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Thesis Abstract 
Background: There are multiple sex disparities across numerous cancers affecting incidence, 

survival, and treatment response. In cutaneous melanoma (CM), men have a twofold higher 

probability to develop the disease and a higher death rate compared to females. This project 

focuses on identifying sex-specific gene expression survival biomarkers for early-stage (stage 

I-II) CM. 

 

Methods: We used a subset of the Leeds Melanoma Cohort (LMC) microarray dataset with 

311 females and 256 males with stage I and II CM, a subset of the TCGA RNA-seq dataset 

with 28 females and 46 males, as well as CM tissues from 22 females and 21 males recruited 

at the local hospital. The latter were used to evaluate the expression of selected genes by RT-

qPCR and validate the prognostic models. Sex was first used as a covariate in survival analysis 

and then as an effect modifier, performing multivariable Cox regression analysis on each sex 

separately and adjusting for age and stage. In females, genes selected by setting the Benjamini-

Hochberg adjusted p-value cut-off less at 0.05 (controlling the false discovery rate at 5%) were 

evaluated for their predictive performance using 10-fold cross-validation and LASSO 

penalised Cox regression analysis with 8-year censored data. In males, due to no significant 

results using the adjusted p-value cut-off, genes with raw p-value less than 0.001 and highest 

hazard ratio were further tested, using 10-fold cross-validation and bidirectional stepwise Cox 

regression analysis with 8-year censored data. Two sex-specific prognostic models were built 

and their survival prediction ability was assessed using UNO’s concordance (C) index, UNO’s 

area under the curve (AUC) and observed vs expected ratios. We also tested the gene 

expression variability (GEV) among females and males and compared gene expression 

between sexes, as well as the immune cell composition using xCell deconvolution method. 

 

Results: Application of previously proposed single or multigene expression survival analysis 

using sex as a covariate revealed a strong female dependency of the total significant genes. 

Contrary to expectations, we observed a lower GEV among multiple gene sets and female 

subgroups of stage I-II CM, in both sun and not-sun exposed normal skin and in nevi. In stage 

III CMs, GEV was lower in males compared to females, but generally higher than in stage I-II 

CMs. The sex-stratified survival analysis revealed for the first time in CM a three gene 

(UHRF1, UBE7, HLA-E) female-specific prognostic signature and a male-specific prognostic 
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signature consisting of two genes (SF3B3, BEX3) combined with age and stage. The female 

gene signature was validated in the RT-qPCR cohort, yielding an UNO C-index of 0.76 and an 

UNO AUC of 0.80. The male-specific signature gave an UNO C-index of 0.86 and an UNO-

AUC of 0.85. A weaker model performance was observed on the TCGA cohort, especially 

regarding the male signature. In addition, xCell immune cell type enrichment analysis revealed 

important sex differences in the enrichments of multiple T-cell populations and in their 

association with survival.  

 

Conclusions: This study highlighted the importance of sex stratification in CM survival 

analysis and confirmed the statistically significant superior performance of female features, 

from genes to immune cell subtypes and correlated profiles. It unveils unexpected differences 

in GEV between the two sexes in early-stage CM and sheds light into the distinct biological 

pathways and immune cell populations in female and male CMs. 
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Chapter 1: Background and Introduction 
 
This thesis refers to sex differences and not gender differences. Sex is defined by the 

multidimensional biological characteristics that distinguish females and males, referring to 

anatomical and physiological differences, such as reproductive organs and chromosomes. 

Notably, intersex individuals may possess variations in sex characteristics, sex chromosomes, 

hormones, and reproductive anatomy beyond typical definitions of female or male. Gender 

encompasses the cultural and psychological elements linked to being female, male or non-

binary. It relates to the roles, behaviours, identities and expectations that are influenced by 

norms and cultural environments (2–4). 

Discrimination of female sex from biomedical studies 

Research results on diagnosis, treatment and prevention mainly originate from multiple studies 

done on male cells, male mice, and men (5–8). In 2010 a study reported a male bias in 8 out of 

10 biological disciplines, male to female ratios of 5.5:1 in neuroscience, 5:1 in pharmacology 

and 3.7:1 in physiology (9). They also showed that 75% of studies analysed from highly cited 

journals do not specify the sex of the animals or the cells they used.  

This disproportion of the two sexes resulted from the fact that historically, for multiple reasons 

including safety purposes, women of childbearing age were excluded from clinical trials (10). 

Another reason for excluding women, is the belief that the estrous cycle and hormone changes 

cause an increased variability in females (11). Instead of completely excluding 50% of the 

population, multiple solutions have been proposed over the years for addressing women's 

oestrous cycle (12) such as the inclusion of oestrous/ hormonal staging (13) or increase and 

stratification of the sample, but a more robust understanding of sex differences in variability is 

clearly needed to guide future research and experimental designs .  

Sex differences in physiology 

Females and males differ in so many aspects under physiological conditions such as hormonal 

(14) variations, reproductive systems and chromosomal differences with a heterologous XY 

chromosome pair in males and a homologous XX chromosome pair in females. Females are 

known for their prolonged lifespan compared to males (15,16). Body compositions are different 

(17) with men having more muscle mass (18) and increased bone density compared to women 
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that have higher body fat (19) percentages. Additionally, variances exist in the cardiovascular 

system, affecting factors like heart rate and blood pressure (20). Females often display a 

stronger immune response, with distinction being made in both innate and adaptive immunity 

and differences fluctuating from in utero to old age (Figure 1). This also makes women more 

susceptible to autoimmune diseases (21–23). Additionally, the human X chromosome contains 

over 1,100 genes, making about 5% of the total whole genome, and includes a significant 

number of genes related to the immune system. Metabolic variations show that males lean 

towards carbohydrate-based cellular metabolism, while females tend towards lipid-based 

metabolism (24,25). Neurologically, disparities in brain structure and neurotransmitter activity 

lead to differences in cognition, emotional processing, and susceptibility to specific 

neurological conditions between the sexes (26). 

 
 

Figure 1: Figure obtained from “Sex differences in immune responses. Nat Rev Immunol 16, 
626–638 (2016)” shows immunologic factors varying between females and males throughout 
their lifespan.  

Sex differences in pathology 

As expected, the divergences observed between sexes manifest in varied disease incidence, 

mortality rates, and treatment responses. Particularly, in prevalent causes of death, such as heart 

disease (27), sex disparities exist in symptoms, diagnosis, and treatment. Notably, women 
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frequently encounter distinct forms of heart disease and tend to receive less effective care, 

resulting in higher mortality rates than in men. Another disease that exhibits important 

differences is chronic pulmonary disease (28), with women showing higher susceptibility and 

encountering challenges in diagnosis. Stroke affects more men globally, but its incidence in 

women is rising, contributing to higher prevalence and mortality among women (29). 

Alzheimer's disease affects more women, often progressing faster and posing diagnostic 

challenges. Women bear a heavier burden in Alzheimer's caregiving (30). In diabetes, women 

and men exhibit varied patterns in type 2 diabetes onset and cardiovascular risks, with women 

facing severe consequences from the condition (31). Chronic kidney disease affects women 

due to pregnancy risks, while men progress faster (32). Men face higher chronic liver disease 

risks from alcohol, with women being more vulnerable post-menopause (33). Depression is 

more common in women, but men often show different symptoms. Suicide rates are higher in 

men and attempts are more frequent in women (34). Finally only 39% of participants in clinical 

trials  concerning diseases such as HIV/AIDS, chronic kidney disease, and cardiovascular 

disease are women (35). Regarding cardiovascular disease, as women’s blood pressure (BP) is 

lower than men’s the risk for these diseases starts at a lower BP threshold than the standard 

“high BP” level (36). Drug pharmacokinetics are also influenced by sex-differences found in 

both intrinsic factors such as body weight, genetic predisposition, renal or hepatic function and 

extrinsic factors such as smoking, concomitant medication including herbal products, alcohol 

use and diet. These factors can result in sex-differences in the pharmacokinetics or the exposure 

to a drug, therefore mg/kg dosage should be prioritised instead of the one-size fits all (37,38).  

Sex differences in cancer  

Across various cancers, differences between females and males can be observed in multiple 

aspects such as incidence, tumour biology, treatment response, and survival rates (39,40). Men 

have a higher cancer incidence and mortality (Figure 2) than women in most shared anatomic 

sites including, rectum, kidney, gastric cardia, biliary tract, skin, liver, oropharynx, bladder, 

larynx, gastric noncardiac, and oesophageal adenocarcinoma (39–41). The only two cancer 

types that are more common in females than males are thyroid and gallbladder cancer (42). A 

study investigating carcinogenic exposures in behavioural and environmental factors among 

females and males identified sex-related biological mechanisms as the primary determinant of 

differences in cancer risk between sexes (43). 

 



18 
 

 
Figure 2: Estimated age-standardised incidence (blue) and mortality (red) of all cancers, 
across all continents showing an increased incidence and mortality in males compared to 
females across all continents. Dual bar graph obtained from Globocan 2020. 

Differences between the two sexes in several cancers have been observed on epigenetics 

mechanisms. Dysregulation in genes governing epigenetic processes is frequently observed in 

human tumours, underscoring their link to tumorigenesis. DNA methylation, a prominent 

epigenetic mark, displays varying sex-specific patterns (44) in various tissues such as blood 

(45), liver (46), insulin secretion of the pancreas (47), myoblasts and myotubes (48), heart (49) 

and the brain (50,51). Another very important difference affecting many biological pathways 

is the presence of bi-allelic XX chromosomes in females, as opposed to the XY chromosomes 

in males. In females, early X chromosome inactivation aims to balance gene expression; some 

genes escape this process, exhibiting sex-biased expression and influencing cancer 

susceptibility. Among the genes that escape X-inactivation, we find ATRX, CNKSR2, 

DDX3X, KDM5C, KDM6A and MAGEC3, all known for their tumour suppressor activities 

(52,53). Due to the bi-allelic expression of these genes, they might provide extra protection 

against tumours in females only. Another cellular response to DNA damage known for its 

protective mechanism is cellular senescence, which also shows differences between sexes, with 

female cells more prone to undergoing senescence than male cells (54,55).  Senescent cells are 

known for their senescence associated secretory phenotype (SASP), which is secreted as 

senescent cells remain metabolically active after their proliferation arrest. The numerous 

proinflammatory cytokines produced as part of the SASP increase immune cell infiltration, 

promoting a more tumour-permissive environment (56). Furthermore, sex hormones are known 
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to influence the immune system, with estrogens usually boosting the immune response (57,58), 

progesterone showing an anti-inflammatory (59,60) effect and androgen generally suppressing 

immunity (61,62). As a result, they alter both the innate and the adaptive immunity, differently 

across sexes. Moreover, there have been reports of sex-differences also in response to 

chemotherapy, with women experiencing more adverse effects and being more susceptible to 

chemotherapy than men. In colorectal cancer, females had increased risk of vomit, alopecia, 

heartburn, mucositis (63) and in  small-cell lung cancer women experienced more hematologic 

toxicity than men (64). Even if there have been several improvements in recent years, still many 

researchers, even though they are aware of the number of females and males in their datasets, 

do not take sex in consideration during their analyses. 

Cutaneous melanoma (CM) 

The skin, our body's protective shield, is intricately defended against the sun's harmful rays by 

melanocytes producing melanin. This pigment shields skin cells from mutating under UV 

radiation. Yet its balance, the ratio of eumelanin to pheomelanin (65), and genetic variations, 

can dictate skin colour and influence susceptibility to skin cancer. CM, an infrequent yet deadly 

form of skin cancer, stems from these melanocytes (66). CM is by far the most common subtype 

of melanoma, other than mucosal and uveal melanoma (67). Despite its rarity, melanoma 

accounts for 80% of skin cancer-related deaths, even though it only accounts for 4% of skin 

cancer cases (68). In the US there are 100,640 new cases of CM per year with 59,170 occurring 

in males and 41,470 females (69). Additionally, there is an estimation of 8,290 deaths per year 

with 5,430 in males and 2,860 in females (70). If melanoma rates continue to rise according to 

the 2012 rate, by 2024 there will be a roughly 50% incidence rate increase and a 68% increase 

in deaths caused by CM (71).    

Brief history of melanoma 

Melanoma traces back centuries, with Hippocrates of Cos documenting cases as early as the 

5th century (72). However, medical understanding remained limited until the 18th century 

when Scottish surgeon John Hunter performed the first surgical removal of a melanoma 

tumour, initially mistaking it for a fungal growth (73). This “mistake” led to the first 

recognition of this disease, which was then classified based on the location of the tumour. Dr. 

William Norris's observations in the 1820s hinted at hereditary links and advocated wide 

excision for treating melanoma lesions (74). Throughout the 19th century, surgical resection 



20 
 

and lymph node removal were the primary treatment methods, with little advancement until 

the advent of chemotherapies in the mid-20th century. Since the 1980s, after realisation of the 

importance in cancer development of accumulating genetic mutation, there has been an effort 

to identify individual mutations that commonly occur in melanoma and develop targeted 

therapies (75). These historical milestones laid the groundwork for understanding and 

managing this formidable disease, offering glimpses into its complexities well before modern 

medical advancements. 

Melanoma epidemiology and risk factors 
 
Unlike other cancers that have a declining trend, CM incidence and mortality rate continues 

to rise with a striking 41% in incidence from 2012 to 2020, especially in fair-skinned 

populations, with low levels of melanin, of European decent. The rise of CM varies among 

humans is caused by several risk factors such as UV exposure (76), ethnicity , geographic 

location, age group and sex (77). The highest incidence of CM cases is observed in Australia 

and New Zealand, followed by Western Europe, North America and North Europe (71). Both 

incidence and mortality are higher in men than in women. Even though CM has the lowest 

incidence rate among skin cancers, its ability to rapidly metastasise and affect younger 

individuals makes CM a significant health and economic burden (78,79). The success of skin 

cancer prevention efforts varies among different countries, depending on public education 

about UV protection and the implementation of skin cancer screening programs.   

 

Melanoma diagnosis  
 
Early and accurate diagnosis of melanoma is crucial for effective treatment and improving 

patient outcomes. Melanoma diagnosis involves a combination of clinical evaluation, 

dermoscopic examination, and histopathological analysis. Advances in diagnostic techniques 

have significantly enhanced the ability to detect melanoma at an early stage, thereby increasing 

the chances of successful treatment (80). 

 

Clinical evaluation starts by a thorough visual examination of the skin, looking for any unusual 

moles or lesion. The ABCDE criteria involving assessment based on Asymmetry, Border 

irregularity, Colour variation, Diameter greater than 6 mm, and Evolving characteristics of 

moles is used (81). Dermoscopic examination is performed using a dermatoscope to magnify 
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and illuminate skin lesions, allowing for a more detailed examination of pigmented skin 

lesions, or by digital dermoscopy to monitor changes over time (82). Histopathological analysis 

consists of removal of a suspect lesion or a part of it for microscopic examination by a 

pathologist to confirm the diagnosis. 

Latest technological advancements regard molecular diagnostics (gene expression profiling to 

identify specific gene mutations associated with melanoma; Next-Generation Sequencing to 

comprehensively analyse multiple genes to detect mutations that can guide targeted therapies) 

and imaging technologies, such as reflectance confocal microscopy and optical coherence 

tomography (83).  

 

Challenges in distinguishing melanoma from benign skin lesions include atypical presentation 

of some melanomas, similarities to benign lesions such as dysplastic nevi or seborrheic 

keratosis, variability in diagnostic expertise, high cost of advanced imaging technologies, 

which are not universally available, and the fact that some melanomas can evolve rapidly, 

changing their appearance over short periods, which complicates long-term monitoring and 

diagnosis. 

Melanoma classification 

Wallace Clark suggested in the 1960s that melanoma should be classified on histological 

features instead of tissue origin. He then identified three variants of melanoma that exist until 

today: superficial spreading melanoma (SSM), lentigo malignant melanoma (LMM) and 

nodular melanoma (NM) (84). In addition to these, other variants have been identified, such as 

acral lentiginous melanoma, mucosal melanoma, desmoplastic melanoma and nevoid 

melanoma (85). Clark also proposed a level-system of evaluating melanoma based on depth of 

invasion into the dermis and subcutaneous fat. Thus, Clark's level has been proposed. It is used 

until today (86,87) and is one of the most important tissue biomarkers for predicting 

invasiveness of the disease, going from level 1 - level 5, 1 corresponding to melanoma cells 

confined to the epidermis and 5 to invasion of melanoma cells into the subcutaneous fat . In 

the 1970, Alexander Breslow independently devised a more accurate method for classifying 

melanoma based on a measured depth of invasion reporting the thickness of the tumour. 

Breslow thickness is used until today and stratifies melanoma into five levels (82). Breslow 

showed that first two levels correlated with better survival rates, with reduced metastatic risks. 

This approach led to smaller resections and aided in assessing lymph node involvement, 
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guiding decisions on lymph node removal, especially important for patients with a Breslow 

thickness exceeding 1.5 mm. Over time, Clark’s level and Breslow thickness, were refined and 

remain crucial in predicting patient outcomes (90).  

Over the next 40 years, advancements in statistical methods and accumulating data on 

melanoma treatment led to the creation of refined staging systems, notably the TNM staging 

system by the American Joint Committee on Cancer (AJCC) (91,92). This system utilises 

histologic attributes of the primary tumour (T), regional lymph node involvement (N), and 

distant metastasis (M) to categorise patients, providing crucial guidance for clinicians based on 

linked survival and prognosis factors. Beyond Breslow depth, attributes like ulceration, mitotic 

rate, inflammation, and regression are integrated into the AJCC staging for melanoma (93) 

(Table 1). 

Table 1: Overview of TNM pathologic staging for melanoma, obtained from the Melanoma 
Research Alliance (1). N = number of tumour-involved regional lymph nodes; M = number of 
metastases at distant site; T = primary tumour thickness (T1 ≤ 1 mm, T2 > 1.0 – 2.0 mm, T3 > 
2.0 – 4-0 mm, T4 > 4 mm).  

Stage Tumour Node Metastasis 
0 Tis N0 M0 

IA T1a or T1b N0 M0 
IB T2a N0 M0 
IIA T2b or T3a N0 M0 
IIB T3b or T4a N0 M0 
IIC T4b N0 M0 
IIIA T1a/b or T2a N1a or N2a M0 

IIIB 
T0 N1b or N1c M0 

T1a/b or T2a N1b/c or N2b M0 
T2b or T3a N1a/b/c or N2a/b M0 

IIIC 

T0 N2b/c or N3b/c M0 
T1a/b, T2a/b or T3a N2c or N3a/b/c M0 

T3b or T4a Any N > N1 M0 
T4b N1a/b/c or N2a/b/c M0 

IIID T4b N3a/b/c M0 
IV Any T, Tis Any N M1 

 

The latest update in the AJCC staging manual, the 8th edition, brought critical changes that 

refined measurements, expanded existing categories, and enhanced prognostic stratification in 
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melanoma staging. This staging system is pivotal for clinicians, aiding in prognosis assessment 

and treatment planning for patient recovery or prolonged survival (94). However, despite an 

international staging system, diagnosing melanoma consistently remains challenging due to 

significant observer variability among pathologists (95,96). The subjectivity in visual 

observations for diagnosis contributes to this variability, prompting ongoing research for more 

objective methods in CM diagnosis. Efforts to enhance detection and diagnosis include utilising 

non-invasive imaging before biopsies and employing advanced quantitative techniques post-

biopsy, such as fluorescent in situ hybridization (FISH), comparative genomic hybridization 

(CGH), DNA/RNA sequencing, mass spectrometry (MS) for proteins and/or metabolites 

evaluation, and immunohistochemistry (IHC) (97,98). 

Melanoma diagnostic markers 
 
Cost effective IHC serves a critical role in diagnosing melanoma, particularly for complex 

cases challenging to discern through traditional methods. In melanoma diagnosis, two key 

marker types, melanocytic and proliferative, are commonly employed (99). Melanocytic 

markers help determine melanocytic origin, while proliferative markers assess cell cycle 

activity. Various genes are involved in this process, including Melan-A/MART-1 (100), HMB-

45 (101), S100 protein (102), microphthalmia transcription factor (MITF) (103), Tyrosinase, 

SOX10 (104), gp100 (Pmel 17) (105), and BRAF and NRAS (106,107). These markers play 

vital roles in identifying melanoma, though each has its limitations (108). While sensitive, 

some markers lack specificity in distinguishing between melanoma and benign lesions. 

Additionally, specific markers may not express in certain melanoma types, potentially leading 

to false-negative diagnoses without more sensitive markers (97).  

Melanoma prognosis 
 
Prognosis in melanoma is a critical aspect of patient management, providing essential 

information that influences treatment decisions and survival outcomes. Breslow thickness, 

ulceration, mitotic rate and the involvement of lymph nodes are amongst the most important 

adverse prognostic factors. In addition to these established features, improvements in 

transcriptomic analysis have facilitated the discovery of numerous gene expression signatures 

to personalise CM prognosis. 
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The signatures are derived from gene expression obtained from high-throughput RNA 

sequencing or microarray profiling and have been shown to predict survival, especially the risk 

of developing metastases. The Cam_121 gene signature, for example, was found to 

significantly enhance the prognostic prediction for metastasis and survival in primary 

melanoma (109). Another study evaluated the accuracy of gene expression profiles (GEP) in 

predicting the metastatic risk in CM. They classified patients in low and high-risk applying 

both univariate and multivariate analysis of 28 genes, that were previously found to be 

significantly associated with recurrence-free survival and distant metastasis-free survival 

(110,111). Even though these studies have adjusted for sex, additional to other variables like 

age and stage, they have not further investigated findings in a sex-stratified manner. Moreover, 

high quality evidence for gene expression predictors in early stage CM are lacking. Another 

study tried addressing the difficulties faced in stage I CM, where tumours are very small in size 

for sampling. They identified a six-class gene expression signature that predicts outcome in 

patients treated with immunotherapies. The insufficient number of stage I cases and the lack of 

comprehensive data on treated patients with immunotherapy and targeted thereby limit these 

findings (112). 

Melanoma prognostic and serological markers 
Proliferation markers like Ki-67 and phosphohistone H3 (PHH3) play a crucial role in 

determining cell cycle activity in melanoma lesions (113–115). Ki-67, associated with cell 

proliferation, is commonly used in diagnosing aggressive melanomas. PHH3, introduced later, 

detects cells undergoing mitosis more specifically than Ki-67, which captures cells in the cell 

cycle (116,117). While both markers offer limited independent prognostic insights in 

melanoma, they lack specificity for melanocytes (105). In tumours with highly active immune 

cells, these markers may overestimate proliferation. Although informative, their use is not 

mandated in melanoma reporting or staging (118). Serum biomarkers like lactate 

dehydrogenase (LDH) serve as independent prognostic indicators for melanoma. Elevated 

LDH levels are associated with poorer survival, especially in stage IV melanoma (119). The 

diversity of melanoma prevents the identification of a single perfect diagnostic or prognostic 

biomarker. Using panels of multiple biomarkers compensates for individual limitations. 

Ongoing research aims to discover new biomarkers to improve melanoma diagnosis and 

prognosis. However, up to our knowledge, neither “in use” nor “under evaluation” prognostic 

markers have been separately analysed in females and males. 
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Molecular characteristics 

- Inherited (familial) melanoma 

Hereditary melanomas, making up to 5-12% of cases, show distinct mutations, with CDKN2A 

mutation being the most commonly found in familial melanomas, although it also occurs in 

sporadic cases. CDKN2A mutations lead to defects in tumour suppressor proteins and 

regulators of p53 pathway, specifically p14ARF and p16INK4A (120). Other notable mutations 

in hereditary melanomas include those in the BAP1 gene(121), associated with melanocytic 

tumours, and mutations in POT1, which impact telomere maintenance and genome 

stability(122). 

- UV-induced melanoma 
 
UV- induced melanomas are primarily driven by mutations resulting from UV radiation 

exposure. These melanomas usually harbour mutations in the MAPK pathway genes, which 

are responsible for initiation early oncogenic events. About 70% of melanoma feature 

mutations in this pathway (123). 

One of the key mutations found in about 50% of melanomas is in the BRAF gene, with the 

activating mutation V600E being particularly common. These BRAF mutations are mainly 

observed in melanomas linked to intermittent sun exposure and the superficial spreading 

phenotype(124,125). Although 80% of benign moles carry BRAF mutations, a single BRAF 

mutation alone is insufficient for malignancy, requiring additional mutations to transform 

normal cells into tumours (125,126). Another significant mutation, found in 15-20% of 

melanomas, is in the NRAS gene, which is associated with chronic sun exposure (127). 

Additionally, mutations in the C-KIT gene are present in 2% of melanomas and are common 

in mucosal melanomas (128). About 50% of uveal melanomas exhibit mutations in the GNAQ 

gene (129). 

In addition to these key mutations, other significant mutations include those in the PTEN and 

KIT genes, which are involved in metabolism dysregulation, and mutations in the TP53 gene, 

which induce resistance to apoptosis (130,131). Mutations in the promoter of the telomerase 

reverse transcriptase (TERT) gene can cause up to a twofold increase in transcription (132). 
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In UV-induced carcinogenesis, MAPK kinases play a major role. When activated, these 

proteins translocate to the nucleus, where they phosphorylate key transcriptional factors 

responsible for proliferation, development, and cell death (133,134).  

Melanoma treatment 
The primary treatment to localised melanoma is surgical resection, where the surgeons remove 

the tumour area and surrounding healthy tissue. They only perform sentinel lymph node biopsy 

if the tumour is thicker than 0.8mm and to thinner tumours if they have ulceration (135). 

Targeted therapy has revolutionised the approach to treating advanced melanoma, 

particularly with drugs like BRAF inhibitors such as vemurafenib and dabrafenib. These 

medications, approved in 2011 and 2013 respectively, directly address specific molecular 

defects found in melanoma. Although initially promising for BRAF-mutated melanomas, these 

inhibitors often encounter secondary resistance, prompting ongoing research into novel drug 

combinations and mechanisms to achieve sustained effectiveness (136). The development of 

targeted therapies determined an important shift in melanoma treatment, showcasing a more 

precise and personalised approach that aims to counteract specific genetic mutations driving 

the cancer's growth (137). Immunotherapy in treating advanced melanoma uses the body's 

immune response against cancer cells, especially in melanoma, known for its high mutational 

burden (138) that produces unique antigens (139). These tumour-specific antigens, arising from 

mutated genes beyond BRAF and NRAS, trigger an immune reaction. Immune cells like CTLs 

recognize these antigens presented on MHC-I, while antigen presenting cells (APCs) interact 

with CD4+ Th cells via MHC-II, amplifying the immune response (140). Melanoma often 

evades this response by downregulating antigen presentation or secreting inhibitory molecules. 

Immunotherapies like checkpoint inhibitors disrupt these evasion tactics by blocking 

checkpoint proteins from binding with their partner proteins, reactivating the immune system 

against melanoma cells (141). Ongoing research aims to enhance effectiveness and predict 

patient responses by exploring biomarkers and alternative treatment targets in this constantly 

evolving field. Finally, in advanced or metastatic melanoma when other treatments fail, 

chemotherapy might be used alone or combined with other treatments as a last option for 

treating this disease (142).  
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Melanoma sex differences 

Melanoma is a very aggressive and heterogenous skin cancer that tends to spread to other parts 

of the body (143). It is the fifth most common cancer among men and the sixth among women. 

Female overall survival rate advantage has been continuously confirmed for melanoma 

throughout the years. Males were shown to harbour unfavourable primary tumour 

characteristics, such as age, histological subtype, ulceration, Breslow thickness, mitotic rate, 

vascular invasion, and recurrence. These factors were shown to independently predict poor 

outcome in melanoma patients and lower the survival rate, reinforcing the importance of sex 

and sexual dimorphism in melanoma (144).  

Sex hormones play a significant role in the development and progression of. Melanoma with 

various mechanisms influencing the disease differently in men and women. More specifically, 

oestrogens, characterised by their mediation through receptors such as ER-β, predominate in 

early stages but diminish as tumours progress, potentially affecting metastasis. Oestrogen (E2) 

and its metabolite (2ME2) inhibit melanoma cell growth and influence tumour 

microenvironment (145,146). Conversely, testosterone, operating via the androgen receptor, 

sparks cell proliferation in melanoma, indicating potential clinical implications (147). Notably, 

anti-androgens display a promising role in tumour progression, highlighting a potential avenue 

for therapeutic intervention (148,149). Furthermore, sex-based differences in immunotherapy 

responses stem from variations in genetic factors, including genes linked to immune pathways 

like Toll-like receptors (TLRs) and cytokines, to genomic instability, impacting the 

effectiveness of treatments like immune checkpoint inhibitors (ICIs) (150). Melanoma patients 

treated with ICIs demonstrated a more substantial therapeutic advantage in males compared to 

females. Genetic variations in key immune-related genes, such as PD-1 and PD-L1 (151), differ 

between sexes, affecting therapy outcomes. Additionally, distinct immune cell responses exist; 

females often exhibit more robust T cell reactions, while males may have more prolonged but 

subdued immune responses (152).  

 
 
 
 
 
 
 
 



28 
 

Chapter 2: Aims and Objectives 

General Aim of the Thesis 
This thesis aims to comprehensively investigate the impact of sex-specific gene expression on 

survival outcomes in early-stage melanoma. Through detailed analysis of diverse datasets, it 

seeks to identify and validate sex-specific gene signatures associated with prognosis, shedding 

light on the distinct gene expression variability, biological pathways and immune responses in 

female and male melanomas. These sex-specific signatures aim to classify early-stage CM 

patients as high or low risk helping adjustment of their follow-up care. Ultimately, in 

challenging current views on sex-based survival differences, this research advocates for a 

paradigm shift towards more refined personalised and targeted sex-specific approaches in CM 

management, research and patient care.  

Specific aims of the thesis 
 

1. Sex-specific evaluation of previously published prognostic genes/signatures for primary 

cutaneous melanoma (CM). 

2. Exploration of sex-specific differences in primary CM, normal skin and Nevi samples. 

3. Discovery of sex-specific prognostic signatures in stage I-II CM. 

4. Assessment of the identified sex-specific prognostic models on external cohorts.  

5. Functional analysis of the discovered sex-specific biomarkers  
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Chapter 3: Materials and Methods 

Datasets 

Datasets description and characteristics 

A total of eight different transcriptomic profiling datasets were analysed (see detail in Table 

2): Leeds Melanoma Cohort (LMC), TCGA, GSE65904, GSE53118 and the Biella qPCR 

cohort, all containing primary melanoma samples, except GSE53118 which had frozen lymph 

node biopsies; GTEx with both sun-exposed (SE) and not sun-exposed (NSE) skin and the two 

merged Nevi GEO datasets GSE46517 and GSE3189. Three of the datasets (TCGA, GTEx-

NSE, GTEx-SE) are based on NGS platforms, while the other five were obtained from 

microarray platforms, either Illumina or Affymetrix. The probes or the ENSEMBL gene IDs, 

from now on are referred to as genes.  

Table 2: Detailed characteristics of all used gene expression datasets, where N/A no 
information provided by cohorts. F= females, M = Males 

  Sex Stage 
Number of 

samples Mean age Events 

LMC  

F I 130 51.4 15 

 II 181 53.2 59 

  III 60 56.2 30 

M I 95 56.1 18 

 II 161 59.3 60 

  III 47 58.9 22 

GSE65904 
F Primary.Mel 7 78.9   

M Primary.Mel 8 69.5   

TCGA 

F I 1 61 0 

  II 26 66.3 8 

M I 1 81 0 

  II 40 66.4 5 

GSE53118 
F III 26 57.8 14 

M III 45 57.2 25 
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Biella cohort 

F I 8 58.7 0 

 II 14 64.9 5 

M I 11 59.4 1 

  II 10 68 3 

GTEx - NSE 
F 

N/A 
83 

N/A N/A 
M 170 

GTEx - SE 
F 

N/A 
117 

N/A N/A 
M 220 

Nevi 
(GSE46517+GSE3189) 

F 
N/A 

16 
N/A N/A 

M 11 

 

Leeds Melanoma Cohort (LMC) 

To access the LMC primary melanoma transcriptome dataset (dataset ID EGAS00001002922) 

an agreement was signed between the University of Leeds and Fondazione Edo ed Elvo Tempia 

in Biella, Italy. The Leeds Melanoma Cohort (LMC) Study enrolled participants from a region 

of the UK between 2000 and 2012. The study obtained approval from the Research Ethics 

Committee (REC) with the reference number 01/3/057. It was also registered under the 

NIHR/CPMS ID. 15064 (Central Portfolio Management System). Participants were recruited 

five months after their diagnosis and their participation was based on informed consent. The 

study adhered to the guidelines outlined in both the World Medical Association Declaration of 

Helsinki and the Department of Health and Human Services Belmont Report (153). Initially 

the dataset had 703 samples, however 8 samples had no stage information and 1 sample had no 

overall survival information. Out of the remaining 694 samples, 26 samples were not used 

because they had a non-melanoma related death. Of the 668 remaining patients, 370 were 

females (311 stages I, II and 59 stage III) and 298 males (255 stages I, II and 43 stage III). The 

dataset includes quantile normalised gene expression data of 29,355 genes, the overall survival 

time in years for all the patients, information about their vital status, sex and age, as well as 

tumour stage. All events accounted for in our survival analysis were melanoma related deaths. 

Gene expression profiling was carried out on totRNA extracted from bulk fixed melanoma 

tissues, using the Illumina (Illumina HT 12.4, GPL28098-111924) cDNA-mediated Annealing, 

Selection, extension and Ligation (DASL) protocol, designed to generate reproducible RNA 

profiles from degraded tissue samples such as formalin fixed, paraffin-embedded (FFPE) ones.  
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The Cancer Genome Atlas (TCGA) 

Gene expression and stage of TCGA skin cutaneous melanoma (TCGA-SKCM) samples, 

together with overall survival time, vital status, age and sex of the corresponding patients, were 

downloaded from the cBioPortal (www.cbioportal.org accessed on 25 September 2021). The 

dataset used only frozen melanoma tissue samples, and the gene expression profiles of 20,501 

genes were generated using the Illumina HiSeq 2000 RNA-seq platform. Genes with more than 

70% of zero read counts across samples were removed, ending with a total of 17,550 used in 

all analyses. The TCGA cohort included tumours with sufficient mass and quality for their 

downstream molecular analyses, therefore advanced primary and/or metastatic tumours were 

overrepresented (154). Any stage IV and metastatic melanomas were excluded from the 

analysis giving a total of 94 samples (69 stage I, II: 28 females and 41 males; 27 stage III: 13 

females and 14 males).  

GSE65904 

The GSE65904 (155), PMID: 31942071,dataset was downloaded from the Gene Expression 

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/ accessed on 28 February 2023). Total 

RNA was extracted from fresh-frozen melanomas and genome-wide expression profiling was 

performed using Illumina Human HT-12 V4.0 expression beadchip. The study cohort included 

31,810 quantile normalised genes from a total of 15 patients with primary melanoma, of which 

7 are females and 8 are males.  

GSE53118 

The GSE53118 (156), PMID: 25521200,  dataset, which was downloaded from the Gene 

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/ accessed on 15 September 

2021), refers to 79 patients with stage III cutaneous melanoma, of which 29 are females and 50 

males. Gene expression profiles were obtained from lymph node specimens in which 

macroscopic tumour was observed, obtained from patients without distant metastasis. The 

quantile normalised cohort had a total of 25,004 genes. This dataset was used for exploratory 

analyses not directly related to the other datasets as it did not consist of early-stage CM 

samples.  
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Genotype Tissue Expression (GTEx) 

The normal skin gene expression profiles (gene read counts from RNA-Seq) were obtained 

from the GTEx portal (https://gtexportal.org/home/ accessed on 25 September 2021). A total 

of 590 samples were analysed: 253 (83 from females and 170 from males) for non-sun-exposed 

skin with a total of 25,238 genes and 337 (117 from females and 220 from males) for sun-

exposed skin with a total of 25,139 genes. Gene expression profiles were obtained by RNA-

sequencing and log2 normalised gene expression values were used for all analyses. 

GSE46517 and GSE3189 

Two nevi datasets, GSE46517, PMID: 20520718, (4 female and 5 male samples), and 

GSE3189, PMID: 16243793, (12 female and 6 male samples), were also downloaded from the 

Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/ accessed on 17 

September 2021). Both datasets contain gene expression profiles obtained from frozen nevi 

and were analysed using microarrays and the same Affymetrix Human Genome U133A array. 

The two datasets were merged and batch effects removed, using the “removeBatchEffect” 

function in the “limma” (157) R package, to obtain the final nevi dataset. This yielded a total 

of 16 female and 11 male samples profiled for 21,430 genes. 

Biella primary melanoma cohort 

This dataset refers to a retrospective cohort of patients diagnosed with stage I or II CM between 

2008 and 2015 at the hospital of Biella. All alive patients signed informed consent and the 

study was approved by the Novara ethical committee on 28/07/2021 (Protocol n. 802/CE). This 

cohort has a total of 43 patients of which 22 are females and 21 males. We collected information 

on age and vital status for each patient. RNA was extracted from FFPE tissue sections after 

macro-dissection of tumour areas highlighted by a pathologist. Reverse-Transcription 

quantitative Polymerase Chain Reaction (RT-qPCR) analysis was carried out in the lab to 

evaluate the expression of five genes of interest and a housekeeping gene (ACTB).  

Reverse-Transcription quantitative Polymerase Chain reaction (RT- 

qPCR) 

RT-qPCR was performed in order to robustly quantify the gene expression of the selected genes 

from the LMC and validate their prognostic power on an external cohort of patients (Biella 
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cohort). Both the paperwork procedure and the experimental part of the RT-qPCR was 

performed in collaboration with my colleagues from the Cancer Genomics lab in Biella. 

Seventy-one patients were selected by a dermatologist and tissue blocks were collected from 

the archive of the histopathology department at the Biella hospital. Consent was acquired for 

64 out of 71 patients. FFPE blocks were cut and the slices were put on glass slides. Sections 

underwent haematoxylin and eosin (H&E) labelling and a histopathologist assessed the 

cancerous area which resulted in adequate only for 51 samples. FFPE blocks were then sliced 

using a microtome (~ 8 micron thickness), after macrodissection of the tumour area with a 

scalpel. Micro-dissected sections were then put into tubes and stored at -80°C until RNA 

isolation. Total RNA was extracted using the miRNeasy FFPE kit (Qiagen) following the 

indicated volume of 1-2 sections per tube. We evaluated the quantity and the purity of the 

samples using the Nanodrop and 8 samples were eliminated, because totRNA quantity was 

lower than 500 ng, leaving only 43 usable samples. For the RT we used the SuperScript™ 

VILO™ cDNA Synthesis Kit (Invitrogen, Thermo Fisher). For the qPCR the kits used were 

the TaqMan Fast Advance master Mix (Thermo Fisher) and TaqMan Gene Expression Assay 

(Thermo Fisher) with a total reaction volume of 20μl. Analyses were performed using the 

CFX96 BioRad instrument. The threshold cycle (Ct) of each gene was evaluated in triplicates. 

We calculated the standard deviation (std.dev) of the triplicates and if std.dev > 0.05 the Ct 

with the more distant reading was excluded. We then calculated the mean of the readings and 

subtracted it from the mean of our housekeeping gene, ACTB, obtaining the final estimate for 

the log2 relative expression of each tested gene. These values were used in the validation of 

the selected sex-specific gene biomarkers.  

Statistical analysis 

All statistical and computational analyses were performed within the R statistical environment 

(158). Unless specified otherwise, the significance cut-off for the Benjamini-Hochberg (BH) 

adjusted p-value for all relevant analyses was 0.05.  

Survival analysis 

Kaplan–Meier survival curves were generated and compared between sexes and stages, using 

the “survfit” function in the “survival” package and plotted using the “ggplot” package.  
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To filter the genes not associated with survival, for every gene, a multivariable Cox regression 

analysis was performed on gene expression data using the “coxph” function from the “survival” 

package on 8-year censored data. The survival time was calculated from time of diagnosis to 

the time of last follow up or time of death from CM. Patients with non-CM related deaths were 

removed from the analysis. This analysis was conducted on females and males together 

adjusting for age, stage, sex and on each sex separately correcting for age and stage every time. 

To create a reduced female stage I-II sample size, equal to male stage I-II, we used the 

“CreateDataPartition” function in R.   

 

For stage I-II female CM samples the significant genes (with BH adjusted p-value < 0.05 from 

Cox regression) were further analysed using penalised Cox regression. Specifically, the 

“glmnet” R package was used, with alpha = 1 that corresponds to LASSO penalty. By using 

the “cv.glmnet” function, cross validation was done to find the optimal parameter lambda, 

which was set to “lambda.1se” that is within 1 standard error of cross-validated errors from 

“lambda.min”, the one giving the smallest cross-validated error. To assess the performance of 

the predictors, cv.glmnet was applied 10 times on 9 of 10 random sample partitions each with 

the same proportion of events (10-fold cross-validation) and the 10 fitted models were applied  

to the remaining partitions. The genes with non-zero coefficients in all 10 models were selected 

and used to build the female-specific “coxph” model, which was further validated on two 

external cohorts (RT-qPCR and TCGA). 

 

For stage I-II male melanoma samples, as there were zero genes with an adjusted p-value lower 

than 0.05 from the age and sex adjusted Cox regression, we selected the genes with top 5 hazard 

ratios within those with a raw p-value < 0.001. These selected male-specific genes were further 

analysed using bidirectional stepwise regression with the “step” function from the “stats” R 

package. As for females, to assess the performance of the predictors, a 10-fold cross-validation 

approach was applied. The predictors selected in all 10 models were then used to build the 

male-specific “coxph” model, which was further validated on two external cohorts (RT-qPCR 

and TCGA). 

 

In both female and male specific analyses, we built a multivariable regression model using the 

cross-validation results to avoid using the average of the beta coefficients obtained from the 

cross-validation and to include all samples in each dataset and not a subgroup only. 
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Validation of predictive models 
 
In order to apply the two sex-specific prognostic models to external datasets, we extracted the 

Cox regression beta coefficients, linear predictors from the “coxph” models and calculated the 

baseline survival S0(t). We measured the predictive ability of our models using several metrics 

such as the C-index which is defined as the ratio of correctly ordered (concordant) pairs to 

comparable pairs. Pairs with individuals that experienced an event are expected to rank higher 

than pairs that did not experience an event, the closer the value is to 1 the better the prediction. 

We used the UNO C-index (159) as it assesses the survival model focusing on a fixed time. 

The UNO AUC, or Time-Dependent Area Under the Receiver Operating Characteristic Curve 

(ROC AUC), quantifies a survival model's ability to predict event risk over time. It assesses 

the model's effectiveness in distinguishing between individuals experiencing an event at a fixed 

time point, in our case 8-years. The closer the value is to 1 the better predictive performance. 

The UNO AUC (160) was calculated using the “AUC.uno” function in R which implements 

the estimator of cumulative/dynamic AUC that is based on the true positive rate (TPR) and 

false positive rate (FPR). The ratio of the observed/expected predicted risk (OE ratio) was used 

as a calibration metric comparing observed number of events to the expected number of events 

predicted by the model: the closer the value is to 1 the better the calibration of the model. 

Gene expression variability (GEV) 

GEV was calculated in all datasets using the coefficient of variation (CV) statistic which is 

defined by standard deviation divided by the mean of expression across samples, for each gene. 

Comparison of CVs between the sexes (stratified by stages) was performed using the Wilcoxon 

two-sample paired test using the “wilcoxon.test” R function. In addition, we performed random 

sampling using bootstrapping, where we created splits of 3,000 genes and set the iterations to 

be at 10,000 and plotted the distribution of average CVs using “geom_density” from the 

“ggplot” R package. 

Correlation analysis 
The correlation between genes of interest and the remaining genes was assessed using 

Spearman correlation using the “cor.test” function in R. We performed five different 

correlation analyses, three in females analysing the genes positively and negatively correlated 

with female-specific genes of interest and two in males. The top 200 positively and top 200 
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negatively correlated with each gene were further run into functional enrichment and network 

analyses (described below).   

 

Additionally, we evaluated the correlation between gene expression of genes of interest and 

immune xCell cell proportion estimates (described below). 

Principal component analysis (PCA) 

PCA was performed in both LMC and TCGA early-stage melanoma subgroups using the 

“prcomp” function from the “stats” package in R.  

Immune cell infiltration analysis 

xCell (161) is a gene signature-driven technique that generates cell type enrichment scores 

based on gene expression data for immune cell types. It was validated using extensive in-silico 

simulations and cytometry immunophenotyping. The “immunedeconv” package was used 

including the xCell function in R. This analysis was repeated in LMC stage I-II female, stage 

III female, stage I-II male and stage III male melanomas, as well as in GTEx, for both sun-

exposed and not-sun exposed skin of both sexes. We conducted a comparison of the immune 

infiltration cell estimates of our sex-stratified datasets comparing the results using the “t.test” 

function. The significant results (adjusted p-value < 0.05) were visualised using the “ggplot2” 

package.  

In addition, the xCell immune cell estimates were correlated with the LMC quantile normalised 

gene expression data of our selected sex-specific biomarkers. 

Functional enrichment analysis 

To analyse the biological processes (BP) overrepresented within the top 200 genes positively 

and negatively correlated with our sex-specific survival biomarkers, we used DAVID tools 

(https://david.ncifcrf.gov/). To retrieve enriched BPs in a statistically significant manner, the 

cut-off for the Bonferroni adjusted p-value was set to 0.05.  

Protein-protein interaction Network 

We used Genemania (162) for the group of three female-specific genes of interest and for the 

group of two male-specific genes. Genemania finds genes that are related to the set of input 
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genes using a large set of functional association data. We extracted the two network images for 

the group of three genes in females and for the group of two genes in males. In addition, we 

extracted for each group the functional pathways and reported the ones with an FDR 5%.  

Human Protein Atlas 

The Human Protein Atlas (163,164) maps human proteins in cells, tissues and organs using 

integration of various technologies. We searched individually our genes of interest and 

extracted information about their protein expression in different organs and their RNA tissue 

specificity, both found in the “tissue” tab. Using the “single cell” tab the summary of 

normalised single cell RNA (nTPM) from all single cell types is given. In addition, under the 

“pathology” tab dataset we selected our cancer of interest: melanoma. We extracted the Kaplan-

Meier plot corresponding to the sex in which we detected our gene of interest. All extracted 

figures from the Human Protein Atlas, except from the survival plots, are not sex specific.  The 

databases utilised by the Human Protein Atlas, for transcriptomic data under physiological 

conditions, is mainly GTEx and for pathological conditions TCGA. 

Melanoma biomarkers found in literature 

Using the following terms in pubmed:  “melanoma survival biomarkers” and “melanoma tissue 

biomarkers” we found literature of existing tissue biomarkers, both protective and non-

protective in terms of melanoma survival, in any stage of melanoma (165–167). The literature 

identified melanoma biomarkers were further assessed in the LMC dataset using a Cox 

regression analysis both on stage I-II and stage III. On stage I-II female and male sets we 

adjusted for age and stage while, in stage III we only adjusted for age. Their beta coefficients, 

hazard ratio and raw p-value were extracted and plotted using “ggplot” R package. 

Additionally, we retrieved articles that identified multidimensional CM signatures and assessed 

them collectively in our LMC cohort using multivariable Cox regression analysis. The 

evaluation metrics reported are their C-index, likelihood ratio test, Wald test and score 

(logrank) test obtained from the “coxph” function in R. 
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Study flowchart  
 

 
Flowchart summary 
 
 The flowchart gives a summary of the study and the analysis performed for each dataset. On 

the LMC cohort we performed several analyses, including Principal Component Analysis 

(PCA), xCell, class comparison, gene expression variability, Cox regression analysis, and 

Kaplan-Meier (KM) plots. Class comparison and Cox regression variability were both used in 

immune sub-type and gene expression profile (GEP) analysis. Additional datasets such as 

GTEx, Nevi, GSE53118, and GSE65904 were utilized specifically for gene expression 

variability analysis. The model's validity was tested using external cohorts, including the 

TCGA and the Biella dataset. 
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Results 
Chapter 4: Sex-specific evaluation of previously 
published CM biomarkers 
 
Considering the persistent issue of incomplete sex stratification in biomedical research and the 

sex-difference in incidence and mortality in CM, this initial part seeks to address the sex-

specific implications of already established CM survival biomarkers. The selected gene 

biomarkers are either single-gene or signature of genes and are re-assessed in our larger cohort, 

LMC, consisting of gene expression values obtained from CM biopsies, with 371 females and 

302 males. The selected biomarkers, obtained from not sex-stratified analyses, are evaluated in 

stage I,II and stage III in three groups, 1; females and males together, 2; females-only, 3; males-

only. In this chapter, we chose 25 individual prognostic gene biomarkers, 2 gene-signatures of 

8-genes and 27 genes, and lastly, we also analysed a group of 6-classes of genes discovered 

upon unsupervised-clustering in early-stage CM.  

 

1.1 Single-gene CM biomarkers  
 
We found 25 individual gene biomarkers that play crucial roles early and late stage CM survival 

and participate in functions related to cell cycle, mitosis, inhibition and stimulation of 

apoptosis, DNA replication, stress response or to intracellular signalling. In addition to the 

individual biomarkers, we evaluated multiple-gene signatures. We assessed a commercial 8-

gene signature called clinicopathological and gene expression (CP-GEP) model(168), 

developed by Mayo clinic and SkylineDx BV (169) and able to identify early stage CM patients 

at high or low risk of sentinel lymph node metastasis. A second signature made of 28 genes, 

created by Gerami et al (111) and predicting the metastatic probability of early-stage highly 

heterogeneous melanoma, was also tested. Finally, we evaluated the key nodal genes of six-

class transcriptomic signatures presented by Thakur et al 2019 (112), with comparable 

prognostic value to sentinel node biopsies.  
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The 25 individually selected biomarkers were previously reported to positively or negatively 

influence survival outcomes (column pro-tumour (+), anti-tumour (-) on Table 3. In Table 3 

we reported the beta coefficient, Hazard ratio and raw p-value of the multivariable Cox 

regression for each gene where we adjusted for sex, age and stage in the LMC combined 

subgroup of females and males and adjusted only for age and stage on the sex-specific 

subgroups. 

When examining these 25 individual biomarkers across a combined population of females and 

males, 19 out of 25 exhibited significant p-values, with all 25 demonstrating beta coefficients 

consistent with existing literature findings. The analysis involving female-specific data 

showcased a noteworthy consistency with 25 beta coefficients aligned with existing literature 

findings, and 22 out of these 25 beta coefficients having significant p-values, further 

confirming their statistical power. In contrast, the same analysis on male stage I-II melanomas 

revealed that no gene out of the 25 biomarkers had raw p-value lower than 0.1.    

Also, in males the Hazard ratio (HR) of these 25 genes consistently hovered around 1, 

indicating a mostly neutral effect on survival. On the contrary, mainly for stage I-II female 

melanomas and slightly for the combined female and male group, the HR deviated further away 

from 1, suggesting a stronger impact on survival. 
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This analysis was also repeated together and separately in LMC female and male stage III 

melanomas adjusted for age, stage and sex for the combined sex population and only for age 

and stage in females and males only (Appendix Table 6). The 25 genes, both in stage I-II and 

stage III were plotted using a volcano plot with their female or male beta coefficients and the 

corresponding p-values (Figure 3, 4). In stages I-II, as expected, only the analysis specific to 

females and females plus males combined, yielded results surpassing the p-value threshold, 

displaying beta coefficient values markedly different from those observed in males. 

Figure 3: The 25 literature found melanoma biomarkers plotted according to their beta 
coefficients and raw p-value obtained from the multivariable Cox regression analysis together 
in females and males (grey) and separately in females (red) and males (blue) stage I-II 
melanomas. Horizontal red line at -log10(0.05).  

 

Interestingly, in stage III analysis (Figure 4), results are more homogenous. There are 4 genes 

in females and 7 genes in males with a p-value lower than 0.05 and overall, the beta coefficients 

of both sexes do not differ to the same extent as for stage I-II.   
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Figure 4: The 25 literature found melanoma biomarkers plotted according to their beta 
coefficients and raw p-value obtained from the multivariable Cox regression analysis together 
in females and males (grey) and separately in females (red) and males (blue) stage III 
melanomas. Horizontal red line at -log10(0.05).  

 

1.2 The CP-GEP commercial CM signature 
 
The 8-gene commercial signature CP-GEP consisting of ITGB3, PLAT, SERPINE2, CDF15, 

TGFBR1, LOXL4, CXCL8 and MLANA was evaluated in a multivariate manner where all 

genes were taken together. The analysis was performed on stage I,II and stage III females and 

males, both together and separately. The model on the combined population of stage I,II was 

adjusted for age, stage and sex while for the single-sex population it was adjusted on age and 

stage, the same adjustments, except stage, were also applied for stage III. 
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Table 4: The table presents the results of the C-index, likelihood ratio test, Wald test and 
score (logrank) test of multivariate Cox regression model of stage I,II (A) and stage III (B) 
performed on females and males together and on females-only and males-only.  
 
 A) CP-GEP 8 gene signature LMC stage 1,2 
  Female/Males Females Males 
C-index 0.706 0.725 0.699 
Likelihood ratio test 69.28, p=2e-10 36.39, p=7e-05 32.66, p=3e-04 
Wald test 61.98, p=4e-09 33.34, p=2e-04 29.27, p=0.001 
score (logrank) test 64.63, p=1e-09 35.37, p=1e-04 30.52, p=7e-04 

 
 B) CP-GEP 8 gene signature LMC stage 3 
  Female/Males Females Males 
C-index 0.704 0.726 0.741 
Likelihood ratio test 25.87, p=0.004 18.53, p=0.03 6.65, p=0.05 
Wald test 25.97, p=0.004 16.3, p=0.06 12.81, p=0.2 
score (logrank) test 27.37, p=0.002 18.41, p=0.03 14.81, p=0.1 

 
 
 
 
Overall, the evaluation of the CP-GEP 8 gene signature across stages 1, 2, and 3 of LMC 

allowed a mild sex-specific performance difference. In stages 1 and 2, females exhibited 

superior predictive ability, as indicated by a higher C-index (0.725) compared to males 

(0.699) (Table 4A). In stage 3, when comparing the C-index of all the three groups (females 

and males, females-only and males-only) the higher C-index was observed in the male-only 

population (0.741) (Table 4B). The predictive ability of the statistical tests was higher in the 

combined population of females and males. All tests, likelihood ratio, Wald and logrank test, 

had a higher χ² across all tests when compared to the single-sex populations in both stage 1,2 

and stage 3. These results indicate that sex-specific predictive ability of the 8-gene CP-GEP 

signature varies according to stage. 

1.3 The 26 gene signature of Gerami et al 2015.   
 
The next signature that was assessed in a multivariable Cox regression model was the 27-

gene signature published by Gerami et al. We only assessed 26 out of the 27 genes as the 

gene MGP was not present in the LMC cohort. This signature was accessed in both stage 1,2 

adjusted for age and stage and stage 3 adjusted for age. Additionally for the combined 

population of females and males, the model was adjusted on sex, age and stage. 
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Table 5: The tables present the results of the C-index, likelihood ratio test, Wald test and 
score (logrank) test of multivariate Cox regression model initially performed on females and 
males together and on females-only and males-only of stage I,II (A) and stage III (B). 
 
 A) Gerami et al 26 gene signature tested on LMC stage 1,2 
  Female/Males Females Males 
C-index 0.716 0.759 0.711 
Likelihood ratio 
test 82.72,   p=5e-07 54.62,   p=0.002 45.48,   p=0.02 
Wald test 81.06,   p=8e-07 52.1,   p=0.004 42.79,  p=0.04 
score (logrank) test 86.61,   p=1e-07 59.55,   p=5e-04 45.08,   p=0.02 
 
 
 B) Gerami et al 26 gene signature tested on LMC stage 3 
  Female/Males Females Males 
C-index 0.738 0.856 n/a 
Likelihood ratio 
test 41.77,   p=0.05 53.48,   p=0.002 n/a 
Wald test 36.16,   p=0.1 29.58,   p=0.3 n/a 
score (logrank) test 41.88,   p=0.04 48.84,   p=0.006 n/a 
 
 
 
The results observed when comparing the multivariable Cox regression models in females and 

males together and on sex-stratified groups, are very similar to the CP-GEP results. The C-

index values for the combined Female/Males group, Females-only group, and Males-only 

group were 0.716, 0.759, and 0.711, respectively for stage I,II (Table 5A). Likewise, the 

statistical tests, including the Likelihood Ratio Test, Wald Test, and Score (Logrank) Test, 

demonstrated similar trends with the higher χ² being observed in the combined population of 

female and males and lower in the male-only population. For instance, the Likelihood Ratio 

Test yielded a χ² = 82.72,   p=5e-07 for Female/Males, χ² =  54.62,   p=0.002 for Females, and 

χ² = 45.48,   p=0.02 for Males, reaffirming the model's predictive strength across mainly the 

combined and the female-only groups. Similarly, both the Wald Test and Score (Logrank) Test 

exhibited consistent patterns of significance across sex-based cohorts, with p-values aligning 

closely with previous analyses. Additionally, the same signature was also assessed on LMC 

stage III, with the female-only group showing a stronger predictive ability with a C-index of 

0.856 compared to the 0.738 obtained from the combined population (Table 5B). There are no 

results for the male-only group as the multivariable Cox regression model did not converge 

because of the high number of variables. To further assess these 26 genes we also evaluated 



46 
 

them individually using a univariable Cox regression analysis in the three groups 

(females/males, females-only, males-only), showing that in the combined group there were 4 

significant genes with a raw p-value < 0.05, in females-only there were 9 significant genes and 

0 significant genes were found in males (Appendix Table Gerami et al).  

 

1.4 The 6 consensus-based classes created by Thakur et al 2019.  
 
The last signatures that we evaluated are the 6 consensus-based gene classes created by Thakur 

et al 2019 predicting survival outcome in the whole LMC dataset and in stage I disease. We 

only assessed them in our group of stage1,2 and not stage 3 and adjusted for age and stage. We 

evaluated the key nodal genes up- regulated in each of the 6-classes. The following genes were 

identified for each class:  

 
- Class 1: Up-regulated NFKB1, FYN, ITGB2, STAT1, RAC2  
- Class 2: Up-regulated RAD21, RPL10A, SMAD2 
- Class 3: Up-regulated MYC, RNF2, RANBP2, PLCG1  
- Class 4: Up-regulated HDAC2, RNF2, TCF7L2, MAPK11 
- Class 5: Up-regulated EGFR, HRAS, MAPK13  
- Class 6: Up-regulated JUN, NFKB1, HDAC1, PLK1, HCK  

 
These class gene-signatures were evaluated in multivariable Cox regression model is adjusted 

for age and stage. In all 4 out of 6 classes, the C-index is higher when model is run on females-

only compared to the combined population and males-only. Classes 1,2,3 and 6 display a higher 

difference in the C-index between the groups compared to class 4 and 5, where the models 

display a higher predictive ability in males-only (Figure 5).  
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Figure 5: C-index Results from Multivariate Cox Regression Models for Key Nodal Genes 
of Each LMC Class. Plots represent C-index results obtained from the multivariable Cox 
regression model for each class of key nodal genes. The C-index values are shown for three 
categories: the combined population of females and males ("femmal"), females-only ("fem"), 
and males-only ("mal"). Each plot corresponds to one of the six LMC classes (Class 1 to 
Class 6). 
 
 
Sex-stratification analysis on existing survival biomarkers not only reaffirmed their 

prognostic value in the combined, female and male, cohort but also highlighted significant 

difference in their impact when patients are stratified by sex. Notably, the analysis revealed a 

stronger association of these biomarkers with survival outcome in females compared to 

males. Furthermore, these results highlight the need of accounting for sex as a biological 

variable and correctly accounting for it in survival biomarker analysis.  

 

Summary Chapter 4  
The sex-stratified analysis of previously published CM biomarkers revealed distinct sex-

specific patterns in their prognostic value. Significant associations between certain biomarkers 

and survival were found in the combined sample of females and males, but notable differences 

emerged when analysed separately by sex. In stage I-II CM, 22 out of 25 individual biomarkers 
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showed significant p-values in females, with hazard ratios deviating from 1, suggesting a 

stronger impact on survival. In contrast, none of the biomarkers were significant in males, and 

hazard ratios were mostly neutral. In stage III CM, differences between sexes were less 

pronounced, with 4 genes significant in females and 7 in males. 

 

The evaluation of the multidimensional signatures, CP-GEP 8-gene signature and the 26-gene 

signature by Gerami et al., also showed sex-specific performance differences. Females 

exhibited superior predictive ability in stages I-II, while males showed higher predictive ability 

in stage III. Four of the sex consensus-based classes by Thakur et al. revealed higher C-index 

values in females once more, underscoring sex-specific predictive abilities. 

 

These findings highlight the importance of considering sex as a biological variable or 

stratifying by sex in the discovery of survival biomarkers. Incorporating sex-specific analyses 

can improve our understanding of biomarker impact on CM female and male survival and 

enhance early detection of recurrence and hence personalized treatment strategies. 
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Chapter 5: Explore sex-specific differences in 
primary CM, normal skin and Nevi samples. 
 
Chapter five focuses on investigating further sex-specific gene expression differences in CM, 

normal skin (both sun not-sun exposed) and nevi samples. Initially, we employed a 

multifaceted approach that includes Kaplan-Meier (KM) analysis, principal component 

analysis (PCA),  analysis of gene expression variability (GEV) and identify the differentially 

expressed genes (DEG) for datasets, LMC, TCGA, GSE53118, GTEx and Nevi, comparing 

female vs males. In addition, this part of the thesis explored the immune cell differences 

between females and males within LMC using an immune deconvolution technique, xCell. 

Chapter 5 aims to shed light on sex-related disparities in normal skin, nevi and CM.  

 

2.1 Sex stratified Kaplan-Meier plots  

Due to the substantially larger sample size compared to the other datasets and to the availability 

of complete follow-up with overall survival information, the LMC dataset was the most 

suitable to run survival analysis and look for prognostic biomarkers. Furthermore, since 

melanoma diagnosis in the LMC dataset occurred between 2000 and 2012 and no metastatic 

case was analysed, we can be confident that survival information is not affected by the effects 

of targeted or immunotherapy. Death for melanoma was the only death-cause considered. Only 

26 patients died for other reasons and were therefore excluded from survival analysis.  

For stages I, II, and III combined, a significantly better overall survival was seen in females 

(Figure 6), with a log-rank test p-value of 0.01. To further investigate the effect of sex on 

overall survival, samples were stratified based on stage. Kaplan-Meier curves of stage I and 

stage II (log-rank test p-values of 0.043 and 0.06) revealed a stronger correlation of sex in 

overall survival compared to stage III (log-rank test p-values of 0.51).  
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Figure 6: Kaplan - Meir overall survival curves with the log-rank test p-value between females 
and males for the LMC dataset on A) stages I-II and III; B) stage I; C) stage II; and C) stage 
III. 
 

2.2 Quantifying the effect of sex in survival analysis of CM 
Univariable Cox regression analysis for sex confirmed that males have higher risk of death for 

melanoma than females. Hazard ratios (HR), confidence intervals (CI) and p-values of all Cox 

regression analyses are reported in Table 4. Hazard ratio is higher and p-values are lower for 

stage I and stage II compared to stage III and all the stages combined (Table 6). When stage I-

II combined HR, for males is 1.59 (CI 1.16 - 2.19), with p-value = 0.004. 

 

Table 6: Cox regression analysis results for sex in the female-male subgroups; stage I,II,II; stage 
I; stage II; stage I-II and stage III. This table presents the hazard ratios (HR) with 95% confidence 
intervals (CI) and p-values from the Cox regression analysis for sex across various stages of 
melanoma. 

  LMC  
Characteristic HR 95% CI p-value 

stage I,II,II 1.43 1.09-1.88 0.011 
stage I 1.91 0.96-3.80 0.064 
stage II 1.45 1.01-2.08 0.044 

stage I,II 1.59 1.61-2.19 0.004 
stage III 1.20 0.69-2.09 0.500 
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2.3 Principal component analysis (PCA) on gene expression data 
PCA is a tool used in the initial steps of building a prediction model, since it helps in the 

exploratory data analysis for variable dimensionality reduction. In this project PCA was 

initially considered a data exploration technique to identify potential patterns or clusters within 

the data, which would facilitate the identification of sex specific survival biomarkers.  We first 

applied it to the entire LMC melanoma cohort (Figure 7) and then to all the other analysed 

cohorts (Table 7). 
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Figure 7: Principal component 1 (x axis) and 2 (y axis) from PCA analysis applied to the entire 
LMC melanoma cohort. Samples are coloured according to sex (top), stage (middle) or status 
(alive/dead) (bottom). 
 

 

Table 7: Variance explained by the first five principal components in LMC, TCGA, GSE53118 
and GSE65904 melanoma cohorts, in GTEx – not sun exposed (NSE) and – sun exposed (SE) 
normal skin, and in Nevi samples (GSE46517 and GSE3189). 
 
  PC1 PC2 PC3 PC4 PC5 
LMC stage I,II,III 9.13% 5.74% 4.17% 3.16% 2.40% 
TCGA stage I,II,III 17.52% 10.73% 5.50% 3.71% 3.43% 
GSE53118 stage III 23.43% 10.01% 6.46% 5.15% 4.18% 
GSE65904 primary mel. 18.47% 13.57% 11.29% 9.37% 9.07% 
GTEx - NSE 11.43% 7.17% 4.29% 3.59% 2.90% 
GTEx - SE 8.64% 4.82% 3.66% 3.46% 2.79% 
Nevi (GSE46517, GSE3189) 20.97% 10.96% 6.81% 6.05% 5.40% 
 

 

PCA analysis on the LMC cohort does not show differences between groups when looking at 

the components both numerically and visually. For example, when plotting PC1 against PC2 

and colour coding females and males, different stages, or status (dead from melanoma vs alive), 

very slight differences are observed. This is evident from the overlapping of positioned ellipses 

representing these groups (Figure 7). 

 

The scree plot (Figure 7, top), which shows the amount of variance explained by each principal 

component, provides insight into the results. Specifically, PC1 accounts for 9.13% of the 
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variance, PC2 for 5.74%, PC3 for 4.17% and so on. This pattern is consistent across datasets, 

with PC1 consistently explaining less than 24% of the variance, suggesting a general trend of 

low variance explained by the primary principal components across datasets (Table 7). 

 

Moreover, upon conducting separate PCAs for females-only and males-only within stage 

I,II,III, a slight difference emerged in PC1 and PC2 between sexes. In females, PC1 accounted 

for 10.08% and PC2 for 5.77%, while in males, PC1 explained 8.48% and PC2 5.87% of the 

variance. This sex separation highlighted only a moderate difference in variance captured 

among females compared to males (Appendix Figure 1). 

  

Taken together this information indicates that the principal components capture a modest 

amount of variability across datasets. We therefore did not use this approach to reduce variable 

dimensionality.  

2.4 Gene expression variability 
 
To further investigate this disparity between females and males, we calculated the gene 

expression variability (GEV) between the two sexes in all cohorts. This analysis was inspired 

by a meta-analysis performed on physiological tissues showing a slightly lower gene 

expression variability in females compared to males (170). Considering the importance of GEV 

between sexes in literature and its association with tumour aggressiveness, we wanted to 

investigate its role in stage I,II and stage III CM, nevi and normal skin samples. For each gene 

we calculated the coefficient of variation across female samples only and across male samples 

only. The CVs were compared between the sexes using a paired Wilcoxon two-sample test. 

The mean CV of female and of males was reported including the Wilcoxon test p-value (Table 

8).   
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Table 8: Average coefficients of variation obtained from the gene expression data of melanoma 
(LMC, TCGA, GSE53118) and non-melanoma (Nevi, Normal skin) datasets were calculated 
for both females and males in the stage stratified groups. A Wilcoxon (WC) paired test between 
females and males was performed on the total number of genes included in every subcategory. 
NSE = non sun exposed, SE = sun-exposed 
 

   Groups Mean CV WC p-value  

LMC 

 Females stage I-II 0.09739 0.00E+00 

 Males stage I-II 0.10074  

   

 Females stage III 0.10642 0.00E+00 

 Males stage III 0.09944   

TCGA 

 Females stage I-II 0.20385 1.79E-19 

 Males stage I-II 0.21005  

   

 Females stage III 0.22972 2.47E-235 

 Males stage III 0.21225   

GSE53118 
 Females stage III 0.04719 0.00E+00 

 Males stage III 0.04477   

GSE65904 
 Females (Primary Melanoma) 0.16848 0.00E+00 

 Males (Primary Melanoma) 0.20978   

GTEx 

 Females (NSE) 0.24439 5.98E-259 

 Males (NSE) 0.24849  

   

 Females (SE) 0.24159 0.004940886 

 Males (SE) 0.24164   

Nevi (GSE46517 + 
GSE3189) 

 Females 0.11753 0.00137 

 Males 0.12157   
 

Significantly different CV was observed between melanoma samples of males and females in 

both stage groups (stage I-II and stage III CM), in all datasets. A consistently lower GEV was 

observed in early stage melanoma (stage I-II ) in females compared to males, in both SE and 

NSE normal skin, and in Nevi samples. On the other hand, the opposite was observed in stage 
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III melanomas for LMC, TCGA and GSE53118 datasets, where males had a statistically 

significant lower GEV compared to females.  

To further explore GEV in our largest cohort, LMC, density plots were drawn for CVs obtained 

after bootstrapping. Random groups of 3000 genes each (10,000 iterations) were created and 

the average CVs of each group in females and males for stage I-II and for stage III melanomas 

were plotted (Figure 8). 

 

 

 
Figure 8: Density Plots of Average Bootstrap Coefficients of Variation from Gene Expression 
Data. Bootstrap analysis was performed on random subgroups of 3000 genes, repeated 10,000 
times. The density plots show the average coefficients of variation (CVs) for females (red) and 
males (blue). The top plot represents the data for stage I-II, and the bottom plot represents the 
data for stage III melanomas. 
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In addition, to further investigate the GEV between females and males within multiple 

biological pathways, we choose 15 biological processes related to either immune, metabolism 

or cell cycle processes. Our goal was to select those pathways exhibiting the highest number 

of genes per pathway from the Gene Set enrichment analysis (GSEA) website. These pathways 

were contained in the gene ontology sets (C5) of the Human Molecular Signatures Database 

(MSigDB) and consisted of a total number of genes ranging from 240 to 1896 (Table 9).  

 

Table 9: Gene Ontology Biological Pathways and Coefficient of Variation Analysis. The table 
lists 15 gene ontology biological pathways along with the total number of genes in each 
pathway. The median coefficients of variation (CV) among the total genes for females and 
males in stage I-II are provided. The Wilcoxon paired test (WC p-value) compares the CVs 
between females and males with stage I,II melanomas. 

    Median CV   

General biological pathways 
Total number of 

genes 
Females stage I-

II 
Males stage I-

II WC p-value  
GOBP_CELL_CYCLE 1702 0.0848 0.0892 2.20E-16 

GOBP_ACTIVATION_OF_IMMUNE_RESPONSE 302 0.1024 0.1053 6.97E-05 
GOBP_PROTEIN_PROCESSING 240 0.0934 0.0956 1.09E-06 
GOBP_TISSUE_DEVELOPMENT 1896 0.0991 0.1033 2.20E-16 

GOBP_CELLULAR_RESPONSE_TO_STRESS 1857 0.0828 0.0877 2.20E-16 
GOBP_PHOSPHORYLATION 1747 0.0914 0.0959 2.20E-16 

GOBP_CELL_MOTILITY 1677 0.0967 0.1005 2.20E-16 
GOBP_REGULATION_OF_TRANSPORT 1699 0.0922 0.0965 2.20E-16 

GOBP_REGULATION_OF_CELL_DEATH 1575 0.0890 0.0933 2.20E-16 
GOBP_DNA_METABOLIC_PROCESS 987 0.0817 0.0859 2.20E-16 

GOBP_CELL_CELL_SIGNALING 1587 0.0956 0.1012 2.20E-16 
GOBP_VESICLE_MEDIATED_TRANSPORT 1477 0.0868 0.0932 2.20E-16 

GOBP_DNA_REPAIR 570 0.0794 0.0834 1.86E-14 
GOBP_CELLULAR_RESPONSE_TO_DNA_DAM
AGE_STIMULUS 849 0.0811 0.0856 2.20E-16 

 

 

These analyses demonstrate that the consistently lower GEV observed in females extends 

beyond the mentioned datasets (including all genes) and the randomly generated 3000-gene 

subsets through bootstrapping. This trend persists even within randomly selected biological 

pathways (Table 9), highlighting the ubiquitous nature of the lower GEV in female stage I-II 

melanomas across various datasets and pathways and the necessity of its further 

investigation/consideration. We therefore decided to consider sex as an effect modifier instead 

of a confounder variable to adjust for. 
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2.5 Class comparison analysis 
Differential expression between the sexes was analysed on the three melanoma datasets as well 

as on the Nevi and normal skin datasets (Chrysanthou et al. 2022 (171) - Additional file 1). 

Details on the number of overexpressed genes in each of the sexes can be seen in Table 10. 

Interestingly, the number of differentially expressed genes between sexes showed a decreasing 

trend from normal skin to nevi and from early-stage to late-stage melanomas. Moreover, unlike 

the normal skin dataset and the melanoma stage I, II groups, very few differentially expressed 

genes were observed between sexes within the NEVI datasets. 

 
 
Table 10: Up-regulated autosomal and sex chromosome genes in females and males. The table 
summarizes the number of up-regulated autosomal and sex chromosome genes identified 
through class comparison analysis across various datasets. The melanoma gene expression 
datasets (LMC, TCGA, GSE53118) are further stratified by stage. For the GTEx datasets, data 
are provided for non-sun exposed (NSE) and sun-exposed (SE) conditions. 

 
 
 

 
 
 

The overexpressed genes within each sex stratified by stage were selected for gene ontology 

analysis by DAVID. Gene ontology analysis on autosomal chromosome overexpressed genes 

within the groups of interest from the LMC dataset showed significant enrichment for the fat 

cell differentiation process in females stage I, II. On the other hand, overexpressed genes in 

males stage I, II were significantly enriched, mainly in immune response and protein regulation 

(Chrysanthou et al. 2022 - Tables S20 and S21). 

  
Up-regulated autosomal 

chromosomes genes 
Up-regulated autosomal sex 

chromosomes genes  
  Stage Females Males Females Males 

LMC 
I, II, III 45 24 67 54 

I, II 27 17 64 4 
III 0 0 0 0 

TCGA 
I, II, III 39 18 17 3 

I, II 77 37 23 5 
III 39 21 16 2 

GSE53118 III 0 0 5 0 
Nevi 

(GSE46517+GSE3189) N/A 0 0 3 0 
GTEx NSE N/A 604 939 N/A N/A 
GTEx SE N/A 924 1018 N/A N/A 
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2.6 Sex-stratified immune deconvolution analysis using xCell 
 
xCell is a computational method used to estimate the presence of different immune cell types 

within a complex tissue sample, based on gene expression data. This method, unlike other 

immune deconvolution methods using only one reference gene expression profile, has multiple 

cell-signatures for every immune cell type. In addition, the output does not represent absolute 

proportions of immune cells like other techniques but provides an enrichment score. The 

enrichment score from xCell quantifies the relative abundance of various cell types in a tissue 

sample based on specific gene expression profiles and a curated gene set matrix. This analysis 

was used to compare the enrichments of immune cell subtypes in: 1. female vs male stage I-II 

CM; 2. female vs male stage III CM.  

 

The immune cell subtypes highly enriched in female compared to male stage I-II CM are T cell 

CD4+ Th2, T cell CD4+ naive, the general stroma score, mast cells, M2 macrophages, 

Hematopoietic stem cells, granulocyte-monocyte progenitors, eosinophils and B cells plasma. 

These immune subtypes are part of the adaptive immune response, the inflammation and tissue 

maintenance process, and hematopoietic and stem cell maintenance functions. As for the 

subtypes that are highly enriched in male stage I-II CM, these include T cell regulatory (Tregs), 

T cell CD8+ naive, T cell CD4+ Th1, T cell CD4+ memory,  T cell CD4+ effector memory,  T 

cell CD4+ central memory, neutrophils, myeloid dendritic activated cells, monocytes, M1 

macrophages and generally macrophages, common lymphoid progenitors, class-switched 

memory B cells and B cell memory. Overall, these immune cells in males participate in 

Regulatory and memory T cell response, inflammatory response and phagocytosis, immune 

cell development and antibody production. There are a total of 24 differentially expressed 

immune subtypes with adjusted p-value lower than 0.05, out of 36 given by xCell, in LMC 

stage I-II melanoma (Figure 9).   

 

In addition, the analysis was repeated to compare the number of differentially enriched immune 

cells in female vs male stage III CM in the LMC cohort. Interestingly, only 9 out of the total 

36 immune cell types were differentially enriched between the two sexes in stage III. Five cell 

types were more enriched in females than males: T cell CD8+ naive, T cell CD4+ Th2, T cell 

CD4+ Th1, Hematopoietic stem cells and B cell naive. As for the immune cell types enriched 

in males, these include: T cell gamma delta, T cell CD4+ naive, T cell CD4+ effector memory 

and common lymphoid progenitor cells (Figure 9).  In stage III, females exhibit enrichment in 
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diverse T cell subsets participating in the adaptive immune response. However, male enriched 

immune cell types participate in immune cell development processes. In addition, to further 

verify that our observed differences were not due to the different number of cancer cells present 

between females and males, we used another immune deconvolution package in R called EPIC 

(estimate proportion of immune and cancer cells). EPIC analysis on the LMC dataset showed 

that the differences observed in gene expression variability were not attributable to differences 

in the sampling of the tissues, as the cells labelled by EPIC as “other cells”, generally 

considered to be cancer cells, did not have any significant differences between the groups 

(Appendix Figure 2). 

 

 The analysis was also performed on GTEx normal skin, either not sun-exposed or sun-

exposed, with 12 and 6 out of 36 immune cell types being differentially enriched between male 

and female skin in SE and NSE samples, respectively (Appendix Figure 3 and Figure 4).  

 

These results underscore the complexity of the immune landscape both in stage I-II and stage 

III melanomas and underline differences between the two sexes, further raising the question 

about how these variations between the two sexes might influence disease behaviour, overall 

survival, response to therapy and overall prognosis in a sex-specific manner.  
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Figure 9: Differential Enrichment of Immune Cell Subtypes in LMC Female and Male Stage 
I-II (A) stage III (B). Differentially enriched immune cell subtypes between female and male 
patients with CM from the LMC dataset. The enrichment scores of the significantly different 
immune cell types are plotted, with females represented by red circles and males by blue 
triangles. The error bars indicate the variability of the enrichment scores within each group. 
 

2.7 Multivariable Cox Regression Analysis of Immune Cell Subtypes 
In order to fully evaluate the role of these immune cell subtypes in the context of survival 

analysis, we performed a multivariable Cox regression analysis on each cell subtype. This 

analysis, adjusted for age and stage, used xCell derived enrichment scores as predictors rather 

than gene expression values. The analysis was carried out in female stage I-II, male stage I-II, 
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female stage III and male stage III melanomas. Notably, among these subgroups, only female 

stage I-II samples exhibited a statistically significant association (adjusted p-value <0.05) 

between immune cell subtypes and survival outcomes (Table 11). 

Eight reported immune subtypes alongside the immune and microenvironment scores emerged 

as statistically significant predictors. All identified subtypes had negative beta coefficients, 

indicating an association with favourable prognosis (Table 11).  

 

Table 11: Multivariable Cox Regression Analysis in Female Stage I-II Melanomas. The results 
shown are obtained from a multivariable Cox regression analysis for female patients with stage 
I-II melanomas from the LMC dataset. The analysis adjusts for age and stage, using enrichment 
scores provided by xCell as input variables. The table includes the beta coefficient, hazard ratio 
(HR), 95% confidence interval (CI), and adjusted p-value (Adj. P-value) for each immune cell 
subtype. 

  Females LMC stage I-II 

Immune cell subtypes and scores Beta Coefficient HR 95% CI Adj. P-value 

immune score -0.8290 0.4365 [0.27 - 0.69] 0.0106 

microenvironment score -0.7325 0.4807 [0.32- 0.71] 0.0106 

T cell CD8+ -1.6415 0.1937 [0.07 - 0.55] 0.0157 

T cell CD8+ central memory -1.4646 0.2312 [0.09 - 0.58] 0.0157 

Macrophage -4.0423 0.0176 [0.001-0.22] 0.0157 

Macrophage M1 -6.3003 0.0018 [0.0002 - 0.01] 0.0157 

Myeloid dendritic cell activated -0.8148 0.4427 [0.25 - 0.79] 0.0338 

Myeloid dendritic cell -2.6518 0.0705 [0.01 - 0.49] 0.0372 

B cell -1.0171 0.3616 [0.17 - 0.77] 0.0401 

Monocyte -3.3809 0.0340 [0.002 - 0.47] 0.0444 
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Summary chapter 5 
 
Sex-specific differences in gene expression and immune cell composition were investigated in 

stage I,II and stage III CM, normal skin, and nevi samples from multiple datasets (LMC, 

TCGA, GSE53118, GTEx and Nevi) using a combination of statistical data processing 

languages based on different computational methods: Kaplan-Meier survival analysis, 

principal component analysis (PCA), GEV assessment and differential gene expression. 

Results of Cox regression analysis demonstrated a notably worse OS for males in stage I-II 

CM. Females and males were hardly separated by PCA, primarily because principal 

components explained only a small fraction of the variance in all datasets. We observed 

significant differences in GEV with females having a lower GEV than males for both the early-

stage melanomas and the normal skin, while males had a more substantial median difference 

in late-stage melanomas. Bootstrap analysis further supported the GEV findings. Differential 

expression analysis revealed a decreasing tendency in the number of differentially expressed 

genes from normal skin to nevi and from early-stage to late-stage melanomas. Next, using xCell 

for immune deconvolution, we discovered sex-based differences in the enrichment of various 

types of immune cells during early-stage (I-II) and advanced stage (III) melanomas. On the 

multivariable Cox regression analysis in female stage I-II melanomas, several immune cell 

subtypes were significantly associated with survival outcomes. Our results emphasize the 

importance of considering sex as a biological variable in cutaneous melanoma (CM) studies. 

This consideration could help elucidate how sex influences the biology of skin melanoma and 

may also indicate potential differences in response to immune checkpoint inhibitors based on 

sex. 
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Chapter 6: Discovery of sex-specific prognostic gene 
biomarkers in stage I-II CM. 
 
The main objective of this chapter is to identify sex-dependent survival gene biomarkers in 

CM. Given the previous findings on sex-related differences in survival outcome and gene 

expression (variability), we aim at discovering female-specific and male-specific survival 

biomarkers. This analysis was performed in female-only and male-only sample sets adjusting 

for age and stage. Before that, we included the entire set of stage I,II patients and include the 

interaction term between gene expression and sex as covariate. Advanced statistical methods, 

including LASSO penalized and bi-directional stepwise Cox regression analysis, were used to 

build the sex-specific prognostic models. 

 

3.1 Filtering out genes utilising multivariable Cox regression analysis  
In order to filter-out any non-survival related genes, we performed a multivariable Cox 

regression analysis on each gene adjusting for age, stage and sex. Genes with Benjamini-

Hochberg (BH) adjusted p-value less than 0.05 were considered for further analyses.  First, we 

considered stage I, II and III combined groups of females and males, and then we analysed: 

females only, males only; stage I-II only and stage III only (Table 12). 
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Table 12: Multivariable Cox Regression Analysis on the LMC Melanoma Cohort. This table 
presents the results of a multivariable Cox regression analysis on the LMC melanoma cohort. 
The analysis was performed on combined groups of females and males, as well as separately 
for females and males, stratifying by stage and age. The "Adjusted for" column indicates the  
covariates each multivariable Cox model was adjusted for. The table shows the number of 
genes with an adjusted p-value < 0.05 for each combination. 

 

 
 
 
The number of statistically significant genes obtained from each sex individually displayed a 

substantial dissimilarity. Female genes were more abundant (Table 12) and show an overall 

higher statistical significance, both in combined stage I-II and in stage I-II-III compared to 

male ones (Figure 11B). The same Cox regression analysis was then performed on TCGA and 

GSE53118 datasets, but no survival-related genes satisfying the adjusted p-value cut-off were 

obtained. 

 

Analyses were repeated by randomly selecting, among females, subsamples with the same male 

sample size (256 samples), and results did not change. Ten subgroups containing 256 female 

samples were created, each including 57 events. The average number of adjusted p-value 

significant genes was 839.5, ranging from 320 to 1653. (Figure 10) . 

 

 

 LMC 
 Groups Adjusted for Stage Adjusted. p-value < 0.05  

Females + Males  Age, Stage and Sex 

I,II,III 

1603 
Females  Age and Stage 1475 

Males Age and Stage 2 
Females + Males  Age, Stage and Sex 

I-II 

351 
Females  Age and Stage 1119 

Males Age and Stage 0 
Females + Males  Age and Sex 

III 

20 
Females  Age 0 

Males Age 0 
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Figure 10: Distribution of genes with significant p-values in adjusted models (p < 0.05) in 
females with stage I-II cancer. The female cohort, consisting of 311 samples, was divided into 
10 groups of 256 samples each, with the same proportion of event as the total cohort. The bar 
plot shows the count of significant genes (adjusted p-value < 0.05) in each group. The dashed 
horizontal line represents the mean count of significant genes across all groups. 
 

Concerning stage III, there were no sex-specific statistically significant genes, but there were 

20 when females and males were combined. Figure 11A presents the 351 genes obtained from 

the multivariable Cox regression analysis on stage I-II genes adjusted for age, stage and sex 

intersected with the 1119 genes obtained from the female only analysis, showing that 254 genes 

are still significant in the female population. In addition, the 351 genes’ beta coefficients (the 

natural logarithm of the hazard ratios) and adjusted p-values extracted from the female-only 

and male-only analysis (Figure 11B), show that the significance only holds true for the female 

population. No gene for males was indeed found above the dashed horizontal line that 

corresponds to adjusted p-value = 0.05. 
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Figure 11: Multivariable Cox regression analysis results for the genes in stage I-II melanomas. 
A) Venn diagram representing the common and distinct statistically significant genes obtained 
for females + males stage I-II or females only stage I-II. B) Volcano plots representing 
multivariable Cox regression coefficients (x axis) and -log10 of the adjusted p-values (y axis) 
extracted from the female only (red points) and male only (blue points) analyses, for the 351 
statistically significant genes in females + males. The horizontal dashed line corresponds to 
adjusted p-value = 0.05.  
 

Table 13:  Multivariable Cox Regression Analysis of Age, Stage, BRAF, and NRAS in LMC 
Stage I-II Melanomas. Table presents the results of a multivariable Cox regression analysis 
evaluating the impact of age, stage, BRAF, and NRAS mutations on survival in LMC stage I-
II melanomas, separately for females (top) and males (bottom). The analysis adjusts for age 
and stage in both groups. 
 

LMC Females stage I,II adjusted for age and stage 
  beta coefficient HR [95% CI] p-value 

Age 0.02 1.03 [1.01 - 1.04] 9.11E-03 
Stage 1.15 3.14 [1.77 - 5.57] 8.68E-05 
BRAF 0.15 1.17 [0.73 - 1.87] 0.5 
NRAS -0.14 0.87 [0.49 - 1.55] 0.63 

    
LMC Males stage I,II adjusted for age and stage 

  beta coefficient HR [95% CI] p-value 
Age 0.04 0.96 [1.02 - 1.07] 3.69E-04 

Stage 0.78 2.17 [1.28 - 3.70] 4.05E-03 
BRAF 0.62 1.85 [1.18 - 2.92] 0.0008 
NRAS -0.24 0.79 [0.44 – 1.39] 0.41 

 

A. B. 
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Two separate multivariable Cox regression models were performed on each sex 1; including 

age, stage and BRAF and 2; including age, stage and NRAS (Table 13). Age and stage were 

both associated with worst survival in both sexes in stage I-II. These results revealed no 

significant association with overall survival in stage I-II female melanomas either for BRAF 

or NRAS. However, while in male melanomas NRAS was not significantly associated with 

survival, BRAF was significantly associated with poor overall survival (p-value = 0.008). 

3.2 Investigation of the gene*sex interaction in a multivariable Cox 
regression analysis 
With the aim of further investigating if the effect of gene expression on survival outcomes 

differs between females and males, the gene*sex interaction term added in the multivariate 

Cox regression survival analysis already adjusted for age and stage (Figure 12). Out of the 

29,000 genes in the LMC dataset there were no adjusted p-value (<0.05) significant genes. 

However, when the cut-off was relaxed to a raw p-value < 0.001, there were 63 significant 

genes associated with survival in a sex-specific manner (Figure 13).  

 

To investigate these 63 genes in a more sex-specific way, a multivariable Cox regression 

analysis was performed on females only and males only. While in females, all 63 genes were 

raw p-value significant with strong coefficients, in males only 22 genes were raw p-value 

significant and had lower in general coefficients compared to the female analysis.  
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Figure 12 : Interaction Term Analysis of Gene Impact on Survival in Stage I-II CM.  The 
figure shows the results of a multivariable Cox regression analysis in terms of the interaction 
gene*sex. The left panel displays a volcano plot of interaction coefficients vs. -
log10(adjusted p-value) with no significant genes below the 0.05 threshold (red line), the 
right panel shows interaction coefficients vs. -log10(raw p-value), revealing 63 significant 
genes with sex-specific associations at the 0.001 threshold (red line). 
 
 
 
 

 
 
Figure 13: Regression Coefficients vs -log10(raw p-value) in Female and Male separately in 
stage I, II CM. This figure illustrates the regression coefficients plotted against -log10(raw p-
value) for female and male stage I, II melanoma patients. The left panel displays the female 
regression coefficients in red, while the right panel shows the male regression coefficients in 
blue. Both plots include a red horizontal line representing the raw p-value threshold of 0.05. 

3.3 Discovery of female-specific prognostic gene signature 
In order to identify female-specific survival biomarkers, we first applied multivariable Cox 

regression analysis. As was previously shown in Table 12, by adjusting for age and stage we 
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found 1119 genes associated with female-specific survival. To build a prognostic model while 

avoiding overfitting, we used a 10-fold cross validation approach, while censoring at 8-years, 

by partitioning our sample group into 10 smaller groups of approximately 31 samples, 

maintaining in each subgroup the same proportion of events as in the total sample. During each 

iteration, we trained a LASSO penalised Cox regression model (using cv.glmnet) on 9/10 of 

the subgroups and evaluated its performance on the remaining one. A cross-validation LASSO 

Cox regression selects survival-influencing covariates, while penalising non important survival 

covariates with a zero coefficient. Age and stage were always included as input variables. 

  

Our focus was on genes that consistently showed non-zero coefficients across all ten iterations. 

In each cycle of this internal validation process, we assessed performance metrics such as the 

UNO AUC, UNO C-index and observed/expected ratio. We also calculated the baseline 

survival rate, which indicates the chances of survival when all covariates are set to zero. Since 

certain factors, at zero, could be unrealistic, we standardised by scaling our data. The average 

baseline survival at 8-years was 81%, which makes sense as early detection of melanoma is 

associated with long term survival outcomes. An UNO AUC average value of 0.75 was 

obtained, which translates to the models having a moderate to strong predictive performance. 

However, the confidence interval spanning from 0.51 to 0.99 introduces uncertainty. For the 

UNO C-index, defined as the concordance probability estimate, we obtained an average value 

of 0.72 that proposes the model has a reasonably good predictive accuracy in ordering the 

samples paired according to their survival time. We obtained a mean ratio of observed/expected 

of 0.97, which suggests that the observed number of events is very close to the number of 

events predicted by the model (the closer to 1 the better the calibration of the model). However, 

the wide confidence interval (0.43 - 2.17) indicates considerable uncertainty (Table 14). 

 

Table 14: Average performance metrics of 10-fold cross validation in female stage I-II 
melanomas. The table presents the average baseline survival rate, Uno AUC, UNO C-index, 
and observed/expected ratio, with respective confidence intervals, obtained from a 10-fold 
cross-validation of the LMC female stage I-II melanoma dataset. obs/exp = observed/ expected  

Average (10-folds) LMC - Females stage I-II 
Baseline survival 0.8085 

Uno AUC 0.7531 [0.5151 - 0.9909] 
UNO C-index 0.7211 
obs/exp ratio 0.9685 [0.4317 - 2.1741] 
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The genes with a non-zero coefficient all 10 times were: HLA class I histocompatibility 

antigen, alpha chain E (HLA-E), Ubiquitin like modifier activating enzyme 7 (UBA7) and 

Ubiquitin Like With PHD And Ring Finger Domains 1 (UHRF1). The three genes were then 

incorporated into a comprehensive multivariable Cox regression model (Figure 14) using the 

entire group consisting of 311 females. Neither age nor stage were selected by the ten models. 

The beta coefficients of HLA-E and UBA7 were -0.38 and -0.29 respectively, which suggested 

a protective role (the higher their expression level the longer the patient survival) for these 

genes. Conversely, UHRF1 had a beta coefficient of 0.63, indicating an association with worse 

prognosis. 

 

 

 
Figure 14: Multivariable Cox regression Hazard ratios and related confidence intervals of the 
three female-specific stage I-II survival covariates on the LMC cohort. The figure shows the 
hazard ratios and 95% confidence intervals for three female-specific survival genes covariates 
(HLA-E, UBA7, UHRF1) in stage I-II melanomas from the LMC cohort, with data censored 
at 8 years. The dotted line at 1 represents no effect. Significant p-values are indicated next to 
each covariate. The analysis includes 59 events, with a global p-value of 3.08e-14, AIC of 
91.17, and a Concordance Index of 0.78. 

3.4 Discovery of male-specific prognostic gene signature 
Because of the absence of genes strongly associated with survival, we adapted a slightly 

different methodology to build a male-specific prognostic model. We set at 0.001 the raw p-

value cut-off of the multivariable Cox regression analysis described in chapter 5 (Appendix 
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Table 1). Out of these 29 genes, we selected five with the higher Hazard ratios. The five chosen 

genes were Brain Expressed X-Linked 3 (BEX3), Integrin Subunit Alpha 4 (ITGA4), MYC 

Associated Zinc Finger Protein (MAZ), Quiescin Sulfhydryl Oxidase 1 (QSOX1), Splicing 

factor 3B subunit 3 (SF3B3). All five genes had positive beta coefficients (1.04, 0.82, 1.25, 

0.93, 0.88) which translates to an anti-survival role of these genes in our male population. In 

order to create, out of our 5 genes, age and stage, the most promising multivariable male-

specific model, we used a 10-fold cross validation approach describe as done for females and 

within each iteration we performed a bi-directional stepwise analysis. This analysis started with 

a full model including all variables and systematically added or removed variables to improve 

the model fit, aiming to minimise the Akaike Information Criterion (AIC) value. The AIC is 

calculated based on the log-likelihood function and the number of parameters in the model: the 

lower the AIC the better the balance between the model’s goodness of fit and its complexity.  

 

Age, Stage, BEX3 and SF3B3 were selected 10 times. In each cycle, we assessed the same 

average performance metrics as for females: baseline survival, UNO AUC, UNO C-index and 

observed/expected ratio. The average baseline survival in males with stage I-II melanoma at 

year 8 was 0.71, signifying a 71% of survival at 8 years. As expected, this percentage is lower 

than that obtained for females. An average UNO AUC of 0.72 was obtained, indicating a 

moderate discriminatory ability of the model in distinguishing between individuals in ranking 

them by their survival time. Average UNO C-index was 0.69, suggesting a fair predictive 

accuracy in assigning higher predicted risks to those who experience events earlier in time. The 

average ratio of observed/expected was close to 1, indicating a reasonable fit of the model in 

aligning expected to observed events (Table 15). 

 

Table 15: Average performance metrics of 10-fold cross validation in male stage I-II 
melanomas. The table presents the average baseline survival rate, Uno AUC, UNO C-index, 
and observed/expected ratio, with respective confidence intervals, obtained from a 10-fold 
cross-validation of the LMC male stage I-II melanoma dataset.  obs/exp = observed/ expected  

Average (10-folds)     LMC - Males stage I-II 
Baseline survival      0.7128882 

Uno AUC      0.7239 [0.4768 - 0.9711] 
UNO C-index      0.6961 
obs/exp ratio   1.0077 [0.4827 - 2.1043] 
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The four selected covariates (age, stage, BEX3 and SF3B3) were then used to create a 

multivariable Cox regression model on the whole population of males stage I-II (Figure 15).  

 

 
Figure 15: Multivariable Cox regression on LMC Hazard ratios of the four male-specific stage 
I-II survival covariates. The figure presents the hazard ratios and 95% confidence intervals for 
four male-specific survival covariates (BEX3, SF3B3, age, and stage) in stage I-II melanomas 
from the LMC cohort, with data censored at 8 years. The dotted line at 1 represents no effect. 
Significant p-values are indicated next to each covariate. The analysis includes 71 events, with 
a global p-value of 2.04e-09, AIC of 78.28, and a Concordance Index of 0.71. 
 

3.5 Individual assessment of genes in the discovered sex-specific signatures 
We reported individual survival performance through multivariable Cox regression metrics on 

each gene contained in sex-specific prognostic models for females and males and plotted 

Kaplan-Meier (KM) survival curves. In female stage I,II melanomas UHRF1 had a positive 

beta coefficient, indicating that it is associated with worse survival, while HLA-E and UBA7 

had negative coefficients, meaning that they are associated with better survival (Table 16). On 

the other hand, the two male specific genes (BEX3 and SF3B3) showed much lower absolute 

coefficients and much higher p-values, with the raw p-value not even reaching 0.1. 
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Table 16: Individual gene evaluation in multivariable Cox regression (adjusted for age and 
stage) for females with stage I-II melanomas, LMC cohort. Evaluation of individual gene 
performance in a multivariable Cox regression model for females with stage I-II melanomas 
from the LMC cohort, adjusted for age and stage. Metrics include beta coefficient, raw p-value, 
and adjusted p-value. 

 

 

 

 

 

 

 

The KM survival curves of the five genes were plotted in females, stratifying patients according 

to the median expression of the genes, revealing a significant difference for UHRF1 (p = 

0.00038), HLA-E (p<0.0001) and UBA7 (p<0.0001) and no significant differences for BEX3 (p 

= 0.51) and SF3B3 (p = 0.42) (Figure 16). High expression of HLA-E and UBA7 seem to be 

significantly associated with a longer survival. However, high expression of UHRF1 is 

negatively implicated with the survival of females with stage I-II melanomas.  

 
Figure 16: Kaplan-Meir curves of the five genes of interest in LMC females with stage I-II 
melanomas. Data is censored at year 8, and curves are created according to gene expression 
values (pink curve = below the median; red curve = above the median). 

 LMC Females stage I-II - adjusted for age and stage 
Genes beta coefficient raw p-value adjusted p-value 

UHRF1 1.03498 9.82E-09 4.80E-05 
HLA-E -1.43685 5.99E-09 4.51E-05 
UBA7 -0.87191 7.68E-09 4.51E-05 
BEX3 0.24846 0.28118 0.63987 
SF3B3 0.35366 0.15008 0.48994 
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The five genes of interest were also assessed in the male cohort of stage I-II samples. 

Interestingly, HLA-E, a gene identified to be protective in females, had a close to significant 

raw p-value in males with stage I-II melanomas, suggesting a potential protective role of this 

gene in males as well. The beta coefficients of BEX3 and SF3B3 were both positive, associating 

these genes to negative survival, and their absolute values were by far higher than those of the 

three female selected genes (Table 17).  

 

Table 17: Individual gene evaluation in multivariable Cox regression (adjusted for age and 
stage) for males with stage I-II melanomas, LMC cohort. Evaluation of individual gene 
performance in a multivariable Cox regression model for males with stage I-II melanomas from 
the LMC cohort, adjusted for age and stage. Metrics include beta coefficient, raw p-value, and 
adjusted p-value. 

  LMC -Males stage I-II - adjusted for age and stage 
Genes beta coefficient raw p-value adjusted p-value 

UHRF1 0.14116 0.24298 0.92552 
HLA-E -0.53101 0.05317 0.89507 
UBA7 0.08186 0.62563 0.97606 
BEX3 1.03876 3.19E-06 0.09357 
SF3B3 0.88132 1.13E-04 0.69318 

 

 

The survival KM curves of the five genes of interest were also plotted in males with stage I-II 

melanomas, dividing patients according to the median expression value of each gene. The 

curves from the female-specific survival biomarkers UHRF1, HLA-E and UBA7 were not 

separated at all. On the other hand, the high expression of BEX3 was significantly associated 

with poor survival (log-rank test p-value = 0.015), whereas SF3B3 expression was less able to 

separate patients into distinct prognostic groups (log-rank test p-value = 0.089). Only after year 

5.5 the high expression of SF3B3 seems to be associated with worse survival (Figure 17). 

However, this is not surprising as these genes were selected together during bidirectional 

stepwise analysis and combined with age and stage in the male-specific prognostic model. 
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Figure 17: Kaplan-Meir curves of the five genes of interest in LMC males with stage I-II 
melanomas. Data is censored at year 8 and curves are created according to gene expression 
values (grey curve = below the median; blue curve = above the median). 

The “Appendix Table 2” contains the TCGA multivariable Cox regression coefficients and raw 

p-values of females and males separately in stage I, II. None of the genes exhibit a significant 

p-value in either females or males. However, in females with stage I-II melanomas, most beta 

coefficients, except for UBA7, align in directionality with those observed in LMC. Meaning 

that they share the same sign, either positive or negative like the LMC obtained results.  

In the analysis of TCGA males with stage I-II melanomas, the coefficients for the two male-

specific genes exhibited coefficients in opposite directions (positive in LMC, negative in 

TCGA). As for the female-specific genes, UHRF1 and HLA-E demonstrated coefficients in the 

same direction, but UBA7 did not follow the same pattern. 

The observed discrepancies might be due to the small sample dataset, different technology for 

expression profiling (microarrays in LMC vs RNA-seqs in TCGA) and contribute to the 

miscalibration observed for the models (especially the male one) when applied to the TCGA 

external dataset. 
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Summary chapter 6 
Genes not significantly associated with sex-specific survival were filtered out and we found 

that in stage I,II female melanomas there is a much higher number of genes related with 

survival compared to male ones. The role of BRAF and NRAS mutation was evaluated in a sex 

specific manner, showing that BRAF mutation status is associated with survival only in males 

with stage I,II CM. The gene*sex interaction term was investigated using Cox regression, but 

no genes with statistically significant association, in terms of adjusted p-value, resulted from 

this analysis. Finally, for the selection of the sex-specific survival genes, LASSO penalised 

Cox regression and bi-directional stepwise analysis were utilised for females and males, 

respectively, with more relaxed cut-off values to choose the input genes in males. The female-

specific model identified both protective (HLA-E, UBA7) and adverse (UHRF1) key genes 

and was validated internally (AIC = 91.17, Concordance Index 0.78). The male-specific model 

included two genes (BEX3, SF3B3), age and stage, and had good performance upon internal 

validation, as indicated by an AIC of 78.28 and a Concordance Index C of 0.71. Additionally, 

the discovered genes were assessed individually in each sex, showing once more a greater 

performance, in terms of both coefficients and p-values, in females compared to males stage 

I,II melanomas. Female-specific genes performed poorly in males, while male-specific genes 

demonstrated weak association with survival in females. 
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Chapter 7: Assessment of the identified sex-specific 
prognostic models on external cohorts.  
 

This chapter focuses on validating the newly discovered sex-specific gene signatures of stage 

I,II CM. The aim of the analysis is to demonstrate that the gene signatures are robust and 

generalizable across external cohorts such as the TCGA and our own Biella cohort. Firstly, we 

assessed the overall more performant female-specific gene signature, obtained from LASSO 

Cox regression analysis, verifying its predictive power using metrics such as the Uno AUC, C-

index and observed/expected ratio. These metrics provide understanding as to the 

discriminatory power, calibration and overall predictive performance.  Similar validation steps 

were followed for the male-specific gene signature.  

 

4.1 Validation of the female-specific gene signature  
Is important to note that we did not compute average coefficients from the LASSO Cox 

regression because they encompass contributions not only from these three specific genes of 

interest, but also from all non-zero coefficients obtained throughout every iteration.  

 

Table 18: Validation metrics of the female-specific survival model applied to Biella and TCGA 
datasets. Validation metrics of the multivariable Cox model for female-specific survival 
covariates in Biella and TCGA datasets (stage I-II). Metrics include Uno's AUC, UNO C-index, 
and observed/expected ratio with confidence intervals. 
 

  Biella cohort - Females stage I-II TCGA - Females stage I-II 
Uno AUC 0.8036 [0.5736 - 1] 0.7953 [0.5006 - 1] 
UNO C-index 0.7638 0.7161 
obs/exp ratio 0.3044 [0.1267 - 0.7313] 0.5843 [0.2922 - 1.1684] 
 

The survival model was then applied to the Biella (Appendix table 5).  and TCGA cohorts for 

females with stage I-II melanomas and showed promising performance (Table 18). Due to the 

unavailability of follow up information in TCGA, the survival model was validated on data 

censored at year 3, unlike the Biella cohort that had follow up info for up to 8 years. UNOs 

AUC estimates indicated a fair ability to discriminate between females with or without event, 

with values of 0.8036 for the Biella cohort and 0.7953 for TCGA, although some uncertainty 

due to confidence intervals. UNO C index suggested higher effective ranking of survival times 
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in the Biella cohort (0.7638) than in the TCGA cohort (0.7161). However, the 

observed/expected ratios suggest calibration issues while aligning predicted and observed 

event rates, with both datasets having a value lower than 1, meaning fewer events than 

expected. These findings demonstrate promising discrimination metrics but emphasise the need 

for further investigation ideally with cohorts including more samples and events. TCGA 

validation metrics are poorer than the Biella ones.  

 

Overall, while the validations in both external cohorts showed decent discriminatory and 

performance ability, the wide confidence intervals across numerous metrics indicated a level 

of uncertainty. Further investigation is recommended, especially in larger cohorts. 

 

4.2 Validation of male-specific gene signature 
 

The validation of the multivariable Cox regression model in the two external cohorts was 

performed by evaluating the same performance metrics as in the internal validation: UNO 

AUC, UNOC-index, and obs/exp ratio (Table 19). Across these metrics, the Biella cohort 

(Appendix table 5). demonstrated notably stronger performance compared to the TCGA 

dataset. UNO AUC was equal to 0.85 in the Biella cohort, signifying a strong ability in 

distinguishing between individuals with events compared to those without an event, while in 

TCGA it was equal to 0.57, indicating a very weak discriminatory ability. Again, the ability to 

rank pairs of individuals based on the survival time was notably lower in TCGA (0.52) 

compared to the Biella cohort (0.86). Concerning the ratio of obs/exp, both external cohorts 

performed similarly, with a value lower than 1 signifying that the observed events were fewer 

than what the model anticipated, indicating potential overestimation of the model’s predictions.       

 

Table 19: Validation metrics of the male-specific survival model applied to Biella and TCGA 
datasets. Validation metrics of the multivariable Cox model for male-specific survival 
covariates in Biella and TCGA datasets (stage I-II). Metrics include Uno's AUC, UNO C-index, 
and observed/expected ratio with confidence intervals. 

 Biella cohort - Males stage I-II TCGA - Males stage I-II 
Uno AUC 0.85 [0.6596 - 1] 0.5729 [0.1652 - 0.9805] 

UNO C-index 0.8649 0.5246 
obs/exp ratio 0.5397 [0.2026 - 1.4379] 0.5837 [0.2191 - 1.5551] 
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To conclude, the validation outcomes of the male-specific survival biomarkers performed 

poorer compared to the female ones. These results were somewhat anticipated, given that, 

overall, 1; the initial multivariable Cox regression results were statistically poorer in males and 

2; the male population's higher GEV introduces unclear results in a number of analyses. The 

findings underscore poor to moderate performance strength and considerable uncertainty.  

Summary chapter 7 
This chapter’s goal was to validate the newly discovered sex-specific gene signatures in 

external datasets, TCGA and Biella. Although results are promising especially for females, it 

is important to mention that the sample size of the validation datasets has a limited number of 

samples. The 3-gene female signature prognostic values was assessed using metrics such as 

the UNO AUC, C-index and observed/expected ratio. The female-specific validation 

performed well, especially in the Biella dataset. In contrast, validation of the male-specific 

gene signature showed substantial variation in performance between the two external 

datasets, with stronger validation metrics in the Biella one. These results were to some extent 

expected given the initial multivariable Cox regression outcomes and the GEV results. 

 

This chapter highlights the strengths and limitations of the identified sex-specific biomarkers, 

in terms of robustness and generalizability to external dataset. To improve generalization and 

predicted power of these biomarkers, further investigation with larger cohorts is needed. 
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Chapter 8: Functional analysis of the discovered sex-
specific gene biomarkers 
 
This chapter aims to expand and further understand the functional implications of the 

discovered female and male specific gene biomarkers. Initially, through correlation analysis, 

the genes positively or negatively correlated with our genes of interest were assessed. This 

analysis was performed separately in females and males, and the top genes are plotted followed 

by a functional gene ontology analysis. The enriched biological processes facilitate the 

interpretation and understanding of the functions related to the genes of interest. Additionally, 

a correlation analyses between the gene expression values of the discovered biomarkers and 

the xCell enrichment scores were performed to elucidate any immune cell-related functions. 

Furthermore, network analysis identified the most important genes related to our genes of 

interest outside the context of CM. Subsequently, extraction of single cell data and KM plots 

based on the TCGA from the Protein Atlas highlighted: 1) the cells expressing higher levels of 

the genes of interest and 2) the ability of the selected genes to stratify TCGA CM patients in 

groups with significantly different overall survival.  

5.1 Assessment of correlation of the genes of interest with all other genes  
We calculated Spearman correlation and adjusted the p-value based on the number of tests 

performed using the Benjamini-Hochberg (BH) method. This analysis was used to identify the 

most positively and negatively correlated genes with our genes of interest. In stage I-II female 

melanomas we correlated individually, UHRF1, HLA-E and UBA7 with the other 29,352 genes 

in the cohort. Also, the two male genes, BEX3 and SF3B3, were correlated with the remaining 

29,353 genes in the male stage I-II cohort. The adjusted p-value threshold was set at 0.05 to 

select significantly positively and negatively correlated genes in each analysis. The top 200 

positively and negatively correlated genes of each analysis were plotted (Figure 11) and 

uploaded in DAVID bioinformatic tool to assess the biological processes (BP5) for which they 

were significantly enriched. All top 200 genes had correlated test adjusted p-value lower than 

0.05. 

 

The plots showing Spearman correlation coefficients and corr.test p-values of the top 200 

positively correlated genes and the top 200 negatively correlated genes for each of the five 

genes of interest (evaluated within sex-specific datasets) confirm, once more, an overall  better 
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“performance” in the female-population, with all correlated genes having lower p-values and 

higher correlation coefficients compared to the genes correlated to male-specific genes (Figure 

18). This one more reflects the lower gene expression variability observed in females. 

 

 
Figure 18: Spearman correlation coefficients plotted against the -log10 adjusted p-value of the 
top 200 positively correlated and the top 200 negatively correlated genes, each colour 
representing one gene of interest. Correlation with UHRF1, HLA-E and UBA7 was calculated 
in the LMC female stage I-II dataset, while correlation withBEX3 and SF3B3 was calculated 
in the LMC male stage I-II dataset.  
 

We then applied the DAVID functional enrichment tool to retrieve the biological processes 

(level 5 of the gene ontology) for which the lists of (anti)correlated genes were enriched. The 

threshold for the Bonferroni adjusted enrichment p-value was set to 0.05 and the top biological 

processes significantly overrepresented within the list of genes positively and negatively 

correlated with the genes of interest were reported. If less than 10 processes were reported, it 

was due to the limited number of biological processes with significant enrichment in the 

analysis. 
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5.2 Female- specific genes  
UHRF1 
 
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a protein-coding gene that is 

involved in DNA methylation maintenance and epigenetic regulation (172). The genes that 

show a positive correlation with UHRF1 are involved in processes like controlling the cell 

cycle during mitosis, dividing the nucleus, separating sister chromatids and transitioning 

between different phases of the cell cycle. On the other hand, the genes that have a negative 

correlation with UHRF1 are significantly enriched only in the signalling pathway of cell 

surface receptors and cell migration. However, enrichment scores and p-values are significantly 

poorer compared to the positively correlated processes (Figure 19). 

  

 
Figure 19: Gene ontology biological processes (level 5) obtained from DAVID functional 
enrichment tool for UHRF1. The BPs overrepresented within the top200 genes positively (top) 
and negatively (bottom) correlated with UHRF1 in LMC female stage I-II melanomas are 
represented. The histogram length reflects the statistical significance of the enrichment. 
 
HLA-E 
 
Major histocompatibility complex, class I, E (HLA-E) is a protein-coding gene that encodes a 

non-classical MHC class I molecule that presents peptides derived from the leader sequences 

of other MHC class I molecules. It is expressed in various tissues and cell types, including 

placenta, endothelial cells, and immune cells. It presents peptides to natural killer (NK) cells 

and certain T cells to regulate immune responses.  

 

Genes that revealed positive correlation with HLA-E were found to be enriched in immune 

response regulation processes, including lymphocyte activation, regulation of cell adhesion 
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leukocytes T cell activation and proliferation of lymphocytes and mononuclear cells. Genes 

negatively correlated with HLA-E were found to be enriched in BPs associated with ribosome 

assembly and metabolism of non-coding RNA (ncRNA). These findings provide insights into 

how HLA-E plays a role in modulating a variety of immune related mechanisms (Figure 20).  

 

 
Figure 20: Gene ontology biological processes (level 5) obtained from DAVID functional 
enrichment tool for HLA-E. The BPs overrepresented within the top200 genes positively (top) 
and negatively (bottom) correlated with HLA-E in LMC female stage I-II melanomas are 
represented. The histogram length reflects the statistical significance of the enrichment. 
 
UBA7 
 
Ubiquitin-like modifier activating enzyme 7 (UBA7) is a protein-coding gene that encodes an 

enzyme that activates the ubiquitin-like protein ISG15. It is expressed in various tissues and 

cell types, especially in response to interferon stimulation. It is involved in innate immunity 

and antiviral defence (173). It has been linked to various diseases, such as viral infections, 

inflammatory disorders, and cancer (174,175). 

 

Genes with a positive correlation with UBA7 were found to be involved in regulatory processes 

related to immune response. These processes include activation of lymphocytes, proliferation 

of leukocytes and lymphocytes adhesion between leukocytes and regulation of T cell 

activation. 

 

Conversely, genes exhibiting a negative correlation with UBA7 were significantly associated 

with DNA metabolic processes, cell cycle processes such as division and segregation of 

chromosomes metabolic pathways involving nucleotides, biogenesis of ribosomal subunits, 

maintenance of telomeres and segregation of sister chromatids during mitosis (Figure 21). 
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The findings highlight the immune relationship of positively correlated biological processes, 

further supporting the anti-tumorigenic role of UBA7 in females stage I-II. In addition, the 

negatively correlated BPs with UBA7 support a cell cycle pro-tumorigenic role. 

 

 
Figure 21: Gene ontology biological processes (level 5) obtained from DAVID functional 
enrichment tool for UBA7. The BPs overrepresented within the top200 genes positively (top) 
and negatively (bottom) correlated with UBA7 in LMC female stage I-II melanomas are 
represented. The histogram length reflects the statistical significance of the enrichment.  

5.3 Male-specific genes 
BEX3 
 

Unlike females-specific genes that had both positively and negatively significant BPs in every 

analysis, male-specific genes BEX3 and SF3B3 only had significant BPs associated with the 

top 200 negatively correlated genes. 

 
Brain expressed X-linked 3 (BEX3). It is a protein-coding gene that encodes a member of the 

brain expressed X-linked (BEX) family of proteins. It is expressed in various tissues and cell 

types, especially in the brain and nervous system. It has been implicated in various cancers and 

neurological disorders (176,177). 

 

BEX3 was identified in our analysis as a gene with high expression significantly associated 

with worst survival. Interestingly, the BPs significantly overrepresented within the list of 

negatively correlated genes are involved in immune processes. Some of these processes are 

lymphocyte activation, leukocyte differentiation and proliferation, haematopoiesis and positive 
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regulation of cytokine production (Figure 22). These results further support the pro-

tumorigenic/ anti-survival role of BEX3 in male stage I-II melanomas. 

 

 
Figure 22: Gene ontology biological processes (level 5) obtained from DAVID functional 
enrichment tool for BEX3. The BPs overrepresented within the top200 genes negatively 
correlated with BEX3 in LMC male stage I-II melanomas are represented. The histogram 
length reflects the statistical significance of the enrichment.   
 

SF3B3 
 
Splicing factor 3b subunit 3 (SF3B3). It is a protein-coding gene that encodes a subunit of the 

splicing factor 3b (SF3B3) complex, which is involved in pre-mRNA splicing. Aberrant 

splicing has been associated with cancer development (178,179).  

 

Like BEX3, SF3B3 only had significantly overrepresented BPs for the negatively correlated 

genes, which resulted in associated with cellular mechanisms such as chromatin organisation, 

regulation of RNA splicing, protein, amide, and peptide transport. Additionally, these genes 

were involved in the regulation of mRNA metabolic processes (Figure 23). 
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Figure 23: Gene ontology biological processes (level 5) obtained from DAVID functional 
enrichment tool for SF3B3. The BPs overrepresented within the top 200 genes negatively 
correlated with SF3B3 in LMC male stage I-II melanomas are represented. The histogram 
length reflects the statistical significance of the enrichment. 

5.4 Immune deconvolution using xCell 
Considering our up to now results, especially the two immune related survival biomarkers 

identified in females, and wanting to further investigate the immune subtypes enrichment in 

each sample we performed an immune deconvolution analysis called xCell. This analysis, as 

previously reported, yields enrichment scores of 36 immune cell types. 

 

To thoroughly assess the connection between our sex-specific genes and xCell's enrichment 

scores, we conducted Spearman correlation analyses. These assessments linked the enrichment 

scores obtained from xCell in female and male datasets with the expression values of sex-

specific genes in the corresponding datasets. These analyses were carried out in a different 

context with respect to survival analysis where the genes were originally identified, and were 

performed separately for females (UHRF1, HLA-E, and UBA7) and males (BEX3 and SF3B3). 

The correlation results were plotted through a comprehensive heatmap (Figure 24), where 

columns refer to genes and rows to xCell immune cell-types. Each rectangle represents the 

correlation coefficient between enrichment scores and expression values. 

Interestingly, HLA-E and UBA7 that were identified by survival analysis in female stage I-II 

melanomas to be associated with better survival, are generally positively correlated with a 

number of immune cell subtypes. Oppositely, UHRF1 that was identified by survival analysis 

as associated with worst survival in female stage I-II melanomas, was generally negatively 
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correlated with a number of immune cells. The only exceptions that were significantly 

positively correlated with UHRF1 were T cell CD4+ Th2 and T cell CD4+ Th1.  

Regarding the two male-specific genes, SF3B3 and BEX3, that were both identified as being 

linked with poor overall survival, their expression was generally negatively correlated with 

immune cell enrichment scores. BEX3 had a number of significantly correlated immune cell 

types, unlike SF3B3 that had no significant correlation but generally had negative Spearman 

correlation coefficients. 

These results, to a certain extent, confirm our findings both in females and males, as in both 

sexes genes identified to be associated with poor survival are negatively correlated with 

immune cell subtypes and the two genes identified with favourable survival are positively 

correlated with immune cell subtypes.  

 

Figure 24: Correlation between gene expression of HLA-E, UHRF1 and UBA7 and xCell 
enrichment scores in female stage I-II melanomas and between gene expression of SF3B3 and 
BEX3 and xCell enrichment scores in male stage I-II melanomas. Red represents positive and 
blue negative correlation. Stars (*) represent correlations with adjusted p-value <0.05.  
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5.5 Network analysis  
In this section we utilised the power of GeneMANIA, a bioinformatics tool known for its ability 

to predict gene functions and perform network analysis. GeneMANIA creates networks that 

show how different genes and/or proteins are related, helping us understand gene interactions, 

functional relationships and biological pathways linked to input genes. Two separate networks 

were built, one for female gene proteins UHRF1, HLA-E and UBA7 (Figure 25) and a second 

one for male gene BEX3 and SF3B3. 

 

 

 

 

 

Figure 25: Network created using GeneMANIA 
for females-identified genes, UHRF1, HLA-E and UBA7; in pink the physical interactions 
between the proteins encoded by our genes of interest and their direct interaction genes. On the 
right, the purple lines represent the genes that are co-expressed among the network.  

While the proteins encoded by the two immune related genes, HLA-E and UBA7, have no 

physical interactions, UHRF1 seems to physically interact with ARIH1 which physically 

interacts with UBA7, proposing a potential action of UHRF1 on UBA7. In addition, regarding 

the co-expressed information, we observe HLA-E and UBA7 being co-expressed, which makes 

sense as they both participate in multiple immune related processes. 
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We also extracted network functions with a False-Discovery Rate (FDR) lower than 0.05 and 

that referred to more than 4 genes in the network. All reported functions in Appendix Table 3 

are mostly related to HLA-E and the proteins that physically interact with it.  

The selected functions exhibited a pronounced involvement in antigen processing and 

presentation, emphasising their roles in immune responses. Functions such as antigen binding, 

antigen processing, and presentation via major histocompatibility complex (MHC) class I, 

alongside various membrane-related activities, highlighted their significance in cellular 

compartments like the endoplasmic reticulum and vesicles. Moreover, their impact on immune 

regulation was evident, showcasing roles in lymphocyte-mediated immunity, regulation of 

cytokine production, and the modulation of type I interferon production. 

The network analysis obtained from the male-specific markers highlights YWHAE as a gene 

linking BEX3 and SF3B3 (Figure 26). It is a highly conserved gene coding for a protein 

suggested to participate in several biochemical activities, such as signal transduction, cell 

division and regulation of insulin sensitivity, and has also been implicated in diseases such as 

lung cancer (180).  

 

 

Figure 26: Network created using GeneMANIA for males-identified genes, BEX3 and SF3B3. 
In pink the physical interactions between the proteins encoded by our genes of interest and 
their direct interaction proteins. On the right, the purple lines represent the genes that are co-
expressed among the network.  
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The functions related to this network analysis encompassed critical activities, such as RNA 

splicing (particularly involving U2-type spliceosomal complexes), nucleocytoplasmic 

transport, and protein export from the nucleus. Additionally, the genes demonstrated 

associations with the regulation of apoptotic processes, indicating potential roles in cell death 

mechanisms. Their involvement in nucleic acid transport and RNA localization further 

underscored their participation in cellular trafficking and molecular localization processes. 

Moreover, these genes exhibited regulatory influence on enzymatic activities, particularly in 

peptidase and endopeptidase functions, hinting at their involvement in protein breakdown and 

cellular regulation (Appendix Table 4) . 

5.6 Protein Atlas analysis 

The Protein Atlas was used as it offers information crucial for the understanding of protein and 

RNA expression, single-cell details, and survival outcomes across diverse tissues. Through this 

platform, various biological aspects of genes are accessible, encompassing RNA and protein 

expression profiles alongside single-cell insights. Unfortunately, there is no way to stratify 

protein expression, RNA expression and single cell information based on sex or stage. Only 

when plotting the KM survival curves there is the option to select a specific sex or stage. Protein 

and RNA expression of each gene can be found in Appendix Figures 5-9. The 3-year survival 

high or low percentage refers to the percentage of alive patients with melanomas having higher 

or lower expression than the selected cut-off. 
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Figure 27: The top plot represents HLA-E normalised RNA expression in each cell subtype. 
The bottom plot shows Kaplan-Meier curves where patients are separated according to HLA-
E mRNA expression levels in female primary melanomas from TCGA. 
 

Interestingly, HLA-E seems to be highly expressed, under physiological conditions, across 

numerous immune cells such as monocytes and NK cells. Its high expression is also observed 

in adipocytes and endothelial cells (Figure 27, top). Regarding the KM curve, high expression 

of HLA-E in females with primary melanoma seems to be associated with favourable survival, 

with a p-value of 0.027 (Figure 27, bottom). Protein expression of HLA-E has a high score 

across lung, lymph nodes and tonsil.  HLA-E has low RNA tissue specificity; However, it 

seems to have quite higher expression in lung and spleen tissue, compared to all the others 

(Appendix Figure 5).  

 

Median follow up time: 1.28 
P score: 0.027 
3 - year survival high: 80% 
3 – year survival low: 41% 
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Figure 28: Top plot represents UHRF1 normalised RNA expression in each cell subtype. The 
bottom plot shows Kaplan-Meier curves where patients are separated according to UHRF1 
mRNA expression levels in female primary melanomas from TCGA. 
 

Single cell type results for UHRF1 generally seem to show no specificity across many cell 

types. However, UHRF1 expression is enhanced in erythroid cells, oocytes, plasma cells and 

undifferentiated cells. Female specific survival plot obtained from Protein Atlas based on 

TCGA associates high expression of UHRF1 with poor survival, p-value = 0.0013 (Figure 28). 

Protein expression of UHRF1 is high only in ovary and thymus tissues and medium across 

placenta, spleen, tonsil and testis. As for RNA, UHRF1 protein expression is enriched in bone 

marrow and lymphoid tissue (Appendix Figure 6). 

Median follow up time: 1.28 
P score: 0.0013 
3 - year survival high: 0% 
3 – year survival low: 87% 
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Figure 29: Top plot represents UBA7 normalised RNA expression in each cell subtype. The 
bottom plot shows Kaplan-Meier curves where patients are separated according to UBA7 
mRNA expression levels in female primary melanomas from TCGA. 
 

According to protein Atlas, RNA single cell type specificity analysis evidenced that UBA7 

expression is enriched in gastric mucus secreting cells, granulocytes and proximal enterocytes. 

The survival curve made on females with primary melanoma, significantly (p-value = 0.037) 

associates high expression of UBA7 with favourable overall survival (Figure 29).  

 

High UBA7 protein levels were observed in cerebellum, caudate, kidney, testis, fallopian tube, 

endometrium and placenta, while average expression of UBA7 was observed in several tissue 

types. In addition, UBA7 RNA expression generally showed low tissue specificity across many 

tissue types, except for spleen where it was more expressed than compared to other tissue types 

(Appendix Figure 7).  

 

Median follow up time: 1.28 
P score: 0.037 
3 - year survival high: 71% 
3 – year survival low: 34% 
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Figure 30: Top plot represents BEX3 normalised RNA expression in each cell subtype. The 
bottom plot shows Kaplan-Meier curves where patients are separated according to BEX3 
mRNA expression levels in male primary melanomas from TCGA. 
 

BEX3 is enriched in cytotrophoblasts, distal tubular cells and peritubular cells. KM survival 

curves on primary melanoma male patients are not significantly associated with survival 

(Figure 30). BEX3 protein expression is highly expressed in many tissue types including many 

brain subregions, the thyroid gland, lungs, stomach, kidney, in many female and male specific 

tissues and tonsils. Its RNA expression is enhanced in the choroid plexus and many other brain 

regions (Appendix Figure 8).  

 

 

 

Median follow up time: 1.21 
P score: 0.46 
3 - year survival high: 0% 
3 – year survival low: 25% 
 



96 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 31: Top plot represents SF3B3 normalised RNA expression in each cell subtype. The 
bottom plot shows Kaplan-Meier curves where patients are separated according to SF3B3 
mRNA expression levels in male primary melanomas from TCGA. 
 

SF3B3 has an overall low single cell type specificity unlike all other genes, but has a high 

expression in Suprabasal keratinocytes. The KM curve shows no significant association 

between survival and the expression of this gene (Figure 31). In addition, protein and RNA 

expression of this gene has no tissue specificity and seems to be equally expressed in almost 

all tissues (Appendix Figure 9).  

Summary chapter 8 
This chapter provided a detailed characterization of identified sex-specific genes in stage I-II 

CM by evaluating the correlations with other genes, and also investigating their possible 

functional roles. Applying Spearman correlation, we determined positively and negatively 

correlated genes to be included as a downstream analysis of all gene sets considered. 

Enrichment analysis using the DAVID bioinformatics tool, identified significantly associated 

Median follow up time: 1.21 
P score: 0.88 
3 - year survival high: 0% 
3 – year survival low: 22% 
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biological processes with the top correlated genes. Furthermore, UHRF1, HLA-E and UBA7 

were all associated with immune-related processes in females, indicating that these genes could 

facilitate or inhibit the progression of cancer. Given that in male patients BEX3 and SF3B3 

were associated with lymphocyte activation process and RNA splicing, the oncogenic activity 

linked to poor survival outcomes is reinforced.  

We also found that genes associated with better survival in females (HLA-E and UBA7) 

predominantly correlated positively with immune cell subtypes, while genes associated with 

worse survival patterns (UHRF1 in females; BEX3 and SF3B3 in males) showed negative 

correlations with immune cell enrichment scores.  

By GeneMANIA network analysis, we gained insights into genes that physically interact or are 

co-expressed with the sex-specific genes of interest, identifying possible mechanisms of action 

by which these interaction partners may influence melanoma progression and patient survival. 

Last, Protein Atlas analysis aided in exploring single cell expression patterns and survival 

probability (based on TCGA) based on our genes of interest.  
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Chapter 9: Discussion 
Cutaneous melanoma (CM) is the most lethal type of skin cancer and due to its high ability to 

metastasize, its most effective treatment is early detection(181–183). This PhD thesis takes an 

innovative approach to uncover sex-specific survival biomarkers for early-stage CM, 

acknowledging the higher incidence and mortality rate in males compared to females (184–

186), which implies underlying biological variations that need to be further explored (187). 

Furthermore, biological differences involving hormone levels, genetic expression and the 

immune system can highly influence progression and treatment of melanoma (188,189). 

Androgen and oestrogen levels influence melanoma growth and affect immune responses 

differently in women and men, resulting in different outcomes between the two sexes 

(190,191). Current skin melanoma studies and prognostic tools do not adequately account for 

these sex disparities, potentially leading to less effective management of patients (192–194). 

The aim of the thesis was to explore the interplay of sex and stage in this disease and discover 

sex-specific prognostic survival biomarkers for early stage CM.  

The impact of this research lies in the potential of these biomarkers to stratify patients 

according to sex into high and low-risk groups, thereby aiding in tailored follow-up care in 

clinical settings.  

Based on literature, most existing CM research either does not account for or adjust for sex. 

Researchers typically consider sex as a confounding variable, but no melanoma study has 

stratified by sex. This could potentially overshadow significant differences between the two 

sexes, leading to inaccurate findings. This study aimed to address this research gap by testing 

whether stratifying by sex provides more accurate and clinically translatable prognostic 

information. Instead of treating sex as a confounding variable, sex was considered as an effect 

modifier.  
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The larger sample size, the longer follow-up, and availability of early-stage samples in the 

LMC cohort made it more suitable for our analyses; therefore, many of our results were based 

on it. In addition, we used the SKCM-TCGA dataset, which has smaller sample size, different 

tissue origin (frozen instead of FFPE) and generally thicker melanomas, as this cohort also 

performed other relevant analyses on every sample. Considering that melanoma thickness is 

one of the principal prognostic factors, TCGA results might not be directly comparable with 

LMC ones. As for the GSE65904 dataset, frozen tissue samples were used but exact 

information about staging other than “primary melanoma” was not reported, therefore it might 

include some stage III samples. On the other hand, GSE53118 contains only stage III samples 

from frozen lymph nodes, which differ in the tissue origin from the other datasets. However, 

this dataset was used solely in the investigation of gene expression variability, diversifying our 

findings beyond skin-based samples. The normal skin and nevi datasets were used to validate 

our findings, where appropriate, in non-pathological conditions.     

 

In order to evaluate already established CM biomarkers obtained from literature, we assessed 

them in a mixed population of females and males, as well as in a sex stratified manner on our 

LMC cohort. We analysed 25 single genes, two gene signatures with 8 and 26 genes each, and 

The key aspects that were evaluated before looking for sex-specific prognostic biomarkers are:  

- established gene biomarkers from CM literature, observing that in early-stage CM, their predictive 

ability in female datasets was much higher compared to male ones; 

- gene expression variability, finding out that in early-stage disease female gene expression is 

significantly less variable than that of males; 

- the number and strength of survival predictors, discovering that the biomarkers resulting from sex 

adjustment or the inclusion of an interaction between sex and gene expression are no longer 

significant in male-only datasets and differ from those retrieved from sex stratification; 

- immune cell subtype differences, highlighting the already known specificities of female and male 

melanoma microenvironments. 

These initial findings reinforced the need for sex stratification to gain more precise prognostic information, 

leading to better-tailored treatment strategies and follow-up for CM patients. 
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six classes of genes provided by unsupervised clustering. All the selected single-gene and 

multidimensional signatures extended across various stages of melanoma, including late-stage 

and metastatic disease. They were identified in samples containing both females and males 

because to date, there are no sex-specific tissue biomarkers identified for any stage of 

melanoma. These genes are involved in diverse pro-tumorigenic and anti-tumorigenic 

pathways. For almost all the assessed genes or gene panels, especially in early-stage disease, 

the predictive ability was higher in female samples compared to male ones, even surpassing 

the performance in the combined female and male dataset. This raises concerns about the 

accuracy of the predictions made with the biomarkers proposed so far, especially in males. And 

since males are usually at higher risk of recurrence, it further highlights the urgent need of sex-

specific prognostic biomarkers  

Kaplan–Meier curves stratified by sex obtained from the analysed datasets, confirmed that 

females have better overall survival in melanoma than males when stages I, II, and III are taken 

together, finding corroborated by two other studies (188,195). In stage-specific subsets, it was 

revealed that the impact of sex on survival is stronger in earlier stages (I-II) compared to stage 

III.  

 

The superior survival observed in females aligns with emerging evidence suggesting sex-

specific factors that influence disease progression and treatment response. There are multiple 

hypotheses that could partly explain this consistent difference, including difference in the 

immune system between the two sexes. Our hypothesis involves the X-inactivation 

phenomenon, where randomly silenced genes on the X-chromosome, along with epigenetic 

modifications that can vary based on gene expression, could potentially explain this 

“protective” ability in females (196,197).   

 

As the stronger impact of sex was obtained when stages I-II were combined (HR=1.59, CI 1.16 

- 2.19, p=0.004) and no consistent difference was found between stage I and II, we used them 

together as stage I-II for the rest of the analysis. The consistent finding that females exhibit 

better survival in early stage CM hinders underlying variations between the two sexes and 

could potentially drive formal re-assessing of multiple prognostic biomarkers in a more sex-

specific way. 
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Despite the favourable observed survival benefit in females of early-stage melanoma, PCA was 

not useful for segregating females and males, or stages, or patients with different survival 

outcomes, based on PC1 and PC2, as minimal discrepancies were observed among groups, with 

highly overlapping ellipses. When sex-specific PCA among all stages was performed, there 

was slightly higher variance explained by PC1 in females compared to males. Additionally, 

when repeatedly performing PCA among all datasets analysed, a relatively low variance was 

captured by PC1. Furthermore, the cumulative sum of the variance percentages from PC1 to 

PC5 accounted for one-only quarter of the total variance in LMC. The remaining three-quarters 

unaccounted for may suggest sex-specific complexities that would be excluded from our 

analysis if we focused solely on the first principal components. Therefore, we opted against 

using PCA ensuring a more inclusive approach for all genes. 

 

We proceeded with multivariable Cox regression analysis to focus on survival associated 

variables. Including the gene*sex interaction term in the analysis did not reveal any genes with 

an opposite association with survival based on sex. However, when the analysis was conducted 

without the interaction term, a substantial number of genes were found to be associated with 

survival. Subsequent separate analyses for each sex, adjusting only for age and stage, showed 

a notable difference: 1475 genes met the criteria for females, while only 2 did so for males. 

This indicates that the initial combined results were largely influenced by the female 

population. When this analysis was repeated in stage I-II only, again there was an astonishingly 

big difference observed in the number of statistically significant genes in females compared to 

males. Although sample size was not the same in females and males, with 311 females and 255 

males with stage I-II melanomas, this discrepancy did not significantly account for the observed 

difference in the multivariable Cox regression analysis results. Analyses were repeated on 

random subsets of females with equal sample size as males, and the number of statistically 

significant genes again was much higher, ranging from 320 to 1653. Moreover, the bigger 

sample size in females reflected an approximately equal number of events occurring in males, 

which is more important in survival analysis than sample size. We then argued that biological 

variability could be the reason for this disparity, as it is well known (but not well accounted 

for) that the two sexes exhibit distinct biological responses due to hormonal, genetic or other 

physiological differences (29). These inherent manifestations could be a consequence of 

divergent gene expression profiles, but of course this would require more investigation on each 

variation individually. In addition, molecular mechanisms regarding melanoma might affect 

https://www.zotero.org/google-docs/?nGN0V2
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the two sexes differently (24). An example might be the response of the immune system, which 

is known for being different between the two sexes (30,31).     

 

Measuring the variability in gene expression across male and female samples, we aimed to 

assess sex-related differences in GEV. Interestingly, all tested melanoma datasets were in 

concordance regarding the GEV difference observed within the sex and stage subcategories. 

More specifically, a consistently lower GEV in female samples was found in stage I-II 

melanomas from the LMC, TCGA and GSE65904 datasets. On the other hand, gene expression 

was more variable in stage III female samples in the LMC, TCGA, and GSE53118 datasets. 

Stage III GEV was higher than stage I-II GEV in both sexes. It is interesting to note that these 

differences are observed not only on cutaneous melanoma biopsies but also on the lymph node 

biopsies from dataset GSE53118. Normal skin and common acquired nevi samples were also 

analysed to evaluate any difference in GEV between the sexes. Indeed, in both datasets, female 

samples showed a slightly lower GEV, as also observed by Itoh and Arnold 2015 (32), pointing 

out that, when it comes to GEV, normal skin and nevi samples are more similar to the early 

stages of melanoma. In the LMC cohort this difference is perceived when considering all 

29,000 genes, when choosing random 3000 gene groups or genes involved in specific 

biological pathways, such as immune, cell cycle and metabolism related ones. We, therefore, 

hypothesise that the higher number of genes associated with survival in females compared to 

male stage I-II samples may be explained by the larger gene expression heterogeneity in males. 

Hence, the same explanation can be applied to the fact that no genes significantly associated 

with survival were obtained in stage III samples, neither for females or males, as in both sexes 

GEV was found to be significantly higher in stage III than in stage I-II samples. This goes in 

line with the well-reported positive correlation of melanoma heterogeneity with stage 

progression (143). Consequently, increased genetic instability in the tumour causes 

transcriptomic and proteomic diversity, which in turn allows microenvironment-driven or cell-

intrinsic phenotype-switching, allowing reversible switching between different phenotypes of 

proliferative and invasive potentials (198,199). 

 

In order to look for sex-specific survival biomarkers, we chose not to start by selecting 

differentially expressed genes (DEGs) between females and males. The intent was to avoid sole 

focus on these genes, mainly found on the X and Y chromosomes, recognising that other genes 

not distinctly differentially expressed may still play a prognostic role in one or both sexes. 

Notably, in colorectal cancer and glioblastoma multiforme cancers (200,201), multiple genes 

https://www.zotero.org/google-docs/?vc8vRb
https://www.zotero.org/google-docs/?WjRPho
https://www.zotero.org/google-docs/?UGdmX2
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with similar expression levels across sexes exhibited varying associations with survival. Our 

focus was conducting female-specific and male-specific multivariable Cox regression analysis, 

while accounting for age and stage.  

 

We then proceeded with penalised LASSO Cox regression in females and bidirectional 

stepwise regression in males, primarily because the female cohort revealed a higher number of 

statistically significant outcomes compared to males. LASSO Cox regression serves as a 

technique for variable selection and shrinkage in Cox proportional hazards model (202), 

whereas bidirectional stepwise analysis fits the best regression model by adding or subtracting 

variables and finally estimating the lower AIC. The bidirectional stepwise model was used to 

build a survival model for males, utilising the best predictors out of the seven (five genes plus 

age and stage) available variables associated with survival, being aware that they had lower 

statistical power than the variables available for females. Both for females and males, we 

implemented a 10-fold cross validation approach in order to avoid overfitting and chose the 

variables retained by all the ten models to fit a final Cox regression model using all the samples 

available (311 for females, 255 for males). These two final models were then tested on two 

independent external cohorts. 

 

A limitation of our study is the small number of samples in the validation cohorts and the 

scarcity of gene expression datasets available online of early-stage melanoma. To assess the 

performance of the two prognostic survival models, not only we used the UNO area under the 

time-dependent curve proposed by Uno et al. (2007), which is more appropriate than the 

standard receiver operating characteristic (ROC) curve AUC, but also expanded our evaluation 

by including multiple metrics, such as the c-index and the observed/expected ratio (160,203). 

These additional validation metrics were employed to provide a comprehensive assessment of 

our models’ performance in terms of predictive ability across the validation cohorts. In 

addition, baseline survival calculation and reporting is also very important as it allows for 

appropriate validation, model assessment and reproducibility as proposed by DJ Mclernon et 

al 2022 (204). Further, the more comprehensive evaluation of the model, allows for transparent 

reporting of the validity of predictions and enhances its potential clinical utility to support 

clinical decision making.  

 

One of the major decisions that needs to be made when validating a survival predictive model 

is censored time. As early stage melanoma has generally a long survival, with localised 
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melanoma of Stage 0, Stage I and Stage II having a 5-year survival rate of 98.4% (205), we 

extended to the maximum censoring time of 8-years based on our LMC and Biella cohorts 

available follow-up time. Unfortunately, for the TCGA female and male datasets, because of 

their limited follow up information, we could only predict survival at 2 years for males and 3 

years for females. 

 

The baseline survival of our female stage I-II LMC cohort, calculated by averaging the 10 

baseline survival values obtained through cross-validation at 8 years, was 0.81. This implies a 

19% probability of mortality (1-0.81), which, as expected, is lower than the calculated 

probability of mortality in LMC males stage I-II, which is equal to 29%. Our predictive models 

further confirm what is known in literature, i.e. that males exhibit an increased mortality rate 

compared to females (206).    

 

In stage I-II female melanomas, three genes always had non zero coefficients persistently 

across the 10 penalised Cox regression models: HLA-E, UHRF1 and UBA7. Utilising these 

three genes, we constructed a multivariable Cox regression model including all samples. This 

approach allowed us to calculate beta coefficients from multivariable Cox regression on all 311 

females. Without relying on cross validation averages of shrinked coefficients, the model was 

then validated on two external independent cohorts, the Biella and the TCGA cohort 

performing well according to UNO AUC (0.804 and 0.795) and UNO C-index (0.763 and 

0.716).  

 

Collectively, our analyses focusing on HLA-E and UBA7, both associated with favourable 

survival, unveiled interesting findings. When exploring the top genes positively correlated with 

our genes of interest through Spearman correlation, we found various biological processes 

especially linked to the immune system. Additionally, numerous immune cell subtype 

enrichment scores predicted by xCell, when correlated with the expression of these genes, 

displayed a consistent and notably positive Spearman correlation coefficient. In contrast, the 

third gene, UHRF1, revealed a different pattern, with negative correlation between its gene 

expression and xCell predictions. Indeed, the top genes positively associated with UHRF1 

contributed to pathways related to cell proliferation and tumour progression.  

 

HLA-E - major histocompatibility complex, class I, E - has a role in both innate and adaptive 

immunity as it is an important modulator of Natural killer (NK) cells and cytotoxic T 
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lymphocytes (CTL) (207). This gene has been already found significantly associated with 

favourable survival in other tumours, such as renal cell carcinoma (208) and glioblastoma 

(209). Our female-specific multivariable Cox regression analysis in stage I-II female 

melanomas, revealed a favourable association with survival for monocytes, macrophages and 

M1 macrophages, indicated by xCell enrichment scores. Notably, HLA-E is up-regulated in 

monocytes to macrophage differentiation (210). Moreover, the presence of adipose tissue 

beneath the skin (211), proximate to melanoma sites and including adipocytes which were 

identified by Protein Atlas as overexpressing HLA-E,  suggests a possible connection and 

potential interaction between immune cells, melanocytes and the nearby adipose environment. 

In addition, given the recognised higher proportion of body fat in females compared to males 

(212) and its mild protective role in females only (213), we hypothesise that the increased 

presence of adipose tissue, particularly subcutaneous adipocytes, might underlie the protective 

role of HLA-E particularly in females. Further supporting its immune-related function, HLA-E 

is highly expressed by various immune cells including myeloid dendritic cells, B cells, NK 

cells and T cells (214). Among those immune cell subtypes, B cell and myeloid dendritic cells 

were also found to be correlated with favourable survival in our research.  B cells are known 

to be enriched in adulthood and old age in females (23),  as well as known to be correlated with 

increased patient survival (215) in melanoma patients. Myeloid dendritic cells (MDC) are 

antigen-presenting cells responsible for presenting antigens to T cells (216).  

 

UBA7 - ubiquitin-like modifier-activating enzyme 7 - is an enzyme involved in interferon-

stimulated gene 15 conjugation (ISG15), which is reported as a negative regulator in IFN 

immunity and antitumor defence (207), to promote genome stability (217). It was also 

identified as a protective biomarker in terms of survival in females and known as a tumour 

suppressor in breast cancer (175) and to improve uveal melanoma OS (218). UBA7 is also 

known as an interferon-stimulating (ISG) gene that is related to T cell CD8+ infiltration. UBA7 

loss is associated with immune-evasion in breast cancer (175). Interestingly, genes negatively 

correlated with UBA7 were enriched in cell proliferation processes, further supporting 

underlying immune escape mechanisms. CD8+ T cells  were identified by multivariable Cox 

regression to be positively associated with OS in female stage I-II melanomas. The findings in 

breast cancer related to UBA7, its positive correlation with genes associated with immune 

related processes and our female-specific analysis further propose this gene as having a female-

specific protective role. 

 

https://www.zotero.org/google-docs/?6igeaX
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UHRF1 - Ubiquitin-like, containing PHD and RING finger domains 1 - is an essential gene for 

maintaining DNA methylation. Together with DNMT1, it is enriched in DNA replication foci 

during S phase, further implicating its essential role in cell proliferation (219). Existing 

literature on UHRF1 further supports our findings, as it is a well-known gene for its role in 

tumorigenesis in multiple cancers including adenocarcinoma (220), breast cancer (221) and 

osteosarcoma (222). High UHRF1 expression dysregulates immune infiltration in neutrophils, 

eosinophils and M2 macrophages in hepatocellular carcinoma (223). UHRF1 gene expression 

was found to be positively correlated with both CD4+ Th2 and Th1 T cells by our analysis. 

While Th2 are known for their tumour promoting role, Th1 are known for their anti-tumour 

response through the production of IFNg and IL-2 (224). However, both immune cells are 

highly plastic and can change phenotype according to their microenvironment (225,226).  

 

Male-specific results in various analyses exhibited lower performance compared to female 

ones. One exception is BRAF mutation status, which showed significant association with 

overall survival, after adjustment for age and stage, only in males. This result is interesting, 

since BRAF mutation has always been considered a prognostic factor without any distinction 

between females and males (125,227). Specifically, before the advent of BRAF inhibitors, it 

was a negative prognostic factor (Hazard ratio higher than 1), while when BRAF mutated 

melanomas began to be treated with targeted therapy (in combination or not with 

immunotherapy), the association with survival drastically changed because accessibility to 

personalised treatment improved overall survival. Since the LMC cohort was collected before 

the advent of targeted therapy for melanoma, and we analysed stage I-II melanomas that do not 

routinely receive adjuvant treatment, patients’ outcome was not influenced by treatment 

options. If we were to consider BRAF mutation in a prognostic model to apply to newly 

diagnosed melanomas, its impact would be different due to the big changes in treatment options 

that occurred in the last years. For this reason, and also since the adjusted p-value was not lower 

than 0.001, we decided not to include this variable in our male-specific analyses.  

 

The general lower performance of male-specific results was particularly evident in the 

statistical significance across tests, from the initial multivariable Cox regression to model 

validation, individual evaluation of identified genes, Spearman correlation analysis, DAVID 

analysis, multivariable Cox with xCell enrichment scores, and comparative analysis of existing 

melanoma biomarkers. These findings, highlighting higher statistical performance of female-

specific markers, can again be linked to differences in GEV, higher in early stage male 
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melanomas compared to early stage female ones, which aligns with known slightly lower GEV 

in multiple non-pathological tissues in females (170). Moreover, a study examining 

interindividual GEV in 43 tissues from GTEx revealed genes with sex differences involved in 

diverse biological functions, cell types, and potentially sex-biased diseases (228). These results 

go in line with Ellis's century-old "greater male variability hypothesis" (229,230) though 

initially unrelated to gene expression but encompassing various physical, psychological, 

intellectual and genetic traits. Despite historical exclusion of females from studies due to 

presumed variability, recent research, including mouse studies contradicting female variability 

notions, particularly in behavioural and neuroscience research, highlight the need to reevaluate 

assumptions about female variability in scientific studies (231–234). 

 

Validation of the model combining the two male genes BEX3 and SF3B3 with age and stage 

was only prominent in the Biella cohort, but not significant in TCGA, neither individually nor 

combined in the prognostic model.  

 

BEX3 - Brain Expressed X-Linked 3- under physiological conditions interacts with a death 

domain (p75NTR) and mediates apoptosis in neural cells (235). It is also known to contribute 

to cisplatin chemoresistance in nasopharyngeal carcinomas (177). In our analysis, this gene is 

negatively correlated with almost all immune cell subtypes and the genes negatively correlated 

with BEX3 are involved in immune related processes, suggesting an immune inhibition in 

males. The negative correlation between immune cell enrichment and BEX3 was also observed 

in Glioblastoma multiforme (236).      

 

SF3B3 - Splicing Factor 3b Subunit 3 - is a gene that participates in protein splicing responsible 

for protein diversity, chromatin modification and transcription (237). It has been seen to 

promote the inclusion of exon 14 on EZH2 which contributes greatly to its role in renal cancer 

promotion (238). SF3B3-knockdown in prostate cancer resulted in effective growth inhibition 

(239). This gene is overexpressed in melanomas compared to nevi samples, suggesting a pro-

tumorigenic function (240). Its overall pro-tumorigenic role was confirmed in our study only 

in males, both in combination with BEX3, age and stage, and taken individually. In addition, 

its expression was overall negatively correlated with immune cell enrichments. Indeed, it was 

recently found to form a complex with AGO3 in the nucleus, to regulate inflammatory diseases 

by restraining type 2 immunity (179). Another important information about SF3B3 is that it is 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=SF3B3
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a target of compounds with anticancer and splicing inhibitor functions, such as spliceostatin A, 

which makes it interesting from the therapeutic point of view. 

 

The three-gene signature identified as specific to females were individually assessed in male 

stage I-II patients. Similarly, the male-specific two-gene signature was evaluated individually 

within the female stage I-II cohort. However, neither of these signatures revealed any 

significant association with overall survival, further supporting the sex-specificity of our 

signatures. 

 

Immune deconvolution analysis by xCell revealed 24 differentially enriched immune cell types 

between females and males in stage I-II melanomas, while only 9 immune cell types exhibited 

distinct enrichment patterns in stage III. This disparity in immune cell type variations between 

sexes across stages I-II and III parallels our findings in the class comparison between gene 

expression profiles of the two sexes, where statistically significant gene expression differences 

present in stage I-II but not in stage III (171). Also, after running multivariable Cox regression 

analysis on the xCell enrichments scores in all subgroups, only female stage I-II melanomas 

had 10 significant immune subtypes that positively correlated with overall survival, while no 

significant immune subtypes were related with survival in male stage I-II melanomas, female 

and male stage III melanomas. It is well known that adult females generally mount stronger 

innate and adaptive immune responses compared to males. Both in adulthood and in old age 

CD4/CD8 ratios and CD4+ T cells are generally higher in females (23). This information aligns 

with the xCell enriched scores, as 8 out of 24 differentially enriched immune cells in stage I-II 

are various subtypes of CD4 and CD8 T cells.  

Macrophages exhibited differential enrichment between sexes in stage I-II melanomas, but 

only correlated with improved overall survival in females. Specifically, subtypes “M1” and 

“Macrophages” generally demonstrated significant association with favourable overall survival 

in female stage I-II melanomas, even if we found a higher enrichment of these cell types in 

males. In contrast, M2 enrichment was higher in female versus male stage I-II melanomas, yet 

not significantly linked to survival in either sex. Nonetheless, further investigation is needed, 

given the pro-tumorigenic nature of M2-like macrophages and the pro-inflammatory/anti-

tumorigenic role of M1 in numerous cancers (241,242). In addition, CD8+ T cells, known to 

infiltrate tumours that respond better to immune checkpoint blockade therapy (243), are 

associated with longer survival in female stage I-II melanomas and are more enriched in female 
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stage I-II melanomas. On the other hand, they are more enriched in male compared to female 

stage III melanomas. This divergence prompts an exploration into whether sex-specific 

variations in immune cell composition might underlie the observed differences in 

responsiveness to immune checkpoint inhibitors. Specifically, could the increased presence of 

CD8+ T cells in stage III males, together with their overall less active immune response and 

high antigenicity contribute to their comparatively superior response to these therapies? The 

elevated levels of CD8+ T cells in earlier stages among females (244) suggest the possibility 

that initiating immune checkpoint inhibitors at an early stage of disease in females may lead to 

more favourable treatment outcomes (139,151). These hypotheses necessitate comprehensive 

exploration to ascertain their implications in treatment response and potential therapeutic 

strategies. 

An intriguing validation of the survival roles attributed to our five genes emerges from 

correlation analyses involving both gene expression values and xCell-derived enrichment 

scores across patients. Notably, beyond their survival implications, the genes HLA-E and 

UBA7, exhibit significant positive correlations with multiple immune cell subtypes. 

Conversely, the genes UHRF1 in stage I-II female melanomas, and BEX3 and SF3B3 in stage 

I-II male melanomas, previously identified as anti-survival genes, display an overall negative 

correlation with immune cell subtypes. 

 

In examining the gene network comprising HLA-E, UBA7 and UHRF1, while direct 

interactions are absent in the female network, a robust co-expression is evident between HLA-

E and UBA7 with the most implicated genes being ISG15, HLA-F, TAP2 and CD8A. 

Interestingly, these genes participate in interferon response (245), immune signalling (246), 

antigen pre-processing, antigen presentation (247), immune surveillance and trigger cytotoxic 

T cell response (248,249). Additionally, UHRF1 exhibits both interaction and co-expression 

with DNMT1, highlighting their DNA methylation maintenance role. DNMT1 is a gene that is 

characterised as a Hallmark for melanoma (250,251), well known for its pro-tumorigenic 

association with this disease, further confirming a non-protective role for UHRF1. The male 

network analysis revealed that the two genes seem to have more direct interactions within their 

network and to also be co-expressed. The gene in the centre of this male network is YWHAE, 

which belongs to the 14-3-3 protein family, mediates signal transduction (252) and is 

associated with many malignancies, such as colon (253), lung (254) and liver cancer (255).  
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Upon close examination of our findings, it is clear that most differences between the sexes are 

visible in the early stages of the disease. This highlights a distinct response in the body's early 

reaction to melanoma, showing varied gene expressions, immune cell compositions, and 

survival markers between females and males. These differences raise an important question: 

should we adjust our approach to focus on sex-specific methods in how we manage patients’ 

follow-up and consider treatment options? The significant distinctions observed in gene 

expression, survival markers, and immune cell makeup during the initial phases of melanoma 

onset suggest the need for tailored care. Recognizing the impact of sex-specific details on 

disease progression and response to treatments might refine our understanding and potentially 

enhance patient outcomes. 
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Chapter 10: Strength, limitations, and future directions      
Strengths:  

● Used an innovative approach treating sex as an effect modifier and not a confounding 

variable in a non-sex-specific cancer. 

● Identified sex-specific prognostic biomarkers in early-stage disease. 

● Uncovered lower gene expression variability in females across multiple early-stage 

melanoma and normal skin datasets. 

● Applied comprehensive validation metrics beyond the AUC evaluations. 

● Revealed an overall stronger performance in the analyses carried out on female 

compared to male stage I-II melanomas. 

Limitations:  
● Had limited sample size in external validation cohorts 

● Faced difficulties in finding and accessing gene expression data of early-stage 

melanoma. 

● Was challenged in validation due to varying follow-up times in different cohorts. 

● Did not encompass the overall mutation burden, nor any epidemiologic factors such as 

potential exposures or tumour sites in melanoma. 

● The male-specific gene biomarkers were weaker and not completely independent on 

age and stage. 

Implications for future research:  
1. This study aims to encourage future studies in cancer and other diseases to consider 

sex-stratified analysis rather than 1; not considering sex 2; or only consider sex as a 

confounding variable. 

2. Inspire the search for additional sex-specific biomarkers across various cancers and 

diseases for personalised medicine.  

3. Further explore, in terms of sex-specific gene expression, variability and immune cell 

subtype differences in other cancers. 

4. Deepen the understanding of sex-specific molecular mechanisms underlying disease 

progression. 

 

This study suggests a fundamental change in considering sex-specificity in research 

methodologies and emphasises the potential for sex-specific biomarkers in personalised and 

targeted medicine. 
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Chapter 11: Conclusion 

This innovative thesis explores areas within melanoma research related to how sex influences 

early-stage disease. By challenging the historical confounding perception of sex, this study 

applies it as an effect modifier, unveiling unprecedented insights into sex-specific prognostic 

biomarkers. 

The identification of sex-specific genes—HLA-E, UHRF1, and UBA7 in females, and BEX3 

and SF3B3 in males—proposes a new distinct sex-specific molecular prognostic landscape for 

early-stage melanoma. Unexpected disparities in gene expression variability across sexes and 

stages highlight the differences between females and males, particularly present in early-stage 

disease. Moreover, the profound implications arising from this research go beyond simple 

biomarker identification. The approach to melanoma survival analysis is redefined, 

highlighting the need to consider sex-specific complexities for tailored follow-up and clinical 

interventions.  

These revelations, notably the distinct differences in gene prediction patterns between sexes in 

early-stage melanoma, are in hope of marking a new beginning in sex-specific personalised 

medicine. The implications extend beyond prognostication, urging a re-evaluation of the 

methodology around discovery of prognostic biomarkers, thereby propelling the field toward 

more sex-precise approaches. 
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Appendix 
 
Appendix Table Gerami et al: this table shows the coefficients and raw p-values of the 26 
genes that were evaluated in a univariate cox model in females and males together and for 
each sex separately.   
 

    Univariate Cox regression analysis on stage 1,2 
    Females/Males Females Males 
OGS ilmn_Ids coeff raw_pval coeff raw_pval coeff raw_pval 
BAP1 ilmn_1768363 -0.1131697 0.43277328 -0.146431 0.50372485 -0.0966316 0.61025844 
SPP1 ilmn_1651354 0.10450678 0.04935817 0.16341204 0.03918129 0.05759916 0.42601717 
CXCL14 ilmn_1748323 -0.1502832 0.00090831 -0.2086808 0.00069023 -0.0860885 0.1967502 
CLCA2 ilmn_1803236 -0.0339538 0.33540285 -0.0981829 0.04214433 0.03271842 0.51852772 
S100A8 ilmn_1729801 -0.0183731 0.63382732 -0.0673874 0.19122534 0.04737669 0.40894427 
BTG1 ilmn_1775743 -0.2113652 0.26879816 -0.3899736 0.1336957 -0.0176018 0.94954463 
SAP130 ilmn_1700044 -0.1633633 0.34739257 -0.0716464 0.79452327 -0.1844859 0.42804482 
ARG1 ilmn_1812281 0.00392211 0.89638619 -0.0092855 0.81321829 0.02307746 0.62188866 
KRT6B ilmn_1721354 -0.0196437 0.58924704 -0.1039019 0.03850444 0.05522539 0.28370222 
GJA1 ilmn_1727087 -0.1228872 0.05368132 -0.170808 0.05493377 -0.0736919 0.42343941 
ID2 ilmn_1793990 -0.4116541 0.00005914 -0.6362492 0.00082493 -0.297173 0.02659153 
EIF1B ilmn_1679324 0.12691441 0.39430279 0.15312395 0.49542963 0.10016981 0.61617681 
S100A9 ilmn_1750974 -0.0451422 0.34527162 -0.1069737 0.09038744 0.03073612 0.67073223 
CRABP2 ilmn_1690170 -0.0565653 0.39986432 -0.0782221 0.41708663 -0.0297083 0.75085116 
KRT14 ilmn_1665035 -0.049807 0.20195582 -0.1573893 0.00532756 0.02156164 0.68569674 
ROBO1 ilmn_1666468 0.14200412 0.2702264 0.03989639 0.80752827 0.23945774 0.1802506 
RBM23 ilmn_1780756 0.57892216 0.02314599 0.18248365 0.62894905 0.87046302 0.01137622 
TACSTD2 ilmn_1739001 -0.0533238 0.15725571 -0.1208729 0.02477668 -0.0011647 0.98286038 
DSC1 ilmn_1730284 -0.001025 0.97102613 -0.040874 0.26975766 0.04981211 0.25736745 
SPRR1B ilmn_1711174 -0.0015455 0.96074106 -0.0576074 0.18157584 0.05888035 0.19846998 
TRIM29 ilmn_1741755 -0.0070153 0.8403605 -0.069153 0.16391841 0.04930675 0.31384245 
AQP3 ilmn_1651574 -0.0780323 0.26228918 -0.2179107 0.03278404 0.05111126 0.58978509 
TYRP1 ilmn_2054652 0.00623041 0.87617637 0.00504103 0.93461613 0.00515562 0.92281546 
PPL ilmn_1806030 -0.0819602 0.15990836 -0.1694 0.04389314 0.00010735 0.99895114 
LTA4H ilmn_1690342 0.18680919 0.16270322 0.22891438 0.25860116 0.12711426 0.47478989 
CST6 ilmn_1698666 -0.0091998 0.75189674 -0.0492875 0.21313614 0.03510487 0.42482525 
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Appendix Figure 1: Stage stratified PCA on females only (top plot) and males only (bottom 

plot).  
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Table 2: Multivariable Cox regression analysis on each gene in TCGA adjusting for age and 

stage (top table females only, bottom table males only) 

 

 

 

 

 

 

 

 

ilmn_Ids OGS coef exp(coef) se(coef) z Pr(>|z|) BH 
ilmn_2370091 BEX3 1.03876 2.82570 0.22299 4.65834 0.00000 0.09357 
ilmn_1747052 ITGA4 0.82024 2.27105 0.19784 4.14607 0.00003 0.40216 
ilmn_1677997 MAZ 1.25086 3.49334 0.34337 3.64291 0.00027 0.69318 
ilmn_2411282 QSOX1 0.92862 2.53102 0.24774 3.74838 0.00018 0.69318 
ilmn_1803110 SF3B3 0.88132 2.41410 0.22822 3.86177 0.00011 0.69318 
ilmn_1790577 SLC35F2 -0.28940 0.74871 0.07887 -3.66954 0.00024 0.69318 
ilmn_1740045 ESR2 -0.33382 0.71618 0.09189 -3.63285 0.00028 0.69318 
ilmn_1710899 TSPAN18 -0.50978 0.60063 0.13863 -3.67723 0.00024 0.69318 
ilmn_1745021 SLC30A1 -0.58788 0.55550 0.16195 -3.63004 0.00028 0.69318 
ilmn_1678260 BCORL2 -0.66689 0.51330 0.18366 -3.63108 0.00028 0.69318 
ilmn_1699489 TUBB6 -0.75146 0.47168 0.19752 -3.80450 0.00014 0.69318 
ilmn_1769409 C9ORF123 0.50438 1.65596 0.14126 3.57059 0.00036 0.71692 
ilmn_3251217 PDXDC2 -0.24550 0.78232 0.06890 -3.56321 0.00037 0.71692 
ilmn_1702383 CNGB1 -0.91491 0.40055 0.25622 -3.57078 0.00036 0.71692 
ilmn_1731175 XKR6 0.75699 2.13186 0.21401 3.53716 0.00040 0.74152 
ilmn_1792314 ACTR1A -0.79778 0.45033 0.22656 -3.52130 0.00043 0.74152 
ilmn_3235404 SNORA57 -1.63146 0.19564 0.46586 -3.50206 0.00046 0.75290 
ilmn_3166332 ERCC-00131-02 0.70349 2.02079 0.20546 3.42389 0.00062 0.81121 
ilmn_1805995 MGC46496 0.44874 1.56634 0.13137 3.41594 0.00064 0.81121 
ilmn_1727567 OLIG2 0.30662 1.35882 0.08976 3.41601 0.00064 0.81121 
ilmn_1765299 PRIMA1 0.28042 1.32368 0.08117 3.45462 0.00055 0.81121 
ilmn_2370976 FER1L3 -0.44206 0.64271 0.12883 -3.43127 0.00060 0.81121 
ilmn_2229170 CRSP9 0.77718 2.17533 0.23093 3.36540 0.00076 0.81833 
ilmn_1763883 KRTAP19-3 0.70002 2.01378 0.21191 3.30330 0.00096 0.81833 
ilmn_3308642 MIR597 0.47880 1.61414 0.14129 3.38876 0.00070 0.81833 
ilmn_2377185 TCEB2 0.43932 1.55166 0.12997 3.38013 0.00072 0.81833 
ilmn_1722680 C18ORF4 -0.41995 0.65708 0.12576 -3.33929 0.00084 0.81833 
ilmn_2360710 TPM1 -0.50608 0.60285 0.15310 -3.30566 0.00095 0.81833 
ilmn_3310196 MIR1302-5 -0.79403 0.45202 0.24013 -3.30660 0.00094 0.81833 
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Appendix Table 1: Multivariable Cox regression analysis of raw p-value < 0.001 significant 

genes on stage I-II males, adjusting for age and stage. 

 
 TCGA Females stage I-II - adjusted for age and stage 

Genes beta coefficient raw p-value 
UHRF1 0.68265 0.29215 
HLA-E -0.51014 0.35057 
UBA7 0.12021 0.61689 

NGFRAP1 (BEX3) 0.23570 0.64898 
SF3B3 0.15262 0.89501 

   
   

   
 TCGA Males stage I-II - adjusted for age and stage 

Genes beta coefficient raw p-value 
UHRF1 0.08332 0.89885 
HLA-E -0.31236 0.56068 
UBA7 -0.20154 0.46811 

NGFRAP1 (BEX3) -0.12116 0.59936 
SF3B3 -1.38346 0.26275 

 

 
Appendix Figure 2: estimate proportion of cancer cells performed on sex and stage subgroups. 

ns = not significant 
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Appendix Figure 3: Significantly differently enriched immune cell subtypes between 

females and males of GTEx Sun Exposed normal skin .   

 

 
 

Appendix Figure 4: Significantly differently enriched immune cell subtypes between 

females and males of GTEx Not Sun Exposed normal skin .  
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Appendix Table 3: Functions obtained from GeneMANIA network analysis based on female-

specific genes UHRF1, HLA-E and UBA7. The reported network functions have FRD < 0.05 

and refer to more than 4 genes in the network. 

 

 

 

         Network function (UHRF1, HLA-E, UBA7) FDR 
Genes in 
network 

Genes in 
genome 

endoplasmic reticulum membrane 2.7294E-05 7 268 

antigen binding 4.67E-08 6 36 

integral component of endoplasmic reticulum membrane 2.41E-07 6 52 

phagocytic vesicle 4.82E-07 6 62 

antigen processing and presentation of exogenous peptide 
antigen via MHC class I 1.0169E-06 6 76 

endocytic vesicle membrane 1.2534E-06 6 81 

antigen processing and presentation of peptide antigen via 
MHC class I 1.5506E-06 6 86 

intrinsic component of endoplasmic reticulum membrane 2.7294E-05 6 151 

lymphocyte mediated immunity 5.4522E-05 6 176 

antigen processing and presentation of exogenous peptide 
antigen 5.4522E-05 6 176 

antigen processing and presentation of exogenous antigen 0.00006039 6 181 

antigen processing and presentation of peptide antigen 0.00007163 6 190 

antigen processing and presentation 0.00011026 6 208 

endocytic vesicle 0.00011429 6 211 

negative regulation of cytokine production 0.00013615 6 221 

MHC protein binding 5.32E-07 5 27 

regulation of type I interferon production 0.00011433 5 106 

type I interferon production 0.00015132 5 115 

ubiquitin-like protein ligase binding 0.00711129 5 266 
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Appendix Table 4: Functions obtained from GeneMANIA network analysis based on female-

specific genes BEX3 and SF3B3. The reported network functions have FRD < 0.05 and refer 

to more than 4 genes in the network 

 

Network Function (SF3B3, BEX3) FDR 
Genes in 
network 

Genes in 
genome 

U2-type spliceosomal complex 3.75E-08 7 86 
spliceosomal complex 3.75E-08 8 145 

protein export from nucleus 9.137E-05 6 154 
regulation of cysteine-type endopeptidase activity 

involved in apoptotic process 9.5595E-05 6 169 
nuclear export 0.00011338 6 184 

positive regulation of cysteine-type endopeptidase 
activity involved in apoptotic process 0.00011338 5 86 

regulation of cysteine-type endopeptidase activity 0.00014013 6 195 
positive regulation of cysteine-type endopeptidase 

activity 0.00044006 5 127 
ribonucleoprotein complex export from nucleus 0.00044006 5 129 

ribonucleoprotein complex localization 0.00044006 5 129 
RNA export from nucleus 0.00053323 5 137 

negative regulation of hydrolase activity 0.00053323 6 272 
regulation of endopeptidase activity 0.00053323 6 270 

positive regulation of endopeptidase activity 0.0005751 5 146 
extrinsic apoptotic signalling pathway 0.0005751 5 146 

nucleocytoplasmic transport 0.00060856 6 287 
nuclear transport 0.00061379 6 291 

regulation of peptidase activity 0.00063263 6 299 
RNA transport 0.00063263 5 156 

positive regulation of peptidase activity 0.00064877 5 159 
nucleic acid transport 0.00068198 5 162 

establishment of RNA localization 0.00071687 5 165 
nucleobase-containing compound transport 0.00151175 5 195 

RNA localization 0.00157123 5 198 
protein-containing complex localization 0.00421087 5 244 

positive regulation of proteolysis 0.00974265 5 298 
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Appendix Table 5: This table shows the -DCT values obtained from the rt-qPCR of the five 

sex specific prognostic biomarkers.  
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Appendix Figure 5: Protein and RNA expression of HLA-E across different tissues, obtained 

from Protein Atlas. 
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Appendix Figure 6: Protein and RNA expression of UHRF1 across different tissues, obtained 

from Protein Atlas. 
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Appendix Figure 7: Protein and RNA expression of UBA7 across different tissues, obtained 

from Protein Atlas. 
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Appendix Figure 8: Protein and RNA expression of BEX3 across different tissues, obtained 

from Protein Atlas. 
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Appendix Figure 9: Protein and RNA expression of SF3B3 across different tissues, obtained 

from Protein Atlas. 
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Appendix Table 6: This table presents sex-specific multivariable Cox regression results 

separately in female and male stage III melanomas, including beta coefficients (Coef), 

hazard ratios (HR), and raw p-values. The third column, labelled pro-tumour(+) and anti-

tumour(-), denotes the reported role of each biomarker in existing literature. The 'OGS' 

column corresponds to the official gene symbol, while the 'Function' column specifies the 

identified functional involvement of each gene. 

 

   
Sex specific multivariable Cox regression analysis adjusting for 
age and stage 

      Females stage III Males stage III 

OGS Function 

pro-tumour 
(+), anti-
tumour(-) Coef HR 

raw_p-
val Coef HR raw_pval 

CKS2 cell cycle + 0.2704 
1.310
5 0.1351 

0.839
1 2.3143 0.0108 

CDC2 cell cycle + 0.1931 
1.213
0 0.3570 

0.325
6 1.3848 0.1954 

CCNB1 cell cycle + 0.2664 
1.305
2 0.1467 

0.237
4 1.2680 0.4192 

CENPF cell cycle + 0.2412 
1.272
7 0.1293 

0.580
2 1.7865 0.0104 

DHFR cell cycle + 0.3529 
1.423
1 0.2625 

1.191
4 3.2918 0.0221 

HCAP-G mitosis + 0.3497 
1.418
7 0.0734 

0.264
9 1.3033 0.2966 

STK6 mitosis + 0.2666 
1.305
5 0.0962 

0.576
4 1.7796 0.0227 

BUB1 
mitotic spindle 
checkpoint + 0.3980 

1.488
9 0.0179 

-
0.030
7 0.9698 0.8334 

BIRC5 
inhibition 
apoptosis + 0.2742 

1.315
5 0.1054 

0.262
5 1.3002 0.3434 

P2RY14 
stimulation of 
apoptosis - -0.2125 

0.808
6 0.2725 

-
0.031
4 0.9691 0.8711 

TOP2A 
DNA 
replication + 0.3175 

1.373
7 0.0802 

0.402
2 1.4951 0.1402 

RRM2 
DNA 
replication + 0.7076 

2.029
2 0.0042 

0.043
9 1.0449 0.8457 

TYMS 
DNA 
replication + 0.5208 

1.683
4 0.0183 

0.023
6 1.0239 0.9506 

PCNA 
DNA 
replication + 0.5358 

1.708
8 0.0227 

0.114
3 1.1211 0.7375 

MCM4 
DNA 
replication + 0.3424 

1.408
3 0.1539 

0.387
6 1.4734 0.1136 
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MCM6 
DNA 
replication + 0.7758 

2.172
3 0.1400 

1.416
2 4.1215 0.0251 

GLRX2 stress response + 0.3457 
1.413
0 0.4086 

-
0.077
5 0.9254 0.8376 

DNAJA1 stress response + 0.2292 
1.257
6 0.5113 

0.326
3 1.3859 0.5529 

HSPA4 stress response + -0.1208 
0.886
2 0.3790 

0.696
5 2.0068 0.0936 

HSPA5 stress response + -1.2135 
0.297
2 0.0731 

-
0.033
7 0.9669 0.9413 

HSPD1 stress response + -0.1193 
0.887
6 0.7638 

0.826
9 2.2862 0.2305 

TXNIP stress response - -0.4128 
0.661
8 0.2282 

-
0.545
5 0.5796 0.1868 

CACYB
P ubiquitin cycle + 0.3931 

1.481
6 0.1819 

-
0.147
7 0.8626 0.6866 

CNN3 

Aactin and 
calmodulin 
binding + -0.0574 

0.944
2 0.7720 

0.074
6 1.0775 0.8443 

STMN2 
intracellular 
signalling - -0.1726 

0.841
4 0.1072 

-
0.245
8 0.7821 0.0201 

 

 

 

 

 

 

 

 

 

 


