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The adult human heart poorly regenerate after injury due to the low self-

renewal capability retained by adult cardiomyocytes. In the last two decades,

several clinical studies have reported the ability of stem cells to induce cardiac

regeneration. However, low cell integration and survival into the tissue has

limited stem-cell-based clinical approaches. More recently, the release of

paracrine mediators including extracellular vesicles (EV) has been recognized

as the most relevant mechanism driving benefits upon cell-based therapy. In

particular, EV have emerged as key mediators of cardiac repair after damage, in

terms of reduction of apoptosis, resolution of inflammation and new blood

vessel formation. Herein, mechanisms involved in cardiac damage and

regeneration, and current applications of EV and their small non-coding

RNAs (miRNAs) in regenerative medicine are discussed.
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Introduction

According to the World Health Organization, cardiovascular diseases (CVDs) are the

main cause of death worldwide, representing 31% of all global deaths. CVDs cover a wide

range of disorders, including diseases of the cardiac muscle and vascular structures

supplying oxygen to the heart, the brain, and other vital organs (Kaptoge et al., 2019).

Inherited predisposition or long-lasting exposure to risk factors are considered the most

relevant damaging inducers. Among them, heart tissue damaging takes on great

importance, since the heart is largely a post-mitotic organ with limited regenerative

capacity (Adamiak et al., 2018). Hence, after damage, cardiomyocyte death is a common

endpoint, leading to the activation of the inflammatory process and resulting in the

replacement of dead cells with fibrotic tissues (Thomas and Grisanti, 2020). Currently one

of major medical challenges relies on the identification of novel approaches to limit the

maladaptive changes in the shape and size messing up the normal electromechanical

continuum of the ventricular muscle and compromising its contractility.

At this regard, several studies were aimed to enhance the heart regenerative potential.

In particular, stem cells have been widely investigated as potential tool. Studies in animal

models of ischemic cardiomyopathy suggest that stem cell transplantation independent of

their origin can improve heart functional recovery after injury (Segers and Lee, 2008). The

first clinical trials in patients generated encouraging results, showing benefits. However,
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stem cell paracrine action was reported as the most relevant and

favorable mechanism of action (Gnecchi et al., 2005, 2008;

Kupatt et al., 2005; Uemura et al., 2006; Boudoulas and

Hatzopoulos, 2009). Stem cell-based therapy attenuates

inflammation (van den Akker et al., 2013), reduces apoptosis

of surrounding cells (Hobby et al., 2019), induces angiogenesis

(Yong et al., 2018), and lessens the extent of fibrosis (Kudo et al.,

2003). Nevertheless, evidence shows that despite treatment,

cardiac regeneration is feeble. Therefore, to improve the

engraftment, long-term survival and appropriate

differentiation of transplanted stem cells within the

cardiovascular tissue is still considered a clinical challenge.

Moreover, the invasive procedure that eventually fails to

translate into heart tissue regeneration represents one of the

most relevant hurdle associated with stem cell transplantation

(Adamiak et al., 2018). Currently, extracellular vesicles (EV) are

emerging as pivotal regulators in cell-based approaches (Riazifar

et al., 2017). EV are a heterogeneous group (e.g., ectosomes,

microparticles, microvesicles, exosomes and oncosomes) of fluid-

filled spheres enclosed by a lipid bilayer. EV are released from all

cell types, both in physiological and in pathological conditions

and are involved in long-distance trafficking of their cargo. EV

cargo senses the microenvironment and recapitulates protein,

lipid and nucleic acid content commonly covered by their cell of

origin (Shah et al., 2018). Thanks to these properties, EV are

major drivers of intracellular communication and have been also

considered valuable tools for biomarker discovery (Femminò

et al., 2020). Evidence that EV released from stem-progenitor

cells act as therapeutics mimicking their parental cell functions

has indeed provided promises (Chimenti et al., 2010; Bobis-

Wozowicz et al., 2015; Oszvald et al., 2020; Wang et al., 2020).

Since scar formation reflects the limited proliferative activity

of cardiomyocytes, it has been suggested that modulation of cell

cycle progression in cardiomyocyte may represent an alternative

therapeutic option. During development, the heart structure

depends on several growth factors mainly acting on the

proliferating programs, while after birth, the heart size mostly

relies on the hypertrophic growth rather than by cell proliferation

(Ponnusamy et al., 2017). A complex network of proteins and

transcription factors regulate the mitotic process, among them

the cyclin dependent kinases (CDKs) and their required co-

factors, the D-type Cyclins (Hassink et al., 2008; Ponnusamy

et al., 2017). Previous studies successfully demonstrated that

transgenic models expressing Cyclin D2 under the

transcriptional regulation of the alpha-cardiac myosin heavy

chain (MHC) promoter showed a better recovery after

Myocardial Infarction (MI), with an increase in the number

of living cardiomyocytes (Hassink et al., 2008). Moreover,

phosphoinositide 3-kinase/protein kinase B (AKT), hippo-yes

associate protein (YAP), and Wnt/β-catenin pathways have been

found to contribute to cardiomyocyte proliferation (Ponnusamy

et al., 2017).

The immune system exerts a strong influence on both repair

and remodeling processes of the infarcted myocardium. Dying

cardiomyocytes release a pool of signaling molecules that

mobilize, recruit, and activate immune cells, triggering an

inflammatory reaction (Chen and Frangogiannis, 2017).

Specifically, neutrophils are attracted to the damaged area by

CXC chemokines containing the ELR motif, such as CXCL8 and

IL-8 (Kukielka et al., 1995a). Alternatively, monocytes’ and

lymphocytes’ chemotaxis follow an increase in the secretion of

CC chemokines like CCL2/MCP-1 (Dewald et al., 2005). Several

studies have demonstrated that the type and the strength of the

immune response can determine the extent of damage after

cardiac injury (Frangogiannis, 2014). Indeed, as

proinflammatory signaling is suppressed, macrophage

subpopulations, mast cells, and lymphocytes activate the

fibrogenic and angiogenic response, contributing to scar

formation (Lai et al., 2019). Consequently, in chronic

inflammatory conditions, a strong fibrogenic response occurs,

FIGURE 1
Regulation of inflammation in cardiac remodeling/fibrosis. Damaged or dead cardiomyocytes secrete DAMPs, which interact with PRRs to
produce cytokines, including IL-l, IL-2, IFN-y, and TNF-α. These molecules promote immune cell recruitment in the heart, translating in
myofibroblast activation and cardiac fibrosis. The figurewas partly generated using ServierMedical Art templates, which are licensed under a Creative
Commons Attribution 3.0 Unported License; https://smart.servier.com.
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resulting in hypertrophy and in the establishment of a wide scar.

A critical role is played by immune cell subsets that participate in

the suppression of the inflammatory response by secreting anti-

inflammatory mediators, such as inteleukin-10 (IL-10) and

transforming growth factor-β (TGF- β) (Lai et al., 2019).

Targeting the inflammatory signals has been proposed as a

TABLE 1 Summary of studies reporting EV-mediated effects in cardiac repair.

EV origin Contents/Mediators Effects References

CPCs miR-132; miR-210; miR146a-3p Increase of blood vessel density; inhibition of apoptosis Barile et al. (2014)

CPCs n/a Angiogenesis Andriolo et al. (2018)

CPCs n/a Angiogenesis Dougherty et al. (2020)

CPCs miR-322 Angiogenesis Youn et al. (2019)

MSCs n/a Increase of arteriole and capillary density Huang et al. (2020)

MSCs NF-kB; PDGF; EGF; FGF Angiogenesis Anderson et al. (2016)

MSCs miR-132 Angiogenesis Ma et al. (2018)

ADSCs Wnt/β-catenin pathway; miR-
93-5p

Angiogenesis; prevention of apoptosis (Cui et al., 2017; Liu et al., 2018)

Serum of MI patients miR-939-iNOS-NO pathway Blood flow recovery; neovascularization Li et al. (2018)

ADSCs Neuregulin 1 Angiogenesis Figliolini et al. (2020)

MSCs #212121; JAK2-STAT6 pathway Reduction of apoptosis; regulation of the balance of M1 and
M2 macrophages

Sun et al. (2018)

Hypoxic
cardiomyocytes

#212121; miR30a Regulation of autophagy and apoptosis Yang et al. (2016)

Plasma #212121; ERK1/2; p38MAPK Reduction of cell death Vicencio et al. (2015)

Endothelial cells #212121; MEK1/2; HSP90 Reduction of cell death Penna et al. (2020)

Serum of ACS patients #212121; SAFE pathway Reduction of infarct size D’Ascenzo et al. (2021)

CDCs #212121; miR-181b Macrophage polarization de Couto et al. (2017)

CDCs #212121; Y RNA fragment Modulation of IL-10 expression Cambier et al. (2017)

CPCs #212121; n/a Modulation of pro-inflammatory cytokines Lima Correa et al. (2021)

MSCs #212121; miR-24-3p Reduction of pro-inflammatory monocytes Shao et al. (2017)

MSCs #212121; NF-kB p65; AKT1/2 Modulation of IL-10 expression Xu et al. (2019)

FIGURE 2
Mechanisms involved in cardiac regeneration. Cardiomyogenesis and EV-mediated effects, such as angiogenesis, reduction of apoptosis and
resolution of inflammation drive the damaged cardiac tissue towards healing. This figure was partly generated using Servier Medical Art templates,
which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.
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potential pharmacological option in patients with MI, however,

human heterogeneity, including age, gender, genetics, vascular

damage, diabetes, and obesity, makes difficult the development of

an appropriate therapeutic strategy (Huang and Frangogiannis,

2018).

The regulation of inflammation in cardiac remodelling is

characterized by the damaged or dying cardiomyocytes that

start to secret danger-associated molecular patterns

(DAMPs). DAMPs bind to Pattern Recognition Receptors

located on the cell surface of resident fibroblasts and other

cell populations activating and inducing the production of

cytokines such as interleukin-1 (IL-l), IL-2, interferon-y (IFN-

y), and tumor necrosis factor- α (TNF-α). Regrettably, these
molecules, which can promote cardiomyocyte death through

the activation of specific molecular cascades, become

cytotoxic for surrounding cells upon long-term exposure.

As a result and without a proper anti-inflammatory

response, they can activate a death chain reaction.

Cytokine-mediated molecular mechanisms leading to cell

death are discussed.

The pleiotropic cytokine tumor necrosis factor-α (TNF- α)
acts by inducing receptor-mediated death in its target cells

(VANEMPEL et al., 2005). TNF-Receptor (TNF-R) can

induce both apoptotic and a necrotic cell death response. Fas,

also called APO-1, is a member of this family which shares with

TNF-R a common cytoplasmic death-signaling motif. Fas

signaling has been well-characterized: it needs two molecules,

FADD and FLICE, to induce signaling and to form functional

complexes. FADD contains a cell death domain (D) in the

C-terminus which is crucial to interact with Fas death domain

(Tourneur and Chiocchia, 2010). The FADD N-terminus region

contains a different motif, denoted as death effector domain (E),

which is required for the binding to FLICE. FLICE and FADD

interact via their respective death-effector domains. Interestingly,

FLICE contains an interleukin-converting enzyme-like domain

that may act as a driver of the cysteine protease cascade

(Tourneur and Chiocchia, 2010). Both FADD and FLICE play

a critical role in TNF-induced apoptosis.

The group of proinflammatory cytokines also includes IFN-

y, IL-1, IL-2, IL-8 and the chemokine family. Both IL-2 and IL-1

(α and β) can induce the expression of TNF-α through a complex

cascade (Hedayat et al., 2010). Furthermore, the stimulation of

the apoptotic pathway may occur in response to nitric oxide

production in cardiomyocytes, which in turn is induced by IL-1,

IL-6, TNF-α and IFN-γ (Thomas et al., 2002; Umar and van der

Laarse, 2010).

Therefore, after myocardial injury, a cytokine-enriched

environment promotes immune cell recruitments and triggers

the immune response (Figure 1). The resolution of inflammation

will be discussed later.

In this review, mechanisms of cardiac damage and repair will

be discussed. Particular attention will be devoted to discuss

recent data on EV in cardiac regeneration.

Mechanisms of cardiovascular repair
and regeneration

Cardiac repair and regeneration involve several independent

mechanisms. The processes that lead to cardiac regenerative

responses include reduction of inflammation,

cardiomyogenesis, and angiogenesis (Broughton et al., 2018).

Reduction of inflammation

The progression towards a complete healing requires the

resolution of the inflammatory process (Frangogiannis, 2012).

Inflammation naturally occurs after injury and is required to set

up regeneration and scar formation. Initially, the damaged

myocardium causes an immune response regarded as debris

and extracellular matrix (ECM) degradation (Lai et al., 2019).

The second phase is represented by the recruitment and

activation of fibroblasts leading to ECM deposition and

angiogenesis (Frangogiannis, 2012, 2014). Mononuclear cell

and mast cell responses are promoted by several molecules

including TGF-β1, IL-8, histamine, TNF-α, IL-6, and ICAM-1

(Kukielka et al., 1995b). Monocytes, recruited into injured

regions, differentiate into macrophages as the result of the

effect of a hematopoietic growth factor, known as Macrophage

Colony-Stimulating Factor (M-CSF) (Frangogiannis et al., 1998),

while lymphocytes release IL-10, which suppresses inflammation

through the inhibition of IL-6, IL-8, IL-12, TNF-α, IL-1α, and IL-
1β secretion, and contribute to cardiac healing process

(Frangogiannis et al., 2000). Fibroblasts accumulate within a

week after infarction around the ischemic zone, and factors

released in response to inflammation, such as VEGF, IL-8,

and βFGF promote angiogenesis in the healing myocardium

(Kukielka et al., 1995a). Additionally, neutrophil infiltration, via

neutrophil–endothelial interactions, neutrophil rolling and

activation of L-, E- and P-selectins, leukocyte β2 integrins,

chemotaxis and chemokines, is one of the most relevant

mechanisms involved in cell-mediated inflammatory response

(Muller, 2002; Weil and Neelamegham, 2019). Although

neutrophils should be committed towards cardiac repair, they

can prolong damage in the injured myocardium. ICAM-1

activation in cardiac fibroblasts is recognized as a mechanism

linked to neutrophil-mediated tissue damage. Indeed, ICAM-1

can be detected in ischemic areas approximately 3–6 h after

injury and particularly in sites of neutrophil infiltration

(Olivares-Silva et al., 2018).

Cardiomyogenesis

New cardiomyocyte formation depends on resident cardiac

stem cells (CSCs) and cardiac-derived progenitor cells (CPCs).

CSCs mitotic activity is a rare event in the adult heart and the
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level of regeneration from resident cardiomyocytes is

functionally trivial (Porrello and Olson, 2014). Pre-existing

cardiomyocytes are the primary source of cardiomyocyte

replacement after damage, however, several studies revealed

an extremely limited expansion of cardiomyocytes from the

pre-existing cardiomyocyte pool (Senyo et al., 2013; Torella

et al., 2015). Cardiomyocyte turnover in humans declines with

ageing, corresponding to1.9% in adolescent, 1% in the middle

age, and 0.45% in the old age (Bergmann et al., 2009). Although

the adult human heart has a limited cardiomyocyte regenerative

capability, awareness of the mechanisms underlying cell renewal

is crucial to develop strategies directed to cardiac recovery.

Lower vertebrates have a considerable plasticity to

regenerate. In particular, it has been demonstrated a

regenerative capacity of mouse heart after partial surgical

resection, within the first week of postnatal life (Porrello et al.,

2011). In adult murine cardiomyocytes, dedifferentiation and

proliferation involve epigenomic reprogramming leading to

downregulation of cardiac structure and functional genes and

the activation of genes regulating cell cycle re-entry and

proliferation (Zhang et al., 2015).

In several studies, using different species, CSCs have been

extensively exploited as potential myocardial repair and

regeneration cell source (Dawn et al., 2005; Linke et al., 2005;

Tang et al., 2010; Bolli et al., 2013). In response to different

environmental stimuli such as infarction injury, CSCs set out to

divide, migrate, undergo lineage commitment, and mitigate

cardiac injury (Leri et al., 2015). Bone marrow-derived cells

(BMCs) are also considered a potential source of pro-

regenerative cells (Kajstura et al., 2005; Janssens et al., 2006).

In particular, BMCs influence resident cardiac cells to remodel

the heart and improve the cardiac function through the release of

several cytokines (Alfaro et al., 2010). Several clinical trials using

BMCs to treat patients with heart failure have demonstrated an

improvement of myocardial structure and function. However,

the finding that only a few number of cells survive into the

injured myocardium has represented the major drawback for

their clinical application.

Cell therapy

The post mitotic old paradigm regarding the heart has

progressively became obsolete. Several evidence demonstrated

that in the adult human heart a population of cardiac stem cells

expressing stem cell markers, such as c-kit exists (60–63). This

cell population can undergo cell division and replace dead

cardiomyocytes; however, this process supports basal turnover

to maintain tissue homeostasis, while appears inadequate to

repair damaged areas (Weissman, 2000; Nadal-Ginard et al.,

2003). Additionally, after MI or the development of heart failure,

many cardiomyocytes, including progenitor cells, are lost,

thereby, removed by macrophages. Therefore, dead heart areas

undergo fibrosis, which results in a permanent impairment of the

cardiac contractility.

In the last decades, stem cell transplantation has emerged as a

new tool to boost regeneration process using a wide variety of

potential stem/progenitor cell donors, that differ in their ability

to survive, engraft, and differentiate (Wollert and Drexler, 2005).

Pre-clinical studies in pig models using programmed cycles of

ischemia/reperfusion (I/R) followed by the injection of

embryonic Endothelial Progenitor Cells (eEPCs) demonstrated

a marked reduction in the infarct size, through the activation of

the phosphatidylinositol 3-kinase/AKT pathway (Kupatt et al.,

2005). However, several evidence supports the theory that the

beneficial effects of stem cell grafting are linked to the release of

paracrine factors that modulate regeneration of damaged tissues

(Gnecchi et al., 2005, 2008; Kupatt et al., 2005; Uemura et al.,

2006; Boudoulas and Hatzopoulos, 2009). These factors, often

enclosed in EV, are able to control several processes. Human

mesenchymal stem cells (hMSCs) can be isolated from various

sources, such as bone marrow, adipose tissue and umbilical cord

(Wan Safwani et al., 2017; Choi et al., 2018). Mesenchymal stem

cells (MSCs) display a strong immunosuppressor potential acting

on CD4+ Th1, Th17, CD8+ T cells, and NK cells largely via the

secretion of soluble factors including PGE2, IDO, HGF, and

TGF-β1 (English et al., 2008; Xu et al., 2014). Moreover, it has

been demonstrated that the immunosuppressive activity of MSCs

is enhanced by IFN-γ stimulation (Klinker et al., 2017).

Stem cells also reduce apoptosis of surrounding cells. It has

been demonstrated that intracardiac injection of cortical bone

stem cells (CBSCs) in a swine pre-clinical model of I/R damage

induces a significant reduction in the scar size, and accordingly,

increases the pumping function (Hobby et al., 2019). CBSCs also

increased the recruitment of macrophage and T-cells at day 7 of

reperfusion, without altering the number of CD45 + cells (Hobby

et al., 2019).

A different stem cell property supporting cardiac tissue

regeneration relies on their proangiogenic capability. The loss

of blood vessels and nutrients in the infarcted areas hamper the

engraftment and the survival of new cardiomyocyte. hMSCs

promote angiogenesis, enhance tissue repair and regeneration

by the release soluble factors both in small and large animal

models (Kuo et al., 2012; Hsiao et al., 2013; Tao et al., 2016).

Evidence have been provided that hMSCs can downregulate

leukocytes activation and functions during the development of

atherosclerosis, demonstrating that MSCs mediate the repair of

injured blood vessels (Yan et al., 2016). In addition, when blood

vessels undergo permanent damage, hMSCs can support the

regenerative process through the secretion of pro-angiogenic

factors, such as vascular endothelial growth factor (VEGF)

and by undergoing differentiation towards an endothelial cell

phenotype.

Stem cell-based therapy also appears promising to lessen the

extent of cardiac fibrosis and to prevent the progression towards

heart failure. In the first phase, fibronectin is fold into the fibres,
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and secreted collagen along with other components form mature

extracellular matrix (ECM), essential to promote scar formation.

The attenuation of fibrosis seems to reflect the ability of different

stem cell subpopulations to modulate ECM components rather

than to directly replace and induce stem cell trans-differentiation.

However, the exact mechanism(s) has not yet been determined

and requires further investigation.

Several reviews (Fan et al., 2021; Lee et al., 2022; Mehanna

et al., 2022) describe the role of different type of stem and

progenitor cells in the restoration of the damaged heart.

Nevertheless, evidence shows that only a few cardiac tissue

undergoes regeneration. Therefore, to overcome these

limitations, including poor engraftment, limited amelioration

in cardiac function, and teratogenicity, EV from different

sources have been explored as a novel approach. Herein, we

will report the most relevant studies investigating EV-mediated

cardiac repair.

Extracellular vesicles and their role in
cardiac regeneration

Extracellular vesicles (EV) have emerged as prognostic and

therapeutic tools for several pathological conditions, including

CVDs. As mentioned above, EV are a heterogeneous group of

cell-derived membranous structures. According to the guidelines

of the International Society for Extracellular Vesicles (ISEV), EV

are defined based on their physical features, including size (small

EV: <100 nm or <200 nm and medium/large EV: >200 nm) and

density, and also on their cell origin, molecular markers, and

function (Thery et al., 2018). Small EV include exosomes, which

originate by a mechanism involving endosomal sorting

complexes required for transport (ESCRT). Exosomes entail

common components, such as the lipid bilayer

(sphingomyelin, ceramides and cholesterol), transmembrane

and internal proteins as Alix and TSG101, integrins,

tetraspanins (CD63, CD81, and CD9), flotillin, and heat shock

proteins (HSPs) (Skotland et al., 2019; Zhang et al., 2019).

Moreover, exosomes also express specific components

mirroring their cell of origin such as major histocompatibility

complex (MHC) class-I and–II (Mashouri et al., 2019). ESCRT

components are essential for exosome biogenesis. In fact, the loss

of these proteins reduce exosome secretion in several cell types

(Colombo et al., 2013). Furthermore, silencing the accessory

ESCRT protein, Alix, increases the secretion of MHC class-II+

exosomes while reduces CD63 level. The observation that

silencing Alix promotes the formation of medium/large

vesicles, supports the notion that Alix strictly controls the

nature/features of secreted vesicles (Colombo et al., 2013).

The formation of medium/large EV relies on the budding of

plasma membrane (Doyle and Wang, 2019) and depends on

signal-mediated intracellular calcium release, which in turn,

triggers a cascade of biochemical and morphological changes

in the phospholipid bilayer. Flippases, floppases and scramblases

drive such modification by moving phosphatidylserine from the

internal to the external side of the membrane. Calcium ions are

also involved in the activation of proteolytic enzymes as calpains,

which modify and disrupt the cytoskeleton, allowing vesiculation

(Pollet et al., 2018).

In general, EV are secreted by all cell types and can be

detected in many biological fluids, such as plasma, serum, saliva,

urine (van Niel et al., 2018). In the last two decades, the ability of

EV to influence target cell behaviour has gained particular

interest. The effect of EV not only depends on their cell of

origin but also on the microenvironment in which they have been

released. Furthermore, the transfer of specific mRNAs or

miRNAs to recipient cells relies on a targeted sorting

mechanism. Specifically, miRNA sorting can be regulated by

several types of RNA-binding proteins, such as heterogeneous

nuclear ribonucleoproteins, argonaute 2, La protein, and Y-Box

binding protein 1, which specifically bind and load miRNA into

EV (Groot and Lee, 2020).

Since their cargo, consisting in proteins, lipids, amino acids,

and RNAs, reflects their cell of origin, circulating EV have been

proposed for biomarker discovery, and as prognostic and

therapeutic tools. Moreover, based on the original observation

that EV recapitulate the biological effect of their stem cell of

origin (Hur et al., 2020), EV should be considered an alternative

option to the cell-based therapy in cardiac regeneration. In

addition, it has been widely demonstrated that treatments

with EV secreted by stem or progenitor cells display

substantial advantages compared to their cell of origin, such

as lower immunogenicity, simple storage and production and

more affordable cost compared to living stem cells. Thus, in

recent years, the interest in EV as potential cell-free therapeutics,

has rapidly expanded. The emerging role of EV in promoting

cardiac regeneration will be discussed in the next paragraphs.

Finally, compared to current exploitable biomarkers, EV unveil

several advantages: i) non-invasive procedures can be used for

their detection; ii) their cargo reflects disease progression and the

response to treatment; iii) EV structure preserves their natural

cargos during long-term storage.

Extracellular vesicles and promotion of
angiogenesis

After damage, new blood vessels formation is essential to

rescue cardiac tissue. It has been demonstrated that EV released

by CPCs have cardioprotective effects in the infarcted hearts by

increasing blood vessel density (Barile et al., 2014). This effect

relies on the enrichment of miR-132 in EV which improve

neovessel formation by regulating its target RasGAP-p120

protein (Barile et al., 2014; Gallet et al., 2017). The pro-

angiogenic effect of exosomes released by CPCs has been

confirmed by Andriolo et al. (2018). CD31 expression was
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higher in cells exposed to CPCs-exosomes treatment. A recent

study demonstrated that CPCs-derived exosomes promote

angiogenesis by enhancing endothelial cell migration and, in

particular it has been shown that CPCs cultured at 5% O2

generate exosomes with a greatest angiogenic potential

(Dougherty et al., 2020). Moreover, it has been found that

bioengineered CPCs-exosomes transfected with the pro-

angiogenic miR-322 stimulate the angiogenic response in the

damaged heart (Youn et al., 2019).

Exosomes obtained by MSCs pre-treated with atorvastatin

increase arteriole and capillary density, improving cardiac

function in the infarcted hearts (Huang et al., 2020).

Therefore, it has been demonstrated that exosomes derived

from MSCs exposed to ischemia, contain several proteins

related to angiogenesis including platelet-derived growth

factor (PDGF), epidermal growth factor (EGF) and fibroblast

growth factor (FGF), inducing pro-angiogenic stimuli to

promote tissue healing (Anderson et al., 2016).

It has been reported that the enrichment of miR-132 inMSC-

exosomes promotes angiogenesis both in-vitro and in-vivo (Ma

et al., 2018). Several evidence also identified adipose derived stem

cells (ADSCs) as a relevant exosomes source involved in

angiogenesis. ADSC-exosomes have been shown to prevent

apoptosis and promote angiogenesis through the Wnt/β-
catenin signaling pathway and miR-93-5p in the damaged

heart (Cui et al., 2017; Liu et al., 2018). Exosomes derived

from serum of patients with myocardial ischemia enhanced

endothelial cell proliferation, migration and vessel formation.

In a mouse hind-limb ischemia model, Li et al. (2018)

demonstrated that ischemic exosomes significantly promoted

blood flow recovery and enhanced neovascularization through

miR-939-iNOS-NO pathway (Li et al., 2018). Similarly, it has

been shown that adipose stem cell-derived EV are enriched in

pro-angiogenic mRNAs able to rescue vascular and tissue

damage in a hind-limb ischemia model (Figliolini et al., 2020).

Extracellular vesicle and reduction of
apoptosis

EV have been also explored for their anti-apoptotic effect

during cardiac repair. MSC-exosomes alleviate cardiomyocyte

apoptosis delaying the progression of cardiomyopathy, by

decreasing the expression of pro-apoptotic protein Bax and

increasing the expression of the pro-survival protein Bcl-2

(Sun et al., 2018). EV released by CPCs enriched in miRNAs

miR-210, miR-132, and miR-146a-3p were found to reduce

cardiomyocytes death by inhibiting the apoptotic process

(Barile et al., 2014). In particular, miR-210 and miR-132

inhibit apoptosis in HL-1 cardiomyocyte cell line while miR-

210-silencing significantly amplifies apoptosis. Downregulation

of ephrin A3 and PTP1, two miR-210 targets, is associated with

the anti-apoptotic effect. A different mechanism that contributes

to protection against apoptosis is autophagy (Thorburn, 2008).

Indeed, miR-30a transferred from exosomes, released by hypoxic

cardiomyocytes, attenuates apoptosis by targeting beclin-1 and

Atg12 genes (Yang et al., 2016). In addition, plasma exosomes

reduce cell death after cardiac I/R injury. This effect relies on the

cross-talk between the exosomal heat shock protein 70 and Toll-

like receptor four and the activation of the extracellular signal-

regulated protein kinases one and 2 (ERK1/2) and p38 mitogen-

activated protein kinase (p38MAPK) (Vicencio et al., 2015).

miR-199a-3p was found crucial for cardiac repair upon MI,

both ex-vivo and an in-vivo. In particular, miR-199a-3p

expression increases cardiomyocyte proliferation occurring in

a damaged heart thereby improving the cardiac function (Eulalio

et al., 2012). Taken together, these results indicate a beneficial

effect of miR199a-3p in reducing the infarct size and preserving

the cardiac function after MI. In a rat model of MI, Dergilev et al.

(2020) tested the therapeutic potential of MSCs adapted to

secrete the stem cell factor (SCF). Proteomic analysis revealed

that these EV were enriched in chaperone and cytoskeleton

proteins and in molecules associated with metabolic processes,

which prevent harmful cardiac remodelling and confer

improvement to the cardiac function. In an ex-vivo cardiac

I/R model, endothelial cells-derived EV show cardioprotective

properties. The enrichment ofMEK1/2 and heat shock protein 90

(HSP90), a chaperone protein that stabilizes the folding and the

heat stress of different proteins, in EV has been proposed for

protection (Penna et al., 2020). Furthermore, endothelial cells-

derived EV significantly increase the expression of the anti-

apoptotic protein Bcl-2 in cardiomyocytes, suggesting a role in

reducing cell death and conferring cardioprotection (Penna et al.,

2020). A recent study demonstrated that EV isolated from serum

of acute coronary syndrome (ACS) patients before percutaneous

coronary intervention (PCI), display protection against

I/R-induced damage in cardiomyocytes by activating the SAFE

pathway (D’Ascenzo et al., 2021). EV cargo rearrangement was

found crucial for the loss of protection of EV recovered from the

same ACS patients after PCI (Femminò et al., 2021). Taken

together, these studies provide evidence that EV, derived from

different cell types, display anti-apoptotic properties, driving

cardiac repair.

Extracellular vesicle and resolution of
inflammation

EV-mediated cardiac repair also relies on their effect on

inflammation. Previous studies showed that EV derived from all

cardiac cells regulate cytokine secretion and immune cell

polarization, particularly M1 to M2 phenotype shift, through

the interaction with infiltrating immune cells (Zhao et al., 2019;

Lima Correa et al., 2021). EV secreted by cardiosphere-derived

cells (CDCs), which obtained from biopsy of patient heart, were

able to induce macrophage polarization viamiR-181b (de Couto
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et al., 2017). Moreover, it has been demonstrated that a Y RNA

fragment enriched in CDCs-EVmodulates both IL-10 expression

and secretion and improves cardiac repair (Cambier et al., 2017).

More recently, it has been shown that EV derived from CPCs

reduce the inflammatory process bymodulating the expression of

the pro-inflammatory cytokines, IL-1α, IL-2, and IL-6 (Lima

Correa et al., 2021). Particularly, in the in-vitro model, CPCs-

exosomes increased the number of anti-inflammatory

M2 macrophages and reduced the number of pro-

inflammatory monocytes and M1 macrophages. The

observation that MSCs-exosomes injection in the infarcted

heart mitigate inflammation by decreasing CD68 +

macrophages as well as the enrichment of miR-24 in MSCs-

exosomes and MSCs further supports the role of EV in solving

the inflammatory state (Shao et al., 2017). Intravenous infusion

of MSCs-exosomes in a mouse model of cardiomyopathy

decreased circulating pro-inflammatory cytokines and

regulated the balance between M1 and M2 macrophages

through the activation JAK2/STAT6 signaling pathway (Sun

et al., 2018). Consistently, Xu et al. (2019), found that MSCs-

exosomes induce macrophage polarization towards

M2 phenotype and the release of the anti-inflammatory

cytokine IL-10, by M2 macrophages, by inhibiting NF-κB
p65 nuclear translocation and AKT1/2 phosphorylation.

Extracellular vesicle potential clinical
application

In the last decade, several clinical trials provided evidence for

EV as biomarkers of the increased risk of myocardial damage in

CVDs. The prognostic potential of EV was reported using

epicardial fat (eFat)-derived EV. The authors showed that

these EV transfer profibrotic microRNA and proinflammatory

cytokines in patients with atrial fibrillation (AF) (Shaihov-Teper

et al., 2021). Similarly, it has been reported an association

between exosomal microRNA profiling and adverse left

ventricular remodelling (ALVR) after MI (Eyyupkoca et al.,

2022). In particular, three microRNAs (miR-423-5p, miR-

301a-3p and miR-374a-5p) were found differentially expressed

in the follow-up period in patients with or without ALVR.

Accordingly, circulating extracellular small non-coding RNAs

(exRNAs) were found associated with inflammation and fibrosis

in patients with ALVR (Danielson et al., 2018). The association

between exRNAs and the ALVR phenotype after MI were

proposed as biomarkers for the development of ALVR. The

role of EV as prognostic and/or diagnostic biomarkers has

been extensively evaluated. Indeed, in patients undergoing

surgical aortic valve replacement (SAVR), the levels of

circulating EV correlated with the left ventricle mass (LVM)

regression and LDH release (Weber et al., 2020). In particular,

lower levels of circulating EV were associated with an increased

LVM and with higher LDH after SAVR, indicating that EV may

be considered a prognostic predictor of patients’ clinical

outcomes (Weber et al., 2020). In a recent study, it has been

reported that circulating EV enriched in tissue factor are

significantly higher in AF patients than in controls and have

been correlated with the increased thrombotic risk of AF patients

(Mørk et al., 2019). In a different clinical trial, higher levels of EV

were found in ACS patients compared to stable angina patients

undergoing PCI (Biasucci et al., 2012). These findings, besides

confirming the potential application of EV as biomarkers of

increased risk of myocardial damage, have provided evidence for

their role as therapeutic targets in cardiovascular diseases. The

most relevant effects of EV are summarized in Table 1 and

represented in Figure 2.

Conclusion

It has become even more evident that different

mechanisms are involved in cardiac repair and

regeneration. Cardiovascular diseases such as MI benefits

from cell-based therapies mainly in small animal models,

since several limitations, including poor engraftment,

limited improvement in cardiac function, and

teratogenicity, were recognized in human studies. In fact,

cell-based therapies have demonstrated endogenous

cardiomyocyte proliferation after MI mainly associated to

progenitor and stem cell–derived factors. In particular, EV

derived from CDCs, CPCs, MSCs, plasma, serum, play a

central role in angiogenesis, resolution of inflammation and

apoptosis of damaged heart. Moreover, since EV contain a

large number of biologically active factors mainly

recapitulating the microenvironment of their released cells,

EV specific cargo has been recognized as promising

biomarkers and therapeutic target in CVDs.

Finally, although different preclinical studies support the

potential application of EV as cell-free approach, further data

are required to ensure effectiveness and safety in humans.

Moreover, protocols of standardization for dosing, quality

control and scalable EV production are still missing for the

clinical translation.
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