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                                  Abstract 

Cigarette smoking is well-known to have adverse effects on cell-blood 

compositions. In healthy individuals, several studies showed an increase in the 

overall number of leukocytes in current smokers compared to former and never 

smokers. Epigenome-wide association studies (EWAS) suggested a DNA 

methylation involvement in the regulation of smoking-related pathways and 

diseases. These studies, mainly conducted on whole blood, have repeatedly 

reported differentially methylated CpG sites between smokers and never smokers. 

After smoking cessation, some of these differences in methylation levels persist 

altered over time while others return to those levels observed in never-smokers. 

Importantly, differential methylation may partly reflect smoking-related shifts in 

leukocyte distribution. The majority of EWAS have addressed this issue adjusting 

their analyses for a leukocyte distribution estimated by the Houseman algorithm. 

However, this algorithm does not take into account the small immune cell 

fractions that might still have a role in confounding the results. In this respect, this 

study aims at clarifying how tobacco smoking impacts both the cell-blood 

proportions of main leukocyte subpopulations and DNA methylation levels. To 

investigate these aspects, different molecular epidemiological, statistical and 

bioinformatics approaches have been used. 

We recruited 288 healthy volunteers, aged between 35 and 70 years old for 

evaluating the association between self-reported smoking habits (current, former 

and never smokers) and the cell-count distributions of nine leukocyte 

subpopulations (namely: CD4+T-helper, CD8+T-cytotoxic, CD16/CD56+NK-

cells, CD3+T-cells, CD56/CD3+ NKT-cells, CD19+B cells, CD14+monocytes, 

neutrophils, and eosinophils) as well as of their GPR15 cell receptor as smoking 

marker quantified by flow cytometry. Current smokers showed a significant lower 

NK cell count, and an increase of GPR15+cell-type in both T cell (CD3+, 

CD4+and CD8+) and B cells and a decrease of GPR15+cell-type in monocyte 

despite the cohort included only light smokers (< 15 cig/day).  



 

We have performed a similar analysis on 358 participants of the Twins-UK 

Cohort, for whom the cell-frequencies of 41,701 leukocyte-subtypes were 

available. We have found that active tobacco smoking is associated with increased 

frequencies of circulating CD8+ T cells expressing the CD25+ activation marker 

(CD25+). Moreover, we identified novel associations between smoking status and 

relative abundances of CD8+ CD25+ memory T cells, CD8+ memory T cells 

expressing the CCR4 chemokine receptor and double-positive CD25+ (DP) T 

cells. We also observed in current smokers an increase of class-switched memory 

B cell isotypes IgA, IgG, and IgE relative frequencies and a decrease of 

circulating CD4+ T cells expressing the CD38 activation marker. Also Finally, 

using data from 135 former female smokers, we showed that the relative 

frequency of immune traits associated with active smoking is wholly restored 

after smoking cessation, with some exceptions for CD8+ T cells (CD8+ CD25+ T 

cells, CD8+ memory T cells CD25+ and CCR4+) which persist partially altered. 

To study smoking-DNA methylation profiles at cell-type level, we have analysed 

target bisulfite sequencing data (target BS-Seq). However, to the best of our 

knowledge, specific tools and pipelines for analysing target BS-Seq data are still 

lacking. Thus, we compared the performance in DNA methylation detection of, 

BSMAP and Bismark which are the most used aligner and methylation callers 

tools. To achieve this, we have generated MethylFastQ, a new tool to create 

artificial target bisulfite data. We have tested BSMAP and Bismark tool on 

synthetic and real datasets showing that BSMAP was more performant during the 

alignment and methylation recall in datasets with low-quality reads. Furthermore, 

we applied our developed pipeline to investigate the smoking-related DNA 

methylation signatures in a pilot study on monocytes and B cells. We observed 

that these cell-lineages shared a low number of differentially methylated genes, 

and a high number of these genes were cell-type specifics. Common and cell-

type-specific genes were not enriched in particular biological pathways, despite 

the presence of genes involved in pathways of cancer.  
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1 Introduction 

Tobacco use represents the largest epidemic of the world. Tobacco-related 

mortality is set to increase to almost 1 billion deaths during the 21st century, most 

of them in low-income countries. In 2014, 50 years of research on tobacco 

smoking were celebrated. During these years, the mechanisms behind tobacco 

smoking were extensively studied increasing our knowledge in this field, but even 

today some of these mechanisms are not fully understood and predictive markers 

for lung cancer risk, especially in former smokers, are lacking.  

DNA methylation is an epigenetic modification, cell-type specific, widely studied 

to understand the genetic mechanisms of gene expression whose alterations are at 

the base of several human diseases, including cancers related to environmental or 

lifestyle exposures. DNA methylation profiles also represent a powerful 

biomarker for diagnosing diseases and guiding treatment.  

In the last decade, alteration of the methylation profile of DNA from peripheral 

blood associated with cigarette smoking has been described but limited to whole 

blood samples. On the other hand, we know that tobacco smoking causes 

inflammation process inducing leukocyte subpopulation shift in blood and it may 

confound the results of the association between DNA methylation and smoking 

exposure. In association studies, array platforms represent the golden standard 

techniques that interrogate more than 800,000 CpG sites in an elevated number of 

samples at the same time. However, they present some limitations for estimating 

the DNA methylation levels. Nowadays, the decrement of the costs of deep 

sequencing technologies is leading their extensive use to study several aspects of 

the transcription regulation. Among the others, the DNA methylation can be 

easily profiled in whole blood and also in different immune cells. This will lead to 

understand the influence of smoking at a single cell-type level and to identify a 

novel potential DNA biomarker of smoking exposure. 
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1.1. Tobacco smoking  

1.1.1 Epidemiology  
 

In 2000 the number of smokers in the world was around 1.22 billion, and it 

is estimating will grow up to 1.9 billion in 2025 (1; 2)  

One-in-five (20%) adults in the world smoke tobacco. In the map reported in 

Figure 1.1 shows the top five countries where more than 40% of the population 

smoked in the year 2016.  

 

 
 
Figure 1.1 Prevalence of smoking across the world in the 2016’. From (1) 
 
Three are Pacific Islands (i.e., Kiribati (47%); Timor (43%); Nauru (40%)) and 

two are in the Balkans (i.e., Montenegro (46%) and Greece (43%)).  
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The places where many people smoke are clustered in two regions. South-East 

Asia and the Pacific islands and Europe – particularly the Balkan region – but also 

France (33%), Germany (31%), and Austria (30%). In some countries very few 

people smoke: in Ethiopia, Ghana, Peru and Honduras less than 5% smoke. In 

Honduras, it’s one smoker every 50th person (1). 

Tobacco smoking is the major risk factor of mortality and morbidity in the world. 

It has been associated with at least 17 types of human cancers and several 

cardiovascular, respiratory and autoimmune diseases. There is wide variety of 

smoking tobacco products on the world market, including cigarettes, cigars and 

bidis (i.e., Hand-rolled Indian cigarette) (2).  

According to the last data of the World Health Organization (WHO), 

approximately 8 million people die globally every year for smoking-related  

diseases, with a high percentage of those deaths occuring in low- and middle-

income countries. Moreover,1.2 million deaths annually are caused by second-

hand smoking in never smokers. In adults, second-hand smoke causes serious 

cardiovascular and respiratory diseases, including coronary heart disease and lung 

cancer. In infants, it raises the risk of sudden infant death syndrome. In pregnant 

women, it causes pregnancy complications and low birth weight (2; 3). 

WHO has estimates that 12% of all deaths among adults could be attributed to 

tobacco use. Figures for men and women are 16% and 7%, respectively. Tobacco 

smoking is one of the major problems in public health because it imposes 

enormous economic costs to society for health-care needs.  

In the last decade a declining prevalence of tobacco smoking has been registered 

worldwide, with an opposite trend for low and middle-income countries 

(2)(Figure 1.2)  
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Figure 1.2 Trends in the global number of tobacco users. The total number of tobacco 
users for both sexes combined has steadily declined world-wide over the period 2000-
2015. From 2000 to 2018, the number of male tobacco users in the world was increasing 
each year, and the peak was in 2018 with 1093 millions of tobacco users. The number of 
female tobacco users has been declining over the period 2000-2015 and it is expected to 
continue to 2025. From (2). 
 
Despite these results, the prevention and reduction of tobacco smoking 

consumption represent an important challenge for all countries in the world. 

Indeed, since 2005 severe smoking restrictions are currently in force in 181 

countries by the treaty of WHO Framework Convention on Tobacco Control, 

aiming at reducing the damaging health and economic impacts of tobacco 

consumption. Moreover, from 2013 the reduction of tobacco smoking is one of 

the key objectives to reduce of 30% the prevalence of premature mortality from 

noncommunicable diseases (i.e., cardiovascular diseases, cancers, diabetes and 

respiratory diseases) in persons aged 15 + years by 2025 (2; 3). 

The prevalence of tobacco use in the word is largely a male phenomenon (35% of 

men in the world vs 6% of women): in Europe the gap in prevalence between 

male and female adults is very small (<5%) in countries such as United Kingdom, 

Denmark, Ireland and Finland. In Europe, the number of cigarettes smoked per 

day is reduced in current smokers over 15 years of age. Among them, only 6% 

consume at least 20 cigarettes per day while around 13% consume less than 20 

(4). 
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In Italy, smokers are 11.6 million, representing about the 22% of the 

population aged >15years. Of these, males are around 7 million. In the range of 

age between 25 to 44 years the 36.3% of smokers are males, in the range from 45-

64 years old the prevalence are women (22.9%), while over 65 the prevalence in 

both sexes is similar. Although, current smokers smoked in average 11.6 

cigarettes/day, more than 21% are heavy smokers that smoked over 20 

cigarette/days. Furthermore, quite alarming is the 11.1% of smoking prevalence 

among children between 14 and 17 years old (4).  

Recently, smoke-free policy adopted in Europe had increased the electronic 

cigarette (i.e., “e-cigarettes”, “vape pens”, “e-hookahs”) consumption among the 

population. E-cigarettes are used mainly to aid people to quit smoking. The 

effectiveness of e-cigarettes as a cessation aid is still being researched, but it 

seems that a proportion of smokers who are trying to quit may be using it as such 

(2). Moreover, e-cigarette use in smokers is attributable to circumvent smoking 

bans by using e-cigarettes in places where tobacco smoking is prohibited, thus 

attenuating the impact of smoking bans (5). However, long-term health effects of 

e-cigarettes are still unknown, and further research is required. Chemical and 

toxicological studies togheter with clinical investigationshave led various authors 

to conclude, with more or fewer caveats, that e-cigarettes are not harmless but are 

generally less dangerous than cigarettes (2; 5). 

Therefore, despite the progress made, the final objective of reducing the tobacco 

epidemic is still far away. Prevention is an essential weapon in this context, and 

the research of biomarkers to establish in current smokers the risk to incur tumour 

and smoking-related diseases represents a good opportunity to overcome this 

emergency. 

 
1.1.2 Cigarette smoke composition and toxicity 

 
Destructive effect of cigarette smoking derives from cigarette composition. 

Cigarette contains more than 7,000 chemical compounds including direct 

carcinogens (e.g., methylcholanthrene, benzo[a]pyrenes and acrolein), toxins 

(e.g.,carbon monoxide, acetone, ammonia, nicotine, and hydroquinone), solid with 

catalytic activity and oxidants (e.g., superoxide and nitrogen oxides). All these 
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components are contained in the gaseous and particulate phase of the cigarettes 

(1). Cigarette smoke directly impacts on lungs, by inhalation of fresh smoke. 

Fresh smoke contains a billion of oxidative moieties that may generate secondary 

oxidative metabolites and DNA adducts by the activation of an oxidative burst 

and nitric oxide synthase in the host. Reactive oxygen species (ROS) directly 

affects the lung cells activating macrophages, epithelial cells, and neutrophils by 

exerting a pro-inflammatory effect, or through direct damage of lipids, proteins, 

nucleic acids, and organelles. Induced damage can change the normal function of 

these critical targets. Increased levels of ROS contribute to apoptosis, inactivation 

of proteases (such as a1-antitrypsin) and activation of metalloproteases, which 

immediately contribute to the degradation of lung tissue (6). Moreover, cigarette 

smoke leads to a significant reduction of glutathione, a major antioxidant present 

in the lung. Changes in the redox status within the cell initiate the lung 

inflammatory responses through enhancement of the respiratory burst in 

phagocytic cells, regulation of intracellular signalling, chromatin remodelling 

(histone acetylation/deacetylation) and activation of redox-sensitive transcription 

factors, such as nuclear factor-kB (NF-kB) and activator protein-1 (AP-1). The 

latter are critical to gene expression of pro-inflammatory mediators such as 

interleukin (IL)-8, IL-6, and tumour necrosis factor-α (TNF-α) which links 

cigarette smoke exposure with altered cytokine production. Other 

pathophysiological mechanisms by which cigarette smoke can alter cytokine gene 

transcription rely on smoke-induced changes to the epigenome, such as DNA 

methylation, expression of microRNAs and histone modifications (7). 

 

1.1.3 Cigarette smoke and the immune system  
 
The first putative influence of tobacco smoking on the immune and 

inflammatory processes was identified in the 1960s (8). This topic has received 

more attention later on, after the discovery of the association between cigarette 

smoking and autoimmune diseases. At the moment in literature are present, a 

large number of studies regarding the molecular and cellular mechanism of the 

consequences of smoking on the immune system but, some finding across these 

studies are inconsistent and controversial due to the nature of experiments (i.e., 
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human vs. animal studies, and in vivo vs in vitro studies), type and duration of 

smoking exposure and intrinsic variability related to characteristics of the 

population studied (e.g gender, age, ethnicity). Together, all of these levels of 

complication made difficult the comprehension of the smoking effects on the 

immune-inflammatory system, even today (8; 9).  

Cigarette smoking alters the development, cytokine production, and 

effector function of both innate immune cells (i.e., macrophages, dendritic and 

NK cells), and adaptive immune cells (i.e., cytotoxic CD8+ T cells, CD4+ helper 

T cells and B cells). It can be associated with the release but also the inhibition of 

pro-inflammatory and anti-inflammatory mediators (10; 6; 7)(Figure1.2). These 

effects are triggered by single or combinate actions of tobacco-compounds on 

immune system components. Cigarette smoke promotes inflammation by inducing 

the production of pro-inflammatory cytokines, such a TNF-α, IL-1, IL-6, IL-8 and 

granulocyte-macrophage colony-stimulating factor (GM-CSF), and increasing the 

accumulation of immune cell in the airways. While, the suppressive proprieties 

are mainly attributed to nicotine, hydroquinone and carbon monoxide in the 

smoke. Nicotine shows both pro-inflammatory and immunosuppressing 

capability. Inhibitory effects of nicotine were associated to its inhibitory effect on 

alfa7 nicotinic acetylcholine receptor (a7nAChR) found in macrophages, T, and B 

cells that suppressing cytokines production (IL-6, IL-10, and IL8). Importantly, 

this activation was shown to suppress Th1 and Th17 responses with reciprocal 

shift towards the Th2 lineage (7). But nicotine, also favours the increase of 

circulating neutrophils with a reduction of their functionality. This effect seems to 

be related to the secretion of catecholamines induced by nicotine. Studies (10; 11). 

suggested that catecholamines may be the responsible of release of leukocytes 

into the circulation and stimulation of hemopoietic system related to cigarette 

exposure Nicotine also exerts a protective action against of free oxygen radicals. 

Thanks to this anti-inflammatory effect, nicotine and nicotine-metabolites could 

represent a promising pharmacological strategy for treatment inflammation-

related diseases, such as obesity and ulcerative colitis (11).  

Moreover, this is further complicated by compounds demonstrating both pro-

inflammatory and immunosuppressive properties, such as acrolein, another major 
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component of tobacco smoke. While inhalation of acrolein promotes airway 

hypersensitivity responses, it may stimuli neutrophils accumulation in the airway, 

thereby contributing to immune tolerance (7)  

 

 
 
 
Figure 1.3. Smoking effects on the innate and adaptive immune cells. Cigarette 
smoking alters the development, cytokine production, and effector function of both innate 
immune cells (macrophage, NK cells, Dendritic cells) and adaptative immune cells 
(cytotoxic CD8+ T cells, CD4+ Th cells, regulatory T cells and B cells) leading to pro-
inflammatory response and/or dysfunction of immune cells. Adapted by (9). 
 
Tobacco smoke alter several adaptive immune functions, including leucocytosis. 

Peripheral blood of humans exposed to cigarette smoking showed an elevated 

percentage of total lymphocytes, in particular leads CD8+ /CD4+ T cells ratio. 

Indeed, in heavy smokers CD8+ T cells increased, whereas the percentage of 

CD4+ T cells decreased. Also, the numbers of memory T cells and class-switched 

memory B cells were significantly and positively correlated with smoking habits. 

Since the process of class-switch recombination in B cells results from repeated 

antigen recognition, their presence in smokers suggests that cigarette smoke is 

potentially capable of generating neo-antigens derived from damaged lung tissue 

or smoke fume components in a chronic manner. Other deleterious effects of 

cigarette smoke exposure comprise the suppression of immunoglobulin 

production. Though the secretion of IgA, IgG and IgM appears to be down-

regulated in peripheral blood and saliva of smokers, this suppressive effect does 
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not affect IgE synthesis. Indeed, IgE levels were found increased in smokers (6; 

9). Endotoxin (lipopolysaccharides) is one of the most potent inflammatory agents 

of smoke and is related to elevated levels of IgE in smokers with subsequent 

development of atopic diseases and asthma (9). 

Smoking also affects in a similar way the innate immunity. Macrophages 

are the main lung cell population. They are the first line of cellular defence 

against exogenous pathogens via phagocytosis and digestion, and recruit/activate 

lymphocytes via their antigen-presenting ability. Chronic smoke exposure causes 

an elevated number of macrophages in airways lumen, exhibiting a low 

maturation level by high expression of CD14 markers (monocytes expression 

marker), and changes in their morphology. These cells show impaired functions, 

such as a strong inhibitory effect on lymphocyte proliferation and NK cells, and 

disability to kill intracellular bacteria (6).  

In particular, tobacco smoking exposure has been reported to both suppress and 

stimulate the activity of NK cells. NK cell activity in peripheral blood was 

reduced in smokers compared with non-smokers. These alterations appear to be 

reversible, since a recovery period of six weeks after smoking cessation brought 

the cytotoxic activity of NK cells back to the levels of never-smokers. NK cells 

from long-term smokers display a decreased intracellular IL-16 concentration. 

This depletion of the CD4+-recruiting cytokine strongly suggests that long-term 

smoking may impact immune responses at the systemic level, and that NK cells 

are involved. There is strong evidence showing direct negative effect of cigarette 

smoke on NK cell cytolytic capacity, as well as on their ability to produce 

inflammatory cytokines in response to microbial agents. Moreover, cigarette 

smoke exposure caused increased accumulation of primed/activated CD69(+) NK 

cells in parenchymal and mucosal locations in the airway. The priming and 

activation of NK cells is believed to result from crosstalk between NK and 

sentinel cells, such as DCs, and CCR4 appears to be a possible promoter of 

NK/DC interaction (11; 8). 

Finally, cigarette smoke alters the number, distribution and function of dendritic 

cells (DC) by fostering Th2 response and repressing Th1 cytokine productions. It 

is traduced with a reduced priming capability of DC, reduced endocytic and 
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phagocytic activity and reduce secretion of IL-10, IL-12. Cigarette smoking also 

induced the dramatic increase of Langerhans cells, a subtype of myeloid DCs, in 

alveolar parenchyma (6; 9).  

In summary, tobacco smoking exerts pro-inflammatory and immune-suppressive 

properties in both innate and adaptative immune system. These mechanisms are 

mainly attributable to cigarette components such as nicotine and acrolein. Studies 

in blood reported the smoking effect on primary leukocyte subtypes (i.e., T cells 

subclass, B cells, NK, Monocytes and Neutrophils) but it influences also all 

circulating cells including those less frequents (i.e., Th1, Th2, Th17 and Memory 

cells). In lung tissue, smoking alters the macrophage functions and it suppresses 

both activity and production of NK cells. While, its effects on dendritic cells alter 

as a consequence the production of cytotoxic-cells Th1 and Th2.  
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1.2. DNA methylation 

1.2.1 DNA methylation: general overview 
 

DNA methylation is the covalent addition of a methyl group to DNA 

molecule. In the human genome the most common form of DNA methylation is 

the addition of methyl group in the position 5’ of a cytosine (C) when this 

nucleotide occur next to guanine (G) forming a CpG sites. There are around 28 

million CpG sites in the human genome, ~70% of them are generally methylated. 

DNA methylation is not uniformly distributed over the genome, but it is 

associated with CpG density. Indeed, has been reported that unmethylated 

cytosine are usually in CpG-rich regions, called CpG islands, and tend to be 

methylated in CpG-deficient regions.  

Non-CpG methylation has a functional role in plants, fungi and in embryonic stem 

cells, while its function in mammals is currently unknown. DNA methylation 

occurs in three different contexts: CpG or CG, but also CHG and CHH, where H 

= {A, C, T}. In human it rarely occurs in CHG and CHH contexts ~3%.  

DNA methylation is an important epigenetic modification, it is involved in many 

biological processes including transcriptional activity, genomic imprinting, 

development, and differentiation in a cell-type-specific manner. Additionally, it 

changes during life-course and it is reversible. 

The function of DNA methylation depends on the position where it occurs 

on the gene. Studies have emphasized that when it occurs in a transcription start 

sites is associated with gene repression and silencing, while demethylation is 

related to gene expression and activation. Whereas, recently, with the advent of 

high throughput techniques, it has been demonstrated that exons are more 

methylated than introns, suggesting a role for methylation in regulating splicing 

(12; 13).  
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Alterations in DNA methylation levels are widely studied for their 

association with environmental exposure (i.e.,smoking, UV radiations, Bisphenol 

A), common human diseases, autoimmune disorders and especially with cancer.  

Given the plasticity, the stability and highly specific nature of DNA methylation, 

it represents a powerful molecular biomarker for risk stratification and disease 

diagnostics. In fact, the DNA methylation biomarkers are commonly used to 

support the clinical decisions in various cancer, as well as for early prevention, 

diagnosis, the prognosis of disease and drug response (14). 

 
1.2.2 DNA methylation, Smoking exposure and Smoking-DNA methylation in 
blood cell-types 
  

In the last decade, the advent of high-throughput techniques allowed us to 

study DNA methylation at the genome-wide level in large cohorts of samples 

(15). For examples, in European Prospective Investigation into Cancer and 

Nutrition (EPIC)-cohort, a large prospective study conducted across several 

European countries, was extensively studied the smoking effects on DNA 

methylation levels (16; 17). Indeed, Epigenome-Wide Association Studies 

(EWASs) showed that DNA methylation plays a pivotal role in the pathways of 

smoking and smoking related. These studies, mainly conducted on whole blood, 

found that three intragenic CpG sites: cg05575921 (AHRR), cg03636183 

(F2RL3), and cg19859270 (GPR15) as well as other CpGs within intergenic 

regions (2q37.1 and 6p21.33) are differentially methylated in smokers in 

comparison to never smokers.  These significant smoking-related differences in 

DNA methylation reflect not only current but also lifetime or long-term exposure 

to active smoking (16; 18; 17). These genes showing a functional role in response 

to tobacco smoking. AHRR is the repressor of the aryl hydrocarbon receptor, a key 

regulator of the relationships between the cell and the external environment, 

including the effect of stressors such as dioxins and polycyclic aromatic 

hydrocarbons (components of tobacco smoke). Current smokers exhibited a 19% 

lower methylation level at cg05575921 (AHRR) compared to never smokers (19). 

The second gene F2RL3 is a relevant gene that encodes the protease-activated 

receptor-4, involved in both cardiovascular and neoplastic diseases. Finally, 
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GPR15 is a surface membrane-bound G protein-coupled receptor 15 that regulates 

cell migration in response to inflammatory insults (20).  

In former smokers, some of these differentially methylated sites appear to return 

to levels of those in never-smokers, whereas other smoking-related CpG sites 

appear to persist 30 years after smoking quitting (18; 17). Furthermore, these 

findings were tested in pre-diagnostic blood samples of lung cancer observing the 

significant association with lung cancer risk for cg05575921 (AHRR) and 

cg03636183 (F2RL3), showing a decreasing of lung cancer risk with years after 

smoking cessation (19; 21) (Figure 1.4).   

 

 

Figure 1.4. Association between smoking cessation and the mean methylation levels 
of cg05575921 (AHRR) and cg03636183 (F2RL3) in pre-diagnostic blood samples 
from lung cancer. After smoking cessation, methylation levels increase and after 10 
years since quitting appear similar to those of never smokers. The risk of lung cancer 
decreases substantially after smoking cessation. From (19). 

The recent study from Stuve et al. (22) tested the consistency of results from 

association analysis between smoking and DNA methylation measured in normal 

lung tissue. They found the five CpG loci previously reported as hypomethylated 

in smokers-blood. It suggests that blood-based biomarkers can reflect changes in 

the target tissue of these loci and represent a valid diagnostic marker. Together 
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these findings, supporting the evidence that smoking leads to DNA methylation 

changes measurable in peripheral blood and useful as predictive markers for lung 

cancer risk, especially in former smokers. 

The main limitation of these studies is the fact that DNA methylation 

patterns are highly cell type-specific, and analysing purified cells is important to 

avoid the confounding effects present in a surrogate tissue like whole blood (19; 

21). The isolation of specific lymphocyte subpopulations requires additional steps, 

such as flow cytometric separation using cell-surface receptor antibodies. In 

epidemiological studies with a large samples size it is not feasible due to several 

issues: i) a large volume of fresh blood difficult to find for each sample; ii) 

elevated costs for the huge volume of antibodies required to sort cells; iii) time 

consuming for the experimental procedures required in cell-sorting. 

To overcome this issue, currently, in EWAS the Houseman algorithm is 

frequently adopted (23). This algorithm allows estimating the percentages of cell 

composition by a deconvolution approach based on DNA methylation signature 

for each cell-types. However, minor immune leukocyte subsets such as regulatory 

T cells and NK cells, which are implicated in smoking and in other autoimmune 

diseases are not taken into account by this method that allows the measurements 

of main leukocytes subtypes (i.e., B cells, T class, monocyte and granulocyte). 

Moreover, a recent study has shown that DNA hypomethylation at site 

cg19859270 within the GPR15 gene in smokers is caused by the high proportion 

of CD3+ GPR15+ expressing T cells instead of direct effect of tobacco smoking 

compounds on DNA methylation (24).  

 
1.2.3 Next Generation Sequencing techniques for methylome profiling  
 

Recent advances in Next-Generation Sequencing (NGS) have allowed to 

map DNA methylation genome-wide, at single-base resolution and in a large 

number of samples. The new methods create large opportunities for epigenome 

research, but they also pose substantial challenges in term of data processing, 

statistical analysis and biological interpretation of observed differences (15).  

Several technologies have been developed to investigate genome-wide DNA 

methylation changes at single base resolution. The distinguish feature among 
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these technologies is in treatment of DNA to detect methylation. In particular, 

there are three main approaches: a) endonuclease digestion, b) affinity enrichment 

and c) bisulfite conversion (25). The method of choice depends on the biological 

question. 

The bisulfite conversion technologies use bisulfite treatment to create an 

artificial transition which converts unmethylated cytosine (C) to thymines (T) 

while methylated Cs remains unchanged. Bisulfite-treated DNA can be analysed 

by both microarray or NGS platforms. (26) 

 
• Methylation microarray platforms  

 
Microarray-based methodologies have been and, still today are, widely used in 

large scale study such as EWAS. They combine bisulfite conversion with 

specially designed genotyping microarrays for measuring DNA methylation levels 

at preselected cytosines from genome. Human Methylation450K contains 

approximately 480k CpG sites, covering 99% RefGen (hg19) and 96% CpG 

islands. These CpGs cover promoter regions, CpG islands and shores and selected 

CpGs outside coding regions. The methylation levels where measured using beads 

labelled with two different dye colours for methylated (green) and for 

unmethylated (red) cytosines. The main advantages are lower costs compared to 

whole genome bisulfite sequencing and the experimental procedures are easier 

and faster for elevate numbers of samples compared to library preparation. 

Whereas, the microarray platforms are based on florescent signals, which are less 

sensitive and more prone to technical variation such as dye bias, batch effects and 

probe design bias (26). 

 
• Bisulfite DNA methylation sequencing (BS-seq)  

 
Whole Genome Bisulfite Sequencing (WGBS) represents the gold standard 

for DNA methylation studies, especially for the identification of differentially 

methylated regions among multiple samples. After bisulfite conversion the treated 

reads are then sequenced on the common NGS platform. Sequence alignment on a 

reference genome enables the detection of the methylated cytosines at single-base 

resolution.  
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Basically, for the human genome, with about 28 million of CpGs, at least 1 billion 

of 100 bp reads with approximately 30x average coverage are needed. Some sites 

are not covered or present a low coverage (1-10x). For these sites to estimate 

methylation levels is impossible given that sufficient coverage for downstream 

analysis is generally 10x.  

The main challenge in BS-Seq data analysis arises from its low sequence 

complexity. Bisulfite conversion reduces most of the genome to a three-nucleotide 

alphabet, since most of cytosines are not methylated. Thus, sequence alignment 

becomes a more difficult task and requires specialized tools. 

The key advantages of this technology are its comprehensive genome coverage, 

high qualitative accuracy and reproducibility. While the principal limitations of 

WGBS are the costs and the difficulties in the analysis of sequenced data. 

However, since only a small portion of the genome is differentially methylated, 

often WGBS is not necessary. 

  Enrichment-based methods offer the opportunity to sequence methylated 

fractions of the genome in a less expensive way, allowing to increase the 

sequencing coverage and, therefore, the precision in detecting differentially-

methylated regions. The most used Enrichment-based techniques are: i) reduced 

representation bisulfite sequencing (RRBS), it isolates CpG-rich regions through 

enzymes that recognize CCGG sites and cut the genome in those points; and ii) 

targeted bisulfite sequencing (or target enrichment sequencing) works by 

capturing genomic regions of interest by hybridization to target-specific 

biotinylated probes, which are then isolated by magnetic pulldown.   

Bisulfite-based methods are fairly accurate and reproducible. The major source of 

bias and measurement error is due to incomplete bisulfite conversion. It is 

important to measure bisulfite conversion of non-methylated cytosines 

incorporating controls for bisulfite reactions. Usually, during libraries preparation 

a bisulfite control represented by unmethylated DNA sequences was included into 

the samples.. Moreover, bisulfite over-treatment can also cause problem. This 

process degrades DNA and can lead to methylated cytosines conversion to 

thymines, which results in methylation underestimation (25; 26). 
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Basically, the protocol for targeted bisulfite library preparation involves the 

classical steps used for enrichment based-methods, with the addition of bisulfite 

conversion step., The steps are: I) genomic DNA fragmentation; II) adapter 

ligation; III) treatment with sodium bisulfite; IV) PCR amplification; V) target 

regions selection, VI) targeted amplification and sequencing. Bisulfite treatment 

includes DNA denaturation step and PCR amplification to convert uracils into 

thymines and to amplify the bisulfite-converted library. Thus, for each double-

stranded DNA fragment, bisulfite treatment followed by PCR amplification 

generates four distinct strands: the bisulfite version of forward and reverse strand 

and their reverse complements. 

Two library protocols have been developed for constructing bisulfite converted 

libraries: the non-directional protocol and the directional protocol. 

In the non-directional protocol, all four possible bisulfite DNA strands are 

sequenced at roughly the same frequency. While, in the directional protocol, the 

sequencing reads will correspond to a bisulfite converted version of either the 

original forward or reverse strand. Strands complementary to bisulfite forward or 

reverse strand are generated in the PCR step, but they will not be sequenced as 

they carry the wrong kind of adapter. 

 
1.2.4 Computational aspect of Bisulfite Sequencing data analysis 
  
Bisulfite sequencing has become the gold standard to quantitatively detect the 

methylation pattern at single-base resolution. The bisulfite modification makes 

methylation sequencing analysis a challenging task from computational point of 

view. The main reasons are: 

1. The search space is significantly increased compared to the original 

reference genome. The bisulfite treatment destroys strand 

complementarity, because the conversion occurs only on cytosine (Cs). As 

a result, there will be four different strands after amplification: bisulfite 

forward and reverse strand, and their respective reverse complements. 

Figure 1.5 shows the four strands produced starting from one double-

stranded fragment. 
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2. Cytosine (C) to thymine (T) mapping is asymmetric. Each read can 

theoretically exist in all possible methylation states. So, a T in the bisulfite 

read could be mapped either a C or T in reference genome, but not vice 

versa. Figure 1.4 highlights which Ts map on Cs, but this information is 

unknown in reality.  

3. It can be hard to distinguish a convert cytosine from a sequencing error. 

 

 
 
Figure 1.5. Production of bisulfite fragment in the non-directional protocol. Bisulfite 
treatment converts unmethylated cytosines in uracils. PCR amplification converts uracils 
in thymines and produces the complement of the treated fragments. As a result, at the end 
there are four fragments: OT and OB, that are the complementary fragments of OT and 
OB, respectively. In case of directional protocol, only OT and OB are produced. Adapted 
from (27) 
 

The first point underlines an additional problem with respect to classic 

NGS read alignment. A read must be aligned on both forward and reverse strand 

of the reference; to do that, it is sufficient to calculate its reverse complement. 

In case of bisulfite reads, this is not sufficient because strand complementarity 

does not hold anymore after treatment. As the strand identity of a bisulfite read is 

a priori unknown, each read must be explicitly aligned to both the forward and the 

reverse strand of the genome. 

The last two points stress the need of an efficient mechanism to allow Cs in the 

read to be mapped on either a C or T in the genome, and at the same time, to 

allow the presence of other mismatches. 
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To overcome these issues, a variety of tools for mapping bisulfite converted reads 

have been proposed. They can be classified into two major categories in terms of 

alignment strategies: the three-letter approach and the wild card approach. 

Three-letter aligners first reduce the reference genome into two in-silico 

variants: in the first one all Cs are converted to Ts, in the second one all Gs are 

converted into ss (equivalent to a C-to-T conversion on the reverse strand). Reads 

are converted in a similar manner and then they are mapped to both reference 

genome variants using a standard read aligner, such as BWA (28) or Bowtie (29). 

There are many tools that implements this algorithm, such as Bismark (27), BS-

Seeker (30) and others. Each of them may use different strategies, as the basic 

read aligner or the indexing algorithm. Wild card aligners do not convert 

reference or reads explicitly but treat Cs and Ts in the reads as matches for Cs in 

the reference genome, enumerating all C-to-T combinations of the read. 

Alternatively, they used a similarity score matrix that contains a positive match 

score between a T in a read and a C in the reference genome. This kind of 

approach is implemented by BSMAP (31), BRAT (32) and other tools. 
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2 Aim of the thesis 

The object of this work reflects the growing interest in clarifying the 

smoking effects on DNA methylation of the main leukocyte subpopulations. In 

particular, there is the need to understanding whether the previous findings of 

altered DNA methylation levels are caused by a direct real effect of smoking or by 

a casual effect due to a shift in cell-blood composition. In the analysis of DNA 

methylation data, the computational challenge regards the complexity of data and 

to overcome the limitations of existing methods used in these analyses.  

The aims of this Thesis are: a) to evaluate how the leukocytes vary 

according to different levels of smoking exposure; b) to explore the already 

published epigenetic observations regarding tobacco smoking and DNA 

methylation by examining in details different leukocyte populations and compare 

them in smokers, former smokers and non-smokers; c) to understand the 

limitations of available pipelines and to develop an ad hoc method for DNA 

methylation profiling at the cell-type level using bisulfite targeted data. 

This Thesis is divided in two main parts:  

• The first part is composed of Chapter 3 and Chapter 4 and based on new 

experimental data and on the analyses of existing available data, respectively. 

We investigated the smoking effects on leukocytes composition in healthy 

individuals from two different cohorts. 

• The second part is composed of Chapter 5 and Chapter 6, based both on 

bioinformatics analyses and new experimental approaches, where we 

performed a comparison of the main pipelines applied to analyse DNA 

methylation data. We also evaluated the differences in DNA methylation in B 

cells and Monocytes of current and never smokers as measured by DNA 

target sequencing.  

The present doctoral Thesis stems from the collaboration among the Molecular 

Epidemiology and Exposomics Unit of the Italian Institute for Genomic Medicine 
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(IIGM) where I conducted the experimental part, the Department of Computer 

Science of the University of Turin where I carried out the computational analyses 

and the Department of Twin Research & Genetic Epidemiology at King’s College 

of London where I performed statistical and computational analyses during my 

Ph.D visiting abroad.  



 
 

22 

 

 

 
 
 
 

 
Smoking effects on leukocyte 

subpopulations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

23 

 



 
 

24 

3. Assessing leukocyte subpopulation proportions in 
healthy individuals with different smoking exposure 

In this chapter, we illustrate the experimental approach and the analyses 

performed to explore how smoke exposure affects the proportions of leukocyte 

subpopulations in blood samples of healthy individuals. This characterisation is 

expected to identify the cell-subtypes involved in cigarette smoking immune 

response.  

3.1 Aim of the work 

Cigarette smoking is well-known to have adverse effects on the immune system 

including, being an immune suppressant in a dose-dependent manner (11; 33). In 

peripheral blood of healthy individuals, tobacco smoking alters leukocyte cell 

count and distribution, with several studies showing an increase in the overall 

number of leukocytes in current smokers compared to former and non-smokers in 

both sexes (34) This leukocyte variation is influenced by smoking intensity (i.e., 

smoking pack/years), which induces higher value of leukocytes in heavy smokers, 

a reduction in moderate, and a decline in mild until to never smoker levels (35). 

However, smoking cessation restores leukocyte count within one year (36, 37)  

The mechanisms underlying this alteration are not fully understood yet, and 

studies investigating the effect of smoking on the immune system led to 

conflicting conclusions (33;10). The leading hypothesis suggests that the irritating 

effect of tobacco smoke on the respiratory tract results in the release of pro-

inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8, and granulocyte-

macrophage colony-stimulating factor, which can, in turn, increase the number of 

leukocytes (35). Alternatively, it has been suggested that nicotine-induced release 

of hormones from the adrenal gland (catecholamines) can stimulate cortisol 
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secretion and thus inhibit antibody responses, T cell proliferation, and neutrophilic 

phagocytic activity (36;11). 

Changes in the distribution of major leukocyte subtypes has also been observed. 

Studies have shown a significant decreases in circulating NK cells (38), an 

increase in neutrophils and CD3+ T cells (24), and CD4+ (T-helper) T cells 

(36;39) in smokers compared to never smokers. Nevertheless, results from these 

studies frequently report conflicting evidence because of considerable differences 

in  sample size, smoking years, age, gender and ethnicity, among the studies. 

Despite the clear association between a global leukocyte-shift and cigarette 

smoking, smoking effect on minor cell-subpopulation remains unexplored. In this 

respect, the aim of this work was to assess the leukocyte subpopulations 

proportion in a cohort of healthy individuals with different smoking exposures, in 

order to identify the cell-types involved in response to the smoking induced 

alteration.  

3.2 Materials and Methods 

3.2.1 Study population  
 
For this purpose, 288 healthy volunteers with differential smoking habits were 

enrolled in collaboration with the Association of voluntary Italian blood donors 

(AVIS) of Turin, which operates in Italy in the field of blood donation and blood 

components. Individuals of both sexes with an age range between 35 and 70 years 

(mean 48.92 ± 7.66 years old) were recruited, between December 2017 and 

February 2019, after a brief study explanation, the written informed consent form 

to participate in the study was signed.  
Subjects with chronic and autoimmune diseases (i.e., diabetes, celiac disease, 

rheumatoid arthritis, chronic respiratory diseases), those undergoing to radio and 

chemotherapy in the last six months before the recruitment and pregnant women 

were not included in the present study. All subjects also filled an informative 

questionnaire about self-reported smoking habit and lifestyle information. The 

inclusion criteria for categories of interest were: a) smokers who had smoked for 
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at least five years and a minimum of 10-15 cigarette/day; b) former smokers who 

had quit smoking at least one year before the date of recruitment and c) never 

smokers who were never directly exposed to passive smoking (i.e., cohabitation 

with partner who smokes every day in the house). The study was conducted 

according to the guidelines in the Declaration of Helsinki. The protocol of the 

study was approved by the Ethics Committee of the University of Turin. 

 
3.2.2 Samples collection  
 
At the enrolment, each volunteer donated around eight ml of peripheral blood 

sample collected in EDTA (Ethylene Diamine Tetra-Acetic acid) vacutainer tubes. 

Within two hours after blood collection, 200 µl of fresh blood was used to 

measure the leukocytes distribution by flow-cytometric analysis, while the 

remaining part was divided into 500µl aliquots of whole blood, buffy coat and 

plasma. Buffy coat and plasma were both obtained after centrifuging the blood 

sample at 4°C, 2500 rpm x 10 minutes. All aliquots were stored at -80° C until 

further analyses were performed.  

 

3.2.3 Leukocytes count and flow cytometric analysis  
 
A panel of fluorescent-antibodies was designed to quantify nine leukocyte-

subpopulations including lymphocytes (i.e., T cells (CD4+ T helper cells, CD8+ 

cytotoxic T cells), B cells, NK/NKT cells), monocytes and granulocytes such as 

neutrophils and eosinophils. Cell-subtypes present in the blood were detected by 

determining the accessory molecules (CD markers) on their surface. In addition,to 

identify the nine leukocyte-subtypes, the cells were directly stained with mouse 

monoclonal anti-human antibodies (BD Biosciences): CD3+ T cells, CD4+ T 

helper cells, CD8+ cytotoxic T cells, CD19+ B cells, CD16+ CD56 NK cells, 

CD14+ monocytes, CD11b+ CD16+ neutrophils, CD11b+CD16- eosinophils. 

For each subject, two FACS tubes containing two different mix of antibodies 

(Supplementary, Figure S1) were prepared. 

Briefly, in each FACS tube containing 100µl of whole blood was incubated for 10 

minutes with 2.5 µl of human FcR blocking reagent of MACS (Miltenyi Biotec) 

to avoid unwanted binding of antibodies to human Fc receptor-expressing cells 
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such as B cells, monocytes, and macrophages. Then, all samples were stained with 

a mix of antibodies and 3 µl Anti-GPR15+ antibody (RD Systems). 

The expression level of this antibody was used as a smoking marker (24). After 10 

minutes of incubation, Erylysebuffer lysis solution was added to lysate the 

erythrocytes and the samples were incubated again 10 minutes, then washed twice 

with PBS (Phosphate Buffered saline). All incubation steps were carried out at 

room temperature and in dark conditions. 100 µl of PBS and 100 µl of 

Erylysebuffer lysis solution were added to the samples before the flow cytometer 

reading. 

All measurements were performed on a BD FACS Verse® flow cytometer and 

analysed with the BD FACSDiva® Software (version 8.0.1 BD Bioscences).  

BD FACS Verse® automatic tube acquisition was used to minimise technical 

variability. 

For each tube ~70,000 events were acquired as threshold of cell-acquisition. The 

lymphocytes were gated according to cell size (forward scatter) and density (side 

scatter). The resulting population was used as input for hierarchical gating 

analyses. The same procedure was applied to analyse monocyte and granulocyte 

populations (Supplementary, Figure S2). 

 
3.2.4 Plasma cotinine concentrations assessment   
 

In the present study, cotinine concentration was measured in plasma samples 

using Cotinine direct ELISA Kit according to the manufacturer's instruction (DRG 

Instruments, Germany). All samples were analysed in duplicate at 1:100 dilution 

in 96-well format. Absorbance (Abs) at 450 nm was detected by GloMax 

Discover Microplate Reader© (Promega). The cotinine concentration was 

calculated by extrapolation of the linear portion of the standard curve for each 

well. To improve the normality of the data, the cotinine measures were log-

transformed and corrected for technical sources of variation by ComBat function 

present in SVA package implemented in R statistical software (40). The 

distribution of cotinine concentration among the smoking categories was tested 

with ANOVA (one-way; Supplementary Figure S3.).  
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3.2.5 Plasma C-Reactive Protein (CRP) concentration measurements 
 

CRP concentrations were determined through the immunoturbidimetric method 

with AU Beckman Coulter analyser carried out at Unilabs (Laboratorio Raffaello) 

in Turin. The standard clinical value of CRP concentration ranges from a 

minimum of 1.6 mg/L until to 5.0 mg/L. Despite this threshold, the instrument 

detects the values greater than 5.0 mg/L, such as those of the acute inflammation 

> 10 mg/L.  

 
3.2.6 Statistical Analyses 
 

The distribution of the sample charactheristics (i.e., sex, age, alcohol 

consumption) among the smoking categories was tested by one-way ANOVA and 

tests, for continuous and categorical variables, respectively. 

The outliers were removed from the cell-type percentages (i.e., cell-type 

measurements deviating more than three standard deviations from the mean of 

each cell-type) and after the date were normalized.  

First, we investigated the association between the variation of cell-type 

percentages and active smoking, including in the regression model only current 

and never smoker individuals, and age, sex and alcohol consumption as covariates 

to adjust the model. The associations with p-value passed a Bonferroni-derived 

threshold of 0.05/Neff, where Neff is the effective number of independent tests 

(i.e., equal to the number of cell-subtypes tested) were considered significant.  

Second, we sought whether the cell-type percentages significantly associated with 

current smokers may persist altered in former smokers after smoking cessation, 

we compar former vs never smokers using the approach described above. Next, in 

former smokers, we explored if the cell-type variations also were different 

according to the years of smoking cessation. However, former smokers had 

quitted smoking at different times (range :1-40 years). Thus, we decided to 

classify the individuals into three categories: individuals who quitted smoking 

before to 10 years, individuals between 10-20, and those after 20 years. 

Due to a highly skewed distribution, CRP concentrations were categorized 

following the normal clinical parameters that range from 1.6 mg/L to 5.0 mg/L. 
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Four categories were formed: "low" including values <1.6 mg/L, "moderate" 

comprising values from 1.7 to 3.0 mg/L, "elevate" with values between 3.0 to 5.0 

mg/L and “high” referring to values between 5.0 to 10 mg/L. Values greater than 

10 mg/L were excluded because they were associated with acute inflammation 

(i.e., infection and inflammatory disease).  

We tested if the proportion of smokers followed a linear trend among the CRP 

categories by the Cochran-Armitage trend test. 

All the analyses were implemented in R statistic software, version 3.5.3 

 

3.3 Results 

3.3.1 Characteristics of the study population   
 
The study was carried out in 288 healthy volunteers aged between 35 to 70 years 

old (average 48.94 ± 7.66), of which 218 were males (76%).  

Self-reported smoking information collected by questionnaires at the time of the 

enrolment was cross-validated using cotinine concentration.  

The cotinine values reported by recruited volunteers were consistent with smoking 

category declared in the questionnaire, showing 89 current, 99 former and 100 

never smokers (Table 3.1). Age and gender distributions were similar among the 

smoking categories (p-value=0.948; p-value=0.448, respectively). 89% of current 

smokers were represented by light smokers (<15 cigarettes/day), and the 

calculated dose of smoking was an average of 11.80 ± 12.08 pack/years. In former 

smokers, the categories of cigarettes smoked per day were more homogeneous 

compared to current smokers. However, the prevalence (52%) was also in this 

case of light smokers (< 15 cigarettes smoked per day). The time since quitting 

smoking in former smokers was on average 16.3 ± 9.6 years, with about 40% of 

the former smokers which had stopped smoking since 10-20 years. There was a 

statistically significant difference in alcohol consumption among the smoking 

categories (p-value= 5.4 x10-4). 
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Table 3.1 Participant characteristics. Descriptive statistics of the study participants 

stratified by their smoking habits. Mean and standard deviation are reported for 

continuous variables, absolute numbers and percentages of individuals in each group are 

reported for categorical variables. P-value* were calculated with Chi-squared test for 

categorical variables and One-way ANOVA for continuous variables.  

Variables Current 
smokers 

Former 
smokers 

Never  
smokers P-value* 

Individuals  
(N)= 288 89 99 100  

Age (range 35-70) 47.97 (8.50) 50.58 (7.50) 48.14 (6.76) 0.948 
Gender (%)    0.448 
Male  71 (80%) 76 (77%) 72 (72%)  

Female 18 (20%) 23 (23%) 28 (28%)  
Dose of smoking 
(pack/years) 11.80 (12.08) 10.81 (9.47)  -  

Cigarettes 
smoked/day 

    

<15 80 (89%) 52 (52%)  -  
15-20 6 (6%) 31 (31%)   
> 20 2 (2%) 13 (13%)   
Missing  1 (1%) 3 (3%)   
Smoking cessation 
years 

 16.34(9.59)  -  

<10  28 (28%)   
10-20  40 (40%)   
> 20  27 (27%)   
Missing   4 (4%)   
Alcohol 
consumption 

      5.4x10-4 

Drinkers 57 (64%) 75 (76%) 66 (66%)  
Occasional 15 (16%) 12 (12%) 5 (5%)  
Never 10 (11%) 8 (8%) 27 (27%)  
Missing  7 (7%) 4 (4%) 1 (1%)   
CRP (mg/L)    8.6x10-4 
Low (<1.6) 49 (55%) 61(61.6%) 74(74%)  
Moderate (1.7-3.0) 10 (11.2%) 24(24.2%) 11(11%  
Elevate (3.0-5.0) 17(19.1%) 5(5.05%) 7(7%)  
High (5.1-10.) 11(12.3%) 6(6.1%) 8(8%)  
Missing 2(2.4%) 3(3.05%) -  
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3.3.2 Association between smoking habits and leukocyte-subtypes 
 

We investigated the association between active smoking (i.e., comparing smokers 

vs never smoked individuals) and the percentages of the leukocyte subpopulations 

quantified by flow cytometry: CD4+ T-helper, CD8+ T-cytotoxic, CD3+ T-cells, 

CD16/CD56+ NK-cells, CD56/CD3+ NKT-cells, CD19+ B cells, CD14+ 

monocytes, neutrophils, and eosinophils as well as the presence of GRPR15+ 

receptor in each cell types.  

We selected as significant the cell-type percentages passing Bonferroni-derived 

threshold of p-values <0.05/18=2.8x10-3.(Table 3.2).  

 
Table 3.2 Results of association analysis between leukocyte-subtypes in current vs 

never smokers. P values were obtained by linear regression model adjusted for age, sex 

and alcohol consumption. Significative p-values passing Bonferroni threshold are labelled 

in red (p-values <0.05/18=2.8x10-3). Beta= effect size, SE= standard error.  

 
Leukocyte subtypes Beta SE P-value 

B  0.06 0.75 0.45 
B GPR15 0.35 0.07 2.2x10-6 
CD3+ T  0.06 0.07 0.41 
CD3+ T GPR15 0.64 0.06 2.0x10-16 
CD8+ T -0.15 0.07 0.03 
CD8+ GPR15 0.50 0.07 7.7x10-13 
CD4+  0.07 0.07 0.37 
CD4+ GPR15 0.65 0.06 2.0x10-16 
Monocytes 0.18 0.07 7.0x10-3 
Monocytes_GPR15 -0.27 0.08 6.1x10-4 
NK T -0.03 0.07 0.69 
NK T GPR15 0.18 0.07 1.9x10-2 
NK -0.33 0.07 6.2x10-6 
NK GPR15 -0.18 0.08 2.7x10-2 
Eosinophils -0.05 0.07 0.47 
Eosinophils GPR15  0.04 0.07 0.58 
Neutrophils 0.20 0.07 5.3x10-3 
Neutrophils GPR15 -0.13 0.07 7.8x10-2 

 
In current smokers we observed a significant decrease of NK-cell proportion (p-

value= 6.2x10-6) and, an increase of GPR15+ expressing in all T cell (CD3+ (p-

value= 2.0x10-16), CD4+ (p-value= 2.0x10-16), CD8+( p-value= 7.7x10-12)), and 

CD19+ B (p-value=2.2x10-6) cells compared to those observed in never smokers. 
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In contrast, in the same comparison we found a decrease of the proprotion of 

GPR15+ expressing cells in monocytes (p-value=6.1x10-4, Figure 3.1).  

 



 
 

33 

   

   



 
 

34 

Figure 3.1 Leukocyte subpopulations significantly associated with active smoking. Boxplots report the difference of the cell-type percentages 

between current vs never smokers. Percentage of each cell-subtype was normalized and corrected ~ sex, age, alcohol consumption. **=p<0.01; ****= 

p<0.0001 
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3.3.2 Association between leukocyte-subtypes and former smoking 
 

Next, we explored whether the cell-type percentages significantly associated with 

active smoking persist altered after smoking cessation. Comparing former vs 

never smokers we found significantly associated (i.e., associations passing 

Bonferroni derived threshold p-value < 0.05/6=8.3x10-3) CD3+ and CD4+ T cells 

expressing GPR15+ showing an increase in former smokers, and a trend among 

the smoking categories (Table 3.3).In contrast, the proportion of NK, B-GPR15+ 

and monocyte GPR15+ cells were not statistically different between former and 

never group. 

We further investigated in former smokers, if the cell-type showed a significant 

difference in comparison with never smokers change also according to the years 

since smoking cessation. CD4+ T cells expressing GPR15 marker were 

significantly decreased with the years of smoking cessation (p-value = 0.02; 

Figure 3.2)  

 
Table 3.3 Results of cell-type percentages that persist altered after smoking 
cessation. P values were obtained by linear regression model adjusted for age, sex and 
alcohol consumption, comparing former vs never smokers.  In red are labelled 
significative p-values passing Bonferroni threshold (p-values <0.05/18=2.8x10-3). Beta= 
effect size, SE= standard error 
 
 

Leukocyte subtypes Beta SE P-value 
B GPR15 0.24 0.14 0.10 
CD3+ T GPR15 0.42 0.11 5.0x10-4 
CD8+ GPR15 0.27 0.13 3.0x10-2 
CD4+ GPR15 0.45 0.12 2.1x10-4 
Monocytes_GPR15 -0.01 0.13 0.89 
NK -0.09 0.14 0.50 
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Figure 3.2. Leukocyte subpopulations significantly altered in former smokers. 
Boxplot shows a decrease of CD4+T cells expressing GPR15+ with the years after 
smoking cessation, considering only former smokers. It also reports the values of linear 
regression analysis.  ***=p<0.001; ****= p<0.0001; B= effect size; SE= standard error.  

 
3.3.3 C-Reactive Protein levels in smoking categories  
 
C-Reactive Protein (CRP) levels in plasma samples were measured as a marker of 

systemic inflammation. Smoking habit is known to be strongly associated with a 

high inflammatory level. As expected, we observed a difference of the CRP 

values among smoking categories (P=8.6x10-4), although more than 50% of 

individuals in each smoking category showed a low grade of inflammation (Table 

3.1). To investigate if the number of smokers increased among the CRP 

categories, we tested the presence of a linear trend in current smokers compared to 

the whole group. We observed an increase in the proportion of smokers among 

CRP categories (p< 0.05, Table 3.4).  
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Table 3.4. Contingency table of current smokers distribution among the CRP 
categories. The p-value was computed with Cochran-Armitage test to test the linear trend 
of smokers among the CRP categories. 

 Low 
(<1.6 mg/L) 

Moderate 
(1.7-3.0 mg/L) 

Elevate 
(3.1-5.0 mg/L) 

High 
(5.1- 10mg/L) 

P-
value 

Current 
smokers 49 10 17 11 0.004 

Total 
individuals 184 45 29 25 

 

 

3.4 Discussion 

To date, it is well established that smoking habits increase the overall numbers of 

leukocytes (9;11;36;38). However, its impact on leukocyte-subpopulations 

distribution remains object of study. 

In the present study, to evaluate the smoking effect on leukocyte subpopulations, 

we recruited 288 healthy participants, distributed in 89 current, 99 former and 100 

never smokers. Lifestyle and smoking habits information and a sample of 

peripheral venous blood were collected at the enrolment. For each individual, the 

leukocyte subpopulations: CD3+ T cells, CD4+ T-cells, CD8+ T cells, 

CD16+CD56+ NK-cells, CD3+CD56+NKT-cells, CD19+ B cells, CD14+ 

monocytes, CD11b+-CD16+neutrophils, and CD11b+CD16- eosinophils were 

counted using flow cytometry. For each cell-type  the expression of the GPR15 

cell receptor as smoking biomarkers was also measured. Moreover, we checked 

the self-reported smoking habits by the experimental measure of cotinine 

concentration and the systemic inflammatory level with CRP concentrations in the 

collected plasma samples.  

As a major finding, we observed a significant decrease in circulating NK cells and 

a significant increase of GPR15+ expressing cells in CD3+, CD4+, CD8+ and B 
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cells in smokers compared to never smokers. Moreover, we found in current 

smokers again the significant decrease of GPR15 expressing cells in monocytes. 

The majority of these results are in according with previous studies. For example, 

a significantly lower proportion of NK cells in current smoker was found for the 

first time by Tollerud and colleagues (38). They observed a decrease of NK cells 

in currents but also among former smokers, including subjects who did not smoke 

for more than 20 years. Conversely, in our study the NK cell levels in former and 

never smoker individuals were similar. This can be possibly explained by the 

different smoking exposure between the two studies, since the difference on 

average of smoking pack/years between these studies is 20, 34.8 in Tollerud study 

vs 10.81 in our study.  

In agreement with what reported in the literature, we also observed in current 

smokers an increase in the proportions of CD3+ T, CD4+, CD8+, CD19+ B cells 

expressing GPR15+ compared to never smokers. GPR15+ cell receptor is 

involved in the regulation of immune response during inflammatory process 

mediating cell recruitment such as T cell in bowel disease and macrophages in 

synovial tissue in patients with rheumatoid arthritis (RA) (20). GPR15 gene on 

cg19859270 site was found differentially methylated in whole blood of smoker vs 

never smoker. These difference in DNA methylation is attributable to a high 

proportion of CD3+ T cell expressing GPR15 in smoker compared to never rather 

than by direct impact of tobacco smoke on DNA methylation (24). They 

speculated that the alteration might be due to the inflammatory effect of smoking 

on the immune system. Always, in this study, they showed the smoking-related 

increase of GPR15+ expressing cells in CD19+ B cells. Furthermore, an elevated 

expression of GPR15 was also found in monocytes of RA patients. On the 

contrary, in our study, we observed the decreasing of monocytes expressing 

GRP15+ in smoker compared to never smokers. This result is inconsistent with 

the previous findings on GPR15+ expression, because if the GPR15+ expression 

at cell-type level increases as inflammatory status as reported in T and B cells in 

smokers, it should increase also in monocytes.  

Interestingly, in former smokers we showed that the proportion of cells expressing 

GPR15+ in CD3+ and CD4+ T cells persist altered also after smoking cessation. 
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In particular, CD4+GPR15+ T cells remain altered after more than 10 years since 

smoking quitting. Taken together these findings confirm the intermediate levels of 

GPR15 gene expression observed in former smokers (24) and highlight an 

inflammatory status not completely restored to never smoker levels also several 

years after smoking cessation.  

To explore the inflammatory levels, in our cohort, we measured the concentration 

of CRP. Elevated levels of CRP were demonstrated to be associated with cigarette 

smoking in a dose-dependent manner in male and women with both the duration 

and intensity of smoking (41). We observed a linear trend between the number of 

smokers and the CRP categories, suggesting a more elevate inflammatory status in 

current smokers. This result is intriguing and in line with the obtained results of 

this study.  

Our findings reflect the composition of the cohort that included mostly light 

smokers (<15 cigarettes/day), while the majority of the published studies were 

focused on heavy smokers (≥ 20 cigarettes/day). On the other hand, they highlight 

the smoking effect on leukocyte subpopulation also at low grade of exposition. 

We are aware that in the present study we evaluated only the primary leukocyte 

subpopulations and that the smoking-related leukocyte variations might be 

attributed to minor differentiate cell-subtypes like regulatory and memory cells. 

This is a preliminary study where we sought to highlight the main smoking effects 

on the distribution of primary leukocyte-subpopulations caused to smoking 

exposure in order to clarify whether a cell-subtypes was more affected than 

others.  

These results need replication in a larger and more variegate cohort where are 

available the measures of a large number of leukocyte subtypes.  

In conclusion, our study shows the significant variation in the proportion of NK 

and CD3+T, CD4+T, CD8+T, CD19+ B, NKT cells and monocytes expressing 

GPR15+ caused by smoking exposure. Despite some limitations of our study, we 

demonstrated that the magnitude effect of smoking on leukocyte subpopulation is 

clearly visible also in a small and heterogeneous cohort, mainly including light 

smokers. This is an important and significant finding.  
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4. Leukocyte shifts in healthy women of the 
TwinsUK cohort with different smoking habits 

This Chapter describes a study performed in collaboration with the Department of 

Twin Research & Genetic Epidemiology at King’s College of London during my 

Ph.D abroad stay (5 months, from 22/02/2019 to 22/07/2019). We show an 

association between smoking habits and an elevate number of immune cells in 

TwinsUK cohort. This analysis is expected to identify the minor cell-subtypes 

involved in cigarette smoking immune response. Publication of this work is in 

submission. 

4.1 Aim of the work  

The rationale of this study is the same of the previous study conducted on healthy 

individuals from Turin (Chapter 3): to investigate leukocyte shifts in relation to 

smoking habit. In this case, we want to extend our understanding of the smoking 

effects on leukocyte subpopulations that are less frequent in blood and, normally, 

very difficult to analyse. The novelty of this study is the availability of around 

42,000 immune cell traits measured by high-resolution deep immunophenotyping 

flow cytometry analysis in 497 twins from the TwinsUK cohort. 

4.2 Methods 

4.2.1 Study population  
 
The TwinsUK cohort is a large cohort that includes about 14,000 subjects, with a 

prevalence of women, extensively studied to understand the genetic and 

environmental basis of a range of complex diseases (42; 43). The population is not 

enriched for any particular disease and it is representative of the general UK 
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population. We selected 358 healthy females within the cohort, aged between 41 

and 77. Detailed characteristics of participants are reported in Table 4.1. 

The individuals were included for: i) complete self-reported smoking habits 

information collected by questionnaire, ii) availability of cell-blood subtypes (in 

this study referred to as immune traits, the same nomenclature reported in 

previous studies on this data (44; 45) measured by flow cytometry, and iii) 

availability of self-reported and/or doctor-diagnosed information on inflammatory 

and autoimmune diseases.  

St. Thomas’ Hospital Research Ethics Committee approved the study, and all 

twins provided written informed consent.  

 

4.2.2 Immunophenotyping 
 

A full description of the immune cells quantification and phenotype is detailed in 

the papers presented by Roeaderer et al., and Mangino., et al., (44; 45). Briefly, 

leukocytes were characterised in 497 females from the TwinsUK cohort using 

flow cytometry on seven distinct 14-colour panels. In the first stage, parent 

lineages were defined within each panel via manual gating based on canonical 

marker combinations for leukocytes subsets of known functionality. Within each 

parent lineage, boolean gates were then manually defined for each additional cell 

surface marker (i.e., markers not used to determine the parent lineage), and 

information on all combinations of these boolean gates (i.e., whether positive, 

negative, or ignored) were subsequently used to define subsets of immune cells 

and to measure their immune cell subset frequencies (CSFs, evaluated as 

percentages with respect to the total number of leukocytes in their parent lineage). 

Using this approach, we captured a grand total of 88,367 immune traits, 

describing 50 supersets of the parent lineages, and 88,317 CSFs. 

In this study, we assumed that measurements equal to zero meant impossibility to 

detect an immune trait rather than its absence. Therefore, zero values were 

considered as not available (NA).  

To select 41,701 robust immune traits we applied several criteria. First, we 

removed 41,336 CSFs with median value <0.1 or >99%, as done previously 

(44;45). Second, we removed 5,246 CSFs with missingness larger than 20%. 
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Third, we removed 34 redundant CSFs which passed the previous quality check 

steps and were measured in multiple panels (median Spearman’s ρ within pairs = 

0.88, range=0.37-0.95).  

Immune traits were log-transformed, to improve the normality of their 

distribution, and then corrected for batch effects using a linear mixed model, as 

implemented in the R package lme4 (v1.1.21), with flow cytometry batch number 

included as random effect. Before carrying out the association analyses, we 

removed the outliers (i.e., immune trait measurements deviating more than three 

standard deviations from the mean of each trait).  

 

4.2.3 Self-reported smoking history  
 
Detailed information about smoking history was self-reported via 11 longitudinal 

questionnaires, collected from 1992 to 2010 in 496 individuals with 

immunophenotyping available (median number of responses: 7). Consistency of 

self-reported smoking status was assessed using additional self-reported 

information, i.e., age of start and quitting smoking, and the number of cigarettes 

and/or packs smoked. For instance, individuals who described themselves as 

never smokers, but reported, in any questionnaire, age of start and/or quitting 

smoking, and/or that they had smoked any number of cigarettes were removed 

from this study. We allowed for smoking relapse after smoking cessation, and 

considered as current status the latest reported before immunophenotyping. This 

resulted in the inclusion of 460 individuals, 35 of whom were current smokers, 

189 former smokers, and 236 reported never having smoked.  

 

4.2.4 Immune-mediated inflammatory diseases and cancer 
 
History of immune-mediated inflammatory diseases (IMID, i.e., chronic 

obstructive pulmonary disease, Crohn's disease, systemic lupus erythematosus, 

multiples sclerosis, polymyalgia rheumatica, psoriatic arthritis, rheumatoid 

arthritis, and ulcerative colitis) was traced through 15 longitudinal self-

administered questionnaires completed between 2004 and 2017 (median number 

of responses per individual: 3). For each condition, study subjects who reported 
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being diagnosed by a doctor at least once were treated as IMID cases, and when 

multiple ages at first diagnosis were provided, the minimum age was considered.  

Cancer history was available from the 2019 Office for National Statistics. Non-

melanoma skin cancers and carcinomas in situ were not taken into account.  

Using these pieces of information, 102 individuals were excluded either because 

having a diagnosis of IMID reported before or within two years from 

immunophenotyping or being diagnosed for one or more cancers dating five years 

before or within one year from immunophenotyping.  

The final dataset consisted of 358 healthy female individuals, 25 of whom were 

current smokers, 135 former smokers, and 198 never smokers, and included 28 

monozygotic and 52 dizygotic twin pairs, and 198 singletons (Table 4.1). 

 
4.2.5 Statistical analysis  
 
First, we aimed at identifying the immune traits involved in the response to active 

smoking using data from current and never smokers (Figure 4.1, right panel). 

Due to the high variability of time of smoking cessation before 

immunophenotyping (range: 1-50 years), we excluded former smokers from this 

analysis to avoid any confounding effects. Associations of immune traits with 

smoking status were carried out using a linear mixed model, as implementer in the 

lmerTest R package (function lmer, v3.1.1), including age at immunophenotyping 

as a fixed effect, and family as a random effect. 

Due to the strong correlation among immune traits, we considered as significant 

the associations passing a Bonferroni-derived threshold of 0.05/Neff, where Neff is 

the effective number of independent tests calculated on the whole set of 497 

individuals with immunophenotyping data using the approach proposed by Li & Ji 

(46).  

Due to the unequal sample size between current and never smokers, for each of 

the N immune traits passing the Bonferroni-derived threshold of 0.05/Neff 

described above, we generated 5,000 random datasets where labels indicating 

smoking status were randomly permuted between monozygotic/dizygotic twins 

pairs and among singletons, in order to preserve the family structure and, thus, the 

underlying genetic correlation. Then, we counted the number of times T the 
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association p-value in the random datasets was lower than 0.05/Neff, and used this 

number to evaluate an empirical p-value as (T+1)/5,001. We confirmed an 

association as significant when its empirical p-value passed a Bonferroni-derived 

threshold of 0.05/Meff, where Meff is the effective number of independent tests 

evaluated by the approach proposed by Li & Ji on the subset of the N significancy 

associated immune traits. 

Then, we investigated whether the immune traits associated with active smoking 

and confirmed by permutation testing remained altered after smoking cessation 

using data from former and never smokers and the statistical model described 

above (Figure 4.1, right panel). Finally, to investigate the presence of a trend in 

the relative frequencies of the altered immune traits in current vs former vs never 

smokers, we performed a further association study including the three smoking 

categories (i.e., current, former, and never smokers; Figure 4.1, right panel), 

following the design detailed above. Associations passing a Bonferroni-derived 

threshold of 0.05/Meff were considered as significant. 

 

 
Figure 4.1. Study sample and design. Left panel: criteria used to select the 358 women 
included in this study. Right panel: analysis approach. First, we sought associations 
between current tobacco smoking and 41,701 immune traits in 25 current and 198 never 
smokers. Second, we investigated whether the levels of the identified immune traits could 
be fully or partially restored to never-smoker proportions using data from additional 135 
former female smokers. IMIDs: immune-mediated inflammatory diseases. 
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4.3 Results 

4.3.1 Population characteristics  
 
The characteristics of the study participants from the TwinsUK cohort are shown 

in Table 4.1. The data set included 358 females with an average age of 60.90 ± 

8.31 years (range: 41-78). Twenty-five of them (7%) were current smokers; 135 

(38%) were former smokers and 198 (55%) never smokers.  
 
Table 4.1 Sample characteristics. The dataset includes 358 females of European 
ancestry from the TwinsUK cohort. Mean and standard deviation are reported for 
continuous variables, absolute numbers of individuals in each group are reported for 
categorical variables. P-values were evaluated using ANOVA for continuous variables 
and χ2 test for categorical variables. MZ: monozygotes; DZ: dizygotes 
 

 All Current 
smokers 

Former 
smokers 

Never 
smoker P-value 

N 358 25 135 198 - 

Age (range 41-78) - 59.77±8.75 61.71±8.28 60.49±8.28 0.33 

Zygosity 
(MZ/DZ/singletons) 

56/104/19
8 2/0/23 22/26/87 32/78/88 1.61x 10-6 

 
 
4.3.2 Immune traits associated to active smoking  
 
In this study, we first aimed at identifying the immune traits involved in the 

smoking response using data from current and never smokers.  

We identified 848 (2.0%) CSFs associated with active smoking at a Bonferroni-

derived threshold of 0.05/2,610=1.9x10-5, and whose association was further 

confirmed by permutation testing (P<0.05/79=6.3x10-4, Methods, 

Supplementary, Table S1).  

Associated immune traits belonging to the same lineage were highly correlated 

(Supplementary, Figures S4-8), and this correlation was particularly strong 

among immune traits presenting similar patterns of molecular markers. Therefore, 

to facilitate the description of the obtained results, we show them as groups of 
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highly correlated immune traits characterised by at least a common molecular 

marker. The cell lineages, subsets, and phenotypic markers used here are defined 

according to the nomenclature reported in Roederer et al. (44). 

 
Frequency of circulating T cell, B cells, and monocytes is influenced by active 
smoking 
 
Significantly associated CSFs included 711 and 133 immune traits belonging to 

the two major lymphocyte populations of T cells (83.8% of the total associated 

CSFs) and B cells (15.7%), respectively, and four belonging to the monocyte 

subset (0.5%). 

 Among the T cells we found the 264 (37% of total T cells) CSFs of CD8+, 277 

(51%) CSFs of CD8+ memory, 162 (23%) CSFs of CD4+, five (0.7%) CSFs of 

double-positive (DP) CD4+CD8+, and three (0.4%) of γδ T cells lineages. And 

the relative proportions of B cells included 75 (56 of total B cells %) CSFs of 

class-switched memory B cells, 44 (33%) CSFs of plasma cells, 10 (7.5%) CSFs 

of transitional and four (3.1%) CSFs of naïve B cells (Figure 4.2). These results 

indicate that the CSFs are strongly affected in smoker belong to the CD8+ lineage, 

in particular to CD8+ memory T cells.  
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Figure 4.2. Study Relative proportions of significantly associated CSFs with active 
smoking. Plot shows the cell-lineage percentage associated with active smoking 
calculated on 848 associated CSFs.   
 
T-cells   

CD8+ T cells 

The largest number of associated CSFs belonged to the CD8+ lineage expressing 

the CD25 activation marker (184 CFSs, 34% of total CD8+ lineage). Sixty-five 

immune traits expressed exclusively the CD25 activation marker and were 

strongly correlated with each other (mean Pearson’s |ρ|=0.90, Supplementary 

Figure 1, p-value<8.42x10-6), 52 CSFs expressed CD25+ in combination with 

CD73+ marker with regulatory phenotype (CD8+CD25+CD73+, mean Pearson’s 

|ρ|=0.94, p-value<6.88x10-7) and 67 CSFs expressed both the CD25+ and 

CD127+ markers with proliferation activity (CD8+CD25+CD127+, mean 

Pearson’s |ρ|=0.90, p-value<5.50x10-6). The relative proportions of these traits 

were positively associated with active smoking (i.e., their relative proportions 

were increased in current smokers; Figure 4.3). 

31.13 %

0.59 %

32.67 %

0.35 %

19.1 %

0.47 %

8.84 %

0.47 %
5.19 % 1.18 %

Lineage
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Conversely, four CD8+CD25- T cells (n=4, p-value<5.46x10-6, mean Pearson’s 

|ρ|=0.94) displayed an opposite direction of effects (i.e., their relative proportions 

were decreased in current smokers; Figure 4.3). 

Furthermore, in current vs never smokers we observed significantly increased the 

relative proportions of 33 CD8+CD127+T cells and 35 CD8+ expressing the 

CD95 marker (p-value<1.85x10-5, mean Pearson’s |ρ|=0.85, p-value<1.85x10-5, 

mean Pearson’s |ρ|=0.84, respectively). 

 
CD8+ memory T cells 

Within CD8+ memory T cells lineage we found the relative proportion of 34 

CSFs expressing CD25+ activation marker (p-value<1.63x10-5, mean Pearson’s 

|ρ|=0.98), 32 expressing CD25+CD73+ markers (CD8+CD25+CD73+CD45RO+, 

p-value<4.76x10-6, mean Pearson’s |ρ|=0.99) and 30 expressing CD25+CD127+ 

markers (CD8+CD25+CD127+CD45RO+, p-value<1.00x10-5 , mean Pearson’s 

|ρ|=0.98) positively associated with active smoking. 

CD8+ memory T cells expressing the CCR4 chemokine receptor were positively 

associated with active smoking (n=88; p-value<1.87x10-5, mean Pearson’s 

|ρ|=0.73), whereas CD8+CCR4- memory T cells were negatively associated 

(n=40; p-value<1.75x10-5, mean Pearson’s |ρ|=0.54; Figure 4.3).  

In smokers, we further identified a decreaseof the relative proportions of 12 CD8+ 

memory cells expressing the CD161 activation and pro-inflammatory marker 

(CD161+, p-value<4.01x10-6, mean Pearson’s |ρ|=0.96).  

Finally, the relative proportions of 15 central memory T cells (p-value<1.33x10-5, 

mean Pearson’s |ρ|=0.78),  of 10 long term memory T cells (p-value <1.51x10-5, 

mean Pearson’s |ρ|=0.89), and of 16 transitional memory T cells (p-

value<1.59x10-5, mean Pearson’s |ρ|=0.89) were found also increased in smokers. 

 
CD4+ T cells  

We identified 107 CD4+ T cells expressing the CD38 activation marker (CD38+, 

with pro-inflammatory activity; p-values<1.80x10-5, mean Pearson’s |ρ|=0.60) 

negatively associated with active smoking. Conversely, the relative proportions of 

CD4+CD38- were increased in current smokers (n=8; p-value<1.87x10-5, mean 

Pearson’s |ρ|=1, Figure 4.3).  
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By contrast, negatively associated with active smoking were observed the relative 

proportions of a subset of T helper-2 (n=12; p-value<1.76x10-5, mean Pearson’s 

|ρ|=0.91), T helper-17 (n=24; p-value<1.61x10-5, mean Pearson’s |ρ|=0.81), and 

naïve CD4+ (n=11; p-value<1.43x10-5, mean Pearson’s |ρ|=0.98).  

 

CD4+CD8+ double positive T cells  

The relative proportion of double-positive T cells expressing the CD25+ 

activation marker (DP, CD4+CD8+CD25+, mean Pearson’s |ρ|=0.72) was 

increased in current vs never smokers (n=4, p-value < 1.87x10-5), while a unique 

CD4+CD8+CD25- DP T cell (DP CD4+CD8+CD25-) was decreased in current 

smokers (p-value = 1.71x10-6).   

 

γδ T cells CD45RA+  

The relative proportions of three immune traits belonging to the γδ T cells lineage 

(Vg9+Vd2- subset) and expressing the CD45RA naïve marker (CD45RA+; p-

value < 1.70x10-5, mean Pearson’s |ρ|=1) were decreased in current smokers. 

 

B cells 

The relative proportion of class-switched memory B cells isotypes: IgA, IgG and 

IgE. (n=64, p-value < 1.85x10-5, mean Pearson’s |ρ|=0.66; n=10, p-value < 

6.54x10-6, mean Pearson’s |ρ|=0.65 and n=1, p-value = 1.74x10-5, for IgA , IgG 

and IgE, respectively) were positively associated with active smoking.  

By contrast, B cells expressing the CD38 marker, known as plasma cells (n=44; p-

value < 1.86x10-5, mean Pearson’s |ρ|=0.60) decreased in current smokers 

compared with never smokers.   

We further observed ten immune traits in the transitional stage of B cells, co-

expressing the CD21 naïve and the CD95 memory markers (CD21+CD95+, p-

value < 1.87x10-5, mean Pearson’s |ρ|=0.85) positively associated, and four naïve 

B cells (CD21+, p-value < 1.60x10-5, mean Pearson’s |ρ|=1) negatively associated 

with active smoking.  
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Monocytes 

We identified four CSFs belonging to the monocyte lineage which were 

negatively associated with active smoking (p-value < 3.98x10-6, mean Pearson’s 

|ρ|=0.95). 

 
 
Figure 4.3. Distribution of selected CSFs in 223 healthy women. Raw relative 
proportion (percentage) are plotted, and each boxplot reports effect size (β), standard 
error (SE), and p-value (P) of the linear regression analysis (current vs never smokers). 
Opposite directions of effects are shown for a selected set of markers: left column CD25 
(25+/25-) marker in CD8+ T cells, middle column CCR4 (CCR4+/CCR4-) chemokine 
receptor marker in CD8+ memory cells, right column CD38 (38+/38-) marker in B cells 
isotype IgG. 
 
 
Immune traits are partially restored in former smokers 

Next, we investigated whether the 848 CSFs significantly associated in current vs 

never smokers remained significantly different in 135 former vs 198 never 

smokers, that is, whether their relative frequency was restored in individuals who 

quitted smoking (Methods, Figure 4.1). We observed that 390 CSFs (46.0%) 

including the majority of the B cells (125/133, 94.0%), all the CD4+ (n=162), DP 

(n=5), and γδ (n=3) T cells, as well as monocytes (n=4) were not significantly 

different between former and never smokers, suggesting a complete restoration of 

these immune traits after cessation of smoking (p-value ≥ 0.05; Methods, Figure 
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4.4 ,Supplementary Table S2). In contrast, 254 CSFs (30.0% of the 848 CSFs) 

belonging to the CD8+ (n=228, 89%) and CD8+ memory T cell (n=26, 11%) 

showed a significant difference between former and never smokers at a 

Bonferroni-derived threshold of 0.05/74=6.8x10-4. Next, we explored whether the 

254 CSFs showed a trend among all the smoking categories. All the 254 CSFs 

displayed a decreasing trend from current, former and never smokers, suggesting 

a partial restoration in former smokers (Methods, Figure 4.4, Supplementary 

Data 2).  

 
 T cells 

CD8+ T cells  

The relative proportions of CD8+ T cells expressing the CD25 activation marker 

showed a different behaviour after smoking cessation. Comparing former vs never 

smokers, we observed 17 CSFs of CD8+CD25+ (46% of CSFs CD8+CD25+) that 

were not fully restored in former smokers (p-value < 1.40x10-2), and 48 (57%) 

CSFs CD8+CD25+ that were partially restored in former smokers (i.e., 

statistically different in the comparison between current and never smokers, 

Figure 4.3, p-value < 1.80x10-8). A large relative proportion of CD8 T cells 

expressing the CD25 and CD73 markers were not completely restored (n= 43 

(83%), p-value < 0.05). In comparison, the remaining nine (17%) CSFs were 

completely restored in former smokers (p-value > 0.06). Moreover, former 

smokers showed 30 CSFs of the CD8+CD25+CD127+ immune traits that were 

not fully restored (p-value < 3.25x10-2) and 37 CSFs were partially restored (p-

value < 3.03x10-8). 

In former vs never smokers we observed partially restored the relative proportions 

of 28 CSFs of the CD8+CD127+T cells and 15 CFSs of the CD8+CD95+ (p-value 

< 1.17x10-6, p-value < 1.15x10-6, respectively). In contrast, 5 CSFs of the 

CD8+CD127+ and 20 CFS of the CD8+CD95+ were not completely restored (p-

value < 1.57x10-3, p-value < 0.01, respectively).  

 

CD8 memory T cells  

Within the CD8 memory T cells expressing the CD25 activation marker, we 

observed that the relative proportions of CD8+CD25+CD45RO+ and 
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CD8+CD25+CD127+CD45RO+ activated immune traits were statistically 

different in former smokers in comparison with current and never smokers (n=34, 

p-value < 2.12x10-8 and n=30, p-value < 9.41x10-9, respectively). In contrast, 

within the immune traits co-expressing CD73 marker, only one was partially 

restored and others were not fully restored (n=31, p-value < 3.81x10-3).  

The relative proportions of CD8+CCR4+ memory T cells expressing the CCR4 

chemokine receptor (n=32; p-value > 0.28) and those not expressing CCR4+ 

receptor (n=36, p-value > 0.08) were completely restored in former smokers, 

whereas other traits showed a p-value < 0.05 (n=30, CD8+ CCR4+, p-value < 

0.002 and n=4, CD8+ CCR4-, p-value < 0.03, respectively). Moreover, in last 

association analysis including all smoking categories, we found significantly 

associated 26 CSFs of CD8+ CCR4+ that persist partially altered after smoking 

cessation (p-value < 2.15x10-5).  

All CD8+CD161+ memory T cell were completely restored in former smokers 

after smoking quitting (n=12, p-value > 0.68).  

Finally, we observed that the relative proportions of ten long term memory T cells 

(n=10, p-value < 4.1 x10-6), 16 transitional memory T cells (p-value <1.8x10-4) 

and two of central memory T cells were partially restored after smoking cessation 

(n=2, p-value < 1.36x10-6). In contrast, the other 13 central memory T cells were 

not fully restored in former smokers (p-value < 0.03).  

 

CD4+ T cells 

The relative proportions of the identified CD4+ T cells expressing the CD38 

activation marker and those not expressing the CD38 marker were restored 

entirely in former at the levels of never smokers (n=107, p-value > 0.05; n=8, p-

value > 0.65, respectively). 

Similar trend was observed in former smokers for CD4+ CD38+/- T cell-CSFs 

and in the relative proportions of the subset of T helper-2 (n=12; p-value > 0.24,), 

T helper-17 (n=24; p-value > 0.24), and naïve CD4+ T cells (n=11; p-value > 

0.27).  
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Double positive T cells  

DP T cells expressed and not the CD25+ activation marker were fully restored 

after smoking cessation (n=5, p-value > 0.12). 

 

γδ T cells CD45RA+  

The relative proportions of three immune traits belonging to the γδ T cells lineage 

(Vg9+Vd2- subset) and expressing the CD45RA naïve marker (CD45RA+; p-

value > 0.10) were wholly restored after smoking quitting. 

 

B cells 

Overall, a large proportion of class-switched memory B cells isotype IgA and IgG 

(n=60, p-value > 0.05; N=9, p-value > 0.13, for IgA and IgG, respectively), 

including also IgE isotype (n=1, p-value > 0.07), were completely restored in 

former to never smokers levels. Whereas, four immune traits of IgA and one IgG 

isotypes were not fully restored (p-value < 0.04).  

The relative proportion of plasma cells were fully restored after smoking cessation 

(n=32, p-value >0.12; and n=9, p-value > 0.26 for IgA and IgG respectively; 

Figure 4,4), except for three CSFs that were not completely restored (p-value < 

0.04). 

We observed a complete restoration of the relative proportions of the B cells in 

transitional stage, co-expressing the CD21 naïve and the CD95 memory markers 

(CD21+CD95+, n=10; p-value > 0.46), and also the four naïve B cells (CD21+, p-

value > 0.13).  

 

Monocytes 

The four CSFs significantly associated with smoking belonging to the monocyte 

lineage expressing the HLA-DR activation marker were completely restored after 

cessation of smoking (p-value > 0.27).   
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Figure 4.3. Distribution of selected CSFs in all smoking categories (N=358). Raw 
relative proportion (percentage) values are plotted, and each boxplot reports effect size 
(β), standard error (SE), and p-value (P) of the linear regression analysis (former vs never 
smokers). Top row: immune traits partially restored after smoking cessation, bottom row: 
immune traits completely restored after smoking cessation. 

4.4 Discussion 

The effects of tobacco smoking on the innate and adaptive immune system have 

been extensively investigated showing conflicting results, most likely because of 

the variability in smoking exposure (i.e., smoking dose and/or whether cigarettes, 

pipe, or cigars were smoked) as well as the intrinsic differences in study 

populations (e.g., in age, sex, or ethnicity) and their sample size (8;10). Moreover, 

the majority of the studies focused only on primary leukocyte subpopulations (i.e., 

CD3, CD4+, CD8+ T cell, B cell, natural killer cells, monocytes and 

granulocytes) which are more abundant in blood, and, consequently, easier to 

measure (36;39). 
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In the present study, we explored the association between self-reported smoking 

status and 41,701 immune traits measured by flow cytometry in the peripheral 

blood of 358 healthy women of European ancestry. To the best of our knowledge, 

this is the first finely detailed association study aimed at elucidating the 

relationship between smoking and both the innate and adaptive immune system. 

First, we examined the variation related to active smoking by comparing current 

with never smokers. We observed a change in the relative proportions of 

circulating leukocytes, mostly in the T and B cell lineages. More in detail, we 

observed in smokers a global increase in the relative proportions of CD8 T cells, 

in particular those expressing the CD25 activation marker including DP T cells, 

and in the CD8+ memory T cells expressing the CCR4 chemokine receptor. In 

contrast, relative proportions of CD4+ T cells were sensibly decreased in smokers. 

In B cells, we found an increase in the relative proportion of class-switched 

memory B cells isotype IgA, IgG, and IgE, and a decrease of plasma cells.  

An increase of activated CD8+CD25+ T cells has already been observed in the 

peripheral blood of smokers (47), in the airway epithelium of smokers with 

chronic bronchitis (48) , as well as in lung cancer smokers (49). The CD8+CD25+ 

activated T cells in our results displayed also proliferating (CD127+) and 

regulatory phenotypes (CD73+) with a predominance of the first. Studies suggest 

that these latter cells showed an elevate immunosuppressive capacity, able of 

inhibiting the proliferation of effectors, CD4+ and naïve T cells (50;51), whilst 

CD8+ with a not-activated phenotype (CD25-) are preferentially naïve or resting 

T cells (52) . 

In the present study, we also showed evidence for the association of 

CD8+CD4+CD25+ DP and CD8+CD25+ memory T cells with smoking. In the 

healthy human thymus, activated CD25+ DP T cells displayed suppressive 

functions similar to regulatory T cells (53). The presence of CD8+CD25+ 

memory T cells in smokers is in line with their proliferation following antigen 

recognition due to the systemic inflammation associated with smoking (7;9). 

Taken together, these results suggest that smoking increases the activation of 

CD8+ T cells stimulating their proliferation, with concomitant activation of CD8 

T reg and DP T cell with immunosuppressive properties.  
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We have also identified a novel positive association between smoking status and 

CD8+ memory T cells expressing the CCR4 chemokine receptor. While the role 

of the CCR4+ receptor in CD8+ memory T cells remains unexplored, studies in 

animal models showed that cigarette smoking induces the production of CCR4+ 

ligands in macrophages and dendritic cells, which in turn recruit monocytes in the 

lung (54), and induce the activation of natural killer cells through the mediation of 

the CCR4 receptor (55).  These findings indicate that the CCR4+ receptor may be 

involved in smoking response by recruiting CD8+ T cells in inflammatory sites.  

As an additional finding, we observed an increase of the relative proportion of 

CD8+ memory T cells, in particular central, transitional and long-term memory 

subsets, and a decrease of T-helper (Th) cells such as Th2 and Th17 T cell subsets 

in active smokers. Increase of CD8+ memory T cells and reduction of Th2 in 

smokers are in line with previous studies indicating a cumulative effect of 

smoking causing an increase of memory T cells, as well as an immune 

suppressive effects decreasing Th-2 response (7;9). Conversely, we found a 

decrease in the relative proportion of Th-17 and CD8+ expressing CD161 marker 

displayed a phenotype similar to Th17 cells (56). That, is in contrast with what 

reported in the literature, which shows that smoking increases the number of Th17 

in both lung tissue and peripheral blood with pro-inflammatory effect contributing 

of smoking-induced inflammation (7;9) 

A previous study in 20 chronic obstructive pulmonary disease patients and 29 

healthy individuals reported an increase of class-switched memory B cells isotype 

IgA in peripheral blood of current smokers compared to former and never 

smokers (57). The authors have suggested that the increase of class-switched 

memory B cells may be the result of chronic inflammation due to continued 

smoking and might be associated with the formation or release of (neo)antigens, 

such as smoke particles or damaged lung tissue, also hypothesizing that a 

continued smoking exposure may cause a secondary immune response increasing 

the circulating class-switched memory B cells and memory B cells formation in 

current smokers (57;58). On the other hands, smoking also affects 

immunoglobulins production showing a decreased level of IgA and IgG in 

peripheral blood and saliva of smokers (7). Taken together our results support 
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these findings: we observed, in current vs never smokers, an increase of the 

relative proportion of class-switched memory B cells (IgA, IgG, and IgE isotypes) 

and a decreased of the relative proportions of plasma cells which releasing in 

circulation the immunoglobulins in response to antigens recognition (59). 

In the present study, we observed a decrease of CD4+ relative proportions 

expressing the CD38 activation marker. This latter is preferentially expressed by 

naïve CD4+ T cells and shows a reduced capacity to proliferate and to respond to 

IL-2 cytokine signalling (60). Interleukin IL-2 homing regulation and proliferation 

of T cells (61). We can speculate that smoking-inflammation increase IL-2 levels 

in circulation promote CD8 T cells activation and decreasing number of 

CD4+CD38+ T cells in current compared to never smokers might be due to an 

impaired response to IL-2, or the suppressor activity performed by CD8 T reg 

induced by smoking (51). In contrast with our results, Valiathan et al., showed, in 

smoking HIV patients, an increase of CD4+CD38+ T cells compared to those who 

have never smoked, indicating an effect of smoking on CD4+ T-cell activation 

and proliferation (62).  

Our results were also consistent with a negative association between smoking 

status and immune traits belonging to Vγ9Vδ2 T cells and monocytes. The 

decrease of their relative proportions in smokers could be explained by their 

preferential recruitment in the lung. A study in mice showed that the γδ T cell 

frequency in the lung was increased in response to chronic smoke exposure (63), 

while monocytes are known to be recruited from the blood for generating alveolar 

macrophages (7) 

Interestingly, analysing the former smokers data, we observed that immune trait 

relative frequencies including the majority of the B cells, all CD4+, DP, γδ T cells 

and monocytes were restored to non-smokers frequencies after smoking cessation. 

In contrast, the CD8+CD25+ and CD8+ memory T cells subsets displayed not a 

complete restoration. In particular, we found activated CD8+CD25+ and 

CD8+CD25+ memory T cells and those who exhibited the proliferation activity 

were partially restored, while the T reg phenotype (CD8+CD25+CD73+) was 

completely restored (Supplementary, Table S2). This is in contrast with other 

studies, one on 174 former smokers who had quit smoking an average of 10.7 
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years before the study have shown that smoking cessation completely restores the 

CD8+, CD3, B cell, monocyte counts within one year, while the proportion CD4+ 

T cells after two years (37). Whereas another two studies displayed a complete 

restoration of white blood cell count after one year in 231 former smokers, and 

lymphocytes and monocytes count within 2-5 years after smoking cessation (64). 

 Our results suggest that the dysregulation of the immune system connected to 

active smoking may persist, at different degrees, also after smoking cessation, 

especially in the CD8+CD25+ and CD8+ memory T cells subsets. This could help 

to explain why the risk of smoking-related pathologies remains also elevated after 

smoking cessation (65). Despite a more elevated samples size, the studies 

mentioned above were limited only to primary leukocyte subpopulations or the 

main groups of blood cells (i.e., lymphocytes, monocytes, neutrophils, eosinophils 

and basophils) which indicated the smoking effect only on large cell proportions. 

The difference between our and these results highlight the importance to 

investigate the smoking effects also on finely detailed leukocyte subpopulations.  

We are aware that this study presents some limitations. First, the study cohort 

included only women of European ancestry, and the effect of smoking on the 

immune traits may differ in males or in non-European populations. Second, 

information on smoking status was self-reported and information on second-hand 

smoking is missing, making it impossible to exclude residual confounding or 

misclassification bias. Third, our dataset contains a small number of current 

smokers (n=25) which makes it impossible to investigate the effect of smoking 

dose (e.g., pack/years) on the immune traits. However, to overpass at least 

partially these limitations, the selection of subjects for this study was extremely 

accurate to exclude potential confounders. Indeed, we validated the self-reported 

smoking status using historical data on smoking habits as well as on the age of 

starting/quitting smoking, the number of cigarettes and/or packs smoked, and 

discarded any subject presenting immune-mediated inflammatory diseases (i.e., 

rheumatoid arthritis, systemic lupus erythematosus, multiples sclerosis, type 1 

diabetes), which may affect the immune traits independently from smoking 

exposure.  
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In conclusion, in the present study, we detail how tobacco smoking shapes 

leukocyte cell subset proportions and induces changes in their surface protein 

expression levels. The shift of immune cells composition in peripheral blood 

caused by active smoking affects mainly the CD8 T cell lineage that skew towards 

a chronic inflammatory phenotype. Finally, we observed that changes induced by 

smoking are not completely reverted even after years since smoking cessations. 

Further investigations are required to dissect the role of these immune traits in 

smoking response for a future application and investigation in smoking- and 

immune-related diseases.  
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5. Formalization and definition of a pipeline for 
DNA methylation analyses  

In this Chapter, we explain the approach used to develop a computational pipeline 

for DNA methylation profiling at cell-type level using target bisulfite sequencing 

data.  

5.1 Introduction and aims of the work  

We have previously described the several methods to study DNA methylation 

with bisulfite treatment followed by next-generation sequencing (Bs-seq) which is 

the most popular and powerful method to profile genome-wide DNA methylation 

patterns at single base resolution. In particular, targeted bisulfite sequencing 

(targeted-BS) allows to sequence specific genomic regions of interest reducing 

costs and increasing the coverage. Bisulfite treatment converts unmethylated Cs 

into Ts while the other bases remain unaffected. Bisulfite conversion alters about 

90% of cytosines present in the genome. At this point, distinguishing between Cs 

converted into Ts and a Ts originally present in the DNA molecule is 

computationally demanding. In addition, the depletion of unmethylated cytosines 

brings a challenge for aligning bisulfite-converted sequencing reads to a large 

reference genome and standard short-read aligners are not suitable for Bs-seq 

reads. On top of that, it is difficult to distinguish a converted C from: i) a 

stochastic sequencing error occurring during all the sequencing steps; ii) a Single-

Nucleotide Polymorphisms (SNPs). SNP is a DNA sequence variation occurring 

at nucleotide level (e.g. an adenine instead of a guanine) at a frequency >1% in 

the general population. The presence of SNPs in the samples increases the level of 

variability of data. 

At the moment, in literature a benchmark pipeline for targeted bisulfite data is still 

lacking. There are many tools available for both aligning reads to reference 
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genome and extracting methylation information from the reads. However, to 

select the proper one to use is still difficult, due to the extensive biological and 

technical variability of the data. Since BS experiments are time-consuming and 

expensive, the use of synthetic sequencing data (i.e., the creation of a dataset that 

simulates different biological and technical situations of a BS experiment) has 

become increasingly popular for assessing and validating bioinformatics tools. To 

our knowledge, currently there is only one software for generating BS-seq data 

called Sherman (66). However, this tool allows the synthetic dataset generation 

without reporting any information about the methylation levels of cytosines.  

Therefore, the aims of this part of the doctoral work were: i) the generation 

of a simulator to create bisulfite synthetic data; (ii) a comparison of the most used 

tools for DNA methylation data analysis on a synthetic dataset; and (iii) a test of 

the tool performances analysing real datasets. 

5.2 State of the art  

To achieve the goals of the present studyit is important to know the currently 

available methods to simulate a synthetic bisulfite dataset and the most used DNA 

methylation analysis pipelines. 

Synthetic NGS data generators  

Computational methods can be benchmarked using real and/or synthetic data. A 

validation with real data is always essential because they represent the biological 

complexity. However, a validation with real data is still challenging, since the true 

values are unknown. This complicates their use for performance evaluation of a 

tool such as accuracy and precision in detecting results. 

In this respect, synthetic data generators allow to produce as much data as desired 

with predefined parameters, for which the true values are known. Artificial 

datasets permit to generate a big volume of data in a cheap and fast way, 

compared to costs and time needed to create real datasets.  

Synthetic data generators create FASTQ files starting from a given reference 

genome. They allow to specify a variety of parameters, such as the NGS platform, 

the read length and the sequencing mode, as well as the coverage or the 
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sequencing error quantity. A FASTQ file is the standard format to store data 

sequenced by an NGS system. FASTQ format describes each read through the 

following three parameters: i) a unique identifier; ii) a DNA string; and iii) a 

quality score string associated to the sequence. The quality score is measured by 

Phred. Phred score is a positive value, it represents the estimated probability that 

the given nucleotide is incorrectly called. 

There are several tools to simulate standard NGS data in FASTQ format, like 

ART (67) and CuReSim (68). However, such tool abundance is not available for 

bisulfite sequencing data. As mentioned before, there is a unique tool allowing the 

production of bisulfite sequencing data, called Sherman (66). Sherman produces 

only a FASTQ file containing data and it does not report the file related to 

methylation calling for each sequenced cytosine. It allows to create directional 

and non-directional libraries with single- and paired-end reads. The user can set 

number, length and quality of reads, as well as SNPs and sequencing errors can be 

specified. Bisulfite conversion can be regulated with two parameters, which give 

the conversion rate for CG and non-CG contexts. However, Sherman does not 

allow the simulation of targeted bisulfite sequencing experiments, it allows only 

whole-genome ones because it is not possible to select a set of specific fragments 

from the reference genome. Finally, it is not a parallel tool and runs only in 

sequential mode. 

 
Bisulfite aligner and Methylation callers  

We selected the most used aligner and methylation extractor tools: Bismark (27) 

and BSMAP (31). 

Bismark aligner implements the three-letter algorithm and uses Bowtie (69) or 

Bowtie 2 (70) as its core read aligner. These two standards read aligners create an 

index based on Burrows-Wheeler transform (BWT) on the reference genome, 

which is used to perform an efficient search of the reads. Bowtie is a short-read 

aligner, which uses a Full-text index in minute space (FM-index) (71) with some 

improvements to allow the presence of mismatches. The FM-index is a 

compressed suffix array based on BWT that allows to efficient search all the 

occurrences of a pattern in a text in sublinear time. Bowtie extends the FM-index 

implementing a backtracking algorithm that allows a limited number of 
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mismatches and favors high-quality alignments, combined with a strategy to avoid 

excessive backtracking. The search proceeds similarly to the exact match. If the 

matrix range becomes empty, the algorithm greedily selects an already matched 

position with a minimal quality value and substitutes it with a different base. 

Then, the exact match search resumes from just after the substituted position. 

Bowtie 2 (70) is a read aligner which extends the FM-index to permit gapped 

alignments. For each read, Bowtie 2 extracts some substrings, called seeds, from 

the read and its reverse complement. These seeds are aligned to the reference 

genome in an ungapped fashion using the FM-index and matrix ranges are 

calculated. At each range is assigned a priority based on its size: smaller ranges 

receive a higher priority. Then, Bowtie 2 chooses rows randomly correspondingly 

to range with high priority and resolves each selected row's offset into the 

reference genome. Finally, it performs a parallel dynamic programming alignment 

algorithm until a sufficient number of alignments are examined. 

The first time one is using a certain reference genome, Bismark needs to build two 

in silico versions of it, by applying the C-to-T and G-to-A conversions. From each 

of the two variants, an index based on BWT is built and it is stored in mass 

memory for future uses. Before the alignment step, reads are transformed into 

fully bisulfite-converted versions, applying the same transformations as the 

genome. Then, each of them is aligned to the two versions of the reference 

genome using four parallel instances of Bowtie (Figure 5.1). This procedure 

enables Bismark to find the strand of origin of a read. Bismark first tests whether 

a sequence can be aligned to multiple places in the reference with a minimum 

number of mismatches. In case the read cannot be uniquely placed it will be 

discarded. Otherwise, Bismark determines the sequence with the lowest number 

of mismatches from any of the four alignments. The methylation state of cytosines 

is inferred by comparing the original read sequence with the corresponding 

genomic sequence (27). 
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Figure 5.1: Bismark approach to bisulfite mapping. The bisulfite read is converted 
into a C-to-T and a G-to-A version. These two converted reads are aligned to C-to-T and 
G-to-A versions of the reference genome. The best unique alignment, if existing, is 
determined from the four-parallel alignments. It comes from C-to-T read against C-to T 
reference. Adapted from (27) 
 
 
BSMAP implements the wild card algorithm: it masks Ts in the read as Cs only at 

C position in the reference genome, while keeping all the other Ts in the reads 

unchanged. To do so, BSMAP firstly indexes the reference genome building a 

hash table which contains all possible k-mers, called seeds. Where k is the length 

of the substring. The generic entry of the hash table has the seed as a key and the 

corresponding coordinates as values. To accomplish the C/T mapping issue, the 

hash table includes all possible bisulfite variants for each seed. To find all 

possible mapping positions, each read is divided into 4 parts, which are combined 

two by two to form 6 possible seeds; these seeds are then looked up in the hash 

table. For each mapping location, the number of mismatches between the read and 

the reference needs to be counted, allowing a T in the read to map to a C in the 

reference. DNA sequences are represented as binary strings and DNA nucleotides 
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are encoded on two bits according to the following encoding: A: 00, C: 01, G: 10, 

T: 11. 

A bitwise masking approach is applied to allow the C/T mapping and to count the 

number of mismatches. Specifically, a bitwise AND mask (01) is applied to 

convert a T (11) to C (01) in the read where the base corresponds to a C in the 

reference, or to keep a C in the read unchanged where the reference is a C. An 

AND mask (11), which does not change anything, is used where the reference 

base in not a C (Figure 3.2). Mismatch counting is implemented through a bitwise 

XOR operation between the masked read and the reference. The bitwise XOR of 

two bits returns zero if they are equal and non- zero if they are different. The 

number of mismatches between the reference and the read is the number of non-

zero two-bit segments (Figure 5.2) (31). 

In summary, Bismark and BSMAP differ in terms of alignment strategies, 

Bismark applies a three-letter approach whereas BSMAP uses a wild card 

approach.  

 

 
 
Figure 5.2: BSMAP approach to bisulfite mapping. A) Bisulfite seed table, each read 
is looked up in the seed table for potential mapping positions; B)  Ts of the reads that 
match over Cs in the reference are masked as Cs through a bitwise AND; C) A bitwise 
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XOR between the reference and the masked read is calculated. Masked Ts appear as Cs 
and do not count as mismatches. Adapted from (31). 
 

5.3 Computational implementation 

This section is divided into three subsections: In the first subsection, we present a 

formalization of the bisulfite sequencing workflow. It shows how bisulfite data 

are generated and it was used as input to design a new tool for the generation of 

bisulfite synthetic datasets. In the second subsection we describe the software 

characteristics and how does works MethylFASTQ. In the third subsection, we 

show the comparison between BSMAP and Bismark performances using synthetic 

datasets. 

 

5.3.1 Formalization of Bisulfite Sequencing workflow  
 
Here, we described the formalization of the main steps of a typical bisulfite 

sequencing workflow. The formalization follows the workflow represented in 

Figure 5.3 

 

 
 
 
Figure 5.3: Bisulfite Sequencing workflow. The genome of interest is fragmented into a 
number of double-stranded pieces of known length. Fragment strands are separated 
through denaturation and then, single-stranded fragments are bisulfite-treated. 
Amplification produces reverse complement of treated fragments, which are sequenced in 
the non-directional protocol. Sequencing step processes bisulfite fragments and produces 
a set of reads.  
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A genome is defined as a pair of strings of length N, that represent respectively 

forward and reverse strand. They are also called plus and minus strand. The two 

strands are complementary to each other.  

Let  

L= {A, C, G, T} 
 

be the nucleotide alphabet. This alphabet is the classic one that is used to 

characterize DNA sequences. It has one symbol for each nucleotide: A for 

adenine, C for cytosine, G for guanine and T for thymine. In the context of DNA 

methylation, it is necessary to distinguish between a methylated cytosine and an 

unmethylated one. The nucleotide alphabet does not ensure that: the C symbol 

represent a generic cytosine, which may be either methylated or non-methylated. 

So, let us introduce the methylated nucleotide alphabet, a new alphabet which 

allows this distinction: 

 
 

where C and Cm represent respectively non-methylated and methylated cytosine. 

An asymmetric mapping exists between these two alphabets. A string defined on 

Lm can be mapped in L, while the opposite is not possible. The mapping from Lm 

to L has the meaning of nucleotides read from an NGS system. In fact, NGS 

devices do not reveal the epigenetic mark on DNA unless a suitable pretreatment 

is done. So, methylated and unmethylated cytosine will be both read as cytosines. 

The opposite mapping, from the nucleotide alphabet to the methylated nucleotide 

alphabet does not exist, because it would be like setting DNA methylation in an 

arbitrary way. 

Let us introduce strands complementarity relation by means of the reverse 

complement function 

 
 

Given a nucleotide string  s = b1b2 ……. bn, the reverse complement of s is 
defined as 
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where fc  : L  L  is the complementary nucleotide function defined as:  
 

 
 

The reverse complement function can also be defined on the methylated 

nucleotide alphabet Lm in a similar way to the previous case. The difference is 

that the complementary nucleotide of G can be either C or Cm, while both C and 

Cm have G as a complementary.  

Let's consider a genome g of length N. Formally, 

 

 
 
Here, N represents the number of nucleotides which constitute g, sp is the plus 

strand and sm is the minus strand. Furthermore, let us introduce two functions to 

select one specific strand of a double-stranded DNA string. Let 

 

 
 

be the functions that return respectively the forward and the reverse strand of a 

given DNA string.  

 
• Fragmentation 

 
The genetic material under study is obtained from a group of cells belonging to 

the same tissue, (i.e., plasma, epithelium, lung, etc.).  These different types of 

DNA are randomly broken into double-stranded fragments of a given length. 

Let us call G = {g1, g2,…….gp} the sample, namely the pool of starting genomes. 

Each gi is randomly fragmented into pieces of length l. Let  

 

 
 
be the set of fragments of i-th genome. Let  
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be the multiset of fragments of sample G. 

Let us consider a double-stranded fragment to use as an example. Let us 

denote forward strand as s+ and reverse strand as s-. They have respectively 

5'-3' and 3'-5' direction. 

 
 

• Bisulfite treatment  
 
Fragments are denatured to separate the two strands and then, they are treated 

with sodium bisulfite to highlight cytosine methylation. Specifically, the treatment 

converts unmethylated cytosines into thymines while it does not affect other 

nucleotides. 

Let 

 
 
be the bisulfite function. It transforms a string defined on the alphabet Lm in a 

string defined on the standard nucleotide alphabet L. 

Given a single-stranded fragment s = b1b2 … bn, the bisulfite function application 

on s results in a new string s’ = b’1b’2 ….b’n such that 

 

 
 
Let us apply bisulfite function to the fragment of example 4.1.1. 
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Let define Fbs as the multiset of bisulfite treated fragments. The generic 

double-stranded fragment is denatured, and the bisulfite function is applied on 

both its strands. 

 
 

• Amplification 
 
Amplification step produces many copies of each fragment and of its reverse 

complementary. 

The NGS system needs the multiple copies of each fragment to reinforce the 

optical signal in order to detect it. The purpose of this formalization is to describe 

how bisulfite data are generated, not the NGS system's workflow. Thus, the 

creation of the copies of each fragment is not relevant for the formalization 

purpose. 

For non-directional libraries, it is relevant the creation of the reverse 

complementary of each fragment. 

In case of directional library, let us define the set of fragments that will be 

sequenced as the set of fragments obtained from the bisulfite treatment step. 

 
 

In case of non-directional library, let us define the set of fragments that 

will be sequenced as the set of bisulfite fragments with their reverse 

complementary fragments. 

 
 

Let's apply amplification step to the bisulfite treated fragments of example 

4.1.2. Let us call the new fragments src + and src - .  
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• Sequencing  
 
Fragments may be sequenced either in single-end or in paired-end mode. Let us 

call    the read length. 

Single-end sequencing allows us to sequence the 5`-end of the fragments. 

So, a single-end read may be described as a string that describes the first m 

nucleotides of the fragment. Conversely, paired-end sequencing allows us to 

sequence both ends of each fragment. So, a generic paired-end read may be 

described as a pair of strings: 

 

 
 
The read r1 contains the first m nucleotides of that fragment, while read r2 contains 

the first m nucleotides of the reverse complement of the same fragment. 

Let 

 
 

be the prefix function such that it returns the first characters of the input 

string. Given a generic string s = b1b2 …bn of length n, the prefix of length 

of s is defined as 

 

 
 
Let us define the sequencing functions.  

Single-end sequencing function 

 

 
 
is defined as  
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Paired-end sequencing function  

 

 
 

is defined as  

 
 

Let us consider a read length of m = 15 to conclude the example 4.1.3  

Let’s begin with single-end sequencing.  

 

 
 

As regard to paired-end sequencing, we obtain the following reads.  

 

 
 

Let fseq be the chosen sequencing function and let m be the read length. So, the set 

of sequencing reads R is defined as:  
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The cardinality of R is the number of reads obtained from sequencing, let us call it 

N. Let's call L the read length and G the genome length. So, the depth of coverage 

C is defined as C = NL/G 

 
5.3.2 Methyl FASTQ 
 
Tool overview  

 

MethylFASTQ is a tool written in Python that generates synthetic bisulfite 

sequencing data in FASTQ format (72)(Detailed information are reported in, 

Supplementary, Appendix A). It is both organism and experiment independent. 

MethylFASTQ is designed to simulates the sequencing process following the 

bisulfite sequencing experiment workflow.  

MethylFASTQ simulates both whole-genome (WGBS) and targeted bisulfite 

sequencing processes and in directional and non-directional manner. Also, it 

allows the production of single- end paired-end reads. In the WGBS mode, the 

user can provide a list containing the chromosome names that have to be 

sequenced. If no list is provided the entire reference genome will be sequenced. 

While in targeted mode the user can provide a tabulated file including the genome 

regions to be sequenced.   

The dataset includes the setting of both mutation rate that represent SNPs, 

insertion and deletion and structural variation and the sequencing errors 

simulating the errors of NGS system. Generally, they are associated with low 

quality score of data. 

Methylation levels can set in the different contexts (i.e., CG, CHG and CHH).  

Finally, MethylFASTQ produces two files: i) a FASTQ file containing data, and 

ii) methylation call file. These files are tabulated files reporting the information in 

the same format as those from real data.   

 

Software architecture 

 

MethylFASTQ is a parallel tool. The parallelization is process-based and utilizes 
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the built-in module multiprocessing, which supports spawning processes and 

assigning them a job through a function. The architecture follows producer-

consumer software design pattern (Figure 5.4). Child processes (producers) 

produce the data and send them to the parent process (consumer) using a FIFO 

shared queue. The number of concurrent processes is a tool parameter. 

 

MethylFASTQ is composed by: 

• Load balancer: it is a parent process that used an heuristic approach, 

where the chromosome sequence is separated in substring using biological 

and mathematical knowledges. The load balancing step spilt the extracted 

substring in order to equally distribute the workload among the number of 

parallel processes. The number of parallel processes can be set by user.  

• Producer: its job starts by setting the mutation rate given by user. The 

cytosines on both strands of the sequence are indexed. And, the cytosines 

information are stored in hash table. Numerous overlapping fragments are 

generated equal to the depth of coverage setted. Whenever the number of 

reads present in the buffer is greater than a certain threshold the producer 

sent a message to the consumer. 

• Consumer: it receives the data from the producer by shared queue and 

permanently store them in a file.  
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Figure 5.4. MethylFASTQ architecture based on producer-consumer process. 
Producer process indexed the cytosines present in the chromosome substrings. For each 
of them methylation is set, and relatives information are stored in the index. Then, the 
bisulfite fragment is produced, and reads are extracted from it. Reads are stored in a local 
buffer which is periodically flushed in the queue. When fragments extraction terminates, 
the consumer pushes in the queue the cytosines information and its execution ends. 
Consumer process starts with the chromosome sequence that is splitted in 
nonoverlapping substrings, which are further divided by the load balancing algorithm. 
Obtained substrings are assigned to N producer processes. Then, the consumer waits for 
items to be available in the queue and elaborate them. When all substrings have been 
sequenced, the consumer terminates. 
 
Computational tests 
 
Efficiency, together with accuracy and precision, is an indicative measure of 

software performances. Generally, the efficiency is expressed in time needed to 

complete a task and it depends on a machine workload.  

We tested the execution time performances of MethylFASTQ. For each 

experiment, numerous executions have been performed and the average time has 

been calculated. Times were expressed in minutes. Runs were performed on 48-

core AMD Opteron 6176 CPUs, 2.3 GHz, RAM 503 GB.  

We measured MethylFASTQ execution time performance for the generation of: i) 

datasets with different complexity, ii) datasets with increasing depth of coverage, 

and finally iii) seven datasets with a different number of parallel processes and, in 

comparison with Sherman tool. 

Table 5.1 shows the results on the average creation time on 10 runs to generate 

four datasets with different complexity. All datasets were generated from human 

chromosome 21 (hg19), in whole genome mode at 10X of coverage using 8 

parallel processes. The lower execution time was obtained for creating the dataset 

with single-end reads of directional library, while the generation of paired-end 

reads of non-directional library was the most expensive execution. In table 5.2 is 

reported the average of execution time performances to create the datasets at the 

same conditions reported above, with different depth of coverage. As expected, 

the time of execution increases as the depth of coverage increasing. Greater is the 

depth of coverage and greater will be the number of read to produce. 
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Table 5.1. MethyFASTQ execution time performances to create the datasets with 
different complexity. Average time was computed considering 10 runs used to generate 
the dataset using 8 parallel processes. All datasets were extracted from chromosome 21 
(hg19), with 10X depth of coverage.  
 

 
 

 
Table 5.2. MethyFASTQ execution time performances to create the dataset at the 
increase of the depth of coverage. Average time was computed considering 5 runs used 
to generate the dataset using 8 parallel processes. All datasets were extracted from 
chromosome 21 (hg19), in paired-end reads, in non-directional mode. 
 

 
 
 
Furthermore, we tested MethylFASTQ in comparison to Sherman the already 

published tool. Both tools generate bisulfite synthetic dataset in a high 

customizable way. In particular, Sherman presents different features compared to 

MethylFASTQ. For example, Sherman produces only a FASTQ file containing 

data and it does not report the file related to methylation calling for each 

sequenced cytosine. Moreover, Sherman does not allow the simulation of targeted 

bisulfite sequencing experiment, it allows only whole-genome one because it is 

not possible to select a set of specific fragments from the reference genome. 

Finally, Sherman is not a parallel tool and run only in sequential mode. 

Figure 5.5 reports average execution times to create seven datasets with different 

sizes. Datasets were extracted to chromosome 21 (hg19) and they were generated 

following non- directional protocol in paired-end reads. Here, we demonstrate the 

improvement of execution time performance of MethylFASTQ due to the 
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parallelization of processes in comparison with Sherman that runs in sequential 

mode. With two processes, they obtain a comparable execution time. The 

execution time performance of MethylFASTQ increases as the number of parallel 

processes increase. 

 
 
Figure 5.5. MethylFASTQ execution time performances in comparison with 
Sherman tool. Average times to produce seven different datasets of MethyFASTQ and 
Sherman. MethylFASTQ has been run with 1, 2, 4, and 8 parallel processes. Datasets 
were extracted from chromosome 21 (hg19), in paired-end reads, in non-directional 
mode. Datasets with different size are represented by dots.  
 
5.3.4 Comparison of BSMAP and Bismark  
 
Three metrics were used to assess the performances of Bismark and BSMAP tools 

on alignment and methylation calling tasks: i) percentage of uniquely mapped 

reads, ii) recall of methylation detection and iii) time consuming in reads 

alignment.  

 Uniquely mapped reads are those reads which map in only one position with a 

minimum number of mismatches. In case of paired-end reads, the reads are 

aligned if both the extremities are properly mapped. 

Methylation calling is performed by methylation extractors included in both 

BSMAP and Bismark packages and it was evaluated by the recall. The Recall is 

the fraction of true positive values correctly identified as methylated CG sites. It is 
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defined as: TP/Pos, where, TP is the true positive values identified by the used 

tools and Pos is the total number of cytosines/CpG sites.  

Both tools were finally evaluated for CPU time consumed for read alignment. 

Runs were performed on 48-core AMD Opteron 6176 CPUs, 2.3 GHz, RAM 503 

GB.  

 
Comparison on synthetic datasets 

MethylFASTQ was used to generate 10 datasets from chromosome 21 of the hg19 

reference genome. All datasets were generated in non-directional mode, with read 

length 150bp in paired-end and with 10X of depth of coverage. The read mapping 

was performed on the entire human genome using hg19 as reference. Features of 

the 10 datasets were reported in the Table 5.3, they were generated with different 

percentage of mutation and sequencing errors. Some of them are similar to 

biological reality while others reported elevated number of mutation and 

sequencing error to stress the tool performances.  

 
Table 5.3. Characteristics of synthetic datasets. All datasets were extracted from 
chromosome 21 of hg 19 genome. They are non-directional datasets with paired-end 
reads with 10x coverage. 
 

 
 

We evaluated the tools performances as the number of mutations and sequencing 

errors increase (Figures 5.6; 5.7). In the alignment, BSMAP is more stable 

compared to Bismark at the increase of sequencing errors and SNPs. Bismark 

performances vary dramatically at the increase of variations and sequencing 



 
 

83 

errors. An evident example is on synthetic datasets SD9 and SD10 where Bismark 

align < 20% of reads. Despite these performances for the alignment, in the 

methylation detection, Bismark performs a little better than BSMAP. Indeed, 

Bismark on synthetic datasets SD9 and SD10 with a high level of mutation and 

sequencing errors the recall is almost 50%. 

 
 
Figure 5.6 BSMAP and Bismark alignment performances on the synthetic datasets.  
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Figure 5.7 BSMAP and Bismark methylation extraction performances on the 
synthetic datasets.  
 
 
In the execution time performance of alignment (Table 5.4), BSMAP is faster 

than Bismark: its execution time increases as the number of mutations and 

sequencing error increase. On the other hand, Bismark shows fast execution time 

in the datasets with poor quality due to the fact that it maps a short number of 

reads. These differences are due to different approaches used to reads mapping.  

These results of tools performances on synthetic datasets show BSMAP less 

influenced by low-quality datasets in both alignment and recall and faster than 

Bismark.  

 
Table 5.4 CPU time used by BSMAP and Bismark to align the synthetic datasets. 
Alignments were performed with default setting for both tools.  
 

 
 

5.4 Experimental results 

We examined BSMAP and Bismark performances in reads alignments, 

methylation calling and running time on real datasets.  

 

5.4.1 Real targeted bisulfite dataset  
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Subjects  
The dataset is composed by DNA samples of healthy individuals from the EPIC-

Italy cohort (73). DNA of 22 samples from buffy coat was analyzed with custom 

SeqCap Epi Choice S Enrichment Kits proposed by Roche. The custom design of 

this kit is expected to capture 1054 CpG loci, selected according to their 

correlation with sex (20 CpGs), epigenetic age (408 CpGs), white blood cells 

distribution (503 CpG), all-cause mortality (56 CpGs) and smoking habits (67 

CpGs).  

Methylation levels of these loci were already analyzed using Illumina Infinium 

450K BeadChip assay. The procedure is fully described in (17). 

 

Samples and Library preparations 

Before the library preparation all DNA samples were thawed and checked for the 

quality and quantity. The quality control step was assessed by Thermofisher 

NanoDrop Spectrophotometer observing the ratio of absorbance 260/280 nm. 

While the samples concentration was determined using BR dsDNA Assay kit and 

Qbit fluorometer (Invitrogen).  

After quality control the samples were ready to be fragmented. The DNA input for 

all samples was 1 µg to which 5,8 µl of bisulfite conversion control were added. 

Volume was adjusted for a total of 53μl using buffer EB of QIAGEN and the 

DNA was fragmented using Covaris M220 set at the following conditions:  

- Peak Incident Power (W): 75  

- Duty Factor: 10%  

- Cycle per Burst: 200  

- Temperature: 20°C  

- Treatment time (s): 200  

High Sensitivity DNA kit on Agilent Bioanalyzer was used to check the correct 

fragmentation (180-220 bp).  

The libraries preparation was performed following steps of SeqCap Epi 

Enrichment System protocol (Roche). The libraries were prepared in non-

directional mode, pooled and sequenced on a Illumina MiSeq platform. 

Sequencing conditions were read length 150 bp in paired-end mode. 
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5.4.2 Analysing a real dataset 
 
After read demultiplexing, the quality of sequences was checked with FASTQC 

(74) tool and Illumina adapters were removed with CutAdapt (75). Trimmed reads 

were used as input for BSMAP (version 2.90) and Bismark (version 0.19.0) tools. 

The reads were mapped to the human reference genome (hg38) Mapping steps 

were executed for both tools with the default settings. The number of CpG sites 

present in the dataset was identified with the methylation extractors present either 

BSMAP or Bismark packages. CpG sites identified from both tools were filtered 

for the 1054 known CpG sites.  

 
Comparison on real datasets 

A pilot dataset composed of 22 DNA samples of buffy coat from healthy 

individuals were used to compare the performances of BSMAP and Bismark 

tools. It derives from a targeted-bisulfite sequencing experiment: the libraries 

design cover 1054 known CpG methylation sites. Samples were non-directional 

composed of 150 bp paired-end reads.  

Table 5.5 shows the main characteristics of the real samples. Table includes the 

total number of reads, counting both mates of paired-end reads; the average read 

quality; and the proportion of read with 0% and more than 5% of nucleotides 

associated with a low-quality score (i.e., quality score less to 30). 

There is a great variability in the number of reads which compose the samples. 

Especially, between the samples S21 and S7. S21 is the sample with the higher 

number of reads (1’132’881), while S7 is the one with the lower number of reads 

(264’571). Half of the reads of each sample has a very good quality, with zero 

nucleotides with a low-quality score. Whereas, a 25% of each sample is composed 

of bad quality reads.  

 
Table 5.5 Quality of the real datasets.  
All samples showing similar features in reads quality, but they differ in total number of 
reads for samples.  
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In the following Figures 5.8 and 5.9 are reported the performances of tools in 

alignment and methylation calling on real dataset. For both tasks both BSMAP 

and Bismark performs well, even if Bismark overtakes BSMAP. On average, 

Bismark aligns 81% of reads, while BSMAP only the 78%. Recall values show 

that Bismark methylation extractor is more performing that BSMAP. On average, 

their recall values are 98.8% and 96.6%, respectively. Thus, they differ for a 3% 

in alignments and a 2.2% in recall of methylation.  
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Figure 5.8 BSMAP and Bismark alignment performances on the real datasets. 
 

 
 

Figure 5.9 BSMAP and Bismark methylation extraction performances on the real 
datasets.  

 

Table 5.6 shows that both tools identify a common large subset of CpG sites: 

96% on average. Although each tool detects an exclusive subset of CpG sites, 

Bismark spots a relatively large number of them (2.7% on average), while 

BSMAP just a few (0.22%).  Alignment times on the targeted-bisulfite dataset are 

very similar (Table 5.7). There are no big differences for small size samples. 

However, on average BSMAP is slightly faster than Bismark. 
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Table 5.6 CpG detected by BSMAP and Bismark in targeted-bisulfite sequencing 
experiment. Methylation detection of 1054 CpG sites. The second column identifies the 
proportion of CpG sites detected by both tools over each sample. The last two columns 
show the proportion of CpG sites detected exclusively by BSMAP or by Bismark, 
respectively. 
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Table 5.7 CPU time used by BSMAP and Bismark to align the samples of real 
dataset. 
Alignments were performed with default setting for both tools. 
 

 
 
5.4.3 Comparison of methylation levels detected by BSMAP with Illumina 
Infinium (HM450K) BeadChip assay.  
 
Based on the results obtained through tools performances on synthetic and real 

datasets, we decided to explore the methylation levels estimated by methratio 

packages of BSMAP. Since BSMAP demonstrated a good compromise between 

alignment percentage and time needed to complete the mapping process.   

On the 22 samples, we compared the methylation levels of CpG sites detected by 

BSMAP with their levels analysed by Illumina Infinium 450K BeadChip data.  

Results of the comparison on the 1054 CpG methylation levels are shown in 

Figure 5.10. For 19 out of 22 samples the Pearson correlation coefficients were 

on average higher than 90% (R=0.95), while for 3 samples thy were resulted 
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slightly lower (R=0.88) due to a higher dispersion. These results showed that 

BSMAP obtained a good performance also in the estimation of methylation levels.  

 

 
 
Figure 5.10 Comparison of methylation levels between target bisulfite sequencing 
and Illumina Infinium 450K BeadChip estimated on 22 samples. In correlation plots 
are reported on y-axes the methylation levels of Illumina Infinium 450K BeadChip and 
on x-axes the methylation levels detected in target data.  

 

5.5 Discussion  

Analysis of bisulfite sequencing data allows us to observe cytosine methylation at 

a single-base level. Bisulfite treatment converts unmethylated cytosines in 

thymines, specialized tools are required to align bisulfite reads over a genome 

(15). Target bisulfite sequencing is a good compromise to study DNA methylation 

of particular regions of interest associated with specific phenotype with the 

elevated levels of accuracy and reproducibility of WGBS at reduced costs.  
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To analyse bisulfite sequencing data several tools have been published and as 

many comparison studies have been made to evaluate the tool performances on 

WGBS and/or reduced representation bisulfite sequencing data (RRBS) (76; 77; 

78). However, a comparison of these tool on target bisulfite sequencing data was 

still lacking.  

In computational field software performances are evaluated using simulate and 

real data. The synthetic dataset allows us to understand where tool fails because 

true positive values are known. At the moment in literature a simulator for target 

bisulfite sequencing data that allows both the production of data and information 

on sequenced cytosines is missing. For this purpose, we developed MethylFASTQ 

a new user-friendly tool to generate bisulfite sequencing data in a fast and high 

customizable way. We used the synthetic datasets created by MethylFASTQ to 

compare the performance of the most used aligner and methylation caller tools, 

BSMAP (31) and Bismark (27).  These tools were evaluated by the performance 

in mapping efficiency (i.e., % of reads correctly mapped), recall in methylation 

detection (i.e., % of cytosines correctly identified) and computational time 

consuming (i.e., CPU time consumed during the task of alignment).  

Datasets with different levels of mutations and sequencing errors were created to 

stress the tool performances. During the alignment, BSMAP is less sensible to the 

high level of mutations and sequencing error compared to Bismark that performs 

wrongly. Even if Bismark shows a very good performance in the recall of 

methylation. This result is in agreement with previous studies reporting that 

Bismark is more performant than BSMAP in methylation detection task (77; 78).  

Regarding the execution time performances assessed during the alignment on 

synthetic datasets, BSMAP shows that computational time grows at the increase 

number of SNPs and sequencing error presence. In contrast, Bismark execution 

time is shorter for low-quality datasets.  

Moreover, we evaluated the tool performances on a real dataset composed of 22 

blood samples with 1054 known CpG sites. Tool performances were evaluated by 

the same parameters used with synthetic data. In this case, both tools perform in a 

similar manner during mapping and recall steps, through with a slight difference 
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Bismark seems to be more performant. While in execution time performances 

BSMAP is better than Bismark in all samples of real datasets.  

The differences between these tools highlights in the present study can be most 

likely ascribed to the diverse approaches used during reads mapping. In fact, for 

each read BSMAP tests every matching position and keeps the alignment with the 

lowest number of mismatches. With an increase in the number of SNPs and 

sequencing errors, the possible number of matching positions increases. As a 

consequence, the computational time needed to perform the overall alignment 

increases. While Bismark is based on Bowtie 2, which performs the mismatches 

identification using the FM-index. In the first time, various short seeds are 

extracted from the read and they are searched using the index, with a policy that 

allows few mismatches. Then, low-quality reads are filtered during this phase. 

Successively, seeds with a lower number of matching positions are selected for 

the second phase of the alignment.  

Moreover, we showed a good correlation between the methylation levels 

estimated by BSMAP and those previously analysed with Illumina Infinium 450K 

BeadChip.  

Our study underlines that the quality of the reads is an important parameter to 

consider because may introduce bias during the methylation calling. However, our 

results suggest that reads with poor quality are discarded during the step of 

mapping and they do not affect the methylation detection. This represents an 

important finding from the experimental point of view, since it is not always easy 

to obtain data of good quality. 

A limitation of the present study may be that we performed the recall in 

methylation detection on a real dataset with a unique depth of coverage. To 

improve our understanding of tools performance in methylation profiling, we need 

further studies on CpG sites with different depth of coverage. Indeed, a study on 

RRBS data suggested that sequencing depth, methylation levels and positions of 

CpG sites have a significant impact on tool performances. Authors showed that 

CpG sites in the CpG islands and promoters with higher sequencing depth and 

lower methylation levels are more likely to be efficiently identified and estimated 

without any bias compared to CpG sites on CGI shore or gene body (9). 
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The possibility to have a tool able to correctly detect DNA methylation data with 

a low coverage may improve the analysis of target bisulfite sequencing. In fact, 

these data are affected by high duplicate levels when they are sequenced to high 

coverage. Thus, for bisulfite target data to obtain a good compromise between a 

good coverage of the genome and a low level of duplicate reads is very difficult; 

in the majority of cases, it is desirable a low coverage for maintaining low the 

duplicate levels (1).  

Thanks to the present study, we understood how BSMAP and Bismark work and 

we highlighted their weaknesses in target bisulfite data analysis. We built our 

pipeline including also all standard steps for duplicate removing and filtering of 

reads in on-target regions common to all targeted sequencing pipelines. To 

guarantee the software reproducibility, our pipeline was encapsulated in a Docker 

container. 
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6. Smoking DNA methylation in purified monocytes 
and B cells 

This Chapter describes a pilot study to investigate smoking-related DNA 

methylation signatures in monocytes and B cells.  

6.1 Introduction and Aims of the work  

DNA methylation is a common epigenetic modification widely studied to 

understand the genetic mechanisms behind complex diseases and various 

exposures including smoking. DNA methylation is cell-type specific and it 

changes among individuals.  

DNA methylation is usually measured in whole blood samples, because this 

represents a biospecimen easy to collect in a minimally-invasive way and analyses 

can be repeated over the time for the same subject (79). However, blood consists 

of many functionally and developmentally distinct cell populations whose 

distribution is variable. Inflammatory status, such as the one derived from 

smoking exposure, are associated with an abnormally increase in the number of 

whole blood cells. This cell-number variation might affect the interpretation of 

methylation results based on whole blood DNA, which is the biospecimen 

analysed by, the majority of association studies on DNA methylation and smoking 

exposures. These studies have revealed important smoking-related DNA 

methylation biomarkers such as the well-known: cg05575921 (AHRR), 

cg03636183 (F2RL3) and cg19859270 (GPR15).  

In these studies, the variation of leukocyte cells in blood was adjusted with the 

Houseman algorithm (23). This algorithm allows the distribution correction for 

the primary leukocyte subtypes (i.e., B cells, T class, monocyte and granulocyte), 

but the minor leukocyte fractions are non-included in this method. As 

demonstrated in our study on the TwinsUK cohort (Chapter 3), these subtypes are 
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largely affected by smoking exposure. Moreover, this method has been developed 

for Illumina Bead Chip array technology and it may present some limitations with 

NGS data, like bisulfite sequencing data.  

Therefore, in this study we aimed at understanding if DNA methylation measured 

in whole blood reflects the smoking effect on leukocyte subtypes and, wheter the 

smoking-related DNA patterns are similar or specific across the analysed cell-

types.  

6.2 Materials and methods 

6.2.1 Study participants  

 

Six age-matched healthy females (i.e., three current and three never smokers) 

were enrolled in collaboration with the Association of voluntary Italian blood 

donors (AVIS) of Turin, following the same criteria and procedures described in 

the previous study (Chapter 3).  

Blood samples and informative questionnaires about lifestyle information,  

including self-reported smoking habit, were collected for each participant. 

The study was conducted according to the guidelines in the Declaration of 

Helsinki. The protocol of the study was approved by the University of Turin 

Ethics Committee. All participants signed a written informed consent to 

participate in the study. 

 

6.2.2 Blood collection 

 

For each subject, 30 mL of peripheral blood in EDTA (Ethylene Diamine Tetra-

Acetic acid) vacutainer tubes were collected to obtain the six distinct cell-blood 

populations. All blood samples were processed within two hours since the 

collection. Three aliquots of whole blood were taken from one Vacutainer: 1ml 

for further DNA extraction, 400 µl were added to RNA later solution (Thermo 

Fisher Scientific) for RNA extraction and 2.6 ml were centrifuged at 4°C, 2500 
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rpm x 10 minutes to obtain the plasma fraction. The remaining 26 ml were used 

for cell-blood separation.  

 

All aliquots were stored at -80° C until further analyses were performed. 

 
6.2.3 Sample preparation and Cells sorting  
 

Purified blood cell populations were obtained from 26 ml of the remaining fresh 

blood for each sample. The blood was split into two parts: 20 ml to isolate 

peripheral blood mononuclear cell (PBMC) consisting of lymphocytes and 

monocytes, and 6 mL for granulocytes and neutrophils.  

Twenty ml of whole blood were diluted in 20 ml of PBS and distributed in sterile 

Falcon tubes containing 5 mL of Ficoll-Paque Plus™ (GE Healthcare, Sweden). 

PBMCs were separated by density centrifugation at 2200 rpm x 20’ at room 

temperature. Then, PBMCs were twice washed in PBS, eluted in 10 ml of PBS 

and counted. 

Six ml of whole blood were splitted in six Falcon tubes filled with 1 ml of whole 

blood and 14 ml of RBC lysing solution 10X.and, then, inverted for 10 minutes at 

4°C until liquid became clear red. At this point, the tubes were centrifuged at 250g 

10’ at 4°C.  The lysis procedure was repeated two times. Afterward, the pellet of 

cells was twice washed with PBS, combined in a unique tube, and counted. 

A panel of fluorescent-antibodies was designed to sort six leukocyte 

subpopulations (i.e., CD4+, CD8+, B-, NK-cells, monocytes and neutrophils). 

Two diverse mixes of florescent cell-surface marker antibodies were prepared: 

one for CD4+, CD8+, B- and NK-cells and the second one for monocytes and 

granulocytes (Supplementary, Figure S5; Antibodies Sorting Panel).  

In separated FACS Sorting tubes, 20x10-6 of PBMC and 20x10-6 of granulocytes 

were incubated for 10 minutes at room temperature with 3 µl of FcR blocking 

reagent of MACS (Miltenyi Biotec), then the antibodies staining mix was added, 

incubated for 20’ and twice washed with PBS. The obtained cellular pellet was re-

suspended in PBS sorting buffer (0.1% BSA in PBS), filtered with sorting filter 

(70 µm) and immediately sorted. Cells were sorted using BD FACS Aria III® 

(BD Biosciences, USA) at low speed, 4-way, 70 µm of the nozzle, and analysed 
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by BD DiVa Software (version 8.0.2). The purity of all FACS-sorted cell 

populations was analysed by flow cytometry using BD FACS Aria III® 

(Supplementary,Table S3).   

 
6.2.4 DNA extraction and bisulfite sequencing  

 

Genomic DNA was isolated from the sorted cells using ReliaPrep™ Blood gDNA 

kit (Promega) according to the manufacturer’s instructions. DNA concentration 

was measured by BR dsDNA Assay kit and Qbit fluorometer (Invitrogen). 

500 ng DNA for sample were processed for target bisulfite sequencing using 

Illumina TruSeq®Methyl Capture EPIC library Prep Kit and paired-end reads of 

85 bp were sequenced by the Illumina HiSeq 4000, in collaboration with the 

Genecore Facility at EMBL, (Heidelberg, Germany).  

 

6.2.5 Bioinformatics analysis   

 

Bisulfite sequencing data were analysed using our pipeline encapsulated in 

Docker container (the pipeline is described in Supplementary Material).  

FASTQ files and BED files containing target regions were used as input of 

pipeline. Briefly, reads quality was checked with FASTQC tool (74) and 

subsequently, adaptors and low-quality reads were removed with CutAdapt tool 

(75). Reads were aligned to the human reference genome GRCh38 

(hg38)(http://www.ncbi.nlm.nih.gov/bioproject/31257), using BSMAP (version 

2.90). Before the mapping, pseudo-autosomal regions on Chr Y were masked to 

N, so that reads may be mapped to equivalent regions on Chr X. In addition, the 

lambda genome (NC_001416) was added to the reference hg38 genome to 

estimate the bisulfite conversion efficiency, as quality control of experimental 

procedure. Afterwards, mapped reads were filtered to remove duplicates and in 

on-target regions with Picard and Samtools tools. Moreover, Picard builds several 

mapping metrics reporting count on-target reads, depth of coverage per base and 

the estimated insert size distributions. Percentage of methylated cytosines 

(methylation calling step) and bisulfite conversion efficiency were estimated with 

methratio function implemented in BSMAP tool. Methylation level for each 
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cytosine is defined by a ratio between the number of reads which the cytosine 

appears methylated/number of reads that mapped in that position. 

Methylation calling files were imported into R statistical software and analysed by 

methylKit package (80). The data were filtered discarding the cytosines with 

extreme coverage (i.e. cytosines covered < 10 reads and with high methylation 

levels more than 99.9th percentile of coverage in each sample) to eliminate the 

bases affected by PCR bias. Then, the read coverage distributions between 

samples were normalized. These two functions will help reduce the bias in the 

statistical tests that might occur due to systematic over-sampling of reads in 

certain samples. 

The different methylation proportion across the samples was analysed at the level 

of the genomic regions. Differentially methylated regions (DMRs) were defined 

by tile the genome in windows of 1000bp length and 1000bp step-size. We sought 

DMRs with 25% difference between the samples using the logistic regression 

model, including age and batch effect as adjustment variables in the model. DMRs 

with adjusted p-value <0.001 were considered to be significant (81). DMRs 

significantly different from the comparisons (see Results, the analysis approach is 

summarized in Figure 6.1,), were annotated to the genomic regions and gene 

regions of human reference hg38 genome using annotar R package (82). 

Functional enrichment analysis of the gene lists cointaining the significantly 

DMRs was performed using EnrichR (83) and Gorilla (84) web tools. 

6.3 Results 

6.3.1 Description of samples and cell-population 
 

Three current smokers and three never smokers of similar age (44.6 ±3.2 years, 

range: 40-48) were included in the study. Current smokers declared to smoke 4-5 

cigarettes/day and were considered as light smokers. For each individual, six cell 

populations (B cells, CD4+ and CD8+ T cells, NK cells, monocytes and 

neutrophils) were sorted. The purities of sorted cells based on cell surface markers 
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ranged from 96.22% for NK cells o a 99% for monocytes, neutrophils, CD4+ and 

CD8+ T cells in all samples (Supplementary Table S3).  

 

6.3.2 Results of target bisulfite sequencing 
 

In this study, we investigated the smoking-related difference in the DNA 

methylation levels in monocytes, and B cells.  

For each subject, the DNA extracted from purified monocytes and B cells was 

sequenced. For one of the never smoker subjects (Non-smoker 3), only DNA from 

monocytes was sequenced because the amount of DNA extracted from B cells 

was very low (less than 400 ng, which is the minimum amount of DNA required 

for sequencing by the TruSeq®Methyl Capture EPIC library Perp Kit). 

In Tables 6.1 and 6.2 the individual outcomes from target bisulfite sequencing of 

monocytes and B cells are reported. The samples were evaluated for: i) the 

number of sequenced reads; ii) the percentage of on-target reads; iii) the depth of 

coverage; and iiii) the number of CpG sites covered.  

The number of total input reads among the samples was similar, with an average 

of 57,407,725 and 56,825,863 reads for monocytes and B cells, respectively. The 

lowest number of total input reads was 34,284,430 and 30 x106 for monocytes and 

B cells respectively, whereas the highest was 76,312,293 and 75,125,805 in 

monocytes and B cells, respectively. 

Similarly, the percentage of aligned reads (i.e., the reads uniquely mapped in 

paired-end) was 86.69% in monocytes and 86.03% in B cells. The percentage of 

filtered reads (i.e., reads mapped with correct orientation and the distance 

consistent with the library insert size) was higher in monocytes than B cells (80.32 

vs 77.82, for monocytes and B cells, respectively).  

A crucial parameter to evaluate in the experiments of target sequencing is the 

percentage of on-target reads. This represents the number of mapped reads 

overlapping a set of target regions by at least one base. Our samples showed a 

high percentage of on-target reads (range: 85-92% for both cell-lineages), where 

the maximum value was 92.18% of Smoker 3 sample in monocytes and the 

average value was 87% in both cell-lineages. Median of depth of coverage varied 

among the samples, the maximum value was 26x (fold of coverage) observed in 
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monocytes of  Non-smoker 2 sample and in B cells of Nonsmoker 1 sample. The 

minimum value of 12x was observed in B cells of sample Non-smokers 2 sample, 

in line with the lower number of total input reads reported in the table.  

All samples showed a 99.9% of bisulfite conversion efficiency, suggesting a total 

conversion of unmethylated citosines to thymines.  

The average of the number of CpG sites detected in both cell-lineages were 

roughly the same, 8,075,285 for monocytes and 8,010,382 for B cells. Within 

each cell-lineage, we found that smokers showed a lower average of CpG sites in 

monocytes compared to never smokers (7,690,306 and 8,460,264, for current and 

never smokers, respectively). In contrast, in B cells we observed the opposite 

situation, with a higher average number of CpG sites in smokers than in never 

smokers (8,125,033 and 7,838,407 for smokers and never smokers, respectively).  
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Table 6.1 Summary statistics for target bisulfite sequencing of monocytes.  
 

Samples 
Total 

input raw 
reads 

Reads 
aligners 

pair 
% 

alignment 
Total 

reads after 
filtering 

% input 
reads 
after 

filtering 

Reads on-
target 

(primary) 

% reads 
on-target 
(primary) 

Median 
target 

coverage 

Lambda 
conversion 
efficiency 

Number of 
CpG sites 

Smoker 1 55230090 46804376 84,74 40094212 72,6 34262730 85,46 18 99.9% 7849197 
Smoker 2 65135564 55261125 84,84 46992590 72,15 40172906 85,49 21 99.9% 8319438 
Smoker 3 34284430 30970684 90,33 28905800 93,33 26646149 92,18 14 99.9% 6902284 
Non-smk 1 66115257 56165953 84,95 50052320 75,71 42638463 85,19 23 99.9% 8574653 
Non-smk 2 76312293 64671192 84,74 57063790 74,78 48778167 85,48 26 99.9% 8946090 
Non-smk 3 47368713 42874336 90,51 40018807 93,33 36672289 91,64 19 99.9% 7860049 
min 34284430 30970684 84,74 28905800 72,15 26646149 85,19 14 99.9% 6902284 

max 76312293 64671192 90,51 57063790 93,33 48778167 92,18 26 99.9% 8946090 

average 57407724 49457944 86,69 43854586 80,32 38195117 87,57 20,17 99.9% 8075285 
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Table 6.2 Summary statistics for target bisulfite sequencing of B cells.  
 

Samples 
Total 

input  raw 
reads 

Reads 
aligners 

pair 
% 

alignment 

Total 
reads 
after 

filtering 

% input 
reads 
after 

filtering 

Reads on-
target 

(primary) 

% reads 
on-target 
(primary) 

Median 
target 

coverage 

Lambda 
conversion 
efficiency 

Number 
of CpG 

sites 

Smoker 1 63853274 54156666 84,81 48139158 75,39 41031746 85,24 22 99.9% 8431270 
Smoker 2 64546796 54758329 84,83 46912342 72,68 40041970 85,36 21 99.9% 8350795 
Smoker 3 51322717 43404977 84,57 37083578 72,26 31781405 85,7 17 99.9% 7593033 
Non-smk 1 75125805 63700151 84,79 56972360 75,84 48108117 84,44 26 99.9% 9102037 

Non-smk 2 29280721 26684918 91,13 24794158 92,91 22838685 92,11 12 99.9% 6574777 

min 29280721 26684918 84,57 24794158 72,26 22838685 84,44 12 99.9% 6574777 

max 75125805 63700151 91,13 56972360 92,91 48108117 92,11 26 99.9% 9102037 

average 56825863 48541008 86,03 42780319 77,82 36760385 86,57 19,60 99.9% 8010382 
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6.3.3 Smoking-related DNA methylation signatures: in monocytes and B cells  
 
To investigate the smoking-related DNA methylation signatures in monocytes and 

B cells, we compared current vs never smokers within of each cell-lineage, 

separately (Figure 6.1). 

 

 
 
Figure 6.1. Analysis approach and number of differentially methylated genes of 
monocytes and B cells involved in smoking exposure.  The Figure reports the number 
of DMRs resulted from the comparison between current vs never smokers in monocyte 
and B cells, separately. DMRs were annotated on the genome and the resulted genes from 
these two comparisons were merged in order to identify the differentially methylated 
genes in common between the cell-lineages and exclusively present in monocytes and B 
cells.  
 
We analysed the difference in DNA methylation levels comparing smokers vs 

never smokers in monocytes and B cells. In monocytes, we found 229 DMRs at 

adjusted p-value < 0.001 and methylation difference more than 25%: 121 were 
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hypomethylated (i.e., a lower methylation level in smokers vs never) and 108 

were hypermethylated (i.e., a higher methylation level in smokers vs never) in 

smokers compared to never smokers. We conducted the same comparison in B 

cells, and we observed 290 DMRs, of which 123 were hypomethylated and 167 

were hypermethylated in smokers vs never.  

To gain insight on these differences, we annotated the DMRs according to 

genomic and gene localizations.  In the genomic positions were included the CpG 

islands, shores (i.e., regions up to 2 kb from CpG island), shelves (i.e., regions 

from 2 to 4 kb from CpG island), and open sea (i.e., the rest of the genome). 

Moreover, we annotated DMRs also to gene localization including 1-5Kb 

upstream of the TSS, the promoter (< 1Kb upstream of the TSS), 5’UTR, first 

exons, exons, introns, 3’UTR, and intergenic regions (the intergenic regions 

exclude the previous list of annotations). The genome localization and CpGs 

distribution of significantly different DMRs in monocytes and B cells is reported 

in Figure 6.2. We reported that hypomethylated and hypermethylated regions in 

both cell-lineages follow a similar distribution, with a high percentage (~39%) of 

DMRs located in introns (gene bodies) and a low percentage (~3%) of DMRs 

located in 3’ UTR (gene non-coding region) regions. Similarly, the distribution of 

DMRs in the genomic regions showed a high percentage (>70%) of DMRs 

located in inter-CGI or open-sea regions. In contrast, a lower percentage (<6%) of 

DMRs was observed to be placed in CpG islands. 

We further explored the gene-containing DMRs in both the cell-lineages to 

identify those smoking-related genes that were in common or specific between 

monocytes- and B cells. We found 18 smoking-methylated genes in common 

between monocytes and B cells, and, 154 and 119 genes exclusively methylated in 

monocytes and B cells, respectively. The unique genes of monocytes were 60 

hypomethylated and 59 hypermethylated, whereas in B cells were divided in 60 

hypomethylated and 95 hypermethylated comparing smokers vs never smokers.  
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Figure 6.2. Annotation of DMRs of monocytes and B cells. Pie charts show the 
percentage of DMRs overlapping gene and genomic regions.  
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6.3.4. Pathways and functional enrichment analysis of differential methylated 

genes of monocytes and B cells.  

 

We performed a pathways enrichment analysis to explore the biological function 

and the molecular pathways in which were involved the identified differentially 

methylated genes. The analysis was conducted on gene sets showing a 

hypomethylation and hypermethylation only in monocytes and B cells, and on all 

common genes between the cell lineages. We compared the gene lists with human 

KEGG, Reactome, Wiki Pathways databases using Enrichr (Supplementary, 

Table S4) 

We observed that the hypomethylated genes of B cells were enriched in the 

lysosome pathway (adj.p-value < 0.05) which also includes the LAPTM4B gene 

involved in several cancers (85). We also reported the top ten pathways of each 

tested database that were not statistically significant (adj.p-value> 0.05) but with 

nominal p-value <0.05. Among these, we observed in hypomethylated gene set of 

B cells, GALC and GLB1 genes overlapped sphingolipid metabolism pathways in 

all databases. GALC gene is associated with pulmonary artery enlargement in 

COPD (86) and DNA hypomethylation of GLB1 has been associated with obesity 

(87). In contrast, the list of hypermethylated genes in B cells was not enriched in 

any particular pathways (adj.p-value=1) and, it also showed inconsistent results 

among the three databases. Indeed, we observed in Wiki pathways KCNU1, 

KCNMB2 and PDE5A genes overlapped cGMP-PKG signalling pathway; in 

KEGG SETBP1and SMYD3 genes overlapped histone modifications pathway and 

in Reactome database SEMA5A, ADAMTS17, and THSD7A overlapped pathways 

associated with glycosylation. 

Hypomethylated genes of monocytes showed consistent results among the top 

terms from the different databases. At nominal p-value <0.05, we observed 

RHEB, ADCY3, PRDM16, PPARG genes involved in thermogenesis and 

SLC22A4P, PDGFRA, RHEB in choline metabolism in cancer. Some of these 

genes (PPARG, ADCY3 and RHEB) also overlapped pathways involved in ageing. 

Hypermethylated genes of monocytes showed inconsistent results among the 

databases, even if we observed the recursive presence of ITGA1 gene overlapping 
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miRNA targets in ECM and membrane receptors, regulation of actin cytoskeleton, 

NOTCH1 regulation of human endothelial cell calcification and L1CAM 

interaction pathways. This gene coding integrin α1β1 has been reported to be 

involved in various cancers, including colorectal cancer (88). 

For the list of genes shared between monocytes and B cells, we did not find any 

strongly significant enrichment. The results showed pathways involved in cellular 

signalling and interleukins production.  

To examine in depth the biological function of gene sets, we also performed the 

gene ontology enrichment analysis with the GOrilla tool. All submitted gene lists 

did not show enriched terms. We also tried to submit the entire list (i.e., all 

hypomethylated and hypermethylated genes together) of B-cell and monocytes 

specific genes and, we found in B cells an enrichment in GO:0051271 term 

associated with negative regulation of cellular component movement 

(Supplementary Table S4). 

6.4 Discussion  

In the present study, we sequenced monocytes and B cells from six healthy 

females, three current smoker and three never smokers, for a total of 11 samples, 

of which six were from monocytes, and five to B cells. 

Overall, the sequencing results showed a difference in the number of total reads in 

input among samples, but that seems not to have a great impact on the percentage 

of on-target reads and the number of CpG sites covered by the sample. Basically, 

all samples displayed a good quality such as an elevate percentage of on-target 

reads (> 80%), bisulfite conversion efficiency (99%), and the number of CpG sites 

covered. However, depth of coverage was low in all samples around 20x, while 

for target bisulfite sequencing is recommended a deeper coverage, around 30x. 

Next, we identified the DMRs in monocytes and B cells, separately, comparing 

smokers vs never smokers individuals. We observed a more elevated number of 

DMRs in B cells compared to monocytes (290 vs 229) suggesting a different 

degree of methylation, which might be due to their different cell-lineage and to a 
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different role in the immune system. In line with that, we also observed a 

difference in the methylation levels of significant DMRs. B cells reported, in fact, 

a high number of hypermethylated and a low number of hypomethylated regions, 

conversely, monocytes reported the opposite proportions. The genomic and gene 

localization of both hypomethylated and hypermethylated DMRs were similar in 

both cell lineages, with a high proportion of DMRs located in introns and 

intergenic regions. This result is consistent with what reported in previous studies: 

CpG sites methylated were located in introns, 3’UTRs and intergenic regions. In 

contrast, CpG sites unmethylated tend to be in CpG islands and 5’UTR (89). 

We also identified a group of smoking-related genes in common between the cell-

lineages and uniquely methylated in monocytes and not in B cells and vice versa. 

As expected, we observed only 18 genes shared between monocytes and B cells, 

involved in cellular function but not enriched in any particular biological 

pathways. This result supports a clear difference in the methylation patterns 

between lymphocytes (B cells) and the myeloid cells (monocytes), as 

demonstrated in previous studies (89; 90). And it is imputable to the difference in 

the cellular lineage. Among the B cells, hypomethylated genes showed 

enrichment in the lysosome pathway, including LAPTM4B gene. This gene is 

associated with overexpression and poor prognosis in various malignancies 

including breast cancer, bladder cancer, ovarian cancer, HCC, gastric cancer and 

cervical cancer. Besides, its over-expression has also been identified in non-small 

cell lung cancer (85). In contrast, the gene sets only methylated in monocytes did 

not show any significant enrichment, despite the presence of genes involved in 

choline metabolism in cancer. These findings are interesting, and we can 

speculate on a possible link between smoking-related methylation signatures and 

cancer implications. 

However, we are aware that this pilot study has several limitations, including 

limited sample size and low statistical power. We chose to test the smoking-

related DNA methylation differences in monocytes and B cells for their different 

cell lineage (myeloid and lymphoid, respectively), and we expected to find an 

elevated DNA methylation difference in smoking response. On the other hand, in 

peripheral blood, these cells are < 10% of total white blood cells in circulation, 
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and they could be contributing marginally to methylation value observed in the 

blood of known smoking-related genes such as AHRR, F2RL3 and GPR15. In 

contrast, in T cells, which are about 20-30% of the total lymphocytes in 

circulation, we could expect to see the same difference observed in whole blood. 

Moreover, our studies of Chapter 3 and 4 and other studies in literature (24;36; 

38) on the leukocyte-shift caused by active smoking, have shown that the T cells 

are the main cell-population affected by smoking.  

In conclusion, this pilot study reports a significative difference in smoking-related 

DNA methylation between monocyte and B cells using also light smoker samples.  

The resulted genes did not show any particular enrichmentin biological pathways. 

To confirm these results, further studies in a more variegated cohorts with larger 

sample size and with a high prevalence of heavy smokers are needed. However, 

these preliminary findings suggest that to study purified monocytes and B cells 

instead of whole blood samples is foundamental to understand if the smoking-

related signatures are at least in part the same. 
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   Conclusions  

The present Ph.D work was focused on the analyses of smoking effects on 

leukocyte subpopulations to explore specific DNA methylation changes caused by 

this environmental exposure in blood samples. In this respect, two aspects were 

evaluated: first, the blood cells variation caused by smoking and, subsequently, 

the differences in DNA methylation levels in each cell-types due to smoking 

exposure. Both of these aspects were investigated following three approaches: 

experimental, epidemiological and computational. 

Smoking effects on the main leukocyte subpopulations were studied in 288 

healthy volunteers covered all smoking categories (i.e., 88 currents, 99 former and 

100 never smokers) recruited in collaboration with the Association of voluntary 

Italian blood donors (AVIS) of Turin. As reported above, this cohort was mainly 

characterized by light smokers (<15 cigarette/day). For each subject the primary 

leukocyte subpopulations were evaluated, including their expression of GPR15 

receptor as a smoking marker, by flow cytometry. Results showed a significant 

decrease of  NK cells, and the increase expression of GPR15+ in CD4, CD8 and B 

cells in current smokers compared to never smokers. These results are in 

agreement with those reported in the literature about heavy smokers, but our study 

underlines that smoking affects significantly the leukocyte distributions also at 

low dose of exposition, like in light smokers.   

A similar investigation was conducted taking advantage of the available 

data in the TwinsUK cohort. This cohort is composed of healthy females 

characterized by around 42,000 immune cell traits measured by high-resolution 

deep immunophenotyping. Out of the whole cohort, we selected 358 individuals 

for the complete information of their self-reported smoking habit and without any 

reported diagnosis of autoimmune disease. In this study, we found a statistically 

significant increase of several CD8 T cell-subpopulations and class-switched 

memory B cells isotype IgA, IgG and IgE in smokers vs never smokers. After 
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smoking cessation the relative proportions of the majority of these cells return to 

never smokers levels, whereas activated CD8 T cells and CCR4 + CD8 Memory T 

cells persist partially altered in former smokers.  

Results obtained from TwinsUK-study suggest that smoking not only globally 

changes the distribution of the major leukocyte subpopulations, but also it affects 

cells less frequent in circulation, such as CD8 T cell-subtypes, DP T cells and 

class-switched memory B cells. Moreover, high light that active smoking affects 

mainly CD8 T cells that skew towards a chronic inflammatory phenotype. 

The second aspect of the present thesis concerned an argument widely 

debated in the molecular epidemiological studies: does the DNA methylation 

levels measured in whole blood reflect the real association with a particular 

phenotype such as smoking exposures? Or the obtained results are confounded by 

the variation of specific cell-types present in whole blood? To study this issue, we 

decided to study the smoking DNA methylation profiles in each cell-types 

belonging to primary leukocytes. Thanks to decreasing costs deep sequencing 

techniques, for this purpose we used targeted bisulfite sequencing. This technique 

represents a valid compromise between the elevated precision and reproducibility 

of the whole genome sequencing and the possibility to study large study 

populations.  

First of all, we realized that currently in the literature, a benchmark pipeline to 

analyze this type of data is still lacking. Therefore, we compared the most used 

tools to analyze bisulfite data. Since the software performance is evaluated on a 

synthetic dataset, and a simulator specific for targeted bisulfite was missing, we 

developed MethylFASTQ, a simulator of synthetic bisulfite sequencing data. We 

tested BSMAP and Bismark tool on synthetic and real datasets showing BSMAP 

more performant during alignment and methylation recall in datasets with low-

quality reads.  

We used our developed pipeline to investigate the smoking-related DNA 

methylation signatures in monocytes and B cells, in a pilot study. Comparing the 

DNA methylation levels of smokers and never smokers in each cell-lineage, we 

found several differentially methylated regions overlapping annotated genes. A 

low number of these genes were shared between monocytes and B cells, whereas 
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an elevated number of these genes were cell-type specifics. The common and cell-

specific gene sets were involved in several biological pathways, including genes 

overlapped with pathways of cancer, without showing a particular enrichment in 

one of those. Further investigations are needed to validate these smoking-related 

DNA methylation signatures. 

In conclusion, the present thesis showed that active smoking affects 

significantly the leukocyte composition, including the fraction less frequent in 

blood. This is an important finding since in epidemiological studies the cell-blood 

composition is usually corrected by the Houseman algorithm. As mentioned, this 

algorithm presents some limitations that must be taken into account. So, in the 

near future, we need to test the existing methods of cell-type deconvolution for 

understating their limits or to develop new computational approaches for 

dissecting cell-types composition from whole blood without sorting cells, 

considering both the variation of minor blood-cells and the complexity of the 

bisulfite sequencing data. 
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Abstract—DNA methylation is a DNA modification playing an
important role in several diseases, including cancer. The gold-
standard technique for measuring DNA methylation is Bisulfite
Sequencing (BS). The treatment with bisulfite alters the sequence
of DNA making the analysis of BS data computationally difficult.
There are many tools for analysing BS data but the choice
of which to use is difficult due to the extensive biological and
technical variability of the data. Synthetic and real datasets can
be exploited to evaluate the tool performance and to obtain an
accurate data analysis. Today, Sherman is the only available tool
to generate BS synthetic datasets. However, this tool does not
report any information about the methylated cytosines.
For this purpose, in this paper we present MethylFASTQ, an
easy-to-use bioinformatics tool that generates synthetic bisulfite
datasets in FASTQ format. MethylFASTQ works in parallel
manner using producer-consumer approach. It returns:
i) a complete dataset in FASTQ format simulating the results of
a BS experiment
ii) a report file storing the information about the methylation
level of the dataset (i.e. methylated cytosines).
First, we test MethylFASTQ performances with an increasing
number of concurrent processes and we report the comparison
of MethylFASTQ with respect to Sherman tool. Then, we also
describe an application of synthetic datasets generated with our
tool and we use them as input for two bisulfite mapping and
methylation calling tools.
Finally, we propose MethylFASTQ as a tool to generate synthetic
bisulfite sequencing data.

Index Terms—DNA methylation, Next Generation Sequencing
(NGS), synthetic dataset, parallel computing

I. INTRODUCTION

DNA methylation (DNAm) is the addiction of a methyl
group to a DNA molecule. The DNA sequence is composed
by four bases: adenine (A), thymine (T), cytosine (C) and
guanine (G). The most common form of DNA methylation is
the methylation of cytosine which form the 5-methylcytosine
(5mC) and it affects a high number of cytosines present in the
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genome [1]. Methylation changes the activity of DNA without
changing its base sequence.

The changes in patterns and levels of DNA methylation are
associated with several diseases as cancer and genetic disor-
ders [2]. The gold-standard technique used to study DNAm
is the Whole Genome Bisulfite Sequencing (WGBS) that
allows to measure methylation in the whole human genome.
Conversely, targeted bisulfite sequencing (targeted-BS) allows
to sequence the specific genomic regions. Both approaches
belong to Next Generation Sequencing (NGS) techniques, a
set of advanced technologies that allow the identification of a
DNA sequence. The bisulfite treatment converts unmethylated
Cs into Ts, while the other bases remain unaffected. Bisul-
fite conversion alters about 90% of cytosines present in the
genome. At this point, distinguishing between Cs converted
into Ts and a Ts originally present in the DNA molecule is
computationally demanding [1]. On top of that, it is difficult
to distinguish a converted C from: i) a stochastic sequencing
error occurring during all the sequencing steps; ii) a Single
Nucleotide Polimorfisms (SNPs). SNPs are base mutations of
the genome that differ among individuals. The presence of
SNPs in the samples increases the level of variability of the
above data.

Since BS experiments are time and money consuming, the
use of synthetic sequencing data (i.e. the creation of a dataset
that simulates different biological and technical situations
of a BS experiment) has become increasingly popular for
assessing and validating bioinformatics tools. Simulations can
also be used to evaluate software performances, for debugging
purposes and to develop new computational tools [3].

II. RELATED WORKS

The bioinformatics tools can be benchmarked using real
and/or synthetic sequencing data. However, tools validation
with real data is essential. Unfortunately, this is a difficult
task because the true positive values are unknown and they



are masked by the extensive biological noise and by the
variability of the data. These limitations complicate the use
of real data for assessing the accuracy of tools and other
performance measures [3]. Synthetic data generator tools allow
the production of data with predefined parameters by defining
the true positive values.
Furthermore, synthetic datasets allow the generation of a high
volume of data in an inexpensive and fast way compared to
costs and time needed to create real datasets in laboratory.
Synthetic data generators create FASTQ files starting from a
given reference genome. FASTQ file is the de facto standard
format to store biological data that are sequenced by NGS
techniques. FASTQ format describes each read (i.e. substring
of DNA) through three fields: the sequence id that specifies
the unique identifier of the read; the base sequence that is
the ordered sequence of bases; and the quality score that is a
measure of quality associated to each base of the sequence.
Synthetic data generators allow to specify a variety of pa-
rameters, such as the NGS technique, the read length, the
sequencing mode, the coverage and quantity of sequencing
errors. The coverage parameter represents the number of times
that a single base is sequenced or the number of reads aligned
over a single base.
In literature there are several tools that simulate NGS data in
FASTQ format, such as ART [4] and CuReSim [5]. However,
tools for BS data are still lacking. At the best of our knowl-
edge, Sherman is the only one tool that allows to simulate
bisulfite sequencing [6]. Sherman is a Perl script that generates
bisulfite sequencing data in FASTQ format.
Sherman allows the creation of single- and paired-end reads.
The number of reads, their length and read quality can be set
as tool parameters. SNPs and sequencing errors can also be
set and specified. Bisulfite conversion can be regulated with
two parameters, which provide the conversion rate in specific
DNA contexts (i.e CG and non-CG contexts).

III. METHYLFASTQ
A. Tool overview

MethylFASTQ is a tool written in Python that gener-
ate synthetic bisulfite sequencing data in FASTQ format. It
is highly customizable because MethylFASTQ is organism-
independent and experiment-independent. MethylFASTQ is
designed to simulates the sequencing process, following the
bisulfite sequencing experiment work-flow (Figure 1).

Given a reference genome sequence as input, the user can
create single-end or paired-end reads of directional and non-
directional NGS libraries. The single-end mode consists in the
production of one read in one direction (i.e. Forward read) for
each DNA fragment. Otherwise, the paired-end mode consists
in the production of two reads in two directions (i.e. Forward
and Reverse reads) for each DNA fragment.
In the non-directional protocol, all four possible bisulfite
DNA fragments are sequenced at the same frequency. In the
directional protocol, the sequencing reads will correspond to
a bisulfite converted version of either the original forward or
reverse DNA fragments.

Genome Fragmentation 

Denaturation 

Bisulfite
treatment 

TRUE

FALSE

Is library
directional? Sequencing 

Amplification 

 
double-
stranded

fragments

 
single-

stranded
fragments

Reads

Parameters: 

fragment length 
coverage

Parameters: 

read length 
sequencing mode

Fig. 1. Bisulfite Sequencing workflow. The genome of interest is fragmented
in a number of double-stranded pieces of known length. Fragment strands
are separated through denaturation and then, single-stranded fragments are
bisulfite-treated. Amplification produces reverse complement of treated frag-
ments, which are sequenced in the non-directional protocol. Sequencing step
processes bisulfite fragments and produces a set of reads of known length.

MethylFASTQ also allows to simulate both WGBS experiment
and targeted-BS data. Two files are returned: a FASTQ file(s)
and a methylation call file. In case of single-end sequencing, a
single FASTQ file is produced. Differently, in case of paired-
end sequencing two FASTQ files are produced which contain
respectively the forward and reverse reads. The methylation
call file contains the information about the sequenced cy-
tosines.
Two experimental modes are implemented: 1) in the WGBS
mode the user can optionally provide a list containing the
chromosome names that have to be sequenced. If no list is
provided the entire reference genome will be sequenced; 2)
in targeted-BS mode the user must provide a tabulated file
containing the genome regions to be sequenced. This file will
contain the chromosome number and the indexes of first and
last base for each region that will be sequenced. Moreover,
the user may define the fragment size (i.e the reads length)
and the depth of coverage. Methylation can be set through
three context-based probabilities: CG, CHG and CHH (where
H= A,T or C). The user can also specify probabilities about
SNPs and sequencing errors. All the reads which cover a
specific base will report the mutated base with a quality is
not discernible from a non-mutated base.
Each read in the FASTQ file has an unique record ”id” which
provides information about its true mapping position in the
reference genome. Specifically, the record ”id” of a generic
read has the form chr:pos:strand, where:

• chr is the chromosome from which the fragment has been
extracted;

• pos is the position of the first base in the chromosome;
• strand identifies the DNA strand. It can be either forward

(+) or reverse (-);
Regarding the methylation call file, it is a file which presents
a line for each covered cytosine. Each line has the form chr
pos strand ctx nmeth ntot beta, where:

• chr is the chromosome in which the cytosine is located;
• pos is the index of the cytosine in the chromosome

(starting from 0);
• strand is the strand, it can be either forward (+) or reverse

(-);
• ctx is the cytosine context, it can be either CG, CHG or

CHH;



• nmeth represents how many times the cytosine appears
as methylated;

• ntot represents how many times the base was sequenced;
• beta is the beta value of cytosines, defined as the ratio

nmeth/ntot.

B. Software architecture

MethylFASTQ is modularized in three different modules.

1) methylfastq module contains the list of command
line arguments and the main class MethylFASTQ.
This class checks the input parameters and reads the
input reference genome file, starting sequencing either
in WGBS mode or targeted-BS mode.

2) sequencing module implements the sequencing pro-
cedures by means of two classes. The first class,
called ChromosomeSequencer, splits an entire
chromosome record in subsequences. These are in-
dependently sequenced by the second class, called
FragmentSequencer.

3) dna module contains auxiliary classes that implement
different types of DNA sequences, such as double- and
single-stranded fragment or single- and paired-end reads.

MethylFASTQ architecture follows the well-known
producer-consumer software design pattern. The producer’s
job (Figure 2) is to generate the data and to send it to the
consumer. Conversely, the consumer (Figure 3) has to consume
the received data one at time. Parallelization is process-based
and utilizes the built-in module multiprocessing, which
supports spawning processes and assigning them a job through
a function. Inter-process communication is performed using a
FIFO queue implemented in multiprocessing module,
which is process-safe and thread-safe. A process attempting
to get an element from an empty queue is blocked until an
element is available. In a similar way, a process attempting
to put an element in a full queue is blocked until a free slot
is available.

The parent process acts as the consumer, whereas the
producers are represented by the child processes.
MethylFASTQ works with a chromosome sequence at a time.
Chromosome substrings separated by unspecified bases, repre-
sented by ‘N’ characters, are located and extracted. Extracted
substrings are split in order to equally distribute the workload
among a number of parallel processes.

The load balancing step starts by calculating the total
size of the extracted substrings and their average length (m̄)
that should be assigned to each process. Sequences length
m̂ ≥ m̄, longer than the average value, are splitted into M
substrings of length m̄ and one of length r, where M, r
are chosen such that m̂ = m̄ ·M + r with 0 ≤ r < M .

The resulting substrings are sorted with respect to their
length in descending order, so that shorter substrings will be
processed after the longer ones.
Finally, the user can define a set of processes (workers) that
will elaborate the substrings. Sequences with their offsets are

distributed among the workers and sequenced in a parallel
manner.

Data generated by the workers can be of three types:
1) a list of single-end reads in FASTQ format;
2) a list of paired-end reads in FASTQ format, where the

generic paired-end read is a pair;
3) a list storing the methylation information about covered

cytosines of the sequenced substring;
so that each kind of data can be stored in a different file.

Workers instantiate a FragmentSequencer object using
as input parameters the chromosome substring and its initial
and final offsets. Random SNPs are set on the string, using the
SNP rate parameter given by the user. Then, cytosines on both
strands of the sequence are indexed. Cytosines information are
stored in a hash table, where the cytosine position into the
fragment acts as a key and a Cytosine object is the cor-
responding value. This object contains the strand and context
information, as well as two values that take into account how
many times that base is covered by a read, and how many
times it appears methylated.

Numerous overlapping fragments are extracted from the
sequence, so that each base is covered (on average) by a
number of reads equal to the chosen depth of coverage. A
methylation is generated w.r.t. a probability based on the
context (CG, CHG, CHH). Single- or paired-end reads, de-
pending on the chosen sequencing mode, are then extracted
from bisulfite strands and stored into a buffer. If the non-
directional library has been chosen, reads are also extracted
from reverse complement of the bisulfite fragment strands.
Whenever the number of reads in the buffer is greater than
a certain threshold, it is flushed in the shared queue, so that
the parent process can permanently store them in a file. Reads
generation involves sequencing error set up and the creation
of the relative FASTQ record. Setting up the sequencing errors
changes each base with a probability given as input. Quality
score associated to changed bases is drastically lowered.
FASTA file scanning and FASTQ record creation are accom-
plished using BioPython package [7].

IV. RESULTS

In this section are described the results from: (1) the
application of MethylFASTQ to generate different synthetic
datasets with associated execution times; (2) the comparison
between MethylFASTQ and Sherman tools performances; (3)
the application of MethylFASTQ synthetic datasets in the
BS analysis pipeline performed using two BS data mapping
and methylation caller tools (BSMAP [8] and Bismark [9]).
The experiments were performed on a 48-core AMD Opteron
6176 CPUs at 2.3 GHz with 503 GB of RAM.

A. MethylFASTQ performances

The measure of the execution time is an indicative quan-
tification of software performance. Indeed, the time needed
to complete a task is dependent on the machine workload.



Fig. 2. Producer process. Cytosines of the chromosome substring are
indexed. Several overlapping substrings are extracted from the chromosome
substrings. For each of them, methylation is set and relatives information are
stored in the index. Then, the bisulfite fragment is produced and reads are
extracted from it. Reads are stored in a local buffer which is periodically
flushed in the queue. When fragments extraction terminates, the consumer
pushes in the queue the cytosines information and its execution ends.

Fig. 3. Consumer process. The chromosome sequence is splitted in non-
overlapping substrings, which are further divided by the load balancing
algorithm. Obtained substrings are assigned to N producer processes. Then,
the consumer waits for items to be available in the queue and elaborate them.
When all substrings have been sequenced, the consumer terminates.

As reported in Table I the average execution time for the
generation of each dataset increases in proportion with the
features complexity. Indeed, the lower execution time was
obtained for creating the dataset with single-end reads of
directional library while the generation of paired-end reads
of non-directional library was the most expensive execution.
As reported in Figure 4 the MethylFASTQ execution time
rapidly drops as the number of parallel processes increases.
The execution time using one process was longer than ten
hours, while with two processes the execution time was halved,

and finally dropped to minutes with seven and eight processes.

Sequencing Library Generation time (min)

single-end directional 15
single-end non-directional 24
paired-end directional 25
paired-end non-directional 44

TABLE I
AVERAGE TIME COMPUTED CONSIDERING 10 RUNS USED TO CREATE THE
DATASETS USING EIGHT PARALLEL PROCESSES. ALL THE DATASETS ARE

EXTRACTED FROM CHROMOSOME 21 OF HG19 REFERENCE AND HAS 10X
COVERAGE. FOR EACH EXPERIMENT, 10 METHYLFASTQ EXECUTIONS

HAVE BEEN PERFORMED AND THE AVERAGE TIME HAS BEEN
CALCULATED. TIMES ARE EXPRESSED IN MINUTES.
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Fig. 4. MethylFASTQ execution times performances. Average time of
10 runs to create a dataset as the number of parallel processes increases. The
dataset is extracted from human chromosome 21. It is a non-directional library
with paired-end reads with 10x coverage.

B. Comparison between MethylFASTQ and Sherman tools

We compared the performance of MethylFASTQ and the
already published Sherman tool [6] (Figure 5). Both tools
generate bisulfite synthetic data in high customizable way
and they allow the setting of the reads length, the single-
end/paired-end mode and the directionality of the libraries.
In addition, they allow the setting of the bisulfite conversion
rate for all the cytosines and the simulation of different reads
quality scores as well as the number of random SNPs in each
read. The final output of both these tools is a FASTQ file,
however, Sherman does not produce a report file related to
methylation calling for each sequenced cytosine. Sherman also
does not allow the simulation of a targeted-BS experiment but
only a WGBS, because it is not possible to select a set of
specific fragments from the reference genome.
The results of the tools comparison show that when both
tools run with one process Sherman performs better in terms
of execution time than MethylFASTQ (Figure 5). This is
probably due to the double step of MethylFASTQ that is:
(i) apply the methylation function on genome substrings and
save them
(ii) produce a report file storing the information of data
methylation profile.
Since Sherman is not a parallel tool, the below comparison of



execution times will show the performances of MethylFASTQ
using up to eight processes, while Sherman runs in sequential
mode. The results are different when MethylFASTQ runs with
an increasing number of processes. Indeed, the run of Methyl-
FASTQ with two processes obtains comparable execution time
with respect to Sherman. Instead, with a further increase of
the processes number, MethylFASTQ performs better than
Sherman, due to the parallelization.
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Fig. 5. Comparison between Sherman and MethylFASTQ tools. Average
times to produce datasets of seven different sizes by Sherman and Methyl-
FASTQ. MethylFASTQ has been run with 1, 2, 4 and 8 producer processes.
Datasets were extracted from human chromosome 21 of human genome hg19.
They are non-directional libraries with paired-end reads.

C. MethylFASTQ helps on the comparison of bisulfite aligners
and methylation callers

The synthetic datasets generated with MethylFASTQ were
used as input for a comparative analysis between BSMAP
[8] and Bismark [9] performances on the alignment and the
methylation calling tasks. These tools follow two different
approaches for BS reads mapping: BSMAP applies an ap-
proach based on the hashing technique; it masks cytosines
in the reference genome to allow bisulfite mismatches. Con-
versely, Bismark converts both reads and reference in 3-
letter sequences and then it applies an algorithm based on
the Burrows-Wheeler transform [10]. Methylation calling is
performed by methylation extractors included in BSMAP and
Bismark packages. All the tools have been tested using their
default settings.
The alignment percentage and the recall on identified CG
sites were used as performance measurements. The alignment
percentage considers only the uniquely mapped reads (i.e
those reads that are mapped in only one position with a
minimum number of mismatches). In case of paired-end reads
the reads are aligned if both the extremities are properly
mapped. The recall is the fraction of true positive values
correctly identified as methylated CG sites. It is defined as:
TP/Pos, where, TP is the number of CG sites identified by
the tool and Pos is the total number of CG sites.
Ten synthetic datasets with different combinations of parame-
ters have been generated to evaluate the tools performances as
the library settings and the reads quality level change (Table
II).

Sample Aligned reads Recall
ID num. reads BSMAP Bismark BSMAP Bismark

SD1 7.024.152 98.45% 98.68% 98.19% 99.13%
SD2 7.023.824 98.53% 98.37% 93.88% 99.10%
SD3 7.018.280 98.58% 94.95% 89.41% 99.13%
SD4 7.019.916 98.04% 41.37% 95.36% 93.89%
SD5 7.021.892 98.46% 98.65% 96.46% 97.40%
SD6 7.016.484 98.50% 98.55% 94.51% 97.34%
SD7 7.017.776 98.47% 98.58% 94.80% 95.74%
SD8 7.017.556 98.55% 95.55% 89.18% 88.40%
SD9 7.021.028 93.52% 15.46% 74.32% 49.82%
SD10 7.022.140 94.86% 19.77% 63.11% 37.91%

min 7.016.484 93.51% 15.46% 63.11% 37.91%
max 7.024.152 98.58% 98.68% 98.19% 99.13%
avg 7.020.305 97.6% 76% 88.92 85.79%

TABLE III
ALIGNMENT AND METHYLATION EXTRACTION PERFORMANCES ON
THE SYNTHETIC DATASETS. MAPPING AND METHYLATION CALLING

RESULTS ON SYNTHETIC DATASETS OF BSMAP AND BISMARK TOOLS.

The comparison between alignment performances using these
synthetic datasets show that BSMAP is stable as the sequenc-
ing error rate or the presence of SNPs increases (Table III).
The alignment percentages have little variability, even for low
quality datasets. Conversely, Bismark alignment performances
vary dramatically with the increase of sequencing errors/SNPs
rate. However, the alignment performances have not a great
impact on the methylation extraction. Indeed, using low quality
datasets with associated low alignment percentages, the methy-
lation extraction works properly. An example is the synthetic
dataset 9 (SD9) for which Bismark aligns only 15% reads
obtaining a recall of 50% (Table III).

ID num. reads SNP rate Error rate num. CG sites

SD1 7.024.152 0.1% 0.1% 766.422
SD2 7.023.824 0.1% 1.0% 766.748
SD3 7.018.280 0.1% 2.0% 766.398
SD4 7.019.916 0.1% 5.0% 766.698
SD5 7.021.892 0.3% 0.1% 777.718
SD6 7.016.484 0.3% 0.5% 778.154
SD7 7.017.776 0.5% 0.1% 789.096
SD8 7.017.556 1.0% 1.0% 817.514
SD9 7.021.028 2.0% 5.0% 873.480
SD10 7.022.140 5.0% 2.0% 1.038.142

TABLE II
CONSTRUCTION PARAMETERS OF THE USED SYNTHETIC DATASETS.
ALL THE DATASETS ARE EXTRACTED FROM CHROMOSOME 21 OF HG19

REFERENCE. THEY ARE NON-DIRECTIONAL DATASETS WITH PAIRED-END
READS OF LENGTH 150 BASES USING A 10X COVERAGE. DATASETS WERE
GENERATED FROM HUMAN CHROMOSOME 21 OF HUMAN GENOME HG19.

V. CONCLUSION

In this paper we present MethylFASTQ a new parallel tool
to generate bisulfite synthetic datasets. MethylFASTQ allows
us to generate both reads and a report file of methylation call,
which contains information about methylated cytosines. We
showed that our tool helps to find the weaknesses of two
mapping and bisulfite caller tools, Bismark and BSMAP. In the
future, we will implement MethylFASTQ in C/C++ language



in order to switch from multiprocessing to multithreading,
enhancing software performances.

AVAILABILITY AND IMPLEMENTATION

MethylFASTQ is released under the GNU GPLv3 li-
cense. It is freely available at https://github.com/qBioTurin/
MethylFASTQ.
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Appendix A

MethylFASTQ

A.1 Synthetic dataset

MethylFASTQ is a Python tool to simulate bisulfite sequencing data in a
highly customizable way.

It is organismal independent, because it receives as input a FASTA file
containing a reference genome. It is also experiment-independent, since it
allows to simulate both whole-genome and targeted bisulfite sequencing.

MethylFASTQ simulates both directional and non-directional libraries,
with single- and paired-end reads. Its outputs are two kind of files: FASTQ
file(s) and a methylation call file.

In case of single-end sequencing, the tool produces a single FASTQ file,
which contains the 5’-end of each sequenced fragment. In case of paired-end
sequencing, it produces two FASTQ files, which contain respectively the
5’-end and the reverse complement of 3’-end of the sequenced fragment.
The methylation call file is a tabulated file containing the true methylation
call of the sequenced cytosines.

In whole-genome mode, the user can optionally provide a list containing
the chromosomes names that have to be sequenced. If no list is provided, the
entire reference genome will be sequenced.
In targeted mode, the user has to provide a tabulated file containing the
genome regions to be sequenced. A generic line of this file has three fields, in
the following order:

1. chr: the FASTA record identifier associated to the chromosome to be
sequenced;

2. begin: the index of the first nucleotide of the region;

3. end: the index of the last nucleotide of the region.

3
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The tool allows the creation of directional and non-directional sequencing
libraries, with single- or paired-end reads. The tool simulates the entire
sequencing process, according to the formalization of the previous section.
The user may specify fragment size, read length and the depth of coverage.
Methylation can be set through three context-based probabilities: CpG, CHG
and CHH.

The user can also specify probabilities about SNPs and sequencing errors.
SNPs are nucleotide mutations of the reference genome. All the reads which
cover that specific nucleotide have to report the mutated base. Its quality is
not discernible from that of a non-mutated nucleotide. A sequencing error
simulates an error during PCR or sequencing step. Hence, it is read specific
and it is associated with a low quality value.

Each read in the FASTQ file has a record id which gives a number of
information about its true mapping position. Specifically, the record id of a
generic read has the form chr:pos:strand, where:

• chr is the chromosome from which the fragment has been extracted.
The chromosome name is extracted from the input FASTA file;

• pos is the position of the first nucleotide into the chromosome;

• strand identifies the bisulfite strand. For directional libraries, it can
be either forward (f) or reverse (r). For non-directional libraries, it can
also be the reverse complement of either the forward (f:rc) or reverse
(r:rc) strand.

As regard to the methylation call file, it is a tabulated file which presents
a line for each covered cytosine. Each line has the form chr pos strand ctx

nmeth ntot beta, where:

• chr is the chromosome in which the cytosine is located;

• pos is the index of the cytosine in the chromosome (it begins from 0);

• strand is the , it can be either forward (+) or reverse (−);

• ctx is the cytosine context, it can be either CG, CHG or CHH;

• nmeth represents how many times the cytosine appears as methylated;

• ntot represents how many times the base was sequenced;

• beta is the beta value of that cytosine, defined as the ratio nmeth/ntot.
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A.1.1 Software description

MethylFASTQ has a chromosome-based approach. It works with a FASTA
record at a time, that usually corresponds to a chromosome. The chromosome
sequence is splitted is various large subsequences, which are then sequenced
in a parallel manner.

Parallelization is not thread-based, because global interpreter lock (GIL)
does not allow CPU usage to multiple threads simultaneously. The GIL is the
Python interpreter mutex, that must be held by the current thread in order
to safely access objects [?]. So, parallelization is process-based and utilizes
the built-in module multiprocessing, which supports spawning processes
and assigning them a job through a function. Child processes produce the
data and send them to the parent process using a shared queue. The number
of concurrent processes is a tool parameter. It sets the upper bound in the
number of workers that can execute simultaneously.

Extracted sequences are assigned to a worker. From each sequence numer-
ous overlapping fragments are extracted, in order to follow the formalization
and to obtain the selected coverage. Methylation of a certain fragment is set
independently of that of the others and bisulfite reads are extracted from it.

The source code of MethylFASTQ is modularized in different classes
located in three modules.

• methylfastq module contains MethylFASTQ entry point, the main
class methylFASTQ and the list of command line arguments accepted
by the tool;

• sequencing module contains the sequencing procedures by means of two
classes. The first class splits an entire FASTA record in subsequences,
which are independently sequenced by the other class of the module.

• dna module contains various auxiliary classes that implement different
types of DNA sequences, such as double- and single-stranded fragment
or single- and paired-end reads.

In the following of this section, an in-depth view of each module previously
mentioned will be provided.

Methylfastq module

The methylfastq module contains the main function, that is the software
entry point. In the main function there are listed the command line argument
accepted by the script, which are parsed by the built-in module argparse.
The complete list of parameters is presented in the following:
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Figure A.1: Sequencing workflow. Distincts non-overlapping substrings are
extracted from the chromosome sequence and assigned to different processes.
Each process extracts numerous fragments from its own sequence. For each
of them, random methylation is set and the corresponding bisulfite fragment
is produced. Reads are extracted from the fragment, and from its reverse
complement if the library has to be non-directional. Produced reads are saved
in a buffer and the process is repeated until no fragments remain.
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• -i or --in: path of the FASTA file containing the genome to be
sequenced.

• -o or --out: path where to save the output files.

• --seq: the selected sequencing mode. Accepted values are single end

and paired end.

• --lib: the selected library mode. Accepted values are directional

and non directional.

• --chr: a list of one or more elements that reports the FASTA id of the
record to be sequenced.

• --regions: a tab-separated file containing the genome regions to be
sequenced.

• --coverage: the selected depth of coverage value.

• --fragment: size of the genome fragments during fragmentation step.

• --read: length of the reads to be produced.

• --maxq: maximum quality associable to sequenced nucleotides.

• --minq: minimum quality associable to sequenced nucleotides.

• --processes: processes number to be used during sequencing proce-
dure.

• --cg: methylation probability for CG context.

• --chg: methylation probability for CHG context.

• --chh: methylation probability for CHH context.

• --snp: rate to apply mutation in the genome before sequencing phase.

• --error: rate to apply sequencing error during sequencing phase.

After argument parsing, an object MethylFASTQ is instantiated using the
given parameters. It checks the input parameters and creates the directory
for the output files. If the tool is executed in targeted mode, it also loads the
interval regions to be sequenced from the apposite file.

Execution starts scanning the input FASTA file and selecting only the
records whose name appears in the dedicated input parameter. In WGBS
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mode, the used parameter is the list of chromosome names, while in targeted
mode the record name is searched in the interval regions list. Sequencing
procedures are implemented in sequencing module.

Sequencing module

Sequencing module is the core of MethylFASTQ. It contains two classes. The
first one, called ChromosomeSequencer, receives an entire FASTA record as
input. Its task is to split the FASTA record in multiple substrings, which are
then individually sequenced by the other class, called FragmentSequencer.

If the chosen sequencing mode is the targeted one, the splitting task
is straightforward: it is sufficient to extract the substrings correspondents
to the interval regions from the FASTA record. Otherwise, if the chosen
sequencing mode is WGBS, it locates and extracts all the substrings separated
by unspecified nucleotides, represented by ‘N’ characters.

Then, a load balancing algorithm splits the extracted substrings in order
to equally distribute the workloads across multiple processes. This procedure
aims to optimize resource use, maximize throughput and avoid overload of
any single process. Algorithm 1 describes the load balancing procedure. It
receives as input num p, the number of concurrent processes that have to
be used and sequences, a list containing the extracted substrings. A generic
element of the list is a triple (seq, begin, end), where:

• seq is a chromosome substring;

• begin is the position of the first nucleotide into the overall chromosome
sequence;

• end is the position of the last nucleotide into the overall chromosome
sequence.

It starts calculating the total size of the extracted substrings and an
average number of bases that should be assigned to each process. Then,
sequences longer than the average value are splitted into substrings of length
equal to the average. Finally, obtained substrings are sorted with respect to
their size in descending order, so that smaller substrings will be processed
last. Then, substrings are sequenced in a parallel fashion.

A number of FragmentSequencer objects are instantiated with a subse-
quence and its relative begin and end indexes. Each of these objects sets
random mutations on its sequence using the SNP rate parameter.

Then, cytosines on both strands of its sequence are indexed, in order to
take into account how many times each of them is covered by a read, and
how many times each of them appears as methylated.
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Algorithm 1 Load balancing algorithm

Require: substrings: an array of triples (seq, begin, end), num p: the num-
ber of concurrent processes

Ensure: new substrings: an array of triples (seq, begin, end)

1: function Load Balancing(sequences, num p)
2: new substrings← newlist()
3: totsize← SumFragmentLengths(fragments)
4: avg = totsize/num p
5: for all (seq, begin, end) ∈ substrings do
6: size← end− begin
7: if size > avg then
8: num pieces← dsize/avge
9: prev ← 0; curr ← avg
10: for n← 0 tonum pieces do
11: subseq ← (seq[prev : curr], begin + prev, begin + curr)
12: new substrings.append(subseq)
13: prev ← curr; curr ← curr + avg
14: if curr > size then
15: curr ← size
16: else
17: new substrings.append((seq, begin, end))

18: return new substrings
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Numerous overlapping fragments are extracted from the sequence, in such
a way that each base is covered, on average, by a number of reads equal to the
chosen depth of coverage. For each fragment, methylation is randomly put
to both strand using the methylation context probabilities and the bisulfite
conversion is applied.

Single- or paired-end reads, depending on the chosen sequencing mode,
are then extracted from bisulfite strands and stored on a buffer. If the non-
directional library has been chosen, reads are also extracted from reverse
complement of the bisulfite fragment strands.

DNA module

The dna module contains the implementations of various DNA sequence
classes, such as single- and double-stranded DNA fragments, and single- and
paired-end reads.

The most general one represent a generic DNA sequence, and hence this
class is called simply dna. A generic DNA sequence is represented by a
nucleotide sequence and its begin and end indexes, that allow to know the
original location of that sequence in the genome. This class implements all the
common operations, such as reverse complement computation, complement
sequence calculation, application of bisulfite treatment and so on.

The fragment class represents a double-stranded fragment. It is used
by the FragmentSequencer class during fragment extraction. Besides the
operation implemented by the dna class, a very important new one is to apply
methylation to both its strands and to save these informations. Furthermore,
there are two methods to extract its forward and reverse strand.

Single-stranded fragment derived from a fragment are implemented by
the single stranded fragment class. This class maintains the information
about the strand which generates the single-stranded fragment. Possible
strands are enumerated by the enum class strand. Methods of this class
override those of dna class, in order to take into account strand diversity.

The last two classes implement respectively single- and paired-end reads.
Single-end reads are described by read class, which is composed by a dna
object and a list of integer values. The first component describes the nucleotide
sequence of the read, its mapping position and the strand information. The
integer list describes the Phred quality scores of the nucleotides.

To represent a realistic read quality, Phred score values of a read follow
a gaussian function. In this way, a nucleotide in a certain position has,
on average, a better quality of next nucleotides and a worse quality of the
previous ones.

Single-end read class has two essential method. The first one allows to set
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sequencing errors over the read with a given rate. Quality values associated
to mutated nucleotides is lowered. The second one generates the FASTQ
record of the read.

Paired-end reads are described by the paired end read class and are
characterized as a pair of single-end reads. Methods of this class simply apply
single-end read methods to both the reads of the pair.

A.1.2 Implementation

Let us view how MethylFASTQ actually works. In the following of this
section, it will be explained how methylation is set on reads, how fragments
are extracted from the reference in order to satisfy the selected depth of
coverage and how output data are stored in mass memory.

Apart from FASTQ files, the tool produces another file that contains
detailed information about each sequenced cytosine. These information
comprehend the number of times a specific cytosine has been sequenced and
how many times it appears as methylated.

Cytosine indexing

In order to store these informations, as soon as a new subsequence is
extracted from a chromosome, its cytosines of both strands are indexed.
This procedure is accomplished by the initialize cytosines method of
FragmentSequencer class.
Cytosine informations are stored in the attribute cytosines, that is an
hash table. An hash table allows to store key/value pairs. Cytosine position
in the fragment is used as key, while a Cytosine object is the corresponding
value. The Cytosine class stores four valuable informations.

• context, that represents the cytosine context;

• strand, that identifies the strand on which the cytosine is;

• ntot, that is the number of times that the cytosine is covered by a read;

• nmeth, that is the number of times that the cytosine appears as methy-
lated in the reads.

Context and strand informations are initialized by the class constructor.
Context value is used to set cytosine methylation according to the proper
methylation probability.

Cytosine indexing procedure in provided in Algorithm 2. To index cy-
tosines of both strands, the fragment is scanned. For each ‘C’ or ‘G’ character
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found, a new cytosine on forward or reverse strand, respectively, is initial-
ized. The cytosine context has to be identified. Three different contexts are
currently recognized: CpG, CHG and CHH, where H = {A, C, T}.

Algorithm 2 Cytosine indexing

Require: dna seq: a DNA string
Ensure: C index: an hash table having cytosine positions as keys and

Cytosine objects as values

1: function Index Cytosines(dna seq)
2: C index← newHashTable()
3: for i← 0 to dna seq.length () do
4: context← CHH
5: if dna seq[i] = C then
6: if dna seq[i + 1] = G then
7: context← CG
8: else if dna seq[i + 2] = G then
9: context← CHG
10: C index[i]← newCytosine(context, strand.forward)
11: else if dna seq[i] = G then
12: if dna seq[i− 1] = C then
13: context← CG
14: else if dna seq[i− 2] = C then
15: context← CHG
16: C index[i]← newCytosine(context, strand.reverse)

17: return C index

Fragmentation and sequencing

Read production involves several steps. shown below in the respective order:

1. fragment extraction from the reference subsequence;

2. random methylation of the fragment according through the methylation
probabilities given by the user;

3. single- or paired-end read production from the fragment;

4. storage of the produced reads.

Fragment extraction happens in the fragmentation method of FragmentSequencer
class. The entire chromosome subsequence is scanned using an index, that is
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increased by a little value at each step. The incrementation value is calibrated
in such a way that each nucleotide is covered, on average, a number of times
equal to the depth of coverage specified by the user.

The index points to the first nucleotide of the next fragment to be extracted.
Its length is given by the appropriate parameter given by the user. A double-
stranded fragment object (fragment class) is instantiated using the nucleotide
sequence and its begin and end position in the whole sequence.

Methylation is then set over the extracted fragment. Pseudocode of this
procedure is displayed in Algorithm 3. The nucleotide sequence is scanned by
one character at a time. If the current base is a C or a G, the cytosine of the
appropriate strand is set as methylated with the proper context probability
and its counters are updated.

Algorithm 3 Fragment methylation

Require: fragment: a double-stranded fragment, C index: the cytosine
index

Ensure: meth fragment: the methylated double-stranded fragment

1: function Methylate Fragment(dna fragment)
2: meth fragment← fragment(fragment)
3: for i← fragment.begin to fragment.end do
4: if meth fragment[i] = C ormeth fragment[i] = G then
5: cytosine← C index[i]
6: cytosine.ntot← cytosine.ntot + 1
7: meth prob← methylation probability[cytosine.context]
8: if random(0, 1) < meth prob then
9: cytosine.nmeth← cytosine.nmeth + 1

10: meth fragment[i].set as methylated ()

11: return meth fragment

Fragmentation method is invoked in both single- and paired-end sequencing
methods. The procedure is then straightforward. For each methylated double-
stranded fragment:

1. forward and reverse strand are extracted and the bisulfite method is
invoked on them;

2. if the dataset under construction is non-directional, also the reverse
complement of the two previous bisulfite sequences is computed;

3. from each of the two (or four, in case of non-directionality) sequences,
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reads of the appropriate type are generated and stored in a buffer, which
is periodically flushed on the shared queue.

Read generation from a single-stranded fragment involves sequencing error
set up and the creation of the relative FASTQ record. Sequencing error set
up method scans the sequence and mutates each nucleotide with a probability
equal to the proper input parameter. Quality score associated to mutated
nucleotide is drastically lowered. FASTQ record creation is accomplished
using BioPython [?] package.

Algorithm 4 shows the generation of a paired-end read. Two substrings,
r1 and r2, are extracted from the single-stranded fragment. They are the
prefix and the suffix of the fragment, respectively. Sequencing errors are then
set on both the reads, which are then paired in the resulting paired-end read
object.

Algorithm 4 Generation of a paired-end read

Require: fragment: a single-stranded fragment object, rlength: the read
length

Ensure: read: a paired-end read object

1: function PairedEnd Sequencing(fragment)
2: prefix← fragment[: rlength]
3: suffix← fragment[fragment.length()− rlength :]
4: r1← SingleEnd Read(prefix) .set errors()
5: r2← SingleEnd Read(suffix.reverse complement ()) .set errors()
6: return PairedEnd Read(r1, r2)

Data persistence

MethylFASTQ architecture follows the well-known producer-consumer
software design pattern. The producer and the consumer are two processes,
who communicate using a shared queue. The producer’s job is to generate
the data, sent it to the consumer using the queue and repeat. The consumer’s
job is to consume the received data one at a time, removing it from the queue
and make use of. The parent process acts as the consumer, whereas the child
processes are the producers.

The parent process instantiates a FIFO queue to allow inter-process com-
munication with their child processes. Queue data structure is implemented
in multiprocessing module: it is process-safe and thread-safe. A process
attempting to get an element from an empty queue is blocked until an element
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is available. In a similar way, a process attempting to put an element in a
full queue is blocked until a free slot is available.

The parent process spawns a thread that acts as the consumer. This thread
waits that an element became available in the queue in order to process it.
Then, the parent instantiates a worker pool of a number of processes equal
to the value specified by the user. Workers are the producers. The parent
shares the data about a substring to be sequenced and the queue with them.

Producers generate the data, namely the FASTQ reads and the true
methylation call data. These data are sent to the parent using the shared
queue. Different messages are used to communicate these types of data.

A message of type tuple indicates that a child process sent data that
have to be stored. The tuple is a pair (datatype, data). The first element is
a string that indicates what kind of data has been received. It is used by the
parent process to select the correct file in which store the data, that is the
second element of the pair. Three data types are supported.

1. fastq se indicates that a list of single-end reads in FASTQ format has
been received.

2. fastq pe indicates that a list of paired-end reads in FASTQ format has
been received. A generic element of that list is a pair (r1, r2) in FASTQ
format.

3. ch3 indicates that a list containing the methylation information about
covered cytosines of a certain fragment has been received.

A message of type int is the signal that a producer has terminated his
job. The consumer knows how many jobs have to be accomplished. This
signal is used to decrease the number of remaining jobs, so that when this
value became zero, the consumer can terminate.
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Figure S1: Antibodies Panel used to measure leucocyte percentages.  In first row are reported the seven lasers to measure the fluorescence 
express by cell-types.  
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Figure S2: Log transformed cotinine levels in smoking categories. The p-values were calculated with Anova One-way test among groups. 
Smoking categories were codified with 0= never smokers (blue), 1= former smokers(yellow) and 
2= current smokers (red). 
 

 



 

 

 
Figure S4. Correlations among T cells associated with smoking status (current vs never smokers). 

The heatmap shows Pearson's correlation coefficients evaluated in the dataset of 497 individuals with 

immunophenotyping. DPT: Double Positive T cells. 

 



 
Figure S5. Correlations among B cells associated with smoking status (current vs never smokers). 

The heatmap shows Pearson's correlation coefficients evaluated in the dataset of 497 individuals with 

immunophenotyping. B cell/A: B cell isotype IgA, B cell/G: B cell isotype IgG, B cell/E: B cell isotype 

IgE.  

 

 



 
Figure S6. Correlations among monocytes associated with smoking status (current vs never 

smokers). The heatmap shows Pearson's correlation coefficients evaluated in the dataset of 497 

individuals with immunophenotyping. 
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Supplementary Table S1. Summary statistics for the associations between immune traits and 

smoking status (current vs never smokers). For each immune trait (N=41,701), the table reports the 

immune cell population lineage and subset it belongs to, the number of individuals used in the 

association study (N), and the association study results, as effect size (Beta), standard error (SE), and 

p-value (P). 

 

Supplementary Table 2. Summary statistics for the associations between immune traits and 

smoking status (former vs never smokers). For each immune trait which was associated with smoking 

status (current vs never smokers, N=848), the table reports the immune cell population  lineage and 

subset it belongs to, the number of individuals used in the association study (N), and the association 

study results, as effect size (Beta), standard error (SE), and p-value (P). For immune traits significantly 

different between former and never smokers (N=254) also the results of the association study with the 

three smoking categories (current vs former vs never smokers) are reported, as the number of individuals 

included in the study (N), effect size (Beta.all), standard error (SE.all), and p-value (P.all).  

 
 



Table S1: Results association between smokers and never smokers.  
 

Type  population Lineage Subset.name Beta SE P 
CSF BCell B cells/A B cells/A/10-38+ -0.394501786086839 0.0472379165188713 9,20E-01 
CSF BCell B cells/A B cells/A/5-24-38-95+ 0.699728704926875 0.0972256833368048 1,07E+01 
CSF BCell B cells/A B cells/A/5-10-24-38-95+ 0.70225593420892 0.097644893028051 1,11E+03 
CSF BCell B cells/A B cells/A/24-38-95+ 0.657465728080215 0.091766140088583 1,31E+02 
CSF BCell B cells/A B cells/A/10-24-38-95+ 0.661178293815361 0.0936291930749029 2,39E+03 
CSF BCell B cells/A B cells/A/10-38- 0.324887881027117 0.0461614932510667 2,77E+03 
CSF BCell B cells/A B cells/A/38- 0.321978990594117 0.0458746458096623 3,10E+03 
CSF BCell B cells/A B cells/A/24-27+38- 0.614703039789068 0.0878263257490955 3,56E+03 
CSF BCell B cells/A B cells/A/5-10-24-27+38- 0.665069775632493 0.0964486863789021 6,29E+03 
CSF BCell B cells/A B cells/A/5-10-38-95+ 0.564722638337581 0.0822357258255765 7,17E+03 
CSF BCell B cells/A B cells/A/10-38-95+ 0.538918322555802 0.0787111658588745 8,06E+03 
CSF BCell B cells/A B cells/A/5-10-24-38- 0.532185795937791 0.0780307401920595 9,48E+03 
CSF BCell B cells/A B cells/A/10-24-27+38- 0.633594171934642 0.0932696201627639 1,13E+04 
CSF BCell B cells/A B cells/A/5-38-95+ 0.545281367648957 0.0803990046910234 1,17E+04 
CSF BCell B cells/A B cells/A/38-95+ 0.521530181697715 0.0773254093558505 1,44E+04 
CSF BCell B cells/A B cells/A/5-24-38- 0.526164714128224 0.0781217558392406 1,54E+03 
CSF BCell B cells/A B cells/A/5-38- 0.386381360835395 0.0574602558948245 1,62E+04 
CSF BCell B cells/A B cells/A/5-24-27+38- 0.666337845741511 0.0993633053541826 1,83E+04 
CSF BCell B cells/A B cells/A/5-10-21+24-38- 0.588166746945653 0.0883574568826379 2,42E+04 
CSF BCell B cells/A B cells/A/5-21+24-38- 0.579366944261582 0.0875428824497858 3,02E+04 
CSF BCell B cells/A B cells/A/5-24-27+38-95+ 0.747997086066456 0.114877246679564 5,49E+04 
CSF BCell B cells/A B cells/A/10-27+38-95+ 0.561033466451792 0.0863121535301561 5,81E+04 
CSF BCell B cells/A B cells/A/5-10-27+38-95+ 0.585043482891488 0.0901528118612549 6,12E+04 
CSF BCell B cells/A B cells/A/27+38- 0.426770612930585 0.0659361601891492 6,83E+04 



CSF BCell B cells/A B cells/A/27+38-95+ 0.540778625197362 0.083686119000654 7,14E+04 
CSF BCell B cells/A B cells/A/10-27+38- 0.434335333418635 0.0675142494701461 8,46E+04 
CSF BCell B cells/A B cells/A/5-10-24-27+38-95+ 0.76022648658215 0.118207677233449 8,50E+04 
CSF BCell B cells/A B cells/A/5-27+38-95+ 0.564223572486889 0.0877954831574345 8,66E+04 
CSF BCell B cells/A B cells/A/24-27+38-95+ 0.702671274756632 0.109701540342242 9,89E+04 
CSF BCell B cells/A B cells/A/5-10-27+38- 0.441440127132397 0.0692683304472682 1,19E+05 
CSF BCell B cells/A B cells/A/10-24-27+38-95+ 0.702217313867128 0.11076527693634 1,42E+05 
CSF BCell B cells/A B cells/A/21+24-27+38- 0.690080046236891 0.109106918991262 1,52E+05 
CSF BCell B cells/A B cells/A/10-21+24-27+38- 0.68681427747845 0.108704442989912 1,60E+05 
CSF BCell B cells/A B cells/A/5-10-21+24-27+38- 0.700055452519357 0.111734776404373 2,13E+05 
CSF BCell B cells/A B cells/A/5-21+24-27+38- 0.698018692144139 0.11163751332544 2,26E+05 
CSF BCell B cells/A B cells/A/21+24-38-95+ 0.705819837526868 0.113103899954595 2,40E+05 
CSF BCell B cells/A B cells/A/10-24-38- 0.426504226946917 0.0686103778252315 2,70E+05 
CSF BCell B cells/A B cells/A/10-21+24-38-95+ 0.713507329160193 0.116579029049873 4,56E+05 
CSF BCell B cells/A B cells/A/5-10-21+24-38-95+ 0.720740854947372 0.117966175249114 4,82E+05 
CSF BCell B cells/A B cells/A/24-38- 0.422894541566451 0.0692860058564971 4,94E+05 
CSF BCell B cells/A B cells/A/24-38+ -0.428780508340263 0.0713684815086477 8,04E+04 
CSF BCell B cells/A B cells/A/10-21+38-95+ 0.557704269873734 0.092814977869413 8,10E+05 
CSF BCell B cells/A B cells/A/5-10-21+38-95+ 0.558096051908351 0.093664533636699 1,05E+04 
CSF BCell B cells/A B cells/A/21+24-27+38-95+ 0.774643231338106 0.130096435937591 1,11E+06 
CSF BCell B cells/A B cells/A/5-21+38- 0.404685449153408 0.0680288839849893 1,12E+06 
CSF BCell B cells/A B cells/A/5-21+24-27+38-95+ 0.781105351006614 0.131476192492577 1,19E+05 
CSF BCell B cells/A B cells/A/21+38-95+ 0.544384961890096 0.0917320980408893 1,20E+06 
CSF BCell B cells/A B cells/A/5-10-21+38- 0.414883226400301 0.0701307020710642 1,33E+06 
CSF BCell B cells/A B cells/A/5-21+38-95+ 0.548367270309202 0.0927765652850067 1,36E+06 
CSF BCell B cells/A B cells/A/5-10-21+24-27+38-95+ 0.793380264378847 0.134379010612125 1,45E+06 
CSF BCell B cells/A B cells/A/38+95- -0.446995504847011 0.0762244467106822 1,71E+06 



CSF BCell B cells/A B cells/A/10-21+24-27+38-95+ 0.781524538174046 0.133494144152792 1,87E+06 
CSF BCell B cells/A B cells/A/10-21+27+38-95+ 0.602693159838195 0.104993150384042 3,28E+06 
CSF BCell B cells/G B cells/G/38+ -0.312527405538825 0.0544620655834366 3,33E+06 
CSF BCell B cells/A B cells/A/21+38- 0.336044456650204 0.0586339765522412 3,48E+06 
CSF BCell B cells/A B cells/A/21+27+38-95+ 0.587950735302525 0.102630293809925 3,49E+06 
CSF BCell B cells/A B cells/A/5-10-21+27+38-95+ 0.606501582303471 0.106006740844492 3,61E+06 
CSF BCell B cells/A B cells/A/10-21+38- 0.338150322210311 0.059178203804918 3,78E+06 
CSF BCell B cells/A B cells/A/5-21+27+38-95+ 0.590598633504179 0.104238929650143 4,80E+03 
CSF BCell B cells/A B cells/A/10-24-38+ -0.421275791473889 0.0745530305768921 5,09E+06 
CSF BCell B cells/A B cells/A/10-38+95- -0.453288653532252 0.0804335132943237 5,51E+06 
CSF BCell B cells/A B cells/A/21+24-38- 0.446080727458997 0.0791423459697091 5,61E+06 
CSF BCell B cells/G B cells/G/5-38- 0.201656476475953 0.0368760904828069 1,29E+06 
CSF BCell B cells/A B cells/A/21+27+38- 0.457025363997234 0.0841103708224585 1,53E+07 
CSF BCell B cells/A B cells/A/5-10-21+27+38- 0.459339953433159 0.0845264001987107 1,54E+07 
CSF BCell B cells/A B cells/A/27-38+ -0.48529803358798 0.0893564951276492 1,56E+07 
CSF BCell B cells/A B cells/A/10-21+27+38- 0.465761020022493 0.0858500320624475 1,60E+06 
CSF BCell B cells/A B cells/A/10-27-38+ -0.49265981823639 0.0911684954952338 1,79E+07 
CSF BCell B cells/G B cells/G/5-21+38- 0.248612946633804 0.046132678060314 1,92E+07 
CSF BCell B cells/G B cells/G/21+38- 0.249121768789619 0.0465230857079639 2,25E+06 
CSF BCell B cells/A B cells/A/5-21+27+38- 0.457096450769596 0.0853690984462483 2,26E+07 
CSF BCell B cells/G B cells/G/10-38+ -0.314008099992953 0.0589206207450133 2,57E+07 
CSF BCell B cells/A B cells/A/5-38+ -0.298068427437551 0.0560473390334938 2,78E+07 
CSF BCell B cells/A B cells/A/10-21+24-38+ -0.419938703841086 0.0796847379597187 3,32E+07 
CSF BCell B cells/G B cells/G/10-21+38- 0.257463400524626 0.0489818443452106 3,61E+07 
CSF BCell B cells/G B cells/G/5-10-21+38- 0.26311309100754 0.0508804423875002 5,41E+07 
CSF BCell B cells/G B cells/G/5-10-38- 0.198359676729829 0.0383873582284178 5,55E+07 
CSF BCell B cells/G B cells/G/38- 0.156796855390897 0.0305908523339081 6,68E+07 



CSF BCell B cells/A B cells/A/21+24-38+ -0.3937628586604 0.0772195431861279 7,49E+06 
CSF BCell B cells/G B cells/G/24-38+95+ -0.479897935481996 0.0942517700650826 7,82E+07 
CSF BCell B cells/G B cells/G/10-38- 0.166619290100548 0.0328556964620894 8,68E+07 
CSF BCell B cells/A B cells/A/10-21+38+95- -0.431174618532106 0.0863667317817414 1,24E+08 
CSF BCell B cells/A B cells/A/10-21+27-38+ -0.493766808277057 0.0990696750517664 1,31E+08 
CSF BCell B cells/A B cells/A/24-27-38+ -0.535040323854429 0.108693344386122 1,74E+08 
CSF BCell B cells/A B cells/A/5-10-21+24- 0.324865339532555 0.0666531889521752 2,16E+08 
CSF BCell B cells/G B cells/G/5-38+ -0.288588607298889 0.0593171495935577 2,27E+08 
CSF BCell B cells/G B cells/G/21+24-38+95+ -0.480783579001518 0.0987553534342835 2,29E+08 
CSF BCell B cells/G B cells/G/38+95+ -0.422907430681068 0.087509382580603 2,57E+07 
CSF BCell B cells/A B cells/A/5-21+24- 0.315609091764101 0.0654218106589573 2,72E+08 
CSF BCell B cells/A B cells/A/10-24-27-38+ -0.522115033519646 0.109150300501013 3,26E+08 
CSF BCell B cells/A B cells/A/21+38+95- -0.398993512224548 0.0845060487833317 4,25E+08 
CSF BCell B cells/A B cells/A/21+27-38+ -0.461414878826826 0.0977479424171729 4,32E+08 
CSF BCell B cells/A B cells/A/5-10-21+24-95+ 0.426485279908179 0.09040938869921 4,37E+08 
CSF BCell B cells/A B cells/A/10-21+24-95+ 0.420966859616765 0.0895820215447671 4,73E+08 
CSF BCell B cells/A B cells/A/5-10-38+ -0.292550522516742 0.0623734079184542 5,04E+08 
CSF BCell B cells/A B cells/A/24-27-38+95- -0.648944768016674 0.138671248482593 5,16E+08 
CSF BCell B cells/A B cells/A/24-38+95- -0.512388106597754 0.109978656919857 5,60E+08 
CSF BCell B cells/G B cells/G/10-24-38+ -0.322402141027604 0.0692160067469545 5,70E+08 
CSF BCell B cells/G B cells/G/10-27+38- 0.256174184601792 0.0550458784598882 5,78E+08 
CSF BCell B cells/G B cells/G/24-38+ -0.299824255252177 0.0645648087419268 6,05E+08 
CSF BCell B cells/A B cells/A/24+38+95+ -0.557843807203931 0.120572475231689 6,51E+08 
CSF BCell B cells/G B cells/G/27+38- 0.23118137895197 0.0499888251586187 6,54E+08 
CSF BCell B cells/A B cells/A/21+24-95+ 0.40505436729387 0.0876813475948723 6,73E+08 
CSF BCell B cells/A B cells/A/5-21+24-95+ 0.413412721839335 0.08952124739123 6,78E+08 
CSF BCell B cells/A B cells/A/5-24+38+95+ -0.560973969680706 0.123245810680059 9,02E+08 



CSF BCell B cells/A B cells/A/5-10-21+24-27+95+ 0.488244726952176 0.107532857026385 9,51E+08 
CSF BCell B cells/A B cells/A/5+27-38+ -0.902342473438917 0.19954424077026 1,03E+09 
CSF BCell B cells/A B cells/A/5+10-21+27-38+ -0.906668822441461 0.200588533818411 1,05E+09 
CSF BCell B cells/A B cells/A/10-21+27-38+95- -0.57707873232888 0.12794273629013 1,07E+09 
CSF BCell B cells/A B cells/A/5+27-38+95- -0.913346905827282 0.202453823728515 1,09E+09 
CSF BCell B cells/A B cells/A/10-24-38+95- -0.513959879977124 0.114189436928719 1,12E+09 
CSF BCell B cells/A B cells/A/5-10-21-24-38-95+ 0.576276298906406 0.127972626893902 1,14E+09 
CSF BCell B cells/A B cells/A/5+10-21+27-38+95- -0.916705539560277 0.204355944569485 1,22E+09 
CSF BCell B cells/A B cells/A/5-21-24-38-95+ 0.575656485203109 0.128322459280054 1,22E+09 
CSF BCell B cells/A B cells/A/5+21+27-38+ -0.897141722329893 0.200195072464176 1,23E+09 
CSF BCell B cells/A B cells/A/5+10-27-38+95- -0.915269239422849 0.204197862748204 1,23E+09 
CSF BCell B cells/A B cells/A/10-21+24-27+95+ 0.480412561163211 0.107418054555155 1,27E+09 
CSF BCell B cells/A B cells/A/5+10-27-38+ -0.900996587545838 0.201592262256503 1,30E+09 
CSF BCell B cells/A B cells/A/5-21-38-95+ 0.529098627225324 0.118496073183249 1,31E+09 
CSF BCell B cells/A B cells/A/5+10-21+27- -0.803870967608825 0.180409766299958 1,37E+09 
CSF BCell B cells/A B cells/A/5+21+27-38+95- -0.903321101110698 0.202700672705385 1,38E+09 
CSF BCell B cells/A B cells/A/5-21+24-27+95+ 0.468167864639344 0.10539612994073 1,45E+09 
CSF BCell B cells/A B cells/A/5+24-27-38+95- -0.928450409654407 0.209386660867166 1,51E+09 
CSF BCell B cells/A B cells/A/10-24-27-38+95- -0.622664997322969 0.140854910278639 1,58E+09 
CSF BCell B cells/A B cells/A/5+10-21+27-95- -0.825407713374716 0.186753031012618 1,60E+09 
CSF BCell B cells/G B cells/G/24-27+38+ -0.359919085207681 0.0815550582628815 1,64E+09 
CSF BCell B cells/A B cells/A/10-21+24-27-38+ -0.511942433531603 0.116017105949115 1,65E+09 
CSF BCell B cells/A B cells/A/10-21+24-27+ 0.39651270211453 0.0899394035717269 1,67E+09 
CSF BCell B cells/A B cells/A/5-10-24-27+95+ 0.4222788784654 0.0958868493653467 1,70E+08 
CSF BCell B cells/E B cells/E/5-10-24-27+38- 0.754925884739329 0.17166865864343 1,74E+09 
CSF BCell B cells/A B cells/A/10-21-24-38-95+ 0.538042594288341 0.122689659456167 1,85E+09 
CSF BCell B cells/A B cells/A/5-21-27-38+95- -0.778444517375815 0.176559306287734 1,86E+09 



CSF BCell B cells/A B cells/A/21+24-27+95+ 0.468196577847108 0.106881558399905 1,87E+08 
CSF Monocyte Monocytes Monocytes/16-64+141-DR+ -0.912694789702719 0.180271972490504 9,00E+07 
CSF Monocyte Monocytes Monocytes/16-64+DR+ -0.899396790989666 0.179410990091352 1,13E+08 
CSF Monocyte Monocytes Monocytes/16-DR+ -0.797917013015882 0.16792430711564 3,70E+07 
CSF Monocyte Monocytes Monocytes/16-141-DR+ -0.79147859767956 0.167124408718432 3,98E+08 

CSF TCell CD8 CD8/25- 
-
0.0401205955995759 0.00624624397105357 8,98E+04 

CSF TCell CD8/Memory CD8/Memory/R4-R6-XR3- -0.373718804990211 0.064757452500993 2,80E+06 
CSF TCell CD8/Memory CD8/Memory/R4-R6-XR3-XR5- -0.373523674276885 0.0648135939999875 2,92E+06 
CSF TCell CD8/Memory CD8/Memory/R4-R6-R10-XR3- -0.372462898741606 0.0646536882616686 2,95E+06 
CSF TCell CD8/Memory CD8/Memory/R4-R6-R10-XR3-XR5- -0.372320415783658 0.0647126742570866 3,07E+06 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-XR3- -0.402834788529514 0.0705249801204665 3,83E+06 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-XR3-XR5- -0.402792367840453 0.0705772707759151 3,93E+06 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-R10-XR3- -0.401734515133089 0.0704508099999396 4,03E+05 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-R10-XR3-XR5- -0.401774006709406 0.0705043942101045 4,10E+06 
CSF TCell CD8 CD8/25+38-73+127+PD1-RO- 0.895658679170521 0.158481983356093 5,18E+06 
CSF TCell CD8 CD8/25+38-73+127+RO- 0.887158455256977 0.157095299781435 5,29E+06 
CSF TCell CD8 CD8/25+38-73+127+DR-RO- 0.897049832724384 0.159057032596309 5,50E+06 
CSF TCell CD8 CD8/25+38-39-73+127+DR-PD1-RO- 0.9222001638295 0.164109391667912 6,07E+05 
CSF TCell CD8 CD8/25+38-39-73+127+DR-RO- 0.91308421244039 0.162856687648771 6,47E+06 
CSF TCell CD8 CD8/25+38-73+127+DR-PD1-RO- 0.917204152099258 0.163764619059025 6,67E+06 
CSF TCell CD8 CD8/25+39-73+127+DR-PD1-RO- 0.884133238520194 0.158119530293901 7,01E+06 
CSF TCell CD8 CD8/25+73+127+PD1-RO- 0.869377783862024 0.155664877215303 7,25E+05 
CSF TCell CD8 CD8/25+38-39-73+127+RO- 0.900391992825333 0.161278016515219 7,29E+06 
CSF TCell CD8 CD8/25+39-73+127+DR-RO- 0.874456040392071 0.156735690154907 7,45E+06 
CSF TCell CD8 CD8/25+39-73+127+PD1-RO- 0.875133094083868 0.156903914176365 7,52E+05 
CSF TCell CD8 CD8/25+73+127+RO- 0.859950562496538 0.154265066367619 7,63E+06 



CSF TCell CD8 CD8/25+39-73+127+RO- 0.865746506010754 0.155448512771685 7,82E+06 
CSF TCell CD8 CD8/25+73+127+DR-PD1-RO- 0.875194531684365 0.157342097319207 8,11E+06 
CSF TCell CD8 CD8/25+73+127+DR-RO- 0.865204470638127 0.156042621172555 8,85E+06 
CSF TCell CD8 CD8/25+38-39-73+DR-PD1-RO- 0.871692408624342 0.15866240981859 1,14E+07 
CSF TCell CD8 CD8/25+38-DR-RO- 0.86044750314707 0.156752108785439 1,17E+07 
CSF TCell CD8 CD8/25+38-39-73+DR-RO- 0.863366024517634 0.157714275193745 1,26E+07 
CSF TCell CD8 CD8/25+38-39-73+PD1-RO- 0.855297039672264 0.156324606570155 1,27E+07 
CSF TCell CD8 CD8/25+38-39-73+127+DR- 0.824406797617867 0.150975562558143 1,33E+07 
CSF TCell CD8 CD8/25+38-39-73+127+DR-PD1- 0.827920564824763 0.151751854763783 1,36E+07 
CSF TCell CD8 CD8/25+38-39-73+RO- 0.847706384912267 0.155383432572199 1,38E+07 
CSF TCell CD8 CD8/25+38-DR-PD1-RO- 0.863909032139694 0.158592613643382 1,44E+07 
CSF TCell CD8 CD8/25+38-73+DR-PD1- 0.786229900184668 0.144579549964044 1,49E+07 
CSF TCell CD8 CD8/25+38-73+DR- 0.780587213812916 0.143847039585714 1,58E+07 
CSF TCell CD8 CD8/25+DR-RO- 0.837486917568089 0.154363932085586 1,60E+07 
CSF TCell CD8 CD8/25+39-73+DR-PD1-RO- 0.846074009501128 0.155995727874952 1,61E+07 
CSF TCell CD8 CD8/25+38-39-127+DR-RO- 0.883927294165827 0.163458079014254 1,74E+07 
CSF TCell CD8 CD8/25+39-73+PD1-RO- 0.832406028203075 0.154005891426298 1,77E+07 
CSF TCell CD8 CD8/25+39-73+DR-RO- 0.837112875559749 0.154986621531781 1,80E+07 
CSF TCell CD8 CD8/25+38-RO- 0.836523240013603 0.154927298202466 1,82E+05 
CSF TCell CD8 CD8/25+38-127+DR-RO- 0.879141662538317 0.1628467351221 1,82E+07 
CSF TCell CD8 CD8/25+38-73+127+DR- 0.806158095537646 0.149447573655003 1,84E+07 
CSF TCell CD8 CD8/25+38-73+127+DR-PD1- 0.810828803200447 0.150313282908552 1,85E+07 
CSF TCell CD8 CD8/25+38-39-73+127+ 0.814070866538389 0.150941553086821 1,85E+07 
CSF TCell CD8 CD8/27-28+RA-R5-R7+ 0.925222386642296 0.171579307782059 1,87E+07 
CSF TCell CD8 CD8/25+38-39-73+DR- 0.79442305314557 0.147351773942617 1,88E+07 
CSF TCell CD8 CD8/25+38-39-73+DR-PD1- 0.798181454652136 0.148077546530094 1,89E+07 
CSF TCell CD8 CD8/25+38-39-73+127+PD1- 0.817617003783051 0.151753961531504 1,90E+07 



CSF TCell CD8/Memory CD8/Memory/PD1-R4-R6-XR3- -0.397496869900654 0.073760317435007 1,92E+07 
CSF TCell CD8 CD8/25+38-39-127+DR-PD1-RO- 0.887326687882323 0.164701122666064 1,92E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10- 0.597404404791602 0.110928326508178 1,92E+07 
CSF TCell CD8 CD8/25+DR-PD1-RO- 0.842367476952512 0.15635066156953 1,92E+07 
CSF TCell CD8 CD8/25+39-73+RO- 0.824166444647228 0.153008470871523 1,93E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR5- 0.600135699900775 0.111514277892245 1,96E+07 
CSF TCell CD8 CD8/25+38-127+RO- 0.870498695957801 0.161697728032611 1,96E+07 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-R6-XR3-XR5- -0.397387998983119 0.0738107731358945 1,97E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10- 0.598008721962152 0.111185472151558 1,99E+07 
CSF TCell CD8 CD8/25+38-39-DR-RO- 0.845849877830491 0.157202998958879 1,99E+07 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-R6-R10-XR3- -0.396407978233415 0.0736688439352082 1,99E+07 
CSF TCell CD8 CD8/25+38-127+DR-PD1-RO- 0.882319488590486 0.164061104792101 2,01E+07 
CSF TCell CD8 CD8/25+38-39-127+RO- 0.875012955943157 0.16272231061823 2,02E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR5- 0.600943827038547 0.111815603718799 2,03E+07 
CSF TCell CD8/Memory CD8/Memory/PD1-R4-R6-R10-XR3-XR5- -0.396369838611447 0.0737219155722318 2,04E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+ 0.594409206508284 0.110656760781507 2,06E+07 
CSF TCell CD8 CD8/25+RO- 0.816580905141918 0.152082784311237 2,11E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR5- 0.596837793794769 0.111241387515974 2,12E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6- 0.594997655591279 0.110937714151124 2,14E+07 
CSF TCell CD8 CD8/25+38-73+PD1- 0.766916519134394 0.143022824832078 2,17E+07 
CSF TCell CD8 CD8/25+38-127+PD1-RO- 0.87359797715972 0.162933243555863 2,18E+07 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR5- 0.597689603566827 0.111568842596081 2,21E+07 
CSF TCell CD8 CD8/25+38-39-127+PD1-RO- 0.878593538945153 0.16399494629992 2,22E+07 
CSF TCell CD8 CD8/25+38-PD1-RO- 0.839494382188042 0.156715361230734 2,24E+07 
CSF TCell CD8 CD8/25+39-73+127+DR- 0.797946607320552 0.149043486378368 2,25E+07 
CSF TCell CD8 CD8/25+39-73+127+DR-PD1- 0.802181835019198 0.14995299463477 2,29E+07 
CSF TCell CD8 CD8/25+38-73+ 0.76176652377512 0.142382203501579 2,30E+07 



CSF TCell CD8 CD8/25+38-39-DR-PD1-RO- 0.849464565785246 0.159027723562196 2,40E+07 
CSF TCell CD8 CD8/25+38-73+127+ 0.795627982358133 0.149107158573825 2,45E+07 
CSF TCell CD8 CD8/25+38-73+127+PD1- 0.80007925573024 0.149976167998968 2,47E+07 
CSF TCell CD8 CD8/25+39-127+DR-RO- 0.862934181734907 0.161787004060835 2,49E+07 
CSF TCell CD8 CD8/25+127+DR-RO- 0.859140270614244 0.161120840924908 2,51E+07 
CSF TCell CD8 CD8/25+PD1-RO- 0.821245624241783 0.1539957699289 2,52E+07 
CSF TCell CD8 CD8/25+38-39-73+ 0.782342911047117 0.146783103047584 2,53E+07 
CSF TCell CD8 CD8/25+127+RO- 0.85031811892131 0.159514690772029 2,53E+07 
CSF TCell CD8 CD8/25+38-39-73+PD1- 0.786083570708594 0.147495392880044 2,54E+07 
CSF TCell CD8 CD8/25+73+DR-PD1- 0.758986195036239 0.142567494235977 2,61E+07 
CSF TCell CD8 CD8/25+39-127+DR-PD1-RO- 0.866568569186108 0.16305343133525 2,73E+07 
CSF TCell CD8 CD8/25+127+PD1-RO- 0.854737360480533 0.160826657282608 2,74E+07 
CSF TCell CD8 CD8/25+127+DR-PD1-RO- 0.863082813579618 0.16241070682259 2,74E+07 
CSF TCell CD8 CD8/25+39-127+RO- 0.854311131785275 0.160847033645532 2,78E+07 
CSF TCell CD8 CD8/25+73+DR- 0.751682804279102 0.141688755905113 2,86E+07 
CSF TCell CD8 CD8/25+38-39-127+DR- 0.815768287363735 0.153912576591429 2,91E+07 
CSF TCell CD8 CD8/25+38-39-RO- 0.829315999667875 0.156466362822825 2,94E+07 
CSF TCell CD8 CD8/25+39-DR-RO- 0.820491478814529 0.154867537302286 2,97E+06 
CSF TCell CD8 CD8/25+39-73+DR-PD1- 0.774775463871747 0.14630976786313 2,99E+07 
CSF TCell CD8 CD8/25+39-73+127+ 0.789357034733652 0.149118799827034 3,01E+07 
CSF TCell CD8 CD8/25+39-73+DR- 0.769878302864277 0.145475966455181 3,04E+07 
CSF TCell CD8 CD8/25+39-127+PD1-RO- 0.858273098505679 0.162161715588574 3,04E+07 
CSF TCell CD8 CD8/25+39-73+127+PD1- 0.793756461440163 0.150056013470959 3,07E+07 
CSF TCell CD8 CD8/25+38-39-DR- 0.798117468434644 0.150981013372361 3,12E+07 
CSF TCell CD8 CD8/RA-R5-R7+ 0.669208477274053 0.126675743246773 3,13E+07 
CSF TCell CD8 CD8/25+38-39-127+DR-PD1- 0.821988638395934 0.155751880617582 3,25E+07 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10- 0.560596908923904 0.106211539972373 3,27E+07 



CSF TCell CD8 CD8/25+38-39-73-127+DR-RO- 106.188.581.329.332 0.201187127664762 3,27E+07 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR5- 0.562880492834448 0.106816328066694 3,41E+06 
CSF TCell CD8 CD8/25+38-39-127+ 0.80909905658404 0.153601537202093 3,41E+07 

CSF TCell CD8 CD8/25-39- 
-
0.0444599806061857 0.00843843975832863 3,41E+07 

CSF TCell CD8/Memory CD8/Memory/R4+R6- 0.557499145537725 0.10580598930031 3,42E+07 
CSF TCell CD8 CD8/25+38-39-DR-PD1- 0.804128135901068 0.152763729232617 3,48E+07 
CSF TCell CD8 CD8/25+73+PD1- 0.740150826157069 0.140664361061763 3,53E+07 
CSF TCell CD8 CD8/25+38-39-PD1-RO- 0.832880934777779 0.158285156197885 3,53E+07 
CSF TCell CD8 CD8/25+39-DR-PD1-RO- 0.824805714818305 0.156810597866212 3,57E+07 
CSF TCell CD8/Memory CD8/Memory/R4+R6-XR5- 0.559602979500635 0.106421571145106 3,60E+07 
CSF TCell CD8 CD8/25+38-39-127+PD1- 0.815691826419006 0.155495925331863 3,78E+06 
CSF TCell CD8 CD8/25+73+127+DR-PD1- 0.779429238597012 0.148600899207489 3,80E+07 
CSF TCell CD8 CD8/25+73+127+DR- 0.77375803701471 0.147593473364133 3,85E+07 
CSF TCell CD8 CD8/25+39-73+PD1- 0.764102133060326 0.145796196710912 3,89E+07 
CSF TCell CD8 CD8/25+73-127+DR-RO- 103.651.278.750.971 0.197774180730637 3,90E+07 
CSF TCell CD8 CD8/25+73+ 0.733004589788374 0.139895622241349 3,92E+06 
CSF TCell CD8 CD8/25+38-39- 0.787474228946778 0.15034153131524 3,94E+07 
CSF TCell CD8 CD8/25+39-73+ 0.759122203351649 0.144976736942969 3,98E+07 
CSF TCell CD8 CD8/25+39-127+DR- 0.798204056206945 0.152522191666416 4,01E+07 
CSF TCell CD8/Memory CD8/Memory/R4+XR5- 0.55091941836414 0.105331628391099 4,12E+07 
CSF TCell CD8 CD8/25+39-RO- 0.805190459867173 0.153962707612486 4,12E+07 
CSF TCell CD8 CD8/28+RA-R5-R7+ 0.697512217317135 0.133771286877674 4,35E+07 
CSF TCell CD8 CD8/25+38-39-PD1- 0.793756685762331 0.152149968532986 4,36E+07 
CSF TCell CD8 CD8/25+39-DR- 0.778862295803255 0.149321852527071 4,37E+07 
CSF TCell CD8 CD8/25+39-127+DR-PD1- 0.804171348962367 0.154276752542893 4,43E+07 
CSF TCell CD8 CD8/25+38-39-73-DR- 0.90197901239045 0.173086208152416 4,46E+07 



CSF TCell CD8 CD8/25+39-127+ 0.790848130691659 0.151998088718627 4,64E+07 
CSF TCell CD8 CD8/25+73+127+PD1- 0.769982844516792 0.148013952135927 4,67E+07 
CSF TCell CD8 CD8/25+39-73-127+DR-RO- 103.812.841.860.981 0.199521818021783 4,68E+07 
CSF TCell CD8 CD8/25+73+127+ 0.764345520042837 0.147031443717753 4,75E+07 
CSF TCell CD8/Memory CD8/Memory/R4+R10- 0.554320483147561 0.106636234018013 4,75E+07 
CSF TCell CD8 CD8/25+39-DR-PD1- 0.784928199590338 0.151057336720197 4,80E+07 
CSF TCell CD8 CD8/25+38-DR- 0.769637886465857 0.148132266172238 4,82E+07 
CSF TCell CD8 CD8/25+39-PD1-RO- 0.809644027845178 0.155911904604573 4,92E+07 
CSF TCell CD8 CD8/25+38-73-127+DR-PD1-RO- 105.925.743.465.549 0.204034275237458 4,94E+07 
CSF TCell CD8 CD8/25+38-39-73-127+PD1-RO- 106.295.297.299.783 0.204799885409079 4,95E+06 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR5- 0.556410956056095 0.107240693877473 4,98E+07 
CSF TCell CD8/Memory CD8/Memory/R4+ 0.551001031674688 0.106209716706917 4,99E+07 
CSF TCell CD8 CD8/25+39-127+PD1- 0.797326901324424 0.153855981134153 5,12E+07 
CSF TCell CD8 CD8/25+38-DR-PD1- 0.776996006396638 0.14994373237666 5,15E+07 
CSF TCell CD4 CD4/38+73-127-RO- -0.592020669002826 0.11433556991957 5,21E+07 
CSF TCell CD8 CD8/25+38-39-73- 0.891795287418237 0.17229278345837 5,27E+07 
CSF TCell CD8 CD8/25+38-39-73-127+DR- 0.911965770725708 0.176283890514746 5,33E+07 
CSF TCell CD8 CD8/25+39- 0.76818025109301 0.14853310066041 5,40E+07 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1- 0.91095208048995 0.176175907362998 5,41E+06 
CSF TCell CD8 CD8/25+38-127+DR- 0.791730714261348 0.153133054957398 5,42E+07 
CSF TCell CD8 CD8/25+38-39-73-127+ 0.907317011100994 0.175653826033944 5,54E+07 
CSF TCell CD8 CD8/28+RA-R5- 0.595036031865201 0.115254926013453 5,57E+07 
CSF TCell CD4 CD4/38+39-73-127-RO- -0.59470595774001 0.115189205741545 5,60E+07 
CSF TCell CD8 CD8/25+38- 0.755385661847385 0.146476689698423 5,80E+06 
CSF TCell CD8 CD8/25+38-127+DR-PD1- 0.79924933514561 0.155064005887829 5,85E+07 
CSF TCell CD8 CD8/25+39-PD1- 0.774788930145129 0.15032966763157 5,88E+07 
CSF TCell CD8 CD8/25+39-73-DR- 0.885883466982923 0.171967661174729 5,92E+07 



CSF TCell CD8 CD8/25+38-39-73-127+DR-PD1-RO- 106.096.197.497.397 0.206053907792513 6,05E+07 
CSF TCell CD8 CD8/25+38-PD1- 0.762717842199934 0.148263047190036 6,16E+07 
CSF TCell CD8 CD8/25+38-39-73-PD1- 0.901559871582111 0.175418109380378 6,27E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10- 0.644961381200558 0.125511300947715 6,31E+07 
CSF TCell CD8 CD8/25+38-127+ 0.783766666065136 0.152567059480945 6,34E+07 
CSF TCell CD8 CD8/25+38-39-73-127+DR-PD1- 0.922073879644001 0.179572953065411 6,40E+07 
CSF TCell CD8 CD8/25+73-127+DR-PD1-RO- 103.157.397.711.495 0.200827049616979 6,41E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR5- 0.649799972178198 0.126531941054336 6,41E+07 
CSF TCell CD4 CD4/25-38+73- -0.296020549235085 0.0577014987834502 6,42E+06 
CSF TCell CD8 CD8/25+38-39-73-127+PD1- 0.918356789260997 0.178994009288223 6,53E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-R10- 0.646917816145617 0.126095480067021 6,56E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-R10-XR5- 0.651996500162206 0.127170709956562 6,67E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+ 0.640384789874185 0.12498404843723 6,78E+06 
CSF TCell CD8 CD8/25+38-127+PD1- 0.791536404586851 0.154524020330457 6,80E+07 
CSF TCell CD8 CD8/25+38-39-73+127+PD1-RO- 0.840027097218004 0.164027673177487 6,88E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR5- 0.645059740069042 0.125985365283675 6,89E+07 
CSF TCell CD8 CD8/25+39-73-127+DR- 0.900203684823723 0.175858394493939 6,90E+07 
CSF TCell CD8 CD8/25+39-73-127+PD1-RO- 102.789.761.277.149 0.200765723922018 6,91E+07 
CSF TCell CD8 CD8/25+39-73- 0.873602962267694 0.170675612607669 6,93E+07 
CSF TCell CD8 CD8/25+38-39-73-PD1-RO- 100.702.284.970.668 0.196756402160137 6,96E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6- 0.642421248894774 0.125609896067456 7,08E+07 
CSF TCell CD8 CD8/25+DR- 0.749354839579432 0.146550573341644 7,12E+07 
CSF TCell CD8 CD8/25+39-73-127+ 0.892387126017858 0.174563725119681 7,12E+06 
CSF TCell CD4 CD4/27+31+127-RA+ -0.609281886890086 0.119214362236241 7,19E+07 
CSF TCell CD8 CD8/25+39-73-DR-PD1- 0.893935857815204 0.17492975869135 7,20E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR5- 0.647322258853654 0.126671415363367 7,22E+07 
CSF TCell CD8 CD8/25+DR-PD1- 0.757187883241064 0.148390527135573 7,49E+07 



CSF TCell CD8 CD8/25+39-73-127+DR-PD1-RO- 103.396.521.109.229 0.202606985014835 7,50E+07 
CSF TCell CD8 CD8/25+127+DR- 0.773718473391884 0.15184541768424 7,72E+07 
CSF TCell CD4 CD4/25-38+39-73-127-RO- -0.584537294743484 0.114933305885073 8,09E+07 
CSF TCell CD8 CD8/25+39-73-127+DR-PD1- 0.909484722950847 0.178962104985858 8,20E+07 
CSF TCell CD8 CD8/25+39-73-PD1- 0.882564564801285 0.173715863486468 8,28E+07 
CSF TCell CD8 CD8/25+127+DR-PD1- 0.781047366474429 0.153733269325661 8,28E+07 
CSF TCell CD8 CD8/25+38-39-73+127+DR-RO+ 0.862239547894159 0.169833931008488 8,42E+07 
CSF TCell CD8 CD8/25+39-73-127+PD1- 0.902489920494273 0.177775664770421 8,42E+07 
CSF TCell CD8 CD8/25+ 0.734176917927622 0.144625233308176 8,48E+07 
CSF TCell CD8 CD8/25+38-39-73+DR-RO+ 0.856727906338546 0.169017452798133 8,74E+07 
CSF TCell CD8 CD8/25+PD1- 0.742340729986619 0.14645991705868 8,79E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR3+XR5- 102.192.320.410.268 0.201721964403727 8,90E+05 
CSF TCell CD8 CD8/25+127+ 0.763977130747828 0.150947929454479 9,07E+07 
CSF TCell CD8 CD8/25+127+DR-RO+ 0.838538059710216 0.165766445551728 9,13E+07 
CSF TCell CD8 CD8/25+38-73-127+DR- 0.88296265223338 0.174743921602819 9,40E+07 
CSF TCell CD8 CD8/25+127+PD1- 0.772006523841541 0.152889106696221 9,58E+07 
CSF TCell CD8 CD8/25+38-73-127+ 0.876863248673461 0.174099165492744 1,01E+08 
CSF TCell CD4 CD4/25-38+39-73-DR+ -0.747793204706806 0.148388771423797 1,02E+08 
CSF TCell CD8 CD8/25+38-39-73+127+DR-PD1-RO+ 0.863126330016295 0.171433404422427 1,03E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3+XR5- 0.995533391853959 0.197698623368859 1,03E+08 
CSF TCell CD8 CD8/25+38-39-73+127+RO+ 0.856370587653628 0.170416422544955 1,07E+08 
CSF TCell CD4 CD4/25-38+73-127-RO- -0.58578155098465 0.116587929280112 1,07E+08 
CSF TCell CD8 CD8/27+RA-R5-R7+ 0.669927401071901 0.133388082219652 1,08E+08 
CSF TCell CD8 CD8/25+38-39-73+DR-PD1-RO+ 0.859667636915083 0.171144919481654 1,08E+08 
CSF TCell CD8 CD8/25+38-73-127+DR-PD1- 0.895082115100362 0.178216553332057 1,08E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10-XR3+XR5- 0.933609889647887 0.185824617337566 1,09E+08 
CSF TCell CD8 CD8/25+38-39-73+RO+ 0.850795943526872 0.16947042971432 1,10E+08 



CSF TCell CD8 CD8/25+127+RO+ 0.828421297519912 0.165149340802426 1,11E+08 
CSF TCell CD8 CD8/25+38-73-DR- 0.849455450750928 0.169480390168287 1,14E+08 
CSF TCell CD8 CD8/25+38-73-127+PD1- 0.889836987245174 0.177579389398003 1,14E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-XR3+XR5- 0.925421206200019 0.184677778094791 1,15E+08 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-R10-
XR3+XR5- 103.701.145.233.215 0.206982180357562 1,15E+07 

CSF TCell CD8 CD8/27+28+RA-R5-R7+ 0.678817347912871 0.13562975533613 1,17E+08 
CSF TCell CD4 CD4/38+73-127-DR-RO- -0.578972300861669 0.115734875998524 1,19E+08 
CSF TCell CD8 CD8/27-57-127+244-RA- 0.775467846981258 0.155063800683782 1,20E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R6-XR3- -0.950784101803191 0.190215423608864 1,21E+07 
CSF TCell CD4 CD4/25-38+73-DR- -0.292285935539984 0.0585256142792199 1,21E+08 
CSF TCell CD4 CD4/38+73-DR- -0.291341668957826 0.0583387285795782 1,22E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R6-XR3-XR5- -0.950397965769078 0.190256651994638 1,23E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R6-R10-XR3- -0.950519450828205 0.190356428886769 1,24E+08 
CSF TCell CD8 CD8/27-57-95+127+244-RA- 0.775763920606306 0.155359391100233 1,24E+07 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R6-R10-XR3-XR5- -0.950235716545105 0.190384245480621 1,25E+08 
CSF TCell CD8 CD8/27-127+244-RA- 0.773714766565097 0.155048914918524 1,26E+08 
CSF TCell CD8 CD8/25+73-127+DR- 0.870009730947577 0.174479447651548 1,28E+08 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR3+XR5- 101.197.101.157.543 0.203046643398192 1,30E+08 
CSF TCell CD8 CD8/25+38-39-73+127+PD1-RO+ 0.857595607984258 0.172107481513734 1,30E+08 
CSF TCell CD8 CD8/27-95+127+244-RA- 0.773935223819175 0.155354157735631 1,31E+08 
CSF TCell CD8 CD8/27-28+57-127+244-RA- 0.775884854253569 0.155802572432737 1,32E+07 
CSF TCell CD8 CD8/25+38-73-DR-PD1- 0.860057524730818 0.172712841086303 1,32E+08 
CSF TCell CD8 CD8/27-28+57-95+127+244-RA- 0.776315912888953 0.155930896391764 1,33E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10- 0.609120649283286 0.122370637392061 1,33E+08 
CSF TCell CD8 CD8/25+38-73+127+DR-RO+ 0.834234046932266 0.167627329565778 1,34E+08 
CSF TCell CD8 CD8/25+38-73- 0.83802037613311 0.168431630106449 1,35E+08 



CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10-XR5- 0.614241943076456 0.123469385325541 1,35E+08 
CSF TCell CD8 CD8/25+38-39-73+PD1-RO+ 0.854070902021497 0.171680311961212 1,36E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-R6-XR3- -0.97031821408253 0.195122005410639 1,36E+08 
CSF TCell CD4 CD4/38+127-RO- -0.575838960980693 0.115796408795736 1,36E+08 
CSF TCell CD8 CD8/27-28+127+244-RA- 0.775086201266979 0.155913840625363 1,38E+07 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-R6-XR3-XR5- -0.969987562552939 0.195165704149835 1,38E+08 
CSF TCell CD8 CD8/27-28+95+127+244-RA- 0.775486284931094 0.156049461873173 1,39E+08 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR3+ 100.835.507.630.744 0.20289801286482 1,39E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6- 0.60477060971568 0.121821907880603 1,42E+08 
CSF TCell CD8 CD8/25+73-127+ 0.859394824191448 0.173180537367915 1,43E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-R6-R10-XR3- -0.968417182108096 0.195166975977587 1,43E+08 
CSF TCell CD4 CD4/38+39-73- -0.297633663052406 0.0600256995424213 1,43E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10- 0.598718072957056 0.120672852628757 1,44E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-XR5- 0.609712278176525 0.122907323087383 1,44E+08 
CSF TCell CD4 CD4/38+39-127-RO- -0.579224182347182 0.116787212474376 1,45E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10-XR5- 0.603438742206411 0.121710834562235 1,46E+08 
CSF TCell CD4 CD4/38+39-73-DR+ -0.736716497538433 0.148506710510706 1,47E+07 
CSF TCell CD8/Memory CD8/Memory/161+R6-XR3-XR5- -0.894158575649381 0.180377761936256 1,48E+08 
CSF TCell CD8 CD8/25+73-127+DR-PD1- 0.880846593217173 0.177801741571583 1,49E+08 
CSF TCell CD8 CD8/27-31-95+127+244- 0.767988446169645 0.155023095922587 1,49E+08 

CSF TCell CD8/Memory 
CD8/Memory/161+PD1-R4-R6-R10-XR3-
XR5- -0.967329945056132 0.195460986912225 1,52E+08 

CSF TCell CD4 CD4/25-38+39-73- -0.297062830466197 0.0600653770032293 1,52E+08 
CSF TCell CD8/Memory CD8/Memory/161+R6-R10-XR3-XR5- -0.893381696868991 0.180479264394882 1,53E+08 
CSF TCell CD8 CD8/27-31-127+244-RA- 0.791029372125551 0.159888796985322 1,54E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+ 0.5939169664904 0.120062156729328 1,54E+08 
CSF TCell CD8 CD8/25+38-73-PD1- 0.849165264430683 0.171673552730769 1,54E+07 



CSF TCell CD8 CD8/25+38-73+DR-RO+ 0.80046793265701 0.161866443997693 1,55E+08 
CSF TCell CD8 CD8/27-31-57-127+244-RA- 0.791455290365092 0.160037349295472 1,55E+08 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3+ 0.983600068582276 0.198945258008203 1,57E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+XR5- 0.598466436781359 0.121080745235989 1,57E+08 
CSF TCell CD8 CD8/25+38-73-DR-RO- 0.945763037058885 0.191319133061879 1,57E+08 
CSF TCell CD8 CD8/25+39-73+127+DR-RO+ 0.832938584126571 0.168562175220228 1,58E+08 
CSF TCell CD8 CD8/27-95+127+244- 0.732702055643052 0.148277288033366 1,58E+08 
CSF TCell CD8 CD8/25+39-73+DR-RO+ 0.827426564411335 0.167540173353609 1,60E+08 
CSF TCell CD8 CD8/27-31-95+127+244-RA- 0.791185553947494 0.160243249627004 1,61E+08 
CSF TCell CD8 CD8/27-31-57-95+127+244-RA- 0.791746826192192 0.16039349366831 1,62E+08 
CSF TCell CD8 CD8/25+73-127+PD1- 0.87113881692346 0.176533906655618 1,63E+08 
CSF TCell CD8 CD8/27-31-57-95+127+244- 0.766793133277445 0.155385572630337 1,63E+08 
CSF TCell CD8 CD8/25+38-73+127+DR-PD1-RO+ 0.83605376932471 0.16943294340567 1,63E+08 
CSF TCell CD8 CD8/25+73-DR- 0.831289146888192 0.168475117417158 1,63E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10-XR3+ 0.92083358523535 0.186692678606516 1,66E+08 
CSF TCell CD4 CD4/27+31+57-127-RA+ -0.59477020180336 0.120651306661806 1,67E+08 
CSF TCell CD8 CD8/27-28+31-127+244-RA- 0.794004474317577 0.161147498357381 1,69E+08 
CSF TCell CD8 CD8/27-28+31-57-127+244-RA- 0.793678885383684 0.161149674553717 1,70E+08 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-R10-XR3+ 102.648.670.935.026 0.208400909292848 1,70E+07 
CSF TCell CD4 CD4/38+73- -0.288991690834849 0.0587496961664584 1,71E+08 
CSF TCell CD8 CD8/27-28+31-95+127+244-RA- 0.794048214765004 0.161259729629989 1,71E+08 

CSF TCell DPT DPT/25-39-DR+ 
-

106.852.494.601.682 0.214984172226102 1,71E+08 
CSF TCell CD4 CD4/38+39-73-DR- -0.295957907978454 0.0601464762093715 1,72E+07 
CSF TCell CD8 CD8/27-28+31-57-95+127+244-RA- 0.793811104946928 0.161262235722198 1,72E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-XR3+ 0.913265225203085 0.18552096309441 1,73E+08 
CSF TCell CD8 CD8/27-57-95+127+244- 0.731025936862354 0.148591028590826 1,75E+08 



CSF TCell CD8 CD8/25+38-73+127+RO+ 0.82639854226632 0.168006731610345 1,75E+08 
CSF TCell CD8 CD8/25+38-73+DR-PD1-RO+ 0.803149045700472 0.163408065393483 1,78E+08 
CSF TCell CD4 CD4/38+73-127-PD1-RO- -0.567424244567535 0.115702313052548 1,87E+08 
CSF TCell CD4 CD4/27+28+31+57-127-RA+ -0.609511621533267 0.124349168019342 1,90E+08 
CSF TCell CD8 CD8/25+DR-RO+ 0.793874659905452 0.16200291594116 1,90E+08 
CSF TCell CD8 CD8/25+73-DR-PD1- 0.841189475209678 0.171658316027553 1,91E+08 
CSF TCell CD8 CD8/25+39-73+DR-PD1-RO+ 0.831248337290158 0.169666297377428 1,92E+08 
CSF TCell CD8 CD8/27-28+31-57-95+127+244- 0.767494703637734 0.156662941570231 1,92E+08 
CSF TCell CD8 CD8/25+39-73+127+DR-PD1-RO+ 0.834402530631449 0.17035311311578 1,93E+08 
CSF TCell CD8 CD8/27-28+31-95+127+244- 0.767220280628002 0.156652032308926 1,93E+08 
CSF TCell CD8 CD8/25+38-39-73-DR-RO- 0.946975022563097 0.193406414176077 1,95E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+XR3+XR5- 0.8653569893116 0.176727755417188 1,95E+08 
CSF TCell CD8 CD8/25+38-73+RO+ 0.793320789313046 0.162122953936789 1,97E+08 
CSF TCell CD8 CD8/25+73- 0.816516827214282 0.166892887657457 1,98E+08 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR3+ 0.999738644584699 0.204372229408406 1,99E+08 
CSF TCell CD8 CD8/27-28+57-95+127+244- 0.733827443304689 0.150148362247379 2,03E+08 
CSF TCell CD8 CD8/25+39-73+RO+ 0.820267985056145 0.167934200106866 2,05E+07 
CSF TCell CD8 CD8/25+39-73+127+RO+ 0.826368804952199 0.169202860470211 2,05E+08 
CSF TCell CD8 CD8/25+38-73-127+RO- 0.969958281783265 0.198603979262936 2,06E+08 
CSF TCell CD8 CD8/27-28+95+127+244- 0.733084985819374 0.150237751189452 2,10E+08 
CSF TCell CD4 CD4/25-38+39-DR+ -0.700469183827762 0.143503091231553 2,11E+08 
CSF TCell CD4 CD4/27+28+31+127-RA+ -0.612824443834532 0.125674450919909 2,12E+07 
CSF TCell CD8 CD8/25+38-73+127+PD1-RO+ 0.828378259244389 0.169884922560686 2,13E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10-XR3+XR5- 0.880975175109124 0.18078161330641 2,17E+08 
CSF TCell CD8 CD8/25+38-73+PD1-RO+ 0.796620986422484 0.163735621657944 2,24E+08 
CSF TCell CD8 CD8/25+73-PD1- 0.827018705277322 0.170092032129622 2,27E+08 
CSF TCell CD4 CD4/25-38+39-127-RO- -0.575536137803467 0.118509928526154 2,32E+08 



CSF TCell CD8 CD8/25+38-39-127+DR-RO+ 0.819619051913999 0.168829522301742 2,34E+08 
CSF TCell CD8 CD8/25+RO+ 0.782636350060212 0.161213821261747 2,34E+08 
CSF TCell CD8 CD8/25+38-73-RO- 0.91649270102084 0.188786246597752 2,36E+08 
CSF TCell CD8 CD8/25+38-73-127+DR-RO- 0.973712897965955 0.200624057583903 2,38E+08 
CSF TCell CD4 CD4/38+73-127+ -0.295364055873402 0.0609183622891517 2,38E+08 
CSF TCell CD8 CD8/25+39-73+PD1-RO+ 0.824444838617056 0.170138355993002 2,45E+08 
CSF TCell CD8 CD8/25+PD1-RO+ 0.793337850407505 0.163784347089412 2,46E+08 
CSF TCell CD4 CD4/25-38+73-127-DR-RO- -0.572464736311224 0.118212359079276 2,47E+08 
CSF TCell CD4 CD4/38+73-PD1- -0.293286401937499 0.0605910331504833 2,47E+08 
CSF TCell CD4 CD4/25-38+73-PD1- -0.294452583820471 0.0608390280299047 2,48E+08 
CSF TCell CD4 CD4/25-38+73-127+ -0.295018734198996 0.0609632148805547 2,48E+08 
CSF TCell CD8 CD8/25+39-73+127+PD1-RO+ 0.828177355890604 0.171073749095735 2,50E+08 
CSF TCell CD8 CD8/25+38-39-73-127+RO- 0.973642788970427 0.201170864381891 2,52E+08 
CSF TCell CD4 CD4/25-38+39-73-DR- -0.292938431821091 0.0605976850807829 2,53E+08 
CSF TCell CD8 CD8/25+73-DR-RO- 0.910190732507963 0.188175498062413 2,55E+08 
CSF TCell CD4 CD4/25-38+127-RO- -0.570701427652571 0.118027876810991 2,56E+08 
CSF TCell CD8 CD8/25+38-39-127+DR-PD1-RO+ 0.827346251941764 0.171142539809142 2,57E+08 
CSF TCell CD8 CD8/25+73+127+DR-RO+ 0.803973247515928 0.166330008989791 2,58E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR3+XR5- 0.948594962830946 0.19625041789842 2,60E+08 
CSF TCell CD8 CD8/25+38-39-127+RO+ 0.813647480151884 0.168423711437438 2,60E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3+XR5- 0.895639073441476 0.185326535748196 2,61E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-XR3- -0.867835488508845 0.179613611935643 2,61E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-XR3-XR5- -0.867520349593784 0.179663422081009 2,64E+07 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-XR3- -0.614897540024935 0.12741323016215 2,66E+08 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-R10-XR3- -0.614620286757921 0.127371590292827 2,66E+08 
CSF TCell CD8 CD8/25+38-39-DR-RO+ 0.815065713397053 0.168924578083662 2,68E+08 
CSF TCell CD4 CD4/38+127-DR-RO- -0.566628359034826 0.117501136285951 2,71E+08 



CSF TCell CD8/Memory CD8/Memory/161+PD1-R10-XR3- -0.866904263895364 0.179750660223639 2,71E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R10-XR3-XR5- -0.866676978934144 0.179787744152144 2,74E+07 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+XR3+ 0.855361576744128 0.17749963460935 2,77E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R6-XR3-XR5- -0.766396999234538 0.159195222991119 2,82E+08 
CSF TCell CD8 CD8/25+38-39-127+PD1-RO+ 0.821850372413154 0.170766887175277 2,83E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR3+XR5- 0.931657826359585 0.19352357005914 2,85E+08 
CSF TCell CD4 CD4/25-38+73-127-PD1-RO- -0.557022881780256 0.115771642340977 2,86E+08 
CSF TCell CD8 CD8/25+38-39-73-127+DR-RO+ 0.897327638681147 0.186626777318054 2,88E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R6-XR3+XR5- 0.886968164438144 0.184445932198348 2,90E+08 
CSF TCell CD8 CD8/25+38-39-73-127+DR-PD1-RO+ 0.911126352922938 0.189635755380661 2,92E+08 
CSF TCell CD4 CD4/25-38+39-73-DR+RO+ -0.753911089966943 0.156894062312869 2,97E+07 
CSF TCell CD8 CD8/25+38-39-RO+ 0.808688717894007 0.168453474649013 2,99E+08 
CSF TCell CD8 CD8/25+38-39-73-127+RO+ 0.891928846389925 0.18585133367033 3,00E+08 
CSF TCell CD8 CD8/25+38-39-DR-PD1-RO+ 0.823017788965108 0.171476872276664 3,00E+08 
CSF TCell CD8 CD8/25+38-39-73-127+PD1-RO+ 0.906309869562748 0.188876355839074 3,01E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R6-R10-XR3-XR5- -0.76466079207615 0.159351141766936 3,03E+08 
CSF TCell CD8 CD8/25+38-39-73-RO- 0.921232341970071 0.192039010504189 3,06E+08 
CSF TCell CD4 CD4/38+39-DR+ -0.689497471544949 0.143743227740751 3,09E+08 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10-XR3+ 0.870935533750622 0.181722007505583 3,12E+08 
CSF TCell CD8 CD8/25+73+127+DR-PD1-RO+ 0.806711697244945 0.168366074874405 3,12E+08 
CSF TCell CD8 CD8/25+39-73-DR-RO- 0.909753918575962 0.189861473430292 3,13E+08 
CSF TCell CD8 CD8/25+38-39-73-DR-RO+ 0.892326490232378 0.186477793831473 3,19E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR3+XR5- 0.939369812567759 0.19629106371021 3,21E+07 
CSF TCell CD8 CD8/25+38-73-DR-PD1-RO- 0.943831212268446 0.197308495011857 3,24E+07 
CSF TCell CD4 CD4/38+73-DR-PD1- -0.29218859233987 0.0611425570548298 3,27E+08 
CSF TCell CD4 CD4/25-38+73-DR-PD1- -0.293131534966344 0.0613406821971455 3,27E+08 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1-RO+ 0.906038636133021 0.189549304454945 3,27E+08 



CSF TCell CD4 CD4/27+28+31+127-244-RA+ -0.61313111008181 0.128262259877634 3,27E+08 
CSF TCell CD4 CD4/38+73-127+DR- -0.292602781609675 0.0612391172753005 3,27E+07 
CSF TCell CD8 CD8/25+73+DR-RO+ 0.764117029367035 0.159846195574731 3,28E+08 
CSF TCell CD8 CD8/25+38-39-PD1-RO+ 0.817223963389791 0.171002596088612 3,29E+08 
CSF TCell CD8 CD8/25+38-39-73-RO+ 0.886068514932227 0.185594418236084 3,36E+08 
CSF TCell CD4 CD4/27+28+31+57-127-244-RA+ -0.608372227014028 0.12739977894979 3,36E+07 
CSF TCell CD8 CD8/25+38-39-73-PD1-RO+ 0.900538792237508 0.188650846789729 3,36E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-XR3- -0.883050868055305 0.184944924589111 3,37E+08 
CSF TCell CD4 CD4/38+39-127-DR-RO- -0.566076856631195 0.118602221159286 3,38E+08 
CSF TCell CD8 CD8/25+39-127+DR-RO+ 0.802198712429052 0.168123527613775 3,40E+07 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-XR3-XR5- -0.882810988371753 0.184987856019262 3,41E+08 
CSF TCell CD4 CD4/25-38+73-127+DR- -0.292227782998949 0.0612831815649459 3,42E+08 

CSF TCell CD8 CD8/25-DR- 
-
0.0364913869399958 0.00764890626872658 3,46E+08 

CSF TCell CD8 CD8/28+RA-R7+ 0.549884612360861 0.115359383677272 3,48E+08 
CSF TCell CD8/Memory CD8/Memory/161+R6-XR3- -0.883373198198046 0.185301633397836 3,48E+08 
CSF TCell CD8 CD8/RA-R7+ 0.501080830121048 0.105113654876166 3,48E+08 
CSF TCell CD8 CD8/27+28+RA-R5- 0.592331416404662 0.124341431750712 3,51E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-R10-XR3- -0.881500250407289 0.184988408284205 3,52E+08 
CSF TCell CD8/Memory CD8/Memory/161+PD1-R4-R10-XR3-XR5- -0.881338231735941 0.185010919215009 3,54E+08 
CSF TCell CD8 CD8/25+73-127+RO- 0.936939107920783 0.196714433085972 3,56E+08 
CSF TCell CD8 CD8/25+73+127+RO+ 0.792334728747962 0.166447726673389 3,59E+08 
CSF TCell CD8/Memory CD8/Memory/161+R6-R10-XR3- -0.882548963054134 0.185408755355887 3,60E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-R10-XR3- -0.627246234342965 0.131850020326532 3,61E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-XR3- -0.626602967000621 0.131817557497264 3,67E+08 
CSF TCell CD8 CD8/25+73+DR-PD1-RO+ 0.768093911030074 0.161540145984708 3,68E+08 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-XR3-XR5- -0.634751888939393 0.133538625633541 3,68E+08 



CSF TCell CD8 CD8/25+38-73-127+PD1-RO- 0.968346139182108 0.203654597931485 3,69E+08 
CSF TCell CD8 CD8/25+39-73-127+DR-RO+ 0.886030879061105 0.186444658948965 3,70E+08 
CSF TCell CD8 CD8/25+73-RO- 0.880136867356196 0.185156137267238 3,71E+08 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-R10-XR3-XR5- -0.634094522549264 0.133479501265693 3,73E+08 
CSF TCell CD8 CD8/25+39-127+DR-PD1-RO+ 0.809286119093832 0.17039737735316 3,76E+08 
CSF TCell CD8 CD8/25+39-73-127+DR-PD1-RO+ 0.899058002981471 0.18941061628503 3,79E+08 
CSF TCell CD8 CD8/25+39-127+RO+ 0.795482860453574 0.167585782338113 3,80E+08 
CSF TCell CD8 CD8/25+39-73-127+RO+ 0.879844216038351 0.185448400638884 3,83E+08 
CSF TCell CD8 CD8/25+39-DR-RO+ 0.796447990922899 0.167872299599951 3,84E+08 
CSF TCell CD8/Memory CD8/Memory/161+R4-R6-XR3- -0.902985666809013 0.190309030082895 3,84E+08 
CSF TCell CD4 CD4/38+73-127-DR-PD1-RO- -0.556937358666414 0.117397172081115 3,85E+08 
CSF TCell CD8/Memory CD8/Memory/161+R4-R6-XR3-XR5- -0.903046065326009 0.190347165977066 3,86E+08 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1-RO- 0.945279677420507 0.199333805562978 3,90E+08 
CSF TCell CD4 CD4/25-38+39-DR+RO+ -0.737706905455055 0.155520032183173 3,92E+08 
CSF TCell CD4 CD4/38+39-73-PD1- -0.29522916583328 0.0623146017573184 3,93E+08 
CSF TCell CD4 CD4/38+39-73-127+ -0.294446316496592 0.0621578257188325 3,94E+08 
CSF TCell CD8 CD8/25+39-73-127+RO- 0.943144917317258 0.198973500996253 3,94E+07 
CSF TCell CD8 CD8/25+39-73-127+PD1-RO+ 0.89372272515136 0.188665887772804 3,96E+08 
CSF TCell CD4 CD4/38+39- -0.284773655457708 0.0601286753284384 3,96E+08 
CSF TCell CD8/Memory CD8/Memory/161+R4-R6-R10-XR3- -0.901290868573862 0.190334579150402 4,01E+08 
CSF TCell CD8/Memory CD8/Memory/161+R4-R6-R10-XR3-XR5- -0.901403046141497 0.190360058437755 4,01E+08 
CSF TCell CD8 CD8/25+39-73-DR-RO+ 0.879178686562951 0.185764170838111 4,04E+07 
CSF TCell CD4/Memory CD4/Memory/161+R6-XR3- -0.623599734539479 0.131783300374691 4,07E+08 
CSF TCell CD4 CD4/38+39-127-PD1-RO- -0.559249643235919 0.118275723654005 4,13E+08 
CSF TCell CD4 CD4/25-38+39-73-127+ -0.293755230999343 0.0621597177404371 4,14E+08 
CSF TCell CD4 CD4/25-38+39-73-PD1- -0.294765117461132 0.0623878448768904 4,17E+08 
CSF TCell CD4 CD4/25-38+39- -0.284317779977831 0.0601783158255386 4,17E+08 



CSF TCell CD4/Memory CD4/Memory/161+R6-R10-XR3- -0.622968822683622 0.131839401946959 4,20E+08 
CSF TCell CD8 CD8/25+39-127+PD1-RO+ 0.80328607657231 0.170062522425322 4,22E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3+ 0.88477293507831 0.187267816375689 4,23E+08 
CSF TCell CD8 CD8/25+39-73-DR-PD1-RO+ 0.892040950769695 0.188908356916755 4,24E+08 
CSF TCell CD8 CD8/28+31-57-95+127+244- 0.641712992303291 0.135876931850373 4,24E+08 
CSF TCell CD8 CD8/25+73+127+PD1-RO+ 0.795221243750958 0.168444802783736 4,28E+08 
CSF TCell CD8/Memory CD8/Memory/R4+XR3+XR5- 0.852862391038929 0.180658282564758 4,29E+08 
CSF TCell CD8 CD8/25+39-DR-PD1-RO+ 0.804075031292645 0.170367073311343 4,29E+08 
CSF TCell CD8 CD8/25+39-73-RO+ 0.8720823078001 0.184796545136947 4,29E+08 
CSF TCell CD8 CD8/28+31-95+127+244- 0.641126488233354 0.135856632798423 4,31E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3+XR5- 0.951150909127391 0.201539709281352 4,32E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+XR3-XR5- -0.675818914794435 0.143221976390331 4,35E+08 
CSF TCell CD8 CD8/25+39-RO+ 0.789153256954674 0.167304132273268 4,35E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR3+ 0.93547779652782 0.198308216302156 4,37E+08 
CSF TCell CD8 CD8/25+73+RO+ 0.752131789985639 0.159487132738982 4,38E+08 
CSF TCell CD8 CD8/27-28+31-127+244- 0.732468187965203 0.155404797052904 4,44E+08 
CSF TCell CD4 CD4/38+127-PD1-RO- -0.552208215839938 0.11720393768314 4,45E+08 
CSF TCell CD8 CD8/25+39-73-PD1-RO+ 0.885953812015832 0.188075188547273 4,46E+08 
CSF TCell CD8 CD8/27-28+31-57-127+244- 0.732357656401983 0.155457762763339 4,48E+08 
CSF TCell CD8 CD8/25+73-DR-PD1-RO- 0.904936318534896 0.192110128160142 4,49E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3+XR5- 0.873132841869018 0.185423631561375 4,52E+07 
CSF TCell CD4 CD4/25-38+DR- -0.277233259060166 0.0589311602078586 4,54E+08 
CSF TCell CD4 CD4/38+DR- -0.276295860360152 0.0587423478409735 4,56E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R6-XR3+ 0.876877708863957 0.186283224295734 4,56E+08 
CSF TCell CD8 CD8/27-31-127+244- 0.726600278879728 0.154418590352137 4,59E+08 
CSF TCell CD8 CD8/31-57-95+127+244- 0.635683950325213 0.135259907719948 4,70E+08 
CSF TCell CD4 CD4/38+127+PD1- -0.289403279439817 0.0616025274815656 4,71E+08 



CSF TCell CD8 CD8/31-95+127+244- 0.634861610413229 0.135117222896161 4,72E+08 
CSF TCell CD8 CD8/25+73+PD1-RO+ 0.757146140016746 0.161185779701555 4,76E+08 
CSF TCell CD8 CD8/25+38-73-PD1-RO- 0.915280294505155 0.194874701710755 4,78E+08 
CSF TCell CD8 CD8/25+39-PD1-RO+ 0.797614586033831 0.169924924149563 4,81E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R10-XR3-XR5- -0.674421115442577 0.143639834111662 4,82E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR3+ 0.915991316376584 0.195049122909115 4,83E+08 
CSF TCell CD4 CD4/25-38+127+PD1- -0.289259630583628 0.0616591257278109 4,86E+08 
CSF TCell CD8 CD8/25+39-73-RO- 0.881944715899092 0.188118148483791 4,96E+08 
CSF TCell CD4 CD4/38+39-73-DR-PD1- -0.293289809883539 0.0626309260514654 5,02E+08 
CSF TCell CD4 CD4/25-38+127-DR-RO- -0.561544534221784 0.119965215926963 5,09E+08 
CSF TCell CD8 CD8/27-31-57-127+244- 0.724451705432356 0.154769151609908 5,12E+08 
CSF TCell CD8 CD8/25+38-127+DR-RO+ 0.784196564732202 0.167599228183774 5,14E+08 
CSF TCell CD8 CD8/27-28+31-57-95+244- 0.696226152839714 0.148793150325515 5,17E+08 
CSF TCell CD8 CD8/27-28+57-95+244- 0.669193184423518 0.143036367426627 5,18E+08 
CSF TCell CD4 CD4/38+39-127+DR- -0.285650716767411 0.0610963305289936 5,21E+08 
CSF TCell CD4 CD4/38+39-73-127+DR- -0.291495020417576 0.0623910117866556 5,25E+08 
CSF TCell CD4 CD4/25-38+39-73-DR-PD1- -0.29283228601928 0.0626999097913538 5,30E+08 
CSF TCell CD4 CD4/38+73-127+PD1- -0.294176897470004 0.0630383469473071 5,38E+08 
CSF TCell CD4 CD4/25-38+39-127-DR-RO- -0.56259180543733 0.120521657891025 5,39E+08 
CSF TCell CD8 CD8/28+31-57-95+244- 0.609765314299467 0.13061940357011 5,40E+08 
CSF TCell CD8 CD8/27-28+31-95+244- 0.694760792877089 0.148835022207261 5,43E+08 
CSF TCell CD8 CD8/25+39-73-DR-PD1-RO- 0.904730408806536 0.193845376736622 5,44E+08 
CSF TCell CD8 CD8/25+38-127+DR-PD1-RO+ 0.793545578181148 0.170075506148424 5,45E+08 
CSF TCell CD4 CD4/25-38+39-127+DR- -0.285105402107795 0.0611132307536126 5,45E+08 

CSF TCell CD8 CD8/25-39-DR- 
-
0.0422701944332904 0.00905664299131233 5,46E+08 

CSF TCell CD8 CD8/25+73-127+PD1-RO- 0.931966957091435 0.199784697105646 5,50E+08 



CSF TCell CD4 CD4/25-38+39-73-127+DR- -0.290838472351589 0.062401696052342 5,52E+08 
CSF TCell CD4 CD4/38+127+DR-PD1- -0.28834816157121 0.0618686661856744 5,56E+08 
CSF TCell CD4 CD4/25-38+73-127+PD1- -0.293894392276911 0.0630978093591444 5,60E+08 
CSF TCell CD4 CD4/28+31+127-RA+ -0.561788829607158 0.120577553153726 5,61E+08 
CSF TCell CD8 CD8/27-28+95+244- 0.667456733318517 0.143219469420783 5,61E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR3+ 0.905261798994361 0.194294718709483 5,64E+08 
CSF TCell CD4 CD4/38+39-73-DR+RO+ -0.73405644263527 0.157522558966425 5,67E+08 
CSF TCell CD8 CD8/28+31-95+244- 0.608503752379835 0.130660027822403 5,67E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3- 0.545353059553982 0.117093170372907 5,67E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3-XR5- 0.546063798684205 0.11726325492707 5,69E+08 
CSF TCell CD4 CD4/25-38+127+DR-PD1- -0.28815907647983 0.0619210453152593 5,73E+08 
CSF TCell CD8 CD8/27-28+RA-R5- 0.610785771091514 0.131308790890748 5,80E+08 
CSF TCell CD8 CD8/25+38-73-127+DR-PD1-RO+ 0.874321566253698 0.188140451425762 5,90E+08 
CSF TCell CD8 CD8/25+38-127+RO+ 0.776383431468484 0.167153998644484 5,98E+07 
CSF TCell CD4 CD4/38+39-DR- -0.28115438801627 0.0605724256676385 6,02E+08 
CSF TCell CD4 CD4/27+31+57-127-244-RA+ -0.58511389213198 0.125994610483944 6,03E+08 
CSF TCell CD4 CD4/38+39-73-127- -0.410280387570961 0.0883498103007178 6,03E+08 
CSF TCell CD4 CD4/27+31+127-244-RA+ -0.589367198666695 0.126956576624465 6,04E+08 
CSF TCell CD8 CD8/25+38-73-127+DR-RO+ 0.858113714521018 0.184877705461832 6,05E+08 
CSF TCell CD4 CD4/25-38+73-127-DR-PD1-RO- -0.546176684173668 0.117686417264439 6,09E+08 
CSF TCell CD8 CD8/25+38-127+PD1-RO+ 0.786105176845228 0.169621796714691 6,25E+08 
CSF TCell CD8 CD8/25+38-73-127+PD1-RO+ 0.868184375237007 0.187417015966573 6,30E+08 
CSF TCell CD8/Memory CD8/Memory/R4+XR3+ 0.846037307538251 0.18258790448396 6,30E+08 
CSF TCell CD4 CD4/25-38+39-DR- -0.280715485685758 0.0606279718447527 6,33E+08 
CSF TCell CD4 CD4/25-38+39-127-PD1-RO- -0.556124537331034 0.120089618913934 6,35E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR3- 0.543820713076585 0.117421499164091 6,36E+08 
CSF TCell CD8 CD8/25+73-PD1-RO- 0.876221350134994 0.189190510273152 6,37E+08 



CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR3-XR5- 0.544515518820323 0.117593480660072 6,39E+07 
CSF TCell CD4 CD4/38+73-127+DR-PD1- -0.292862074748053 0.0632942375683073 6,41E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3+ 0.927100170923094 0.200255935239235 6,44E+08 
CSF TCell CD8 CD8/27-28+57-95+244-RA- 0.684502441461922 0.147907006172723 6,46E+08 
CSF TCell CD8 CD8/27-95+244-RA- 0.676224221587029 0.146169048356785 6,49E+08 

CSF TCell CD8/Memory CD8/Memory/R4-R10-XR5- 
-
0.0913358587249732 0.0197366753936218 6,51E+08 

CSF TCell CD8 CD8/25+38-73-127+RO+ 0.851435722039905 0.184182736297324 6,57E+08 
CSF TCell CD4 CD4/25-38+39-73-127- -0.412316404476866 0.0891638392376851 6,57E+08 
CSF TCell CD4 CD4/38+ -0.273026421136211 0.0590984167790019 6,57E+08 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-R10-XR5- -0.577848381051656 0.125078291804724 6,66E+08 
CSF TCell CD8 CD8/27-28+57-244-RA- 0.682829108285686 0.147771398522863 6,66E+08 
CSF TCell CD4 CD4/25-38+73-127+DR-PD1- -0.292552960740644 0.0633493255382639 6,66E+08 
CSF TCell CD4 CD4/25-38+ -0.274057026109493 0.0593818249807595 6,71E+08 

CSF TCell CD8/Memory CD8/Memory/R4-R10- 
-
0.0906597095272056 0.0196226893636595 6,73E+08 

CSF TCell CD8 CD8/27+RA-R5- 0.538329324054449 0.116590966547642 6,75E+07 
CSF TCell CD4/Memory CD4/Memory/161+R4+R6-XR5- -0.574091633173397 0.124350116023992 6,75E+08 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3+ 0.865112724197223 0.187377010695812 6,77E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR3- 0.539888975250002 0.1169972081899 6,85E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR3-XR5- 0.540573398393609 0.117160050576731 6,87E+08 
CSF TCell CD8 CD8/31-57-127+244-RA- 0.676359517313552 0.146666764533356 6,91E+08 
CSF TCell CD8 CD8/27-244-RA- 0.672699574759585 0.145934772126037 6,98E+07 
CSF TCell CD8 CD8/28+31-57-127+244-RA- 0.67704957642283 0.146909307092386 7,00E+08 
CSF TCell CD8 CD8/27-28+95+244-RA- 0.682704843662899 0.148102390983754 7,00E+08 
CSF TCell CD8 CD8/31-127+244-RA- 0.67576054629294 0.146663393730481 7,03E+08 
CSF TCell CD8 CD8/28+31-127+244-RA- 0.676793252344695 0.146955819761875 7,09E+08 



CSF TCell CD4 CD4/38+39-127+PD1- -0.288199954804456 0.0626157284253357 7,17E+08 
CSF TCell CD4 CD4/38+127+ -0.28173390462468 0.0612403052596682 7,20E+08 
CSF TCell CD8 CD8/27-28+244-RA- 0.681035213653397 0.14796020928491 7,21E+08 
CSF TCell CD4 CD4/25-38+127-PD1-RO- -0.548465213733419 0.119223836197629 7,26E+08 
CSF TCell CD4 CD4/38+39-DR+RO+ -0.718849248937054 0.156163566384861 7,27E+07 
CSF TCell CD8 CD8/27+RA-R7+ 0.567469894816719 0.123468868462353 7,38E+08 
CSF TCell CD4 CD4/25-38+127+ -0.281532103880451 0.0612941266654703 7,44E+08 
CSF TCell CD4 CD4/25-38+39-127+PD1- -0.28771439860048 0.0626458945705748 7,49E+08 
CSF TCell CD8 CD8/27+28+RA-R7+ 0.57988131976817 0.126274452880936 7,50E+08 
CSF TCell CD8 CD8/27-28+31-57-95+244-RA- 0.701791374246654 0.152786907506662 7,52E+06 
CSF TCell CD4 CD4/25-38+PD1- -0.28077841787586 0.0611834024362179 7,58E+08 
CSF TCell CD4 CD4/38+39-127- -0.404534086344553 0.0881101192209411 7,59E+08 
CSF TCell CD4 CD4/38+PD1- -0.279602189355525 0.0609326408371084 7,59E+08 
CSF TCell CD8 CD8/27-57-95+244-RA- 0.669695352993405 0.145897620608079 7,61E+08 
CSF TCell CD8 CD8/27-28+31-95+244-RA- 0.701176140057931 0.152801419314178 7,67E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR3- 0.538530713227174 0.117370045898668 7,68E+08 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR3-XR5- 0.539186374540311 0.117537512005173 7,71E+08 
CSF TCell CD4 CD4/38+39-73-127+PD1- -0.293131506716074 0.0639951218293209 7,86E+08 
CSF TCell CD8 CD8/27-28+31-57-244-RA- 0.699869255442155 0.152800872062602 7,96E+08 
CSF TCell CD8 CD8/27-57-244-RA- 0.666845349032662 0.145666680063276 8,03E+08 
CSF TCell CD8 CD8/25+73-127+DR-RO+ 0.845655760178044 0.184849963465097 8,09E+08 
CSF TCell CD8 CD8/27-28+31-244-RA- 0.699316569405787 0.152818100684031 8,10E+08 
CSF TCell CD8 CD8/25+73-127+DR-PD1-RO+ 0.860388789950543 0.188119162138475 8,13E+08 

CSF TCell CD4/Memory 
CD4/Memory/161+PD1-R4+R6-R10-XR3-
XR5- -0.62972880168866 0.137776026608917 8,23E+08 

CSF TCell CD4 CD4/25-38+39-73-127+PD1- -0.292528173755748 0.0640194780340042 8,25E+08 
CSF TCell CD4 CD4/25-38+39-127- -0.406568490591058 0.0889300696651832 8,25E+08 



CSF TCell CD4 CD4/38+39-127+DR-PD1- -0.286837784061682 0.0627976764801974 8,35E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+XR3- -0.627126497973648 0.137292436450261 8,38E+08 
CSF TCell CD8 CD8/25+127+DR-PD1-RO+ 0.773772627986985 0.16943794067501 8,40E+08 
CSF TCell CD8 CD8/25+39-73-PD1-RO- 0.878132225216337 0.192265590337297 8,42E+08 
CSF TCell CD4 CD4/38+127-DR-PD1-RO- -0.544069391004914 0.119213794998804 8,50E+08 
CSF TCell CD4 CD4/25-38+39-127+DR-PD1- -0.286365349848248 0.0628307397280998 8,72E+08 
CSF TCell CD8 CD8/31-57-95+127+244-RA- 0.672123490201375 0.14749837276144 8,76E+08 
CSF TCell CD8 CD8/28+31-57-95+127+244-RA- 0.672496128165532 0.147609474747362 8,80E+08 
CSF TCell CD8 CD8/25+38-DR-RO+ 0.749061574562424 0.164406261268988 8,80E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-XR3-XR5- -0.626981087043417 0.137696049003046 8,87E+08 
CSF TCell CD8 CD8/31-95+127+244-RA- 0.6715034044025 0.147498951659853 8,93E+08 
CSF TCell CD8 CD8/28+31-95+127+244-RA- 0.672215052027648 0.147657123773291 8,93E+08 
CSF TCell CD8 CD8/25+73-127+RO+ 0.837194124342105 0.18396876524473 8,99E+08 
CSF TCell CD8 CD8/25+73-127+PD1-RO+ 0.852824118871792 0.187408418298395 8,99E+08 
CSF TCell CD4 CD4/38+39-73-127+DR-PD1- -0.29158169402454 0.0641996193401817 9,29E+08 
CSF TCell CD8 CD8/25+38-DR-PD1-RO+ 0.757410116106156 0.166733075692879 9,33E+08 
CSF TCell CD8 CD8/27-31-95+244-RA- 0.693460020938906 0.152765926804372 9,48E+08 
CSF TCell CD4 CD4/38+127+DR- -0.279405890825915 0.0615873273996459 9,50E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R10-XR3- -0.62457368515521 0.137669225607547 9,59E+08 
CSF TCell CD4 CD4/25-38+DR-PD1- -0.279715242263356 0.061695396897226 9,64E+08 
CSF TCell CD4 CD4/38+DR-PD1- -0.278755784292863 0.0614910691475648 9,66E+08 
CSF TCell CD4 CD4/25-38+39-73-127+DR-PD1- -0.291003275457607 0.0642265240959468 9,74E+06 
CSF TCell CD4 CD4/25-38+127+DR- -0.279153006751967 0.0616384567266858 9,83E+08 
CSF TCell CD4/Memory CD4/Memory/161+R6-XR3-XR5- -0.641672260189832 0.141625147043621 9,84E+07 
CSF TCell CD8 CD8/31-57-95+244- 0.59061423565307 0.130390566430338 9,88E+08 
CSF TCell CD8 CD8/25+127+PD1-RO+ 0.76467809375932 0.168945034605288 1,00E+09 
CSF TCell Vg9+/Vd2Low Vg9+/Vd2Low/8-27-RA+R7- -0.585748586983405 0.12941763526401 1,00E+09 



CSF TCell CD4 CD4/38+39-73-127-DR-RO- -0.523713078732317 0.115740627149374 1,01E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR3- 0.605313196601615 0.133819245052623 1,02E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R4-R6-XR3- -0.93974313929646 0.207776879618821 1,02E+09 
CSF TCell CD8 CD8/25+38-RO+ 0.740846465636086 0.163837632750834 1,02E+09 
CSF TCell CD8 CD8/25+38-73-DR-PD1-RO+ 0.834463506457848 0.184608778867602 1,03E+09 
CSF TCell CD4/Memory CD4/Memory/161+R6-R10-XR3-XR5- -0.640445227927305 0.141690894825076 1,03E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR3-XR5- 0.605582465798238 0.133985373066496 1,03E+09 
CSF TCell CD8 CD8/25+38-73-DR-RO+ 0.819882483333005 0.181455972879962 1,03E+09 
CSF TCell CD8 CD8/27-31-57-95+244-RA- 0.688963767430114 0.152461039446485 1,04E+09 
CSF TCell CD8/Memory CD8/Memory/R4-R6-XR5- -0.111286958878413 0.0246323004276665 1,04E+09 
CSF TCell CD8 CD8/27-31-244-RA- 0.689892497277646 0.152757247831767 1,05E+09 
CSF TCell CD8/Memory CD8/Memory/R4-R6- -0.110688744129336 0.0245086604810046 1,05E+09 
CSF TCell CD8 CD8/25+38-PD1-RO+ 0.749644389996092 0.166161316454214 1,07E+08 
CSF TCell CD8 CD8/27-95+244- 0.652021403466806 0.144680163874664 1,09E+09 
CSF TCell CD8 CD8/27-57-95+244- 0.649743104459437 0.144205973419836 1,10E+09 
CSF TCell CD8 CD8/57-127+244-RA- 0.616768928682627 0.136934654556212 1,10E+09 
CSF TCell CD8 CD8/27-31-57-244-RA- 0.685824633368384 0.152395356210529 1,12E+09 
CSF TCell CD8 CD8/25+38-73-PD1-RO+ 0.826382333300675 0.18367629179616 1,12E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3- 0.600200498684927 0.133385386803046 1,13E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-R10-XR3- 0.603970276121216 0.134261163398369 1,13E+09 
CSF TCell CD8 CD8/31-95+244- 0.586562208821718 0.130417119382603 1,13E+08 
CSF TCell CD4 CD4/28+31+57-127-RA+ -0.540780616283128 0.120263336196307 1,14E+08 
CSF TCell CD8 CD8/28+57-127+244-RA- 0.617087246746414 0.137290591980858 1,14E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3-XR5- 0.600437409988637 0.13354173443495 1,14E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R4+R6-XR3-XR5- -0.647813717366098 0.144099940526313 1,15E+09 
CSF TCell CD8 CD8/25+38-73-RO+ 0.811444201869014 0.180541220449085 1,15E+09 
CSF TCell CD4 CD4/38+39-PD1- -0.282391947870868 0.0628773070151767 1,16E+09 



CSF TCell CD4/Memory 
CD4/Memory/161+PD1+R4+R6-R10-XR3-
XR5- -0.647299211136794 0.144119661148584 1,17E+09 

CSF TCell CD4 CD4/38-127+DR-PD1- 0.165353328219173 0.0368047461597156 1,17E+09 
CSF TCell CD8 CD8/127+244-RA- 0.614427436969097 0.136887392625491 1,17E+09 
CSF TCell CD4 CD4/38+39-127+ -0.280785360849799 0.062575152031167 1,18E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R4-R6-R10-XR3- -0.934853388233079 0.208334872745968 1,19E+09 
CSF TCell CD4 CD4/25-38+39-PD1- -0.282049254764548 0.0629535065612398 1,21E+09 
CSF TCell CD8 CD8/27-31+57-127+244-RA- 0.782901177780289 0.174716385328962 1,21E+09 

CSF TCell CD8/Memory CD8/Memory/R4-XR5- 
-
0.0914934212961188 0.0204069458789989 1,22E+09 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-R10-XR3-
XR5- 0.602385803828649 0.134424091681927 1,22E+09 

CSF TCell CD8 CD8/28+127+244-RA- 0.615009990343984 0.137291710301374 1,22E+09 
CSF TCell CD8 CD8/28+31-57-244-RA- 0.626242986725274 0.139785178636143 1,22E+09 
CSF TCell CD8 CD8/27-31+57-95+127+244-RA- 0.789529748196633 0.176349866712966 1,23E+09 
CSF TCell CD8 CD8/27-28+31+57-127+244-RA- 0.7775018035795 0.173704304555932 1,24E+09 
CSF TCell CD4 CD4/38-39-127+DR-PD1- 0.16886296439605 0.0376971183127298 1,24E+09 
CSF TCell CD4 CD4/38+39-73-127-PD1-RO- -0.516649731093333 0.115426336085855 1,25E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR3- 0.599148773862084 0.133901672492524 1,25E+09 
CSF TCell CD4 CD4/38+39-73-PD1+ -0.444735152037835 0.0994072887482714 1,26E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-R10- -0.56537095511732 0.126462313966209 1,27E+09 
CSF TCell CD8 CD8/27-28+31+57-95+127+244-RA- 0.782979914744237 0.175158677616279 1,27E+09 
CSF TCell CD8 CD8/28+31-244-RA- 0.625331398000338 0.139892087696028 1,27E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR3-XR5- 0.599353777828311 0.134059517494144 1,28E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6- -0.560440538715859 0.125471066524833 1,29E+09 
CSF TCell CD4 CD4/38-127+PD1- 0.16362726073002 0.0366024950799024 1,29E+09 
CSF TCell CD8/Memory CD8/Memory/R4-R6-R10-XR5- -0.11011923448653 0.024662784838975 1,31E+09 



CSF TCell CD8/Memory CD8/Memory/R4-R6-R10- -0.109569548656713 0.0245399105340952 1,31E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-XR5- -0.569963244622657 0.127686344646023 1,31E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R4+R6-R10-XR5- -0.573813290113883 0.128558530637891 1,31E+09 
CSF TCell CD4 CD4/25-38+39-127+ -0.278841595766825 0.062492426783795 1,31E+09 
CSF TCell CD4 CD4/38-39-127+PD1- 0.167559892544562 0.0375377496561539 1,33E+09 
CSF TCell CD8 CD8/27-RA-R5-R7+ 0.686711880371661 0.15399499027081 1,33E+09 
CSF TCell CD8 CD8/27-28+31-57-244- 0.667170756974593 0.149722642702678 1,36E+09 
CSF TCell CD8 CD8/27-28+31+127+244-RA- 0.772497135563769 0.173452718340774 1,36E+09 
CSF TCell CD8 CD8/27-31+127+244-RA- 0.776915988660833 0.17445323433681 1,37E+09 

CSF TCell CD8/Memory CD8/Memory/R4- 
-
0.0903049039714309 0.0202685838047164 1,37E+09 

CSF TCell CD8 CD8/27-31+95+127+244-RA- 0.783651350103075 0.176128109015147 1,39E+09 
CSF TCell CD4 CD4/25-38+127-DR-PD1-RO- -0.540369983444431 0.12145155223686 1,39E+09 
CSF TCell CD8 CD8/25+73-DR-RO+ 0.803277107540805 0.180554632644532 1,39E+09 
CSF TCell CD8 CD8/27-28+31-244- 0.66633328149708 0.149731184490861 1,39E+09 
CSF TCell CD8 CD8/27-28+31+95+127+244-RA- 0.778127048847168 0.174939091687065 1,40E+09 
CSF TCell CD8 CD8/57-95+127+244-RA- 0.613216249442422 0.137954960258033 1,41E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R6-XR3- -0.664677047408425 0.149488282726194 1,41E+09 
CSF TCell CD4 CD4/38+39-DR-PD1- -0.28067966838682 0.0631606895521344 1,42E+09 
CSF TCell CD4 CD4/38+39-73-127-DR- -0.382501937332189 0.0860561846960728 1,42E+08 
CSF TCell CD4 CD4/28+31+127-244-RA+ -0.549877680943661 0.123766190672331 1,43E+09 
CSF TCell CD8 CD8/25+73-DR-PD1-RO+ 0.817189368008149 0.183976775358443 1,44E+09 
CSF TCell CD8 CD8/28+57-95+127+244-RA- 0.613344994351257 0.138127918542905 1,44E+09 
CSF TCell CD8 CD8/27+28+31-57-95+127+244- 0.612475630844836 0.137975380576096 1,46E+09 
CSF TCell Vg9+/Vd2Low Vg9+/Vd2Low/8-RA+R7- -0.55680107649554 0.12546326073076 1,46E+08 
CSF TCell CD8 CD8/27+28+31-95+127+244- 0.61186785984242 0.137974168346238 1,48E+09 
CSF TCell CD4 CD4/25-38+39-DR-PD1- -0.280333075633445 0.0632355938801867 1,48E+09 



CSF TCell CD8/Memory CD8/Memory/161-R4-XR3- -0.315628236778307 0.0711911657417138 1,49E+09 
CSF TCell CD8 CD8/95+127+244-RA- 0.610825483488897 0.137914955713268 1,51E+09 
CSF TCell CD4/Memory CD4/Memory/161+R4-R6-XR3- -0.711416831665422 0.160595607239467 1,52E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R6-R10-XR3- -0.597549484882502 0.134933580126497 1,52E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-XR3-XR5- -0.31556561131967 0.0712500532102474 1,52E+09 
CSF TCell CD8 CD8/28+31-57-95+244-RA- 0.621015469496889 0.140259204400274 1,53E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1-R6-XR3- -0.597390382238878 0.13493564192522 1,53E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R6-R10-XR3- -0.662420789093629 0.149643802047682 1,54E+09 
CSF TCell CD8 CD8/28+95+127+244-RA- 0.611220697244796 0.138132460482151 1,54E+09 
CSF TCell CD8 CD8/27-31-57-95+244- 0.676590121053524 0.152898568707554 1,55E+09 
CSF TCell DPT DPT/25+38-39-127+PD1-RO- 0.777900489262663 0.17568899644696 1,56E+09 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3- 0.504072974295536 0.113980999341868 1,57E+09 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3- 0.508070630803031 0.114898466144587 1,57E+09 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3-XR5- 0.50484070340405 0.114181357029934 1,57E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R10-XR3- -0.314437715100931 0.0711200622421525 1,57E+09 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3-XR5- 0.508822976726997 0.115099805816721 1,58E+09 
CSF TCell CD8 CD8/25+73-RO+ 0.793020848200053 0.179511534768787 1,59E+09 
CSF TCell CD4 CD4/25-38-39-127+DR-PD1- 0.169602966721333 0.0383644461080093 1,59E+09 
CSF TCell CD8 CD8/28+31-95+244-RA- 0.620080229609445 0.140364862381649 1,59E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R10-XR3-XR5- -0.314428458972907 0.071180675879129 1,60E+09 
CSF TCell CD4/Memory CD4/Memory/161+R4-R6-R10-XR3- -0.709883789769698 0.160786736989883 1,61E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R6-XR3- -0.317088546789733 0.0718385162416111 1,62E+09 
CSF TCell CD8 CD8/25+73-PD1-RO+ 0.807639156649613 0.183035285694445 1,63E+09 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R4+R6-XR3- -0.597284173226932 0.135389162402244 1,63E+09 
CSF TCell CD8 CD8/27+28+31-57-95+244- 0.586778617900604 0.133057813820088 1,65E+09 
CSF TCell CD8 CD8/RA-R5- 0.440397516654055 0.0998907207012934 1,66E+09 
CSF TCell CD8 CD8/25+DR-PD1-RO+ 0.729959058904225 0.165595225257383 1,66E+08 



CSF TCell CD8 CD8/27+31-57-95+127+244- 0.607094811158041 0.137721202618216 1,66E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R6-XR3-XR5- -0.316950260400218 0.0718961532457046 1,66E+09 
CSF TCell CD4 CD4/25-38+39-73-127-DR- -0.383163902956959 0.0869319020170723 1,67E+09 
CSF TCell CD8 CD8/31-57-244-RA- 0.61147623649194 0.13886545329698 1,69E+09 
CSF TCell CD4 CD4/25-38-39-127+PD1- 0.168342375714678 0.0382124209861189 1,70E+09 
CSF TCell Vg9+/Vd2Low Vg9+/Vd2Low/8-27-RA+ -0.565473367530477 0.128449354986949 1,70E+09 
CSF TCell CD4 CD4/25-38-127+DR-PD1- 0.165553747208892 0.0375862883403475 1,70E+09 
CSF TCell CD4 CD4/25-38+39-73-127-DR-RO- -0.517579998499224 0.117584315045729 1,71E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R6-R10-XR3- -0.315922792579957 0.0717731460368195 1,71E+09 
CSF TCell CD8 CD8/27+28+31-95+244- 0.585733136436065 0.133096685831551 1,71E+09 
CSF TCell CD8 CD8/31-244-RA- 0.610325969967811 0.138720062439016 1,72E+09 
CSF TCell CD8 CD8/27+31-95+127+244- 0.605806331147103 0.137769445789803 1,74E+09 
CSF TCell CD8 CD8/28+57-244-RA- 0.563382983998127 0.128174949618689 1,75E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4-R6-R10-XR3-XR5- -0.315827415972556 0.0718340485518769 1,75E+09 
CSF TCell CD8 CD8/57-244-RA- 0.543864624816224 0.123758186446187 1,76E+09 
CSF TCell CD8 CD8/27-31-95+244- 0.67489115632869 0.153576687299033 1,76E+08 
CSF TCell CD4/Memory CD4/Memory/161+PD1+R4+R6-R10-XR3- -0.593989515374895 0.135205503817636 1,76E+09 
CSF TCell DPT DPT/25+38-39-127+DR-PD1-RO- 0.778588533717716 0.176985848561972 1,77E+09 
CSF TCell CD4 CD4/38+39-127-DR- -0.377101964535693 0.085911587596748 1,80E+09 
CSF TCell CD8 CD8/57-95+127+244- 0.484546071056682 0.110553505962608 1,85E+09 
CSF TCell CD8/Memory CD8/Memory/R4+XR3- 0.499416713407172 0.11394420817602 1,85E+08 
CSF TCell CD8 CD8/244-RA- 0.540772115610992 0.123406295270837 1,85E+09 
CSF TCell CD8/Memory CD8/Memory/R4+XR3-XR5- 0.500158353170333 0.114136321538171 1,86E+09 
CSF TCell CD8/Memory CD8/Memory/R4+R6-XR3- 0.503480660208687 0.11490058810425 1,86E+09 
CSF TCell DPT DPT/25+38-39-127+RO- 0.752897026360886 0.171647747313721 1,86E+09 
CSF TCell CD4 CD4/25-38-127+PD1- 0.163921937821929 0.0373981959136074 1,87E+07 
CSF TCell CD8/Memory CD8/Memory/R4+R6-XR3-XR5- 0.504194740833888 0.115096021376847 1,87E+09 



CSF TCell DPT DPT/25+38-39-127+DR-RO- 0.765877305512029 0.174655784986083 1,87E+09 
 



Table S2: Results association between former and never smokers.  
 

type population Lineage Subset.name Beta SE P 
CSF TCell CD8 CD8/28+31-57-95+127+244-RA- 0.278745318198675 0.076089582890598 0.000289990173956613 
CSF TCell CD8 CD8/25+DR- 0.293132786481285 0.0790001355581487 0.000242929097271729 
CSF TCell CD8 CD8/25+38-73-DR-RO- 0.387533766068999 0.0991080108917319 0.000112337309258628 
CSF TCell CD8 CD8/25+73-DR- 0.377898402361257 0.0885907636751163 2,62E+07 
CSF TCell CD8 CD8/25+ 0.28555966884388 0.0780599854464338 0.000295810921550245 
CSF TCell CD8 CD8/25+38-73-DR-PD1-RO- 0.380443521629626 0.10235666503027 0.000237689531716643 
CSF TCell CD8 CD8/27-57-127+244-RA- 0.335671579147545 0.0821732152532263 5,55E+09 
CSF TCell CD8 CD8/25+127+DR-RO+ 0.353952581307035 0.0876459533379949 6,73E+09 
CSF TCell CD8 CD8/25+38-39-73-DR- 0.411335015342049 0.0919209141949218 1,06E+09 
CSF TCell CD8 CD8/25+38-39-DR-PD1- 0.320978686696053 0.0830395903472369 0.000133809016790725 
CSF TCell CD8 CD8/25+39-73-DR- 0.397380312854939 0.0907844274077137 1,63E+09 
CSF TCell CD8 CD8/25+38-73-127+DR-PD1- 0.382179210571245 0.0946979820671037 6,79E+09 
CSF TCell CD8 CD8/25+38-39-DR-PD1-RO+ 0.390943889228919 0.0894857377657414 1,69E+08 
CSF TCell CD8 CD8/25+38-39-73- 0.393587015307172 0.0910090719995073 2,04E+09 
CSF TCell CD8 CD8/25+38-127+DR-PD1- 0.314365160433831 0.0827108580964809 0.000172267070080438 
CSF TCell CD8 CD8/25+38-39-PD1-RO+ 0.387536477599097 0.0892738111629006 1,90E+09 
CSF TCell CD8 CD8/25+38-39-DR-RO+ 0.382112691878776 0.0887672947351997 2,22E+09 
CSF TCell CD8 CD8/25+73-127+DR-PD1- 0.380102854582068 0.0944168259050092 7,08E+09 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1- 0.399618874032802 0.0927296923205947 2,17E+09 
CSF TCell CD8 CD8/25+39-73- 0.39196786016355 0.0902604846958396 1,89E+09 
CSF TCell CD8 CD8/25+39-127+DR-PD1- 0.323337750373039 0.082662121264543 0.000111798887692789 
CSF TCell CD8 CD8/25+38-39-RO+ 0.378404669520828 0.0885325858053007 2,53E+09 
CSF TCell CD8 CD8/25+RO+ 0.340339365356262 0.0844699935634209 6,98E+09 
CSF TCell CD8 CD8/25+73-127+PD1-RO+ 0.407817775310901 0.096211711253237 2,95E+09 



CSF TCell CD8 CD8/25+39-DR-PD1-RO+ 0.386292631425019 0.0890665168990061 1,94E+09 
CSF TCell CD8 CD8/25+38-39-127+DR-PD1-RO+ 0.383491327359853 0.0899955782363511 2,67E+09 
CSF TCell CD8 CD8/25+38-39-73-PD1- 0.394742069005174 0.0924865033809105 2,59E+09 
CSF TCell CD8 CD8/25+39-73-DR-PD1- 0.396488074633422 0.0922356022838241 2,28E+09 
CSF TCell CD8 CD8/25+39-DR-RO+ 0.378835998795242 0.0883102984766438 2,37E+09 
CSF TCell CD8 CD8/25+39-127+PD1- 0.319357026135737 0.0824987239792841 0.000131119635469215 
CSF TCell CD8 CD8/25+38-39-127+DR-RO+ 0.375755797940035 0.0892992708720245 3,35E+09 
CSF TCell CD8 CD8/25+38-39-127+PD1-RO+ 0.38033428003461 0.0898291944900718 3,00E+09 
CSF TCell CD8 CD8/25+39-PD1-RO+ 0.382636562519108 0.0888823392454076 2,22E+08 
CSF TCell CD8 CD8/25+39-73-PD1- 0.391969594719632 0.0917171938699335 2,53E+09 
CSF TCell CD8 CD8/25+39-RO+ 0.374707619706361 0.0880787864602152 2,75E+09 
CSF TCell CD8 CD8/25+38-39-127+RO+ 0.37226467928078 0.0891089659506998 3,80E+09 
CSF TCell CD8 CD8/28+31-127+244-RA- 0.278562252386548 0.0758133036553949 0.000278293463199169 
CSF TCell CD8 CD8/25+39-127+DR-PD1-RO+ 0.37894009411526 0.0895864653269187 3,05E+08 
CSF TCell CD8 CD8/25+38-73-PD1-RO+ 0.397256372630806 0.0938751049215837 3,03E+09 
CSF TCell CD8 CD8/25+39-127+DR-RO+ 0.373006403795313 0.0888791226811998 3,51E+09 
CSF TCell CD8 CD8/25+38-39-73-127+DR- 0.399269680524034 0.0941882910444766 2,93E+09 
CSF TCell CD8 CD8/25+39-127+PD1-RO+ 0.375824940617 0.0894406402364969 3,43E+09 
CSF TCell CD8 CD8/25+38-39-73-DR-RO+ 0.433232379179402 0.0964399844863142 9,87E+08 
CSF TCell CD8 CD8/25+39-127+RO+ 0.369251763914585 0.088673244273675 4,02E+09 
CSF TCell CD8 CD8/25+39-73-127+DR- 0.399217892483648 0.093934531774138 2,80E+09 
CSF TCell CD8 CD8/25+38-39-73-127+ 0.395483042099605 0.0939963068845586 3,35E+09 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1-RO+ 0.43695390597139 0.0976098467849021 1,06E+09 
CSF TCell CD8 CD8/25+38-39-73-RO+ 0.429456406016891 0.0961370034706978 1,10E+09 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR5- 0.237784090552813 0.0623671819749235 0.000165762737267396 
CSF TCell CD8 CD8/25+38-39-73-127+DR-RO+ 0.430089036720409 0.0968686604456405 1,24E+09 
CSF TCell CD8 CD8/25+39-73-127+ 0.394873872903655 0.0934818752902178 3,12E+09 



CSF TCell CD8 CD8/25+38-73-DR- 0.380233556952276 0.0892616930303901 2,68E+09 
CSF TCell CD8 CD8/25+38-39-73-PD1-RO+ 0.433766096323371 0.0973279123066759 1,15E+09 
CSF TCell CD8 CD8/25+39-73-DR-RO+ 0.430712484525477 0.0962283462359698 1,06E+09 
CSF TCell CD8 CD8/25+39-73-127+DR-RO+ 0.429744101304089 0.0967110454882319 1,22E+07 
CSF TCell CD8 CD8/25+39-127+DR- 0.306214335704515 0.0832814652317717 0.000276027782963577 
CSF TCell CD8 CD8/25+38-39-73-127+RO+ 0.426653229011587 0.0966417819532551 1,39E+09 
CSF TCell CD8 CD8/25+38-127+ 0.290900881049089 0.0829917235530565 0.00051994341215947 
CSF TCell CD8 CD8/25+38-39-73-127+DR-PD1-RO+ 0.43291467814435 0.0980779577740258 1,39E+09 
CSF TCell CD8 CD8/25+38-127+DR-PD1-RO+ 0.36565816950219 0.088947981693765 5,01E+09 
CSF TCell CD8 CD8/25+39-73-RO+ 0.426572327549677 0.0959315141697953 1,21E+09 
CSF TCell CD8 CD8/25+38-39-73-127+DR-PD1- 0.399419500978298 0.0959405298027492 4,03E+09 
CSF TCell CD8 CD8/25+39-73-127+RO+ 0.426069985456882 0.0964512230129704 1,37E+09 
CSF TCell CD8 CD8/25+38-39-73-127+PD1-RO+ 0.430030882617347 0.097871329645451 1,52E+09 
CSF TCell CD8 CD8/25+39-73-DR-PD1-RO+ 0.433116302007592 0.0974716341221707 1,22E+09 
CSF TCell CD8 CD8/25+38-127+DR-RO+ 0.356794276241391 0.0881131731317515 6,44E+09 
CSF TCell CD8 CD8/25+38-DR-PD1-RO+ 0.360806533616091 0.0863601358215841 3,79E+09 
CSF TCell CD8 CD8/25+38-73- 0.37462392176063 0.088804770386212 3,19E+09 
CSF TCell CD8 CD8/25+38-39-127+DR-PD1- 0.327717872577294 0.0834495153847349 0.000105077443784683 
CSF TCell CD8 CD8/25+38-127+PD1-RO+ 0.362025038929913 0.088713396383238 5,66E+09 
CSF TCell CD8 CD8/25+39-127+ 0.301835246263803 0.0830968456072177 0.000326086017962754 
CSF TCell CD8 CD8/25+39-73-127+DR-PD1-RO+ 0.430691018908653 0.0979044675107892 1,49E+09 
CSF TCell CD8 CD8/25+38-39-73-127+PD1- 0.396247727178242 0.0957954483570984 4,50E+09 
CSF TCell CD8 CD8/25+38-73-127+DR- 0.38105468856522 0.0928219380377049 5,12E+09 
CSF TCell CD8 CD8/25+39-73-PD1-RO+ 0.429878857323661 0.0972178262148367 1,34E+09 
CSF TCell CD8 CD8/25+38-73-DR-PD1- 0.38179373694898 0.0908925985494678 3,44E+09 
CSF TCell CD8 CD8/25+39-73-127+DR-PD1- 0.397709263189741 0.0956453194915853 4,11E+08 
CSF TCell CD8 CD8/25+39-73-127+PD1-RO+ 0.428098095320008 0.0977138199800286 1,61E+09 



CSF TCell CD8 CD8/25+73-DR-RO- 0.369676549080042 0.0961121936515163 0.000144428652337011 
CSF TCell CD8 CD8/25+38-39-73-DR-RO- 0.371721895216154 0.101820120162104 0.0003047206398027 
CSF TCell CD8 CD8/25+38-127+RO+ 0.353139893871354 0.0878727986865095 7,29E+09 
CSF TCell CD8 CD8/25+38-DR-RO+ 0.351840092696469 0.0855849695206722 5,00E+09 
CSF TCell CD8 CD8/25+73- 0.371811024013046 0.0878790295833503 3,03E+09 
CSF TCell CD8 CD8/25+38-PD1-RO+ 0.356513481241714 0.0860678618332165 4,40E+09 
CSF TCell CD8 CD8/25+39-73-127+PD1- 0.394289455084928 0.0952322428270552 4,43E+09 
CSF TCell CD8 CD8/25+38-73-127+ 0.377704091908899 0.0925395228204267 5,64E+09 
CSF TCell CD8 CD8/25+127+DR-PD1-RO+ 0.36112687648041 0.0885052451480954 5,68E+09 
CSF TCell CD8 CD8/25+38-39-127+PD1- 0.323749230114777 0.0833525529928043 0.000124541008349804 
CSF TCell CD8 CD8/25+73-127+DR- 0.380473830734469 0.0925707022760324 5,02E+09 
CSF TCell CD8 CD8/25+38-39-DR- 0.317162118596791 0.0822009266608846 0.000137505858885694 
CSF TCell CD8 CD8/25+38-73-PD1- 0.376723923806776 0.0904479932535616 3,99E+08 
CSF TCell CD8 CD8/25+39-73-127+RO- 0.36325500065033 0.102307969738814 0.000441417519411982 
CSF TCell CD8 CD8/25+73-DR-PD1- 0.378739499221872 0.0902622368749794 3,51E+09 
CSF TCell CD8 CD8/25+73-127+ 0.376284202848312 0.0919888156424484 5,44E+09 
CSF TCell CD8 CD8/25+39-73-DR-RO- 0.374089612539858 0.097380818556014 0.00014715019630843 
CSF TCell CD8 CD8/25+38-RO+ 0.347302451536898 0.0852813410091295 5,85E+09 
CSF TCell CD8 CD8/25+127+DR- 0.292666409502048 0.082310582095543 0.000432814384935759 
CSF TCell CD8 CD8/25+38-39-73-DR-PD1-RO- 0.383653255443218 0.103710280050087 0.000254007268989036 
CSF TCell CD8 CD8/25+73-DR-PD1-RO- 0.377790491179939 0.0975516876883613 0.000130274831120629 
CSF TCell CD8 CD8/25+127+PD1-RO+ 0.356626540687739 0.0882375136713618 6,65E+09 
CSF TCell CD8 CD8/25+38-73-127+DR-RO+ 0.408619878083737 0.0952803166466924 2,39E+09 
CSF TCell CD8 CD8/25+73-127+RO- 0.352463984966323 0.101433974477395 0.00058091713151385 
CSF TCell CD8 CD8/25+39-DR- 0.313482172193645 0.0813834156683301 0.000141046875109545 
CSF TCell CD8 CD8/25+127+RO+ 0.349041424060388 0.0873534267179702 8,00E+09 
CSF TCell CD8 CD8/25+127+ 0.288210591202715 0.08173800696742 0.000482186679147151 



CSF TCell CD8 CD8/25+DR-PD1-RO+ 0.354025681726921 0.0857104171922518 4,62E+09 
CSF TCell CD8 CD8/25+73-PD1- 0.373318352826824 0.0894758797954103 3,87E+09 
CSF TCell CD8 CD8/25+39-73-DR-PD1-RO- 0.362099704352422 0.100275777870154 0.00035334269182065 
CSF TCell CD8 CD8/25+127+DR-PD1- 0.30996596110816 0.0819366156062956 0.00018454134425059 
CSF TCell CD8 CD8/25+38-73-127+DR-PD1-RO+ 0.413003576179162 0.0966493850568855 2,55E+09 
CSF TCell CD8 CD8/25+38-73-127+RO+ 0.405612918844637 0.0950232643558187 2,60E+09 
CSF TCell CD8 CD8/25+38-73-127+PD1- 0.379244792115111 0.0944325835748134 7,36E+09 
CSF TCell CD8 CD8/25+38-39- 0.311042992608747 0.0819901905704917 0.000176798975524345 
CSF TCell CD8 CD8/25+39-DR-PD1- 0.31668217252481 0.0822517462545009 0.000142030136583834 
CSF TCell CD8 CD8/25+DR-RO+ 0.345562748733783 0.0848305833352855 5,83E+07 
CSF TCell CD8 CD8/25+73-127+DR-RO+ 0.407962764734424 0.0951568962841779 2,40E+08 
CSF TCell CD8 CD8/25+73-RO- 0.356938615295561 0.0944713543789883 0.000188041517879223 
CSF TCell CD8 CD8/25+38-73-127+PD1-RO- 0.358494896887828 0.104321918855381 0.000666527627348518 
CSF TCell CD8 CD8/25+39-73-127+DR-RO- 0.359654163664836 0.103423739385005 0.000575334337842343 
CSF TCell CD8 CD8/25+38-73-127+PD1-RO+ 0.410161566733254 0.096385724793796 2,75E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4+XR3-XR5- 0.227850938768587 0.059123024615889 0.000141043265461865 
CSF TCell CD8 CD8/25+38-39-PD1- 0.314873458783043 0.0828552584806657 0.000172349536582159 
CSF TCell CD8 CD8/25+73-127+PD1-RO- 0.359221412537111 0.102445130920041 0.000518449766805805 
CSF TCell CD8 CD8/25+38-73-PD1-RO- 0.367300260367971 0.100957583754831 0.000319678538288909 
CSF TCell CD8 CD8/25+PD1-RO+ 0.348973187347142 0.0853444656488893 5,47E+09 
CSF TCell CD8 CD8/25+73-127+RO+ 0.404622007832638 0.0948186545611047 2,61E+09 
CSF TCell CD8 CD8/25+38-73-RO- 0.373637814978406 0.0976389541513579 0.000155885174369965 
CSF TCell CD8 CD8/25+39- 0.30794895596511 0.0810546323796052 0.000173039046485413 
CSF TCell CD8 CD8/25+73-127+PD1- 0.376831562787865 0.0938202613063381 7,35E+09 
CSF TCell CD8 CD8/25+38-127+PD1- 0.309925156625948 0.0824582225313194 0.000202611523857685 
CSF TCell CD8 CD8/25+73-127+DR-PD1-RO+ 0.410337331041714 0.0965302624264365 2,80E+09 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10-XR5- 0.217908799185048 0.0603122326769658 0.000352416408202456 



CSF TCell CD8 CD8/25+73-PD1-RO- 0.366684189406291 0.0959476566417325 0.000159031463298766 
CSF TCell CD8 CD8/25+38-39-73-RO- 0.357805020650375 0.101052021878988 0.000457602148672824 
CSF TCell CD8 CD8/25+39-PD1- 0.311469194452206 0.0819011725657455 0.000170585718645625 
CSF TCell CD8 CD8/25+38-39-127+DR- 0.309932168193327 0.0839906254400073 0.000262573234310434 
CSF TCell CD8 CD8/25+39-73-RO- 0.362043259290916 0.0964278144919525 0.00020596658404044 
CSF TCell CD8 CD8/25+38-DR- 0.295423045737862 0.080194037212891 0.00026863702935438 
CSF TCell CD8 CD8/25+38-39-73-PD1-RO- 0.370780161175273 0.1030225640544 0.000369634686751909 
CSF TCell CD8 CD8/25+38-DR-PD1- 0.299666831759494 0.0811238422948874 0.000258627249754622 
CSF TCell CD8 CD8/25+DR-PD1- 0.298200945837427 0.0798437931249313 0.00022155302326712 
CSF TCell CD8 CD8/25+39-73-PD1-RO- 0.351339036001714 0.099424331627591 0.000469639972784133 
CSF TCell CD8 CD8/25+38-39-127+ 0.305762493175662 0.0838748532755584 0.000310456195485029 
CSF TCell CD8 CD8/25+38-73-DR-RO+ 0.396093154347649 0.0929309718746254 2,66E+09 
CSF TCell CD8 CD8/25+38-73-DR-PD1-RO+ 0.400622509416898 0.0942727878161757 2,81E+09 
CSF TCell CD8 CD8/28+RA-R5- 0.23519788161347 0.0601238669581785 0.000111229790010046 
CSF TCell CD8 CD8/25+38-73-RO+ 0.392221176853298 0.0925388481766542 2,94E+09 
CSF TCell CD8 CD8/25+73-DR-RO+ 0.392801716211748 0.0924270712044186 2,81E+09 
CSF TCell CD8 CD8/25+PD1- 0.290651404334756 0.0788522798725753 0.000266474210029417 
CSF TCell CD8 CD8/25+38- 0.286907028484823 0.0795257591039303 0.000356969259670449 
CSF TCell CD8 CD8/25+38-PD1- 0.290895620499674 0.0804668381584889 0.000347358330120463 
CSF TCell CD8 CD8/25+73-DR-PD1-RO+ 0.396754722517125 0.0938972929313765 3,11E+09 
CSF TCell CD8 CD8/25+73-RO+ 0.388648976044978 0.0920280569233537 3,14E+09 
CSF TCell CD8 CD8/25+38-127+DR- 0.295505711906742 0.0832339005745218 0.000441237492087381 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10- 0.236685237586389 0.0619509581567708 0.000160785434865312 
CSF TCell CD8 CD8/25+73-PD1-RO+ 0.392892597615874 0.0934702151894288 3,41E+07 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-R10- 0.237679673812421 0.0622500666438236 0.000162317855032488 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-R10-
XR5- 0.238881529848315 0.0626895908017968 0.000167157178067579 



CSF TCell CD8 CD8/27-28+95+127+244- 0.2930285804675 0.0807642366641372 0.00033088479698702 
CSF TCell CD8 CD8/25+127+PD1- 0.292153278459253 0.0827246497649223 0.000472467470177301 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3-XR5- 0.212076950813267 0.0584928068986644 0.000335973627207591 
CSF TCell CD8 CD8/27-28+31-57-95+127+244- 0.302673668771309 0.0850092998039438 0.000424799828576031 
CSF TCell CD8 CD8/28+31-95+244-RA- 0.253562488293705 0.0716354220122403 0.000458508701740687 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-XR3-
XR5- 0.251617070005681 0.0671270266059413 0.000211872145078373 

CSF TCell CD8 CD8/27-28+57-127+244-RA- 0.339305467152066 0.0828849064683119 5,35E+09 
CSF TCell CD8 CD8/27-28+127+244-RA- 0.339147413245567 0.0828937900003072 5,40E+09 
CSF TCell CD8 CD8/27-28+57-95+127+244-RA- 0.339736747164748 0.0829962446973802 5,36E+09 
CSF TCell CD8 CD8/27-57-95+127+244-RA- 0.337136888292945 0.0823843189171225 5,38E+09 
CSF TCell CD8 CD8/27-28+95+127+244-RA- 0.339614721304884 0.0830075742664519 5,40E+09 
CSF TCell CD8 CD8/27-127+244-RA- 0.334325683197326 0.0821343735348872 5,89E+09 
CSF TCell CD8 CD8/27+28+RA-R5- 0.238095477602917 0.0629211157763659 0.000183330757605724 
CSF TCell CD8 CD8/27-95+127+244-RA- 0.335755340842675 0.0823487592778147 5,72E+09 
CSF TCell CD8 CD8/27-57-244-RA- 0.295449864700574 0.0780408171312687 0.000182140746841996 
CSF TCell CD8 CD8/25+38-39-73+DR-PD1-RO+ 0.315743670142306 0.0910959579656413 0.000598787193609205 
CSF TCell CD8 CD8/31-57-244-RA- 0.249568621357787 0.0713840810068003 0.000536833912458826 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3- 0.228058525741234 0.0589762552623699 0.000134021410105103 
CSF TCell CD8/Memory CD8/Memory/161-R4+R10-XR3-XR5- 0.228388256013285 0.0590533841234034 0.000133742282803404 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R10-XR3- 0.272342461236349 0.0660148276785125 4,75E+09 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R10-XR3-
XR5- 0.272581823344974 0.0660895715810247 4,77E+09 

CSF TCell CD8/Memory CD8/Memory/161-R4+R6-R10-XR3- 0.228081324795589 0.0592024572783923 0.000141786157163993 

CSF TCell CD8/Memory 
CD8/Memory/161-R4+R6-R10-XR3-
XR5- 0.22841298508658 0.0592808092809632 0.000141508429102688 

CSF TCell CD8 CD8/27-28+31-127+244-RA- 0.347136020380909 0.0864797275183238 7,40E+09 



CSF TCell CD8 CD8/27-28+31-57-127+244-RA- 0.347280564066345 0.0865070615361225 7,39E+09 
CSF TCell CD8 CD8/27-31-57-127+244-RA- 0.343923172280449 0.0856049170220356 7,30E+09 
CSF TCell CD8 CD8/27-28+31-95+127+244-RA- 0.34744130243568 0.0866066620113579 7,47E+09 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-R10-
XR3- 0.272658478626267 0.0662772309802011 4,99E+09 

CSF TCell CD8 CD8/27-28+31-57-95+127+244-RA- 0.347580241142917 0.0866339914135202 7,46E+09 
CSF TCell CD8 CD8/27-31-127+244-RA- 0.342470363669051 0.0855165146421426 7,68E+09 
CSF TCell CD8 CD8/27-31-57-95+127+244-RA- 0.345461180779119 0.0858772802542323 7,14E+09 
CSF TCell CD8 CD8/27-31-95+127+244-RA- 0.343929780931566 0.08578675270207 7,55E+09 
CSF TCell CD8/Memory CD8/Memory/161-R4+R6-XR3-XR5- 0.227941402034391 0.0593604112032933 0.000148900210798042 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10- 0.218861718981512 0.0607025898155526 0.0003625917863001 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R10- 0.216842129451697 0.0598956572821485 0.000342972731277596 
CSF TCell CD8/Memory CD8/Memory/PD1-R4+R6-R10-XR5- 0.22013317148599 0.0611500526240417 0.000370159918631619 
CSF TCell CD8 CD8/27-31-57-244-RA- 0.299956000690311 0.0820461133661361 0.000298340505566998 

CSF TCell CD8/Memory 
CD8/Memory/161-PD1-R4+R6-R10-
XR3-XR5- 0.266707355711362 0.0660344064353267 6,77E+09 

CSF TCell CD8 CD8/57-127+244-RA- 0.254171905592357 0.0690586965169997 0.000272022245437664 
CSF TCell CD8 CD8/28+57-127+244-RA- 0.255380221782188 0.0693829700786588 0.000271780107334116 
CSF TCell CD8 CD8/127+244-RA- 0.253356137051372 0.0690200738738917 0.000282199248774462 
CSF TCell CD8 CD8/31-57-127+244-RA- 0.277726754323089 0.0754984398134608 0.000273887398520211 
CSF TCell CD8 CD8/28+127+244-RA- 0.254827043781106 0.0693600468445181 0.000278788982835651 
CSF TCell CD8 CD8/28+31-57-127+244-RA- 0.278665237683621 0.0757959832764595 0.000276001641352761 
CSF TCell CD8 CD8/31-127+244-RA- 0.277222822203209 0.075497547887184 0.000280803078076166 
CSF TCell CD8 CD8/57-95+127+244-RA- 0.25443373511037 0.0695204572155357 0.000294036621249573 
CSF TCell CD8 CD8/28+57-95+127+244-RA- 0.255289520097331 0.0697579258211721 0.000294229190084854 
CSF TCell CD8 CD8/31-57-95+127+244-RA- 0.278237910715729 0.07587558593237 0.000286058666726883 
CSF TCell CD8 CD8/28+31-95+127+244-RA- 0.278650924647768 0.0761075554436472 0.000292289086028161 



CSF TCell CD8 CD8/31-95+127+244-RA- 0.277749455268155 0.0758757683166848 0.00029305951824171 
CSF TCell CD8 CD8/28+95+127+244-RA- 0.254753378579883 0.0697352482739328 0.000301487434668192 
CSF TCell CD8 CD8/95+127+244-RA- 0.2536397211415 0.0694832643857418 0.000304654287940729 
CSF TCell CD8 CD8/27-28+57-95+244-RA- 0.303465995984382 0.0774431215734546 0.000108551914928104 
CSF TCell CD8 CD8/27-28+57-244-RA- 0.301918410401332 0.0773236642319564 0.000114712868744883 
CSF TCell CD8 CD8/27-28+57-95+127+244- 0.293472704222359 0.0807889886241182 0.000325518892613148 
CSF TCell CD8 CD8/27-28+95+244-RA- 0.302579002924615 0.0774844175225359 0.00011452465434 
CSF TCell CD8 CD8/27-28+244-RA- 0.300994189314693 0.0773621861561523 0.000121175161697351 
CSF TCell CD8 CD8/27-95+127+244- 0.281661558932 0.0794942154323901 0.000452611883401293 
CSF TCell CD8 CD8/28+57-244-RA- 0.221919325558451 0.0626359985529317 0.000453823221663268 
CSF TCell CD8 CD8/27-57-95+127+244- 0.283180561759044 0.0798296544253044 0.000445834015623252 
CSF TCell CD8 CD8/28+31-57-244-RA- 0.253648638713774 0.0713754637300969 0.000435453173861295 
CSF TCell CD8 CD8/28+31-244-RA- 0.253477003441149 0.0714144478384348 0.000442427750653502 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3- 0.25145962421783 0.0667099988931211 0.000195465633568647 
CSF TCell CD8 CD8/27-28+31+57-95+127+244-RA- 0.332239628384667 0.0892710026161369 0.000232805675720702 
CSF TCell CD8 CD8/27-31+57-95+127+244-RA- 0.331314628097994 0.089428191911737 0.000248190086582769 
CSF TCell CD8/Memory CD8/Memory/R4+R6-R10-XR3- 0.21166901317377 0.0584019973630943 0.000337659551687414 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+XR3-XR5- 0.251263140456531 0.0668285194423926 0.000202784327508795 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3-XR5- 0.209688359124308 0.0579560782848201 0.000345529311731505 
CSF TCell CD8/Memory CD8/Memory/R4+R10-XR3- 0.209272511862065 0.0578682605732275 0.000347707407060729 
CSF TCell CD8 CD8/28+31-57-95+244-RA- 0.253747351735464 0.0715969525154651 0.000451065137777552 
CSF TCell CD8 CD8/27-28+31-95+127+244- 0.302000632587414 0.0849496868050112 0.000433329302732511 
CSF TCell CD8/Memory CD8/Memory/161-PD1-R4+R6-XR3- 0.251797754764545 0.0670103091584696 0.000204555946115537 
CSF TCell CD8 CD8/27-28+31+95+127+244-RA- 0.330379505992015 0.0891494735753591 0.000247194729968091 
CSF TCell CD8 CD8/27-31-95+127+244- 0.291777458832829 0.0837676404721652 0.000562529115937762 
CSF TCell CD8 CD8/27-28+31+57-127+244-RA- 0.326879249472751 0.0889125257600592 0.000276255067263027 
CSF TCell CD8 CD8/27-31+95+127+244-RA- 0.329027829125281 0.0893055324508725 0.000268202667827306 



CSF TCell CD8 CD8/57-244-RA- 0.224052810927006 0.0632148920991587 0.000450884593389549 
CSF TCell CD8 CD8/27-31+57-127+244-RA- 0.325101349371343 0.0889953196600443 0.000301593921507969 
CSF TCell CD8 CD8/27-31-57-95+127+244- 0.293427867994343 0.0842007892779265 0.000559137969508776 
CSF TCell CD8 CD8/27-28+31-57-95+244-RA- 0.305118866692978 0.0805025915058724 0.000179261956810158 
CSF TCell CD8 CD8/27-28+31+127+244-RA- 0.324910732387852 0.0887768054045281 0.000293992830914167 
CSF TCell CD8 CD8/27-28+31-95+244-RA- 0.30432668855018 0.080494912866605 0.000185929233460572 
CSF TCell CD8 CD8/27-28+31-57-244-RA- 0.303958667767241 0.080423042387741 0.000186787227081857 
CSF TCell CD8 CD8/27-28+31-244-RA- 0.303178335536875 0.080415885364018 0.000193634820801385 
CSF TCell CD8 CD8/27-31+127+244-RA- 0.322708287459471 0.0888501675331401 0.000326170468123883 
CSF TCell CD8 CD8/244-RA- 0.22049800039032 0.0632111222332629 0.000552462244788044 
CSF TCell CD8 CD8/27-57-95+244-RA- 0.296564698894205 0.0783083432405379 0.000181225438968555 
CSF TCell CD8 CD8/27-95+244-RA- 0.290355615621107 0.0786848526333962 0.000262298439038791 
CSF TCell CD8 CD8/27-244-RA- 0.289040920124657 0.0784172713371291 0.000266463279705433 
CSF TCell CD8 CD8/27-28+57-95+244- 0.270933266113995 0.0762658430737978 0.000437795641755694 
CSF TCell CD8 CD8/31-244-RA- 0.245600578802634 0.0715182215884788 0.000670530173510451 
CSF TCell CD8 CD8/27-28+95+244- 0.269642756156568 0.0762762520951059 0.000466520673127083 
CSF TCell CD8 CD8/27-31-57-95+244-RA- 0.300404073819999 0.0823161374228102 0.00030573266945151 
CSF TCell CD8 CD8/27-28+31-57-95+244- 0.273930888411814 0.0797101878089142 0.000665121893818441 
CSF TCell CD8 CD8/27-31-95+244-RA- 0.293344928911927 0.0827258573357139 0.00044795557471446 
CSF TCell CD8 CD8/27-31-244-RA- 0.292676627232421 0.082483801952582 0.000444208119334088 

 



Table S3: Purities of sorted cells.  
 

 

Sample N°monocytes Purity N° Neutrophils Purity N° NK cell Purity N° B cell Purity N°CD4+ Purity N° CD8+ Purity 

Non_smoker1 366715 99,70% 6,0*106 99,40% 1190410 95,20% 335127 97,10% 3,0*106 99,40% 2,0*106 99,60% 

Non_smoke2 805663 99,50% 3836878 99,30% 1603518 91,10% 552704 96,70% 3027294 99% 1088507 99% 

Smoker 1 939934 99,90% 6857618 99,30% 1238652 97,25% 1198578 97,10% 5413880 99,30% 1766318 98,90% 

Smoker 2 773145 95,80% 8315211 99,20% 2756138 97,60% 501156 96,25% 1905684 99,70% 2280389 99,50% 

Smoker 3 1046481 99,60% 7877924 98,20% 2345683 96,70% 756103 99,40% 2917351 99,80% 1262729 99,80% 

Non_smoker 3 482894 99,30% 7619338 99,60% 1056676 99,45% 767856 97,45% 4277608 99,60% 1711703 97,80% 

mean 735805,3333 98,97% 6901393,8 99,17% 1698512,833 96,22% 685254 97,33% 3508363,4 99,47% 1621929,2 99,10% 

min 366715 95,80% 3836878 98,20% 1056676 91,10% 335127 96,25% 1905684 99,00% 1088507 97,80% 

max 1046481 99,90% 8315211 99,60% 2756138 99,45% 1198578 99,40% 5413880 99,80% 2280389 99,80% 



Table S4: Results of functional and pathways enrichment 
 

HYPOMETHYLATED GENES IN B CELLS p-value Adj.p-value Combined 
Score Genes 

WIKY PATHWAYS     

Degradation pathway of sphingolipids, including 
diseases WP4153 0.03 1.0 131.41 GLB1 

Pyrimidine metabolism and related diseases 
WP4225 0.03 1.0 131.41 DPYS 

T-Cell antigen Receptor (TCR)  Signaling Pathway 
WP69 0.03 1.0 25.34 VAV3;SKAP1 

REACTOME     

Glycosphingolipid metabolism Homo sapiens R-HSA-
1660662 0.01 1.0 79.47 GALC;GLB1 

EPH-ephrin mediated repulsion of cells Homo 
sapiens R-HSA-3928665 0.01 1.0 63.71 VAV3;EPHA3 

Neurofascin interactions Homo sapiens R-HSA-
447043 0.02 1.0 18.06 CNTN1 

Sphingolipid metabolism Homo sapiens R-HSA-
428157 0.02 1.0 34.04 GALC;GLB1 

Type I hemidesmosome assembly Homo sapiens R-
HSA-446107 0.03 1.0 13.14 CD151 

IRAK2 mediated activation of TAK1 complex upon 
TLR7/8 or 9 stimulation 0.03 1.0 11.49 IRAK2 

IRAK2 mediated activation of TAK1 complex Homo 
sapiens R-HSA-937042 0.03 1.0 11.50 IRAK2 

Reactions specific to the complex N-glycan synthesis 
pathway Homo sapiens R-HSA-975578 0.03 1.0 11.51 MAN2A1 

Urea cycle Homo sapiens R-HSA-70635 0.03 1.0 11.52 CPS1 
Transport of organic anions Homo sapiens R-HSA-
879518 0.03 1.0 10.16 SLCO2A1 
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KEGG     

Lysosome 3.66 x10-6 0.01 136.14 MFSD8;GALC;LAPTM4B;GLB1;AP3B1 

Sphingolipid metabolism 9.06x10-3 1.0 65.63 GALC;GLB1 
     

HYPERMETHYLATED GENES IN B CELLS     

WIKI PATHWAYS     

Histone Modifications WP2369 0.04 1.0 20.16 SETBP1;SMYD3 
REACTOME     

Defective B3GALTL causes Peters-plus syndrome 
(PpS) Homo sapiens R-HSA-5083635 7.18x10-4 1.0 123.58 SEMA5A;ADAMTS17;THSD7A 

O-glycosylation of TSR domain-containing proteins 
Homo sapiens R-HSA-5173214 7.76x10-4 0.6 119.02 SEMA5A;ADAMTS17;THSD7A 

Diseases associated with O-glycosylation of proteins 
Homo sapiens R-HSA-3906995 3.21x10-3 1.0 58.50 SEMA5A;ADAMTS17;THSD7A 

cGMP effects Homo sapiens R-HSA-418457 3.25x10-3 1.0 13.40 KCNMB2;PDE5A 
Nitric oxide stimulates guanylate cyclase Homo 
sapiens R-HSA-392154 6.24x10-3 1.0 85.51 KCNMB2;PDE5A 

Gap junction trafficking Homo sapiens R-HSA-
190828 7.79x10-3 1.0 73.01 DAB2;GJB3 

Diseases of glycosylation Homo sapiens R-HSA-
3781865 8.52x10-3 1.0 34.21 SEMA5A;ADAMTS17;THSD7A 

Gap junction trafficking and regulation Homo 
sapiens R-HSA-157858 8.91x10-3 1.0 66.26 DAB2;GJB3 

Neuronal System Homo sapiens R-HSA-112316 0.01 1.0 14.83 GNAL;RPS6KA2;KCNMB2;KCNK17;CACNG3 
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O-linked glycosylation Homo sapiens R-HSA-
5173105 0.01 1.0 23.91 SEMA5A;ADAMTS17;THSD7A 

KEGG     

cGMP-PKG signaling pathway 0.04 1.0 11.83 KCNU1;KCNMB2;PDE5A 
Adherens junction 0.05 1.0 18.00 FER;PTPRM 
     

HYPOMETHYLATED GENES IN MONOCYTES     

WIKI PATHWAYS     

Thermogenesis WP4321 3.31x10-4 0.16 97.30 RHEB;PRDM16;ADCY3;PPARG 
Differentiation of white and brown adipocyte    
WP2895 2.63x10-3 0.62 155.89 PRDM16;PPARG 

Regulation of Actin Cytoskeleton WP51 0.01 1.0 29.67 VIL1;PDGFRA;MYLK 
HIF1A and PPARG regulation of glycolysis WP2456 0.02 1.0 152.61 PPARG 
FTO Obesity Variant Mechanism WP3407 0.02 1.0 152.61 PRDM16 
Pathways in clear cell renal cell carcinoma WP4018 0.03 1.0 27.64 PDGFRA;RHEB 
NAD metabolism, sirtuins and aging WP3630 0.03 1.0 101.63 PPARG 
Transcriptional cascade regulating adipogenesis 
WP4211 0.04 1.0 81.86 PPARG 

Osteoblast Signaling WP322 0.04 1.0 74.31 PDGFRA 
REACTOME     

Netrin-1 signaling Homo sapiens R-HSA-373752 7.28x10-3 1.0 76.85 ABLIM3;TRPC4 
Choline catabolism Homo sapiens R-HSA-6798163 0.02 1.0 219.04 DMGDH 
CREB phosphorylation through the activation of 
Adenylate Cyclase Homo sapiens R-HSA-442720 0.02 1.0 180.59 ADCY3 

Organic cation transport Homo sapiens R-HSA-
549127 0.03 1.0 131.42 SLC22A4 

Role of second messengers in netrin-1 signaling 
Homo sapiens R-HSA-418890 0.03 1.0 114.87 TRPC4 
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Adenylate cyclase activating pathway Homo sapiens 
R-HSA-170660 0.03 1.0 114.87 ADCY3 

Transport of glucose and other sugars, bile salts and 
organic acids, metal ions and amine compounds 0.04 1.0 21.21 SLC22A4;SLC14A2 

DCC mediated attractive signaling Homo sapiens R-
HSA-418885 0.04 1.0 74.31 ABLIM3 

Organic cation/anion/zwitterion transport Homo 
sapiens R-HSA-549132 0.04 1.0 74.31 SLC22A4 

SEMA3A-Plexin repulsion signaling by inhibiting 
Integrin adhesion Homo sapiens R-HSA-399955 0.04 1.0 74.31 FARP2 

KEGG     

Choline metabolism in cancer 3.44x10-3 1.0 56.36 SLC22A4;PDGFRA;RHEB 
Longevity regulating pathway 3.74x10-3 0.58 53.89 RHEB;ADCY3;PPARG 
Thermogenesis 5.41x10-3 0.56 29.63 RHEB;PRDM16;ADCY3;PPARG 
Phospholipase D signaling pathway 0.01 0.80 30.31 PDGFRA;RHEB;ADCY3 
Calcium signaling pathway 0.02 1.0 20.53 PDGFRA;ADCY3;MYLK 
Gastric acid secretion 0.02 1.0 33.36 ADCY3;MYLK 
Rap1 signaling pathway 0.03 1.0 17.61 FARP2;PDGFRA;ADCY3 
Gap junction 0.03 1.0 26.23 PDGFRA;ADCY3 
Human cytomegalovirus infection 0.03 1.0 15.13 PDGFRA;RHEB;ADCY3 
Dilated cardiomyopathy (DCM) 0.03 1.0 24.92 SGCD;ADCY3 
     

HYPERMETHYLATED GENES IN MONOCYTES     

WIKI PATHWAYS     

miRNA targets in ECM and membrane receptors 
WP2911 1.97x10-3 0.93 188.83 COL5A1;ITGA1 

Regulation of Actin Cytoskeleton WP51 0.01 1.0 30.47 ITGA1;PIK3C3;FGFR2 
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AMP-activated Protein Kinase (AMPK) Signaling 
WP1403 0.02 1.0 38.68 LEPR;PIK3C3 

Hair Follicle Development: Cytodifferentiation (Part 
3 of 3) WP2840 0.03 1.0 27.36 CUX1;GLI2 

Leptin and adiponectin WP3934 0.03 1.0 117.33 LEPR 
Hedgehog Signaling Pathway WP47 0.05 1.0 63.72 GLI2 
NOTCH1 regulation of human endothelial cell 
calcification WP3413 0.05 1.0 58.81 ITGA1 

miR-509-3p alteration of YAP1/ECM axis WP3967 0.05 1.0 58.81 COL5A1 
Leptin Insulin Overlap WP3935 0.05 1.0 58.81 LEPR 
REACTOME     

L1CAM interactions Homo sapiens R-HSA-373760 3.01x10-3 1.0 60.48 ITGA1;NRCAM;SCN1A 
Interaction between L1 and Ankyrins Homo sapiens 
R-HSA-445095 3.41x10-3 1.0 13.06 NRCAM;SCN1A 

Axon guidance Homo sapiens R-HSA-422475 4.37x10-3 1.0 21.10 ARHGEF28;ITGA1;NRCAM;SLIT3;FGFR2;SCN1A 

Phospholipid metabolism Homo sapiens R-HSA-
1483257 0.01 1.0 27.20 LPCAT2;PIK3C3;SYNJ2 

PI Metabolism Homo sapiens R-HSA-1483255 0.01 1.0 47.42 PIK3C3;SYNJ2 
Collagen biosynthesis and modifying enzymes 
Homo sapiens R-HSA-1650814 0.02 1.0 44.18 COL17A1;COL5A1 

Signaling by FGFR in disease Homo sapiens R-HSA-
1226099 0.02 1.0 44.18 CUX1;FGFR2 

Intra-Golgi and retrograde Golgi-to-ER traffic Homo 
sapiens R-HSA-6811442 0.02 1.0 22.89 SCOC;CUX1;KLC1 

GLI proteins bind promoters of Hh responsive genes 
to promote transcription 0.02 1.0 18.44 GLI2 

Neurofascin interactions Homo sapiens R-HSA-
447043 0.02 1.0 18.44 NRCAM 
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KEGG     

Inositol phosphate metabolism 0.02 1.0 34.88 PIK3C3;SYNJ2 
Protein digestion and absorption 0.03 1.0 25.99 COL17A1;COL5A1 
Phosphatidylinositol signaling system 0.04 1.0 22.45 PIK3C3;SYNJ2 
Endocytosis 0.04 1.0 13.52 WIPF1;NEDD4L;FGFR2 
     

GENES IN COMMON BETWEEN MONOCYTES AND B 
CELLS 

    

WIKI PATHWAY     

IL-5 Signaling Pathway WP127 5.85x10-4 0.28 413.57 SPRED1;JAK2 
Pyrimidine metabolism and related diseases 
WP4225 8.07x10-3 1.0 594.98 DPYD 

ncRNAs involved in STAT3 signaling in 
hepatocellular carcinoma WP4337 0.01 1.0 380.62 JAK2 

Leptin Insulin Overlap WP3935 0.02 1.0 273.64 JAK2 
The human immune response to tuberculosis 
WP4197 0.02 1.0 187.78 JAK2 

EPO Receptor Signaling WP581 0.02 1.0 160.92 JAK2 
PDGFR-beta pathway WP3972 0.03 1.0 140.14 JAK2 
IL17 signaling pathway WP2112 0.03 1.0 128.74 JAK2 
Mammary gland development pathway - Pregnancy 
and lactation (Stage 3 of 4) WP2817 0.03 1.0 123.63 JAK2 

Fluoropyrimidine Activity WP1601 0.03 1.0 118.86 DPYD 
REACTOME     

Interferon Signaling Homo sapiens R-HSA-913531 6.79x10-4 1.0 124.07 TRIM62;JAK2;IFNA21 
VEGFR2 mediated cell proliferation Homo sapiens 
R-HSA-5218921 1.34x10-3 1.0 88.92 SPRED1;ITPR2;JAK2 
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Immune System Homo sapiens R-HSA-168256 1.74x10-3 0.89 27.36 TRIM62;SPRED1;ITPR2;TPP2;JAK2;IFNA21 

Cytokine Signaling in Immune system Homo sapiens 
R-HSA-1280215 1.98x10-3 0.76 44.63 TRIM62;SPRED1;JAK2;IFNA21 

VEGFA-VEGFR2 Pathway Homo sapiens R-HSA-
4420097 2.77x10-3 0.85 61.34 SPRED1;ITPR2;JAK2 

Signaling by VEGF Homo sapiens R-HSA-194138 2.97x10-3 0.76 59.14 SPRED1;ITPR2;JAK2 
Downstream signaling of activated FGFR2 Homo 
sapiens R-HSA-5654696 3.0x10-3 0.65 58.87 SPRED1;ITPR2;JAK2 

Downstream signaling of activated FGFR4 Homo 
sapiens R-HSA-5654716 3.0x10-3 0.57 58.87 SPRED1;ITPR2;JAK2 

Downstream signaling of activated FGFR3 Homo 
sapiens R-HSA-5654708 3.0x10-3 0.51 58.87 SPRED1;ITPR2;JAK2 

Signaling by FGFR4 Homo sapiens R-HSA-5654743 3.0x10-3 0.47 58.07 SPRED1;ITPR2;JAK2 
KEGG     

Kaposi sarcoma-associated herpesvirus infection 5.83x10-4 0.18 133.47 ITPR2;JAK2;IFNA21 
Cholinergic synapse 4.48x10-3 0.69 107.28 ITPR2;JAK2 
JAK-STAT signaling pathway 9.16x10-3 0.94 64.37 JAK2;IFNA21 
Necroptosis 9.16x10-3 0.71 64.37 JAK2;IFNA21 
Hepatitis B 9.27x10-3 0.57 63.82 JAK2;IFNA21 
Influenza A 0.01 0.52 59.64 JAK2;IFNA21 
NOD-like receptor signaling pathway 0.01 0.48 56.33 ITPR2;IFNA21 
Tuberculosis 0.01 0.43 55.88 JAK2;IFNA21 
Human immunodeficiency virus 1 infection 0.02 0.52 43.81 ITPR2;IFNA21 
Pantothenate and CoA biosynthesis 0.02 0.52 238.38 DPYD 
     

GOrilla results: Methylated genes in B cells P-value FDR q-
value Enrichment Genes 
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GO:0051271 negative regulation of cellular 
component movement 3.24E-4 7.12E-1 4.12 SEMA5A; C16orf45;SEMA3A;MCC;NAV3;PTPRM 

 



Figure S5: Antibodies Panel used for cell-sorting. In first row are reported the seven lasers to separate the cell-type by expressed fluorescence.  
 
 

Tube Cell-types FITC PE PrCP-
Cy5.5 PE-Cy7 APC A700 PE-

CF594 

1 LYMPHOCITE (B,NK,CD4,CD8) 
4 WAY 

CD16+CD56 
(NK cells) 

 CD19 (B 
cells) 

CD14 
(Monocytes) CD3 (T cells) CD4+ CD8+ 

       

2 
MONO/GRANULO (Mono, NK, 

B, Neu) 
4 WAY 

CD16+CD56 
(NK cells) CD3 (T cells) CD19 (B 

cells) 
CD14+ 

(Monocytes) 
CD11b+ 
(myeloid) 

  

       



Target bisulfite sequencing pipeline  

 

The pipeline includes the common four steps of target sequencing analysis: a) pre-

processing NGS reads, b) aligning reads to a reference genome, c) filtering 

duplicated reads, d) methylation calling. 

 

 
Figure: Workflow of analysis pipeline. 

In each block are detailed the algorithms applied to analyse data 

 

Pre-processing step  

 Sequencing reads are quality controlled using FastQC(1). It allows to evaluate the 

overall library quality, presence of sequencing adapters and presence of bad 



quality bases in the 3'-end of the read. Low quality bases and adapter were 

removed by CutAdapt (2). 

Alignment 

 Reads passed quality control step, are mapped to reference genome using 

BSMAP (version 2.90)(3).  

Filtering steps  

This step includes splitting reads to remove duplicates and filtering the properly 

mapped paired-end reads. During splitting step, four BAM files are produced. Each 

of them includes aligned reads on a specific bisulfite strand (bisulfite top and 

bottom strand and their reverse complements). BAM file are merged in two files, 

that contain reads aligning on top and bottom strand, respectively. These files are 

then sorted, duplicates are removed and then, they are merged again, in order to 

obtain a single BAM file. These steps are performed using bamtools (4) and Picard 

(5) packages. Filtering for keep only mapped and properly paired reads and to clip 

overlapping reads are performed using bamtools.  Furthermore, Picard and 

bamtools packages on filtered and clipped reads allow to estimate several metrics 

for evaluating the quality of experiments and analysis.  A brief summary of these 

metrics is provided as follow. 

• Mapping metrics provide details about the quality of the read alignments 

and the proportion of the reads that passed machine signal-to-noise 

threshold quality filters. 

• Hybrid selection analysis metrics provide a number of metrics assessing the 

quality of the targeted bisulfite sequencing experiment. 

• The number of on-target reads, namely the number of reads that overlap one 

of the target regions by at least one base. 

• The depth of coverage over the target regions. 

• The insert size distribution of the reads. DNA is randomly fragmented, and 

later size selected. So, it is normal to observe a range of fragment sizes. If 

this range is too large or too small, the number of on-target reads can be 

adversely affected. 



Methylation calling analysis  

The percent methylation at each cytosine in the samples is determinate using 

methratio package supplied by BSMAP tools. It creates a tab-delimited file that 

contains a line for each detected cytosine. Fields of the line specify the cytosine 

position, the number of times it appears as methylated and unmethylated and its ß-

score. Methratio is also used to calculate the bisulfite conversion efficiency. 

 

Docker  

Docker (6) is an open source project that allows operating system level 

virtualization, portable deployment of containers across platforms, and git-like 

versioning, among others. Docker technology has recently become very popular 

throughout the scientific community and not just. It allows to run applications in an 

isolated environment and to efficiently distribute the package, in the form of Docker 

images, in a portable manner across different platforms. In a similar way to virtual 

machines Docker images provides all the required software is already installed, 

configured and tested. 

Virtual machines and Docker containers are similar in their goals. They provide 

analysis portability, isolating an application into a self-contained unit that can run 

anywhere. They provide analysis reproducibility, freezing the version of tools and 

library used. 
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