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Abstract Given a singular Riemannian foliation on a compact Riemannian manifold,
we study the mean curvature flow equation with a regular leaf as initial datum. We
prove that if the leaves are compact and the mean curvature vector field is basic, then
any finite time singularity is a singular leaf, and the singularity is of type I. This
generalizes previous results of Liu–Terng and Koike. In particular, our results can be
applied to study the orbits of an isometric action by a compact Lie group.
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Isoparametric foliation
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1 Introduction

Given a Riemannian manifold M and an immersion ϕ : L0 → M , a smooth family of
immersions ϕt : L0 → M , t ∈ [0, T ) is called a solution of the mean curvature flow
(MCF for short) if ϕt satisfies the evolution equation
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d

dt
ϕt = H(t),

where H(t) is the mean curvature of L(t) := ϕt (L0). We say that the MCF ϕt has
initial datum L0. By abuse of notation, we will often identify ϕt with its image L(t),
and we will talk about the MCF flow L(t).

In [8] Liu and Terng studied the mean curvature flow equation in spheres and
Euclidean spaces with an isoparametric submanifold as initial datum and they proved,
among other things, that such an evolution moves through isoparametric submanifolds
up to the (finite time) singularity. Later on, Koike [7] generalized Liu and Terng’s
results to the mean curvature flow on compact symmetric spaces, with isoparametric
submanifolds with flat sections as initial datum.

Given an isoparametric submanifold L , one can partition the ambient manifold
into the submanifolds “parallel” to L , which are all isoparametric unless they lie in
the focal set of L , in which case they have lower dimension (and they are called
focal submanifolds). Such a partition is a special example of a singular Riemannian
foliation i.e., a foliation where every geodesic starting perpendicular to a leaf, stays
perpendicular to all the leaves it meets (cf. [11, p. 189]). The results of Liu–Terng and
Koike can then be restated by saying that given an isoparametric submanifold L of a
sphere, Euclidean space or compact symmetric space, the MCF evolution with L as
initial datum moves through the leaves of the foliation induced by L .

Singular Riemannian foliations induced by an isoparametric submanifold (also
called isoparametric foliations) are characterized by the following two properties:

(i) The mean curvature form is basic (cf. Sect. 2).
(ii) The distribution orthogonal to the regular leaves (i.e., the leaves with maximal

dimension) is integrable.

If a singular Riemannian foliation satisfies the former condition it is called generalized
isoparametric. In this paper, we generalize the results of Liu–Terng and Koike to the
class of generalized isoparametric foliations on compact Riemannian manifolds.

Despite the name, generalized isoparametric foliations are much more general than
isoparametric ones. For example, the following foliations are generalized isoparamet-
ric:

(1) Any isometric group action of a connected Lie group G on a Riemannian man-
ifold M induces a singular Riemannian foliation (M,F) given by the orbits of
G (homogeneous foliation) which is generalized isoparametric. By comparison,
isoparametric foliations only appear when the group action is polar.

(2) Any singular Riemannian foliation in spheres or Euclidean space is generalized
isoparametric; cf. [1, Remark 4.2]. This includes a new class of foliations, neither
homogeneous nor polar, constructed usingClifford algebras; cf. [14]. By contrast,
(irreducible) isoparametric foliations in spheres either have cohomogeneity one,
or arise from a polar representation [17].

(3) Any singular Riemannian foliation F on KP
n , (K = R,C,H) lifts to a foliation

F∗ on a sphere via the Hopf map S
m → KP

n . Moreover, since Hopf fibra-
tions have totally geodesic fibers the mean curvature vector field of the leaves
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is preserved under the fibration, and in particular F is generalized isoparamet-
ric. Among these, the (irreducible) isoparametric foliations in CPn were recently
classified by Domínguez-Vázquez [4] (in this case, there are irreducible inhomo-
geneous isoparametric foliations if and only if n + 1 is not prime).

Recall that a leaf of a singular Riemannian foliation is called regular if it has
maximal dimension, and singular otherwise.

Theorem 1.1 Let (M,F) be a generalized isoparametric foliation with compact
leaves on a compact manifold M. Let L0 ∈ F be a regular leaf of M and let L(t)
denote the mean curvature flow evolution of L0 with maximal interval of existence
[0, T ). Then the following statements hold:

(a) L(t), t ∈ [0, T ) are regular leaves of F .
(b) The singular time T is finite if and only if L(t) converges to a singular leaf LT

of F and, in this case, the singularity is of type I, i.e.,

lim sup
t→T−

‖At‖2∞(T − t) < ∞

where ‖At‖∞ is the sup norm of the second fundamental form of L(t).

Remark 1.2 The condition that M is compact can be replaced by the more general
assumption that the MCF L(t) with initial datum L(0) = L0 stays at a bounded
distance from L0. This condition can be verified, for example, for any closed singular
Riemannian foliation in Euclidean space.

The condition of having a finite time singularity holds in several situations. For
example, if L0 is a compact submanifold in Euclidean space, it follows from [16,
Proposition 3.10] that the maximal time of existence T of the mean curvature flow is
finite. For any generalized isoparametric foliation, we prove in Proposition 3.3 that
there is a neighborhood around the singular leaves in which the MCF has always finite
time singularities. If moreover the manifold is nonnegatively curved and the foliation
is isoparametric, then we have the following stronger result.

Theorem 1.3 For every isoparametric foliation on a compact nonnegatively curved
space, the MCF with a regular leaf as initial datum has always finite time singularity.

Ifwe restrict ourselves to special cases,weobtain strengthenings of different already
known results:

• Theorems 1.1 and 1.3 together generalize the main results of Liu–Terng [8] and
Koike [7] to the case of isoparametric foliations on compact nonnegatively curved
manifolds. Moreover, we also show that the flow has type I singularities indepen-
dently of the singular leaf to which it converges, thus answering in the positive a
question posed in [8, Remark].

• If F is a homogeneous foliation by a Lie group G acting on M , Pacini proved in
[12, Theorem 2], among other things, that if a curve of principal orbits t → G(t)
(where t ∈ [0, T ) ) is a solution of a MCF with finite time singularity, the limit is
a singular orbit provided that such a limit exists. By our main result, such a limit
always exists.
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In general, one cannot expectTheorem1.3 to holdwithout the curvature assumption;
cf., for example, [12, Example 3]. Other examples of foliations whose MCF can have
infinite time existence can be constructed as follows. Let � be a surface of revolution
diffeomorphic to S

2 with a “dumbbell metric”, and an isoparametric (homogeneous)
foliation (�,F) induced by the isometric S1-action. The central S1-orbit is a geodesic,
thusminimal, and it is easy to see that in this case any nearby orbit will converge to it in
infinite time. Notice that for any such metric the foliation (�,F) is isoparametric, and
moreover we can choose the metric to be arbitrarily close to a nonnegatively curved
one, inwhich case byTheorem1.3 therewould be no nonconstant solutions of theMCF
with infinite time existence. Therefore, in a suitable sense, the property of a generalized
isoparametric foliation to only admit short time MCF is not an open condition. The
assumption on the foliation being isoparametric, however, is not crucial. In fact, in
certain cases it suffices to have a foliation that is “close enough” to an isoparametric
one (cf. Remark 5.4).

Like in the case of orbits of isometric actions in compact manifolds (cf. [12]), it is
possible to prove that for generalized isoparametric foliations that the mean curvature
of a singular leaf is tangent to the stratum that contains it; see [15, Proposition 2.10]
for the case of singular Riemannian foliations in spheres. Moreover it is possible to
check, using for example [15, Proposition 2.9], that the mean curvature is again basic
in each stratum.

Therefore the restriction of a generalized isoparametric foliation to each stratum
is again a generalized isoparametric foliation, and we immediately get the following
result.

Corollary 1.4 Let (M,F) be a generalized isoparametric foliation with compact
leaves on a compact manifold M. Let L be a singular leaf and let � be the stratum
containing L. Let L(t) be the MCF flow with initial datum L and let [0, T ) be the
maximal interval of existence of the flow. Then the following statements hold.

(a) L(t) is a singular leaf in � for every t ∈ [0, T ).
(b) If T < ∞ then LT converges to a singular leaf LT with dim LT < dim L, and

the singularity is of type I.

This paper is divided as follows. In Sect. 2 we recall the definition and properties
of singular Riemannian foliation, while in Sect. 3 we prove Theorem 1.1. The proofs
rely on some, somewhat technical, estimates on the shape operator, which are proved
in Sect. 4. Section 5 is devoted to the proof of Theorem 1.3.

2 Preliminaries

Given a compact Riemannian manifold M , a singular foliation F is called a singular
Riemannian foliation if every geodesic that starts perpendicular to a leaf, stays per-
pendicular to all the leaves it meets; cf. [11, p. 189]. We denote by dimF the maximal
dimension of the leaves ofF , and call a leaf L regular if dim L = dimF and singular
otherwise. The union of regular leaves is open and dense in M , it is called regular
stratum and it is denoted by Mreg . The union of singular leaves of a fixed dimension
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is a disjoint union of (possibly non-complete) submanifolds, which we call singular
strata of F .

If the leaves ofF are closed, the leaf space M/F inherits the structure of aHausdorff
metric space, where the distance between two points is defined as the distance between
the corresponding leaves.Moreover, the subsetMreg/F of regular leaves is an orbifold,
and the canonicalmapπ : M → M/F restricts to a (orbifold)Riemannian submersion
Mreg → Mreg/F . A vector field X on Mreg is called basic if it projects via π∗ to a
well-defined vector field in Mreg/F .

Given a singular Riemannian foliation (M,F), we denote by A the shape operator
of the leaves of F . The mean curvature H of F at a point p is defined as the mean
curvature of the leaf L p through p. Since the regular part of the foliation is defined
via a Riemannian submersion, the mean curvature H is smooth on Mreg . We will see,
however, that the norm of H blows up as it approaches singular strata.

In the regular part ofF the tangent bundle T M splits as TF⊕νF , where TF is the
bundle of the tangent spaces of the leaves in F , and νF is its orthogonal complement.
Moreover, for every regular point p ∈ M it is possible to define the O’Neill tensor
ON : νpF × νpF → TpF as (x, y) �→ ONx y = 1

2prTF [X,Y ] where X,Y are
local vector fields extending x, y, and prTF denotes the orthogonal projection onto
TpF . If ON ≡ 0 then the orthogonal distribution νF is integrable, and the foliation
is called polar.

A singular Riemannian foliation is called generalized isoparametric if the mean
curvature H onMreg is basic. Ifmoreover it is also polar, then it is called isoparametric.

2.1 Distinguished Tubular Neighborhoods

Let (M,F) be a singular Riemannian foliation and let q be a point in a (possibly
singular) leaf L . We recall (cf. [11, Theorem 6.1, Proposition 6.5], [3,9]) that it is
possible to find a neighborhood P of q in L , a neighborhood Oε of q in M and
diffeomorphism ϕ : Oε → V ⊆ TqM onto a neighborhood V of the origin, with the
following properties:

(1) Oε is the image of the normal exponential map exp⊥ : νε
q P → M , where νε

q P =
{v ∈ νq P | ‖v‖ < ε}.

(2) The image of F |Oε under ϕ is the restriction to V of a singular Riemannian
foliation (TqM,Fq).

(3) ϕ(L ∩ Oε) = Tq L ∩ V .
(4) Under the splitting TqM = Tq L × νq L the foliation Fq splits as well as Tq L ×

(νq L ,Fq ∩ νq L), i.e., any leaf L ′ of Fq is of the form (L ′ ∩ νq L) × Tq L .
(5) For any λ ∈ (0, 1), the homothetic transformation hλ : Oε → Oε given by

hλ(exp⊥
p (v)) = exp⊥

p (λv) for any v ∈ νε
p P , corresponds under ϕ to the rescaling

(x, w) �→ (x, λw) for any (x, w) ∈ Tq L × νq L .

We call Oε a distinguished tubular neighborhood of q, and denote it simply with O
if ε is understood. The map ϕ is a modification of the normal exponential map and in
particular it sends radial geodesics around L to radial geodesics around Tq L .
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3 Proof of Theorem 1.1

In this section we let (M,F) be a generalized isoparametric foliation with closed
leaves on a compact manifold. We also fix a regular leaf L0 and assume that the MCF
evolution L(t) with initial datum L0 has maximal interval of existence [0, T ), with T
finite.

Since the mean curvature of F is basic, it projects via π : M → M/F to a vector
field on the orbifold Mreg/F , and it is immediate to see that L(t) is the preimage of
the point γ (t) ∈ Mreg/F , where γ is the integral curve of (the projection of) H . In
particular L(t) is a leaf of F , and since the dimension of L(t) is constant up to the
singular time, we have that L(t) is regular. We thus proved the following.

Proposition 3.1 For any t ∈ [0, T ), L(t) is a regular leaf of F .

The rest of the section is devoted to proving statement (b) of Theorem 1.1. In Sect.
4 we prove the following result (cf. Corollary 4.6):

Proposition 3.2 Let Lq ∈ F be a singular leaf. For ε small enough, there exist
constants δ, c such that in the regular part of Tubε(Lq) the shape operator A of F
satisfies:

− (1 + δ)
D

r(x)
− c ≤ tr(A∇r )x ≤ −(1 − δ)

D

r(x)
+ c, (3.1)

where D = dimF − dim Lq and r(x) = dist(x, Lq). Moreover, if ε′ < ε then one
can choose constants δ′ ≤ δ and c′ ≤ c associated with ε′, and limε→0+ δ = 0.

We can now prove the following:

Proposition 3.3 Given a singular leaf Lq , there exists an ε = ε(Lq) such that if L(t0)
lies in Tubε(Lq) for some t0 ∈ [0, T ) then the following properties hold:

(a) For any t > t0 the distance r(t) = dist(L(t), Lq) satisfies

C2
1 (t − t0) ≤ r2(t0) − r2(t) ≤ C2

2 (t − t0) (3.2)

where C1 and C2 are positive constants that depend only on Tubε(Lq).
(b) L(t) ⊂ Tubε(Lq) for all t ∈ (t0, T ), and T < t0 + ε

C2
1
.

(c) If L(t) converges to Lq at time T then for any t ∈ (t0, T ],

C1
√
T − t ≤ r(t) ≤ C2

√
T − t . (3.3)

Proof Start with a tubular neighborhood Tubε0(Lq) in which the distance function
r = distLq is smooth away from Lq , and such that Proposition 3.1 holds for some δ

and c. Fixing p ∈ L(t0), consider the curve t → ϕt (p) such that d
dt ϕt (p) = H(t). Of

course ϕt (p) ∈ L(t) for all t , and r(t) = dist(ϕt (p), Lq) equals dist(L(t), Lq) by the
equidistance of the leaves. Then we have

r ′(t) = 〈∇r, ϕ′
t (p)〉 = 〈∇r, H(t)〉 = tr(A∇r ).
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From (3.1),

−(1 + δ)
D

r
− c ≤ trA∇r ≤ −(1 − δ)

D

r
+ c.

Now we choose ε < min{ε0, (1 − δ) Dc } and define the constants C1, C2 by

C2
1

2
= (1 − δ)D − cε,

C2
2

2
= (1 + δ)D + cε

The above equations imply

− C2
2

2r(t)
≤ r ′(t) ≤ − C2

1

2r(t)

or, equivalently, −C2
2 ≤ (r2(t))′ ≤ −C2

1 . Integrating this equation we get

C2
1 (t − t0) ≤ r2(t0) − r2(t) ≤ C2

2 (t − t0) (3.4)

for t > t0 close to t0. Since r2(t) is decreasing, L(t) remains in Tubε(Lq) for every
t > t0 and this concludes the proof of (a) and (b).

Statement (c) follows directly from (a). ��
Remark 3.4 By Proposition 3.3 it immediately follows that if L(t0) lies in a tubular
neighborhood defined as above, then T must be finite. This does not imply, for a
generic M , that T is always finite when the initial datum is outside such a tube; see
[12, Example 3]. Also note that in the proof of Proposition 3.3, ε has been chosen to
be small, more precisely smaller than (1 − δ)D/c. This was necessary to ensure the
existence of the constant C1 (otherwise C2

1 would be negative). The fact that ε cannot
be chosen bigger (evenwhen it wouldmake sense to talk about tubular neighborhoods)
is not a limitation of the proof, but it seems to have a geometrical meaning. In fact it is
possible to see, e.g., in some examples of isoparametric foliations in Euclidean space,
that if the radius of the tube is too big (although the tube is still well defined) then
statement (b) of Proposition 3.3 is no longer true, i.e., the MCF of leaves in a tube of
big radius can leave the tube after a finite time.

In the next proposition we prove that given a leaf L0, if the MCF L(t) with L(0) =
L0 has finite time singularity then it converges to a singular leaf Lq in the Hausdorff
sense, i.e., the projection of L(t) in the quotient spaceM/F converges to the projection
of Lq . More precisely we prove the first part of statement (b) in Theorem 1.1.

Proposition 3.5 Let F be a generalized isoparametric foliation with compact leaves
on a complete manifold M and let L0 be a regular leaf. Suppose that the MCF L(t)
with initial datum L(0) = L0 stays in a bounded set, and that L(t) has a finite time
singularity. Then L(t) converges in the Hausdorff sense to some singular leaf Lq .

Proof Since L(t) is contained in a bounded set and T is finite, it follows from [13,
Proposition 9.1.4] that the limit set of L(t) cannot be contained in the regular stratum
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and thus it must be contained in some singular stratum. When F is homogeneous this
also follows from [12, Lemma 2.3].

Now consider a singular leaf Lq in the limit set, and take a sequence {tn} ⊆ [0, T )

converging to T . For any arbitrarily small radius ε, we can find some tε such that
L(tε) ∈ Tubε(Lq) and, by Proposition 3.3, L(t) ∈ Tubε(Lq) for every t ∈ (tε, T ).
Due to the arbitrariness of ε we conclude that L(t) converges to Lq . ��

In what follows, we consider a singular leaf Lq which is the limit of the MCF L(t)
with initial datum L0. We want to prove that this singularity is of Type I, this finishing
the proof of Theorem 1.1.

Fixing a tubular neighborhood Tubε(Lq), we consider the functions r�, f :
Tubε(Lq) → R such that r�(x) is the distance between Lx and the singular strata,
and f (x) is the distance between Lx and its focal set. By abuse of notation, we also
define r�(t) = r�(L(t)), f (t) = f (L(t)).

In Corollary 4.8 we prove the following.

Proposition 3.6 There exists a constant C, depending on Tubε(Lq), such that for
any t close enough to the singular time T we have r�(t) ≥ Cr(t), where r(t) =
dist(L(t), Lq).

Together with Proposition 3.3, we have that there is a constant C ′
1 = C1C such that,

close enough to the singular time T , one has

r�(t) ≥ C ′
1

√
T − t . (3.5)

Proposition 3.7 There exists a constant σ ∈ (0, 1) such that f (p) ≥ σ r�(p) for
every regular point p ∈ M.

Proof The functions r� and f are constant along the leaves of F , and thus induce
functions on the quotient, which we denote with the same letters. By Lytchak and
Thorbergsson [9], the first focal point of a leaf L p corresponds to either a singular leaf,
or to a conjugate point in M/F of the projection of L p. In the first case, f (p) = r�(p)
and the proposition is proved.

Suppose now that the projection p∗ of L p into M/F has a conjugate point
along some geodesic segment γ contained in the regular part of M/F . Clearly
r�(γ (s)) ≥ r�(p) − s. From Lytchak and Thorbergsson [9, Remark 1.1], the supre-
mum sup(secM/F (x∗)) of the sectional curvatures at a point x∗ in U/F satisfies

sup(secM/F (x∗)) ≤ K

r�(x∗)2
, (3.6)

for some constant K . Together with the previous equations,

secM/F (γ (s)) ≤ K

r�(γ (s))2
≤ K

(r�(p) − s)2
. (3.7)

By Rauch’s Comparison Theorem, the first conjugate point along γ appears after the
first conjugate point along a geodesic γ in a model space with curvature κ(γ (s)) =

K
(r�(p)−s)2

.
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To compute the conjugate point in such amodel, it is enough to find the first positive
zero of a solution h to the ODE{

h′′(s) = − K
(r�(p)−s)2

h(s)

h(0) = 0
(3.8)

If we define g(s) = h(r�(p)s) then g satisfies the equation

{
g′′(s) = − K

(1−s)2
g(s)

g(0) = 0
(3.9)

and if σ0 is the first zero of g in (0, 1), then the first zero of h is σ0r�(p) and f (p) ≥
σ0r�(p).

On the other hand, if g does not admit any zeroes in (0, 1), then h does not admit
any zeroes in (0, r�(p)) and therefore the first conjugate point along γ appears after
r�(p). In either case, we proved that f (p) ≥ σ r�(p), where

σ =
{

σ0 if there exists a zero σ0 of g in(0, 1)
1 otherwise

Notice that σ does not depend on p. ��
We can now prove the “if” statement (b) of Theorem 1.1. The “only if” statement,

much simpler, is addressed later in Lemma 5.2.

Proposition 3.8 Let F be a generalized isoparametric foliation with compact leaves
on M. Let L(t) be a MCF evolution with initial datum L0 ∈ F . Assume that the MCF
L(t) converges to a singular leaf Lq . Then the flow has a singularity in finite time and
this singularity is of type I, i.e.,

lim sup
t→T−

‖A(t)‖2∞(T − t) < ∞ (3.10)

where ‖A(t)‖∞ is the sup norm of the shape operator of L(t).

Proof Fixing q ′ ∈ Lq , we consider a distinguished tubular neighborhood Oε around
q ′, with map ϕ : Oε → Tq ′M as described in Sect. 2. We let g denote the pullback
of the flat metric in Tq ′M via ϕ. We also denote by A, f , r� , etc., the quantities
corresponding to A, f, r� , etc., computed using the flat metric g.

By calculations similar to those behind the proof of Eq. (4.4), we can prove that
there exist constants C1,C2 (that depend only on Oε(q ′) and ϕ) such that:

‖At‖∞ ≤ C1‖At‖∞ + C2. (3.11)

On the other hand we claim that

‖At‖∞
√
T − t ≤ C3 (3.12)
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where C3 is a constant that depends only on Oε(q ′). In fact, by Lemma 4.1 we have
‖At‖∞ = 1/ f̄ (t), where again f̄ (t) is the distance between the submanifold L(t)
and its first focal point with respect to the flat metric. Moreover, from Eq. (3.5) we
have r�(t) > Cr�(t) > C

√
T − t . Applying Proposition 3.7 to the flat metric,

f (t) > C3
√
T − t and Eq. (3.12) follows.

Equations (3.12), (3.11) and the compactness of Lq imply (3.10). ��
Wehave already discussed that if L(t) is aMCFwith initial datum L0 ∈ F and there

is a finite time singularity, then L(t) converges to a singular leaf Lq in the Hausdorff
sense. We now show that the convergence is in fact pointwise, i.e., for every p ∈ L0
the integral curve t → ϕt (p) of H converges to a point in the singular leaf Lq as
t → T−.

Proposition 3.9 Let (M,F) be a generalized isoparametric foliation with compact
leaves, and let L(t) = φt (L0) be the MCF evolution with L(0) = L0 a regular leaf of
F . Assume that L(t) converges to singular leaf Lq in a finite time T and let p ∈ L(0).
Then ϕt (p) converges to a point of Lq .

Proof Let γ (t) = ϕt (p) be the integral curve of H starting at p. By Proposition 3.8
there exists a reparameterization σ : [0, 1) → [0, T ) such that β(s) := γ (σ (s)) has
‖β ′(s)‖ < ∞, consider for example σ(s) = T − T (1 − s)2.

In what follows we prove that β converges to a point of Lq .
Fixing some ε >, let π : Tubε(Lq) → Lq be the orthogonal projection. Since

‖β ′(s)‖ < ∞, π ◦ β : [0, 1) → Lq is Lipschitz and thus lims→1 π(β(s)) = p′ for
some p′ ∈ Lq . Since L(t) converges to the leaf Lq , this concludes the proof. ��

4 Estimates on the Shape Operator

The goal of this section is to compute bounds for the shape operator of a singular
Riemannian foliation, starting with foliations in Euclidean space.We start by recalling
the following well-known fact.

Lemma 4.1 Given a submanifold L ⊆ R
n and a normal vector x to L, tangent to

the stratum �L , let λ1, . . . , λr be the eigenvalues of the shape operator Ax counted
with multiplicity. Then the focal points of L along the geodesic γx (t) = exp t x are at
distance 1/λ1, . . . , 1/λr .

Let (M,F) be a singular Riemannian foliation, let q ∈ M be a singular point, of
F , and let Oε be a distinguished tubular neighborhood around q (cf. Sect. 2.1). Let g
denote the restriction to Oε of the metric of M and let g denote the pullback of the flat
metric on TqM under ϕ : Oε → TqM . Let ∇,∇ denote the Levi-Civita connections
of g and g respectively, and let ω denote the connection difference tensor

ω(X,Y ) = ∇Y X − ∇Y X.

We let G be the symmetric (1, 1)-tensor such that g(x, y) = g(Gx, y) for every
x, y ∈ TqM |U . The splitting TqM = Tq Lq × νq Lq induces via ϕ a g-orthogonal
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splitting Oε = P × S such that Lq ∩Oε = P ×{s} for some s ∈ S. The submanifolds
Sq ′ = {q ′} × S, q ′ ∈ P , are called slices of Oε . Clearly, the slices are flat in the g
metric and they contain all the g-orthogonal spaces of the leaves in Oε .

Any geometric quantity related to a flat metric will be denoted with a bar, e.g.,
tr, A. Given a leaf L of (Rn,F), denote by r L the distance function from L in the flat
metric.

Remark 4.2 Given two distinguished tubular neighborhoods Oε(q), Oε(q ′) with q ′ ∈
Lq , the corresponding radial functions r(p) = dist(Lq , p) with respect to the two
flat metrics agree on the intersection. Therefore, even though the flat metric g is only
defined locally yet r can be uniquely defined on a neighborhood of the whole leaf Lq ,
and it makes sense to define

Tubε(Lq) = {p ∈ M | r(p) < ε}.

Even more so, there exists a metric g0 in Tubε(Lq) such that, for any distinguished
neighborhood Oε , g0 has the same transverse metric of g (cf. [2]). In particular, for any
leaf L ⊆ Tubε(Lq) it is possible to define a distance function r L(p) in Tubε(Lq)whose
restriction to any distinguished tubular neighborhood Oε(q ′), q ′ ∈ Lq , coincides with
dist(L , p) in the flat metric.

Lemma 4.3 Let (Rn,F) be a singular Riemannian foliation, and let L be a singular
leaf. Then for every εL small enough there is a constant CL such that

− Dx

r L(x)
− CL ≤

(
tr A∇r L

)
x

≤ − Dx

r L(x)
+ CL ∀x ∈ TubεL (L) (4.1)

with Dx = dim Lx − dim L.

Proof Let ε be small enough that the normal exponential map exp : ν≤εL → Tubε(L)

is a diffeomorphism, and let P : Tubε(L) → L denote themetric projection. For every
p ∈ L , Sp = expp(ν

≤ε
p L) is the slice of F at p. For ε small enough the distribution

V1(x) = Tx Lx ∩ Tx Sp, p = P(x), has dimension Dx = dim Lx − dim L and hence
codimension dim L in Tx Lx . Let V2(x) ⊆ Tx Lx denote the orthogonal complement
of V1(x). Then the following are satisfied:

(1) Tx Lx = V1(x) ⊕ V2(x) is an orthogonal decomposition for every x ∈ Tubε(L).
(2) V2 is a regular distribution which coincides with TpL for every p ∈ L .
(3) By Lemma 4.1, V1(x) corresponds to the eigenspace of A∇r L

with eigenvalue

− 1
r L
. In particular, V2(x) consists of a sum of eigenspaces of A∇r L

.

It follows that tr A∇r L
= tr A∇r L

∣∣
V1

+ tr A∇r L

∣∣
V2

and, for every x = expp v in
Tubε(L),

(
tr A∇r L

∣∣
V1(x)

)
x

= − Dx

r L(x)
,

∣∣∣(tr A∇r L
|V2(x)

)
x

− (
tr Av

)
p

∣∣∣ < δ

where δ = δ(ε) is arbitrarily small. The result follows, by letting CL =
supv⊥L ,‖v‖=1

(
tr Av

) + δ. ��
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Remark 4.4 Suppose that every leaf L of (Rn,F) splits isometrically asV×L⊥, where
V is a fixed totally geodesic leaf ofF and L⊥ ⊆ V⊥. The homothetic transformations
hλ at V act on Rn = V × V⊥ by fixing V and rescaling the V⊥ factor. In particular,

(hλ)∗
(
A∇r L

)
= 1

λ
A∇rλL

where λL = hλ(L). In particular, if CL satisfies Eq. (4.1) on Tubε(L), then CλL =
1
λ
CL satisfies Eq. (4.1) for λL , in Tubλε(λL). If we define cL = CL

r(L)
, where r(x) =

dist(x, V ), then cL becomes invariant under homothetic transformations (cL = cλL )
and Eq. (4.1) becomes

− Dx

r L(x)
− cL

r(x)
≤

(
tr A∇r L

)
x

≤ − Dx

r L(x)
+ cL

r(x)
∀x ∈ TubεL (L). (4.2)

Clearly, if (L , εL , cL) satisfy Eq. (4.2), then (λL , λεL , cL) satisfy Eq. (4.2) as well,
for every λ.

The next lemma holds for generic Riemannian metrics.

Lemma 4.5 Let (M,F) be a singular Riemannian foliation with compact leaves on a
complete Riemannian manifold and let Lq be a singular leaf. Fix ε > 0 small enough.
Then for any L in Tubε(Lq), there is a radius εL and a constant kL such that in the
regular part of TubεL (L) the following holds

− (1 + δ)
DL

r L(x)
− kL

r(x)
≤ tr(A∇r L )x ≤ −(1 − δ)

DL

r L(x)
+ kL

r(x)
. (4.3)

Here the constant δ only depends on Lq and ε, while kL is homothety invariant (i.e.,
kL = kλL).

Proof Fix a distinguished tubular neighborhood Oε around some point in Lq , and
let g denote the flat metric. In the following, every overlined geometrical quantity is
computed with respect to g. Using ∇ = ∇ + ω and g(x, y) = g(Gx, y), it is not hard
to prove that there are constants δ, c depending only on Lq and ε, with limε→0 δ = 0,
such that g and g are δ-close in the C0-topology and

(1 − δ)

∣∣∣tr A∇r L

∣∣∣ − c ≤ ∣∣trA∇r L

∣∣ ≤ (1 + δ)

∣∣∣tr A∇r L

∣∣∣ + c. (4.4)

Since the metric g splits as in Remark 4.4, we obtain that for every L there is a
homothety invariant cL and a small εL such that Eq. (4.2) applies. Using Eq. (4.4), we
obtain

− (1+δ)
DL

r L(x)
− (1+δ)

cL
r(x)

−c ≤ tr(A∇r L )x ≤ −(1−δ)
DL

r L(x)
+ (1−δ)

cL
r(x)

+c,

(4.5)
By setting kL = (1 + δ)cL + εc we obtain the result. ��
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In the particular case of L = Lq , we can choose εL = ε and follow the same steps
as above, noticing that in this case r L = r and thus ∇r L = ∇r . Moreover, in this case
we get CL = cL = 0, thus from Eq. (4.5) we get the following

Corollary 4.6 Let (M,F) be a singular Riemannian foliation with compact leaves
on a complete Riemannian manifold and let Lq be a singular leaf. For ε > 0 small
enough, there exist constants δ, c such that in the regular part of Tubε(Lq)

− (1 + δ)
D

r(x)
− c ≤ tr(A∇r )x ≤ −(1 − δ)

D

r(x)
+ c. (4.6)

where D = dimF − dim Lq and r = distLq .

Remark 4.7 The above corollary implies that there is no Riemannian metric on M ,
adapted to a singular Riemannian foliation F with compact leaves, for which all the
leaves of F are minimal submanifolds; see also Miquel and Wolak [10].

Corollary 4.8 Let M,F , Lq be as in Lemma 4.5 and assume that F is generalized
isoparametric. Let Tubε(Lq) be a tubular neighborhood of Lq with radius ε small
enough and let M be the union of the singular leaves in Tubε(Lq). Then there exists
a foliated neighborhood U ofM \ Lq with the following two properties:

(1) There exists a constant C such that for any x ∈ Tubε(Lq) \ U, dist(x,M) >

C dist(x, Lq).
(2) for any regular leaf L0 ∈ U, the MCF evolution L(t) with L(0) = L0 does not

converge to Lq .

Proof Let L denote the set of singular leaves in Tubε(Lq), and define

U =
⋃
L∈L

TubεL (L).

Here the tubes Tubε(Lq),Tubε(L) are defined using the distance functions r(p) =
dist(Lq , p) and r L(p) = dist(L , p) (see Remark 4.2), while εL is some radius satis-
fying Lemma 4.5 and rescaling linearly under g-homothetic transformations. In this
way, for any distinguished tubular neighborhood Oε = P × S around Lq , the restric-
tion U ∩ Oε has the form P × {conical open set in S}. Clearly there is some constant
C ′ such that dist(x,M) > C ′r L(x) for every x in Oε . Since the metrics g, g are
equivalent, the first statement follows.

In order to prove the second statement, we choose εL <
(1−δ)kL

DL
r(L). Notice that the

right-hand side of the inequality rescales linearly under g-homothetic transformations,
thus we can still choose εL with the same property. Let L(t) be a MCF evolution with
initial datum L0 ⊆ U . Then L0 belongs to TubεL (L) for some singular leaf L ⊆ U .
If we define r L(t) = r L(L(t)), by Lemma 4.5 we obtain

r ′
L(t) = trA∇r L < −(1 − δ)

DL

r L(x)
+ kL

r(x)
.
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Since r L < εL <
(1−δ)kL

DL
r(L), we obtain r ′

L(t) < 0 and therefore L(t) never leaves

TubεL (L). ��

5 Isoparametric Foliations in Nonnegative Curvature

The goal of this section is to prove Theorem 1.3 which we restate here.

Theorem 5.1 Let (M,F) be an isoparametric foliation (i.e., polar and generalized
isoparametric) on a compact nonnegatively curved manifold. Then for every non-
minimal regular leaf L0, theMCF L(t)with initial datum L0 has finite time singularity.

We start by proving a few lemmas.

Lemma 5.2 Let (M,F) be a closed, generalized isoparametric, singular Riemannian
foliation on a compact manifold.

(1) If vol : Mreg → R denotes the volume function x �→ vol(Lx ) then H =
−∇(log vol) in Mreg.

(2) Fixing a regular leaf L0, suppose that the MCF L(t) with L(0) = L0 does not
have a finite time singularity. Then there exists a sequence of leaves Li converging
to a minimal regular leaf L ′ in the Hausdorff sense, such that vol(Li ) > vol(L ′).

Proof (1) Letω denote the volume formof the regular leaves. By [6, Proposition 4.1.1],
given a basic vector field X along a regular leaf L p, we obtain

X (vol)(p) =
∫
L p

LX (ω)

= −
∫
L p

〈X, H〉ω

= −〈X, H〉vol(p)

where the last equality holds because both X and H are basic, and therefore 〈X, H〉
is constant along L p. Dividing the equation by vol(p) we obtain

〈X,∇(log vol)(p)〉 = X (log vol)(p) = −〈X, H〉

hence the result.
(2) From Proposition 3.3, there is a neighborhood of the singular setU such that every
MCF entering U has a finite time singularity, and therefore our flow L(t) must lie in
M \U , which is a relatively compact subset of Mreg whose distance to the singular set
is positive. Via the projection π : M → M/F , L(t) is projected to an integral curve of
the vector field π∗H . Since (M \U )/F is relatively compact, there exists a sequence
of times ti going to infinity, such that π(L(ti )) converges to some point π(L ′) ∈
(M \U )/F . Since log vol(L(t)) is decreasing, log vol(L(t)) > log vol(L ′) > c for
some c ∈ R. On the other hand, from the previous result one has

d

dt

(
log vol(L(t))

)
= H

(
log vol

(
L(t)

)) = −‖H‖2
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and since log vol(L(t)) is bounded from below, then (up to taking a subsequence) one
has ‖H |L(ti )‖2 → 0. By the continuity of the mean curvature in Mreg , H |L ′ = 0 and
therefore L ′ is minimal. On the other hand, L ′ is not a local maximum because it is
obtained as a Hausdorff limit of leaves with bigger volume. ��
Proof of Proposition 5.1 Suppose that there is a MCF L(t) without a finite time sin-
gularity. By Lemma 5.2, there exists a sequence of leaves Li converging to a minimal
regular leaf L ′, such that vol(Li ) > vol(L ′). This will provide a contradiction with
the following result, which will then finish the proof. ��
Proposition 5.3 Let (M,F) be a polar foliation on a compact nonnegatively curved
manifold. Then for every regular minimal leaf L ′, there exists a tubular neighborhood
U around L ′ such that, for every leaf L in U, vol(L) ≤ vol(L ′).

Proof Fixing a unit-length, basic vector field X along L ′ and a point p ∈ L ′ let γX (s)
denote the geodesic starting at p with initial velocity X (p). We set

δ(X) = sup{s | vol(LγX (s) ≤ vol(L ′)}.

In order to prove the proposition, it is enough to show that δ(X) > c > 0 for some c
not depending on X .

Let e1, . . . , en be an orthonormal frame of TpL ′, let E1(s), . . . , En(s) ∈
TγX (s)LγX (s) be the extension of e1, . . . , en along γX (s) by (vertical) parallel transport,
which allow us to identify the tangent spaces TγX (s)LγX (s) with TpL ′. Moreover, let
ωs(p) = E∗

1 (s) ∧ · · · ∧ E∗
n (s) denote the volume forms of LγX (s) at γX (s).

The holonomy map fs : L ′ → LγX (s) defined by fs(q) = expq sX (q) is a well-
defined, smooth diffeomorphism between L ′ and LγX (s), whose differential at a point
q is given by fs∗(ei ) = Ji (s), where Ji is the unique holonomy Jacobi field starting
at q with Ji (0) = ei (cf. [6, Sect. 1.4] for the definition and properties of holonomy
Jacobi fields).

The volume function along γX (s) then reads

vol(LγX (s)) =
∫
LγX (s)

ωs =
∫
L ′

f ∗
s ωs =

∫
L ′

js(q)ω

where js(q) = det(J1(s), . . . , Jn(s)). Since the curvature is nonnegative and the
foliation is polar, by standard comparison theory (cf. [5]), js(q) is bounded above by
a corresponding function j s(q) in Euclidean space. In other words, let Sq : [0, b] →
Sym2(Tq L ′) be the tensor satisfying

S
′
q + S

2
q = 0, Sq(0) = −AX (q)

and let j s(q) be the function such that

d

ds
js(q) = j s(q) · tr(Sq(s)), j0(q) = 1.
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Then js(q) ≤ j s(q). It is easy to compute j s(q):

j s(q) = (−1)n
(
det AX (q)

)∏
i

(s − λi (q)−1)

where λ1(q), . . . , λn(q) are the eigenvalues of AX (q). Such a function has a local
maximum at 0, where j0(q) = j0(q) = 1. Moreover, this is a maximum in the
interval [ 1

λ−(q)
, 1

λ+(q)
], where λ−(q) is the smallest (negative) eigenvalue of AX (q)

and λ+(q) is the biggest (positive) eigenvalue. In particular, if λ+
X = maxq λ+(q),

then js(q) ≤ j s(q) ≤ 1 for all q ∈ L ′ and s ∈ [0, 1
λ+
X
], and therefore

vol(LγX (s)) =
∫
L ′

js(q)ω ≤
∫
L ′

ω = vol(L ′) ∀s ∈ [0, 1/λ+
X ].

Therefore, δ(X) ≥ 1/λ+
X . By letting c = 1/‖A‖∞,we thenhave δ(X) > 1/‖A‖∞ > 0

for every X . ��
Remark 5.4 A weaker version of Theorem 5.1 can also be proved as follows. Given
a minimal regular leaf L and a basic vector field X along L , the second variation of
area in the direction of X reads

d2

dX2 vol =
∫
L

(‖ONX‖2 − ‖AX‖2 − Ricv(X, X)
)
d vol,

where Ricv(x, x) denotes the sum
∑

i 〈R(x, ei )ei , x〉 over an orthonormal basis of
TpL p.

It follows from this formula that, whenever ‖ONX‖2 < ‖AX‖2 −Ricv(X, X) then
every minimal leaf is a local maximum among the nearby leaves, and by Lemma 5.2
the MCF with a regular leaf as initial datum cannot have infinite time singularity. This
condition holds, for example, if (M,F) is isoparametric and M is positively curved.
Moreover, in the case of M = R

n or Sn , we are not aware of any example where the
inequality ‖ONx‖2 ≤ ‖Ax‖2 +Ricv(x, x) does not hold, and in most examples such
inequality is strict.
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