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This paper explores the utilization of randomized SVD (rSVD) in the context of kernel matrices arising from 
radial basis functions (RBFs) for the purpose of solving interpolation and Poisson problems. We propose a 
truncated version of rSVD, called trSVD, which yields a stable solution with a reduced condition number in 
comparison to the non-truncated variant, particularly when manipulating the scale or shape parameter of RBFs. 
Notably, trSVD exhibits exceptional proficiency in capturing the most significant singular values, enabling the 
extraction of critical information from the data. When compared to the conventional truncated SVD (tSVD), trSVD 
achieves comparable accuracy while demonstrating improved efficiency. Furthermore, we explore the potential 
of trSVD by employing scale parameter strategies, such as leave-one-out cross-validation and effective condition 
number. Then, we apply trSVD to solve a 2D Poisson equation, thereby showcasing its efficacy in handling 
partial differential equations. In summary, this study offers an efficient and accurate solver for RBF problems, 
demonstrating its practical applicability. The code implementation is provided to the scientific community for 
their access and reference.
1. Introduction

Radial basis function (RBF) interpolation has garnered significant 
attention as a powerful technique for approximating functions and in-

terpolating data points across various fields. Its versatility in handling 
complex geometries, high-dimensional data, and scattered data points 
has made it a popular choice in applications such as computer graph-

ics, scientific computing, and data analysis [1–5]. However, traditional 
methods for solving RBF interpolation face significant computational 
challenges as the problem size increases. These challenges include ill-
conditioning of the underlying linear systems and longer computational 
time required for solving the linear system.

The first element of this study is to increase the efficiency of the 
RBF-based methods using randomized SVD (rSVD) algorithms, which 
leverage randomized sampling methods to approximate the SVD of a 
matrix. By sampling a smaller subset of columns from the matrix, rSVD 
algorithms construct an approximate basis that captures the dominant 
features of the original matrix. This low-rank approximation not only 
significantly reduces the computational complexity but also addresses 
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the ill-conditioning issue by providing a more stable solution with a re-

duced condition number. This method, particularly used in machine 
learning field, offers efficient alternatives to traditional SVD compu-

tations. Notable advancements include the Monte Carlo SVD [7] and 
robust approaches based on random projections and faster matrix multi-

plications [8]. In this study, we employ the randomized SVD algorithm 
proposed by Halko et al. [9]. This algorithm builds upon the founda-

tions laid by previous methods and provides superior error bounds.

The second aspect of this study focuses on mitigating the random-

ization error in rSVD, specifically in capturing small singular values. To 
accomplish this, we employ a truncation technique inspired by the con-

ventional truncated SVD (tSVD) [10,11] within the framework of the 
randomized SVD method. This adaptation gives rise to the truncated 
randomized SVD (trSVD) method. This technique involves removing 
singular values below a MATLAB’s tolerance, resulting in a more stable 
solution within the trSVD approach. By discarding smaller singular val-

ues that contribute less to the approximation, we mitigate the numerical 
instability associated with ill-conditioned matrices. This process also en-
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Table 1

Some standard RBFs.

Name (Abbrev.) 𝜙(𝑟) Smoothness

Gaussian (GA) exp(−𝑟2) Infinite

Multiquadrics (MQ) (1 + 𝑟2)𝛽∕2, 𝛽 > 0 Infinite

Inverse multiquadrics (IMQ) (1 + 𝑟2)𝛽∕2, 𝛽 < 0 Infinite

Matérn/Sobolev (MS) (𝑟)𝜈𝐾𝜈 (𝑟), 𝜈 > 0 Finite, 𝑚 = 𝜈 + 𝑑∕2
Wendland 𝐶2 (W2) (1 − 𝑟)4+ (4𝑟+ 1) Finite, 𝑚 = 3∕2 + 𝑑∕2, 𝑑 ≤ 3
Wendland 𝐶4 (W4) (1 − 𝑟)6+

(
35𝑟2 + 18𝑟+ 3

)
Finite, 𝑚 = 5∕2 + 𝑑∕2, 𝑑 ≤ 3
sures a full-rank approximation, which is crucial for problems requiring 
a unique solution [12,13].

In the third aspect of this paper, we establish a connection between 
the proposed trSVD solver and scale strategies to enhance efficiency in 
RBF problems. These strategies include leave-one-out cross-validation 
(LOOCV) [14] and effective condition number (ECN) [15–17]. While 
the former utilizes a statistical approach to determine the optimal scale, 
the latter leverages conditioning evaluation inspired by the trade-off or 
uncertainty principle discussed in [18,19].

In Section 2, we introduce the topic of RBF interpolation and scal-

ing, including the extension to a Poisson problem. Section 3 provides 
an overview of some useful tools for RBF problems, including the SVD, 
randomized SVD, truncated SVD, and scale strategies. In Section 4, we 
further evaluate trSVD by comparing it with randomized SVD, least 
squares, and truncated SVD approaches. These comparisons demon-

strate the efficiency and accuracy of our proposed method in the context 
of RBF interpolation. Additionally, an example regarding the Poisson 
equation is presented in Section 5. The conclusion and references fol-

low these sections, summarizing our findings and providing additional 
resources.

2. RBFs

RBFs such as the Gaussian

x→Φ(x) ∶= exp
(
−‖x‖22

)
, x ∈ℝ𝑑 ,

are 𝑑-variate functions, but they can be simplified by a scalar function 
𝜙 ∶ℝ →ℝ of the Euclidean norm ‖x‖2, i.e.

Φ(x) = 𝜙
(‖x‖2

)
= 𝜙(𝑟), x ∈ℝ𝑑 ,

with the “radius” 𝑟 = ‖x‖2 [20]. This implies rotational invariance. 
Table 1 starts with four RBFs with non–compact support and adds 
two of the compactly supported Wendland kernels using the notation 
(𝑟)+ = max(0, 𝑟). The Matérn family is formulated via the modified 
Bessel function 𝐾𝜈 of the second kind with an exponential decay to-

wards infinity. This family is strongly connected to Sobolev spaces 
𝑊 𝑚

2 (ℝ𝑑 ) for 𝑚 = 𝜈 + 𝑑∕2 that arise in many PDE problems. Moreover, 
Table 1 gives the corresponding 𝑚 for Wendland kernels.

For more details, we refer the reader to the books [22–24] and ref-

erences therein.

2.1. RBF scaling

All functions of Table 1 are bell-shaped, but the width of the bell can 
be changed by scaling. If one goes over to 𝜙𝑐(𝑟) = 𝜙(𝑟∕𝑐) for a positive 
scale or shape parameter 𝑐, the bell widens when 𝑐 is increased. An 
equivalent scaling via 𝜖 = 1∕𝑐 is used by many authors, see e.g. [25], 
and allows an easier access to the flat limit 𝜖 → 0 that we ignore here.

2.2. Multivariate interpolation

Given a set  ∶= {x𝑖}𝑛𝑖=1 of arbitrary data locations or collocation 
points, distributed on a domain Ω ⊂ ℝ𝑑 , with an associated set  ∶=
{𝑢∗ = 𝑢∗(x𝑖)}𝑛 of function or data values that are obtained by sampling 
𝑖 𝑖=1
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some (unknown) function 𝑢∗ ∶ Ω → ℝ at the data locations x𝑖, RBFs 
generate trial functions of the form

𝑢(x) =
𝑛∑

𝑘=1
𝛼𝑘𝜙𝑐(‖x − x𝑘‖2) (1)

as superpositions of translates 𝜙𝑐(‖x −x𝑘‖2) using coefficients 𝛼1, … , 𝛼𝑛. 
The RBF 𝜙 ∶ ℝ → ℝ in (1) depending on a scale or shape parameter 
𝑐 > 0 is such that

𝜙𝑐(‖x − x𝑘‖2) = 𝜙(‖x − x𝑘‖2∕𝑐) = 𝜙(𝑟∕𝑐), ∀x,x𝑘 ∈Ω.

To calculate a trial function 𝑢 that reproduces the data value set  of 
a given function 𝑢∗ at the data locations, it is needed to solve the 𝑛 × 𝑛

linear system

𝑢∗(x𝑖) =
𝑛∑

𝑘=1
𝛼𝑘𝜙𝑐(‖x𝑖 − x𝑘‖2), 1 ≤ 𝑖 ≤ 𝑛, (2)

or, equivalently, expressed in matrix form as follows:

𝐀𝛼 = u∗, (3)

where 𝐀 is the so-called kernel matrix with entries 𝐴𝑖𝑘 = 𝜙𝑐(‖x𝑖 −x𝑘‖2), 
𝑖, 𝑘 = 1, … , 𝑛, 𝛼 = (𝛼1, … , 𝛼𝑛)𝑇 , and u∗ = (𝑢∗1 , … , 𝑢∗

𝑛
)𝑇 .

Table 1 presents some standard RBFs. GA, IMQ, MS, W2 and W4 
are strictly positive definite kernels, i.e. they generate positive definite 
matrices. MQ is strictly conditionally positive of order 1, but non-

singularity of the matrix 𝐴 is guaranteed (see, e.g., [24]). Moreover, 
compactly supported RBFs like the Wendland functions lead to sparse 
kernel matrices when using a small scale.

2.3. Solving Poisson problem

With certain adaptations, the aforementioned observations can be 
extended to the realm of solving PDEs. In this introductory section, we 
limit our focus to a specific problem: the Poisson equation on a bounded 
domain Ω ⊂ ℝ2 with a sufficiently smooth boundary 𝜕Ω. This partic-

ular case serves as a representative example for more general PDEs 
encountered in scientific and engineering disciplines. Given functions 
𝑓Ω defined on the domain Ω and 𝑓𝜕Ω defined on the boundary 𝜕Ω, our 
objective is to determine a function 𝑢 defined on Ω ∪ 𝜕Ω that satisfies 
[30]

−Δ𝑢 = 𝑓Ω (4)

𝑢 = 𝑓𝜕Ω

where Δ represents the Laplace operator

Δ𝑢 = 𝜕2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2

in Cartesian coordinate x = (𝑥, 𝑦)𝑇 ∈ ℝ2. In the Kansa approach, we 
make the assumption that the solution 𝑢(x) to (4) can be estimated by 
expressing it as a sum of radial basis functions as shown in (1).
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3. Tools for RBFs

3.1. SVD

SVD is a powerful mathematical technique used in various applica-

tions. It factorizes a matrix into three components: left singular vectors, 
singular values, and right singular vectors. For an 𝑛 × 𝑛 matrix 𝐀, SVD 
can be expressed as:

𝐀 =𝐔𝚺𝐕𝑇 ,

where 𝐔 contains the left singular vectors, 𝚺 is a diagonal matrix with 
singular values 𝜎1 > 𝜎2 >⋯ > 𝜎𝑛 on its diagonal, and 𝐕𝑇 contains the 
right singular vectors. The SVD decomposition can be easily computed 
using the MATLAB command "svd".

3.2. Scale parameter strategies

In this section, we introduce two popular approaches, namely 
LOOCV and ECN, for determining the optimal scale value in RBF meth-

ods used for interpolation or solving PDE problems. LOOCV is a tech-

nique used in statistical analysis to find the optimal scale RBF kernel 
methods. It provides a statistical viewpoint for determining the most 
suitable parameter values in RBF-based models. It estimates model per-

formance by iteratively leaving out one data point at a time, construct-

ing the model on the remaining data, and predicting the omitted point’s 
value. This process is repeated for each data point in the dataset.

To use LOOCV, the following steps are typically followed:

1. For each candidate value of scale parameter 𝑐, perform the follow-

ing steps:

(a) Iterate through each data point in the dataset, denoted as 
(x𝑖, u∗(x𝑖)).

(b) Temporarily, remove the current data point x𝑖 from the dataset 
 , resulting in a reduced dataset denoted as train ∶= ∖{x𝑖}.

(c) Construct the RBF interpolation model using the remaining 
data points in train, which involves solving a (𝑛 − 1) × (𝑛 − 1)
linear system of the form (2) (or (3)) with the reduced dataset.

(d) For the left-out data point (x𝑖, u∗(x𝑖)), predict its value using 
the model, denoted as û𝑖 =

∑𝑛

𝑘=1, 𝑘≠𝑖 𝛼𝑘𝜙𝑐(‖x𝑖 − x𝑘‖2).
(e) Calculate the prediction error for the left-out data point, de-

noted as 𝑒𝑖 = u∗(x𝑖) − û𝑖.
2. Aggregate the prediction errors across all but one data point, re-

sulting in the total prediction error for the given 𝑐, denoted as 
𝐸(𝑐) =

∑𝑛

𝑖=1 𝑒
2
𝑖
.

3. Select the candidate value 𝜆 that yields the lowest total prediction 
error across all data points, i.e., 𝑐opt = argmin𝜆 𝐸(𝜆).

By utilizing LOOCV in the context of RBF, you can determine the 
scale 𝑐 that minimizes the approximation error and enhances the accu-

racy of the RBF-based methods. The LOOCV algorithm can be compu-

tationally expensive. However, Rippa [14] introduced a simplification 
in the computation of error components, which reduces the complex-

ity. The ith error component, denoted as 𝑒𝑖, can be calculated using the 
following formula:

𝑒𝑖 =
𝛼𝑖

𝐴−1
𝑖𝑖

.

Here, 𝛼𝑖 corresponds to the coefficient associated with the solution vec-

tor 𝛼 = A−1u∗ in (3), which is calculated using the complete dataset. It 
specifically represents the coefficient for the ith data point. On the other 
hand, 𝐴−1

𝑖𝑖
represents the ith diagonal element of the inverse interpola-

tion matrix [24]. More accurate and faster version of cross-validation 
based approaches can be found in [28,29], while an application to PDEs 
can be found in [30,31].

Another approach to determine the optimal scale parameter in RBF-

based methods is the ECN introduced in [15,26]. In this method, we 
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maximize the effective condition number to minimize the error. It is 
inspired by the trade-off or uncertainty principle discussed in [19]. The 
algorithm to compute the ECN is as follows:

1. For each candidate value of scale parameter 𝑐, perform the follow-

ing steps:

(a) Compute the RBF interpolation matrix 𝐀 in (3).

(b) Compute the SVD of 𝐀 as 𝐀 = 𝐔𝐒𝐕𝑇 , where 𝐔 and 𝐕 are or-

thogonal matrices, and 𝐒 is a diagonal matrix with singular 
values.

(c) Find the minimum value from the diagonal of matrix 𝐒 to de-

termine the smallest singular value, 𝜎𝑛.

(d) Solve the linear system (3) for coefficients 𝛼.

(e) Compute the ECN:

𝜅eff =
1
𝜎𝑛

‖u∗‖2
‖𝛼‖2 .

2. Output the optimal scale 𝑐𝑜𝑝𝑡, which corresponds to the largest ECN 
in Step 1.

3.3. Truncated SVD

The RBF method often exhibits a trade-off or uncertainty principle

due to the presence of small singular values in the system, leading to 
poor conditioning [18,19]. To address this, we employ orthogonal trans-

formations to transfer the unknowns and data in (3), resulting in new 
vectors defined as:

g =𝐔𝑇 u∗ ∈ℝ𝑛, and y =𝐕𝑇 𝛼 ∈ℝ𝑛.

By minimizing the squared norm, we have:

‖𝐀𝛼 − u∗‖22 = ‖𝐔𝚺𝐕T𝛼 − u∗‖22 = ‖𝚺𝐕T𝛼 −𝐔Tu∗‖22
= ‖𝚺y − g‖22 =

𝑘∑
𝑗=1

(
𝜎𝑗𝑦𝑗 − 𝑔𝑗

)2 +
𝑛∑

𝑗=𝑘+1
𝑔2
𝑗
, (5)

where 𝑘 represents the rank of the kernel matrix. Note that orthogonal 
transformations are applied using Euclidean norms. The minimum in 
(5) exists and can be obtained by solving the equations:

𝜎𝑗𝑦𝑗 = 𝑔𝑗 , 1 ≤ 𝑗 ≤ 𝑘, (6)

while 𝑦𝑘+1, … , 𝑦𝑚 remain undetermined in cases of rank loss. When the 
rank loss occurs, the small and imprecise 𝜎𝑗 in (6) lead to large and 
imprecise 𝑦𝑗 . To ensure accurate calculations, it is necessary to have 
a sufficient margin above the numerical pollution for 𝜎𝑗 . It is impor-

tant to note that implementing the system with rank loss is unreliable 
and should not be used in critical engineering projects where unique 
solutions are required.

If a numerical rank 𝑘 ≤ 𝑛 has been determined, an approximate so-

lution to the linear equation system (3) can be obtained by truncating 
the SVD at dimension 𝑘. This truncation process involves calculating 
𝑔 =𝐔𝑇 u∗, solving (6) for 𝑦1, … , 𝑦𝑘, and setting 𝑦𝑘+1, … , 𝑦𝑚 to zero. The 
resulting solution, denoted as ŷ, is used to compute the approximate 
solution 𝛼̂ =𝐕ŷ.

The quantity ‖𝐀𝛼̂ − u∗‖22 represents the residual norm and can be 
evaluated to assess the approximation accuracy. Specifically, it is given 
by 

∑𝑛

𝑗=𝑘+1 𝑔
2
𝑗
, which ideally should be small.

3.4. Randomized SVD and its truncation

In this section, we introduce the rSVD algorithm, specifically tai-

lored for RBF problems (Fig. 1). rSVD offers an efficient approach to 
approximate the SVD of a matrix, making it well-suited for large-scale 
RBF applications. The rSVD algorithm follows the steps outlined below 
[6]:



A. Noorizadegan, C.-S. Chen, R. Cavoretto et al. Computers and Mathematics with Applications 164 (2024) 12–20

Fig. 1. Schematic of rSVD algorithm.
Step 0: Specify the Target Rank
Determine the target rank 𝑟, where 𝑟 < 𝑛 is the number of degree of 
freedom (DOF) in matrix A.

Step 1: Random Projections and Column Space Approx-
imation

We begin by constructing a random projection matrix P ∈ℝ𝑚×𝑟 to sam-

ple the column space of A ∈ℝ𝑛×𝑚:

Z = AP.

The matrix Z may be considerably smaller than A, particularly for low-

rank matrices with 𝑟 ≤ 𝑚. The use of a random projection matrix P

is unlikely to eliminate crucial components of A, making Z a high-

probability approximation of the column space of A. Consequently, the 
low-rank QR decomposition of Z yields an orthonormal basis for A:

Z = QR.

Step 2: Projection onto Subspace and Matrix Decom-
position

With the low-rank basis Q, we project A into a smaller space:

Y = Q𝑇 A.

It follows that A ≈ QY, with better agreement when the singular 
values decay rapidly for 𝑘 > 𝑟.

Step 3: Reconstruction of High-Dimensional Modes
Now, the singular value decomposition is computed on Y:

Y = U𝑌 ΣV𝑇 .

Since Q is orthonormal and approximates the column space of A, the 
matrices U𝑌 and V are the same for Y and A.

Finally, the high-dimensional left singular vectors U are reconstructed 
using U𝑌 and Q:

U = QU𝑌 .

Choice of random matrix P

There are various options for choosing the random matrix P including:

• Gaussian Random Projections:

– Elements of matrix P are independent and identically distributed 
Gaussian random variables.

– Preferred for favorable mathematical properties and rich infor-

mation extraction in matrix Z.

– Expensive in terms of generation, storage, and computation.

• Uniform Random Matrices: (preferred in this study)

– Frequently used but shares similar limitations to Gaussian pro-

jections.

• Rademacher Matrices [36]:

– Entries can be +1 or -1 with equal probability.

• Sparse Projection Matrices [6]:
15
Fig. 2. Comparison of original and randomized singular values with respect to 
the DOF. The results are obtained at 𝑐 = 1 of the GA RBF with 𝑛 = 76 and a 
target rank of 𝑟 = 57. In order to enhance visualization, the results are obtained 
using small-scale parameters.

– Improve storage and computation but include less information in 
the sketch.

To evaluate the efficacy of the rSVD algorithm, we conducted ex-

periments on a dataset of size 𝑛 × 𝑛. Fig. 2 showcases a comparison 
between the singular values obtained from the rSVD algorithm (r𝜎 rep-

resented by red circle) and the true singular values of the original SVD 
algorithm (𝜎 represented by black dots). The vertical line indicates the 
rank of the randomized singular values. The results demonstrate that 
the rSVD accurately captures the dominant singular values, although 
the approximation of smaller singular values exhibits reduced accuracy. 
To mitigate this error and ensure the RBF linear system computation 
remains in a full-rank setting, we propose truncating the randomized 
singular values at the rank from MATLAB, which leads to the modified 
algorithm referred to as trSVD.

For the purpose of truncating rSVD, in the absence of a user-supplied 
threshold value, MATLAB calculates a threshold value 𝚝𝚘𝚕 using the 
formula:

𝚝𝚘𝚕 = 𝚖𝚊𝚡(𝚜𝚒𝚣𝚎(A)) ∗ 𝚎𝚙𝚜(𝚗𝚘𝚛𝚖(A))

Here, 𝚎𝚙𝚜(𝚡) represents the positive distance from |𝑥| to the next 
larger floating-point number with the same precision as 𝑥, where 
𝚖𝚊𝚡(𝚜𝚒𝚣𝚎(𝐀𝑛×𝑛)) = 𝑛.

The trSVD algorithm plays a pivotal role in our research pertaining 
to RBF approximation. By incorporating the trSVD as a preprocessing 
step, we can efficiently and accurately acquire low-rank approximations 
of matrices involved in RBF computations. This facilitates faster compu-

tation in RBF-based applications such as interpolation, regression, and 
PDE solution.

4. Numerical examples

In all subsequent examples in this section, the target rank of the 
rSVD-based technique is assumed to be 𝑛∕2, unless explicitly mentioned 
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Fig. 3. The profiles of the test functions.

Fig. 4. Example 1: The profiles of the rSVD and trSVD.

otherwise. Here, 𝑛 represents the number of collocation points, and the 
Halton point distribution is used. To evaluate the errors, we calculate 
the absolute maximum error, hereinafter simply denoted as error, on 𝐿
interior points uniformly distributed on Ω = [0, 1]2:

error = max
𝑖=1,…,𝐿

|𝑢(x𝑖) − 𝑢∗(x𝑖)|.
The following test functions are used to be interpolated on the do-

main Ω = [0, 1]2:

F1 (𝑥, 𝑦) = 1
9
[tanh(9𝑦− 9𝑥) + 1] ,

F2 (𝑥, 𝑦) = 0.0025
(𝑥− 1.01)2 + (𝑦− 1.01)2

.

F1 is smooth [27], while F2 has singularity near the boundary [15]

(see Fig. 3). The RBFs used in our study are mentioned in Table 1, 
where both MQ and IMQ are considered with 𝛽 = 1. For Matérn and 
Wendland RBFs, the required parameters are mentioned in the follow-

ing examples. The numerical experiments were executed on a computer 
equipped with an Intel(R) Core(TM) i9-9900 CPU operating at 3.10GHz 
with a total of 64.0 GB of RAM. The codes implemented in MATLAB are 
available at: https://github .com /CMMAi /Truncated -Randomized -SVD -
for -Kernel -Based -Methods. For user’s convenience by way of example, 
we explicitly refer to Example 3, discussed in the following.

Example 1. In the first example, we investigate the error behavior of 
trSVD in comparison with rSVD with respect to the scale parameter (see 
Fig. 4). Using GA and MQ RBFs for both smooth and non-smooth test 
functions, from these plots we can see that:
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1. For GA RBF, both smooth and non-smooth test functions show that 
trSVD produces a much smoother error curve compared to rSVD. 
The error curve for rSVD exhibits significant fluctuations, indicat-

ing instability with respect to the scale. Note that both trSVD and 
rSVD achieve similar minimum errors.

2. For MQ RBF and the smooth test function, trSVD also exhibits a 
smoother error curve, but with similar minimum error. However, 
for the non-smooth test function, rSVD yields a smaller error com-

pared to trSVD. This difference in error is likely due to the removal 
of small singular values in truncated randomized SVD, which may 
not be reliable.

Overall, trSVD demonstrates better stability and smoother error curves, 
indicating its reliability and suitability for RBF interpolation.

Example 2. In this example, we present a comparative analysis between 
the proposed trSVD and least squares (lsqr) methods. We evaluate their 
performance by comparing the results obtained using these methods 
with an equal number of DOF, specifically set to 𝑛∕2, where 𝑛 represents 
the number of collocation points.

To ensure fair comparisons, both methods are truncated at MAT-

LAB’s rank, resulting in full-rank implementations. While we can 
demonstrate the results for various test functions, we focus on show-

casing the outcomes obtained by applying different RBFs, as the obser-

vations remain consistent across the test functions. The RBFs utilized in 
our study include GA, MQ, IMQ, MS of order 3 and 5, and W2. From 
Fig. 5, we observe that the error profiles for both trSVD and lsqr using 
GA RBF are comparable in accuracy. However, when employing other 
RBFs, we notice that trSVD outperforms lsqr in terms of accuracy. By 
capturing the dominant singular values and corresponding singular vec-

tors, trSVD achieves a more compact and accurate representation of the 
data. In contrast, lsqr does not explicitly utilize these low-rank struc-

tures, potentially leading to less compact and accurate representations.

Example 3. In this example, we will provide a detailed comparison be-

tween the tSVD and trSVD solvers. Table 2 presents the interpolation 
results obtained using different RBFs along with two solvers, i.e. tSVD 
and trSVD for 𝑛 = 500, 2000. Additionally, Fig. 6 plots the CPU time with 
respect to the number of collocation points. The table and plot provide 
insights into the error and CPU time, respectively, for each combina-

tion, allowing us to analyze the performance of these methods. It is 
worth noting that the CPU time represents the execution time required 
for the tSVD or trSVD computations per scale value. Based on these 
findings, we draw the following observations:

1. Accuracy Comparison:

Across different RBFs (GA, IMQ, MQ, and MS), both tSVD and 
trSVD demonstrate similar levels of accuracy, as evident from the 
error values.

2. Efficiency Comparison:

Notably, trSVD exhibits a significant advantage in terms of com-

putational efficiency. It consistently outperforms tSVD in terms of 
CPU time for all RBFs and problem sizes.

Overall, the plot demonstrates that trSVD offers a compelling advantage 
in terms of computational efficiency compared to tSVD, making it a 
more desirable choice for large-scale interpolation tasks.

Example 4. In this example, we illustrate the effective integration of 
the trSVD method with LOOCV and ECN for determining an optimal 
scale parameter. A large number of studies, such as [21,28,29,32], have 
demonstrated the relationship between small errors and small LOOCV 
values. Additionally, the authors in [15,26,34,35] have explored the 
connection between ill-conditioned linear systems, large ECN values, 
and small errors. By leveraging these insights, we showcase the effec-

tiveness of trSVD in selecting a optimal scale parameter.

https://github.com/CMMAi/Truncated-Randomized-SVD-for-Kernel-Based-Methods
https://github.com/CMMAi/Truncated-Randomized-SVD-for-Kernel-Based-Methods
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Fig. 5. Example 2: The profiles of the error for randomized SVD and least square solutions.

Table 2

Example 3: Interpolation results using various RBFs with tSVD and trSVD over 𝐿 = 900 evaluation points.

𝐹 𝑛 GA IMQ MQ MS (𝜈 = 5)

tSVD trSVD tSVD trSVD tSVD trSVD tSVD trSVD

F1 500 scale 0.081 0.101 0.241 0.331 0.201 0.291 0.051 0.151

error 1.15e-3 1.10e-3 2.26e-04 6.36e-04 3.03e-04 6.33e-04 5.37e-04 7.52e-04

2000 scale 0.071 0.071 0.211 0.191 0.161 0.171 0.061 0.101

error 1.85e-6 2.99e-6 2.75e-06 2.65e-06 2.96e-06 3.19e-06 4.80e-06 4.79e-06

F2 500 scale 0.191 0.021 0.600 0.460 0.491 0.371 0.270 0.200

error 3.63e-1 1.58e-1 4.98e-01 4.43e-01 5.25e-01 4.78e-01 6.98e-01 5.54e-01

2000 scale 0.090 0.080 0.270 0.190 0.190 0.120 0.100 0.060

error 4.62e-03 3.50e-03 8.76e-03 6.62e-03 1.12e-02 9.57e-03 1.93e-02 1.07e-02
Fig. 6. Example 3: CPU time comparison for tSVD and trSVD.

Fig. 7 displays the interpolation error (ECN) and the reciprocal of 
LOOCV values (1/LOOCV) as functions of the scale parameter for two 
test functions, F1 and F2, using various RBFs. It is important to note that 
the choice of 1/LOOCV instead of LOOCV aims to offer a better scaling 
adjustment in conjunction with ECN values for the plots. Through our 
analysis of the experimental results, we have observed that the proposed 
trSVD method performs well when combined with established scale se-

lection strategies. This integration further enhances the efficiency of the 
method in searching for an optimal scale parameter. To efficiently de-
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termine the scale, the MATLAB minimum finder algorithm fminbnd

can be employed. It is essential to clarify that, in this context, we utilize 
the reciprocal of ECN (1/ECN). This choice is made because the goal is 
to identify the maximum value of ECN.

Example 5. In this example we investigate the effect of the rank target 
in accuracy and efficiency of the proposed algorithm. The starting and 
maximum rank targets are set to be 20% up to 80% of total points 
number. Fig. 8 presents the corresponding results for both GA and MQ 
RBFs for 𝑛 = 500, 2000, 5000. From these plots, we make the following 
observations:

• As the rank target increases, the error decreases for GA RBF, indi-

cating better approximation of the data. However, for 𝑛 = 2000 and 
5000, GA RBF reaches a plateau beyond a certain threshold, mean-

ing that further increasing the rank target does not significantly 
improve accuracy.

• For the MQ RBF, increasing the target rank initially reduces the 
error. However, beyond a certain threshold, adding more singular 
values and vectors introduces noise or less important information, 
causing the error to increase.

• The relationship between the target rank and accuracy varies with 
the number of collocation points. For smaller values of 𝑛 (e.g., 
500, 2000), increasing the target rank can lead to more significant 
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Fig. 7. Example 4: The profiles of the error with respect to the target LOOCV and ECN over 𝐿 = 400 evaluation points.

Fig. 8. Example 5: The profiles of the error and CPU time with respect to the target rank for F2.
improvements in accuracy compared to the case with 𝑛 = 5000. 
However, when using a large number of nodes, the computational 
cost of higher rank approximations may outweigh the marginal ac-

curacy gains. Therefore, it is essential to find a balance between 
accuracy and computational efficiency based on the specific value 
of 𝑛. For instance, in the GA RBF case with 𝑛 = 500, the error de-

creases from 0.0069 to 0.00089, resulting in an error difference 
of 6.00e-3, while for 𝑛 = 5000, the error decreases from 1.00e-6 
to 1.44e-7, resulting in an error difference of 8.56e-7. This com-

parison indicates that as the target rank increases, the absolute 
improvement in accuracy is more significant for smaller values of 
𝑛. Therefore, when working with small 𝑛 values, such as 𝑛 = 500, 
it is important to exercise caution and carefully select the target 
rank.
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By investigating these trends and differences between GA and MQ RBFs, 
we observe that the rank target choice significantly impacts the accu-

racy and efficiency, depending on the RBF type and number of colloca-

tion points. Balancing accuracy and computational efficiency is crucial 
when selecting the rank target, particularly for smaller 𝑛 values.

5. Applications to PDEs

In this example, we expand the application of the trSVD solver to ad-

dress the 2D Poisson equation with Dirichlet boundary condition where 
𝑓Ω and 𝑓𝜕Ω of (4) correspond to the given functions associated with 
the following exact solution:

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) cosh(𝑦) + 𝑒2𝑥+𝑦, (𝑥, 𝑦) ∈ Ω.
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Fig. 9. Application to PDEs: The profiles of the (a) nodes distribution with 𝜂 = 2, and (b) exact solution.
Table 3

Application to PDEs: Details on solution of Poisson equa-

tion using the GA RBF.

(𝑛𝑖, 𝑛𝑏) 𝜂 tSVD trSVD

error CPU error CPU

(600,200) 1 1.28e-04 0.76 4.08e-05 0.32

2 7.31e-09 0.42 4.79e-08 0.27

3 1.46e-09 0.64 1.19e-09 0.39

(3000,1000) 1 5.53e-05 81.0 8.31e-05 20.3

2 4.66e-10 55.5 1.44e-10 32.7

3 2.26e-10 81.6 1.90e-10 26.6

The mathematical representation of the boundary 𝜕Ω is expressed by 
the following parametric equation:

(𝑥, 𝑦) = 𝜌(𝜃) (cos𝜃, sin𝜃) , where 𝜌(𝜃) = 1
2
(1 + cos2 5𝜃∕2), 0 ≤ 𝜃 ≤ 2𝜋.

This example involves two distinct scenarios, differing in terms of the 
locations of the center points. The first scenario corresponds to the con-

ventional Kansa method [1], where the collocation points and center 
points are identical. The second scenario involves the fictitious center 
point method [33], where the collocation and center points are cho-

sen differently. In the latter case, the center nodes are positioned at a 
magnification factor (𝜂 > 1) of the collocation points. Setting 𝜂 = 1 cor-

responds to the first scenario (conventional Kansa method).

To visualize the distribution of collocation and center points for the 
star-shaped domain with 𝜂 = 2, Fig. 9(a) is provided. The exact solution 
is illustrated in Fig. 9(b). In order to demonstrate the efficiency and ac-

curacy of the trSVD approach, we compare its results with those of the 
tSVD method for various numbers of collocation points and magnifica-

tion factors. In this example, the optimal scale is determined using the 
LOOCV method linked with MATLAB’s search algorithm fminbnd, as 
detailed in Table 3. Note that the CPU time represents the computa-

tional duration required to determine the optimal scale value, while 𝑛𝑖
and 𝑛𝑏 denote the number of interior and boundary points, respectively.

The table reveals that the trSVD and tSVD methods yield compara-

ble accuracy for different numbers of nodes and magnification factors. 
However, the computational time required by the trSVD solver is signif-

icantly lower than that of the tSVD method. By presenting these results, 
we highlight the effectiveness of the trSVD solver in achieving accu-

rate solutions with reduced computational overhead compared to the 
conventional tSVD method.

6. Conclusions

This paper investigates the application of randomized SVD (rSVD) 
for solving interpolation and Poisson problems using kernel matrices de-

rived from radial basis functions (RBFs). Through our experiments, we 
observed that truncation of rSVD leads to more stable results compared 
to the non-truncated version. The error curve in relation to the scale 
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also exhibits smoother behavior with truncation, similar to tSVD. Fur-

thermore, our study highlights that trSVD outperforms the least square 
approach in capturing a more accurate low-rank dimensional represen-

tation. To further validate the effectiveness of trSVD, we conducted a 
comparison between trSVD and tSVD. Our findings demonstrate that 
trSVD significantly improves efficiency while maintaining comparable 
accuracy, making it a favorable choice for RBF interpolation tasks. We 
also conducted an in-depth examination of the trSVD method by ex-

ploring its connection to scale or shape parameter strategies, such as 
LOOCV and ECN, in the search for the optimal scale. Furthermore, we 
investigated the role of target rank in the trSVD method. Our analy-

sis focused on accuracy and computational time, demonstrating that 
the selection of the target rank is crucial and sensitive when dealing 
with a small number of collocation points. However, for a large number 
of collocation points, the results are more stable. These investigations 
have been done over various RBFs, as well as over one smooth and one 
non-smooth test functions. In the final example, we apply the proposed 
trSVD method to solve a Poisson equation and compare the results 
with tSVD. The comparison demonstrates similar levels of accuracy be-

tween the two methods, with trSVD exhibiting significantly lower CPU 
time.

In summary, this paper introduces an efficient and accurate algo-

rithm for solving RBF problems, with potential extensions to tackle 
challenging PDEs. Our approach, based on trSVD, improves efficiency 
compared to tSVD while maintaining similar levels of accuracy. The in-

corporation of scale strategies and the investigation of the target rank’s 
role provide valuable insights for practical implementations.
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