not hold.

"not 1 implies not 2" Suppose there is a finite F and a maximal y such that for every

finite B ⊆ {ay : a ∈ M} there are {aiy : i ≤ n}, such that a0y ∨ · · · ∨ any ∈ F and

{aiy : i ≤ n} ⊈ B. This implies that there are infinitely many ay such that there

exist a0 . . . an ∈ M<ω and i ≤ n such that a0y ∨ · · · ∨ any ∈ F and aiy = ay.

This implies that for some f ∈ F there are infinitely many ay such that there exist

a0 . . . an ∈ M<ω and i ≤ n such that a0y ∨ · · · ∨ any = f and aiy = ay.

Let f be as above, say f = a0y ∨ · · · ∨ any, we want to show that there is i ≤ n such

that {ay : ay ≤Y aiy} is infinite.

Let g = b0y ∨ · · · ∨ bky be equal to f . It is enough to show that for every j ≤ k

there is i ≤ n such that bjy ≤Y aiy. Suppose not and let j be such that bjy ≰Y aiy,

for every i ≤ n. To reach a contradiction, we show that in this case every element

equal to g has an element x such that x ≰Y aiy, for every i ≤ n. In fact, assume

that z ∨ bjy ̸= bjy: then, z ∨ bjy = z and bjy ≤Y z. Then, for every i we must have

z ≰Y aiy. □

Notice that if B is as in condition 1, then the set {a : ay ∈ B} can be infinite, but it

has elements from finitely many R-classes.

4.3 Necessary conditions

In this section, we prove that all Ramsey monoids are finite. We also prove that

locally Ramsey monoids are aperiodic, and have finite and linear X(M). Finally, we

prove that locally Y-controllable monoids are aperiodic and satisfy condition 1 of

Proposition 4.2.1.

Our strategy is to show that if a monoid is infinite, then it is not Ramsey. Similarly,

for the other classes of monoids.

To prove that some monoids are not Ramsey, we have to find an example of a

sequence (Xn)n∈ω of M-pointed sets and a coloring of ⟨(Xn)n∈ω⟩ such that there

is no infinite sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω such that sn has a distinguished point for

every n and such that ⟨s̄⟩M is not monochromatic. Similarly, to show that a monoid

is not locally Ramsey (or locally Y-controllable), we have to choose a sequence

(Xn)n∈ω of M-pointed sets and a coloring of ⟨(Xn)n∈ω⟩.

In this section, as an example of sequence (Xn)n∈ω as above, we always choose the
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constant sequence Xn = M. Namely, we always color the free semigroup M<ω. It

can be seen as ⟨(Xn)n∈ω⟩, where Xn = M, with distinguished element 1. The action

of M on Xn is given by multiplication. Elements of ⟨(Xn)n∈ω⟩ have distinguished

points if and only if they are variable words.

The results of this section are stated for locally Ramsey monoids and locally Y-

controllable monoids. Since every Ramsey monoid is locally Ramsey, and every

Y-controllable monoid is locally Y-controllable, these results also hold for Ramsey

monoids and Y-controllable monoids.

The following proposition is a straightforward generalization of Solecki’s [43, Corol-

lary 4.5 (ii)] to locally Ramsey monoids.

4.3.1 Proposition If M is locally Ramsey then X(M) is linear.

Proof Suppose X(M) is not linear, and let aM and bM such that aM ⊈ bM and

bM ⊈ aM. By aM ⊈ bM we have a /∈ bM, and by bM ⊈ aM we have b /∈ aM.

Color w ∈ M<ω with red if the letter a is in w and it appears before the first

appearance of b. Otherwise, color w with blue. Let (Mi)i∈ω be any sequence of

finite subsets of M each containing {1, a, b}. Then, if s̄ is any sequence of variable

words, a(s1)s2 has color red and b(s1)s2 has color blue. Hence, the (Mi)-span of s̄

is not monochromatic and M is not locally Ramsey. □

In the following, we prove that both locally Y-controllable monoids and locally

Ramsey monoids are aperiodic.

4.3.2 Proposition Let M be a monoid. Then,

1. If M is locally Y-controllable, then it is aperiodic.

2. If M is locally Ramsey, then it is aperiodic.

Proof Suppose M is not aperiodic, and let a ∈ M be such that an ̸= an+1 for every

n ∈ ω. We want to prove that M is not locally Y-controllable and is not locally

Ramsey.

Let A = {an : n ∈ ω}, let C = {m ∈ M : anm ∈ A for some n ∈ ω}. We convene

that a0 = 1. Notice that m ∈ C if and only if am ∈ C.

Suppose first A is finite. Let A ∪ {black, red, blue} be the set of colors. Given a

word w ∈ M<ω, color w with black if w contains no letter in C. Otherwise, let

m be the first letter of w in C. Color w with m if m ∈ A, color w with red if

min{n ∈ ω : anm ∈ A} is even and with blue if it is odd.

If instead A is infinite, then am ̸= aj for every m ̸= j. Given a word w ∈ M<ω, color

w with black if w contains no letter in C. Otherwise, let m be the first letter of w in

C. Let n = min{n ∈ ω : anm ∈ A} and let k be such that anm = ak. Color w with

red if n − k is odd, and with blue if n − k is even.
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Let (Mi)i∈ω be the sequence of finite subsets of M defined by Mi = {1, a}. Let

y = {an M : n ∈ ω}, where we set a0 = 1, and let F = {y}. Then, y is a maximal

element of Y(M), and y ∨ y = y = ay ∨ y.

Let (yi)i<ω be any sequence of variable words. Both in the finite and infinite case, y0

has at least a letter in C, since it has a 1. Then, y0
⌢ y1 and a(y0)

⌢ y1 have different

colors, hence M is not locally Y-controllable. The same coloring shows that the

(Mi)-span of y0y1 is not monochromatic. Hence, M is not locally Ramsey. □

We notice a consequence of those properties already proved for locally Ramsey

monoids.

4.3.3 Remark Let M be an aperiodic monoid such that X(M) is linear. Then, aM is a

both-sided ideal for every a ∈ M (and in particular Ma ⊆ aM).

In fact, consider a, d ∈ M. If daM ⊆ aM we are done, so by linearity we may assume

aM ⊆ daM. By induction this implies aM ⊆ diaM for every i < ω. Given n such

that dn = dn+1, we have a ∈ dnaM and there is m ∈ M such that a = dnam. Hence,

da = d(dnam) = (dn+1)am = dnam = a.

In the following, we show that locally Y-controllable monoids satisfy the condition

1 of Proposition 4.2.1.

4.3.4 Proposition If a monoid M is locally Y-controllable then there are no a ∈ M and maximal

y ∈ Y(M) such that {a′y : a′y ≤Y ay} is infinite.

Proof Towards a contradiction, assume there are a ∈ M and a maximal y such that

A = {a′y : a′ ∈ M, a′y ≤Y ay} is infinite. Notice that if a′ R a′′ and {a′y, a′′y} ⊆ A,

then a′y = a′′y: in fact a′y and a′′y are ≤Y-comparable and a′M = a′′M is their top

element. Hence A(M) = {cM : c ∈ M, cy ∈ A} is infinite.

First, notice that A(M) = {cM : cy ∈ A} is linearly ordered by inclusion. In fact, if

cy ≤Y ay and c′y ≤Y ay then cy and c′y are ≤Y-comparable, and this implies that

cM and c′M are ⊆-comparable, since 1M ∈ y.

We want to show that A(M) contains no infinite ascending chain. Suppose not,

and let {ai M} be ascending in A(M) with ai M ⊂ ai+1M and aiy ∈ A for every

i ∈ ω. For each word w ∈ M<ω, define i(w) to be the highest natural number

such that a letter of w is in [ai(w)]R, if there is such a letter in w. Color w with

black if it contains no such letter, otherwise color w with red if i(w) is odd and with

blue if i(w) is even. Let (Mi)i∈ω be the sequence of finite subsets of M defined by

Mi = {1, a, a0, . . . , ai}. Let ȳ = (yn)n∈ω be any sequence of variable words. If ay0

has color black, then ay0
⌢ a1y1 has color blue or red, since y1 has at least a letter 1.

Otherwise, let k = i(ay0). Then,

i(ay0
⌢ ak+1yk+1) = k + 1,
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since ay0
⌢ ak+1yk+1 contains ak+1 as a letter, and each other letter of ak+1yk+1 be-

longs to ak+1M. This contradicts that M is locally Y-controllable, since

ay ∨ a1y = ay ∨ ak+1y = ay.

Now we want to show that A(M) contains no infinite descending chain. Suppose

not, and let {ai M} be an infinite descending chain in A(M), with ai M ⊃ ai+1M

and aiy ∈ A for every i ∈ ω. Set a0 = a. For each word w ∈ M<ω, let Hw be

the set of i ∈ ω such that there is a letter b in w such that b ∈ [ai]R, there is no

letter c in w such that c ∈ [ai+1]R, and there exist k ≥ 2 and a letter d in w such

that d ∈ [ai+k]R. We can think Hw as a set counting "holes". Color w by red if

Hw has even cardinality, by blue otherwise. Let (Mi)i∈ω be the sequence of finite

subsets of M defined by Mi = {1, a0, . . . , ai}. Let ȳ = (yn)n∈ω be any sequence of

variable words. Given a word w ∈ M<ω such that w has a letter in
⋃

i∈ω [ai]R, let

l(w) be the maximum i such that w has a letter in [ai]R. Let i = l(ay0) and let

k = l(ay0
⌢ ai+1yi+1). If ay0 has the same color of ay0

⌢ ai+1yi+1 then the cardinality

of Hai+1yi+1 is even. In this case, ay0
⌢ ai+1yi+1

⌢ ak+1yk+1 and ay0
⌢ ak+1yk+1 have

different colors. This contradicts that M is locally Y-controllable, since

ay ∨ ai+1y = ay ∨ ai+1y ∨ ak+1y = ay ∨ ak+1y = ay.

Hence, A(M) is linearly ordered and does not contain infinite chains, in contradic-

tion with the fact that A(M) is infinite. □

Virtually the same proof shows the following. We write the proof for the ease of the

reader.

4.3.5 Proposition If a monoid M is locally Ramsey then there is no maximal y ∈ Y(M) such

that {a′y : a′y ≤Y y} is infinite.

Proof Towards a contradiction, assume there is a maximal y such that A = {a′y :

a′y ≤Y y} is infinite. Hence A(M) = {cM : cy ∈ A} is infinite.

Arguing as in the proof of Proposition 4.3.4, A(M) = {cM : cy ∈ A} is linearly

ordered by inclusion.

We claim that A(M) contains no infinite ascending chain. Suppose not, and let

{ai M} be ascending in A(M) with ai M ⊂ ai+1M and aiy ∈ A for every i ∈ ω.

For each word w ∈ M<ω, define i(w) to be the highest natural number such that

a letter of w is in [ai(w)]R, if there is such a letter in w. Color w with black if it

contains no such letter, otherwise color w with red if i(w) is odd and with blue

if i(w) is even. Let (Mi)i∈ω be the sequence of finite subsets of M defined by

Mi = {1, a0, . . . , ai}. Let ȳ = (yn)n∈ω be any sequence of variable words. If y0

has color black, then y0
⌢ a1y1 has color blue or red, since y1 has at least a letter 1.

Otherwise, let k = i(y0). Then,

i(y0
⌢ ak+1yk+1) = k + 1,
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since y0
⌢ ak+1yk+1 contains ak+1 as a letter, and each other letter of ak+1yk+1 belongs

to ak+1M. This contradicts that M is locally Ramsey, since the span of y0y1 is not

monochromatic.

Now we want to show that A(M) contains no infinite descending chain. Suppose

not, and let {ai M} be an infinite descending chain in A(M), with ai M ⊃ ai+1M and

aiy ∈ A for every i ∈ ω. Set a0 = 1. For each word w ∈ M<ω, let Hw be the set of

i ∈ ω such that there is a letter b in w such that b ∈ [ai]R, there is no letter c in w

such that c ∈ [ai+1]R, and there exist k ≥ 2 and a letter d in w such that d ∈ [ai+k]R.

Color w by red if Hw has even cardinality, by blue otherwise. Let (Mi)i∈ω be the

sequence of finite subsets of M defined by Mi = {1, a0, . . . , ai}. Let ȳ = (yn)n∈ω

be any sequence of variable words. Given a word w ∈ M<ω such that w has a

letter in
⋃

i∈ω [ai]R, let l(w) be the maximum i such that w has a letter in [ai]R. Let

i = l(y0) and let k = l(y0
⌢ ai+1yi+1). If y0 has the same color of y0

⌢ ai+1yi+1, then

the cardinality of Hai+1yi+1 is even, hence y0
⌢ ai+1yi+1

⌢ ak+1yk+1 and y0
⌢ ak+1yk+1

have different colors. This contradicts that M is locally Ramsey.

Hence, A(M) is linearly ordered and does not contain infinite chains, in contradic-

tion with the fact that A(M) is infinite. □

The next corollary is a key step in the characterization of locally Ramsey monoids.

4.3.6 Corollary Let M be a monoid. Then,

1. If M is locally Y-controllable and X(M) is linear, then X(M) is finite.

2. If M is locally Ramsey, then X(M) is finite.

Proof Let y = X(M) ∈ Y(M). If M is locally Y-controllable, by Proposition 4.3.4

the set {ay : ay ≤Y y} is finite. Since X(M) is linear, ay ≤Y y for every a ∈ M.

Hence, the set {ay : a ∈ M} is finite. This implies that X(M) is finite.

The same proof works in the case of locally Ramsey monoids, using Proposition

4.3.1 and Proposition 4.3.5 □

4.3.7 Theorem Let M be a monoid.

1. If M is locally Ramsey and Y-controllable then it is finite.

2. If M is Ramsey, then it is finite.

Proof By Proposition 4.3.1 and point 2 of Corollary 4.3.6 we know that if a monoid

M is locally Ramsey then X(M) is linear and finite. Since a Ramsey monoid is

locally Ramsey, the same holds for Ramsey monoids. To prove that M is finite it is

enough to prove that every R-class is finite. We are going to prove that if there is

an infinite R-class then M is not Y-controllable and not Ramsey.
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Let [a]R be the maximal infinite R-class, and notice that M \ aM is finite. Let

B = M \ aM. Fix an enumeration {ai : i ≤ α} = [a]R of [a]R such that for infinitely

many i the element ai appears after all the elements of aiB, i.e. if aj ∈ aiB then j ≤ i.

This enumeration is possible since B is finite. This enumeration of [a]R induces an

enumeration of its subset C defined by

C =
{

c ∈ [a]R : c appears after all the elements of cB \ {c}
}

.

Let y = X(M), let F = {y} ⊆ ⟨Y(M)⟩. Then, y is a maximal element and for every

c ∈ [a]R we have cy ∨ y = y ∨ y = y. Color a word w ∈ M<ω by black if it has no

letter in C, by red if the highest index of one of its letters in C is odd, and by blue if

it is even.

Let (yi)i∈ω be a sequence of variable words. If y0
⌢ y1 has color black, then c(y0)

⌢ y1

has color red or blue for any c ∈ C. Otherwise, let n be the maximal index of a letter

in C occurring in y0
⌢ y1. Then, cn+1y0

⌢ y1 and y0
⌢ y1 have different colors. Either

case, this shows that M is not Y-controllable. The same coloring shows that M is

not Ramsey, since the M-span of (yi)i∈ω is not monochromatic. □

4.3.8 Corollary A monoid is Ramsey if and only if it is finite, aperiodic, and X(M) is linear.

Proof By Theorem 3.4.7 and point 2 of Theorem 4.3.7. □

4.4 Compact right topological semigroups

In this section, we study actions of aperiodic monoids on compact right topological

semigroups. The proofs contained in this section are similar to those of Chapter 3,

but here we cannot use the hypothesis that the monoid is finite.

As mentioned in Section 4.2, we work with weaker assumptions than the absence

of infinite chains in X(M) (see Proposition 4.2.1).

In this section, we work in conditions where R-rigid monoids are exactly aperiodic

monoids (see Proposition 4.2.3). We use this equivalence in what follows.

4.4.1 Lemma Let M be an aperiodic monoid such that there are no infinite descending chains in

(X(M),⊆), and such that XR(M) is linear. Then, for every distinct a, b ∈ M with aR b

there are two distinct g, h ∈ M such that ag = b, bh = a and gh = h, hg = g. This in

particular implies gM = hM.

Proof Fix a non-trivial R-class [c]R and let a, b ∈ [c]R with a ̸= b.

For every y, z ∈ M, define

Gy,z = {gy,z ∈ M : ygy,z = z}.

Notice that if yR z, then Gy,z is non-empty. Let g ∈ Ga,b be such that gM is minimal
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in {xM | x ∈ Ga,b}. Such g exists since there are no infinite descending chains in

X(M). Similarly, let h ∈ Gb,a be such that hM is minimal in {xM | x ∈ Gb,a}.

Notice that hgh ∈ Gb,a since bhgh = agh = bh = a. Since hghM ⊆ hgM ⊆ hM,

by minimality of hM we have hghM = hgM = hM, so hR hg and hR hgh. Notice

that hg ∈ Gb,b and that Gb,a ∩ Gb,b = ∅, so h ̸= hg and the class [h]R is non-trivial.

Similarly, gR ghR ghg, gh ∈ Ga,a and so the class [g]R is non-trivial. We want to

show that hM = gM.

Since XR(M) is linear either gM ⊆ hM or hM ⊆ gM. Suppose for example gM ⊆
hM = hgM. Then, g = hgm for some m ∈ M, which implies g = hg, by point 2 of

Proposition 4.2.3. Hence, gM = hgM = hM.

This implies that h, hg, g, gh, are all in the same R-class, hence gh = h and hg = g,

by definition of R-rigid. □

In the following lemma we do not need the hypothesis that there are no infinite

chains in X(M).

4.4.2 Lemma Let M be an aperiodic monoid such that XR(M) is linear. Then, for every a ∈ M,

if there are b, c ∈ [a]R such that bc = c, then for every b, c ∈ [a]R we have bc = c.

Proof The case where [a]R = {a} is easy, so we can assume that aM ∈ XR(M).

First, notice that if xy = y for some x, y ∈ M, then xz = z for every z ∈ [y]R, since

xzM = xyM = yM = zM and since M is R-rigid by Proposition 4.2.3.

Hence, we just need to prove that given a non-trivial R-class [a]R such that ax = x

for every x ∈ [a]R, and given an element b ∈ [a]R with b ̸= a, then we have ba = a.

Let h be such that bh = a. Notice that haR hb since haM = hbM, and also ha ̸= hb

since bha = a ̸= b = bhb. Then haM ∈ XR(M) and so haM ⊆ aM or aM ⊆ haM.

If haM ⊆ aM then

aM = aaM = bhaM ⊆ baM ⊆ bM = aM.

Hence, baR a and ba = a.

If aM ⊆ haM then a = ham for some m, and by point 2 of Proposition 4.2.3, a = ha.

Hence, ba = bha = a. □

The exact same proof of Theorem 3.3.5 works for the following, where Lemma 4.4.1

and Lemma 4.4.2 play the role of Lemma 3.3.3 and Lemma 3.3.4. In order to use the

proof of Theorem 3.3.5, we need to assume that XR(M) is linear and finite.

4.4.3 Theorem Let M be an aperiodic monoid such that XR(M) is finite and linear, and such

that there are no infinite descending chains in (X(M),⊆). Let U be a compact right topo-

logical semigroup on which M acts by continuous endomorphisms. Then, there exists a

minimal idempotent u ∈ E(U) ∩ I(U) such that a(u) = b(u) for all couples a, b ∈ M
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such that aR b.

Let us recall a technical notion isolated by Solecki in [43].

4.4.4 Definition A monoid M is called good if for every left action of M by continuous endo-

morphisms on a compact right topological semigroup U there exists a function g : Y(M) →
E(U) such that

(i) g is M-equivariant;

(ii) g is order reversing with respect to ≤Y(M) and ≤U ;

(iii) g maps maximal elements of Y(M) to I(U).

The following lemma is stated in [43] for finite monoids, but the same proof holds

for a larger class of monoids. In fact, the proof just uses that for every y ∈ Y(M),

the set {z ∈ Y(M) : z ≤Y y} is finite. As proven in Remark 4.2.2, this condition is

equivalent to asking that there are no infinite chains in (X(M),⊆).

4.4.5 Lemma [43, Lemma 2.5] Let M be a monoid such that there are no infinite chains in

(X(M),⊆). Assume that for every left action of M by continuous endomorphisms on a

compact right topological semigroup U there is a M-equivariant f from Y(M) to U such

that f maps maximal elements of Y(M) to I(U). Then, M is good.

The following lemma gives another sufficient condition for a monoid to be good.

Notice that we need to ensure that every y has an element that is ⊆-maximal. We

assume that M is a monoid such that there are no infinite increasing chains in

X(M).

4.4.6 Lemma Let M be a monoid such that there are no infinite chains in X(M). Assume that for

every action by continuous endomorphisms of M on a compact right topological semigroup

U there exists a minimal idempotent u ∈ E(U) ∩ I(U) such that a(u) = b(u) for all

couples a, b ∈ M such that aR b. Then, M is good.

Proof Let π : Y(M) → X(M) be the function that maps a set y ∈ Y(M) to the

maximal element in y with respect to ⊆. Here we use that X(M) does not have

infinite increasing chains. Let u ∈ E(U)∩ I(U) be given by hypothesis. The function

f : X(M) → E(U) that maps aM to a(u) is well-defined, and maps 1M to u ∈
E(U) ∩ I(U). Also, notice that if y is a maximal element of Y(M), then 1M ∈ y

and so π ◦ f (y) = u ∈ E(U) ∩ I(U). Since both f and π are M-equivariant the map

f ◦ π : Y(M) → E(U) satisfies the assumptions of Lemma 4.4.5, from which we get

that M is good. □

4.4.7 Corollary Let M be an aperiodic monoid such that XR(M) is linear, and such that there

are no infinite chains in (X(M),⊆). Then, M is good.
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Proof By Theorem 4.4.3 and Lemma 4.4.6. Notice that we can drop the hypothesis

that XR(M) is finite. In fact, XR(M) is always finite under the assumptions that

there are no infinite chains in (X(M),⊆) and XR(M) is linear. □

4.5 From good to locally Y-controllable

In this section, we conclude the characterization of locally Ramsey monoids. Also,

we find new classes of infinite Y-controllable monoids and locally Y-controllable

monoids. We use the same model-theoretic setup of Section 3.5.

We need a technical definition.

4.5.1 Definition Let F be a finite subset of the semigroup ⟨Y(M)⟩, let y be a maximal element

in Y(M), let (Mi)i∈ω be a sequence of finite subset of M, and let c be a finite coloring

of a semigroup S on which M acts. We say that a sequence s̄ ∈ S≤ω is (Mi, F, y, c)-

controllable if for every m, n ≤ |s̄| and for every ai, bj ∈ M if a0y ∨ · · · ∨ any belongs

to F and a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bmy, then a0si0 · . . . · ansin has the same color of

b0sj0 · . . . · bmsjm , for every i0 < · · · < in, j0 < · · · < jm such that ak ∈ Mik and bk ∈ Mjk .

4.5.2 Theorem Let M be a good monoid.

1. Assume that there are no a ∈ M and maximal y ∈ ⟨Y(M)⟩ such that {a′y : a′y ≤Y

ay} is infinite. Then, M is locally Y-controllable.

2. Assume that for every finite F ⊆ ⟨Y(M)⟩, for every y maximal element in Y(M)

there is a finite B ⊆ M such that if a0y ∨ · · · ∨ any ∈ F then {ai : i ≤ n} ⊆ B.1

Then, M is Y-controllable.

Proof Let us show 1; the proof of 2 is essentially the same.

Let (Xn)n∈ω be a sequence of pointed M-sets on which M acts uniformly, and let ⊥
be not in

⋃
n∈ω Xn. Define G = (⟨(Xn)n∈ω⟩ ∪ {⊥}, ⌢) to be the semigroup extending

(⟨(Xn)n∈ω⟩, ⌢) defining x ⌢ y = ⊥ if x ⌢ y is not defined in the partial semigroup

⟨(Xn)n∈ω⟩. In particular, x ⌢⊥ = ⊥⌢ x = ⊥. We write x−< y if and only if x ⌢ y ̸= ⊥
or x = ⊥.

It is enough to prove that for every finite subset F of ⟨Y(M)⟩, for every maximal

element y in Y(M), for every sequence (Mi)i∈ω of finite subset of M, and for every

c finite coloring of G there is a basic sequence s̄ ∈ (⟨(Xn)n∈ω⟩)ω that is (Mi, F, y, c)-

controllable and such that sn has a distinguished point for every n ∈ ω. By Propo-

sition 4.2.4, there is a finite B ⊆ {ay : a ∈ M} such that if a0y ∨ · · · ∨ any ∈ F then

{aiy : i ≤ n} ⊆ B. Without loss of generality, we may assume that Miy ⊇ B for

every i.

1Notice that this condition is stronger than condition 1 of Proposition 4.2.4.
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Let L = {⌢,−<} and consider G with augmented signature L+. Let

U = {p ∈ S(G) : G−< p}

where G−< p is a shorthand for {g−< x : g ∈ G} ⊆ p(x). As we show in the proof

of Theorem 3.4.4, in Section 3.5, U is a compact subsemigroup of (S(G), ·G) and M

acts on U by continuous endomorphisms.

Let u = g(y) ∈ E(U) ∩ I(U), where g : Y(M) → E(U) is the function given by

definition of good monoid. Let DP be the set of elements of ⟨(Xn)n∈ω⟩ that have at

least one distinguished point, and let J = {p ∈ S(G) : DP ∈ p}. Since J ∩ U is a

non-empty both-sided ideal of U, and u ∈ I(U), we have that u is in J. Let (un)n∈ω

be a coheir sequence of u. We write ⃗u↾i for the tuple ui−1, . . . , u0. Notice that since

the map g is order-reversing and M-equivariant, for every a0, . . . , an, b0, . . . , bm ∈ M

if a0y ∨ · · · ∨ any = b0y ∨ · · · ∨ bmy then also a0u ·G . . . ·G anu = b0u ·G . . . ·G bmu.

Hence, it is straightforward to check that ⃗u↾i is (Mi, F, y, c)-controllable for every

i ∈ ω. Notice that ⃗u↾i is a basic sequence since products stay in U and ⊥ /∈ U.

Finally, un are elements of DP since u ∈ J. Now, we use the sequence ⃗u to define

s̄ ∈ Gω with same properties as ⃗u.

Let k ∈ ω be such that for every element f ∈ F there are k′ < κ and a0, . . . , ak′ ∈ M

such that f = a0y∨ · · · ∨ ak′y. Notice that this implies that for every f , f ′ ∈ ⟨Y(M)⟩
such that f ∨ f ′ ∈ F there are c0, . . . cj ∈ M with j < k such that f ′ = c0y ∨ · · · ∨ cjy.

This follows from the property that the set of predecessors of any element of Y(M)

is linearly ordered by ≤Y(M).

Assume as induction hypothesis that the tuple obtained by concatenation s↾i ⌢ ⃗u↾k

is (Mi, F, y, c)-controllable and is a basic sequence of elements of DP. Our goal is to

find si ∈ G such that the same properties hold for s↾i+1.

From the induction hypothesis it follows that s↾i ⌢ ⃗u↾l is (Mi, F, y, c)-controllable for

any l ∈ ω. In fact, let w = b0si0
⌢ . . . ⌢ bmsim

⌢ bm+1uim+1
⌢ . . . ⌢ bnuin be such that

b0y ∨ · · · ∨ bmy ∨ bm+1y ∨ · · · ∨ bny ∈ F. Let j < k and c0, . . . , cj ∈ M be such that

bm+1y ∨ · · · ∨ bny = c0y ∨ · · · ∨ cjy. By assumption, {c0, . . . , cj}y ⊆ B ⊆ Miy for

every i. The type over G of b0si0
⌢ . . . ⌢ bmsim

⌢ c0uj
⌢ . . . ⌢ cju0 is equal to the type

over G of w. Therefore, we may use the induction hypothesis to conclude that

s↾i ⌢ ⃗u↾l is (Mi, F, y, c)-controllable. Also, s↾i ⌢ ⃗u↾l is a basic sequence by induction

hypothesis and idempotence of u.

Let φ(s↾i, ui+1, u↾i+1) say that s↾i ⌢ ⃗u↾i+2 is (Mi, F, y, c)-controllable and that s↾i ⌢ ⃗u↾i+2

is a basic sequence of elements of DP. This is a formula since Mi are finite. As ū

is a coheir sequence we can find si ∈ G such that φ(s↾i+1, u↾i+1). Hence, si has the

desired properties. □

We summarize this chapter’s results on locally-Y-controllable monoids in the fol-

lowing theorem.
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4.5.3 Theorem Let M be a locally Y-controllable monoid. Then, M is aperiodic. Also, for every

a ∈ M and maximal y ∈ ⟨Y(M)⟩ the set {a′y : a′y ≤Y ay} is finite.

In the other direction, let M be an aperiodic monoid such that XR(M) is linear and such

that there are no infinite chains in (X(M),⊆). Then, M is locally Y-controllable.

Proof The necessary conditions to be locally Y-controllable are proved in point 1

of Proposition 4.3.2, and in Proposition 4.3.4. In the other direction, those monoids

are good by Corollary 4.4.7. Since there are no infinite chains in (X(M),⊆), we can

use Proposition 4.2.1 and apply Theorem 4.5.2. □

We summarize this chapter’s results on Y-controllable monoids in the following

theorem. This result enlarges the class of known Y-controllable monoids giving

examples of infinite Y-controllable monoids. See Proposition 4.6.1 for concrete ex-

amples.

4.5.4 Theorem Let M be a Y-controllable monoid. Then, M is aperiodic. Also, for every a ∈ M

and maximal y ∈ ⟨Y(M)⟩ the set {a′y : a′y ≤Y ay} is finite.

In the other direction, let M be an aperiodic monoid such that XR(M) is linear, such that

there are no infinite chains in (X(M),⊆) and there are no infinite R-classes. Then, M is

Y-controllable.

Proof The necessary conditions to be Y-controllable are proved for the larger class

of locally Y-controllable monoids in point 1 of Proposition 4.3.2, and in Proposition

4.3.4.

In the other direction, those monoids are good by Corollary 4.4.7. Since there are

no infinite chains in (X(M),⊆), by Proposition 4.2.1 for every finite F ⊆ ⟨Y(M)⟩,
for every y maximal element in Y(M) there is a finite B ⊆ {ay : a ∈ M} such that

if a0y ∨ · · · ∨ any ∈ F then {aiy : i ≤ n} ⊆ B. Since there are no infinite R-classes,

there are finitely many a ∈ M such that ay ∈ B. Hence, we can apply Theorem

4.5.2. □

Finally, we can characterize locally Ramsey monoids. Notice that there are locally

Ramsey monoids of any cardinality.

4.5.5 Corollary Let M be a monoid. Then, M is locally Ramsey if and only if M is aperiodic

and X(M) is linear and finite.

Proof If M is locally Ramsey then M is aperiodic by point 2 of Proposition 4.3.2,

and X(M) is linear and finite by Proposition 4.3.1 and point 2 of Corollary 4.3.6.

If M is aperiodic and X(M) is linear and finite then M is locally Y-controllable

by Theorem 4.5.3. By Fact 4.1.9, every locally Y-controllable monoid M such that

X(M) is linear is locally Ramsey. □

Every Ramsey monoid is locally Ramsey and Y-controllable. Also, every finite
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locally Ramsey monoid is finite, aperiodic, and has linear X(M): hence it is Ramsey,

by Theorem 3.4.7. Hence, by point 1 of Theorem 4.3.7 we get the following.

4.5.6 Corollary 1. A monoid is Ramsey if and only if it is locally Ramsey and Y-controllable.

4.6 Final remarks

Here, we give a different proof that there are Y-controllable monoids of any cardi-

nality, as opposed to Ramsey monoids, which are finite. Proposition 4.6.1 is weaker

than Theorem 4.5.4, since the class of monoids considered is included in the class

of monoids of Theorem 4.5.4.

4.6.1 Proposition Let (Mi, ∗i), i ∈ I, be a family of finite R-trivial monoids, with a possible

exception of one finite aperiodic monoid with linear XR(M), and assume that Mi ∩ Mj = ∅

if i ̸= j. Let M =
⋃

i∈I Mi ∪ {1, 0}, where 1, 0 /∈ ⋃
i∈I Mi and let (M, ·, 1) be the monoid

with neutral element 1 defined by ab = a ∗i b if a, b ∈ Mi and by ab = 0 otherwise. Then,

M is Y-controllable.

Proof It is straightforward to check that if a ∈ Mi then aM = aMi ∪ {0}. Hence, for

every element y of Y(M) there is i ∈ I such that {a : aM ∈ y} ⊆ Mi ∪ {0, 1}. Also,

if b ∈ Mj then {a : aM ∈ by} ⊆ Mj ∪ {0}; finally, by = {0M} if and only if b = 0 or

y = {0M}.

For J ⊆ I, let M↾J be the submonoid of M defined by M↾J =
⋃

j∈J Mj ∪ {1, 0}. Then,

if F is a finite subset of ⟨Y(M)⟩ there is a finite J such that if b0y ∨ · · · ∨ bmy ∈ F

then b0, . . . bm ∈ M↾J .

Hence, in order to check that M is Y-controllable it is enough to notice that M↾J is

Y-controllable, for every finite J ⊆ I. This is given by Theorem 3.4.6, since M↾J is

aperiodic and has linear XR(M). □

We conclude with a remark which might be useful to reach an algebraic characteri-

zation of Y-controllable monoids, in some future work.

Lemmas 4.4.1 and 4.4.2 are two key steps to prove that certain aperiodic monoids

are (locally) Y-controllable. They heavily use the hypothesis that XR(M) is linear.

If one wants to prove that every finite aperiodic monoid is Y-controllable, then a

different method should be used. In fact, there are finite aperiodic monoids such

that XR(M) is not linear for which the theses of lemmas 4.4.1 and 4.4.2 do not hold.

An example of such monoid is given by the following Cayley table.
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1 a b c d 0

a 0 0 b a 0

b a b 0 0 0

c d c 0 0 0

d 0 0 c d 0

0 0 0 0 0 0

Table 4.1: Example of aperiodic monoid that does not satisfy the theses of lemmas

4.4.1 and 4.4.2

70



Acknowledgements

Many people in research had a deep impact on me, allowing me to grow as a re-

searcher. I am grateful to all of you, either if you spent 5 minutes with me in a

small conversation, or if you had to spend days reviewing my papers. I found a

beautiful community in logic and I was lucky enough to speak with some of the

best mathematicians in the world. Amongst these, those who had the patience of

spending more time with me were Domenico Zambella, Ludomir Newelski, Clau-

dio Agostini, and Itay Kaplan (in order of appearance in my movie).

Many people had a deep impact on me as a person. There is a large intersection

with the previous set. I would have liked to show you more gratitude these years.

Unfortunately, I tend to hide my emotions. And what a better place to hide them

than a thesis in pure mathematics? I would like you to know that your presence

has been very important to me.

For the convenience of the reader, I divided the list of the people to whom I am most

grateful in 4 subsets. This list is surely not exhaustive; my apologies to everyone I

have forgotten to include.

4.6.2 Ordinary researchers in logic If you don’t see your name here, either you don’t

study logic, or you are in the second subset, or otherwise please consider yourself

in the second subset.

4.6.3 Very awesome researchers in logic Claudio Agostini, Eran Alouf, Alessandro An-

dretta, Vittorio Bard, Gianluca Basso, Omer Ben-Neria, David Bradley-Williams,

Samuel Braunfeld, Raphaël Carroy, Artem Chernikov, Alexis Chevalier, Christian

D’Elbee, Mauro di Nasso, Natasha Dobrinen, Antongiulio Fornasiero, Enrico Gi-

annico, Yatir Halevi, Christopher Hawthorne, Daniel Hoffmann, Ehud Hrushovski,

Jan Hubička, Martina Iannella, Vassilis Kanellopoulos, Itay Kaplan, Krzysztof Krupiński,

Noa Lavi, Hagai Lavner, Junguk Lee, Lorenzo Luperi Baglini, Martino Lupini,

Francesco Mangraviti, Vincenzo Mantova, Paolo Marimon, Tsvetlin Marinov, Amador

Martin-Pizarro, Rosario Mennuni, Shlomo Eshel, Slavko Moconja, Luca Motto Ros,

Ludomir Newelski, Lorenzo Notaro, Gianluca Paolini, Francesco Parente, George

Peterzil, Moreno Pierobon, Beatrice Pitton, Simone Ramello, Juan Santiago, Salva-

tore Scamperti, Ori Segal, Matteo Viale, Domenico Zambella, Tingxiang Zou
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4.6.4 Very awesome people, except for the fact that they don’t research in logic Adele,

Agnese, Alexandru, Andrea, Anna, Antonella, Asia, Carola, Caste, Christian, Cristina,

Daniel, Dario, Davide, Decco, Elena, Elia, Fabio, Fabrizio, Federica, Francesca,

Francesco, Gianni, Gino, Giulia, Grisha, Jessica, Johannes, Laura, Lele, Lis, Lorenzo,

Louisa, Luca, Luciano, Maffu, Mariella, Marco, Maria Pia, Matteo, Mazzu, Nico,

Nicolò, Paola, Pinuccia, Pippo, Riccardo, Roberto, Rosalba, Rosetta, Sarah, Selene,

Serena, Silvia, Stecchi, Stefano, Sue, Shuyi, Umberto, Vincenzo.

4.6.5 The most awesome, except for the fact she doesn’t research in logic Elena Losero.
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