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Abstract Given a singular Riemannian foliation on a compact Riemannian manifold,
we study the mean curvature flow equation with a regular leaf as initial datum. We
prove that if the leaves are compact and the mean curvature vector field is basic, then
any finite time singularity is a singular leaf, and the singularity is of type I. This
generalizes previous results of Liu—Terng and Koike. In particular, our results can be
applied to study the orbits of an isometric action by a compact Lie group.
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1 Introduction

Given a Riemannian manifold M and an immersion ¢ : Ly — M, a smooth family of
immersions ¢; : Lo — M, t € [0, T) is called a solution of the mean curvature flow
(MCEF for short) if ¢; satisfies the evolution equation

B Marco Radeschi
mrade_02 @uni-muenster.de

Marcos M. Alexandrino
marcosmalex @yahoo.de; malex @ime.usp.br

Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Rua do Matio 1010,
05508 090 Sao Paulo, Brazil

Mathematisches Institut, WWU Miinster, Miinster, Germany

Published online: 24 June 2015 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-015-9624-4&domain=pdf

M. M. Alexandrino, M. Radeschi

d =H()
dtﬁot— ,

where H () is the mean curvature of L(¢) := ¢,(Lo). We say that the MCF ¢, has
initial datum L. By abuse of notation, we will often identify ¢; with its image L(¢),
and we will talk about the MCF flow L(¢).

In [8] Liu and Terng studied the mean curvature flow equation in spheres and
Euclidean spaces with an isoparametric submanifold as initial datum and they proved,
among other things, that such an evolution moves through isoparametric submanifolds
up to the (finite time) singularity. Later on, Koike [7] generalized Liu and Terng’s
results to the mean curvature flow on compact symmetric spaces, with isoparametric
submanifolds with flat sections as initial datum.

Given an isoparametric submanifold L, one can partition the ambient manifold
into the submanifolds “parallel” to L, which are all isoparametric unless they lie in
the focal set of L, in which case they have lower dimension (and they are called
focal submanifolds). Such a partition is a special example of a singular Riemannian
foliation i.e., a foliation where every geodesic starting perpendicular to a leaf, stays
perpendicular to all the leaves it meets (cf. [11, p. 189]). The results of Liu—Terng and
Koike can then be restated by saying that given an isoparametric submanifold L of a
sphere, Euclidean space or compact symmetric space, the MCF evolution with L as
initial datum moves through the leaves of the foliation induced by L.

Singular Riemannian foliations induced by an isoparametric submanifold (also
called isoparametric foliations) are characterized by the following two properties:

(i) The mean curvature form is basic (cf. Sect. 2).
(i) The distribution orthogonal to the regular leaves (i.e., the leaves with maximal
dimension) is integrable.

If a singular Riemannian foliation satisfies the former condition it is called generalized
isoparametric. In this paper, we generalize the results of Liu—Terng and Koike to the
class of generalized isoparametric foliations on compact Riemannian manifolds.

Despite the name, generalized isoparametric foliations are much more general than
isoparametric ones. For example, the following foliations are generalized isoparamet-
ric:

(1) Any isometric group action of a connected Lie group G on a Riemannian man-
ifold M induces a singular Riemannian foliation (M, F) given by the orbits of
G (homogeneous foliation) which is generalized isoparametric. By comparison,
isoparametric foliations only appear when the group action is polar.

(2) Any singular Riemannian foliation in spheres or Euclidean space is generalized
isoparametric; cf. [1, Remark 4.2]. This includes a new class of foliations, neither
homogeneous nor polar, constructed using Clifford algebras; cf. [14]. By contrast,
(irreducible) isoparametric foliations in spheres either have cohomogeneity one,
or arise from a polar representation [17].

(3) Any singular Riemannian foliation F on KP”, (K = R, C, H) lifts to a foliation
F* on a sphere via the Hopf map S — KIP". Moreover, since Hopf fibra-
tions have totally geodesic fibers the mean curvature vector field of the leaves

@ Springer



Mean Curvature Flow of Singular Riemannian Foliations

is preserved under the fibration, and in particular F is generalized isoparamet-
ric. Among these, the (irreducible) isoparametric foliations in CP" were recently
classified by Dominguez-Vazquez [4] (in this case, there are irreducible inhomo-
geneous isoparametric foliations if and only if #n 4 1 is not prime).

Recall that a leaf of a singular Riemannian foliation is called regular if it has
maximal dimension, and singular otherwise.

Theorem 1.1 Let (M, F) be a generalized isoparametric foliation with compact
leaves on a compact manifold M. Let Ly € F be a regular leaf of M and let L(t)
denote the mean curvature flow evolution of Ly with maximal interval of existence
[0, T). Then the following statements hold:

(a) L(z),t €0, T) are regular leaves of F.
(b) The singular time T is finite if and only if L(t) converges to a singular leaf Lt
of F and, in this case, the singularity is of type I, i.e.,

lim sup || A, [|2,(T — 1) < o0
t—T-

where || At |0 is the sup norm of the second fundamental form of L(t).

Remark 1.2 The condition that M is compact can be replaced by the more general
assumption that the MCF L(¢) with initial datum L(0) = Lg stays at a bounded
distance from L. This condition can be verified, for example, for any closed singular
Riemannian foliation in Euclidean space.

The condition of having a finite time singularity holds in several situations. For
example, if L¢ is a compact submanifold in Euclidean space, it follows from [16,
Proposition 3.10] that the maximal time of existence 7" of the mean curvature flow is
finite. For any generalized isoparametric foliation, we prove in Proposition 3.3 that
there is a neighborhood around the singular leaves in which the MCF has always finite
time singularities. If moreover the manifold is nonnegatively curved and the foliation
is isoparametric, then we have the following stronger result.

Theorem 1.3 For every isoparametric foliation on a compact nonnegatively curved
space, the MCF with a regular leaf as initial datum has always finite time singularity.

If we restrict ourselves to special cases, we obtain strengthenings of different already
known results:

e Theorems 1.1 and 1.3 together generalize the main results of Liu—Terng [8] and
Koike [7] to the case of isoparametric foliations on compact nonnegatively curved
manifolds. Moreover, we also show that the flow has type I singularities indepen-
dently of the singular leaf to which it converges, thus answering in the positive a
question posed in [8, Remark].

e If F is a homogeneous foliation by a Lie group G acting on M, Pacini proved in
[12, Theorem 2], among other things, that if a curve of principal orbits t — G (t)
(where t € [0, T) ) is a solution of a MCF with finite time singularity, the limit is
a singular orbit provided that such a limit exists. By our main result, such a limit
always exists.
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In general, one cannot expect Theorem 1.3 to hold without the curvature assumption;
cf., for example, [12, Example 3]. Other examples of foliations whose MCF can have
infinite time existence can be constructed as follows. Let ¥ be a surface of revolution
diffeomorphic to S? with a “dumbbell metric”, and an isoparametric (homogeneous)
foliation (X, F) induced by the isometric S I_action. The central S!-orbit is a geodesic,
thus minimal, and it is easy to see that in this case any nearby orbit will converge to it in
infinite time. Notice that for any such metric the foliation (X, F) is isoparametric, and
moreover we can choose the metric to be arbitrarily close to a nonnegatively curved
one, in which case by Theorem 1.3 there would be no nonconstant solutions of the MCF
with infinite time existence. Therefore, in a suitable sense, the property of a generalized
isoparametric foliation to only admit short time MCEF is not an open condition. The
assumption on the foliation being isoparametric, however, is not crucial. In fact, in
certain cases it suffices to have a foliation that is “close enough” to an isoparametric
one (cf. Remark 5.4).

Like in the case of orbits of isometric actions in compact manifolds (cf. [12]), it is
possible to prove that for generalized isoparametric foliations that the mean curvature
of a singular leaf is tangent to the stratum that contains it; see [15, Proposition 2.10]
for the case of singular Riemannian foliations in spheres. Moreover it is possible to
check, using for example [15, Proposition 2.9], that the mean curvature is again basic
in each stratum.

Therefore the restriction of a generalized isoparametric foliation to each stratum
is again a generalized isoparametric foliation, and we immediately get the following
result.

Corollary 1.4 Let (M, F) be a generalized isoparametric foliation with compact
leaves on a compact manifold M. Let L be a singular leaf and let ¥ be the stratum
containing L. Let L(t) be the MCF flow with initial datum L and let [0, T) be the
maximal interval of existence of the flow. Then the following statements hold.

(a) L(t) is a singular leaf in X for every t € [0, T).
(b) If T < oo then Lt converges to a singular leaf Lt with dim Lt < dim L, and
the singularity is of type L.

This paper is divided as follows. In Sect. 2 we recall the definition and properties
of singular Riemannian foliation, while in Sect. 3 we prove Theorem 1.1. The proofs
rely on some, somewhat technical, estimates on the shape operator, which are proved
in Sect. 4. Section 5 is devoted to the proof of Theorem 1.3.

2 Preliminaries

Given a compact Riemannian manifold M, a singular foliation F is called a singular
Riemannian foliation if every geodesic that starts perpendicular to a leaf, stays per-
pendicular to all the leaves it meets; cf. [11, p. 189]. We denote by dim F the maximal
dimension of the leaves of F, and call a leaf L regular if dim L = dim JF and singular
otherwise. The union of regular leaves is open and dense in M, it is called regular
stratum and it is denoted by M, .. The union of singular leaves of a fixed dimension
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is a disjoint union of (possibly non-complete) submanifolds, which we call singular
strata of F.

If the leaves of F are closed, the leaf space M / F inherits the structure of a Hausdorff
metric space, where the distance between two points is defined as the distance between
the corresponding leaves. Moreover, the subset M., / F of regular leaves is an orbifold,
and the canonical mapw : M — M /F restricts to a (orbifold) Riemannian submersion
Myeg — Myeg/F. A vector field X on M, is called basic if it projects via 74 to a
well-defined vector field in Mg/ F.

Given a singular Riemannian foliation (M, F), we denote by A the shape operator
of the leaves of F. The mean curvature H of F at a point p is defined as the mean
curvature of the leaf L, through p. Since the regular part of the foliation is defined
via a Riemannian submersion, the mean curvature H is smooth on M,.,. We will see,
however, that the norm of H blows up as it approaches singular strata.

In the regular part of F the tangent bundle 7 M splits as T F @ vF, where T F is the
bundle of the tangent spaces of the leaves in F, and v.F is its orthogonal complement.
Moreover, for every regular point p € M it is possible to define the O’Neill tensor
ON : vy F xvpF — TpF as (x,y) = ONyy = %prT}—[X, Y] where X, Y are
local vector fields extending x, y, and pry + denotes the orthogonal projection onto
T,F.1f ON = 0 then the orthogonal distribution v.F is integrable, and the foliation
is called polar.

A singular Riemannian foliation is called generalized isoparametric if the mean
curvature H on M, is basic. If moreoveritis also polar, thenitis called isoparametric.

2.1 Distinguished Tubular Neighborhoods

Let (M, F) be a singular Riemannian foliation and let ¢ be a point in a (possibly
singular) leaf L. We recall (cf. [11, Theorem 6.1, Proposition 6.5], [3,9]) that it is
possible to find a neighborhood P of ¢ in L, a neighborhood O, of ¢ in M and
diffeomorphism ¢ : O — V C T; M onto a neighborhood V' of the origin, with the
following properties:

(1) O is the image of the normal exponential map exp™ : ng — M, where UZP =
{fvevP||vl <e}

(2) The image of F|p, under ¢ is the restriction to V of a singular Riemannian
foliation (T, M, Fy).

3) (LN O)=Ty4LNV.

(4) Under the splitting 7,M = T,L x v, L the foliation F, splits as well as T, L x
(vgL, F4 NvyL),ie., any leaf L’ of F, is of the form (L' NvyL) x T, L.

(5) For any A € (0, 1), the homothetic transformation h) : O — O, given by
h A(expf; ) = expf; (Av) for any v € v[E,P, corresponds under ¢ to the rescaling
(x, w) = (x, Aw) for any (x, w) € T, L x v, L.

We call O a distinguished tubular neighborhood of ¢, and denote it simply with O

if € is understood. The map ¢ is a modification of the normal exponential map and in
particular it sends radial geodesics around L to radial geodesics around 7} L.
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3 Proof of Theorem 1.1

In this section we let (M, F) be a generalized isoparametric foliation with closed
leaves on a compact manifold. We also fix a regular leaf L and assume that the MCF
evolution L (¢) with initial datum L has maximal interval of existence [0, T'), with T
finite.

Since the mean curvature of F is basic, it projects viamw : M — M /F to a vector
field on the orbifold M,.¢/F, and it is immediate to see that L(z) is the preimage of
the point y(t) € M,.o/F, where y is the integral curve of (the projection of) H. In
particular L(¢) is a leaf of F, and since the dimension of L(¢) is constant up to the
singular time, we have that L(z) is regular. We thus proved the following.

Proposition 3.1 Foranyt € [0, T), L(t) is a regular leaf of F.

The rest of the section is devoted to proving statement (b) of Theorem 1.1. In Sect.
4 we prove the following result (cf. Corollary 4.6):

Proposition 3.2 Let L, € F be a singular leaf. For € small enough, there exist
constants §, ¢ such that in the regular part of Tube (L) the shape operator A of F
satisfies:

D
—(1+8)@—c§tr(Av,)x < (1—8)ﬂ+c @3.1)

where D = dim F — dim Ly and r(x) = dist(x, Ly). Moreover, if € < € then one
can choose constants §' < 8 and ¢’ < ¢ associated with €', and lim._, y+ § = 0.

We can now prove the following:

Proposition 3.3 Given a singular leaf Ly, there exists an € = €(Lg) such that if L(t)
lies in Tube (L) for some ty € [0, T) then the following properties hold:

(a) Foranyt > tg the distance r(t) = dist(L(t), L) satisfies
Ci(t —10) < r*(t9) — r*(t) < C3(t — 10) 32)

where C1 and Cy are positive constants that depend only on Tub, (L).
(b) L(t) C Tubc(Ly) forallt € (9, T), and T <ty +

(c) If L(t) converges to Ly at time T then for any t € (to, T,

CiVT —t <r(t) < CoJT —t. (3.3)

Proof Start with a tubular neighborhood Tub,, (L) in which the distance function
r = dist,, is smooth away from L, and such that Proposition 3.1 holds for some &

and c. Fixing p € L(ty), consider the curve t — ¢;(p) such that %(p, (p) = H(t). Of
course ¢;(p) € L(t) forall ¢, and r (¢) = dist(¢,(p), Ly) equals dist(L(), L,) by the
equidistance of the leaves. Then we have

(1) = (Vr, ¢;(p)) = (Vr, H(1)) = tr(Avy).
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From (3.1),
D D
—(14+68)——c<trAy, < —(1-68)— +c.
r r

Now we choose € < min{eg, (1 — 5)%} and define the constants C, C> by

cq 3
5 =1-8D—ce, 5 = +8)D +ce

The above equations imply

5o et
—3 <ri@)=<-
r(t) 2r(t)

or, equivalently, —C22 < (r2(r)) < -C 12 Integrating this equation we get
Ci(t —t0) < r*(10) — r*(1) < C3(t — t0) (3.4)

for t > 1y close to fy. Since r2(z) is decreasing, L(¢) remains in Tube (L) for every
t > to and this concludes the proof of (a) and (b).
Statement (c) follows directly from (a). O

Remark 3.4 By Proposition 3.3 it immediately follows that if L(#p) lies in a tubular
neighborhood defined as above, then 7 must be finite. This does not imply, for a
generic M, that T is always finite when the initial datum is outside such a tube; see
[12, Example 3]. Also note that in the proof of Proposition 3.3, € has been chosen to
be small, more precisely smaller than (1 — 8) D/c. This was necessary to ensure the
existence of the constant C; (otherwise C ]2 would be negative). The fact that € cannot
be chosen bigger (even when it would make sense to talk about tubular neighborhoods)
is not a limitation of the proof, but it seems to have a geometrical meaning. In fact it is
possible to see, e.g., in some examples of isoparametric foliations in Euclidean space,
that if the radius of the tube is too big (although the tube is still well defined) then
statement (b) of Proposition 3.3 is no longer true, i.e., the MCF of leaves in a tube of
big radius can leave the tube after a finite time.

In the next proposition we prove that given a leaf Lo, if the MCF L(¢) with L(0) =
L has finite time singularity then it converges to a singular leaf L, in the Hausdorff
sense, i.e., the projection of L () in the quotient space M /F converges to the projection
of L,. More precisely we prove the first part of statement (b) in Theorem 1.1.

Proposition 3.5 Let F be a generalized isoparametric foliation with compact leaves
on a complete manifold M and let Ly be a regular leaf. Suppose that the MCF L(t)
with initial datum L(0) = Lo stays in a bounded set, and that L(t) has a finite time
singularity. Then L(t) converges in the Hausdorff sense to some singular leaf L.

Proof Since L(t) is contained in a bounded set and T is finite, it follows from [13,
Proposition 9.1.4] that the limit set of L(¢) cannot be contained in the regular stratum
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and thus it must be contained in some singular stratum. When F is homogeneous this
also follows from [12, Lemma 2.3].

Now consider a singular leaf L, in the limit set, and take a sequence {t,} € [0, T)
converging to 7. For any arbitrarily small radius €, we can find some 7. such that
L(tc) € Tub.(L,) and, by Proposition 3.3, L(¢) € Tubc(L,) for every t € (t., T).
Due to the arbitrariness of € we conclude that L(#) converges to L. O

In what follows, we consider a singular leaf L, which is the limit of the MCF L(t)
with initial datum L. We want to prove that this singularity is of Type I, this finishing
the proof of Theorem 1.1.

Fixing a tubular neighborhood Tub¢(L,), we consider the functions ryx, [ :
Tube(Ly) — R such that ry(x) is the distance between L, and the singular strata,
and f(x) is the distance between L, and its focal set. By abuse of notation, we also
define rx (1) = rs(L(1)), f (1) = f(L()).

In Corollary 4.8 we prove the following.

Proposition 3.6 There exists a constant C, depending on Tub.(L,), such that for
any t close enough to the singular time T we have rx(t) > Cr(t), where r(t) =
dist(L(t), Lg).

Together with Proposition 3.3, we have that there is a constant Ci = C;C such that,
close enough to the singular time 7, one has

rs(t) > C\T —1. (3.5)

Proposition 3.7 There exists a constant o € (0, 1) such that f(p) > o rs(p) for
every regular point p € M.

Proof The functions ry and f are constant along the leaves of F, and thus induce
functions on the quotient, which we denote with the same letters. By Lytchak and
Thorbergsson [9], the first focal point of a leaf L , corresponds to either a singular leaf,
or to a conjugate pointin M /F of the projection of L ,. In the first case, f(p) = rz(p)
and the proposition is proved.

Suppose now that the projection p* of L, into M/F has a conjugate point
along some geodesic segment y contained in the regular part of M/F. Clearly
ry(y(s)) = rx(p) — s. From Lytchak and Thorbergsson [9, Remark 1.1], the supre-
mum sup(secyy,#(x*)) of the sectional curvatures at a point x* in U /F satisfies

N < ——— 3.6
sup(secy/#() = (3.6)
for some constant K. Together with the previous equations,
() = ——g = —— 37)
secyF(y(s)) < < . .
! re(y()? ~ (rs(p) —9)?

By Rauch’s Comparison Theorem, the first conjugate point along y appears after the
first conjugate point along a geodesic ¥ in a model space with curvature k (¥ (s)) =
K

rz(p)—)*"
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To compute the conjugate point in such a model, it is enough to find the first positive
zero of a solution £ to the ODE

" _ K
W) = — o h®) (3.8)
h ) =0
If we define g(s) = h(rs(p)s) then g satisfies the equation
7 _ __K
8 (S) - (]7_Y)2g(s) (39)
g0 =0

and if oy is the first zero of g in (0, 1), then the first zero of 4 is ogrx (p) and f(p) >
oors(p).

On the other hand, if g does not admit any zeroes in (0, 1), then / does not admit
any zeroes in (0, 7z (p)) and therefore the first conjugate point along y appears after
ry (p). In either case, we proved that f(p) > o rx(p), where

oo if there exists a zero o of g in(0, 1)
1 otherwise

Notice that o does not depend on p. O

We can now prove the “if”” statement (b) of Theorem 1.1. The “only if” statement,
much simpler, is addressed later in Lemma 5.2.

Proposition 3.8 Let F be a generalized isoparametric foliation with compact leaves
on M. Let L(t) be a MCF evolution with initial datum Lo € F. Assume that the MCF
L(t) converges to a singular leaf L,. Then the flow has a singularity in finite time and
this singularity is of type I, i.e.,

limsup | A(2)|2,(T — 1) < 00 (3.10)

t—T-
where ||A(t)| o is the sup norm of the shape operator of L(t).

Proof Fixing ¢' € L, we consider a distinguished tubular neighborhood O, around
q', with map ¢ : O, — T,/ M as described in Sect. 2. We let g denote the pullback
of the flat metric in 7,y M via ¢. We also denote by A, ?, 7y, etc., the quantities
corresponding to A, f, ry, etc., computed using the flat metric g.

By calculations similar to those behind the proof of Eq. (4.4), we can prove that
there exist constants C1, C, (that depend only on O, (¢g’) and ¢) such that:

[Atlloo < C1llAtllco + Ca. (3.11)
On the other hand we claim that

[AllooV/T —t < C3 (3.12)
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where Cj is a constant that depends only on O¢(q"). In fact, by Lemma 4.1 we have
||Z,||Oo =1/ f (t), where again f (t) is the distance between the submanifold L ()
and its first focal point with respect to the flat metric. Moreover, from Eq. (3.5) we
have rx(t) > Crx(t) > C«/T —t. Applying Proposition 3.7 to the flat metric,

f(t) > C33/T —t and Eq. (3.12) follows.
Equations (3.12), (3.11) and the compactness of L, imply (3.10). O

We have already discussed thatif L(z) is a MCF with initial datum Lo € F and there
is a finite time singularity, then L(#) converges to a singular leaf L, in the Hausdorff
sense. We now show that the convergence is in fact pointwise, i.e., for every p € Lo
the integral curve t — ¢;(p) of H converges to a point in the singular leaf L, as
t—>T7.

Proposition 3.9 Let (M, F) be a generalized isoparametric foliation with compact
leaves, and let L(t) = ¢;(Lo) be the MCF evolution with L(0) = L a regular leaf of
F. Assume that L(t) converges to singular leaf L, in a finite time T and let p € L(0).
Then ¢;(p) converges to a point of L.

Proof Let y(t) = ¢:(p) be the integral curve of H starting at p. By Proposition 3.8
there exists a reparameterization o : [0, 1) — [0, T') such that B(s) := y (o (s)) has
18" (s)|| < oo, consider for example o (s) =T — T (1 — )2

In what follows we prove that 8 converges to a point of L.

Fixing some € >, let & : Tube(L,) — L4 be the orthogonal projection. Since
1B/ ()| < oo, moB:[0,1) — L, is Lipschitz and thus lim,_,; 7 (B(s)) = p’ for
some p’ € L,. Since L(r) converges to the leaf L, this concludes the proof. O

4 Estimates on the Shape Operator

The goal of this section is to compute bounds for the shape operator of a singular
Riemannian foliation, starting with foliations in Euclidean space. We start by recalling
the following well-known fact.

Lemma 4.1 Given a submanifold L C R" and a normal vector x to L, tangent to
the stratum X, let A1, ..., A, be the eigenvalues of the shape operator Ay counted
with multiplicity. Then the focal points of L along the geodesic yx(t) = exptx are at
distance 1 /A1, ..., 1 /A,

Let (M, F) be a singular Riemannian foliation, let ¢ € M be a singular point, of
F, and let O, be a distinguished tubular neighborhood around g (cf. Sect. 2.1). Let g
denote the restriction to O, of the metric of M and let g denote the pullback of the flat
metric on T, M under ¢ : Oc — T, M. Let V, V denote the Levi-Civita connections
of g and g respectively, and let w denote the connection difference tensor

w(X,Y)=VyX — VyX.

We let G be the symmetric (1, 1)-tensor such that g(x,y) = g(Gx,y) for every
x,y € Ty;M|y. The splitting T,M = T,L,; x vsL, induces via ¢ a g-orthogonal
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splitting O¢ = P x S suchthat L, N O, = P x {s} for some s € S. The submanifolds
Sq¢ =1{q'} x S, q" € P, are called slices of O,. Clearly, the slices are flat in the g
metric and they contain all the g-orthogonal spaces of the leaves in O.

Any geometric quantity related to a flat metric will be denoted with a bar, e.g.,
tr, A. Given a leaf L of (R"*, F), denote by 7, the distance function from L in the flat
metric.

Remark 4.2 Given two distinguished tubular neighborhoods O¢(g), O¢(g") with ¢’ €
L, the corresponding radial functions 7(p) = E(Lq, p) with respect to the two
flat metrics agree on the intersection. Therefore, even though the flat metric g is only
defined locally yet 7 can be uniquely defined on a neighborhood of the whole leaf L,
and it makes sense to define

Tube(Ly) = {p € M | F(p) < €}.

Even more so, there exists a metric gp in T_ube(Lq) such that, for any distinguished
neighborhood O¢, g has the same transverse metric of g (cf. [2]). In particular, for any
leaf L C Tub, (L) itis possible to define a distance function 7, (p) in Tub (L) whose
restriction to any distinguished tubular neighborhood Oc(¢"), ¢" € L, coincides with
dist(L, p) in the flat metric.

Lemma 4.3 Let (R", F) be a singular Riemannian foliation, and let L be a singular
leaf. Then for every €1, small enough there is a constant Cy, such that

D,

rL(x)

D,

rL(x)

-1 < (Fhg;,) =- +C. VxeTub, (L)  (41)

with D, =dim L, — dim L.

Proof Let € be small enough that the normal exponential map exp : v=¢ L — Tub, (L)
is a diffeomorphism, and let P : Tub. (L) — L denote the metric projection. For every
peL,S,= expp(vfeL) is the slice of F at p. For € small enough the distribution
Vilx) =T, Ly N TSy, p = P(x), has dimension D, = dim Ly — dim L and hence
codimension dim L in Ty L. Let V,(x) € T, L, denote the orthogonal complement
of Vi(x). Then the following are satisfied:

(1) TyLy = Vi(x) @ Va2(x) is an orthogonal decomposition for every x € Tube(L).
(2) V,is aregular distribution which coincides with T, L for every p € L.
(3) By Lemma 4.1, Vi(x) corresponds to the eigenspace of ZWL with eigenvalue

1 . . . il
—5 In particular, V> (x) consists of a sum of eigenspaces of Av7L~

It follows that r Ay, = WAg;, |}, + TAg;, [, and, for every x = exp, v in

1%
Tube (L),
T g, |y ) = - Thor lnaw) — (T4 | <6
Vrplvi(x) X - FL(X)’ Vrr Va(x) N v)p
where § = J(e) is arbitrarily small. The result follows, by letting Cr =
SupvlL,Hv”:] (trAU) + S. O
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Remark 4.4 Suppose that every leaf L of (R", ) splits isometrically as V x L, where
V is a fixed totally geodesic leaf of F and L+ C V. The homothetic transformations
h; at V acton R” = V x V< by fixing V and rescaling the V- factor. In particular,

(h3)« (AVFL) = %Zﬁu

where AL = h) (L). In particular, if Cy, satisfies Eq. (4.1) on Tub. (L), then C,; =
%CL satisfies Eq. (4.1) for AL, in Tuby¢(LL). If we define c; = %, where 7(x) =
dist(x, V), then ¢;, becomes invariant under homothetic transformations (¢; = c¢,)
and Eq. (4.1) becomes

_ D e (EZ? ) <D + L VxeTub,(L). (42)
rp(x)  rx) "Ly T Tp(x) ()

Clearly, if (L, €, cp) satisfy Eq. (4.2), then (AL, ler, cp) satisfy Eq. (4.2) as well,
for every A.

The next lemma holds for generic Riemannian metrics.

Lemma 4.5 Let (M, F) be a singular Riemannian foliation with compact leaves on a
complete Riemannian manifold and let L, be a singular leaf. Fix € > 0 small enough.
Then for any L in Tub. (L), there is a radius €1, and a constant ky, such that in the
regular part of Tube, (L) the following holds

a2 g < —a -0 2y
FL) Ry TS L)

kp

r(x)

(4.3)

Here the constant § only depends on L, and €, while ki is homothety invariant (i.e.,

kL = k).

Proof Fix a distinguished tubular neighborhood O, around some point in L, and
let g denote the flat metric. In the following, every overlined geometrical quantity is
computed with respect to g. Using V = V +w and g(x, y) = g(Gx, y), it is not hard
to prove that there are constants §, ¢ depending only on L, and €, with lim¢ 9§ = 0,
such that g and g are 8-close in the C°-topology and

(1 —35) ‘t_rxva‘ — ¢ < |trAvy, | < (146) ‘EKWL‘ fe (4.4)

Since the metric g splits as in Remark 4.4, we obtain that for every L there is a
homothety invariant ¢, and a small €7, such that Eq. (4.2) applies. Using Eq. (4.4), we
obtain

Dy crL Dy cL
—(I+8)—=—-(U+d) == —c=tr(Avr )x = —(1 =0 =—=+ (1= ——+c,
rr(x) r(x) rL(x) r(x)
4.5)
By setting k1, = (1 4 §)c + €c we obtain the result. O
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In the particular case of L = L, we can choose €, = € and follow the same steps
as above, noticing that in this case 77 = r and thus V7 = Vr. Moreover, in this case
we get C, = c¢1, = 0, thus from Eq. (4.5) we get the following

Corollary 4.6 Let (M, F) be a singular Riemannian foliation with compact leaves
on a complete Riemannian manifold and let L, be a singular leaf. For € > 0 small
enough, there exist constants §, ¢ such that in the regular part of Tube (L)

D D
—(+8)—=—-c=tr(Avy)x = —(1-8)— +c. (4.6)
r(x) r(x)

where D = dim F — dim L, and r = distLq.

Remark 4.7 The above corollary implies that there is no Riemannian metric on M,
adapted to a singular Riemannian foliation F with compact leaves, for which all the
leaves of F are minimal submanifolds; see also Miquel and Wolak [10].

Corollary 4.8 Let M, F, L, be as in Lemma 4.5 and assume that F is generalized
isoparametric. Let Tube(Ly) be a tubular neighborhood of L, with radius € small
enough and let M be the union of the singular leaves in Tube(Lg). Then there exists
a foliated neighborhood U of M\ L4 with the following two properties:

(1) There exists a constant C such that for any x € Tubc(Ly) \ U, dist(x, M) >
C dist(x, Ly).

(2) for any regular leaf Ly € U, the MCF evolution L(t) with L(0) = Lq does not
converge to L.

Proof Let L denote the set of singular leaves in Tube (L), and define

U= | Tube, (L).
LeLl

Here the tubes Tube (L), Tube (L) are defined using the distance functions 7(p) =
E(Lq, p)and7p(p) = dist(L, p) (see Remark 4.2), while €, is some radius satis-
fying Lemma 4.5 and rescaling linearly under g-homothetic transformations. In this
way, for any distinguished tubular neighborhood O = P x S around L, the restric-
tion U N O¢ has the form P x {conical open set in S}. Clearly there is some constant
C’ such that dist(x, M) > C’71(x) for every x in O.. Since the metrics g, g are
equivalent, the first statement follows.

In order to prove the second statement, we choose €7, < %F(L). Notice that the
right-hand side of the inequality rescales linearly under g-homothetic transformations,
thus we can still choose €7 with the same property. Let L(¢) be a MCF evolution with
initial datum Lo € U. Then L belongs to Tub,, (L) for some singular leaf L C U.
If we define 71, (r) = ¥ (L(t)), by Lemma 4.5 we obtain

Dok
FL(x)  F(x)

7, (1) = trAyy, < —(1 — &)
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Sincer; < €7 < (1;32]“ (L), we obtain F’L (1) < 0 and therefore L(¢) never leaves

Tub,, (L). O

5 Isoparametric Foliations in Nonnegative Curvature

The goal of this section is to prove Theorem 1.3 which we restate here.

Theorem 5.1 Let (M, F) be an isoparametric foliation (i.e., polar and generalized
isoparametric) on a compact nonnegatively curved manifold. Then for every non-
minimal regular leaf L, the MCF L(t) with initial datum L has finite time singularity.

We start by proving a few lemmas.
Lemma 5.2 Let (M, F) be a closed, generalized isoparametric, singular Riemannian
foliation on a compact manifold.

() If vol : M., — R denotes the volume function x + vol(Ly) then H =
—V(logvol) in M.

(2) Fixing a regular leaf Lo, suppose that the MCF L(t) with L(0) = L¢ does not
have a finite time singularity. Then there exists a sequence of leaves L; converging
to a minimal regular leaf L' in the Hausdor{f sense, such that vol(L;) > vol(L’).

Proof (1)Letw denote the volume form of the regular leaves. By [6, Proposition4.1.1],
given a basic vector field X along a regular leaf L, we obtain

X(vol)(p) = /L Lx(w)

= —/ (X, H)w
LP

—(X, H)vol(p)

where the last equality holds because both X and H are basic, and therefore (X, H)
is constant along L . Dividing the equation by vol(p) we obtain

(X, V(logvol)(p)) = X (logvol)(p) = —(X, H)

hence the result.

(2) From Proposition 3.3, there is a neighborhood of the singular set U such that every
MCEF entering U has a finite time singularity, and therefore our flow L(¢) must lie in
M\ U, whichis arelatively compact subset of M, ., whose distance to the singular set
is positive. Via the projectionw : M — M /F, L(t) is projected to an integral curve of
the vector field . H. Since (M \ U)/F is relatively compact, there exists a sequence
of times # going to infinity, such that 7 (L(#;)) converges to some point 7(L') €
(M \ U)/F. Since log vol(L(z)) is decreasing, log vol(L(z)) > logvol(L’) > c for
some ¢ € R. On the other hand, from the previous result one has

%(logvol(L(l))) - H(logvol(L(t))) = —|H|?
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and since log vol(L(#)) is bounded from below, then (up to taking a subsequence) one
has | H|L ) |> — 0. By the continuity of the mean curvature in Mg, H|pr = 0 and
therefore L’ is minimal. On the other hand, L’ is not a local maximum because it is
obtained as a Hausdorff limit of leaves with bigger volume. O

Proof of Proposition 5.1 Suppose that there is a MCF L(¢) without a finite time sin-
gularity. By Lemma 5.2, there exists a sequence of leaves L; converging to a minimal
regular leaf L', such that vol(L;) > vol(L’). This will provide a contradiction with
the following result, which will then finish the proof. O

Proposition 5.3 Let (M, F) be a polar foliation on a compact nonnegatively curved
manifold. Then for every regular minimal leaf L', there exists a tubular neighborhood
U around L’ such that, for every leaf L in U, vol(L) < vol(L’).

Proof Fixing a unit-length, basic vector field X along L" and a point p € L' let yx (s)
denote the geodesic starting at p with initial velocity X (p). We set

8(X) = supfs | vOI(L,(s) < vol(L")}.

In order to prove the proposition, it is enough to show that §(X) > ¢ > 0 for some ¢
not depending on X.

Let e1,...,e, be an orthonormal frame of T,L’, let E(s),..., E,(s) €
Ty (s)Lyx (5) be the extensionof eq, . . ., e, along yx (s) by (vertical) parallel transport,
which allow us to identify the tangent spaces T (s)Lyy (s) With T, L. Moreover, let
wg(p) = EY(s) A--- A Eji(s) denote the volume forms of L, (s at yx (s).

The holonomy map f; : L' — L, defined by fi(¢) = exp, s X (q) is a well-
defined, smooth diffeomorphism between L’ and L, (s), whose differential at a point
q is given by fs,(e;) = J;(s), where J; is the unique holonomy Jacobi field starting
at g with J;(0) = ¢; (cf. [6, Sect. 1.4] for the definition and properties of holonomy
Jacobi fields).

The volume function along yx (s) then reads

VOI(L)/X(S)) =/ Wy :/ fs*ws =/ Js(@w
L L L

where js(q) = det(Ji(s), ..., Ju(s)). Since the curvature is nonnegative and the
foliation is polar, by standard comparison theory (cf. [5]), js(q) is bounded above by
a corresponding function j(¢) in Euclidean space. In other words, let §q : [0, ] —
Symz(Tq L’) be the tensor satisfying

vx (s)

— -2 —
S, +5, =0, 5,0 =—Ax(
and let j(q) be the function such that
d - - = -
25 05@) = 7s(@) - w(Sg (). jolg) = 1.
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Then j;(q) < 7.; (g). It is easy to compute 7S (q):

Js(@) = (=1)" (det Axq) [ Jts = 2 @™

l

where A1(q), ..., Ay(g) are the eigenvalues of Ax . Such a function has a local
maximum at 0, where fo(q) = Jjo(q) = 1. Moreover, this is a maximum in the
interval [r;(q)’ )ﬁ;(q)]’ where A7 (¢) is the smallest (negative) eigenvalue of Ax )

and AT (g) is the biggest (positive) eigenvalue. In particular, if Aj(' = max, A (g),
then js(g) < 7S (q) < 1forallg € L' and s € [0, %], and therefore
X

VOI(Lyy(s)) :/ Js(@)w 5/ w=vol(L') Vs el0, 1/)»;].
L L

Therefore, §(X) > I/A‘)‘('.Bylettingc = 1/||A|lco, wethenhave § (X) > 1/||Allcc > 0
for every X. O

Remark 5.4 A weaker version of Theorem 5.1 can also be proved as follows. Given
a minimal regular leaf L and a basic vector field X along L, the second variation of
area in the direction of X reads

2

d
— vol =/ ONx|I* — | Ax||* — Ric’ (X, X))d vol,
dx? L( )

where Ric”(x, x) denotes the sum > ;(R(x, e;)e;, x) over an orthonormal basis of
T,L,.

It follows from this formula that, whenever || ONx||?> < ||Ax||?> — Ric’(X, X) then
every minimal leaf is a local maximum among the nearby leaves, and by Lemma 5.2
the MCF with a regular leaf as initial datum cannot have infinite time singularity. This
condition holds, for example, if (M, F) is isoparametric and M is positively curved.
Moreover, in the case of M = R” or S, we are not aware of any example where the
inequality | ON,||> < ||A,||> + Ric?(x, x) does not hold, and in most examples such
inequality is strict.
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