
Job Shop Scheduling via Deep Reinforcement
Learning: a Sequence to Sequence approach

Giovanni Bonetta⋆[0000−0003−4498−1026], Davide Zago⋆[0000−0003−1112−3543],
Rossella Cancelliere[0000−0002−9120−3799], and Andrea Grosso[0000−0002−9926−2443]

Department of Computer Science, University of Turin, 10149 Turin
{giovanni.bonetta,rossella.cancelliere,andrea.grosso}@unito.it

zago@di.unito.it

Abstract. Job scheduling is a well-known Combinatorial Optimization prob-
lem with endless applications. Well planned schedules bring many benefits in
the context of automated systems: among others, they limit production costs
and waste. Nevertheless, the NP-hardness of this problem makes it essential
to use heuristics whose design is difficult, requires specialized knowledge and
often produces methods tailored to the specific task. This paper presents an
original end-to-end Deep Reinforcement Learning approach to scheduling
that automatically learns dispatching rules. Our technique is inspired by
natural language encoder-decoder models for sequence processing and has
never been used, to the best of our knowledge, for scheduling purposes. We
applied and tested our method in particular to some benchmark instances
of Job Shop Problem, but this technique is general enough to be potentially
used to tackle other different optimal job scheduling tasks with minimal
intervention. Results demonstrate that we outperform many classical ap-
proaches exploiting priority dispatching rules and show competitive results
on state-of-the-art Deep Reinforcement Learning ones.

Keywords: Optimal Job Scheduling · Deep Reinforcement Learning · Com-
binatorial Optimization · Sequence to Sequence.

1 Introduction

Job Shop Problem (JSP) is a well-known Combinatorial Optimization problem fun-
damental in various automated systems applications such as manufacturing, logis-
tics, vehicle routing, telecommunication industry, etc... In short, some jobs with
predefined processing constraints have to be assigned to a set of heterogeneous ma-
chines, to achieve the desired objective (e.g. minimizing the flowtime). Due to its
NP-hardness, finding exact solutions to the JSP is often impractical (or impossible,
in many real-world scenarios), but many tasks can be effectively addressed through
heuristics [7,9] or approximate methods [11], that represent the most suitable choice
for large-scale problems, providing near optimal solutions with acceptable compu-
tational times.

Heuristic algorithms are classified as constructive or as local search methods.
Constructive heuristics assemble the solution with an incremental process: at each
⋆ Equal contribution

2 Bonetta et al.

step, the choice of the next element in the solution is made by examining some local
information of the problem, and once one variable has been fixed it’s not reconsid-
ered. Priority Dispatching Rules (PDRs) [9] belong to the category of constructive
approximate methods: each operation is allocated in a dispatching sequence follow-
ing a monotonic utility measure.

The use of dispatching rules emerged very early in the scheduling area, and
it is well established by now. Most dispatching rules are known to be less than a
match for modern, sophisticated heuristic optimization techniques (e.g. simulated
annealing, tabu search, etc); despite this, they are still commonly used in many
practical contexts because they are considered quick, flexible and adaptable to many
situations. Besides, PDRs are widely used in real-world scheduling systems because
they are intuitive and easy to implement. As a result, optimization literature is rich
of PDR methods for the JSP [16], even if it is well known that designing an effective
PDR is time-consuming and requires a substantial domain knowledge.

A possible solution is the automation of the process of designing dispatching
rules: recent works on learning algorithms for Combinatorial Optimization (see
[3] for a survey) show that Deep Reinforcement Learning (RL) could be an ideal
technique for this purpose, and in particular that it can be considered a potential
breakthrough in the construction of heuristic methods for the JSP [4]. Reinforce-
ment Learning [18] is a subfield of Machine Learning (ML) that experienced a great
development in recent years, mainly thanks to the contribution of Deep Learning.

The main idea of this paper is to treat the JSP as a sequence to sequence
process: inspired by deep learning natural language models we propose a Deep
Reinforcement Learning approach that, exploiting the encoder-decoder architecture
typical of language, automatically learns robust dispatching rules. This leads us to
consider PDRs as a reasonable match for deep RL-based optimization techniques
that, it should be remembered, despite of the huge amount of works appearing on
the subject, are still in their infancy.

Our method is able to learn dispatching rules with higher performance than tra-
ditional ones, e.g. Shortest Processing Time (SPT), Most Work Remaining (MWKR).
On top of that, our approach shows competitive results against state-of-the-art Deep
RL methods when tested on small and medium sized JSP benchmark instances. Be-
sides, it shows a high degree of flexibility: Flow Shop Problem (FSP) instances can
also be solved, and minimal modifications to the model would allow solving Open
Shop Problem (OSP).

Since the model requires sequences as inputs and outputs we design an appropri-
ate, yet compact and easily interpretable encoding for JSP instances and solutions.
Besides, thanks to a tailored masking procedure, the model outputs a permutation
of job operations (virtually a priority list) that respects precedence constraints and
can be mapped to a schedule, i.e. the association of each operation to a specific
starting time.

The rest of this paper is organized as follows: section 2 contains an overview
of related works concerning neural and Deep Reinforcement Learning methods for
Combinatorial Optimization (CO). Section 3 provides the definition of Markov De-
cision Process (MDP) and the theoretical foundations of our model. Section 4 in-
troduces the mathematical notation which formalizes the JSP. Section 5 describes

2. RELATED WORKS 3

our technique for sequence encoding, the neural architecture used and the proposed
masking mechanism, the experimentation details and the results obtained.

2 Related works

Before Deep RL gained the popularity it has today, many ML-based approaches
have been applied to CO (see [17] for an in-depth overview), such as assignment
problems, cutting stock and bin packing problems, knapsack problems, graph prob-
lems, shortest path problems, scheduling problems, vehicle routing problems and the
Travelling Salesman Problem (TSP). In the last decade, Natural Language Process-
ing research inspired the formulation of very effective models such as the Pointer
Networks [21], a deep architecture which builds upon recurrent neural networks.
These innovative models have the ability to tackle problems where the number of
output tokens varies with the input, a feature that characterized also many CO
problems and, exploited for solving the TSP, shown interesting results and great
potential.

One of the first attempts of applying the results of Vinyals et al. [21] is the
work by Bello et al. [2], which successfully addresses the TSP and the Knapsack
Problem (KP) in the context of Markov Decision Processes. It introduces active
search, i.e. an RL-based technique that starting from a random (or pre-trained)
policy iteratively optimizes the parameters on a single test instance. Deudon et al.
[5] and Kool et al. [12] independently proposed a model inspired by the transformer
architecture from Vaswani et al. [20] for solving the TSP. More specifically, the
proposed architecture is made of an attention-based encoder in combination with a
Pointer Network decoder.

The attempt to apply Deep RL to scheduling, and in particular to the JSP, is
a phenomenon of growing research interest in recent years. We remand to section 3
and section 4 for all definitions concerning MDPs and the JSP. Waschneck et al.,
[22] present one of the first relevant works: in the context of MDPs each machine of
the JSP is considered as an agent. The resulting multi-agent system is trained with
Deep Q-Network (DQN) and, despite not showing higher performance with respect
to other heuristics, this model obtains expert-level results. A similar multi-agent
method is proposed by Liu et al. [14], where training is based on Deep Deterministic
Policy Gradient (DDPG) algorithm. Their approach succeed in reaching higher
performance with respect to some dispatching rules.

The approach from Lin et al. [13] assigns a different dispatching rule to each
machine. After the training, done using a multi-class DQN, their method performs
better that individual dispatching rules, but is far from being optimal.

An other interesting approach focuses on the disjunctive graph representation
of the JSP. Zhang et al. [24] use a Graph Neural Network to map the states into an
embedding space, followed by a Multi-Layer Perceptron which provides a probability
distribution over the possible actions. This method obtains competitive performance
and can be easily scaled to larger instances. We chose to compare our proposed
approach to this work since it is, at the best of our knowledge, the best performing
Deep RL approach to the JSP.

4 Bonetta et al.

Han and Yang’s work [8] presents a technique which, differently from all other
summarised here, utilizes a Convolutional Neural Network on images for encoding
the state of the problem and operates as a state-action function approximator. The
images, which are produced using the disjunctive graph, have three channels rep-
resenting the features: processing time, current schedule, and machine availability.
The action space corresponds to different dispatching rules, whereas the reward
function highlights machine utilization.

3 Mathematical foundations

RL substantially differs from other ML paradigms since it’s concerned with how
an agent learns to act in an environment: agents’ behavior is optimized through a
training phase, requiring the definition of a Markov Decision Process [1], focused
on the maximization of a cumulative expected reward collected through a sequence
of actions.

An MDP is a mathematical framework used to formalize a general decision
making process involving a single agent acting in an environment.

An MDP is a tuple M = (S,A,R, T, γ,H) where:

– S - state space.
It is the set of all the possible representations s of the environment and of the
agent’s internal state at a given time.

– A - action space.
It is the set of all the possible actions a the agent can perform.

– R - reward function R : S ×A× S → R.
It is the reward given to the agent after doing action a in state s and landing
in state s′.

– T - transition function T (s′|s, a).
It is the transition probability from state s to s′ given that action a has been
performed.

– γ - discount factor.
It weights the rewards of future actions. γ ∈ [0, 1].

– H - time horizon.
It is the maximum number of transition that can occur before the decision
process is halted.

The objective of RL is to maximize the expected return of the sequence of actions
performed by the agent. Each action is sampled from a stochastic policy π(a|s),
with a ∈ A and s ∈ S, i.e. a probability distribution over the set of actions given a
particular state.

3.1 Policy gradient algorithms

Policy gradient (or policy optimization) methods [18] are widely used in Deep RL
research and they aim to directly optimize the stochastic policy πθ, which is ap-
proximated by a neural network with parameters θ.

3. MATHEMATICAL FOUNDATIONS 5

By taking actions in the environment, the agent defines trajectories. A tra-
jectory τ (alternatively episode or rollout) is a sequence of states and actions
(s0, a0, s1, a1, ..., sH−1, aH−1, sH) and it has a return R(τ) associated to it:

R(τ) =

H∑
t=0

R(st, at, st+1) (1)

R(τ) is called finite-horizon undiscounted return since it’s defined with horizon H.
Moreover, the probability of a trajectory given the policy is:

Pθ(τ) = ρ(s0)

H∏
t=0

T (st+1|st, at)πθ(at|st) (2)

where ρ(s0) is the a priori probability of state s0.
Given the parameterized stochastic policy πθ, the learning objective is the max-

imization of the expected return w.r.t. a set of trajectories:

max
θ

J(πθ), where J(πθ) = E
τ∼πθ

[R(τ)] (3)

Considering a policy optimized with gradient ascent, the quantity ∇θJ(πθ) is called
policy gradient and the following equation holds:

∇θJ(πθ) = E
τ∼πθ

[
H∑
t=0

∇θ log πθ(at|st)R(τ)

]
(4)

This leads to the REINFORCE algorithm (algorithm 1), also known as Vanilla
policy gradient, for optimizing policies, first proposed by Williams in [23].

Algorithm 1: REINFORCE
Input: MDP M = (S,A, T,R, γ,H)
Output: policy πθk

θ0 ← initial-parameters()
for k ∈ (0, 1, 2, ...) do
D ← collect-trajectories()
gk ← 1

|D|
∑

τ∈D
∑H

t=0∇θ log πθ(at|st)R(τ) *{policy gradient}
θk+1 ← θk + αgk **{gradient ascent step}

return πθk

Equation ∗ is the estimation of the policy gradient over the set of trajectories D.
Statement ∗∗ – i.e. the gradient ascent update rule — can be substituted with the
update rule of a different optimization algorithm, e.g. Adam.

Unfortunately the unbiased policy gradient gk suffers from high variance which
hinders performance and learning stability. This can be addressed through the use
of baselines, terms that only depend on the current state and are subtracted from
the reward. Equation 5 is the policy gradient updated with a generic baseline term.

6 Bonetta et al.

∇θJ(πθ) = E
τ∼πθ

[
H∑
t=0

∇θ log πθ(at|st)

(
H∑
t=0

R(st, at, st+1)− b(st)

)]
(5)

4 The Job Shop optimization problem: notation

Scheduling is a decision-making process consisting in the allocation of resources to
tasks over a given time period, with the additional constraint of optimizing one (or
more) objective functions. The JSP is one of the most studied scheduling problems,
along with the Open Shop and the Flow Shop Problems. A n×m JSP instance is
characterized by:

– n jobs Ji, with i ∈ {0, ..., n− 1}, each one consisting of m operations (or tasks)
Oij , with j ∈ {0, ...,m− 1}.

– m machines Mij , with j ∈ {0, ...,m − 1}. Mij identifies the machine required
to execute the j-th operation of job i.

We denote the execution time of an operation Oij with pij ; an operation execution
cannot be interrupted and each operation of a given job must be executed on a
different machine. A JSP solution is represented by a schedule.

As an example, let us consider the JSP instance represented in Table 1. In
this case there are three jobs Ji, with i ∈ {0, 1, 2}, and four operations Oij for
the i-th job, with j ∈ {0, 1, 2, 3}. Operation Oij must be executed on machine
Mij ∈ {0, 1, 2, 3} and has processing time pij .

Mij , pij O∗0 O∗1 O∗2 O∗3

J0 (0, 4) (2, 2) (1, 6) (3, 2)
J1 (0, 4) (3, 5) (2, 7) (1, 8)
J2 (2, 6) (0, 4) (1, 3) (3, 1)

Table 1. Example of a 3× 4 JSP instance.

A useful tool for visualizing a schedule is Gantt charts [6]. Figure 1 represents the
Gantt chart for a possible schedule of the JSP instance represented in Table 1.

Fig. 1. One possible schedule for the JSP instance in Table 1.

5. OUR SEQUENCE TO SEQUENCE APPROACH TO THE JSP 7

The optimal solution of a JSP is the schedule that minimizes the makespan Cmax,
where Cmax = max

i
Ci, and Ci is the completion time of the i-th job.

5 Our Sequence to Sequence approach to the JSP

The main novelty we present is a sequence-based Deep RL approach applied to the
JSP. Inspired by [2] and [12] we make use of a deep neural network used for NLG
applications and we train it in a RL setting. Such model (see Figure 2) combines a
self-attention based encoder and a Pointer-Network decoder [21]. In order to apply
it to the JSP, we formulate a sequence-based encoding of input and output, and
design an appropriate masking mechanism to generate feasible solutions.

Compute schedule

Encoder (self-attention) Decoder (pointer)

Loss function
Dispatching list Output

Policy GradientBaseline

em
b
ed

d
in

g

Input

Sequence encoded

JSP instance

Fig. 2. Our encoder-decoder architecture for scheduling problems.

5.1 Sequence encoding

The input (i.e. problem instance) and the model’s output (i.e. solution) need to be
encoded as sequences in order for the model to process them correctly.

We consider both the input and the output as sequences of operations and we
define a 4-dimensional feature vector ok for each operation Oij as follows:

ok = [i j Mij pij] with k = m · i+ j (6)
where i is the index of the i-th job and j the index of its j-th operation. Consider
a JSP instance S with n jobs Ji (i ∈ {0, ..., n− 1}) and m operations Oij for job Ji
(j ∈ {0, ...,m− 1}) with required machine Mij ∈ {0, ...,m− 1} and execution time
pij . S can be expressed with the following sequence encoding Sseq:

Sseq =

o0

o1

...
om−1

om

...
o(m−1)(n−1)

=

i j Mij pij︷ ︸︸ ︷

0 0 M00 p00
0 1 M01 p01
...

...
...

...
0 m− 1 M0m−1 p0m−1

1 0 M10 p10
...

...
...

...
n− 1 m− 1 Mn−1m−1 pn−1m−1

(7)

8 Bonetta et al.

The matrix Sseq just defined determines which jobs/operations have to be handled:
establishing an order in which to execute them allows to identify a schedule.

Besides, a correct encoding of the model’s output sequence implies that if for job
Ji operation Oij must be executed before Oik, then the vectors of the operations in
the output sequence must occur in the same order (not consecutive, in general).
In order to comply with these requests, the sequence encoding for the output Lseq

of the model has the following form:

Lseq = PSseq =
[
o′
0 . . .o

′
(n−1)(m−1)

]T
(8)

where P is a permutation matrix suitable for obtaining a matrix Lseq which encodes
a feasible JSP solution.

The condition under which this occurs is explained in the following definition:

Definition 1 (Feasible sequence encoded JSP Solution).
Let Oij and Oik be the operations of the i-th job with j < k,
and o′

s = [i j Mij pij], o′
r = [i k Mik pik].

The matrix Lseq is the sequence encoding of a feasible schedule iff the permutation
P is such that s < r, for all s and r in {0, ..., (n − 1)(m − 1)} (i.e. the order of
operations for job i defined in Sseq is preserved).

As an example the sequence encodings of the JSP instance in Table 1 are the
following:

Sseq =

i j Mij pij︷ ︸︸ ︷

0 0 0 4
0 1 2 2
0 2 1 6
0 3 3 2
1 0 0 4
1 1 3 5
1 2 2 7
1 3 1 8
2 0 2 6
2 1 0 4
2 2 1 3
2 3 3 1

Lseq =

i j Mij pij︷ ︸︸ ︷

1 0 0 4
0 0 0 4
2 0 2 6
1 1 3 5
0 1 2 2
2 1 0 4
0 2 1 6
2 2 1 3
1 2 2 7
2 3 3 1
0 3 3 2
1 3 1 8

The output Lseq can be effectively interpreted as a dispatching list, which can be
directly mapped to a schedule as follows:

1. Considering o′
p = [i l Mil pil] (p-th row of Lseq), schedule operation Oil to the

earliest time such that machine Mil is available and, if l > 0 (i.e. Oil isn’t the
first operation of i-th job) the previous operation Oil−1 has been executed.

2. Repeat for all the rows of Lseq.

Mapping Lseq to a JSP solution results in the schedule in Figure 1.

5. OUR SEQUENCE TO SEQUENCE APPROACH TO THE JSP 9

Fig. 3. Left: Encoder of our model. Right: Decoder with pointer mechanism.

5.2 Model architecture

Our model is composed of a self-attention-based encoder and a Pointer Network
used as decoder (shown in Figure 3).

Encoder Represented in (Figure 3). The encoder’s input is a 3-dimensional tensor
U ∈ RN×(nm)×4 that represents a batch of sequence-encoded instances. As defined
in section 4, n and m are respectively the number of jobs and machines, and N
indicates the batch size.

The first portion of the encoder computes two separate embeddings of each
input row, respectively for features (i, j) and (Mij , pij), by batch-normalizing and
projecting to the embedding dimension dh. After that, the sum of the two vectors is
batch-normalized and passed through a linear layer resulting in X ∈ RN×(nm)×dh .
X is then fed into l multi-head attention layers (we consider l = 3).

The output of the encoder is a tensor H ∈ RN×(nm)×dh of embeddings hk ∈ Rdh ,
later used as input in the decoder. h, the average of the these embeddings, is used
to initialize the decoder.

Decoder Represented in (Figure 3), the decoder is a Pointer Network which gen-
erates the policy πθ, a distribution of probability over the rows of the input Sseq,

10 Bonetta et al.

via the attention mechanism; during training, the next selected row o′
t is sampled

from it. During evaluation instead, the row with highest probability is selected in a
greedy fashion. πθ is defined as follows:

πθ(o
′
t|o′

0, ...,o
′
t−1, S

seq) = softmax
(
mask(ut|o′

0, ...,o
′
t−1)

)
(9)

where ut is the score computed by the Pointer Network’s attention mechanism over
Sseq input rows. mask(ut|o′

0, ...,o
′
t−1) is a masking mechanism which depends on

the sequence partially generated and enforces the constraint in Definition 1.

Masking In order to implement the masking mechanism we use two boolean ma-
trices M sched and Mmask defined as follows:

Definition 2 (Boolean matrix M sched). Given the k-th instance in the batch
and the j-th operation of the i-th job, the element M sched

kp (which refers to op, with
p = m · i+ j) is true iff the j-th operation has already been scheduled.

Definition 3 (Boolean matrix Mmask). Given the k-th instance in the batch
and the index l of an operation of the i-th job, the element Mmask

kp (which refers to
op, with p = m · i+ l) is true iff l > j, where j is the index of the next operation of
the i-th job (i.e. scheduling the l-th operation would violate Definition 1).

Given k-th instance in the batch and op feature vector of the operation scheduled
at current time-step, we update M sched and Mmask as follows.

M sched
kp ← true, Mmask

kp+1 ← false

At current step t, the resulting masking procedure of the score associated to input
row index p ∈ {0, 1, ..., (m− 1)(n− 1)} is the following:

mask(ut
p|o′

0, ...,o
′
t−1) =

{
−∞, if M sched

kp OR Mmask
kp

ut
p, otherwise (10)

Masked scores result in a probability close to zero for operations that are already
scheduled or cannot be scheduled. Figure 4 shows a possible generation procedure
with the masking mechanism just described in order to solve the JSP instance
represented in Table 2.

Mij , pij O∗0 O∗1 O∗2

J0 (1, 4) (2, 7) (0, 5)
J1 (0, 7) (1, 3) (2, 7)

Table 2. Example of a 2× 3 JSP instance.

5. OUR SEQUENCE TO SEQUENCE APPROACH TO THE JSP 11

Fig. 4. Sequence generation with masking mechanism for the JSP. Light blue circles indi-
cate masked rows and the arrows represent the agent’s choices.

Training algorithm The network is trained with REINFORCE [23] described in
subsection 3.1 using the Adam optimizer. We use the following form of the policy
gradient:

∇θL(πθ) = E [(Cmax(L
seq)− b(Sseq))∇θ logPθ(L

seq|Sseq)] (11)

where Pθ(L
seq|Sseq) =

∏nm−1
t=0 πθ(o

′
t|o′

0, ...,o
′
t−1, S

seq) is the probability of the solu-
tion Lseq and b(Sseq) is the greedy rollout baseline. After each epoch, the algorithm
updates the baseline with the optimized policy’s weights if the latter is statistically
better. This is determined by evaluating both policies on a 10000 samples dataset
and running a paired t-test with α = 0.05 (see [12] for the detailed explanation).
The periodic update ensures that the policy is always challenged by the best model,
hence the reinforcement of actions is effective. From a RL perspective, −Cmax(L

seq)
is the reward of the solution — lower makespan implies higher reward. After train-
ing, the active search approach [2] is applied.

Solving related scheduling problems Our method represents a general ap-
proach to scheduling problems and, once trained on JSP instances, it can also solve
the Flow Shop Problem. The Open Shop Problem can also be solved with a small
modification of the masking mechanism. Since the order constraint between opera-
tions is dropped in the OSP, the feasible outputs of the model are all the permu-
tations of the input sequence. This simplifies the masking mechanism, which can
be done just by keeping track of the scheduled operations with matrix M sched. In
Figure 5 we show three steps of the modified masking mechanism for solving the
instance in Table 2, interpreted as an OSP.

12 Bonetta et al.

Fig. 5. Sequence generation with modified masking mechanism for the OSP.

5.3 Experiments and results

In this section we present our experiments and results. We consider four JSP set-
tings: 6× 6, 10× 10, 15× 15 and 30× 20. After hyperparameter tuning, we set the
learning rate to 10−5 and gradient clipping to 0.5 in order to stabilize training. At
each epoch, the model processes a dataset generated with the well-known Taillard’s
method [19]. Table 3 sums up training configurations for every experiment.

During training we note the average cost every 50 batches and the validation
performance at the end of every epoch. Validation rollouts are done in a greedy
fashion, i.e. by choosing actions with maximum likelihood. Training and validation
curves are represented in Figure 6.

Size Epoch size N° epochs Batch size GPU(s)∗ Duration
6× 6 640000 10 512 Titan RTX 30m

10× 10 640000 10 512 RTX A6000 1h 30m
15× 15 160000 10 256 RTX A6000 1h 30m
30× 20 16000 10 32 Titan RTX 1h 45m

Table 3. Training configurations for all the experiments. ∗ Nvidia GPUs have been used.

Fig. 6. Training and Validation curves for different JSPs.

Comparison with concurrent work As already said in the Introduction, we
compare our results with the work from Zhang et al. [24], and with a set of largely
used dispatching rules: Shortest Processing Time (SPT), Most Work Remaining
(MWKR), Most Operations Remaining (MOPNR), minimum ratio of Flow Due
Date to most work remaining (FDD).

Table 4 shows the testing results obtained applying our technique on 100 in-
stances generated by Zhang et al. with the Taillard’s method.

5. OUR SEQUENCE TO SEQUENCE APPROACH TO THE JSP 13

We compare each solution with the optimal one obtained with Google OR-Tools’
[15] solver; in the last column we report the percentage of instances for which OR-
Tools’ returns optimal solutions in a limited computation time of 3600 seconds.

The column JSP settings shows the average makespan over the entire test dataset
and the gap between Cmax (the average makespan of heuristic solutions) and C

∗
max

(the average makespan of the optimal ones), defined as Cmax/C
∗
max − 1.

JSP settings SPT MWKR FDD MOPNR Zhang [24] Ours Opt. Rate(%)

6× 6
Cmax

Gap
691.95
42.0%

656.95
34.6%

604.64
24.0%

630.19
29.2%

574.09
17.7%

495.92
1.7% 100%

10× 10
Cmax

Gap
1210.98
50.0%

1151.41
42.6%

1102.95
36.6%

1101.08
36.5%

988.58
22.3%

945.27
16.9% 100%

15× 15
Cmax

Gap
1890.91
59.2%

1812.13
52.6%

1722.73
45.1%

1693.33
42.6%

1504.79
26.7%

1535.14
29.3% 99%

30× 20
Cmax

Gap
3208.69
65.3%

3080.11
58.7%

2883.88
48.6%

2809.62
44.7%

2508.27
29.2%

2683.05
38.2% 12%

Table 4. Results over different JSP settings.

From Table 4 we can see that our model greatly outperforms the traditional dis-
patching rules even by a margin of 71% with respect to SPT. When compared to
[24] our model is superior in performance in the 6×6 and 10×10 cases, while having
similar results in the 15 × 15 JSPs, and sligthly underperforming in the 30 × 20.
Speculating about the drop in performance of our solution in the biggest settings
(i.e. 30× 20 JSPs) we think it could be due to the following reasons:

– Larger JSP instances are encoded by longer sequences: like traditional RNNs
and transformers, our model tends to have a suboptimal representation of the
input if the sequence is exceedingly long.

– As mentioned before, for execution time reasons we reduce the number of in-
stances and examples in each batch: this implies a gradient estimate with higher
variance, hence a potentially unstable and longer learning.

Improving Active Search through Efficient Active Search Efficient Active
Search (EAS) is a technique introduced in a recent work by Hottung et al. [10]
that extends and substantially improves active search, achieving state-of-the-art
performance on the TSP, CVRP and JSP. The authors proposed three different
techniques, EAS-Emb, EAS-Lay and EAS-Tab, all based on the idea of performing
active search while adjusting only a small subset of model parameters. EAS-Emb
achieves the best performance and works by keeping all model parameters frozen
while optimizing the embeddings. As pointed out in [10], this technique can be
applied in parallel to a batch of instances, greatly reducing the computing time. In

14 Bonetta et al.

this section we present a preliminary attempt to extend our method applying EAS-
Emb and we test it on the 10x10 JSP. Table 5 shows that our model greatly benefits
from the use of EAS-Emb, although underperforming Hottung et al.’s approach.

JSP settings Hottung et al. [10] Ours+EAS-Emb

10× 10
Cmax

Gap
837.0
3.7%

864.9
7.2%

Table 5. Results of EAS-Emb on the 10x10 JSP.

6 Conclusions

In this work we designed a Sequence to Sequence model to tackle the JSP, a famous
Combinatorial Optimization problem, and we demonstrated that it is possible to
train such architecture with a simple yet effective RL algorithm. Our system au-
tomatically learns dispatching rules and relies on a specific masking mechanism in
order to generate valid schedulings. Furthermore, it is easy to generalize this mech-
anism for the Flow Shop Problem and the Open Shop Problem with none or slight
modifications. Our solution beats all the main traditional dispatching rules by great
margins and achieve better or state of the art performance on small JSP instances.
For future works we plan to improve the performance of our method on larger JSP
instances with EAS-based approaches. Although this work is mostly concerned with
evaluating a Deep RL-based paradigm for combinatorial optimization, the idea of
hybridizing these techniques with more classical heuristics remain viable.

Acknowledgements The activity has been partially carried on in the context of
the Visiting Professor Program of the Gruppo Nazionale per il Calcolo Scientifico
(GNCS) of the Italian Istituto Nazionale di Alta Matematica (INdAM).

References

1. Bellman, R.: A markovian decision process. Journal of mathematics and mechanics
pp. 679–684 (1957)

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimiza-
tion with reinforcement learning. In: International Conference on Learning Represen-
tations (2017)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research 290(2),
405–421 (2021)

4. Cunha, B., Madureira, A.M., Fonseca, B., Coelho, D.: Deep reinforcement learning
as a job shop scheduling solver: A literature review. In: International Conference on
Hybrid Intelligent Systems. pp. 350–359. Springer (2018)

5. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learning heuris-
tics for the tsp by policy gradient. In: International conference on the integration of
constraint programming, artificial intelligence, and operations research. pp. 170–181.
Springer (2018)

6. Gantt, H.: A Graphical Daily Balance in Manufacture. ASME (1903)

6. CONCLUSIONS 15

7. Glover, F., Laguna, M.: Tabu Search. Springer New York, NY (1998)
8. Han, B.A., Yang, J.J.: Research on adaptive job shop scheduling problems based on

dueling double dqn. IEEE Access 8, 186474–186495 (2020)
9. Haupt, R.: A survey of priority rule-based scheduling. Operations-Research-Spektrum

11, 3–16 (1989)
10. Hottung, A., Kwon, Y.D., Tierney, K.: Efficient active search for combinatorial opti-

mization problems. In: International Conference on Learning Representations
11. Jansen, K., Mastrolilli, M., Solis-Oba, R.: Approximation algorithms for flexible job

shop problems. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000: Theoretical Informat-
ics. pp. 68–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

12. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In:
International Conference on Learning Representations (2019)

13. Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling with
edge computing using multiclass deep q network. IEEE Transactions on Industrial
Informatics 15(7), 4276–4284 (2019)

14. Liu, C.L., Chang, C.C., Tseng, C.J.: Actor-critic deep reinforcement learning for solv-
ing job shop scheduling problems. Ieee Access 8, 71752–71762 (2020)

15. Perron, L.: Operations research and constraint programming at google. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. pp. 2–2.
Springer (2011)

16. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job
shop scheduling problem under different flow time- and tardiness-related objective
functions. International Journal of Production Research 50(15), 4255–4270 (2012)

17. Smith, K.A.: Neural networks for combinatorial optimization: a review of more than
a decade of research. Informs journal on Computing 11(1), 15–34 (1999)

18. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)
19. Taillard, E.: Benchmarks for basic scheduling problems. european journal of opera-

tional research 64(2), 278–285 (1993)
20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing
systems 30 (2017)

21. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Advances in neural informa-
tion processing systems 28 (2015)

22. Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp,
A., Kyek, A.: Optimization of global production scheduling with deep reinforcement
learning. Procedia Cirp 72, 1264–1269 (2018)

23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning 8(3), 229–256 (1992)

24. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch for
job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems 33, 1621–1632 (2020)

	Job Shop Scheduling via Deep Reinforcement Learning: a Sequence to Sequence approach

