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Abstract
According to the view of conditionals named inferentialism, a conditional holds 
when its consequent can be inferred from its antecedent. This paper identifies 
some major challenges that inferentialism has to face, and uses them to assess three 
accounts of conditionals: one is the classical strict account, the other two have 
recently been proposed by Douven and Rott. As will be shown, none of the three 
proposals meets all challenges in a fully satisfactory way. We argue through novel 
formal results that a variation of the evidential account of conditionals suggested 
by Crupi and Iacona is the most promising candidate to develop inferentialism in a 
coherent formal framework.

1  History

Inferentialism, the view of conditionals investigated in this paper, rests on the idea that 
conditionals express inferences: a conditional holds when its consequent can be inferred 
from its antecendent, or equivalently when the latter provides a reason to accept the for-
mer. Although the term ‘inferentialism’ is a rather new label, which we take from work 
by Douven and colleagues, the view itself is not new.1 In fact, an interesting thread of 
claims of a distinctive inferentialist flavour emerges across the history of logic.
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1 Krzyżanowska et al. (2013), Douven et al. (2023). It should be pointed out that this work by Douven 
and colleagues characterizes inferentialism via a cluster of heterogeneous inference patterns (e.g., deduc-
tive, inductive, and abductive). This broad view is not identical to Douven’s specific probabilistic theory 
of the acceptance of conditionals that we discuss below (Sect. 4). Also, this use of ’inferentialism’ differs 
from the more widespread use to denote the view by which the meaning of expressions is determined 
by their role in inference, although it would be in line with the latter view to adopt inferentialism in our 
sense. For example, Brandom (2018) seems to suggest such a convergence.
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First and foremost, inferentialism is a substantial thesis from Stoic logic. It is a 
key Stoic doctrine that the validity of an argument and the truth of the correspond-
ing conditional are correlated properties. Sextus Empiricus reports the Stoic position 
as follows in Against the Logicians:

The conclusive argument is sound, then, when after we conjoin the premises 
and create a conditional that begins with the conjunction of the premises and 
finishes with the conclusion, this conditional is itself found to be true.2

Scholars also agree that the Stoic notion of a valid argument was not restricted to 
formal validity, and might easily have included inferences that are now broadly clas-
sified as inductive rather than deductive,3 Indeed, Iacona’s phrase ‘Stoic Thesis’ is 
largely coextensive with ’inferentialism’ for our purposes, and much appropriate to 
emphasize the historical origins of the view.4

Echoes of the Stoic Thesis appear sparsely but consistently throughout the late 
antiquity and the Middle Ages. In Boethius’ De Hypotheticis Syllogismis, for exam-
ple, it is stated that in a conditional [in conditionali], the reason for the inference 
[consequentiae ratio] is taken from the antecedent condition [ex conditione],5 So 
Boethius must have assumed that conditionals somehow express inferential relations.

In Abelard’s Dialectica, his most influential logical work, one reads that
the meaning of a conditional [sententia hypotheticae propositionis] amounts to 
an inference [in consecutione est], namely to whether one thing does or does 
not follow from something else.6

The example provided is ‘si est homo, est animal’, where it is impossible for 
a man to exist without being an animal. Abelard also mentions certain authors 
[quidam] who acknowledge as true [veras] not only necessary inferences, but also 
whatever inference that is probable [probabiles], and accordingly take the truth of a 
conditional to consist either in its necessity or in its mere probability [in sola prob-
abilitate]. Abelard does not elaborate any further and rejects this proposal rather 
firmly. The passage is nonetheless remarkable, for it confirms that lost sources must 
have meant the Stoic Thesis as extended to non-conclusive arguments,7

The Stoic Thesis surfaces again up to the latest developments of medieval logic. 
Ockham, in his Summa Logicae, explicitly says that a conditional [condiciona-
lis] is equivalent to an inference, so that it is true when the antecedent entails the 

2 Sextus Empiricus, Against the Logicians, II, 417, in Sextus (2005). Also see Outlines of Scepticism, II, 
137, in Sextus (2000).
3 See (Barnes et al., 2008) p. 123.
4 See (Iacona, 2023) Taken literally, explicit statements of the inferentialist position usually only focus 
on the characterization of conditionals in terms of valid inference, not the other way around. Yet the con-
verse claim that a valid inference licences the corresponding conditional is hardly ever questioned.
5 Boethius, De Hypotheticis Syllogismis in Boethius (1847), p. 832.
6 Abelard, Dialectica, in Abelard (1956), p. 271 (our translation).
7 Abelard, Dialectica in Abelard (1956), p. 271–2.
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consequent [quando antecedens infert consequens],8 An important anonymous trea-
tise of the same period, the Liber Consequentiarum, provides a sharp and unequivo-
cal phrasing of this equivalence:

Every inference [consequentia] is equivalent to a conditional [aequivalet con-
dicionali] composed of the antecedent and consequent [ex antecedente et con-
sequente] of the given inference with ’if’ put in front of the antecedent, and 
conversely every conditional is also equivalent to an inference composed of 
the antecedent and consequent of the given conditional with ’therefore’ put in 
front of the consequent.9

The idea that conditionals express inferences, along with the use of the term ‘con-
sequens’, which is closely related to ‘consequentia’, survived for long time and 
remained largely undisputed until the end of the XIX century. A clear illustration of 
its pervasiveness is provided by the following description of hypothetical judgments 
in Kant’s Blomberg Logic, which is based on his logic lectures in the early 1770s:

one always finds the relation of ground to consequences. Now in conditioned 
judgments, that which contains the ground is called antecedens or also prius. 
That which contains the consequences, however, is called in these judgments 
consequens or posterius.10

Another telling example in the same spirit, drawn from Mill’s System of Logic, is the 
following:

When we say “If the Koran comes from God, Mohammed is the prophet of 
God”, we do not intend to affirm either that the Koran does come from God, 
or that Mohammed is really his prophet. Neither of these simple propositions 
may be true, and yet the truth of the hypothetical proposition may be indisput-
able. What is asserted is not the truth of either of the propositions, but the 
inferribility of the one from the other.11

Between the end of the XIX century and the beginning of the XX century, the infer-
entialist ideas expressed in the quotations above started losing momentum, as a new 
paradigm of logical analysis, which emerged in the works of Frege, Russell, and 
Wittgenstein, privileged the material account of conditionals originally defended by 
Philo, the view that a conditional is true when it is not the case that its antecedent is 
true and its consequent is false,12

Interestingly, this crucial historical turn also marks the origins of the symbol ⊃ , 
which nowadays occurs in logic textbooks. When Peano published his Formulaire 

8 Ockham, Summa Logicae II.31, in Ockham (1998), p. 186.
9 Liber consequentiarum, 123, 199–203, edited in Schupp (1988) (p. 109), and quoted from King 
(2001), p. 132 (translation slightly modified).
10 Kant (1992) 9, pp. 222–223.
11 Mill (1882), p. 102.
12 Sextus Empiricus, in Outlines of Scepticism II, 110–11, ascribes this reading to Philo, see Sextus 
(2000), p. 96.
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de Mathématique in 1894, he used a symbol ⊂ , which looked like a ‘C’, with the 
intention to represent a relation of consequence between two sentences. That is, 
he wrote 𝛼 ⊂ 𝛽 to mean that 𝛼 is a consequence of 𝛽.13 A few years later, Russell 
took this symbol from Peano and reversed it, that is, he wrote 𝛽 ⊃ 𝛼 to mean that 𝛽 
implies 𝛼 , where implication was now understood as plain material implication. This 
is the use of the symbol that we find in Russell and Whitehead’s Principia Mathe-
matica,14 Subsequently, the latter use became standard, and the original inferentialist 
meaning of Peano’s notation faded into oblivion.

As will emerge in the next sections, inferentialism has eluded a canonical for-
mal develoment so far, which explains at least in part its present lack of popularity 
among logicians. In comparison, the striking technical and theoretical success of 
the material account has granted it a central place in the orthodoxy of the XX cen-
tury, prompting the impression that, “much confusion has been produced in logic 
by the attempt to identify conditional statements with expressions of entailment”, 
as Kneale and Kneale once put it.15 However, in spite of the widespread dominance 
of the material account, the idea that conditionals express inferential relations has 
never really disappeared. Several contemporary authors, including C.I. Lewis, Ram-
sey, Goodman, Ryle, Mackie, and Strawson, have described the behaviour of condi-
tionals in natural language along inferentialist lines.16 This resilience suggests that 
the notion of inference is deeply rooted in our pretheoretic understanding of condi-
tionals, or so we are inclined to believe.

2  Three Major Challenges

In Sect. 1 we presented a brief historical overview of inferentialism. Now we will 
describe three major challenges that an inferentialist account of conditionals has to 
face.

Challenge 1: Key test cases. Consider the following sentences, which concern a 
series of tosses of a fair coin and Real Madrid’s football season: 

(1) If the first 5 tosses are all heads, there will be at least 5 heads in the first 1.000 
tosses.

(2) If Real Madrid loses the first 10 matches, its coach will be fired.
(3) If Real Madrid loses the first 10 matches, there will be at least 5 heads in the first 

1.000 tosses.
(4) If Real Madrid loses the first 10 matches, 5+5=10.

13 Peano (1894), pp. 10–11.
14 Russell and Whitehead (1910). Peano himself used the reversed symbol in the following editions of 
his Formulaire but without associating it to Russell’s reading.
15 Kneale and Kneale (1962), p. 134.
16 Lewis (1912),  p. 529, Ramsey (1990),  p. 156, Goodman (1947),  p. 117, Ryle (1950), Mackie 
(1973), p. 83, Strawson (1950), p. 233.
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Intuitively, (1)–(4) are not all equally compelling: while (1) and (2) seem perfectly 
reasonable, (3) and (4) strike as odd. The first impression one has with (3) and (4) is 
that something is missing, some sort of connection between the antecedent and the 
consequent. After all, one may be tempted to say, the result of a football match has 
nothing to do with the outcome of a coin toss, or with a mathematical truth.

The intuitive difference just illustrated causes explanatory troubles to most extant 
accounts of conditionals. On the material account, (1)–(4) are all true as long as 
their antecedent is false, which is very likely.17 The suppositional views based on the 
Ramsey Test do not fare better. On the probabilistic account suggested by Adams, 
which equates the acceptability of a conditional with the conditional probability 
of its consequent given its antecedent, (1)–(4) are all highly acceptable, due to the 
high probability of their consequent given their antecedent.18 On the modal account 
developed by Stalnaker and Lewis, according to which a conditional is true when 
its consequent is true in the closest world, or worlds, in which its antecedent is true, 
(1)–(4) are all true, given that they satisfy the condition required.19 A similar result 
is obtained on the belief revision account due to Gärdenfors and others, according 
to which a conditional is acceptable just in case its consequent belongs to the belief 
state obtained by adding the antecedent to one’s set of beliefs.20,  21, 22, 23

Admittedly, there may be diverse stories, including pragmatic stories, of why (1) 
and (2) seem perfectly reasonable while (3) and (4) strike as odd.24 However, if one 
could explain this intuitive difference in purely semantic terms, it would be a worth-
wile achievement. This is precisely the project pursued by inferentialists. In their 
perspective, the correct explanation must be that (1) and (2) correspond to justified 
inferences, whereas the same does not hold for (3) and (4). A formal account of 
conditionals where a symbol ⊳ is suitably defined in terms of the inferential rela-
tion postulated should be able to explain the intuitions about (1)–(4) precisely on 
this ground. That is, once (1)–(4) are represented as sentences of the form p ⊳ q , the 
account should imply that (1) and (2) hold while (3) and (4) do not hold.

Challenge 2: Probabilistic relevance. One way to draw the line between cases 
like (2), in which some relation of support plausibly ties the antecedent to the con-
sequent, and cases like (3), in which no such relation seems to obtain, is to resort to 
probabilistic considerations. While in the case of (2) there is a clear probabilistic 
correlation between antecedent and consequent, a key damning feature of (3) is that 

17 Much like the material account, trivalent truth-functional treatments, such as that offered in Égré et al. 
(2020), also fails to discriminate the cases (1)–(4).
18 Adams (1965).
19 Stalnaker (1991), Lewis (1973).
20 Gärdenfors (1978).
21 Adams (1965).
22 Stalnaker (1991), Lewis (1973).
23 Gärdenfors (1978).
24 Douven et al. (2023) discuss a range of alternative approaches, and find them all eventually defective. 
On the other hand, Lassiter (2022) and Bourlier et al. (2023) defend a pragmatic analysis on both theo-
retical and empirical grounds.
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the credibility of its antecedent and the credibility of its consequent are unrelated, 
that is, the two sentences are probabilistically independent. Arguably, an inferential-
ist account of conditionals should be able to make sense of this remark, allowing for 
an explicit connection with the language of probability. Ideally, the account should 
imply that p ⊳ q holds only if there is some degree of positive relevance between p 
and q in a suitable probabilistic analysis.

Challenge 3: Logical profile. In an inferentialist perspective, p ⊳ q is meant to 
say that p is a reason for q. Which principles of conditional logic should be validated 
or violated by statements of this kind? To serve the purposes of inferentialism, the 
logic of ⊳ should be plausible as a logic of reasons. Logical principles that reasons 
arguably fulfil should thus be retained, whereas logical principles that reasons argu-
ably contradict should be rejected. A valuable guideline here is the thought that an 
adequate theory of reasons should be able to model both conclusive reasons and 
non-conclusive or defeasible reasons, thus presenting a general pattern of logical 
results that applies to reasons in general. In the extension from conclusive to defea-
sible reasons, the loss of logical strength would ideally remain within limits: the 
theory should definitely reject defective principles, but not drop ones that seem to 
plausibly survive for defeasible reasons.

In the next three sections we will present three inferentialist accounts of condi-
tionals, and we will show how Challenges 1–3 can be used to assess the plausibility 
of each of these accounts.

3  The Strict Account

The first account to be discussed is the classical strict account, which defines p ⊳ q 
as □(p ⊃ q) , that is, p ⊳ q is true just in case it is impossibile that p is true and q is 
false. This account, which goes back to Diodorus, was revived by C.I. Lewis at the 
beginning of the twentieth century, and is still a widely discussed option in the con-
temporary debate on conditionals,25

The strict account is inferentialist in a straightforward sense. As long as a valid 
argument is understood as an argument in which it is impossible that the premises 
are true and the conclusion is false, the strict account implies that a conditional is 
true just in case the corresponding argument is valid. This is the sense that some 
logicians of the past had in mind when they made inferentialist claims. Abelard 
seems a clear example. As we have seen, Abelard defines a true conditional as an 
inference in which something follows from something else, and rejects the hypoth-
esis that the truth of a conditional consists in its mere probabilitas. The same 

25 Sextus Empiricus, in Outlines of Scepticism II, 110–11, ascribes this reading, or at least a temporal 
version of it, to Diodorus, see Sextus (2000), p. 96. Lewis (1914) is a seminal paper on the topic. More 
recently, the strict account has been developed in different ways in Lycan (2001), Gillies (2009), Kratzer 
(2012), among other works.
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equation between true conditionals and deductively valid arguments is postulated by 
C.I. Lewis, Ramsey, Goodman, and others.26

Despite its venerable tradition, however, the strict account seems clearly unable to 
meet Challenges 1–3 in a satisfactory way, because the criterion of truth it imposes 
on conditionals is too strong in a crucial sense as well as arguably too weak in other 
respects. Let us consider these challenges one by one.

Challenge 1 causes serious troubles to the strict account. On this account, (1) is 
true because it is impossible that its antecedent is true and its consequent is false. 
However, (2) and (3) turn out to be both false, given that the truth of their antecedent 
does not rule out the falsity of their consequent. Moreover, (4) turns out to be vacu-
ously true, because its consequent expresses a necessary truth.

As to (2), an advocate of the strict account might appeal to contextual restrictions 
on the domain of quantification and claim that, once we consider the set of worlds 
that are relevant in the context of utterance, there is no world in that set in which the 
antecedent is true and the consequent is false. The fact, however, is that if some such 
story can be provided to accommodate (2), one may wonder why a similar story 
shouldn’t apply to (3), due to the extremely high probability of its consequent, thus 
again losing the intuitive difference between (2) and (3). After all, the possibility of 
not having 5 heads in 1000 tosses of a fair coin is negligeable for most purposes.

Challenge 2 raises a related problem. As long as the strict account is unable to 
draw a principled distinction between (2) and (3), it fails to capture the apparent dif-
ference of probabilistic relevance between (2) and (3). The fact is that the probabil-
istic counterpart of a strict conditional would be a conditional that gets value 1 when 
the conditional probability of its consequent given its antecedent is 1, and 0 other-
wise, which is too coarse-grained a criterion to make sense of cases like (2) and also 
not fine-grained enough to retain (1) without retaining (4).

Now consider Challenge 3. The strict account definitely has some virtues when 
it comes to the logical profile of ⊳ . Here are two principles that reasons arguably 
fulfill and that hold for strict conditionals. The first is AND, the principle according 
to which p ⊳ q and p ⊳ r entail p ⊳ (q ∧ r) . This inferential rule arguably holds for 
reasons in general: if p is a reason for q, and p is a reason for r, it seems to follow 
that p is a reason for q ∧ r . The second is OR, the principle according to which p ⊳ r 
and q ⊳ r entail (p ∨ q) ⊳ r . If each of p and q is a reason for r, it seems to follow 
that p ∨ q is a reason for r. The strict account also invalidates inference rules that 
reasons arguably do not fulfill, such as Conjunctive Sufficiency, the principle accord-
ing to which p ∧ q entails p ⊳ q . Clearly, it may happen that p and q both hold but 
are totally unrelated, so that p is not a reason for q.27

The main shortcoming of the strict account, however, is that it validates Mono-
tonicity, the principle according to which p ⊳ q entails (p ∧ r) ⊳ q for any r. This 
principle is at odds with the very idea that ⊳ represents defeasible inference: on a 

26 Lewis (1912), p. 529, Ramsey (1990), p. 156, Goodman (1947), p. 117.
27 Recently, whether people comply with Conjunctive Sufficiency has also been a matter of empirical 
investigation in the psychology of reasoning. Cruz et al. (2016) and Douven et al. (2024), have drawn 
quite divergent conclusions from the available evidence.
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widespread understanding of defeasibility, to say that p is a defeasible reason for q is 
to say precisely that, for some r, p ∧ r is not a reason for q.

A related worry concerns Right Weakening, the principle according to which 
p ⊳ q entails p ⊳ r whenever q ⊧ r , where ⊧ is classical logical consequence. 
Although Right Weakening is very reasonable when one restricts consideration to 
conclusive reasons, it becomes more problematic as a rule for reasons in general. 
Arguably, it may be the case that p is a reason for q without thereby being a reason 
for r, in spite of the fact that q ⊧ r , because by weakening the conclusion the positive 
relevance of the premise can decrease or get lost.

More generally, it is arguable that in order to represent defeasible inference as 
distinct from conclusive inference, some principle that holds for the strict condi-
tional must fail. As we will explain, the two accounts discussed in the next two sec-
tions weaken the logic of the strict conditional in different ways.

4  Douven’s Threshold/Increment Account

According to Douven, p ⊳ q is acceptable when (i) the conditional probability of q 
given p is high enough—relative to a threshold greater than 0.5—and (ii) p gives 
some amount of evidential support to q. Following a standard probabilistic con-
strual of evidential support, (ii) means that the conditional probability of q given p 
is higher than the unconditional probability of q itself. This requirement is intended 
to capture the intuition that the antecedent of an acceptable conditional must be rel-
evant to its consequent.28

The threshold/increment account suggested by Douven is fully satisfactory in 
addressing Challenges 1 and 2, but not as much in addressing Challenge 3. Chal-
lenge 1 is fully met because (1) and (2) turn out to be clearly acceptable while (3) 
and (4) turn out to be clearly unacceptable. In (1) and (2), the conditional probability 
of the consequent given the antecedent is high enough, and higher than the uncon-
ditional probability of the consequent. In (3) and (4), by constrast, despite the high 
conditional probability of the consequent given the antecedent, (ii) is violated: that 
conditional probability is just as high as the unconditional probability of the conse-
quent. In particular, Douven calls (3) and similar sentences “missing link condition-
als”. Another label, adopted by Cruz and Over, is “Walrus conditionals”.29

In fact Douven uses precisely examples such as (2) and (3) to make an impor-
tant point against Adams’ probabilistic account. Experiments have shown that by 
and large people judge conditionals such as (3) as significantly less plausibile than 
conditionals such as (2), even if the corresponding conditional probabilities are 
matched.30 This fact, known as relevance effect, shows that it would be wrong to 

28 See Douven (2016), p. 108.
29 Cruz and Over (2024). The two labels are meant to overlap only partially. In particular, according to 
Cruz and Over (2023), some pragmatically acceptable conditionals would qualify as “missing-link” but 
are not Walrus conditionals.
30 See Skovgaard-Olsen et al. (2016).
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assume, as McGee once put it, that Adams’ probabistic account "describes what 
English speakers assert and accept with unfailing accuracy".31 The same point 
applies, as we have seen, to other suppositional views such as the Stalnaker-Lewis 
account and the belief revision account.

Challenge 2 is also fully met. It is a straightforward consequence of the threshold/
increment account that in an acceptable conditional the antecedent is relevant for 
the consequent precisely in the sense that, assuming the former, the probability of 
the latter is higher than it would be otherwise. So the connection with probabilistic 
relevance is direct and general.

Now let us turn to Challenge 3. In Douven’s framework, a logic for ⊳ is devel-
oped from the idea of acceptability preservation for all probability distributions and 
all thresholds. The threshold/increment account is surely effective in avoiding prin-
ciples of conditional logic that are dubious for inferentialists. At least three cases 
deserve attention: Conjunctive Sufficiency, Monotonicity, and Right Weakening. 
These three principles are invalid according to Douven’s theory, which we take to be 
a desirable result. However, the threshold/increment account is not equally effective 
in preserving principles of conditional logic that seem plausible for inferentialists. 
Here two key examples are AND and OR: Douven’s theory does not validate these 
two principles.32

5  Rott’s Difference-Making Account

The third account, due to Rott, hinges on the notion of difference-making: for a con-
ditional to hold, its antecedent has to make a difference as concerns the credibility 
of its consequent. More precisely, p ⊳ q holds if and only if (i) q holds in all closest 
worlds in which p holds, and (ii) it is not the case that q holds in all closest worlds 
in which ¬p holds. While (i) expresses the Ramsey Test, (ii) is an additional clause 
devised to capture the intuition that q holds in virtue of p. Rott labels “Relevant 
Ramsey Test” the combination of (i) and (ii).33

The difference-making account has good prospects for Challenge 2, but faces 
rather serious difficulties relative to Challenges 1 and 3. Consider Challenge 1. On 
this account, the intuitive difference between (2) and (3) is explained by saying that 
(3), unlike (2), does not satisfy (ii): plausibly, at least 5 heads in 1.000 tosses will 
arise in the closest worlds in which Real Madrid does not lose the first 10 matches. 
Moreover, (4) turns out to be unacceptable as well, given that again (ii) is not satis-
fied. The problem is, however, that the difference-making account does not make 
sense of the intuitive plausibility of (1). In fact, (1) is predicted to be equally unac-
ceptable, and for the same reason: even in the closest worlds in which there is some 

31 McGee (1986), p. 485.
32 Douven (2016), pp. 129–130.
33 See Rott (1986) and Rott (2022). Rott relies on the AGM formalism as his favourite technical machin-
ery. However, framing the theory in a possible world semantics will be immaterial for our purposes and 
will make subsequent comparisons easier. See Raidl (2021) for a discussion.
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tails in the first 5 coin tosses, there will still be at least 5 heads in the first 1.000 
tosses.

Challenge 2 also raises a non-trivial question. Rott’s theory is spelled out delib-
erately in a qualitative framework to represent doxastic states of acceptance and 
non-acceptance. While this is a totally legitimate move, soliciting a connection with 
probability can be motivated by analogy with the Ramsey Test. The modal interpre-
tation of the Ramsey Test has a counterpart in Adams’ probabilistic semantics as a 
requirement that the conditional probability of the consequent given the antecedent 
be high. Since Rott’s theory implies a strengthening of the Ramsey Test through an 
additional clause, one is led to figure out what a probabilistic condition correspond-
ing to this clause would look like. The most natural idea is that the probability of the 
consequent given the negated antecedent be low. A high value of P(q|p) and a low 
value of P(q|¬p) are surely enough to represent the positive probabilistic relevance 
of p for q. However, no project has been thoroughly pursued so far to establish how 
such relevance may arise from the fulfilment of the Relevant Ramsey Test. To this 
extent, bridging the gap between the qualitative framework of possible worlds and 
the quantitative structure of probabilities remains an open issue for this account. 
In general, a systematic study of how modal and probabilistic characterizations are 
coupled seems an interesting research project of its own, regardless of whether a 
theory effectively achieves all its philosophical goals. Earlier attempts in this direc-
tion have provided significant insight in the case of the suppositional conditional.34

Let us turn to Challenge 3. In Rott’s approach, the logic is developed from the 
idea of acceptability preservation for all rankings of possible worlds, where rank-
ings of possible worlds can be understood as belief states. The difference-making 
account aptly avoids some crucial principles that are dubious for inferentialists, such 
as Monotonicity, Conjunctive Sufficiency, and Right Weakening. However, other 
principles also fail while being plausible instead, such as OR. Moreover, some prin-
ciples validated by this account appear devoid of sound justification in an inferen-
tialist perspective. A rather striking example is Affirming the Consequent, the infer-
ence from p ⊳ q and q to p. Suppose that q holds in all closest worlds (which means 
that q is acceptable). Then p must also hold is those worlds, for otherwise (ii) would 
be violated, against the assumption that p ⊳ q holds. Here is an example: 

(5) If a meteorite hits Carol’s house, her favourite mug will be broken.

It makes good sense to endorse (5) as compelling in an inferentialist perspective. 
The difference-making interpretation of ⊳ then implies that, given (5) and the addi-
tional assumption that Carol’s favourite cup of coffee has broken, one can conclude 

34 See Adams (1977) and Leitgeb (2017), 6.2. If one defines the acceptability of 𝛼 ⊳ 𝛽 as the difference 
between P(𝛽|𝛼) and P(𝛽|¬𝛼) in case P(𝛽|𝛼) ≥ P(𝛽|¬𝛼) (and zero otherwise, or in case P(𝛼) = 0 ), distinc-
tive logical features of Rott’s difference-making conditional are recovered. Several interesting results of 
this kind have now been proved in Calderisi (2023), and Rott (2023a). The difference between accept-
ability so defined and the probabilistic version of the evidential account reflects well-known alternatives 
in measures of evidential support. See Brössel (2013) for an overview.
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that the space rock strike occurred. This is quite odd. After all, p ⊳ q is meant to 
convey that q can be inferred from p, not the other way around. So it seems that 
Challenge 3 is not convincingly met, as the logic generated by the difference-making 
account is both unduly weak in certain respects and unduly strong in others.35

6  The Chrysippus Test

So far we have presented three main challenges that inferentialism has to face, and 
we have discussed three inferentialist accounts of conditionals, showing how each of 
them is affected by serious difficulties. The aim of the rest of the paper is to develop 
an account of conditionals that yields better results with respect to our three chal-
lenges. This account, as we will explain, is an amended version of the evidential 
account suggested by Crupi and Iacona.36

The core idea of the evidential account is that p ⊳ q holds just in case p and ¬q 
are incompatible, where the incompatibility between p and ¬q is taken to define the 
relation of support that obtains between p and q. Crupi and Iacona call Chrysippus 
Test this incompatibility condition, because the first clear formulation of it goes back 
to Chrysippus, at least according to the secondary sources,37

The Chrysippus Test implies a direct connection between conditionals and argu-
ments, to the extent that a valid argument is understood as an argument in which 
the premises are jointly incompatible with the negation of the conclusion. This is 
surely a widely accepted view as concerns conclusive arguments, and it can work as 
a fruitful guideline to think about defeasible arguments too by suitably extending the 
notion of validity.38

In fact, Crupi and Iacona identify two distinct forms of incompatibility, which 
yield two distinct senses in which the corresponding inference can be valid. One 
is absolute incompatibility, which rules out the possibility of holding together and 
so qualifies as the strongest form of incompatibility. When p and ¬q are absolutely 
incompatible, the inference from p to q is concusively valid. The other is relative 
incompatibility, which implies that the possibility of holding together is remote, 
although it exists. When p and ¬q are relatively incompatible, the inference from p 
to q is defeasibly valid.

The next two sections outline two independent ways to formally specify the 
Chrysippus Test: one relies on a probabilistic semantics, the other relies on a modal 
semantics. So we will provide a probabilistic version and a modal version of the evi-
dential account. Both versions are based on Crupi and Iacona’s work, although they 
contain two crucial amendments. The first amendment is common to both versions, 
while the second only concerns the modal version.

35 The relevant results for the logical profile of Rott’s difference-making conditional are in Rott (2022)
36 Crupi and Iacona (2022a), Crupi and Iacona (2022b)
37 Sextus Empiricus, Outlines of Scepticism II, 111, in Sextus (2005), p. 96.
38 Iacona (2023) develops precisely this idea under the label ‘Stoic Thesis’.



 V. Crupi, A. Iacona 

The two versions of the evidential account will be phrased by using a single lan-
guage 𝖫 defined on the basis of a propositional language Lp constituted by a finite 
set Lpa of atomic formulas p, q, r,… , the connectives ¬,⊃ , and the brackets (, ). The 
alphabet of 𝖫 extends the alphabet of Lp by adding the connectives □,>,⊳ . The for-
mulas of 𝖫 are defined as follows: if 𝛼 ∈ Lp , then 𝛼 ∈ 𝖫 ; if 𝛼 ∈ Lp , then □𝛼 ∈ 𝖫 ; if 
𝛼, 𝛽 ∈ Lp , then 𝛼 > 𝛽, 𝛼 ⊳ 𝛽 ∈ 𝖫 ; if 𝛼 ∈ 𝖫 , then ¬𝛼 ∈ 𝖫 . The additional connectives 
∧,∨,◊ can be introduced in the usual way.

Note that, if the formulas of Lp are called propositional, the formation rules of 𝖫 do 
not allow non-propositional formulas to occur in the scope of □,>,⊳ , although such 
formulas can occur in the scope of ¬ . This limitation is functional to the probabilistic 
semantics. Although adopting unrestricted formation rules would raise no technical 
problem in the modal semantics, here we aim at establishing a connection between 
the two versions of the evidential account, which is easier with a shared syntax.

7  Evidential Account: Probabilistic Version

In the probabilistic version of the evidential account, the acceptability of p ⊳ q is 
defined in terms of a probabilistic measure of incompatibility expressed as follows 
for any probability distribution P:

Definition 1 If P(p ∧ ¬q) ≤ P(p)P(¬q) and P(p)P(¬q) ≠ 0 , the incompatibility 
between p and ¬q is

Otherwise, the incompatibility between p and ¬q is 0.

This definition contemplates two cases. In the first case, p and ¬q are not posi-
tively correlated, and the formula provided represents the mutual relative reduction 
of credibility according to P: it is equivalent to (P(p) − P(p|¬q))∕P(p) , the propor-
tion of the initial probability of p that is cancelled out by the downward jump to 
P(p|¬q) , which in turn is identical to (P(¬q) − P(¬q|p))∕P(¬q) , the proportion of 
the initial probability of ¬q that is cancelled out by the downward jump to P(¬q|p) . 
(The same quantity is also equivalent to 1 minus a popular probabilistic measure 
of the "coherence" between p and ¬q , originally introduced by Shogenji.39) In the 
second case, either p and ¬q are positively correlated or P(p)P(¬q) = 0 . Note that, 
whenever p and ¬q are incompatible to some degree greater than 0, the incompat-
ibility between p an q is 0, for p and q are positively correlated.40

The degree of acceptability of p ⊳ q can be equated with the degree of incom-
patibility between p and ¬q as specified by Definition 1. That is, p ⊳ q intuitively 

1 −
P(p ∧ ¬q)

P(p)P(¬q)

39 Shogenji (1999).
40 This measure of the incompatibility between p and ¬q is identical to the measure of argument strength 
from p to q defined in Rips (2001) and to Bayesian confirmation as partial entailment in Crupi and Ten-
tori (2013), Crupi and Tentori (2014).
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holds when p ⊳ q is highly acceptable, which means that the degree of incompatibil-
ity between p and ¬q is high. Conversely, p ⊳ q intuitively does not hold when the 
degree of incompatibility between p and ¬q is low, or equivalently when p and ¬q 
are only slightly incompatible, or not at all.

Since the formula in Definition 1 yields a value greater than 0 only if 
P(q|p) > P(q) , we get that the degree of acceptability of p ⊳ q is strictly positive 
only if p increases the probability of q. Unlike in Douven’s theory, however, posi-
tive probabilistic relevance per se is not sufficient for p ⊳ q to be highly acceptable, 
not even in case P(q|p) itself is high. Just as it is possible for p and ¬q to be fully 
independent, and thus fully compatible, while P(q|p) is high, so that p ⊳ q has zero 
acceptability, it is also possible that p and ¬q are only very mildly incompatible, so 
that p ⊳ q is still not quite acceptable. The following is a plausible illustration, as 
concerns a fair coin that is tossed 20 times: 

(6) If there is at least one head out of 20, then there are at least 8 heads out of 20.

In (6), the conditional probability of the consequent given the antecedent is demon-
strably high, and slightly higher than its unconditional probability. Yet this does 
not seem to make (6) highly acceptable, for the inferential connection is arguably 
too weak. As long as ’reason’ is understood as ‘sufficient reason’, there is a plausi-
ble sense in which the antecedent of (6) does not provide a reason for accepting its 
consequent.41

Now we will show how the probabilistic analysis of incompatibility just illus-
trated can be incorporated in a coherent probabilistic semantics for 𝖫 . In line with a 
tradition initiated by Adams, we will define a valuation function for formulas based 
on the probability of their propositional constituents. The function V, which can be 
understood as a measure of acceptability, is defined as follows for any probability 
distribution P over Lp:

Definition 2 

1 For every 𝛼 ∈ Lp , VP(𝛼) = P(𝛼);

2 VP(□𝛼) =
{

 1 ifP(𝛼) = 1

0 otherwise;

3 VP(𝛼 > 𝛽) = 
{

 P(𝛽|𝛼) ifP(𝛼) > 0

1 ifP(𝛼) = 0;

4 VP(𝛼 ⊳ 𝛽) = 
{

 1 −
P(p∧¬q)

P(p)P(¬q)
ifP(p ∧ ¬q) ≤ P(p)P(¬q) ≠ 0,

0 otherwise;
5 VP(¬𝛼) = 1 − VP(𝛼).

Clause 1 says that the degree of acceptability of any propositional formula 𝛼 rela-
tive to P amounts to the probability assigned to 𝛼 by P. Clause 2 says that □𝛼 takes 
either 1, the maximal value, or 0, the minimal value, depending on whether or not 

41 This is not to deny that an intelligible notion of insufficient reason can be defined, namely, a reason 
that positively contributes to credibility but is not quite enough for inference.
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P(𝛼) = 1 . Clause 3 says that the value that VP assigns to 𝛼 > 𝛽 is the conditional 
probability of 𝛽 given 𝛼 , with the proviso that VP(𝛼 > 𝛽) = 1 if P(𝛼) = 0 . This is the 
suppositional conditional as defined by Adams.42 Clause 4 is the crucial one, as it 
specifies the value of 𝛼 ⊳ 𝛽 in accordance with Definition 1. Finally, clause 5 defines 
negation in the classical way, as it entails that VP(¬𝛼) = 1 when VP(𝛼) = 0 , and that 
VP(¬𝛼) = 0 when VP(𝛼) = 1.43

Once the function V is defined as above, one can apply the rest of Adams’ for-
mal machinery. In particular, one can stipulate that the uncertainty of a formula 𝛼 
relative to a probability distribution P—call it UP(𝛼)—is 1 − VP(𝛼) , and define logi-
cal consequence—indicated by the symbol ⊧p—as the relation that obtains when the 
sum of the uncertainties of the premises is higher than or equal to the uncertainty of 
the conclusion for any probability assignment.

Definition 3 

𝛼1, ...𝛼n ⊧p 𝛽 iff UP(𝛼1) + ... + UP(𝛼n) ≥ UP(𝛽) for any P.

This definition implies that, in a valid argument, the acceptability of the conclu-
sion is guaranteed to be high enough as long as the premises are themselves highly 
acceptable.44

The semantics just outlined is essentially the probabilistic semantics originally 
formulated by Crupi and Iacona except for one feature. In their original formula-
tion, Crupi and Iacona stipulated that, for the limiting cases in which P(q) = 1 or 
P(p) = 0 , and thus P(p)P(¬q) = 0 , incompatibility is maximal (i.e., 1), for then 
P(p ∧ ¬q) = 0 . As a result, p ⊳ q turns out to follow from □q , as well as from ¬◊p

.45 In other words, conditionals with impossible antecedents or necessary conse-
quents are treated as vacuously acceptable, that is, as cases of absolute incompat-
ibility understood as P(p ∧ ¬q) = 0 . This treatment is in line with an established tra-
dition, which includes Adams, Stalnaker, and Lewis, and relies on the assumption 
that the impossibility of the conjunction of the antecedent and the negation of the 
consequent is sufficient for the truth of a conditional.

However, as (4) shows, some cases in which p ∧ ¬q is impossible are poten-
tially contentious in an inferentialist perspective, for they are cases in which there 
is no clear intuition to the effect that p provides a reason for q. More generally, if an 
inferentialist theory of conditionals validates Necessary Consequent, the principle 
according to which □q entails p ⊳ q , the theory thereby implies that p—just like 
anything else—is a reason for q merely in virtue of the necessity of q. Similarly, if 
an inferentialist theory of conditionals validates Impossible Antecedent, the principle 
according to which ¬◊p entails p ⊳ q , the theory thereby implies that p is a reason 

42 Adams (1968). About the stipulation that VP(𝛼 > 𝛽) = 1 if P(𝛼) = 0 , see Adams (1998), p. 150.
43 Note that, when VP(¬□¬𝛼) = 1 , we get that VP(□¬𝛼) = 0 , which means that ¬𝛼 is not necessary, 
hence that 𝛼 is possible. This shows that ◊𝛼 can be defined in the usual way as ¬□¬𝛼.
44 Adams (1966).
45 See Crupi and Iacona (2022b) and Crupi and Iacona (2021).



Conditionals: Inferentialism Explicated  

for q—or for anything else—merely in virtue of its impossibility. For example, the 
conditional obtained by contraposing (4) would be an instance of the latter principle.

In other words, Necessary Consequent and Impossible Antecedent imply that p 
and ¬q can be absolutely incompatible merely in virtue of some property—impos-
sibility or necessity—that belongs to one of them independently of the other. This 
goes against a thought that may naturally be associated with the Chrysippus Test, 
namely, that the incompatibility between p and ¬q is relational: what is wrong with 
the combination of p and ¬q must somehow depend on p and ¬q taken together, that 
is, it must not arise from p or ¬q taken separately.46 For example, in (1) the anteced-
ent and the negation of the consequent form an impossible combination, while there 
is nothing wrong with each of them taken separately. So their incompatibility is rela-
tional in a sense that we do not find in (4).

In order to preserve relationality in this sense, absolute incompatibility should 
not be equated with the condition that P(p ∧ ¬q) = 0 . The class of cases in which 
the former holds — due to the combination of p and ¬q—should be a proper subset 
of the class of cases in which the latter holds. In the probabilistic semantics outlined 
above, this is obtained by not stipulating that the incompatibility between p and ¬q 
is 1 when P(p) = 0 or P(q) = 1 . If the incompatibility between p and ¬q is assumed 
to be 0 in those cases, as in Definition 1, we get that only some of the cases in which 
P(p ∧ ¬q) = 0 are cases of absolute incompatibility. More precisely, p and ¬q are 
absolutely incompatible when P(p ∧ ¬q) = 0 but P(p)P(¬q) ≠ 0 , as in (1), so the 
value of the formula in Definition 1 is 1.

The rationale for this choice is somehow opposite to the rationale that one would 
employ for Crupi and Iacona’s original definition. Instead of assuming that anything 
is a reason for a necessary truth, it is assumed that nothing is a reason for a neces-
sary truth, given that there is no interesting sense in which something can support a 
necessary truth. Similarly, instead of assuming that an impossible truth is a reason 
for anything, it is assumed that it is a reason for nothing, for again there is no inter-
esting sense in which an impossible truth can support something.47

8  Evidential Account: Modal Version

In the modal version of the evidential account, the truth of p ⊳ q is defined in terms 
of a disjunctive condition that makes explicit the distinction between absolute 
incompatibility and relative incompatibility. The definition goes as follows:

Definition 4 p and ¬q are incompatible iff either there are no worlds in which p is 
true and q and false, and 

(a) p is true in some world;

46 This is essentially the point made in Nelson (1930), p. 443.
47 As explained in Lenzen (2023), the claim that nothing can follow from an impossible truth can be 
ascribed to the followers of Robert of Melun (ca 1100–1167).
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(b) q is false in some world;

or there are worlds in which p is true and q is false and 

(iii) p and q have the same value in some of the closest worlds; 
(iv) in the closest worlds in which p is true, q is also true; 
(v) in the closest worlds in which ¬q is true, ¬p is also true.

The first disjunct defines absolute incompatibility as the impossibility that p and 
¬q are jointly true, provided that such impossibility does not depend on p being 
impossible or q being necessary. Here (a) and (b) rule out cases of vacuous truth, 
thus warranting that the incompatibility between p and ¬q essentially depends on 
the relation between p and ¬q . This is in line with the amendment explained in the 
previous section in connection with the probabilistic semantics.48

The second disjunct defines relative incompatibility in terms of three conditions. 
(c) requires that p and q have the same value—hence p and ¬q have different val-
ues—in some of the closest worlds. One way to make sense of this condition is the 
following: if p and ¬q are relatively incompatible, meaning that their combination is 
a remote possibility, p and q must be relatively compatible, meaning that their com-
bination is a near possibility, so it is reasonable to rule out that p and q have different 
values in all the closest worlds. (d) expresses the Ramsey Test, and implies that ¬q is 
false in the closest worlds in which p is true. Note that, given (d), the only interest-
ing case ruled out by (c) is that in which p is false and q is true in the closest worlds. 
(e) expresses what Crupi and Iacona call the Reverse Ramsey Test, and implies that p 
is false in the closest worlds in which ¬q is true. To say that (c)–(e) are jointly satis-
fied is to say that the combination of p and ¬q is a remote possibility.

Definition 4 thus says that p and ¬q are incompatible just in case either they are 
absolutely incompatible or they are relatively incompatible. When the first disjunct 
holds, we say that p is a conclusive reason for q. When the second disjunct holds, 
we say that p is a defeasible reason for q. Note that the first disjunct can be satisfied 
even if (c) is not fulfilled, which means that absolute incompatibility does not entail 
relative incompatibility. Therefore, as far as Definition 4 is concerned, being a con-
clusive reason for q does not entail being a defeasible reason for q.

Now we will set out a preferential semantics for 𝖫 that incorporates the modal 
analysis of incompatibility just illustrated. Let us start with the definition of model:

Definition 5 A m-model for 𝖫 is a quadruple ⟨W,F,≺, v⟩ , where

• W is a non-empty set
• F assigns to each x ∈ W a subset Wx of W

48 Priest (1999),  p. 145, considers an account of conditionals that equates their truth conditions with 
the first disjunct. Lenzen (2022) ascribes such account to Chrysippus. The same account is discussed in 
Gherardi and Orlandelli (2021) and advocated in Raidl and Gomes (2023).
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• ≺ assigns to each x ∈ W an irreflexive and transitive relation ≺x on Wx

• v assigns to each x ∈ W and 𝛼 ∈ Lpa one element of {0, 1}

W is a set of worlds. F is a function that determines a sphere of accessibility Wx 
for each x ∈ W . ≺ is a function that assigns to each x ∈ W an order of preference. 
We interpret y ≺x z as saying that y is preferred to z relative to x, or equivalently that 
y is strictly closer than z relative to x. Given this order of preference one can define, 
for any A ⊆ W , a set Minx(A) of x-minimal worlds as follows:

Definition 6 Minx(A) is the set of all y ∈ A ∩Wx such that there is no z ∈ A ∩Wx 
such that z ≺x y.

For the sake of simplicity, it is useful to write Minx(𝛼) for Minx(A) when A is ||𝛼|| , 
the set of worlds in which 𝛼 is true. When A is Wx itself, one can simply write Minx
,49

Although Definitions 5 and 6 apply to a wide variety of structures, m-models 
can be constrained in different ways. In particular, the following conditions deserve 
attention:

(Uni) Wx = W.
(LA) If ||𝛼|| ∩Wx ≠ ∅ , then Minx(𝛼) ≠ ∅.
(SC) Minx = {x}.

(Uni) is Universality: every world is accessible from any world. As long as this con-
dition holds, one can simply write ⟨W,≺, v⟩ instead of ⟨W,F,≺, v⟩ , given that F is 
inert. (LA) is the Limit Assumption, which ensures that we always reach x-minimal-
ity for every 𝛼 , ruling out infinitely descending chains. (SC) is Strong Centering: it 
requires that any world other than x is strictly further away from x than x itself. In 
what follows, for dialectical purposes, we restrict consideration to m-models that 
satisfy these three conditions, although weaker constraints would be equally com-
patible with the definitions provided below. For example (SC) could be dropped or 
replaced by the weaker requirement that x ∈ Minx.

The truth of a formula in a world x in a m-model is defined as follows:

Definition 7 

1 [𝛼]x = 1 iff v(x, 𝛼) = 1 , for 𝛼 ∈ Lpa;

2 [¬𝛼]x = 1 iff [𝛼]x = 0;

3 [𝛼 ⊃ 𝛽]x = 1 iff [𝛼]x = 0 or [𝛽]x = 1;

4 [□𝛼]x = 1 iff [𝛼]y = 1 for all y ∈ Wx.

5 [𝛼 > 𝛽]x = 1 iff for every y ∈ Minx(𝛼) , [𝛽]y = 1;
6 [𝛼 ⊳ 𝛽]x = 1 iff either there is no y ∈ Wx such that [𝛼]y = 1 and [𝛽]y = 0 , and 

49 Here we follow (Giordano et al., 2009) where a preferential semantics is defined for a wide class of 
conditional logics.
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(a) [𝛼]y = 1 for some y ∈ Wx;

(b) [𝛽]y = 0 for some y ∈ Wx;

   or there is y ∈ Wx such that [𝛼]y = 1 and [𝛽]y = 0 , and 

(c) some z ∈ Minx is such that [𝛼]z = [𝛽]z;
(d) for every z ∈ Minx(𝛼) , [𝛽]z = 1;
(e) for every z ∈ Minx(¬𝛽) , [¬𝛼]z = 1.

Clauses 1–5 are standard. In particular, clause 5 defines the suppositional condi-
tional as understood by Stalnaker and Lewis. Clause 6 is the crucial one, as it speci-
fies the truth conditions of the evidential conditional in accordance with Definition 
4.

Logical consequence, indicated by the symbol ⊧m , is defined in the usual way as 
preservation of truth in every world in every model:

Definition 8 Γ ⊧m 𝛼 iff there is no m-model and x such that [𝛽]x = 1 for every 𝛽 ∈ Γ 
and [𝛼]x = 0.

The semantics just outlined differs in two crucial respects from the modal seman-
tics originally formulated by Crupi and Iacona. One is that clause 6 of Definition 7 
includes (a) and (b) in the first disjunct, as explained above, so it does not equate 
absolute incompatibility with the impossibility that the antecedent is true and the 
consequent is false. The other is that clause 6 of Definition 7 includes (c) in the 
second disjunct, while the earlier modal definition only contains two conditions 
equivalent to (d) and (e). This second difference, which specifically concerns rela-
tive incompatibility, is motivated by the need to overcome a problem that affects the 
earlier modal definition.

If one examines the original formulation of the two versions of the evidential 
account, one will find a disturbing asymmetry between them. Although this asym-
metry may easily remain undetected, as it does not affect the convergence of the 
two versions on several important principles of conditional logic, it becomes evident 
when one considers the suppositional conditionals p > q and ¬q > ¬p in relation 
to p ⊳ q . According to the earlier probabilistic definition, p ⊳ q entails each one of 
p > q and ¬q > ¬p , but it is not itself a logical consequence of those conditionals 
taken together. If p ⊳ q is highly acceptable, then a high degree of mutual relative 
reduction of credibility between p and ¬q also entails that both P(¬q|p) and P(p|¬q) 
are low, so that both P(q|p) and P(¬p|¬q) are high, making each of p > q and 
¬q > ¬p highly acceptable. On the other hand, one can have P(q|p) and P(¬p|¬q) 
very high and still no degree whatsoever of mutual relative reduction of credibility 
between p and ¬q , simply because p and ¬q are probabilistically independent. A 
conditional such as (3) is a perfect illustration of this scenario. The situation is dif-
ferent with the earlier modal definition. In fact, it is a straightforward consequence 
of that definition that p ⊳ q does follow from p > q and ¬q > ¬p.
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The source of the problem is, we submit, that the earlier modal definition is too 
weak in its characterization of relative incompatibility. While still crucially com-
patible with the possible joint truth of p and ¬q , the modal criterion of relative 
incompatibility has to be strictly stronger than the joint truth of p > q and ¬q > ¬p . 
More precisely, it must not obtain merely because the joint falsity of p and ¬q is 
distinctively likely, as in the class of examples illustrated by (3). If the definition is 
amended by adding (c), as we suggest, one can prevent the incompatibility condition 
from obtaining when (d) and (e) are satisfied only because p is very unlikely and q is 
very likely for independent reasons, as in the case of (3).50 Conversely, it is instruc-
tive to figure out what, if any, would have been the probabilistic counterpart of the 
earlier modal definition. As it turns out, if one takes the acceptability of 𝛼 ⊳ 𝛽 to be 
P(𝛽|𝛼) + P(¬𝛼|¬𝛽) − 1 (truncated at 0 for negative values), then one reproduces the 
main relevant properties of that definition in a probabilistic setting, including its key 
shortcoming: 𝛼 ⊳ 𝛽 now becomes a logical consequence of the pair of suppositional 
conditionals 𝛼 > 𝛽 and ¬𝛽 > ¬𝛼 and, relatedly, (3) receives a very high degree of 
acceptability despite being a missing-link conditional.

9  Test Cases and Probabilistic Relevance

This section shows how the evidential account, in the two versions outlined in Sects. 
7 and 8, meets Challenges 1–3 in a fully satisfactory way, thus overcoming the prob-
lems raised in connection with the other three accounts discussed.

Let us start with Challenge 1. The probabilistic version of the evidential 
account provides correct predictions about (1)–(4). Definition 1, given plausible 
background assumptions, implies that (1) and (2) are highly acceptable while 
(3) and (4) are unacceptable. More precisely, (1) has acceptability 1 because the 
probability of the conjunction of its antecedent and its negated consequent is 0; 
(2) is highly acceptable due to a strong mutual reduction of credibility between 
its antecedent and the negation of its consequent; (3) has acceptability 0 because 
the conditional probability of its consequent given its antecedent equals the 
unconditional probability of its consequent; (4) has acceptability 0 because the 
probability of its consequent is 1. Similar results are obtained with the modal 
version of the evidential account. Definition 4, given some plausible background 
assumptions, implies that (1) and (2) are true while (3) and (4) are false. More 
precisely, (1) is true in virtue of the first disjunct; (2) is true in virtue of the sec-
ond disjunct, for (c)–(e) are jointly satisfied; (3) is false because the first disjunct 
does not hold and (c) is also not satisfied; (4) is false because its consequent is 
necessarily true.

50 The additional condition (c) can still be phrased in terms of suppositional conditionals: at least one of 
¬p > q and q > ¬p must be false. In this sense, the way in which the revised semantics rectifies the old 
one implies a distinct anti-irrelevance clause, namely that p makes a difference for q or ¬q makes a dif-
ference for ¬p in Rott’s terms.
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As explained in Sects. 7 and 8, these predictions about (1)–(4) crucially differ 
from those implied by Crupi and Iacona’s original formulation of the evidential 
account, for the earlier probabilistic definition makes (4) maximally acceptable, 
and the earlier modal definition makes both (3) and (4) true.

Now consider Challenge 2. The probabilistic version meets this challenge 
for the following reason: for a conditional to have a certain positive degree 
of acceptability, the probability of the consequent given the antecedent must 
be higher than it would be otherwise. In order to show that the modal ver-
sion meets this challenge as well, we will show that if 𝛼 ⊳ 𝛽 is true in a world 
in a given m-model, then 𝛼 is indeed positively relevant for 𝛽 in a suitably 
defined probabilistic counterpart of that model. Let us start with the following 
definitions:

Definition 9 A basic probability assignment B on a countable set of worlds W is a 
assignment to every x ∈ W of a value greater than 0 and such that ∑x∈W B(x) = 1.

Definition 10 A p-model for 𝖫 is a triple ⟨W,B, v⟩ , where

• W is a non-empty countable set
• B is a basic probability assignment on W
• v assigns to each x ∈ W  and 𝛼 ∈ Lpa one element of {0, 1}

Note that a p-model K = ⟨W,B, v⟩ induces a full probability distribution 
PK on Lp (the propositional part of 𝖫 ) where PK(𝛼) =

∑
x∈W,V(𝛼,x)=1 B(x) and 

V extends v to any propositional formula 𝛼 following standard principles, e.g., 
V(𝛽 ∧ 𝛾 , x) = 1 iff V(𝛽, x) = V(𝛾 , x) = 1 . Conditional probabilities are as usual: 
PK(𝛼|𝛽) = PK(𝛼 ∧ 𝛽)∕PK(𝛽) for any pair of propositional formulas 𝛼 and 𝛽 , pro-
vided that PK(𝛽) > 0 . Conversely, given a full probability distribution PK on Lp , 
one can identify a corresponding p-model as follows: let W include all maximal 
sets of literals for distinct atomic formulas in 𝖫 (a literal is an atomic formula or 
the negation thereof), then posit B(𝛼) = PK(𝛼) for each 𝛼 ∈ Lpa , and v(𝛼, x) = 1 if 
and only if 𝛼 ∈ x.

Now we want to establish a formal connection between m-models and p-models 
by relying on two stipulations. First, to preserve the analogy with m-models, we will 
treat PK as a property that belongs to formulas relative to worlds: trivially, for every 
formula 𝛼 and every x ∈ W , the value of PK(𝛼) in x is nothing but PK(𝛼) . Second, 
we will focus on a subclass of p-models which match the preference relation that 
characterizes m-models according to an order-of-magnitude rule, namely, such that 
x ≺ y if and only if P(x) ≥ rP(y) for some integer r. Let us start by defining a distinc-
tive kind of basic probability assignments, which we call finite order of magnitude 
assignments, or simply FOM assignments:

Definition 11 B is a FOM probability assignment on a countable set W iff B is a 
basic probability assignment on W and there is a relation ⪯ on W and two natural 
numbers n > 0 and r > 1 such that: 
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 (i) A1,… ,An ⊆ W  and x ∼ y iff x, y ∈ Ai for some 1 ≤ i ≤ n;

 (ii) x ∼ y iff B(x) = B(y);
 (iii) if x ≺ y and no z is such that x ≺ z ≺ y , B(x) = r

∑
w∼y B(w).

As (i) implies, the expression x ∼ y is intended to mean that x and y are of the 
same level. That is, ∼ partitions W into a finite number of equivalence classes. 
(ii) equates sameness of level with sameness of probability. (iii) defines the rela-
tion between the probability of x and the probability of its immediate successors 
in terms of r, the order of magnitude of B. We say that x immediately precedes y 
when x ≺ y and there is no z such that x ≺ z ≺ y.

The following example may help to illustrate Definition 11. Let 
W = {x, y, z,w, k} . Let B be a basic probability assignment on W such that 
B(x) = 36∕50 , B(y) = B(z) = 6∕50 , B(w) = B(k) = 1∕50 . This is a FOM probabil-
ity assignment on W: (i) and (ii) are satisfied because we have three subsets of W, 
namely, {x}, {y, z}, {w, k} , such that y ∼ z and w ∼ k ; (iii) is satisfied for r = 3 . So 
we get that x ≺ y ∼ z ≺ w ∼ k.

One important structural feature of FOM probability assignments is that any 
world x turns out to be at least r − 1 times more probable than all worlds that are 
strictly less probable than x (equivalently, ranked as strictly further away by ⪯ ) 
taken together.

Fact 1 Let B be a FOM probability assignment. Let ⪯ be a relation on W cor-
responding to B. Let r be the order of magnitude of B. Then for any x ∈ W , 
B(x) > (r − 1)

∑
x≺y B(y).

Proof Let x ∈ W . First consider the case in which there is no y such that 
x immediately precedes y. In this case we get the result desired because 
∑

x≺y B(y) = 0 , hence (r − 1)
∑

x≺y B(y) = 0 , whereas B(x) > 0 . Now con-
sider the case in which x is exactly one level below, that is, some y is such 
that x immediately precedes y and no z is such that y ≺ z . Here we have that 
B(x) = r

∑
y∼w B(w) = r

∑
x≺w B(w) > (r − 1)

∑
x≺w B(w) . Next, suppose there are y 

and z such that x immediately precedes y and y immediately precedes z, but no k is 
such that z ≺ k . In this case, B(x) = r

∑
y∼w B(w) = (r − 1)

∑
y∼w B(w) +

∑
y∼w B(w) . 

Moreover, we have that ∑
y∼w B(w) ≥ B(y) , whereas 

B(y) > (r − 1)
∑

y≺w B(w) , as proven in the previous case. As a consequence, 
B(x) > (r − 1)

∑
y∼w B(w) + (r − 1)

∑
y≺w B(w) = (r − 1)

∑
x≺w B(w) . The same kind 

of reasoning can be reiterated until a final level is reached.   ◻

The notion of a FOM assignment can be used to define a special kind of 
p-models:

Definition 12 A FOMp − model is a p-model ⟨W,B, v⟩ such that B is a FOM 
assignment.
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In other words, a FOM p-model is a p-model characterized by the properties of 
FOM assignments. In particular, we have what follows:

Fact 2 Let ⟨W,B, v⟩ be a FOM p-model. Let ⪯ be a relation on W corresponding to B. 
Let r be the order of magnitude of B. Then for any x ∈ W , B(x) > (r − 1)

∑
x≺y B(y).

Proof Directly from Definition 12 and fact 1.   ◻

Now we can define a correspondence relation between FOM p-models and 
m-models. More precisely, the relation holds between the two kinds of models rela-
tive to worlds, or equivalently, it holds between model-world pairs:

Definition 13 Let K = ⟨W,B, v⟩ be a FOM p-model. Let M = ⟨W,≺, v⟩ be a 
m-model. For any x ∈ W , we say that ⟨K, x⟩ matches ⟨M, x⟩ iff for any y, z ∈ W , 
y ≺x z iff B(y) > B(z).

Given this definition, we can prove the following fact:

Fact 3 Let M = ⟨W,≺, v⟩ be a m-model. Let K = ⟨W,B,w⟩ be a FOM p-model. Let 
⟨K, x⟩ match ⟨M, x⟩ . If [𝛼 ⊳ 𝛽]x = 1 , then PK(𝛽|𝛼) > PK(𝛽) in x.

Proof Assume that [𝛼 ⊳ 𝛽]x = 1 , and consider two cases.
Case 1. The first disjunct of clause 6 of Definition 7 holds. In this case, there 

is no y ∈ W such that [𝛼]y = 1 and [𝛽]y = 0 , and [𝛼]w = 1 and [𝛽]z = 0 for some 
w, z ∈ W . As a consequence, by fact 2, PK(𝛼) > 0 , PK(𝛽|𝛼) = 1 , and PK(𝛽) < 1 in x. 
So PK(𝛽|𝛼) > PK(𝛽) in x.

Case 2 The second disjunct of clause 6 of Definition 7 obtains. In this case, 
[𝛼]y = 1 and [𝛽]y = 0 for some y ∈ W . Given (SC), [𝛼]x = [𝛽]x = 1 or [𝛼]x = [𝛽]x = 0 , 
for the possibility that [𝛼]x ≠ [𝛽]x is ruled out by (c). Consider the first disjunct 
(the second is similar). By fact 2, we then have that PK(𝛼 ∧ 𝛽) > PK(¬𝛼 ∧ 𝛽) in x. 
Moreover, by (e), any z ∈ Minx(¬𝛽) is such that [¬𝛼]z = 1 . Given that [¬𝛽]w = 1 
for some w ∈ W , such z exists in W and z ≺x y for any y such that [𝛼 ∧ ¬𝛽]y = 1 . 
As a consequence, again by fact 2, PK(¬𝛼 ∧ ¬𝛽) > PK(𝛼 ∧ ¬𝛽) in x. So we have 
that PK(𝛼 ∧ 𝛽)PK(¬𝛼 ∧ ¬𝛽) > PK(¬𝛼 ∧ 𝛽)PK(𝛼 ∧ ¬𝛽) in x, which implies that 
PK(𝛽|𝛼) > PK(𝛽) in x by the following reasoning:
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  ◻

Fact 3 shows how the modal version meets Challenge 2. Indeed, a formal con-
nection between the truth of 𝛼 ⊳ 𝛽 in the modal semantics and the probabilistic rel-
evance of the antecedent 𝛼 for the consequent 𝛽 can be spelled out as follows: the 
conditional probability of 𝛽 given 𝛼 is stricly higher than the probability of 𝛽 in each 
p-model-world pair which matches a m-model-world pair making 𝛼 ⊳ 𝛽 true. So 
there is a clear sense in which the truth of 𝛼 ⊳ 𝛽 implies that 𝛼 provides evidential 
support to 𝛽 in a suitable probabilistic framework.

Our revised formulation of the Chrysippus Test rectifies a crucial mismatch 
between the modal and the probabilistic versions of the evidential account as found 
in Crupi and Iacona’s original work. Of course, the modal and the probabilis-
tic frameworks are technically and philosophically heterogeneous, so it would be 
unwise to expect a perfect alignment between them. But their convergence, in our 
view, supports the robustness of the core idea of incompatibility between antecedent 
and negated consequent, which can survive across other significant issues of legiti-
mate theoretical disagreement.

10  Logical Profile

The evidential account has no special trouble with Challenge 3, for the distinctive 
set of logical properties it delivers is particularly appealing for inferentialism. This 
is already clear from the earlier formulation of the account, so most of the relevant 
facts can be taken for granted. Here we will focus on the key logical principles men-
tioned above in connection with Challenge 3. As has been shown by Crupi and Iac-
ona on the basis of the earlier probabilistic definition, Monotonicity, Right Weaken-
ing, and Conjunctive Sufficiency fail, while AND and OR hold, which is exactly as 
it should be. Their proofs of these facts do not essentially depend on the previous 

PK(𝛼 ∧ 𝛽)PK(¬𝛼 ∧ ¬𝛽) >PK(¬𝛼 ∧ 𝛽)PK(𝛼 ∧ ¬𝛽)

PK(𝛼 ∧ 𝛽)

PK(𝛼 ∧ ¬𝛽)
>

PK(¬𝛼 ∧ 𝛽)

PK(¬𝛼 ∧ ¬𝛽)

PK(𝛽|𝛼)PK(𝛼)

PK(¬𝛽|𝛼)PK(𝛼)
>

PK(𝛽|¬𝛼)PK(¬𝛼)

PK(¬𝛽|¬𝛼)PK(¬𝛼)

PK(𝛽|𝛼)

PK(¬𝛽|𝛼)
>

PK(𝛽|¬𝛼)

PK(¬𝛽|¬𝛼)

PK(𝛽|𝛼)

1 − PK(𝛽|𝛼)
>

PK(𝛽|¬𝛼)

1 − PK(𝛽|¬𝛼)

PK(𝛽|𝛼) − PK(𝛽|𝛼)PK(𝛽|¬𝛼) >PK(𝛽|¬𝛼) − PK(𝛽|𝛼)PK(𝛽|¬𝛼)

PK(𝛽|𝛼) >PK(𝛽|¬𝛼)

PK(𝛽|𝛼) >PK(𝛽)
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stipulation concerning vacuous cases, and can easily be adapted to Definition 2.51 
The same results are obtained with the modal semantics outlined in Sect. 8, as the 
following proofs show.

Fact 4 𝛼 ⊳ 𝛾 ̸⊧m (𝛼 ∧ 𝛽) ⊳ 𝛾 (Monotonicity ×)

Proof Let W = {a, b, c} , a ≺a b , b ≺a c , and

[𝛼]a = 1, [𝛽]a = 0, [𝛾]a = 1

[𝛼]b = 0, [𝛽]b = 0, [𝛾]b = 0

[𝛼]c = 1, [𝛽]c = 1, [𝛾]c = 0

Then [𝛼 ⊳ 𝛾]a = 1 because there is y ∈ Wx such that [𝛼]y = 1 and [𝛾]y = 0 , namely 
c, and (c)–(e) are satisfied. Note that Minx = Minx(𝛼) = {a} and Minx(¬𝛾) = {b} . 
Instead, [(𝛼 ∧ 𝛽) ⊳ 𝛾]a = 0 . In this case (c) is not satisfied because Minx = {a} and 
[𝛼 ∧ 𝛽]a ≠ [𝛾]a , and (d) is not satisfied because Minx(𝛼 ∧ 𝛽) = {c} and [𝛾]c = 0 .   ◻
Fact 5 Not: 𝛼 ⊳ 𝛽 ⊧m 𝛼 ⊳ 𝛾 whenever 𝛽 ⊧ 𝛾 (Right Weakening ×)

Proof Let W = {a, b, c} , a ≺a b , b ≺a c , and

[𝛼]a = 1, [𝛽]a = 1, [𝛾]a = 1

[𝛼]b = 0, [𝛽]b = 1, [𝛾]b = 0

[𝛼]c = 1, [𝛽]c = 0, [𝛾]c = 1

First, note that [𝛼 ⊳ (𝛽 ∧ 𝛾)]a = 1 . The reason is that [𝛼]c = 1 , [𝛽 ∧ 𝛾]c = 0 , and 
(c)–(e) hold. (c) holds because [𝛼]a = [𝛽 ∧ 𝛾]a = 1 . (d) holds because Mina(𝛼) = {a} 
and [𝛽 ∧ 𝛾]a = 1 . (e) holds because Mina(¬(𝛽 ∧ 𝛾)) = {b} and [¬𝛼]b = 1 . Sec-
ond, note that [𝛼 ⊳ 𝛽]a = 0 in spite of the fact that 𝛽 ∧ 𝛾 ⊧ 𝛽 . Since [𝛼]c = 1 and 
[𝛽]c = 0 , (c)–(e) must hold. However, (e) does not hold, because Mina(¬𝛽) = {c} 
and [¬𝛼]c = 0 .   ◻

Fact 6 𝛼 ∧ 𝛽 ̸⊧m 𝛼 ⊳ 𝛽 (Conjunctive Sufficiency ×)

Proof Let W = {a, b} , a ≺a b , and

[𝛼]a = 1, [𝛽]a = 1

[𝛼]b = 1, [𝛽]b = 0

In this case [𝛼 ∧ 𝛽]a = 1 . However, [𝛼 ⊳ 𝛽]a = 0 because [𝛼]b = 1 , [𝛽]b = 0 , but (e) 
does not hold.   ◻

Fact 7 𝛼 ⊳ 𝛽, 𝛼 ⊳ 𝛾 ⊧m 𝛼 ⊳ (𝛽 ∧ 𝛾) (AND ✓)

Proof Assume that [𝛼 ⊳ 𝛽]x = [𝛼 ⊳ 𝛾]x = 1 . Four cases are to be considered.

51 Crupi and Iacona (2022b), see Appendix.
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Case 1: the first disjunct of clause 6 of Definition 7 holds both for 𝛼 ⊳ 𝛽 and 
for 𝛼 ⊳ 𝛾 . In this case there is no y ∈ Wx such that [𝛼]y = 1 and [𝛽]y = 0 , there is 
no y ∈ Wx such that [𝛼]y = 1 and [𝛾]y = 0 , there is y ∈ Wz such that [𝛼]y = 1 , there 
is y ∈ Wx such that [𝛽]y = 0 , and there is y ∈ Wx such that [𝛾]y = 0 . It follows that 
there is no y ∈ Wx such that [𝛼]y = 1 and [𝛽 ∧ 𝛾]y = 0 , there is y ∈ Wx such that 
[𝛼]y = 1 , and there is y ∈ Wx such that [𝛽 ∧ 𝛾]y = 0 . Therefore, [𝛼 ⊳ (𝛽 ∧ 𝛾)]x = 1.

Case 2: the first disjunct of clause 6 of Definition 7 holds only for 𝛼 ⊳ 𝛽 . In 
this case there is no y ∈ Wx such that [𝛼]y = 1 and [𝛽]y = 0 , there is y ∈ Wx such 
that [𝛼]y = 1 , there is y ∈ Wx such that [𝛽]y = 0 , and (c)–(e) hold for 𝛼 ⊳ 𝛾 . From 
(c) we get that, for some z ∈ Minx , either [𝛼]z = [𝛾]z = 1 or [𝛼]z = [𝛾]z = 0 . If 
[𝛼]z = [𝛾]z = 1 , then [𝛼]z = [𝛽 ∧ 𝛾]z = 1 , given that there is no y ∈ Wx such that 
[𝛼]y = 1 and [𝛽]y = 0 . If [𝛼]z = [𝛾]z = 0 , then [𝛼]z = [𝛽 ∧ 𝛾]z = 0 . From (d) we 
get that, for every z ∈ Minx(𝛼) , [𝛾]z = 1 . This yields that, for every z ∈ Minx(𝛼) , 
[𝛽 ∧ 𝛾]z = 1 , given that there is no y ∈ Wx such that [𝛼]y = 1 and [𝛽]y = 0 . More-
over, from (e) we get that, for every w ∈ Minx(¬𝛾) , [¬𝛼]w = 1 , which entails that, 
for every w ∈ Minx(¬(𝛽 ∧ 𝛾)) , [¬𝛼]w = 1 , given that there is no w ∈ Minx such that 
[𝛽]w = 0 and [𝛼]w = 1 . Therefore, [𝛼 ⊳ (𝛽 ∧ 𝛾)]x = 1.

Case 3: the first disjunct of clause 6 of Definition 7 holds only for 𝛼 ⊳ 𝛾 . This 
case is analogous to case 2.

Case 4: the first disjunct of clause 6 of Definition 7 holds for neither of the 
two formulas. In this case (c)–(e) hold both for 𝛼 ⊳ 𝛽 and for 𝛼 ⊳ 𝛾 . From (c) we 
get that there is z ∈ Minx such that [𝛼]z = [𝛽]z and there is w ∈ Minx such that 
[𝛼]w = [𝛾]w . If [𝛼]z = [𝛽]z = 0 or [𝛼]w = [𝛾]w = 0 , then [𝛼]z = [𝛽 ∧ 𝛾]z = 0 or 
[𝛼]w = [𝛽 ∧ 𝛾]w = 0 . If [𝛼]z = [𝛽]z = 1 and [𝛼]w = [𝛾]w = 1 , then [𝛼]z = [𝛽 ∧ 𝛾]z = 1 
and [𝛼]w = [𝛽 ∧ 𝛾]w = 1 because (d) requires that [𝛾]z = 1 and [𝛽]w = 1 . Moreover, 
from (d) we get that every z ∈ Minx(𝛼) is such that [𝛽]z = 1 and [𝛾]z = 1 , so that 
[𝛽 ∧ 𝛾]z = 1 . Finally, (e) yields that for every z ∈ Minx(¬(𝛽 ∧ 𝛾)) , [¬𝛼]z = 1 . There-
fore, [𝛼 ⊳ (𝛽 ∧ 𝛾)]x = 1 .   ◻

Fact 8 𝛼 ⊳ 𝛾 , 𝛽 ⊳ 𝛾 ⊧m (𝛼 ∨ 𝛽) ⊳ 𝛾 (OR ✓)

Proof Assume that [𝛼 ⊳ 𝛾]x = [𝛽 ⊳ 𝛾]x = 1 . Four cases are to be considered.
Case 1: the first disjunct of clause 6 of definition 4 holds both for 𝛼 ⊳ 𝛾 and for 

𝛽 ⊳ 𝛾 . In this case there is no y ∈ Wx such that [𝛼]y = 1 and [𝛾]y = 0 , there is no 
y ∈ Wx such that [𝛽]y = 1 and [𝛾]y = 0 , there is y ∈ Wx such that [𝛼]y = 1 , there is 
y ∈ Wx such that [𝛽]y = 1 , and there is y ∈ Wx such that [𝛾]y = 0 . It follows that 
there is no y ∈ Wx such that [𝛼 ∨ 𝛽]y = 1 and [𝛾]y = 0 , there is y ∈ Wx such that 
[𝛼 ∨ 𝛽]y = 1 , and there is y ∈ Wx such that [𝛾]y = 0 . Therefore, [(𝛼 ∨ 𝛽) ⊳ 𝛾]x = 1.

Case 2: the first disjunct of clause 6 of Definition 7 holds only for 𝛼 ⊳ 𝛾 . In 
this case there is no y ∈ Wx such that [𝛼]y = 1 and [𝛾]y = 0 , there is y ∈ Wx such 
that [𝛼]y = 1 , there is y ∈ Wx such that [𝛾]y = 0 , and (c)–(e) hold for 𝛽 ⊳ 𝛾 . Note 
that, since there is z ∈ Wx such that [𝛽]z = 1 and [𝛾]z = 0 , there is z ∈ Wx such that 
[𝛼 ∨ 𝛽]z = 1 and [𝛾]z = 0 . To see that (c) holds for (𝛼 ∨ 𝛽) ⊳ 𝛾 , given that it holds 
for 𝛽 ⊳ 𝛾 , consider z ∈ Minx such that [𝛽]z = [𝛾]z . If [𝛽]z = [𝛾]z = 1 , then also 
[𝛼 ∨ 𝛽]z = [𝛾]z = 1 . If instead [𝛽]z = [𝛾]z = 0 , then [𝛼]z = 0 by the initial assumption 
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about 𝛼 ⊳ 𝛾 . So, [𝛼 ∨ 𝛽]z = [𝛾]z = 0 . To see that (d) holds for (𝛼 ∨ 𝛽) ⊳ 𝛾 , given 
that it holds for 𝛽 ⊳ 𝛾 , it suffices to think that Minx(𝛼 ∨ 𝛽) ⊆ Minx(𝛼) ∪Minx(𝛽) and 
by the initial assumption about 𝛼 ⊳ 𝛾 we have that [𝛾]z = 1 for every z ∈ Minx(𝛼) . 
Finally, (e) holds for (𝛼 ∨ 𝛽) ⊳ 𝛾 , again because it holds for 𝛽 ⊳ 𝛾 plus the initial 
assumption about 𝛼 ⊳ 𝛾 . Therefore, [(𝛼 ∨ 𝛽) ⊳ 𝛾]x = 1.

Case 3: the first disjunct of clause 6 of Definition 4 holds only for 𝛽 ⊳ 𝛾 . This 
case is analogous to case 2.

Case 4: the first disjunct of clause 6 of Definition 7 holds for neither of the two 
formulas. In this case (c)–(e) hold both for 𝛼 ⊳ 𝛾 and for 𝛽 ⊳ 𝛾 . To see that (c) holds 
for (𝛼 ∨ 𝛽) ⊳ 𝛾 , suppose first that for some z ∈ Minx , either [𝛼]z = 1 or [𝛽]z = 1 . 
Then [𝛾]z = 1 , given that (d) holds for 𝛼 ⊳ 𝛾 and 𝛽 ⊳ 𝛾 . So, [𝛼 ∨ 𝛽]z = [𝛾]z = 1 . 
Now suppose that for all z ∈ Minx , [𝛼]z = 0 and [𝛽]z = 0 . Then, since (c) holds for 
𝛼 ⊳ 𝛾 and 𝛽 ⊳ 𝛾 , we get that some z is such that [𝛼 ∨ 𝛽]z = [𝛾]z = 0 . To see that (d) 
holds for (𝛼 ∨ 𝛽) ⊳ 𝛾 , given that it holds for 𝛼 ⊳ 𝛾 and 𝛽 ⊳ 𝛾 , it suffices to think that 
Minx(𝛼 ∨ 𝛽) ⊆ Minx(𝛼) ∪Minx(𝛽) . Finally, also (e) holds for (𝛼 ∨ 𝛽) ⊳ 𝛾 , since it 
holds for 𝛼 ⊳ 𝛾 and 𝛽 ⊳ 𝛾 . Therefore, [(𝛼 ∨ 𝛽) ⊳ 𝛾]x = 1 .   ◻

In addition to the facts just considered, both versions of the evidential account 
validate some distinctive principles established by Crupi and Iacona in the original 
framework, such as Contraposition: 𝛼 ⊳ 𝛽 entails ¬𝛽 ⊳ ¬𝛼 . So the new definitions 
substantially converge with the earlier definitions. The key difference is that the new 
definitions have non-classical implications. As we have seen, they do not validate 
Necessary Consequent and Impossible Antecedent. Another example is Supraclas-
sicality, the principle according to which 𝛼 ⊳ 𝛽 holds whenever 𝛼 ⊧ 𝛽 . While the 
earlier definitions validate this principle, the same does not hold for the new defini-
tions. What the latter validate is a weaker principle that may be called Restricted 
Classicality: if 𝛼 ⊧ 𝛽 , ◊𝛼 , and ◊¬𝛽 , then 𝛼 ⊳ 𝛽 . What holds for Supraclassical-
ity also holds for closely related results, such as Identity, the principle according 
to which 𝛼 ⊳ 𝛼 . While the earlier definitions validate Identity, the new definitions 
validate a weaker principle, that is, ◊𝛼,◊¬𝛼 ⊧ 𝛼 ⊳ 𝛼 , as only the latter follows from 
Restricted Classicality.

11  A Recent Critique

In a recent article by Rott, the evidential account of conditionals has been the target 
of thorough scrutiny. Rott considers simplified models in which four worlds instanti-
ate the four possible combinations of truth values for the antecedent and consequent 
of a conditional, and uses these models to formulate two crucial objections, which 
we will call the sufficiency objection and the necessity objection. Both objections 
can be effectively illustrated by reference to medical scenarios.

The first scenario involves a medication and recovery from a disease. The four 
possibilities can be denoted as rm, rm , rm , rm , where r indicates that recovery 
occurs and m indicates that the medication is administered. Thus, rm means recov-
ery upon treatment, rm means spontaneous recovery, rm means failed recovery 
upon treatment, and rm means failed spontaneous recovery. In general, the ranking 
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of such possibilities may vary in many ways. Following Rott, however, we will 
restrict consideration to a case in which rm ≺ rm ∼ rm ≺ rm . Here, the most plau-
sible combination is recovery upon treatment and the least plausible combination is 
failed spontaneous recovery, with the other two combinations in between. A sensible 
FOM probability assignment matching this ranking is defined by P(rm) = 98∕113 , 
P(rm) = 7∕113 , P(rm) = 7∕113 , and P(rm) = 1∕113 , which is a good approxima-
tion of figures employed by Rott himself.52 This arrangement reflects a situation of 
this kind: the disease is benign (as, say, bronchitis), because recovery is generally 
probable (about 93% of the cases); the medication (say, antibiotics) is reasonably 
effective, because recovery conditional on treatment is more frequent than it is with-
out treatment ( 93.3% vs. 87.5% ); and the medication is also widely administered to 
ill patients (about 93% of the cases).

Rott’s sufficiency objection arises in this scenario considering the following 
sentence: 

(7) If Ann does not recover from bronchitis, she has taken antibiotics.

Since the disease is benign and the treatment is widespread, the negated antecedent 
and the consequent of (7) are both very likely. As a consequence, (7) is true accord-
ing to the earlier modal definition. This is a serious problem for that definition, for 
the antecedent of (7) does not support its consequent in any intuitive sense. Rott’s 
conclusion is that Crupi and Iacona’s characterization of the evidential conditional is 
not sufficient to capture support.

Rott’s sufficiency objection is compelling and can only be effectively over-
come, we suggest, through the amendment explained in Sect.  8. Note that, intui-
tively, there is no incompatibility between the antecedent and negated consequent 
of (7): failed recovery is in agreement, if anything, with lack of treatment. Defini-
tion 4 accords with this intuition: (7) turns out false because (c) is violated. The 
only reason why the combination rm is implausible is that rm happens to be most 
plausible, not because the antecedent and negated consequent of (7) really are at 
odds with each other. In fact, (7) is essentially a slightly more extreme variant of 
(3), where once again the new modal semantics rectifies a mismatch between the old 
modal semantics and the probabilistic analysis. For completeness, note that in the 
target models the corresponding suppositional conditional and its contraposed are 
both true (because (d) and (e) in Definition 4 are satisfied) and both highly accept-
able (because the conditional probability of the consequent given the antecedent is 
7/8 in both cases). This notwithstanding, (7) does not pass the revised Chrysippus 
Test, much as it has zero acceptability in the probabilistic version of the evidential 
account, just because the probability of the consequent is slightly decreased by the 
antecedent. So the sufficiency objection is met.

Let us now turn to Rott’s necessity objection. The target scenario involves a 
clinical condition and a diagnostic test. The relevant possibilities can be denoted 

52 See example 6 in Rott (2023b).
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as cp, cp , cp , cp , where c indicates that the condition is present and p indicates 
that the test result is positive. In the standard medical terminology, cp amounts to 
a true positive test outcome, cp to a false negative, cp to a false positive, and cp to 
a true negative. Here again, in general, the ranking of such possibilities may vary 
in many ways. Following Rott, however, we will restrict consideration to a typical 
’base-rate neglect’ arrangement. A paradigm case of this kind arises when the con-
dition of interest (say a SARS-CoV-2 infection) is rare and the related diagnostic 
test (say the nasal swab) is useful but fallible, thus yielding the following ranking: 
cp ≺ cp ≺ cp ≺ cp . A sensible FOM probability assignment matching this ranking is 
defined by P(cp) = 512∕585 , P(cp) = 64∕585 , P(cp) = 8∕585 , and P(cp) = 1∕585 , 
which is a good approximation of figures employed by Rott himself.53 This neatly 
reflects the pattern we want to discuss: the condition of interest is quite rare, because 
P(c) = 0, 2% , and the diagnostic test scores well on both sensitivity and specificity, 
because P(p|c) = P(p|c) ≈ 89%.

As a preliminary remark about this kind of scenarios, consider the following 
sentence: 

(8) If Ann has a positive swab test, she is infected by SARS-CoV-2.

Most people in base-rate neglect scenarios tend to think (mistakenly) that in (8) the 
probability of the consequent given the antecedent, P(c|p), is high, whereas in our 
case it is no more than 1∕9 ≈ 11% . For similar reasons, there may be a misguided 
first impression that (8) is acceptable. Interestingly, (8) turns out to be rejected in all 
accounts of conditionals considered so far, including purely suppositional views. In 
fact, modal theories require that cp ≺ cp , which contradicts the model (a true posi-
tive is in fact less likely than a false positive, due to the rarity of the condition). 
Similarly, probabilistic theories classify (8) as not acceptable either in qualitative 
terms (as in Douven’s account, because P(c|p) < 1∕2 ) or by the assignment of a 
very low degree of acceptability (about 0,1 in the probabilistic version of the eviden-
tial account).

Rott’s necessity objection arises in this scenario considering the contraposed of 
(8), namely: 

(9) If Ann is not infected, she will have a negative swab test.

The point of Rott’s second line of criticism is that a sentence like (9) does not hold 
in the target model according to the evidential account. However, he contends, the 
antecedent does support its consequent here, showing that Crupi and Iacona’s char-
acterization of the evidential conditional is not necessary to capture support.

In this case we diverge from Rott’s conclusions, though, for we are not willing to 
grant that (9) should hold. Surely (9), unlike (8), does hold in the suppositional inter-
pretation, but this is no reason to conclude that it should hold on an inferentialist 

53 See example 2 in Rott (2023b).



Conditionals: Inferentialism Explicated  

reading, for otherwise (3) should hold as well. (9), unlike (3), involves support as 
an increased probability of the consequent, but this is also not enough to conclude 
that (9) must hold, for otherwise (8) should hold as well. As pointed out in Sect. 7, 
suppositional acceptability and probability increase together may still not suffice for 
a conditional to hold in the evidential sense because the support relation is too weak. 
Much like (6) above, (9) illustrates such implication, for the probability of the con-
sequent increases from about 88% to about 89% , so that the corresponding graded 
incompatibility (the degree to which the antecedent actually contributes in ruling 
out the falsity of the consequent) is unimpressive. Note also that the key point why 
(9) fails in the evidential account, namely the ranking cp ≺ cp , is the same that is 
plausibly overlooked by someone who mistakenly regards (8) as compelling, thereby 
falling to the base-rate fallacy. So there might be a common root for the impression 
that (8) is sound and the intuitive appeal that some inferentialists may perceive in 
(9).54

All in all, we believe that there is a plausible sense of ‘reason’—the sense articu-
lated by the evidential account—in which the antecedent of (9) is not a reason for its 
consequent in the situation described. Of course, this is not to deny that there may 
be some other plausible sense of ‘reason’ in which the antecedent of (9) is in fact a 
reason for its consequent. After all, the pretheoretical notion of reason is vague, so 
it can be made precise in more than one way. But at least it is an open question how 
(9) is to be treated in an inferentialist theory of conditionals, a question that we do 
not regard as settled simply by an appeal to intuitions. Perhaps the interest of exam-
ples such as (9) and (6) is precisely that they highlight possibly diverging options 
within an inferentialist framework.
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