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One Sentence Summary: Phosphoproteomics on patient-derived xenografts of metastatic 20 

colorectal cancer provided insight on the primary response to EGFR blockade.  21 

Abstract: Epidermal growth factor receptor (EGFR) is a well-exploited therapeutic target in 22 

metastatic colorectal cancer (mCRC). Unfortunately, not all patients benefit from current EGFR 23 

inhibitors . Mass spectrometry-based proteomics and phosphoproteomics were performed on 30 24 

genomically and pharmacologically characterized mCRC patient-derived xenografts (PDXs) to 25 

investigate the molecular basis of response to EGFR blockade and identify alternative drug targets 26 

to overcome resistance. Both the tyrosine and global phosphoproteome as well as the proteome 27 

harbored distinctive response signatures. We found increased pathway activity related to MAPK 28 

inhibition and abundant tyrosine phosphorylation of cell junction proteins, such as CXADR and 29 

CLDN1/3, in sensitive tumors, whereas epithelial-mesenchymal transition and increased MAPK 30 

and AKT signaling were more prevalent in resistant tumors. Furthermore, the ranking of kinase 31 

activities in single samples confirmed driver activity of ERBB2, EGFR, and MET in cetuximab-32 

resistant tumors. This analysis also revealed high kinase activity of several members of the SRC 33 

and Ephrin kinase family in 2 CRC PDX models with genomically unexplained resistance. 34 

Inhibition of these hyperactive kinases, alone or in combination with cetuximab, resulted in growth 35 

inhibition of ex vivo PDX-derived organoids and in vivo PDXs. Together, these findings highlight 36 

the potential value of phosphoproteomics to improve our understanding of anti-EGFR treatment 37 

and response prediction in mCRC and bring to the forefront alternative drug targets in cetuximab-38 

resistant tumors. 39 

  40 
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Main Text: 41 

INTRODUCTION 42 

Epidermal Growth Factor Receptor (EGFR) blocking monoclonal antibodies (mAb) 43 

cetuximab and panitumumab belong to the standard therapeutic arsenal for patients with metastatic 44 

colorectal cancer (mCRC). Administration of these drugs, regardless of treatment line or 45 

chemotherapeutic backbone, has improved response rates and overall survival in this patient 46 

population (1–4). Resistance to cetuximab and panitumumab has been partly attributed to 47 

oncogenic mutations downstream of EGFR in KRAS proto-oncogene (KRAS) exon 2-4, NRAS 48 

proto-oncogene (NRAS) exon 2-4, or B-Raf proto-oncogene (BRAF) V600E. According to the 49 

European Society for Medical Oncology (ESMO) and the National Comprehensive Cancer 50 

Network (NCCN) guidelines (5, 6) patients with these mutations are excluded for treatment with 51 

cetuximab or panitumumab. Despite overall treatment benefit in patients without oncogenic 52 

mutations in KRAS, NRAS or BRAF (RAS/RAF wild-type), 30% of patients do not receive 53 

clinical benefit from anti-EGFR mAb treatment (7) due to the high molecular complexity and 54 

heterogeneity of these tumors.  In addition, patients with RAS/RAF wild-type (WT) tumors located 55 

in the right side of the colon respond less to anti-EGFR antibodies compared with patients suffering 56 

from left-sided CRC tumors, which are usually more dependent on EGFR signaling due to the 57 

different embryological origin of the hindgut (8). 58 

In recent years, genomics has identified several resistance mechanisms and predictive 59 

biomarkers in RAS/RAF WT patient-derived xenograft (PDX) models, including MET proto-60 

oncogene (MET) and erb-b2 receptor tyrosine kinase 2 (ERBB2) amplification and mutations in 61 

ERBB2, EGFR, fibroblast growth factor receptor 1 (FGFR1), platelet derived growth factor 62 

receptor alpha (PDGFRA), and mitogen-activated protein kinase kinase 1 (MAP2K1) (9–11). This 63 

study extends these findings, using proteomics and phospho-proteomics as a complementary 64 

approach to capturing protein expression and activation states globally. Kinases control protein 65 

activity and signaling through phosphorylation (12). Thus, unbiased profiling of protein 66 

phosphorylation by mass spectrometry (phosphoproteomics) may uncover predictive markers and 67 

drug targets (13–15). Specifically, phosphotyrosine-based (pTyr) phosphoproteomics provides 68 

detailed quantification of tyrosine-phosphorylated proteins that are crucial for cancer proliferation 69 

signaling and thereby may be advantageous to understand tyrosine kinase inhibitor responses. 70 

Underscoring feasibility of such an approach in the clinical setting, we have previously shown that 71 

down-scaling of the pTyr enrichment protocol is accomplishable and can be successfully deployed 72 

to uncover patient-specific and drug-associated profiles in small tumor needle biopsies (16, 17). 73 

Large-scale proteomics and global phosphoproteomics studies applied to CRC in a multi-74 

omics context have contributed to describing the molecular landscape of primary (18) and 75 

metastatic CRC (19) and suggested new therapeutic opportunities for patients with tumors that do 76 

not harbor druggable mutations (19). A recent proteomic study in two CRC PDX models that had 77 

been rendered resistant to cetuximab by continuous antibody treatment highlighted changes in the 78 

abundance of EGFR ligands and enrichment of proliferative kinase signatures as correlates of 79 

acquired resistance (20). Whereas these analyses emphasized the importance of kinase-substrate 80 

correlation networks for prediction of drug sensitivity in patients with mCRC, they did not address 81 

the (phospho)proteomic underpinnings of innate sensitivity and resistance to EGFR inhibition on 82 

a systematic basis.  83 
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In this study, we combined mass-spectrometry-based proteomics with global (TiO2) and 84 

pTyr-based phospho-proteomics, to analyze a unique panel of 30 genomically characterized 85 

mCRC-PDX tumors annotated for response to cetuximab as seen in the clinic and confirmed in 86 

the mouse setting (10). Our findings improve understanding of the mechanisms dictating 87 

sensitivity and resistance to EGFR-blockade in mCRC (9, 10) and pinpoint actionable kinase 88 

activities in individual tumors that provide new treatment options.  89 

RESULTS  90 

Phosphoproteomics profiling of patient-derived xenografts 91 

To explore biological processes associated with sensitivity and resistance to EGFR blockade and 92 

to identify candidate markers and alternative drug targets to overcome resistance, mass 93 

spectrometry-based phospho-proteomics was performed on a cohort of 10 cetuximab-sensitive and 94 

20 cetuximab-resistant xenograft tumors, as assessed in a mouse clinical trial that recapitulated the 95 

clinical treatment outcomes (9, 10, 21) ( table S1). Out of twenty resistant tumors, three did not 96 

display genetic alterations known to affect responsiveness to EGFR blockade in mCRC (fig. S1A). 97 

Mass spectrometry-based proteomics, global phosphoproteomics (TiO2), and pTyr-based 98 

phosphoproteomics (fig. S1B) were performed on each tumor tissue sample. Data analysis 99 

consisted of comparative group-based analysis of cetuximab-sensitive (CS) versus (vs) cetuximab-100 

resistant (CR) tumors and kinase activity ranking analysis of individual resistant tumors to find 101 

potential drug targets (fig. S1C). 102 

Histological assessment of hematoxylin and eosin-stained sections indicated an average 103 

percentage of 65% epithelial cancer cells, 15% stroma, and 20% necrosis (fig. S2A). Based on this 104 

assessment, three samples (CRC0343, CRC0490, CRC1138_Repl1) showed more than 50% 105 

necrosis in the histological assessment. Further proteomic analysis of the samples revealed that 106 

two conventional markers for necrosis, namely high mobility group box 1 (HMGB1) and 107 

peptidylprolyl isomerase A (PPIA), had only medium-to-low protein expression in the tree samples 108 

scored as necrotic. Therefore, no samples were excluded based on histological assessment (fig. 109 

S2B).  110 

Seven samples were excluded from TiO2 data. Five samples (CRC0177, CRC0196_Repl1, 111 

CRC0254, CRC1138_Repl1, CRC1147_Repl1) were excluded due to technical failure, and two 112 

samples (CRC0166_Repl1, CRC0219_Repl1) were excluded due to high variation between 113 

replicates and low peptide yield (Suppl. Table. 1, fig. S3). In general, biological replicates of PDX 114 

tumors (pTyr, 13 replicates; TiO2, 10 replicates; expression, 12 replicates) clustered together in 115 

correlation heatmap (fig. S3). 116 

The mCRC-PDX proteome dataset consisted of 5287 identified proteins and the 117 

phosphoproteome dataset consisted of 13.110 class-I phospho-sites (8973 pSer, 1066 pThr, and 118 

3073 pTyr) on 15.095 phospho-peptides from 5207 phosphoproteins (1669 pTyr and 3538 global 119 

TiO2 capture) including 255 kinases, of which 53 tyrosine kinases, including EGFR (fig. S4 and 120 

Suppl. Tables 2-6). Unsupervised clustering using all (phospho-)proteome data did not show sub-121 

clustering of CS and CR tumors (fig. S5), underscoring the heterogeneity and the minor impact of 122 

resistance to cetuximab on the profiles. 123 

Differential (phospho)proteome profiles of cetuximab-sensitive and resistant PDX tumors 124 

provide insight into molecular determinants of response to cetuximab 125 
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Group-based statistics were performed between CS and CR tumors to find discriminative 126 

molecular determinants of response (Fig. 1 A, see Suppl. Table 7 for all comparisons for all data 127 

types). These comparative analyses revealed 53 (12 pTyr, 41 TiO2) differentially phosphorylated 128 

phospho-sites and 53 proteins with differential abundance in CS tumors versus all resistant tumors 129 

(CR-ALL); 75 (8 pTyr, 67 TiO2) differentially phosphorylated phospho-sites and 49 proteins in 130 

CS versus CR tumors with oncogenic mutations in KRAS, NRAS or BRAF (CR-MUT); and 17 131 

(4 pTyr, 13 TiO2) differentially phosphorylated phospho-sites and 72 proteins in CS tumors versus 132 

resistant RAS/RAF WT tumors (CR-WT) (Fig. 1A).  133 

Comparing significant phospho-sites (p-value <0.01, FC > 1.5) from the tree group 134 

comparisons (CS vs. CR-ALL, CS vs. CR-MUT, CS vs. CR-WT) shows an overlap of phospho-135 

sites that either fall into a general response signature (CS1/2/3, CR1/2/3) or a signature for either 136 

RAS/RAF mutated (CS4, CR4) or wild-type tumors (CS5, CR5) (Fig. 1A, Suppl. Table 8). (Fig. 137 

1A, Suppl. Table 8). Combining this phospho-site signature for clustering showed clear 138 

segregation between cetuximab-sensitive and resistant tumors. Although pTyr, global 139 

phosphoproteome, and proteome analyses enabled separation according to drug response, they 140 

yielded different layers of information: the pTyr signature predominantly consisted of phospho-141 

sites with increased phosphorylation in sensitive tumors, whereas the global TiO2-based signatures 142 

contained almost only phospho-sites that were more phosphorylated in resistant tumors. Moreover, 143 

the global TiO2 phosphorylation signatures additionally separated CR-MUT from CR-WT tumors. 144 

Finally, the protein expression data were analyzed similarly, and they as well separated sensitive 145 

tumors from resistant ones, providing a balanced number of proteins with higher expression in 146 

either one of the two response classes (Fig. 1B, fig. S6A-C). Suppl. Table 9 summarizes top 147 

discriminative proteins; the top 10 proteins for CS tumors include RAB11 family interacting 148 

protein 5 (RAB11FIP5), claudin 3 (CLDN3), solute carrier family 16 member 1 (SLC16A1), 149 

claudin 1 (CLDN1), SATB homeobox 2 (SATB2), 4-hydroxyphenylpyruvate dioxygenase like 150 

(HPDL), serine incorporator 5 (SERINC5), chromodomain helicase DNA binding protein 7 151 

(CHD7), sorting nexin 33 (SNX33), and CXADR Ig-like cell adhesion molecule (CXADR), 152 

whereas the top 10 proteins for CR tumors include absent in melanoma 1 like (AIM1L), 153 

asparaginase and isoaspartyl peptidase 1 (ASRGL1), claudin 2 (CLDN2), myelin expression factor 154 

2 (MYEF2), TSC22 domain family member 2 (TSC22D2), torsin family 4 member A (TOR4A), 155 

ATP binding cassette subfamily C member 3 (ABCC3), LIM domain and actin binding 1 156 

(LIMA1), neural precursor cell expressed  developmentally down-regulated 9 (NEDD9), and tight 157 

junction protein 1 (TJP1). 158 

Murine proteins from the host mice in PDX (phospho) samples may influence 159 

protein/peptide quantification when doing a human-only database search, especially when tumor 160 

cell percentage is not high. The samples from the PDX models described here have a relatively 161 

high average of 65% epithelial cell content. Still, to underscore the validity of introducing less 162 

complexity in the analysis of the phosphoproteomics PDX results by using a human-only database 163 

search, we cross-checked results obtained for the differential phosphosites associated with 164 

cetuximab sensitivity and resistance against a database search using the combined human and 165 

mouse sequences. Suppl. Table 10 shows that the spectrum identifications based on the combined 166 

search resulted in precisely the same underlying set of peptide sequences for each phosphosite. 167 

However, the quantification of the phosphosites sites was almost wholly derived from the same 168 

precursor signals as in the human-only database search. This additional human-mouse combined 169 

database search underscored the validity of the differential phosphosites obtained from analyzing 170 

PDX phosphoproteomics data search against the human-only database. 171 
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Differential (phospho) proteins of all three comparisons (CS compared to either CR-ALL, 172 

CR-MUT, or CR-WT) were combined in a protein-protein interaction network (Fig. 2), showing 173 

results from the comparison with the largest fold change in case of overlap between comparisons. 174 

mRNA expression of both the complete PDX cohort (157 CS and 246 CR previously described 175 

PDX tumors, referred to hereafter as RNA400) (22), and the subset of models used in this study 176 

(RNAsub), was used to annotate proteins further (fig. S7). Markov clustering combined with gene 177 

ontology analysis revealed eight biologically relevant protein clusters (fig. S8). Clusters associated 178 

with cetuximab sensitivity were the “cell-cell junction organization” cluster, containing the cell-179 

cell adhesion molecules CXADR and claudin 1 and 3, and the “ribonucleoprotein complex 180 

biogenesis” cluster with proteins POU class 2 homeobox associating factor 1 (BOB1), DEAD-box 181 

helicase 27 (DDX27), DEAD-box helicase 28 (DDX28), ribosome biogenesis regulator 1 homolog 182 

(RRS1), dyskerin pseudouridine synthase 1 (DKC1), RNA terminal phosphate cyclase like 1 183 

(RCL1), nucleophosmin 1 (NPM1), and ribosomal L1 domain containing 1 (RSL1D1). Of note, 184 

both RNA400 and RNAsub comparisons showed significant higher expression of CXADR in CS 185 

models (p-value <0.05). The clusters “enzyme-linked receptor protein signaling” and “type 1 186 

interferon signaling” were more associated with cetuximab resistance. The cluster “enzyme-linked 187 

receptor protein signaling” included proteins involved in AKT serine/threonine kinase 1 (AKT1) 188 

signaling, where the PI3K-PTEN-AKT signaling axis is known to be involved in resistance to 189 

EGFR inhibitors (23). One other cetuximab resistance protein that stands out in Fig. 2 is 190 

KIAA1522. Although KIAA1522 is an uncharacterized protein with unknown function, high 191 

mRNA expression of KIAA1522 has been linked to non-small cell lung cancer as a marker of poor 192 

prognosis  (24). 193 

Gene-set enrichment analysis (GSEA) on protein expression and RNAsub data revealed 194 

oxidative phosphorylation (OXPHOS) as one of the most enriched processes (adj. P-value < 0.05) 195 

in CS tumors, along with MYC targets and adipogenesis (Fig. 3, fig. S9). Although the latter two 196 

processes were also captured at the RNA level, enrichment of OXPHOS was revealed at the protein 197 

level only. In addition, enrichment of these processes was more pronounced (in the case of 198 

OXPHOS) or unique (in the case of adipogenesis) in the CR-MUT compared to the CR-WT 199 

comparison. CR tumors showed strong enrichment of processes associated with epithelial-200 

mesenchymal transition (EMT) at the RNA and protein levels and interferon response-related 201 

biology at the protein level only. (Fig. 3, fig. S9). 202 

Post-translational modification signature enrichment analysis (PTM-SEA) of pTyr data 203 

revealed enrichment of the fibroblast growth factor 1 (FGF1) pathway (FDR p-value <0.25) in 204 

cetuximab-sensitive tumors. In contrast, resistant tumors showed enrichment (FDR p-value <0.05) 205 

of the thymic stromal lymphopoietin pathway (TSLP) and ABL proto-oncogene 1(ABL1) (FDR 206 

p-value <0.05). Also, neuroblastoma (FDR p-value <0.25) and anti-CD3 perturbation-related 207 

biology (FDR p-value <0.25) were enriched more prominently in CR-MUT tumors (Fig. 4). TiO2 208 

data indicated enrichment of AKT serine/threonine kinase 1 (AKT1) in CR tumors that correlates 209 

with the earlier findings in the protein-protein interaction of CS versus CR (Fig. 2). In agreement 210 

with expectations, comparative analysis of CS versus CR-MUT showed reduced enrichment for 211 

many signaling signatures downstream in the Ras/Raf patway, including mitogen-activated protein 212 

kinase 1 (MAPK1) (FDR p-value <0.25), mitogen-activated protein kinase 3 (MAPK3) (FDR p-213 

value <0.25), and MAPK activated protein kinase 2 (MAPKAPK2) (FDR p-value <0.05) in CS 214 

samples (Fig. 4). Conversely, CS tumors showed a positive enrichment for phosphosite-driven 215 

signatures related to the mitogen-activated protein kinase (MEK)1/2 inhibitor U0126 and the p38 216 

MAPK inhibitor losmapimod (Fig. 4). Additionally, enrichment of the TEK receptor tyrosine 217 
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kinase (TIE2) pathway, protein kinase C alpha (PRKCA), and, as in the pTyr signature, anti-CD3 218 

perturbation was related to cetuximab resistance (Fig. 4). 219 

In-depth analysis of resistant tumors reveals hyperactive kinases 220 

To investigate whether hyperactive kinases can act as alternative targets for treatment in 221 

cetuximab-resistant tumors, a single sample Integrative inferred Kinase Activity (INKA) analysis 222 

was performed on all PDX tumors (15) (Suppl. Fig 9 and fig. S11). Figure 6A shows the pTyr 223 

kinase activities with an overall 25% higher INKA score comparing CS to CR models, including 224 

for CS the kinases; EGFR, EPH receptor B2 (EPHB2), EPH receptor B3 (EPHB3), and fyn related 225 

Src family tyrosine kinase (FRK) and in CR tumors; cyclin dependent kinase 5 (CDK5), EPH 226 

receptor A3 (EPHA3), insulin like growth factor 1 receptor (IGF1R), spleen associated tyrosine 227 

kinase (SYK), mitogen-activated protein kinase 14 (MAPK14), ERBB2, erb-b2 receptor tyrosine 228 

kinase 3 (ERBB3), and MET. Comparing the INKA score per kinase across all tumors revealed 229 

that some tumors had outlier kinase activity (Fig. 5A, fig. S12). These high INKA scores were 230 

found in models that harbored previously identified gene amplifications (10) in EGFR (CRC0098), 231 

MET (CRC0196), or ERBB2 (CRC0080, CRC0176). Further underscoring a critical oncogenic 232 

driver function for these kinases is the high (number 1) INKA rank number relative to other 233 

identified kinases in the amplified PDX models (Fig. 5B, fig. S11, and fig. S12). Previous work 234 

showed that these cetuximab-resistant PDX models with gene amplifications respond to specific 235 

inhibition of MET (CRC0196) (25) or ERBB2 (CRC0080, CRC0176) (10, 26) especially in 236 

combination with cetuximab, highlighting their potential as alternative targets for combination 237 

treatment (fig. S13). Finally, kinase activity analysis of the TiO2 phosphoproteomics data revealed 238 

high activity of AKT1 and MAPK3 in resistant models (fig. S11 and fig. S12). These results are 239 

in line with previous work showing that AKT inhibition potentiates the effect of cetuximab 240 

treatment (27). Altogether, these results indicate the value of phosphoproteomics coupled with 241 

INKA analysis of individual cetuximab-resistant tumors to identify hyper-active kinases as targets 242 

for treatment. 243 

Hyper-active kinases highlight potential treatment targets 244 

Previous genomic analysis of PDX models CRC0161, displaying EGFR outlier activity (Fig. 5A) 245 

and CRC0166 did not identify oncogenic driver alterations that can explain resistance to 246 

cetuximab. Therefore, these two models were investigated in functional experiments with drug 247 

selection based on their INKA profile. In both models, INKA analysis pinpointed high activity for 248 

EGFR, EPHA2, several other ephrin receptors, as well as SRC family tyrosine kinases (Fig. 6A). 249 

EPHA2 has been previously implicated in resistance to EGFR inhibition in gefitinib-resistant 250 

HCC827 cells (28) and high expression of EPHA2 has been correlated with worse clinical 251 

prognosis in patients with mCRC treated with cetuximab (29, 30).  252 

Dasatinib is a potent inhibitor of ephrin family kinases, especially EPHA2, as well as SRC 253 

family kinases, and inhibits EGFR when used in the high nanomolar range (31–33) (Fig. 6B). 254 

Therefore, dasatinib was selected to test the potential of these kinases as alternative treatment 255 

targets. Viability upon treatment was tested in organoid cultures derived from PDX-model 256 

CRC0161, which showed INKA profiles analogous to those of its matched PDX counterpart (Fig. 257 

7A). CRC0196 and CRC0254 organoids were included as negative controls since both models did 258 

not show high INKA scores for dasatinib targets (fig. S14).  259 
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Treatment with dasatinib reduced cell viability in the micro to nano molar range in 260 

CRC0161 but not in control models CRC0196 and CRC0254 with low dasatinib target activity 261 

(Fig. 7A). In addition, the combination of low doses of both cetuximab [0,7 g/ml (~ 5nM)] and 262 

dasatinib (5nM) impaired cell viability in CRC0161, whereas either treatment alone was 263 

ineffective (Fig. 7B). A 200-fold dose increase of the inhibitors [140 g/ml (~ 1000nM) for 264 

cetuximab and 1000nM for dasatinib] confirmed the relatively poor responsiveness of model 265 

CRC0161 to EGFR inhibition (only approximately 40% reduction of cell viability) and its 266 

sensitivity to dasatinib (about 80% reduction). Combining cetuximab and dasatinib did not 267 

significantly reduce cell viability in CRC0161 compared to dasatinib alone, likely because 268 

monotherapy with high-dose dasatinib also blocked EGFR and was sufficient to reach the 269 

inhibitory plateau (Fig. 7B). Furthermore, as expected, treatment of CRC0161 organoids with the 270 

EGFR inhibitor afatinib as an additional control did not affect viability, confirming the finding 271 

that CRC0161 is resistant to EGFR blockade (fig. S15). Finally, JAK was chosen as another 272 

negative control since CRC0161 did not show high INKA scoring of JAK. In line with the absence 273 

of JAK target activity, treatment of CRC0161 organoids with the JAK inhibitor ruxolitinib did not 274 

reduce viability (fig. S15).   275 

Unfortunately, CRC0161 proved unable to re-engraft in mice after thawing, which 276 

prevented in vivo validation experiments. Conversely, the other predicted dasatinib sensitive 277 

model CRC0166 was hard to grow as organoids but could be tested in vivo in a PDX assay. After 278 

three weeks of treatment, dasatinib alone was ineffective in controlling tumor growth, and 279 

cetuximab alone only retarded tumor growth. Tumors volume increased 40% on average, in 280 

agreement with our historical data in which response of this model to cetuximab was categorized 281 

as progressive disease (table 1). Conversely, the combination of dasatinib and cetuximab 282 

completely blocked tumor growth, with a significant advantage (p-value = 0.0377) in tumor 283 

volumetric reduction compared with single-agent cetuximab (Fig. 7C, Suppl. Table 11).  284 

Altogether, these experiments show that phosphoproteomics coupled to INKA analysis may 285 

provide a relevant read-out of kinase activities for individualized (combination) treatment. 286 

DISCUSSION  287 

This study analyzed the phospho-proteome and proteome profiles of 30 mCRC patient-derived 288 

xenografts, genomically characterized and annotated for response to cetuximab treatment, to shed 289 

light onto the signaling events associated with sensitivity and resistance to EGFR blockade in 290 

patients with mCRC. Mass spectrometry-based analysis revealed distinctive phospho-sites and 291 

proteins between cetuximab-sensitive and resistant tumors; identified kinase driver hyperactivity 292 

sustained by underlying genomics aberrations; and yielded potential kinase targets to treat 293 

genomically unexplained resistant models. The phosphoproteome and proteome provided 294 

complementary insights, and combined interpretation aided a deeper understanding of cetuximab 295 

response in mCRC tumor biology. More specifically, the tyrosine-based phosphorylation data 296 

provided insight into upstream tyrosine kinase signaling pathways more enriched in cetuximab-297 

sensitive tumors. In contrast, the global phosphoproteome, dominated by pSer/pThr phosphosites, 298 

was enriched in downstream signaling events more associated with resistant tumors (Fig. 1). In 299 

line with our results, Rivera et al., observed positive enrichment of canonical EGFR and EGF 300 

pathway signatures in their cetuximab sensitive CRC PDX models (20). Our findings support the 301 

idea that there is no single factor that can accurately predict how tumors will respond to treatment. 302 

Positive outcomes for patients are not solely determined by one factor, but rather by a combination 303 



 8 

of multiple molecular characteristics evident in multi-omics data. Therefore, it is important to 304 

consider all factors when predicting treatment outcomes. (19). 305 

The distinctive phospho-sites and proteins combined in a network diagram, annotated with 306 

mRNA data (Fig. 2), provided more insight into the biological processes involved in cetuximab 307 

response. Sensitive tumors revealed higher phosphorylation of proteins functionally related to cell-308 

cell contact and cellular tight junction organization, such as CXADR, CLDN1, CLDN3. Loss of 309 

junction proteins and disruption of overall cell-cell organization has historically been implicated 310 

with an early invasive and metastatic phenotype (34). However, more recent studies have 311 

documented that increased expression and activity of essential proteins involved in the tight-312 

junction organization also correlates with tumor progression, likely due to their role as signaling 313 

substrates (35). For example, Pike et al. (36) described that CXADR potentiates EGFR signaling 314 

by delaying receptor internalization. This suggests that CXADR overexpression and 315 

phosphorylation, as observed in cetuximab-sensitive tumors, may enhance EGFR pathway 316 

activity, hence contributing to EGFR dependency. Accordingly, analysis of global gene expression 317 

data from 403 CRC PDXs for which annotation of response to cetuximab was available (22) 318 

revealed higher RNA expression of CXADR in cetuximab-sensitive than in cetuximab-resistant 319 

PDX models, making a solid case for CXADR as a potential predictor of response to cetuximab in 320 

metastatic colorectal cancer. Previous proteomics and phosphoproteomics analysis of acquired 321 

resistance to cetuximab in two isogenic CRC PDX models revealed multiple pathways 322 

downstream of EGFR and found endocytosis, cell-cell adhesion, tight and adherence junctions 323 

related terms enriched in the upregulated proteins and phosphosites of the sensitive model (20). 324 

GSEA revealed an association between EMT related signaling and resistance to cetuximab. 325 

EMT signaling has been previously linked to resistance to EGFR blockade (20) by prompting a 326 

switch to alternative kinase signaling pathways (33), including the AKT1 pathway. In addition, a 327 

recent study has found that CXADR acts as a negative regulator of EMT by providing an AKT-328 

inhibitory signalosome at the tight junction (34). The role of CXADR as an EMT gate-keeper, 329 

combined with its ability to potentiate EGFR signaling and constrain AKT signaling, suggests that 330 

CXADR and cell-cell adhesion locks CRC cells into an epithelial phenotype dependent on EGFR-331 

induced growth, making tumors susceptible to EGFR inhibition. Conversely, cells transitioning 332 

toward a mesenchymal phenotype become more dependent on pathways that are parallel or 333 

downstream to EGFR signaling, such as the AKT1 pathway, and are thus less vulnerable to EGFR 334 

inhibition (18). This assumption is consistent with our results, whereby low CXADR expression 335 

and high AKT signaling, as evidenced by both INKA and PTM-SEA analyses, typify cetuximab-336 

resistant tumors. In a complementary perspective, activation of AKT and its downstream signaling 337 

effector mTOR has been documented to stimulate EMT (35). The relevance of AKT in cetuximab 338 

resistance is supported by the observation that AKT inhibition enhances the depth of response to 339 

cetuximab in CRC PDX models (27). 340 

OXPHOS was found to be enriched in CS tumors. Evidence that tyrosine kinase signaling 341 

can regulate mitochondrial oxidative phosphorylation function (37) combined with the finding that 342 

cetuximab may have a role in impairing mitochondrial function in CRC (38), could suggest that 343 

tumors with a more abundant OXPHOS expression profile may be more susceptible to EGFR 344 

inhibition.  345 

Kinase activity analysis using INKA was employed to highlight essential kinases and 346 

identified potential targets for single and combination treatment for individual tumors (15). This 347 

analysis pinpointed high signaling activity of ERBB2, EGFR, and MET in resistant PDX models 348 
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in line with the corresponding gene amplifications. Moreover, INKA revealed high activity of 349 

ephrin kinases, and in particular EPHA2, in models CRC0161 and CRC0166, with genomically 350 

unexplained mechanisms of resistance. The potential of these kinases as targets was evaluated by 351 

treating organoid cultures of CRC0161 and mice harboring CRC0166 PDXs with dasatinib, a 352 

potent inhibitor of EPHA2 (low nanomolar range), several other members of the ephrin kinase 353 

family, as well SRC family kinases (31–33) that were also active in these models. Dasatinib is also 354 

a weak inhibitor of EGFR. When used at near-micromolar concentrations, dasatinib reduced cell 355 

viability in CRC0161 organoids compared to organoid models that did not share the high ephrin 356 

INKA profile. At low nanomolar concentrations that do not inhibit EGFR, the combination with 357 

cetuximab increased the effect of dasatinib. Likewise, mice bearing CRC0166 PDXs responded to 358 

combination therapy with cetuximab and dasatinib with disease stabilization, whereas they 359 

experienced disease progression when exposed to either monotherapy. These functional 360 

experiments show the potential of phosphoproteomics combined with INKA analysis to select a 361 

suitable treatment strategy for tumor models with previously unexplained resistance to cetuximab.  362 

Our findings have certain limitations. For example, we have focused our analyses on the 363 

static interrogation of phosphoprotein and protein biomarkers in treatment naïve PDX tumors and 364 

correlated results with the outcome of cetuximab administration. Assessing the proteomic and 365 

signaling changes that occur over the course of therapy is expected to provide useful information 366 

about the dynamic mechanisms of tumor adaptation to antibody pressure and will contribute to 367 

identifying reactive pathways that likely compensate for target blockade. Moreover, we 368 

acknowledge that the association between resistance to cetuximab and high EPHA2 and SRC 369 

family kinase activity has not been validated in clinical samples from therapeutically annotated 370 

patients with mCRC, and thus requires further study. Regrettably, we were unable to confirm the 371 

organoid results for CRC0161 in vivo because it was unsuccessful in re-engrafting as PDX. On 372 

the other hand, although it was unable to cultivate as organoids, the projected dasatinib-sensitive 373 

model CRC0166 was viable for testing in vivo in a PDX assay. 374 

In conclusion, this research highlights the added value of phospho-proteomics and 375 

proteomics in studying the bio-molecular basis of responses to targeted treatment in cancer. It 376 

provides insight into the biology of the primary response to treatment with cetuximab in metastatic 377 

colorectal cancer and advocates that CXADR in relation to cetuximab sensitivity deserves further 378 

study for its potential use as a biomarker for response. Additionally, this work confirmed the 379 

potential of single sample kinase activity analysis using INKA for the selection of potential 380 

treatment strategies (15). Our study extends our previous analysis of the genomically unexplained 381 

resistant PDX model CRC0177 in which INSR/IGF1R activity was identified and validated as co-382 

target for cetuximab combination treatment (15). Using a down-scaled protocol that utilizes only 383 

small amounts of tumor tissues (16), we recently uncovered drug-specific signatures in needle 384 

biopsies (17). This underscores the feasibility of potential clinical application of pTyr 385 

phosphoproteomics. The sequential phosphopeptide capture strategy as employed here allows 386 

pTyr-phospho-proteomics to be performed together with global phosphoproteomics and 387 

proteomics on the same samples. Recent developments enable phosphoproteomics and proteomics 388 

in conjunction with other omics analyses on the same samples with further streamlining of 389 

protocols  (16, 17, 39). Together, these integrative approaches will further motivate the 390 

development of phosphoproteomics-based companion diagnostics for more informed patient 391 

stratification and treatment decisions, further contributing to the realization of personalized 392 

anticancer medicine.  393 

  394 
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MATERIALS AND METHODS 395 

Study Design 396 

This study used proteomics and phosphoproteomics to understand the biological processes that 397 

lead to sensitivity and resistance to EGFR blockade in mCRC and to identify alternative drug 398 

targets for resistant tumors. Tissue samples from 10 cetuximab-sensitive and 20 cetuximab-399 

resistant PDXs were analyzed using label-free Liquid Chromatography with tandem mass 400 

spectrometry (LC-MS/MS) proteomics and phospho-proteomics. Biological and technical 401 

replicates of representative models were measured for reproducibility. To comprehensively 402 

investigate global phosphorylation, tyrosine-specific phosphorylation, and protein expression, 403 

pTyr-immunoprecipitation, general phosphopeptide enrichment using titanium dioxide, and 404 

global protein expression proteomics were performed in all samples. The samples were measured 405 

in 5 cohorts, and LC-MS/MS measurement reliability was assessed by including HCT116 lysates 406 

with known performance profiles in each measurement cohort. The PDX tissue samples were 407 

processed blindly, without considering molecular characteristics, and underwent histological and 408 

technical assessments as standard quality checks. Group-based statistics were performed between 409 

CS and CR tumors to find discriminative molecular determinants of response, and single-sample 410 

Integrative Inferred Kinase Activity (INKA) analysis was used to explore the potential 411 

hyperactive kinases as alternative targets. Functional validation of hyperactive kinases was 412 

performed using organoids and PDX models.  413 

Patient-derived xenografts 414 

Tumors were obtained from patients treated by liver metastasectomy at the Candiolo Cancer 415 

Institute (Candiolo, Torino, Italy), Mauriziano Umberto I (Torino, Italy), and San Giovanni 416 

Battista (Torino, Italy). All patients provided informed consent. Samples were procured, and the 417 

study was conducted under the approval of the Review Boards of the Institutions. The cohort 418 

studied here contains ten models sensitive to cetuximab, nine cetuximab resistant models that lack 419 

mutations in RAS or RAF genes, and 11 cetuximab resistant models that harbor a mutation in 420 

KRAS (n = 4), NRAS (n = 3) or BRAF (n = 4). Of the resistant models that lacked RAS/RAF 421 

mutations, some models did harbor a genomic aberration relevant to cetuximab resistance, 422 

including 2 models with an amplification of ERBB2, 1 model with an amplification of MET,1 423 

model with a mutation in ERBB2 (V777L), 1 model with a mutation in MAP2K1 (K57N) and 1 424 

model with a mutation in EGFR (G465R) (Suppl. Table 1). For a subset of model’s representative 425 

of the whole cohort in this study, biological and or technical replicates were available to assess 426 

reproducibility (Suppl. Table 1). In addition, representative tumor slices were assessed by 427 

pathology for percentage tumor, stromal tissue, and necrosis. Pathology report was not used as an 428 

upfront exclusion criterion for analysis.  429 

Organoid cultures and cell viability 430 

Organoids were established from colorectal cancer patient-derived xenografts CRC0161, 431 

CRC0196 and CRC0254 and cultured in extracellular matrix hydrogel (Cultrex pathClear, 432 

Reduced Growth Factor Basement Membrane Extract, type 2) and Dulbecco’s Modified Eagle’s 433 

Medium (DMEM) F12 culture medium supplemented with 1% penicillin/streptomycin, 1% B27, 434 

1% N2, 2 mM L-glutamine, 1nM N-acetyl-cysteine and 0.02 µg/ml EGF. For testing viability, 435 

organoids were seeded as single cells on a coating of BME hydrogel in the above culture medium 436 

depleted of EGF growth factor. After seven days, CellTiter-Glo luminescent cell viability assay 437 

(Promega) was used, as described before (40), to measure viability. Results were analyzed using 438 
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PRISM GraphPad software and statistical analysis was performed using ordinary one-way 439 

ANOVA. Error bars were calculated based on SEM. 440 

In vivo treatments   441 

Tumor implantation and expansion were performed as previously described (41). Briefly, tumor 442 

material not required for histopathologic analysis was collected and placed in medium 199 443 

supplemented with 200 U/mL penicillin, 200 μg/mL streptomycin, and 100 μg/mL levofloxacin. 444 

Each sample was cut into 25- to 30-mm3 pieces in antibiotic-containing medium; some of the 445 

pieces were snap-frozen in liquid nitrogen for phospho-proteomics, and some others were 446 

incubated overnight in RNAlater and then frozen at −80°C for DNA and RNA analyses; 2 other 447 

pieces were coated in Matrigel (BD Biosciences) and implanted in 2 different 4- to 6-week-old 448 

male or female NOD (nonobese diabetic)/SCID (severe combined immunodeficient) mice. After 449 

mass formation, the tumors were passaged and expanded for 2 generations until production of a 450 

cohort of 12 or 24 mice, depending on the amount of the original material. Established tumors 451 

(average volume 400 mm3 ) were treated for three weeks with the following regimens, either 452 

single-agent or in combination: cetuximab (Merck) 20 mg/kg by intraperitoneal injection, twice-453 

weekly (vehicle: physiological saline); dasatinib (Carbosynth) 50 mg/kg, daily by oral gavage 454 

(vehicle: 80 mM sodium citrate, pH 3.1). Tumor size was evaluated once- weekly by caliper 455 

measurements and the approximate volume of the mass was calculated using the formula 456 

4/3π·(d/2)2·D/2, where d is the minor tumor axis and D is the major tumor axis. For assessment 457 

of tumor response to therapy, we adopted a classification loosely inspired by clinical criteria (9, 458 

10, 16, 27): (i) tumor regression was defined as a decrease of at least 50% in the volume of target 459 

lesions, taking as reference the baseline tumor volume; (ii) at least a 35% increase in tumor volume 460 

was categorized as disease progression; and (iii) responses that were neither sufficient reduction 461 

to qualify for shrinkage nor sufficient increase to qualify for progression were considered as 462 

disease stabilization. Animal procedures were approved by the Italian Ministry of Health 463 

(authorization 806/2016-PR). 464 

Tissue lysis and phosphopeptide enrichment 465 

Tissue from patient-derived xenograft was cut on a cryotome in 20µM slices and lysed in lysis 466 

buffer (9 M urea, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 8.0, 1 467 

mM sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1mM ß-glycerophosphate) in a 1:40 468 

wet-weight to lysis buffer ratio, sonicated (3 cycles of 30 s) and extracts were stored at -80 ºC. 469 

For phosphoproteomics, lysate aliquots equivalent to 5.5 mg total protein were used as 470 

described before (42, 43). Proteins were reduced by incubation in 4.5 mM dithiothreitol for 30 min 471 

at 55 ºC, alkylated in 10 mM iodoacetamide for 15 min at room temperature in the dark, and 472 

digested overnight at room temperature with 10 µg/ml trypsin after fourfold dilution with 20 mM 473 

HEPES pH 8.0, to reduce the urea concentration. After acidification (trifluoroacetic acid to 1% 474 

final concentration), tryptic digests were desalted on Sep-Pak C18 cartridges (Waters 475 

Chromatography), divided in aliquots for immunoprecipitation (5mg) or affinity enrichment 476 

(500µg) and lyophilized and stored at -80 ºC. 477 

For immunoprecipitation of tyrosine-phosphorylated peptides, peptides were dissolved in 478 

350 µl immunoprecipitation buffer (50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) pH 479 

7.2, 10 mM sodium phosphate, 50 mM NaCl) and transferred at 4 ºC to a microcentrifuge tube 480 

containing 20 µl of a 50% (v/v) slurry of agarose beads harboring P-Tyr-1000 anti-481 

phosphotyrosine monoclonal antibodies (Cell Signaling Technologies) that had been washed and 482 
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taken up in PBS. After 2-h of incubation at 4 ºC on a head-over-tail rotator, beads were washed 483 

twice with cold PBS and three times with cold High-performance liquid chromatography (HPLC) 484 

grade water. Bound peptides were eluted with a total of 50 µl 0.15% trifluoroacetic acid in two 485 

steps. Phosphopeptides were desalted using 200 μl STAGE tips containing a 16G empore SDB-486 

XC membrane plug (3 M) using the same solvents as used for the Seppak cartridge (20 μl, 1000 487 

×g, 1 min). Desalted peptides were dried in a vacuum centrifuged at 45°C and solubilized in 20 µl 488 

4% acetonitrile/0.5% trifluoroacetic acid, prior to LC-MS/MS analysis on the same day. 489 

For global affinity enrichment of phosphopeptides, aliphatic hydroxy-acid modified metal 490 

oxide chromatography using TiO2 beads was performed (44). Briefly, 500 μg peptides (1 μg/μl) 491 

were mixed with 500 μl washing buffer (80% ACN, 0.1%TFA containing 300 mg/ml lactic acid) 492 

and applied to 2.5 mg TiO2 beads (GL sciences, 10 μm) packed in a 200 μl STAGE tip containing 493 

a 16G empore C8 membrane plug (3 M, St Paul, MN). The STAGE tip was washed with 200 μl 494 

washing buffer, followed by 200 μl of 80% ACN and 0.1% TFA. Phosphopeptides were eluted in 495 

two steps in 50 μl 0.5% and 5% piperidine (Fisher Scientific) and were quenched in 100 μl 20% 496 

H3PO4. All steps were performed by centrifugation (1500 ×g, 4 min). Phosphopeptides were 497 

desalted using SDB-XC STAGE tips as described above. Desalted phosphopeptides were dried in 498 

a vacuum centrifuge and redissolved in 30 μl 4%ACN, 0.5%TFA;15 μl was injected on column 499 

Protein-expression profiling 500 

Protein lysates (50 μg) were separated on precast 4–12% gradient gels using the NuPAGE SDS‐501 

PAGE system (Invitrogen, Carlsbad, CA). Following electrophoresis, gels were fixed in 50% 502 

ethanol/3% phosphoric acid solution and stained with Coomassie R‐250. Gel lanes were cut into 503 

five bands, and each band was cut into ~1 mm3 cubes. Gel cubes were washed with 50 mM 504 

ammonium bicarbonate/50% acetonitrile and were transferred to a 1.5 ml microcentrifuge tube, 505 

vortexed in 400 μl 50 mM ammonium bicarbonate for 10 min, and pelleted. The supernatant was 506 

removed, and the gel cubes were vortexed in 400 μl 50 mM ammonium bicarbonate/50% 507 

acetonitrile for 10 min. After pelleting and removal of the supernatant, this wash step was repeated. 508 

Subsequently, gel cubes were reduced in 50 mM ammonium bicarbonate supplemented with 10 509 

mM DTT at 56°C for 1 h. The supernatant was removed, and gel cubes were alkylated in 50 mM 510 

ammonium bicarbonate supplemented with 50 mM iodoacetamide for 45 min at room temperature 511 

in the dark. Next, gel cubes were washed with 50 mM ammonium bicarbonate/50% acetonitrile 512 

dried in a vacuum centrifuge at 50°C for 10 min and covered with trypsin solution (6.25 ng/μl in 513 

50 mM ammonium bicarbonate). Following rehydration with trypsin solution and removing excess 514 

trypsin, gel cubes were covered with 50 mM ammonium bicarbonate and incubated overnight at 515 

25°C. Peptides were extracted from the gel cubes with 100 μl of 1% formic acid (once) and 100 516 

μl of 5% formic acid/50% acetonitrile (twice). For each sample the three extracts were pooled and 517 

stored at −20°C until use. Before LC‐MS, the extracts were concentrated in a vacuum centrifuge 518 

at 50°C, and volumes were adjusted to 50 μl by adding 0.05% formic acid, filtered through a 0.45 519 

um spin filter, and transferred to an LC autosampler vial. 520 

LC-MS/MS 521 

Peptides were separated on an Ultimate 3000 nanoLC-MS/MS system (Dionex LC-Packings) 522 

equipped with a 20-cm, 75-μm inner diameter fused silica column custom packed with 1.9-μm 523 

ReproSil-Pur C18-AQ silica beads (120-Å pore size; Dr. Maisch). After injection, peptides were 524 

trapped at 6 μl/min on a 10-mm, 100-μm inner diameter trap column packed with 5-μm ReproSil-525 

Pur C18-AQ silica beads (120-Å pore size) in buffer A (buffer A: 0.5% acetic acid, buffer B: 80% 526 
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acetonitrile, 0.5% acetic acid), and separated at 300 ml/min with a 10–40% buffer B gradient in 527 

90 min (120 min inject-to-inject). Eluting peptides were ionized at a potential of +2 kV and 528 

introduced into a Q Exactive mass spectrometer (Thermo Fisher). Intact masses were measured in 529 

the orbitrap with a resolution of 70,000 (at m/z 200) using an automatic gain control (AGC) target 530 

value of 3 × 106 charges. Peptides with the top 10 highest signals (charge states 2+ and higher) 531 

were submitted to MS/MS in the higher-energy collision cell (4-Da isolation width, 25% 532 

normalized collision energy). MS/MS spectra were acquired in the orbitrap with a resolution of 533 

17,500 (at m/z 200) using an AGC target value of 2 × 105 charges and an underfill ratio of 0.1%. 534 

Dynamic exclusion was applied with a repeat count of 1 and an exclusion time of 30 s. 535 

Peptide identification 536 

MS/MS spectra of both phosphopeptide enrichment experiments (TiO2 and pTyr IP) were searched 537 

against the UniProt human reference proteome FASTA file (downloaded August 2015, no 538 

fragments; 62447 entries entries) using MaxQuant 1.5.2.8 software. To cross-check the 539 

phosphoproteome results from the database search against the human genome, we also searched 540 

the phosphoproteomics data against the same combined human and mouse sequences as we did 541 

for the proteome expression dataset. MS/MS spectra of the protein expression experiment were 542 

searched against the same human FASTA file and the Uniprot mouse reference FASTA file 543 

(downloaded June 2015, no fragments, canonical and isoforms; 42296 entries) Enzyme specificity 544 

was set to trypsin, and up to two missed cleavages were allowed. Cysteine 545 

carboxamidomethylation (+57.021464 Da) was treated as fixed modification and serine, threonine, 546 

and tyrosine phosphorylation (+79.966330 Da), methionine oxidation (+15.994915 Da), and N-547 

terminal acetylation (+42.010565 Da) as variable modifications. Peptide precursor ions were 548 

searched with a maximum mass deviation of 4.5 ppm and fragment ions with a maximum mass 549 

deviation of 20 ppm. Peptide and protein identifications were filtered at a false discovery rate of 550 

1% using a decoy database strategy. The minimal peptide length was set at 7 amino acids, the 551 

minimum Andromeda score for modified peptides was 40, and the corresponding minimum delta 552 

score was 6. Proteins that could not be differentiated based on MS/MS spectra alone were clustered 553 

into protein groups (default MaxQuant settings). Phosphopeptide identifications were propagated 554 

across samples using the ‘match between runs’ option checked. In the protein expression search 555 

match between runs was not applied. Phosphopeptide MS/MS spectral counts were calculated from 556 

the MaxQuant evidence file using R.   557 

Organoid phosphoproteomics 558 

For organoids phosphoproteomics, lysate aliquots (1.6 mg total protein) were reduced, alkylated, 559 

digested, and desalted as described. For pTyr immunoprecipitation, peptides were dissolved in 350 560 

µl IP buffer with 20 µl 50% (v/v) P-Tyr-1000 agarose beads and pTyr phosphopeptides were 561 

captured and desalted as described. The non-bound fraction was desalted as well and TiO2 beads 562 

were used for pSer/pThr phosphopeptide enrichment as described, using 500 μg peptides as input. 563 

For protein-expression profiling 1 µg of the non-bound fraction of the pTyr IP was used for single-564 

shot analysis. Peptides were separated on an Ultimate 3000 nanoLC-MS/MS system (Dionex LC-565 

Packings) equipped with a 50-cm 75 µm ID C18 Acclaim pepmap column (Thermo Scientific). 566 

After injection, peptides were trapped at 3 μl/min on a 10-mm, 75-μm ID Acclaim Pepmap trap 567 

column (Thermo Scientific) in buffer A (buffer A: 0.1% formic acid, buffer B: 80% acetonitrile, 568 

0.1% formic acid), and separated at 300 ml/min with a 10–40% buffer B gradient in 90 min (120 569 

min inject-to-inject). Eluting peptides were ionized at a potential of +2 kV and introduced into a 570 

Q Exactive HF mass spectrometer (Thermo Fisher). Intact masses were measured in the orbitrap 571 
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with a resolution of 120,000 (at m/z 200) using an automatic gain control (AGC) target value of 3 572 

× 106 charges. Peptides with the top 15 highest signals (charge states 2+ and higher) were 573 

submitted to MS/MS in the higher-energy collision cell (1.6-Da isolation width, 25% normalized 574 

collision energy). MS/MS spectra were acquired in the Orbitrap with a resolution of 15.000 (at 575 

m/z 200) using an AGC target value of 2 × 105 charges and an under fill ratio of 0.1%. Dynamic 576 

exclusion was applied with a repeat count of 1 and an exclusion time of 30 s. 577 

MS/MS spectra of both phosphopeptide enrichment experiments (TiO2 and pTyr IP) were 578 

searched against the Swissprot human_canonical_and_isoform.fasta (42258 entries)t FASTA file 579 

(downloaded January 2018, canonical and isoforms; 42258 entries) using MaxQuant 1.6.0.16. 580 

Search setting were the same as described for PDX models. Proteins that could not be differentiated 581 

based on MS/MS spectra alone were clustered into protein groups (default MaxQuant settings). 582 

Phosphopeptide identifications were propagated across samples using the ‘match between runs’ 583 

option checked. Phosphopeptide MS/MS spectral counts were calculated from the MaxQuant 584 

evidence file using R.  For phosphopeptide data, we used data from the MaxQuant 585 

‘modificationSpecificPeptides’ table. For phosphosite data, we used data from the MaxQuant’ 586 

Phospho (STY) Sites’ table. 587 

Quantification 588 

Group-based comparisons were made with MS/MS spectral counts for protein expression data and 589 

MS ion intensities (area under the MS1 extracted ion chromatogram) for the phosphosite data. 590 

Moreover, INKA uses spectral counts as input. 591 

Data filtering and annotation. 592 

For phosphopeptide data, we used data from the MaxQuant ‘modificationSpecificPeptides’ table. 593 

Table rows with data linked to multiple UniProt gene symbols were deconvoluted into separate 594 

rows with a single gene symbol. For phosphosite data, we used data from the MaxQuant’ Phospho 595 

(STY) Sites’ table, filtering for so-called class I sites (localization probability > 0.75). Table rows 596 

with data linked to multiple UniProt accessions, and those linked to multiple phosphopeptides, 597 

were deconvoluted into separate rows. Data from the web resources UniProt (UniProt Consortium, 598 

2015) (for mapping attributes of UniProt accessions; www.uniprot.org, mapping date 8 June 599 

2016), PhosphoSitePlus (45) (for experimentally observed phosphorylation sites and kinase-600 

substrate relationships; www.phosphosite.org, Phosphorylation_site_dataset, and 601 

Kinase_Substrate_Dataset, versions of 3 July 2016) and KinBase (46) (for currently recognized 602 

protein kinases; kinase.com/web/current/kinbase, mapping date 20 July 2016), and HGNC (47) 603 

(for mapping to official gene symbols of the HUGO Gene Nomenclature Committee; 604 

www.genenames.org) were used in combination with a UniProt human reference proteome 605 

FASTA file derived from release 2014_01 filtered for “no fragments,” and containing 21849 606 

TrEMBL entries and 39703 Swiss-Prot entries to prioritize rows linking the same phosphosite to 607 

the same gene, only retaining the row with the best-annotated accession. Subsequently, the 608 

phosphosite data were merged with pertinent phosphopeptide data in a single, non-redundant class-609 

I phosphosite-phosphopeptide table. 610 

2-group comparisons 611 

Group comparisons were made between all cetuximab sensitive and all resistant models (CS vs. 612 

CR-ALL), between sensitive and resistant models lacking mutations in RAS/RAF (CS vs. CR-613 

WT), and between sensitive (CS-WT) and resistant RAS/RAF mutant models (CS vs. CR-MUT). 614 

http://www.uniprot.org/
http://www.phosphosite.org/
http://www.genenames.org/
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For phospho-proteomics data, phosphosite intensities were taken from the non-redundant class-I 615 

phosphosite-phosphopeptide table and normalized using the sum of all intensities and median 616 

centering of the values in each sample. Biological and technical replicates were averaged omitting 617 

zero values from average and missing data points were imputed using the half-min method. Limma 618 

was then performed for each group comparison using the R package “limma” (48). Nominal p-619 

values were not corrected for multiple tests. Results of each group comparison were filtered for p-620 

value (< 0.01), fold change (< -1.5, > 1.5), average intensity (> 1*107), and data coverage of more 621 

than 50% in at least one of the comparison groups. Analysis was performed separately for data 622 

derived from pTyr-immunoprecipitation and TiO2 affinity capture. For global protein expression, 623 

protein spectral counts were normalized, and biological and technical replicates were averaged, 624 

omitting zero values from average. A beta-binomial test was then performed for each group 625 

comparison using the R package “ibb” as described before (49). Nominal p-values were not 626 

corrected for multiple tests. Results of each group comparison were filtered for p-value (< 0.01), 627 

fold change (< -1.5, > 1.5), and data coverage of more than 50% in at least one of the comparison 628 

groups. Heatmaps were created with the R package ComplexHeatmap (50) utilizing z-score 629 

normalization, euclidean distance, and ward.D2 linkage. 630 

RNA expression data was analyzed where RNAsub refers to a comparison among the same 631 

subset of PDX models also used for (phospho-)proteomics profiling, and RNA400 refers to a 632 

comparison among an extensive collection of 157 CS and 246 CR models. Gene probes were kept 633 

if considered expressed in Isella et al. (2017) (22) or excluded if probes cross-reacted with murine 634 

genes. When there were multiple probes per gene, only the probe with the highest standard 635 

deviation was picked. Two-group comparisons were made between CS vs. CR-ALL, CS vs. CR-636 

WT, and CS vs. CR-MUT using limma (48) on log2-scaled expression values. Nominal p-values 637 

were corrected for multiple tests using the Benjamini & Hochberg procedure (51). For the RNAsub 638 

comparison, no RNA-sequencing data was available for 9 CR-MUT models. In addition, model 639 

CRC0358 (CR-WT) was not considered for RNA analyses due to outlier behavior. The CS vs. CR-640 

MUT comparison on RNA level was excluded because it was unbalanced and underpowered. 641 

Expression-driven signature enrichment analysis 642 

Gene set enrichment analysis (GSEA) was conducted using the "fgsea" R package (52). The 643 

analysis utilized ranked genes, including log-transformed and signed p-values obtained from 644 

protein expression comparisons between CS and CR, as well as RNA400 CS versus CR-all. The 645 

C5 ontology gene sets collection from the MSigDB v7.2 database served as input files. The 646 

resulting GSEA outputs were visualized in R, employing the ggplot2 package (53). 647 

Post-translational modification signature enrichment analysis  648 

Phosphosite-specific signature analysis was performed with post-translational modification 649 

signature enrichment analysis (PTM-SEA) (54) using the R-script ssgsea-gui.R 650 

(https://github.com/broadinstitute/ssGSEA2.0). Ranked phosphosites (log-transformed and 651 

signed p-values of the CS vs. CR comparisons) and the PTMsigDB v1.9.0 database was used as 652 

input files. Visualization of results was performed in R using the ggplot2 package (53). 653 

Overlap analysis 654 

Using Venny 2.1.0 (55), the overlap of significant phospho-sites and proteins of the comparisons 655 

CS vs. CR-ALL, CR-MUT, and CR-WT created three response signatures. The general response 656 

signature consisted of significant phospho-sites and proteins exclusive in the comparison of CS 657 
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vs. CR-ALL (Venn part CR1 and CS1) combined with the overlap of all comparisons (Venn part 658 

CR2 and CS2) and the overlap between CS vs. CR-MUT and CR-WT (Venn part CR3 and CS3). 659 

The signatures for either RAS/RAF mutated or wild-type tumors contained significant phospho-660 

sites and proteins exclusive to CS vs. CR-MUT (Venn part CR4 and CS4) or CS vs. CR-WT (Venn 661 

part CR5 and CS5). The significant phospho-sites and proteins of the overlap between CS vs. CR-662 

ALL and CS vs. CR-MUT or CS vs. CR-WT were excluded. These significant phospho-sites and 663 

proteins could not be qualified as a general response or specific for RAS/RAF mutated or wild-664 

type tumors.  665 

Analysis of biological pathways and processes 666 

Phospho-sites and proteins from the general response signature, RAS/RAF mutated signature, and 667 

the wild-type signature were combined in one table (179 proteins and 83 phosphosites). All 668 

(phospho)proteins were used to retrieve protein-protein association data from the STRING 669 

database v11 (56) to build a combined network in Cytoscape v3.7 (57). Statistical data 670 

encompassed three comparisons: CS vs. CR-ALL, CR-MUT, and CR-WT. The maximum fold 671 

change among these three comparisons was log2-transformed and used to color-code a donut ring 672 

around the pertinent network node for every protein or phosphosite. Using the Cytoscape Omics 673 

Visualizer app (58), a separate donut ring was added for expression, pTyrIP, or TiOx. 674 

To complement the protein data, we also analyzed RNAseq data on the models in the 675 

present cohort (RNAsub) as well as on a larger cohort of 157 cetuximab sensitive and 246 676 

cetuximab resistant PDX tumors (RNA400) (22). RNA features were tested in the three 677 

comparisons mentioned above using the limma R package and filtered for a link to the 678 

(phospho)proteins in the network. If any of the comparisons were significant (p < 0.05), the 679 

associated network node was colored orange or blue, depending on the direction of change in the 680 

CS vs. CR-ALL comparisons. 681 

Protein clusters were identified using the MCL algorithm of the clusterMaker2 app (59) 682 

inside Cytoscape, and gene ontology analysis was performed with the BiNGO app (60) using 683 

ontology definitions of April 2020 to analyze biology covered in this network. 684 

INKA analysis 685 

Integrative Inferred Kinase Activity (INKA) based on both phosphorylated kinases and their 686 

substrates was calculated for each sample as previously described (15). Mean INKA scores for CS 687 

and CR tumors were calculated for each kinase, excluding kinases measured in less than five 688 

tumors.  689 

Statistics 690 

Statistical analysis was conducted on the phosphosite intensities by normalizing them using the 691 

sum of all intensities and median centering within each sample. Averages of biological and 692 

technical replicates were calculated, excluding zero values, and missing data points were imputed 693 

using the half-min method. Group comparisons for phosphosite intensities were performed using 694 

the R package "limma," nominal p-values were obtained without correction for multiple tests. The 695 

R package "ibb" was utilized with a beta-binomial test for group comparisons of global protein 696 

expression. Furthermore, statistical analyses for organoid viability assays were carried out in Prism 697 

7.0 software (GraphPad) using ordinary one-way ANOVA. Statistical significance was determined 698 

for all experiments using the following criteria: n.s. (not significant), *p < 0.05, **p < 0.01, ***p 699 

< 0.001.   700 
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Fig. 1. Comparative analysis of sensitive and resistant PDX models to cetuximab 1009 

identifies a differential signature. (A), Overview of group comparison of identified 1010 

phospho-sites using LIMMA statistics between cetuximab sensitive models (CS) versus all 1011 

resistant models (CR ALL), versus the resistant models wild-type for mutations in RAS/RAF 1012 

(CR WT) or versus the RAS/RAF-mutated resistant models (CR MUT). LIMMA results 1013 

where filtered for each comparison. Overlap between these comparisons shows differential 1014 

phospho-sites that are more distinctive for the general comparison CR ALL versus sensitive 1015 

(S/R1, S/R2, S/R3) whereas parts without overlap (S/R4 and S/R5) are distinctive for 1016 

respectively CR WT and CR MUT. (B), Clustering of the combined signature of the top 1017 

differential phospho-sites (rows) from the comparisons in the pTyr (top), TiO2 (middle) and 1018 

Expression (bottom) datasets. Response is indicated for sensitive (blue) and resistant (orange) 1019 

models. Genomic aberrations of models are indicated with colored circles below. Clustering 1020 

shows separation between sensitive and resistant models in pTyr and near-complete 1021 

separation in TiO2 and Expression with separate clusters for RES WT and RES MUT in 1022 

TiO2. 1023 
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 1025 

Fig. 2. Interaction network of proteins associated with cetuximab sensitivity and 1026 

resistance. Previous group comparisons of cetuximab sensitive versus resistant tumors (CS 1027 

vs. either CR ALL, CR MUT, and CR WT) were merged on CS versus CR. The maximum 1028 

fold change among these three comparisons was log2-transformed and used to color-code a 1029 

donut ring around the pertinent network node for every protein and a section of the ring for 1030 

each phosphosite. Donut rings represent protein expression (inner ring), TiO2 (middle ring), 1031 

and pTyr (outer ring). If any of the comparisons were significant (p < 0.05), the associated 1032 

ring was colored a hue of orange (CR) or blue (CS), depending on the direction and fold 1033 

change in the CS vs. CR-ALL comparisons. The inner circle represents significant genes (p-1034 

value < 0.05) from mRNA analysis comparing the models in this cohort (RNAsub, bottom 1035 

halve of the inner circle) and a more extensive comparison between 157 cetuximab sensitive 1036 

and 246 cetuximab resistant PDX tumors (RNA400, top halve of the inner circle). All 1037 

(phospho)proteins were used to retrieve protein-protein associations from the STRING 1038 

database v11, proteins without association are shown in the top right corner. Protein clusters 1039 

were identified using the MCL algorithm of the clusterMaker2 app inside Cytoscape, and 1040 

gene ontology analysis was performed with the BiNGO app using ontology definitions of 1041 

April 2020 to analyze biology covered in this network. 1042 
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1044 
Fig. 3. Protein expression-driven enrichment of cetuximab sensitive and cetuximab 1045 

resistant biology. Lollipop plots showing amount of enrichment as the normalized 1046 

enrichment scores on the x-axis of differentially regulated protein expression-driven 1047 

HALLMARK signatures between cetuximab sensitive (CS) and cetuximab resistant (CR) 1048 

PDX models as determined by gene set enrichment analysis (GSEA). The analysis utilized 1049 

genes ranked according log-transformed and signed p-values obtained from all protein 1050 

expression (PROT) comparisons between CS and CR, as well as the RNA400 CS versus CR-1051 

all comparison. The C5 ontology gene sets collection from the MSigDB v7.2 database served 1052 

as input files. The size of the circles corresponds to significance of enrichment with blue 1053 

indicating enrichment in CS and orange indicating enrichment in CR tumors. Shown are 1054 

processes that have at least a adj. p-value less than 0.15 in protein expression (PROT) CS vs. 1055 

CR-ALL comparison.  1056 
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1058 
Fig. 4. Post-translational modification signature enrichment analysis of cetuximab 1059 

sensitive and cetuximab resistant biology. Lollipop plots showing amount of enrichment as 1060 

the normalized enrichment scores on the x-axis of differentially regulated phosphosite-driven 1061 

signatures between CS (blue) and CR (orange) PDX models as determined by post-1062 

translational modification signature enrichment analysis (PTM-SEA). The analysis utilized 1063 

phosphosites ranked according log-transformed and signed p-values obtained from all pTyr 1064 

and Tio2 comparisons. The size of the circles corresponds to significance of enrichment; 1065 

shown are all signatures with FDR-adjusted P-value < 0.25.  1066 
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1068 
Fig. 5. INKA analysis of resistant models reveals hyper-active kinases. (A), Boxplot 1069 

depicting mean INKA score of CS (blue) and CR models (orange), only kinases with more 1070 

than 25% difference between CS and CR and measured in more than 5 models are shown. 1071 

Dots indicate individual PDX models. (*) model CRC161 with unknown mechanism of 1072 

cetuximab resistance. (B) INKA bar plots of models CRC0196 (top left), CRC0176 (top 1073 

right), CRC0080 (bottom left) and CRC0098 (bottom right) with hyper active kinases. 1074 

Overview of all INKA bar plots including plots in this figure are shown in fig. S10 & fig. 1075 

S11.   1076 
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1078 
Fig. 6. INKA analysis of models with unknown mechanism of cetuximab resistance 1079 

reveal dasatinib as a potential treatment. (A), INferred Kinase Activity (INKA) profiles of 1080 

unexplained resistant PDX tumors CRC0161 (left) CRC0166 (right) and corresponding 1081 

organoid culture of CRC0161 (middle). Targets of dasatinib are indicated in purple (dark 1082 

purple: affinity < 1nM, medium: affinity 1 - 100nM, light: affinity 100 - 1000nM). All INKA 1083 

bar plots including plots in this figure are shown in fig. S10 & fig. S11. (B) Overview of 1084 

experimentally established targets of dasatinib with an affinity in the nanomolar range. 1085 

Targets denoted by triangles were discovered using a chemical proteomics approach (32), 1086 

and those denoted by circles were identified using cell-free assays (33, 62, 63).  1087 
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1089 
Fig. 7. Organoid and PDX viability in response to dasatinib inhibition. (A) Organoid 1090 

viability in response to dasatinib inhibition was tested in three organoids: CRC0196 (low 1091 

target expression, n = 6), CRC0254 (low target expression, n=6), and CRC0161 (high target 1092 

expression, n = 6). Error bars represent SEM. (B) Viability of CRC0161 organoids at 5nM 1093 

and 1000nM treated with Cetuximab (green, 5nM n = 2, 1000nM n = 6), Dasatinib (purple, 1094 

5nM n = 19, 1000nM n = 20), combination (grey, 5nM n = 4, 1000nM n = 6), no treatment 1095 

(black, n= 18). Statistical analysis was performed using ordinary one-way ANOVA. Error 1096 

bars represent SEM. Asterisks represent the level of significance (***p-value < 0.001). (C) 1097 

Dot plot graph showing percentage tumor volume changes after three weeks of therapy with 1098 

placebo, dasatinib (50 mg/kg by oral gavage, daily), cetuximab (20 mg/kg by intraperitoneal 1099 

injection, twice-weekly) and the combination of dasatinib and cetuximab. NOD-SCID mice 1100 

were inoculated subcutaneously with CRC0166 tumor fragments and randomized to the 1101 
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different treatments when tumors reached an average volume of 400 mm3. n = 4 to 12 1102 

animals per each treatment arm. Statistical analysis by two-tailed unpaired Welch’s t-test. 1103 

 1104 
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Supplementary Figures 1106 

 1107 

 1108 

Suppl. Fig. 1. Phosphoproteomics identifies targets and markers associated with 1109 

sensitivity and resistance to EGFR blockade in colorectal cancer. (A), Thirty mCRC-1110 

PDX models were profiled including 10 cetuximab-sensitive (green, inner ring) and 19 1111 

cetuximab-resistant xenograft tumors (red, inner ring). Resistance-associated genomic 1112 

aberrations in resistant tumors included both mutations (black, middle ring) and 1113 

amplifications (gray, middle ring). The outside ring shows known genomic aberrations 1114 

associated with resistance to cetuximab (B), LS-MS/MS phospho-proteomics and proteomics 1115 

were used to profile both the proteome and phosphoproteome. This enabled the collection of 1116 

three data sets: protein expression, global phosphoproteomics (TiO2), and phosphotyrosine-1117 

enriched phosphoproteomics (pTyr) (C), Proteome and phosphoproteome data were used to 1118 

make group-comparisons between cetuximab sensitive and resistant tumors to identify 1119 

biomarkers of response. INKA analysis was done on individual tumors to find potential 1120 

targets in cetuximab resistant tumors, followed by functional validation in PDX-derived 1121 

organoids. 1122 

 1123 

 1124 
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 1125 
Suppl. Fig 2. Histological assessment of PDX tissue. (A), Overview of pathology report on HE 1126 

stained representable sections of PDX tissue used for further (phospho) proteomics shows an 1127 

average percentage of 65% epithelial cancer cells, 15% stroma and 20% necrosis. (B), Bar graph 1128 

indicating expression data from proteomics analysis of two known protein markers for necrosis 1129 

(PPIA, HMGB1). Red arrows indicate samples that based on pathology report showed high 1130 

percentage of necrosis. Proteomic results show only average expression of necrosis markers in 1131 

these models. 1132 
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 1134 
Suppl. Fig 3. Data reproducibility. (A), Pearson correlation and cumulative variance show high 1135 

reproducibility between technical replicates. (B, C and D) biological replicates of PDX tumors 1136 

(pTyr: 13 replicates, TIO2: 10 replicates, Expression: 12 replicates) clustered together in 1137 

correlation clustering. 1138 
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 1139 
Suppl. Fig. 4. Overview (phospho) proteomics results. (A), The number of identified proteins 1140 

and phosphoproteins in the total dataset using mass spectrometry-based expression proteomics, 1141 

global and tyrosine phosphoproteomics. 1142 
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 1144 
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 1146 
Suppl. Fig 5. Unsupervised clustering of datasets. Unsupervised clustering of tyrosine (pTyr) 1147 

and global (TiO2) phosphoproteomics and protein expression dataset. Cluster were annotated 1148 

with cetuximab response, genomic aberrations, tumor percentage and number of peptides. 1149 

Clusters do not show sub-clustering of CS and CR tumors. 1150 
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 1152 
Suppl. Fig 6. 1153 
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 1155 
Suppl. Fig 6. Comparative analysis of PDX models sensitive and resistant to cetuximab 1156 

identifies differential signature. Clustering of the combined signature of the top differential 1157 

phospho-sites (rows) from the comparisons in the pTyr (A), TiO2 (B) and Expression (C) 1158 

dataset. Response is indicated for sensitive (green) and resistant (red) models. Genomic 1159 

aberrations of models are indicated with colored circles below. Clustering shows separation 1160 

between sensitive and resistant models in pTyr and near-complete separation in TiO2 and 1161 

Expression with separate clusters for RES WT and RES MUT in TiO2. 1162 
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 1163 
Suppl. Fig. 7. Overlap protein and RNAsub / RNA400 expression data. (A), Overview 1164 

number of models considered per comparison for protein and RNA expression data. (B), 1165 

Overview number of models considered per comparison for protein phosphorylation data. (C), 1166 

Overlap in total identifications on protein and RNA level, and in significantly (p<0.05) 1167 

differentially expressed genes between CS and CR PDX models. RNAsub refers to a comparison 1168 

among the same subset of PDX models also used for proteomics profiling, RNA400 refers to a 1169 

comparison among a large collection of 400 PDX models (Isella et al., 2017). Hypergeometric 1170 

test was performed to test for significance of overlap. 1171 
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 1173 
Suppl. Fig. 8. BinGO clusters. Markov clustering combined with BinGO gene ontology 1174 

analysis revealed 8 biologically relevant protein clusters.  1175 
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 1177 
Suppl. Fig 9. Protein and RNA expression-driven enrichment of CS- and CR-specific 1178 

biology. Lollipop plots showing the normalized enrichment scores of differentially regulated 1179 

expression-driven HALLMARK signatures between CS and CR PDX models as determined by 1180 

gene set enrichment analysis (GSEA). The size of the circles correspond to significance of 1181 

enrichment. Shown are processes that are at least sub-significant (adj. p-value <0.15) in at least 1182 

one of the comparisons. 1183 

  1184 



 44 

 1185 
Suppl. Fig. 10. pTyr INKA Bargraph of all PDX-Models. Bargraph show INKA score of all 1186 

models. EGFR (green), ERBB2 (red), MET (orange), MAPK1 (pink), MAPK3 (purple), and 1187 
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INSR/IGF1R (blue) are highlighted. (*) In CRC0177 INSR/IGF1R was confirmed as co-target 1188 

(Beekhof et al., Mol.Sys Bio 2019). 1189 

 1190 

 1191 
Suppl. Fig.11. TiO2 INKA Bargraph of all PDX-Models. Bargraph show INKA score of all 1192 

models. EGFR (green), ERBB2 (red), MET (orange), MAPK1 (pink), MAPK3 (purple), MTOR 1193 

(light green) and AKT1 (light blue) are highlighted.   1194 
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 1195 
Suppl. Fig. 12. TiO2 mean INKA Bargraph. Boxplot depicting mean INKA score of CS 1196 

(green) to CR models (red), showing only kinases with more than 25% difference between CS 1197 

and CR. Kinases must have been measured in more than 5 models. Dots indicate individual PDX 1198 

models.  1199 
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 1202 
Suppl. Fig. 13. INKA analysis of tumors with known cetuximab resistance trough gene 1203 

amplification. (A), CRC0196; Left, ranking of top Kinases with their INKA score. Middle, 1204 

kinase interaction network (red arrow indicates amplified Kinase MET). Right, response to MET 1205 

inhibitors as described in Bardelli et al., 2013. (B), CRC0080; Left, ranking of top Kinases with 1206 

their INKA score. Middle, kinase interaction network (red arrow indicates amplified Kinase 1207 

ERBB2). Right, response to ERBB2 inhibitors as described in Bertotti et al., 2015 and Leto et 1208 

al., 2015. (C), CRC0176; Left, ranking of top Kinases with their INKA score. Middle, kinase 1209 

interaction network (red arrow indicates amplified Kinase ERBB2). Right, response to ERBB2 1210 

inhibitors as described in Bertotti et al., 2015 and Leto et al., 2015. 1211 
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 1213 
Suppl. Fig. 14. INKA score of Dasatinib targets across all models. Clustering of INKA scores 1214 

of known Dasatinib targets shows models with relative high score for all targets (CRC0161, 1215 

CRC0166) and medium to low score (CRC0196, CRC0254). Based on this CRC0196 and 1216 

CRC0254 where selected as negative control for treatment with Dasatinib. 1217 
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 1219 
Suppl. Fig. 15. Viability of CRC-0161. Treatment in CRC0161 with cetuximab, afatinib or the 1220 

inhibition of JAK with ruxolitinib, a “negative control” that did not show high INKA scoring in 1221 

CRC0161, did not result in reduction of organoid viability.  1222 
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