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Abstract: Nitrogen dioxide (•NO2) is produced in sunlit natural surface waters by the direct photoly-
sis of nitrate, together with •OH, and upon the oxidation of nitrite by •OH itself. •NO2 is mainly
scavenged by dissolved organic matter, and here, it is shown that •NO2 levels in sunlit surface
waters are enhanced by high concentrations of nitrate and nitrite, and depressed by high values of
the dissolved organic carbon. The dimer of nitrogen dioxide (N2O4) is also formed in the pathway
of •NO2 hydrolysis, but with a very low concentration, i.e., several orders of magnitude below
•NO2, and even below •OH. Therefore, at most, N2O4 would only be involved in the transformation
(nitration/nitrosation) of electron-poor compounds, which would not react with •NO2. Although it
is known that nitrite oxidation by CO3

•− in high-alkalinity surface waters gives a minor-to-negligible
contribution to •NO2 formation, it is shown here that NO2

− oxidation by Br2
•− can be a significant

source of •NO2 in saline waters (saltwater, brackish waters, seawater, and brines), which offsets
the scavenging of •OH by bromide. As an example, the anti-oxidant tripeptide glutathione under-
goes nitrosation by •NO2 preferentially in saltwater, thanks to the inhibition of the degradation
of glutathione itself by •OH, which is scavenged by bromide in saltwater. The enhancement of
•NO2 reactions in saltwater could explain the literature findings, that several phenolic nitroderiva-
tives are formed in shallow (i.e., thoroughly sunlit) and brackish lagoons in the Rhône river delta
(S. France), and that the laboratory irradiation of phenol-spiked seawater yields nitrophenols in a
significant amount.

Keywords: environmental chemistry; photochemistry; indirect photolysis; photonitration; reactive
nitrogen species

1. Introduction

Photochemical reactions are important processes in sunlit natural surface waters. They
play a significant role in the transformation of biorecalcitrant pollutants, and of some natu-
ral compounds, and often result in decontamination. However, sometimes photochemistry
yields secondary contaminants, which may be more harmful than the parent molecules [1,2].
Phototransformation by direct photolysis is operational for those compounds, which absorb
sunlight, and get degraded as a consequence, because they have a non-nil quantum yield
of direct photolysis [3,4]. Conversely, indirect photochemistry is the transformation of
dissolved compounds upon reaction with the so-called photochemically produced reac-
tive intermediates (PPRIs), independent of sunlight absorption by the molecules that get
transformed [5,6]. The main PPRIs in natural surface waters are the hydroxyl (•OH) and car-
bonate (CO3

•−) radicals, the excited triplet states of chromophoric dissolved organic matter
(3CDOM*, where CDOM is the chromophoric fraction of the dissolved organic matter,
DOM), and singlet oxygen (1O2) [7]. PPRIs are produced upon sunlight absorption by pho-
tosensitisers, i.e., naturally occurring compounds such as nitrate and nitrite (•OH sources),
as well as CDOM (source of 3CDOM*, 1O2, and •OH) [8–10]. Moreover, CO3

•− is gener-
ated upon oxidation of HCO3

−/CO3
2− by •OH, and of CO3

2− by 3CDOM* [11,12]. After
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being produced, PPRIs can be quickly quenched/scavenged by DOM, either chromophoric
or not. In particular, DOM scavenges •OH and CO3

•−, but it scavenges 3CDOM*/1O2
only to a very minor extent. Other important scavengers/quenchers are inorganic carbon,
i.e., HCO3

−/CO3
2− (for •OH), dissolved oxygen (for 3CDOM*, to yield 1O2), and collision

with the water solvent (for 1O2) [6]. A schematic of the main processes involving photosen-
sitizers, PPRIs’ production, their scavenging/quenching, and interaction with pollutants is
provided in Figure 1.
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Fe(III) oxides [19]. 

•NO2 is a nitrating/nitrosating agent, which is involved in the production of toxic 
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the only possible nitrating agent in an aqueous solution, but it is probably the most likely 
one to be involved in photonitration processes in circumneutral conditions. Actually, 
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N2O4), but most of them tend to be operational at an acidic pH only [20,23]. Indeed, alt-
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Figure 1. Schematic of the main processes involving photochemical production and scaveng-
ing/quenching of the main PPRIs (•OH, CO3

•−, 3CDOM*, and 1O2) in natural surface waters.
DOM = dissolved organic matter; CDOM = chromophoric dissolved organic matter. Circles: photo-
sensitizers and scavengers/quenchers; rectangles: PPRIs.

In addition to •OH, CO3
•−, 3CDOM*, and 1O2, there are other PPRIs that are either

lesser known at the moment, e.g., longer-lived species such as superoxide and organic
peroxyl radicals [13,14], or have the potential to produce harmful secondary contaminants
to a higher extent compared to the PPRIs depicted in Figure 1. Examples are the dibromine
(or dibromide) radical (Br2

•−), which is mainly produced upon •OH scavenging by bromide
in saltwater [15] and is an effective brominating agent, especially for phenols [16], as well as
nitrogen dioxide (•NO2). The latter is mostly generated by nitrate photolysis together with
•OH, and by the oxidation of nitrite by •OH itself [8,17]. Other •NO2 formation processes,
the environmental importance of which is still to be conclusively elucidated, consist in the
oxidation of nitrite by either 3CDOM* [18], or irradiated Fe(III) oxides [19].

•NO2 is a nitrating/nitrosating agent, which is involved in the production of toxic
nitroderivatives from aromatic compounds [20], as well as of toxic and, possibly, mu-
tagenic/carcinogenic nitrosoderivatives from amines and amino acids [21,22]. •NO2 is
not the only possible nitrating agent in an aqueous solution, but it is probably the most
likely one to be involved in photonitration processes in circumneutral conditions. Actually,
studies on the (photo)nitration pathways of phenols and other aromatic compounds have
found a plethora of nitrating agents (•NO2, HNO2, HOONO, H2OONO+, and possibly
also N2O4), but most of them tend to be operational at an acidic pH only [20,23]. Indeed,
although in (often acidic) atmospheric waters the actual (photo)nitration pathways, and
the reactive species involved, may still be open to debate [24], in the case of natural surface
waters, •NO2 is more likely to play a substantial role [25].

In this work, a model approach based on (photo)reaction kinetics and a steady-state
approximation is applied to assess the conditions that would most favor the occurrence
of •NO2 (as well as its dimer, N2O4) in sunlit natural surface waters. Model findings help
explain why, so far, literature reports about environmental photonitration processes in
natural surface waters have focused on shallow and brackish lagoons, near the sea [26–28].
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2. Kinetic Model Development

Nitrogen dioxide is produced in natural surface waters upon the photolysis of nitrate,
and upon the oxidation of nitrite by •OH [29]:

NO3
− + hν+ H+ → •OH + •NO2

[
R

NO−3
•O H

]
(1)

NO2
− + •OH→ •NO2 + OH− [k2 = 1×1010 M−1 s−1] (2)

The quenching/scavenging processes of •NO2 in an aqueous solution involve dimer-
ization into dinitrogen tetroxide (N2O4), another potential nitrating agent, followed by the
hydrolysis of the latter, as well as an •NO2 reaction with the dissolved natural organic
matter (DOM) [8]:

2 •NO2 � N2O4 [k3 = 4.5 × 108 M−1 s−1; k−3 = 6.9 × 103 s−1] (3)

•NO2 + DOM→ Products [k4] (4)

N2O4 + H2O→ NO3
− + NO2

− + 2 H+ [k5 = 1 × 103 s−1] (5)

The value of k4 is still to be conclusively assessed. However, in the case of phenolic
compounds, it is reported that k4~104 M−1 s−1 [30]. Moreover, it is well known that
phenolic moieties are ubiquitous in DOM. When considering the dissolved organic carbon
(DOC) contents of phenols [31], one may assume k4 = 0.14 L mgC

−1 s−1.

By assuming the formation rate of •NO2 (R•NO2), as R•NO2 = R
NO−3
•OH + k2× [•OH]× [NO−2 ],

and applying the steady-state approximation to both •NO2 and N2O4 (i.e., d[NO2]/dt = 0, and
d[N2O4]/dt = 0), from reactions (1–5), one gets the following: [•NO2] = (k−3 + k5)

−k4 DOC +
√
(k4 DOC)2+8 k3k5R•NO2

(k−3+k5)
−1

4k3k5

[N2O4] =
k3 [
•NO2]

2

k−3+k5

(6)

Preliminary calculations showed that reaction (4) would strongly prevail over (3,5)
as an •NO2 sink. The rate difference between the two kinds of processes is so big that the
conclusion would not change even if k4 = 0.14 L mgC

−1 s−1 turned out to be a generously
high estimate for the reaction rate constant between •NO2 and DOM. Therefore, when
neglecting reactions (3,5) as •NO2 sinks, one gets a considerable simplification for (6): [•NO2] =

R•NO2
k4 DOC

[N2O4] =
k3 [
•NO2]

2

k−3+k5

(7)

Again, the same preliminary calculations suggested that (7) approximates (6) to better
than 4‰, in a wide variety of conditions that are significant for surface waters. Based on
the above reactions, it appears that the main water components that are expected to impact
[•NO2] and [N2O4] the most are the following:

1. DOC (dissolved organic carbon), when considering that DOM is the main •NO2
scavenger [18], and that it also scavenges •OH [32], which plays a key role in the
oxidation of NO2

− to •NO2 [19];
2. Inorganic carbon (HCO3

− and CO3
2−), because it enhances nitrate photolysis due

to a solvent cage effect (see Figure 2) [33], but also acts as an •OH scavenger [32].
Interestingly, there is evidence that nitrite oxidation by CO3

•− does not contribute to
•NO2 formation significantly [18];

3. Bromide (Br−), as a major •OH scavenger in saltwater and seawater [15,32].
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2−,
which inhibits geminate recombination between the photo-fragments O•− (•OH precursor) and •NO2.

The effect of different water components on [•NO2] and [N2O4] was modeled by

assessing the values of R
NO−3
•O H and [•OH], which are needed to calculate R•NO2 , by means

of the APEX software (Apex Srl; Modena, Italy). APEX (Aqueous Photochemistry of
Environmentally occurring Xenobiotics) computes steady-state concentrations of reactive
transient species (•OH, CO3

−•, 1O2, and 3CDOM*) as a function of water chemistry, depth,
and seasonal sunlight irradiance [34–36]. In this case, typical irradiance conditions for
APEX were assumed: 22 W m−2 UV irradiance, i.e., 290–400 nm, which corresponds to fair
weather 15 July at 45◦ N latitude, at 9 a.m. or 3 p.m., solar time. By doing so, it was possible

to compute R•NO2 = R
NO−3
•O H + k2 × [•OH]× [NO−2 ], as well as the steady-state [•NO2] and

[N2O4], as per Equation (6) or Equation (7).

3. Results and Discussion
3.1. Effect of Water Parameters on •NO2 Formation and Occurrence

First of all, the environmental occurrence of •NO2 and N2O4 was assessed and com-
pared with the other transient species (PPRIs). The effect of the two main •NO2/N2O4
sources (NO3

− and NO2
−) was modeled first, to check whether or not the steady-state

[•NO2] and [N2O4] were linearly dependent on [NO3
−] and [NO2

−]. The steady-state
concentrations of the reactive transient species were thus calculated as a function of the
concentration values of nitrate and nitrite, letting all the other parameters (DOC, HCO3

−,
CO3

2−, and water depth) constant. Calculation results are shown in Figure 3 for •NO2,
N2O4, •OH, and CO3

•−. It is suggested that the concentration values of all these transient
species increased with increasing nitrate and nitrite. At the same time, [3CDOM*] and [1O2]
were constant at around 10−16 M in all conditions. These results are easily explained by the
fact that nitrate and nitrite are both •OH sources, and •OH plays an important role in the
production of both •NO2 from NO2

−, and CO3
−• from HCO3

−/CO3
2− [6]. Moreover, the

production of •OH by NO3
− is closely associated with the formation of •NO2 (reaction (1)).

Increasing the [NO2
−] leads to increasing [•OH] and, considering that

RNO−2
•NO2

= k2 × [•OH]× [NO−2 ], there is a higher-than-linear effect of [NO2
−] on the forma-

tion rate of •NO2 by NO2
− itself. Moreover, because [N2O4] ∝ [•NO2]2 (Equation (7)), one

explains the faster-than-linear increase of [N2O4] with the increasing nitrite, reported in
Figure 3b.

An interesting issue is that [N2O4] is 6–7 orders of magnitude or more lower than
[•NO2], and it is even lower than [•OH]. This means that, for N2O4 to be a competitive
nitrating agent with •NO2, it should react much faster than •NO2 with organic compounds.
This is highly unlikely, with the possible exception of very electron-poor aromatics, which
would not react with •NO2 to a significant extent. Therefore, the reported finding, that the
nitration of some pyridine derivatives involves N2O4 as a nitrating agent [37], looks more
like an exception rather than a typical event.
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weather, 45◦ N latitude 15 July, at 9 a.m. or 3 p.m.

Additionally, the steady-state [CO3
•−] follows the same trend as [•OH], because

•OH is the main CO3
•− source through the oxidation of HCO3

−/CO3
2− [11] (Figure 3d).

Interestingly, there is evidence that NO2
− oxidation by CO3

•− does not contribute much to
•NO2 production [18].

As reported in Figure 4, nitrate photolysis (reaction (1)) would prevail as an •NO2
source over nitrate oxidation by •OH (reaction (2)) in the vast majority of the conditions
depicted in Figure 3. For nitrite oxidation to prevail, one needs [NO3

−] < 10 [NO2
−]. In

contrast, in natural waters, it is often found that [NO3
−]~102 [NO2

−] [38]. Note that NO3
−

and NO2
− play comparable roles as •OH sources when [NO3

−]~102 [NO2
−] [34].
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nitrite concentrations and other conditions are the same as for Figure 3. The nitrate process prevails
when the logarithm is positive (most cases), whereas the nitrite process prevails when the logarithm
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The possible role of HCO3
− and CO3

2− in •NO2 formation is depicted in Figure 5,
where conditions were chosen so that nitrate and nitrite contributed equally to •NO2
generation (11 µM NO3

−, 0.85 µM NO2
−). It appears that inorganic carbon species would

play a limited and slightly negative role towards the occurrence of •NO2, presumably
because their role as •OH scavengers in the solution bulk prevails over the solvent cage
effect that enhances nitrate photolysis by inhibiting the geminate recombination of O•−

and •NO2 (see Figure 2 for such a solvent cage effect).
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45◦N latitude 15 July, at 9 a.m. or 3 p.m.

DOM as an •OH scavenger is expected to inhibit •NO2 formation by quenching
reaction (2), that is, the nitrite route to •NO2. Moreover, the chromophoric moieties within
DOM (i.e., CDOM) compete with radiation absorption by both nitrate and nitrite, thereby
inhibiting their photolysis [34]. As a consequence, the photogeneration of •NO2 by nitrate,
and that of •OH by nitrate and nitrite, are both inhibited by CDOM. Last but not least,
reaction with DOM is the main scavenging process for •NO2. For all of these reasons, the
overall DOM effect to decrease [•NO2] is very important, as shown in Figure 6a.

Figure 6b,c additionally shows the decreasing formation rates of •NO2 from nitrate
and nitrite with increasing DOC, mostly due to competition for irradiance by CDOM (both
cases), and •OH scavenging by DOM (•NO2 formation from NO2

−).
The results shown in Figure 6a were obtained under the hypothesis that (C)DOM

mostly operates as an irradiance competitor and •OH scavenger. However, there is also
the possibility that 3CDOM* oxidizes NO2

− to •NO2, and such a process is expected to
contribute to •NO2 production to a higher extent when the DOC is higher. There is evidence
that a rate constant around 109 M−1 s−1 would be an upper limit for the reaction kinetics
between 3CDOM* and NO2

− [18]. That would be an upper limit, as well, for the ability of
3CDOM* to offset the inhibition effects by (C)DOM, shown in Figure 6a. As reported in
Figure 6d (compare with Figure 6a), [•NO2] would undergo almost negligible variations,
even when considering such an upper-limit 3CDOM* contribution. Therefore, the overall
role of (C)DOM towards the occurrence of [•NO2] is strongly negative.

The bromide anion plays a minor role as an •OH scavenger in most freshwaters, but
its importance increases considerably with increasing salinity, until it becomes the main
•OH scavenger in seawater, where [Br−]~0.8 mM [6,15]. Indeed, the second-order reaction
rate constant between Br− and •OH is 1.1 × 1010 M−1 s−1, while the reaction rate constant
between •OH and DOM is in the (2–5) × 104 L mgC

−1 s−1 range [6,15]. This means that
one would need DOC = 160–400 mgC L−1, which is hardly reasonable for a water matrix,
to scavenge •OH at a comparable level as 0.8 mM Br−.
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Figure 6. (a) Steady-state [•NO2], assumed to be generated by nitrate photolysis and nitrite oxidation
by •OH, as a function of DOC and nitrate concentration. Other conditions: 5 m water depth,
[NO2

−] = 10−2 [NO3
−], 1 mgC L−1 DOC, and 22 W m−2 sunlight UV irradiance (equivalent to fair

weather, 45◦ N latitude 15 July, at 9 a.m. or 3 p.m.). In the same conditions: (b) •NO2 formation rate
by nitrate photolysis; (c) •NO2 formation rate upon •OH oxidation of nitrite, and (d) steady-state
[•NO2], assumed to be generated by nitrate photolysis, nitrite oxidation by •OH, and nitrite oxidation
by 3CDOM*. The second-order rate constant of the latter process was assumed to be 109 M−1 s−1.

It is shown in Figure 7 that despite the important role of Br− as an •OH scavenger
in saltwater and seawater, increasing [Br−] decreases [•NO2] only to a rather limited
extent, because Br− is only able to inhibit the nitrite pathway to •NO2 (reaction (2)). Indeed,
differently from (C)DOM, Br− is not able to inhibit nitrate or nitrite photolysis, or to directly
scavenge •NO2. Figure 7 also shows that doubling the DOC from 1 to 2 mgC L−1 has a far
more important effect on [•NO2] than an increase in [Br−] by an order of magnitude.
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The reaction between Br− and •OH yields Br•, and then Br2
•− upon further reac-

tion with Br− [15]. Br2
•− is able to oxidize NO2

− to •NO2 (reaction rate constant of
2×107 M−1 s−1) [39], thereby contributing to •NO2 generation. The radical Br2

•− can
dimerize to form Br− and Br2, with a rate constant of 1.8 × 109 M−1 s−1 [39], but the main
quenching reaction of Br2

•− in natural waters is scavenging by DOM, with an estimated
rate constant of 3 × 102 L mgC

−1 s−1 [40]. A schematic of the mentioned processes in-
volving Br2

•− is provided in Figure 8. As shown in Figure 7, when taking into account
the oxidation of NO2

− by Br2
•− (see the curve highlighted as “Br2

•−” in the plot), [•NO2]
would significantly increase over the levels obtained by neglecting the Br2

•− reactions. In-
deed, when considering the whole process, Br− does not appear to inhibit •NO2 occurrence
to a significant extent. On the one side, these results show that •NO2 is more sensitive to the
DOC than to Br−. However, Br− is able to enhance the formation of •NO2 through Br2

•−,
presumably because Br− acts as an effective electron shuttle between •OH and NO2

− (see
Figure 8). Indeed, the reaction rate constant between Br2

•− and DOM is a couple of orders
of magnitude lower than the rate constant between •OH and DOM [6,40].
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Therefore, when Br− outcompetes DOM as an •OH scavenger, the couple Br−/Br2
•− acts as a very

effective electron shuttle between •OH and NO2
−.

3.2. Role of •NO2 in the Transformation/Nitrosation of Glutathione (GSH)

GSH is a tripeptide that plays an important role as an antioxidant in living organ-
isms [41,42]. GSH does not undergo direct photolysis because it does not absorb sun-
light [43], but it is photochemically degraded by •OH in sunlit natural waters (second-order
reaction rate constant of 3.5 × 109 M−1 s−1) and by 3CDOM* (8 × 107 M−1 s−1). In salt-
water, some role is also played by Br2

•− (2 × 108 M−1 s−1) [44]. •NO2 reacts with GSH by
transforming it into nitroso-GSH, with a second-order reaction rate constant in the order of
107 M−1 s−1 [45].

In the case of freshwaters, it is suggested in Figure 9a that •NO2 would play a minor
role in the photochemical transformation of GSH, which is dominated by •OH and by
3CDOM*. In this circumstance, the relative role of •OH decreases and that of 3CDOM*
increases with increasing DOC, because •OH is scavenged by organic matter, the chro-
mophoric fraction of which is, vice versa, the source of 3CDOM*.

The scenario gets very different in saltwater (Figure 9b), where •OH is effectively
scavenged by bromide, and where the •OH role in GSH degradation is strongly decreased
as a consequence. At the same time, the contribution of NO2

− oxidation by Br2
•− enhances

the role of •NO2 in the transformation of GSH. In seawater conditions (0.8 mM Br−),
•NO2 and 3CDOM* would be the main reactive species for GSH transformation, with their
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relative role depending on the DOC, which enhances 3CDOM* and inhibits •NO2, and on
nitrate and nitrite concentration values.
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4. Conclusions

The nitrating and nitrosating agent •NO2 is produced in sunlit natural waters upon
nitrate photolysis and upon nitrite oxidation by •OH. The nitrate process would usually
prevail in typical conditions found in natural waters, except when [NO2

−] > 0.1 [NO3
−].

Obviously, elevated concentration values of nitrate and nitrite are very favorable to the
occurrence of •NO2. Inorganic carbon has a limited effect on the steady-state [•NO2],
because small positive and negative effects offset each other, while elevated DOC is highly
detrimental to the occurrence of •NO2. Indeed, organic matter competes with nitrate and
nitrite for sunlight irradiance and, therefore, for •OH photoproduction. Moreover, DOM
scavenges •OH that is needed for NO2

− oxidation, and it also directly scavenges •NO2.
It is suggested here that bromide occurring in saltwater and seawater would favor

the degradation processes induced by •NO2 (e.g., glutathione nitrosation) by decreasing
the role of •OH and by enhancing that of •NO2: indeed, in the presence of bromide, a
further source of •NO2 is operational, which is represented by NO2

− oxidation by Br2
•−.

In these conditions, the couple Br−/Br2
•− acts as an effective electron shuttle between

•OH and NO2
−. This latter issue might explain why the photonitration of several phenolic

compounds has been observed in the brackish waters of the Rhône delta lagoons (Southern
France) [26–28]. In these environments, the concentration of nitrate (around 50 µM [26])
is not particularly high, despite there being important impact by agricultural activities,
partly because of the elevated denitrification ability of paddy fields, and partly perhaps
because of the assimilation of inorganic nitrogen by algae during the summer season [38].
By comparison, these levels are just double when compared to some mountain lakes (over
2000 m asl, NW Italy, 30 km as the crow flies off the city of Torino [46]), where nitrate occurs
because of atmospheric depositions, but microorganisms are not much able to consume
it. They are also comparable to the nitrate levels occurring in presently oligotrophic Lago
Maggiore (NW Italy [47]). In the Rhône delta lagoons, bromide would play a role in
inhibiting the degradation of the parent phenols by •OH, and it would allow •NO2 to
significantly contribute to the production of the nitrophenols. When also considering
the ability of DOM to scavenge •NO2, the mentioned photonitration processes are more
likely to take place in lagoon water (DOC = 4–5 mgC L−1) compared to the flooded rice
fields (DOC around 12 mgC L−1) [26]. Similarly, bromide could also play a role in the
photonitration of phenol in seawater [48].
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