
Doctoral Dissertation
Doctoral Program in Pure and Applied Mathematics (30thcycle)

Aerodynamic Shape Optimization
through Reduced-Order Modelling

in Industrial Problems

By

Angela Scardigli

Supervisor(s):
Prof. Claudio Canuto, Politecnico di Torino

Haysam Telib, Optimad Engineering

Doctoral Examination Committee:
Prof. Davide Carlo Ambrosi, Politecnico di Torino
Prof. Giovanni Naldi, Università degli Studi di Milano
Prof. Sandra Pieraccini, Politecnico di Torino
Prof. Gianluigi Rozza, Referee, Scuola Internazionale Superiore di Studi Avanzati

Politecnico di Torino - Università degli Studi di Torino
2018

ii

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my own
original work and does not compromise in any way the rights of third parties, including
those relating to the security of personal data.

Angela Scardigli
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo) and Università degli
Studi di Torino.

iv

Acknowledgements

This work has been funded through the PhD programme in Apprenticeship of Regione
Piemonte and supported by Optimad Engineering.

The author would like to acknowledge Automobili Lamborghini S.p.A. for supporting
part of this research and CINECA SCAI for providing the necessary HPC resources for
part of the simulations. Parts of this work were carried out in the framework of the
UBE–Underwater Blue Efficiency project (PAR-FSC programme Regione Friuli Venezia
Giulia) and FORTISSIMO project (European Union’s Seventh Framework Programme
for research, technological development and demonstration under grant agreement No.
609029).

The author is also grateful to Angelo Iollo, Michel Bergmann and Andrea Ferrero,
from Institut Mathématique Bordeaux INRIA Sud-Ouest, for the scientific discussion.

Finally, special thanks to the Optimad team, for the human and scientific support,
and in particular to Rocco Arpa and Edoardo Lombardi, for their precious contribution
to this work.

vi

Abstract

In this thesis, a framework for aerodynamic shape optimization of large-scale industrial
problems, based on Free-Form Deformation (FFD) parameterization techniques and
model-order reduction, is presented. In particular, we address the definition of an
accurate Reduced-Order Model (ROM), to be used as surrogate model during the
optimization process.

The non-linearity and complexity of the Navier-Stokes Equations (NSE) make the
use of ROMs in computational fluid dynamics extremely challenging for real-life pa-
rameterized problems, especially for turbulent flow conditions. In order to overcome
some of these difficulties, we present a hybrid full-order/reduced-order strategy for
model order reduction based on Proper Orthogonal Decomposition (POD) and domain
decomposition, that relegates the effects of non-linearities and geometry variations to
the canonical discretization of the NSE in a reduced subdomain, whereas linear and
weakly non-linear phenomenology is addressed by the ROM. The two models are then
coupled in an overlapping region through a modified Schwarz method, resulting in a
non-local boundary condition for the full-order solver. We discuss the convergence and
stability properties of the algorithm, as well as the capability of the model to perform
predictive simulations. It can be shown that the approximation error depends on both
the choice of the decomposition and the sampling of the parameters space. In order to
identify the most critical regions within the reference domain, we propose a leave-one-out
cross-validation strategy, which consists in iteratively projecting one snapshots onto the
subspace spanned by the others. This allows us to build an out-of-sample estimate that
can be employed both for identifying a suitable decomposition and for efficiently sampling
the space, when coupled with greedy methods.

The effectiveness and drawbacks of these approaches are highlighted on large-scale
problems representative of real-life applications, such as the aerodynamic shape op-
timization of automotive and naval components subject to physical and geometrical
constraints.

viii

Contents

List of Figures xiii

List of Tables xix

Nomenclature xxi

1 Introduction 1

1.1 Problem definition . 2

1.2 Thesis outline . 4

2 Geometry Parameterization 7

2.1 Parameterization . 7

2.2 Free-Form Deformation . 9

2.2.1 Formulation . 13

2.2.2 Local deformations . 13

2.2.3 Geometrical constraints . 16

2.3 Numerical tools . 18

3 Full-Order Modelling 19

3.1 Fluid modelling . 19

3.1.1 Turbulence modelling . 21

3.2 Numerical tools . 24

3.2.1 Spatial discretization . 24

Contents

3.2.2 Equation discretization . 25

3.2.3 SIMPLE algorithm . 26

3.2.4 Numerical schemes . 28

3.2.5 Turbulence . 31

3.2.6 Boundary conditions . 33

4 Benchmark Case 37

4.1 2DCAR: flow past a 2D car profile . 37

4.1.1 Problem specification . 37

4.1.2 Parameterization . 39

5 Reduced-Order Modelling 41

5.1 Proper Orthogonal Decomposition . 41

5.1.1 Properties of the POD basis . 44

5.1.2 Weighted inner product . 47

5.2 POD-based reduced models . 48

5.2.1 POD-Galerkin . 50

5.2.2 PODI . 52

5.2.3 POD with residual minimization 53

5.3 Zonal-POD . 54

5.3.1 Schwarz-POD iterative algorithm 55

5.3.2 Numerical implementation . 58

5.3.3 Preliminary numerical results . 62

5.3.4 Convergence analysis . 69

5.3.5 Cartesian domains . 74

5.3.6 Conclusions . 80

6 Accuracy Estimation 83

6.1 Cross-validation . 83

x

Contents

6.2 Domain decomposition . 86

6.2.1 Interface detection . 86

6.2.2 Overlapping detection . 92

6.3 Snapshots selection . 94

6.3.1 Error indicator based on the NSE residuals 95

6.3.2 Error indicator based on the POD projection error 98

7 Optimization 107

7.1 Methods . 107

7.1.1 Surrogate-based global methods 109

7.1.2 Efficient Global Optimization . 113

7.2 Numerical tools . 115

8 Industrial Applications 117

8.1 DrivAer . 117

8.1.1 FOM setup . 118

8.1.2 Geometry parameterization . 119

8.1.3 ROM setup . 120

8.1.4 Optimization setup . 126

8.1.5 Results . 127

8.2 J80 sailing boat . 129

8.2.1 FOM setup . 129

8.2.2 Geometry parameterization . 133

8.2.3 ROM setup . 135

8.2.4 Optimization setup . 141

8.2.5 Results . 141

9 Conclusions 147

xi

Contents

References 153

xii

List of Figures

1.1 Example of domain definition: the parameter dependency enters only in a
limited portion of the boundary (red line). 4

2.1 Example of FFD applied to an unmanned aerial vehicle: original shape and
lattice (blue) vs deformed ones (red). Courtesy of Optimad Engineering. 9

2.2 Examples of FFD industrial approaches. 12

2.3 Sketch of the FFD map construction. 14

2.4 Examples of deformation of a sphere imposing different continuity con-
straints on the boundary of the deformable part (green). 15

2.5 Examples of distance functions from a non-smooth contour (red) and
corresponding surface deformations with C2 continuity constraint. 17

3.1 Typical control volume and discretization parameters. 25

3.2 Cells stencils used in the construction of yf for convection schemes: the
subscripts U, C and D denote the upstream, central and downstream
nodes, coinciding with the cell centres. 31

3.3 Discretization parameters for a control volume of centre P with a boundary
face b. The dn vector is orthogonal to b. 34

4.1 Geometry of the 2DCAR benchmark. 38

4.2 Mesh morphing of the 2DCAR model: original (left) and deformed (right)
configurations with corresponding lattices of control points. The red points
are the ones allowed to move. 39

xiii

List of Figures

5.1 Example of domain decomposition in the framework of the zonal-POD
approach. 56

5.2 Detail of the pressure gradient in proximity of the Γ1 interface (white line)
for a FOM snapshot of the 2DCAR benchmark. 61

5.3 Error on the pressure field due to the different types of boundary conditions
for the 2DCAR benchmark. 62

5.4 2DCAR benchmark parameter space: database sampling points and pre-
diction points. 63

5.5 Domain decomposition of the 2DCAR benchmark: Ω1(µ) (blue) coincides
with Ω0. 63

5.6 2DCAR benchmark: underbody Cp distribution varying N and Mr. . . . 65

5.7 2DCAR relative error on drag coefficient: predictive zonal simulations
with Mr = 0 (left) and Mr = 8 (right), using N = 9 snapshots. 66

5.8 2DCAR error contributions for predictive zonal simulations with Mr = 3
using N = 4 snapshots: |C⋆

x,1 − Cx,1|/Cx (left) and |C⋆
x,2 − Cx,2|/Cx (right). 67

5.9 2DCAR relative error on drag coefficient: PODI with RBF interpolation
(left) vs zonal-POD (right). 68

5.10 Convergence performance of the zonal-POD approach w.r.t. full-order
simulations initialized with different methods for an out-of-sample config-
uration: ux residuals (left) and normalised drag coefficient Cx (right). . . 70

5.11 Decomposition of the rectangular domain Ω in two overlapping subdomains. 75

5.12 2DCAR convergence velocity (iterations normalised w.r.t. to the maximum
number of iterations required to converge) of the zonal-POD algorithm
with respect to the number of cells in Ω0 (normalised w.r.t the number of
cells in Ω1). 79

6.1 Leave-one-out velocity prediction error for the 2DCAR benchmark, using
three different databases. 88

6.2 Leave-one-out pressure prediction error for the 2DCAR benchmark, using
three different databases. 89

6.3 2DCAR benchmark: Ω1 domain varying the error threshold σR. 90

xiv

List of Figures

6.4 Number of cells in Ω1 normalised w.r.t. the cells in Ω as a function of the
prediction error threshold σR. 91

6.5 2DCAR prediction error ϵCx on the drag coefficient varying the decom-
position with N = 9, Mr = 8: σR = 0.017U∞ (left) vs σR = 0.001U∞

(right). 92

6.6 L2-norm error on the boundary conditions imposed on Γ1, as a function
of the error threshold, using N = 9 snapshots. 94

6.7 2DCAR benchmark: response surfaces of the error indicator ∆0 at the
first greedy iteration for resGA-PODI (left) and resGA-L1O (right). . . . 97

6.8 pGA-CCVT algorithm: sampling sequence over the parameter space (left)
and trend of the error indicator ∆m w.r.t. the mth greedy iteration. . . . 100

6.9 pGA-CCVT algorithm: overall drag coefficient error over the parameter
space at different greedy iterations. 101

6.10 pGA-EGO algorithm: sampling sequence over the parameter space (left)
and trend of the error indicator ∆m w.r.t. the mth greedy iteration. . . . 104

6.11 pGA-EGO algorithm: overall drag coefficient error over the parameter
space at different greedy iterations. 105

7.1 Example of data interpolation by Kriging, using both FOM and zonal-POD
simulations. 112

8.1 Geometry and computational domain of the DrivAer car model. The
moving ground is depicted in grey. 119

8.2 Convergence of the aerodynamic coefficients for the baseline configuration:
Cx, Cz and averaged quantities C̄x and C̄z. 120

8.3 FFD lattice and a possible deformation (red control points): (µ1, µ2) =
(0.18, 0.30). 121

8.4 Mesh morphing of the DrivAer front bumper: original mesh (blue lines)
vs modified mesh (red lines) for (µ1, µ2) = (0.18, 0.3). The white box
identifies the deformed region. 121

8.5 Sampling of the parameter space: initial points (blue) and greedy points
(green). 122

xv

List of Figures

8.6 Average pressure field and three more energetic POD modes on the DrivAer
symmetry plane. 123

8.7 POD eigenvalues for velocity, pressure and turbulent quantity, scaled with
the corresponding maximum value. 123

8.8 Leave-one-out error distribution for the velocity field. 124

8.9 Ω1(µ) domain (light blue) for the DrivAer problem, as selected through
the leave-one-out method. 125

8.10 Average error on predictions varying Mr. 125

8.11 Surface error fields for the worst out-of-sample configuration: the white
line identifies the interface between the FOM and ROM regions. 126

8.12 DrivAer optimization: best front-bumper configuration (orange) vs baseline
(white). 128

8.13 Velocity streamlines on the symmetry plane for the DrivAer model: front
region detail. 128

8.14 Surface pressure field pwall for the DrivAer model. 129

8.15 J80 sailing boat with inflatable device on the mainsail (red). 130

8.16 Geometry of the J80 sailing boat model. The sea surface is depicted in blue.130

8.17 True and apparent wind conditions. 131

8.18 Trimming of sails around mast and jib axes. Positive rotations in counter-
clockwise direction. 134

8.19 Parameterization of the J80 sailing boat inflatable device. 134

8.20 Average velocity field and three more energetic POD modes represented
in a mid-section of the sailing boat. 136

8.21 POD eigenvalues for velocity, pressure and turbulent quantities, scaled
with the corresponding maximum value. 137

8.22 Pressure and velocity leave-one-out error distributions on the z = 4 m
section. The white areas near the sails represent those cells where the
POD modes cannot be defined. 138

xvi

List of Figures

8.23 Convergence performance of the ROM w.r.t. the FOM for an out-of-sample
configuration: residual of the ux component of the velocity field (left) and
sailing system thrust (right) over the SIMPLE iterations. 139

8.24 The domain Ω1(µ) for three different tolerance values of the leave-one-out
error on the velocity field eu(x). The blue isosurfaces represent the error
envelope for a given error threshold, whereas the black lines delimit the
corresponding reduced domain used in the computations. 139

8.25 FOM-ROM fields comparison for an out-of-sample configuration (opti-
mization best) on the z = 4 m section. 140

8.26 Velocity streamlines and velocity field on the z = 4 m section. 143

8.27 Flow separation over the mainsail. 144

8.28 Cp distribution on the windward (bottom) and leeward (top) sides of the
sailing system. 145

xvii

List of Figures

xviii

List of Tables

4.1 Limits of the parameter space. 39

5.1 2DCAR benchmark: contribution of the flow solution in Ω1(µ) to the
global aerodynamic coefficients for a predictive simulation, using the FOM
and different zonal-POD approaches. 65

5.2 Convergence of the average error ēCx varying the size of the database. . 66

5.3 Comparison of POD-based model reduction strategies for the applications
of interest. 80

6.1 Average error ēCx and maximum error max eCx over the prediction points
at every iteration of the pGA-CCVT algorithm. 102

6.2 Average error ēCx and maximum error max eCx over the prediction points
at every iteration of the pGA-EGO algorithm. 104

8.1 Limits of the parameter space. 120

8.2 Aerodynamic coefficients for the optimized configuration: full-order solu-
tion, reduced-order solution and relative errors. 129

8.3 Limits of the parameter space. 133

8.4 Performance of the zonal-POD approach for the reduced domains (a), (b)
and (c) of Figure 8.24. The error on the objective function, ϵT , refers to
a predictive simulation for an intermediate configuration not included in
the initial database. 138

8.5 Aerodynamic forces for the optimized configuration: full-order solution,
reduced-order solution and relative errors. 142

xix

List of Tables

xx

Nomenclature

Acronyms / Abbreviations

Re Reynolds number

ABL Atmospheric Boundary Layer

CCVT Constrained Centroidal Voronoi Tessellation

DEIM Discrete Empirical Interpolation Method

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

EFF Expected Feasibility Function

EGO Efficient Global Optimization

EIF Expected Improvement Function

EIM Empirical Interpolation Method

FFD Free-Form Deformation

FOMs Full Order Models

GP Gaussian Process

LES Large Eddy Simulation

MLE Maximum Likelihood Estimation

MPE Missing Point Estimation

NSE Navier-Stokes Equations

xxi

Nomenclature

ODE Ordinary Differential Equation

OpenFOAM Open Source Field Operation and Manipulation

PGD Proper Generalised Decomposition

POD Proper Orthogonal Decomposition

PODI POD with Interpolation

RANS Reynolds-Averaged Navier-Stokes

RB Reduced Basis

RIC Relative Information Content

ROMs Reduced Order Models

RSM Reynolds stress models

SBG Surrogate-based Global Optimization

SIMPLE semi-implicit method for pressure-linked equations

SVD Singular Value Decomposition

TVD Total Variation Diminishing

xxii

Chapter 1

Introduction

Despite the constant improvement of computer performance and simulation techniques,
a variety of challenging problems from different branches of science and engineering still
remain intractable. Real-life applications usually require to cope with complex and high-
dimensional problems in state space, physical space or parameter space, e.g. for large-scale
dynamical systems, control systems and optimization, but standard techniques fail to
solve these problems efficiently. In this framework, Model Order Reduction represents a
new simulation paradigm in computational science and engineering. Generally speaking,
the rationale behind the development of Reduced Order Models (ROMs), is to replace
complex models, namely Full Order Models (FOMs), with far simpler ones, that allow one
to capture the features of the problem being modelled with a given level of accuracy and at
a very competitive cost. By enabling near real-time analysis of complex problems, ROMs
open unexplored possibilities in numerical simulation, process and shape optimization,
simulation-based control, uncertainty quantification and propagation, finding immediate
use in relevant industrial applications.

Nowadays, several ROM approaches are available, including empirical and semi-
empirical methods such as Proper Orthogonal Decomposition (POD) (Lumley (1967),
Sirovich (1987), Benner et al. (2015)), Proper Generalised Decomposition (PGD) (Chinesta
et al. (2013)), Reduced Basis (RB) (Maday et al. (2002), Prud’Homme et al. (2001),
Quarteroni and Rozza (2014)), Dynamic Mode Decomposition (Schmid (2010)), Empirical
Interpolation Method (EIM) (Barrault et al. (2004)), Discrete Empirical Interpolation
Method (DEIM) (Chaturantabut and Sorensen (2010)) and hierarchical model reduction
(Perotto et al. (2017)). Such approaches are gaining remarkable attention in both the
academic and industrial framework. The complexity of the fluid motion for turbulent

1

Introduction

flows, however, makes the usage of these techniques extremely challenging for real-life
industrial applications, that constitute the main focus of this thesis, especially in the
framework of automotive and naval aerodynamic shape optimization.

While a thorough literature is available for simplified problems, the investigation
of complex turbulent flows is still rather limited, starting to be a topic of interest in
the ROMs community only recently. An overview of different reduction strategies for
computational fluid dynamics, including aeronautics, biomedicine and naval problems can
be found for instance in Bergmann et al. (2014) and Salmoiraghi et al. (2016a). Generally
speaking, the main bottleneck of the above-mentioned methods is that the number of
full-order numerical solutions, required to obtain sufficiently accurate predictive results,
strongly depends on the non-linearities of the problem and on the size of the design
space. The cost associated with this training phase is often not properly addressed, but
it cannot be overlooked in an industrial context. In addition, the proposed solutions
often required a very specific tuning of the ROM on the application of interest, making
its usage harder for non-expert end-users.

Further details about the definition of the problem of interest and the motivations
for this thesis, as well as its contents, will be outlined in the following sections.

1.1 Problem definition

Given a vector of P real parameters µ := (µ1, µ2, · · · , µP) varying in a compact set
M ⊂ RP , we want to solve a generally-constrained non-linear programming problem,
which can be expressed as follows:

minimize f(µ)
subject to gl ≤ g(µ) ≤ gu

h(µ) = he
µl ≤ µ ≤ µu

(1.1)

where f denotes the objective function, whereas g and h represent the inequality con-
straints and equality constraints, respectively. Inequalities between vectors have to be
intended component-wise. In this context µ is usually referred to as the vector of design
variables. For the problems of interest, i.e. aerodynamic shape optimizations problems,
the design parameters are those controlling the deformation of geometrical components,
whereas the objective function is given by some quantity of interest depending on the

2

1.1 Problem definition

flow around the geometry. This means that at least for every full-order evaluation, we
need to solve a fluid dynamic problem. In mathematical terms, it translates in having
a family Ω(µ) of open bounded domains in RD, with D = 2, 3, where we want to solve
the equations governing the fluid motion, i.e. the Navier-Stokes Equations (NSE). As
shown in Figure 1.1, we assume that only a portion of the boundary depends on the
parameter vector µ, whereas the remaining part is independent. In addition, we suppose
that the boundary ∂Ω(µ) of each domain is sufficiently smooth. Denoting by u = u(µ)
and p = p(µ) the velocity and pressure fields, respectively, we can write the equations
and the set of suitable boundary conditions in abstract form as:

NS(u, p) = 0 in Ω(µ),
B(u, p) = 0 on ∂Ω(µ),

(1.2)

with an additional initial condition for unsteady flows. Details about the numerical
approximation of the NSE and on the discretization methods will be provided in Chapter
3. It is worth noting that in many applications of interest, the flows are fully three-
dimensional and turbulent, characterised by rather complex phenomena such as separation,
recirculation, shear layers and unsteady wakes. For these reasons, solving the whole
range of spatial and temporal scales is often infeasible and additional models need to
be introduced in order to simplify the problem. Nevertheless, we still have to deal with
large-scale problems, that usually required a computational grid of O(107) − O(108)
elements, in order to obtain a numerical solution which is sufficiently accurate. Thus,
these so called high-fidelity evaluations are typically very expensive, with a computational
cost of approximately O(102)−O(103) cpu hours.

In terms of geometry parameterization, the models are complex and detailed, charac-
terized by several mechanical parts, including moving components, e.g. rotating wheels.
During the shape optimization process, these geometries are deformed locally, using
arbitrary parameterizations with a number of design variables which typically ranges
from ∼ 10 to ∼ 20 for automotive and naval applications. In addition, they have to fulfil
a wide range of constraints, both geometrical, dictated for instance by manufacturing or
operational requirements, and aerodynamic, e.g. specifications on lift, drag, load balance,
etc..

Under this premise, if we consider a standard global optimization based on evolutionary
algorithms, which typically require O(102) − O(103) high-fidelity evaluations, we can
estimate the optimization cost at O(104)−O(106) cpu hours. Such cost is usually not
affordable in industry, also considering that the computing resources are often sized for

3

Introduction

Ω(µ)

µ

Fig. 1.1 Example of domain definition: the parameter dependency enters only in a limited
portion of the boundary (red line).

analysis, rather than optimization. In order to address the problem in a reasonable
amount of time and resources, two aspects become crucial: the definition of a versatile
and concise parameterization technique and the development of reliable surrogate models.
In this framework, the possibility to employ ROMs to speed-up the computations would
be extremely advantageous: given the generality and complexity of the problem, however,
achieving a sufficient cost reduction is a non-trivial task.

1.2 Thesis outline

Chapter 2 introduces the parameterization techniques used within the thesis, whereas
the FOM details, including equations discretization and numerical tools, are presented in
Chapter 3.

Then, in Chapter 4, we outline the benchmark test case that will be used in the
following chapters to assess the performance and properties of the proposed strategies.

Chapter 5, instead, is devoted to the exhaustive description of the proposed ROM and
its numerical properties, and it also includes a literature review of model order reduction
techniques, with particular focus on turbulent flows. The accuracy of the method is later
addressed in Chapter 6. In order to provide a better understanding of the employed
techniques, in both Chapters 5 and 6 we discuss numerical results on the benchmark test
case.

The optimization algorithms employed are briefly reported in Chapter 7.

In Chapter 8, we highlight the effectiveness and drawbacks of the presented method-
ology on two large-scale industrial problems, i.e. the aerodynamic shape optimization of
the front bumper of a car model and the mainsail thrust optimization of a sailing boat.

4

1.2 Thesis outline

Finally, conclusions and perspectives are collected in Chapter 9.

5

Introduction

6

Chapter 2

Geometry Parameterization

Part of the work described in this chapter has been previously submitted for publication
in Scardigli et al. (2019) and Salmoiraghi et al. (2018).

In this chapter we discuss geometry parameterization.

2.1 Parameterization

A crucial aspect of shape optimization problems is represented by the choice of a suitable
parameterization technique describing the optimal shape. Such parameterization should
be easy to use, versatile and concise: ideally, it should be able to describe a wide range
of complex shapes using as few parameters as possible. For shape optimization problems,
low-dimensionality is an extremely relevant feature, because geometrical parameters
translate directly into design parameters, whose number heavily affects the cost of the
optimization process.

Some of the most used approaches, as reviewed in Samareh (2001), include the
following ones:

• Discrete Approach, where the design variables coincide with the coordinates of
the boundary points. This method has the advantage to be easy to implement.
Nevertheless, it is usually applied only with adjoint formulations, since an excessive
refinement of the geometry is required in order to maintain smoothness. As a
consequence, the number of design variables often becomes large, leading to high
computational costs and stiff optimization problem (Mohammadi and Pironneau
(2010)), which make the method unfeasible for real-life applications.

7

Geometry Parameterization

• Analytical Approach: in this formulation, basis shape functions are added to
the baseline shape, modelling the geometry through a suitable linear combination:

D = B +
∑
i

wiWi

where B andD are respectively the baseline and design shape, whereasWi represents
the design perturbations. The main drawback of this method consists in the
definition of a good set of shape perturbations, which may not be an easy task. The
approach is very good for wing and airfoil parameterizations, as well as suitable
for Multidisciplinary Design Optimization, but it can be difficult to generalize for
complex geometries.

• Polynomial and Spline Approach, where the shape is described by polynomial
and spline curves, leading to a significant reduction of the total number of design
variables. The shape is controlled by a limited set of points, namely the control
points, whose position in the space defines the shape of the curve itself. Curve
types include Bézier, B-splines and NURBS (Non-Uniform Rational B-Spline), and
those methods are extremely popular in CAD applications and suitable for shape
optimization problems, as shown in several works (Samareh (2001), Andreoli et al.
(2003), Désidéri et al. (2007)). However, complex shapes tends to require a large
number of control points, reducing the efficacy of the approach and limiting the
range of geometries that can be represented.

• Free-Form Deformation (FFD) Approach. The FFD is a parameterization
technique that has been developed mainly in the frame of Computer Graphics,
starting from the original work by Sederberg and Parry (1986): it permits to
deform computer-generated objects, regardless of their representation. The basic
idea behind the method is to wrap a solid geometric model in a lattice of control
nodes and then to deform the geometry in a continuous and smooth way by moving
only the control points of such lattice. As a consequence, the whole space embedded
in the lattice is manipulated, resulting in the deformation of the object (see Figure
2.1).

Nowadays the method is widely used by CAE programs for geometrical modelling
and it has been employed in the context of aerodynamic shape design problems,
for example in aeronautical (Andreoli et al. (2003) and Désidéri et al. (2007)) and,
more recently, automotive applications (Sieger et al. (2015)).

8

2.2 Free-Form Deformation

Fig. 2.1 Example of FFD applied to an unmanned aerial vehicle: original shape and lattice
(blue) vs deformed ones (red). Courtesy of Optimad Engineering.

In addition to these standard techniques for shape parameterization, more physically
intuitive quantities may be used, such as radii, thicknesses, angles, lengths, etc., or
methods based on parameters that are directly linked to the component geometry, like
PARSEC parameters for airfoils and wings description (Sobieczky (1997)). For more
complex geometries and non-standard components, however, this may not be an option.

In the present work, we perform geometry parameterization and deformation through
an approach derived from the FFD method. Further details are provided in the following
sections. For a comprehensive dissertation on different geometry deformation techniques
and in particular FFD-based methods, see for instance Anderson et al. (2012).

2.2 Free-Form Deformation

As stated before, the FFD does not manipulate directly the geometry as happens in
other parameterization techniques, but acts on the control lattice built around the three-
dimensional object. The lattice is basically a Bézier volume, given by the composition of
Bézier tensor patches, but also B-spline or NURBS parameterization can be employed. In
particular, extensions of FFD to NURBS basis functions allow a non-uniform distribution
of the control points in the lattices, providing more flexibility to the method. Generally,
the lattices are based on hexahedra, cylinders or spheres which can be easily mapped on
their unit elemental primitives, following the steps described in Section 2.2.1.

With respect to other parameterizations based on polynomial curves, that by con-
struction can describe only smooth objects (see Andreoli et al. (2003)), the FFD method
uses the Bézier parameterization to represent just the deformation rather than the shape
itself. Doing so, the object will be deformed smoothly, even if its original shape is not
smooth. In this so-called Bézier delta formulation, control points loose the geometrical
meaning of position, and the correlation between the displacements and the resulting

9

Geometry Parameterization

deformed geometry is less intuitive. Despite this, the FFD parameterization shows a good
accuracy and sensitivity with a low number of parameters (see for instance Amoiralis
and Nikolos (2008)).

Since it does not depend on the topology of the geometrical object to be morphed, the
FFD is extremely versatile and can be applied to parameterize very complex geometries,
including volume meshes, surface triangulations and CAD representations, featuring a
good trade-off between simplicity and generality. Moreover, it is suitable for both small
and large deformations, provided that the input geometry is good enough, e.g. in terms
of number and quality of mesh elements, to guarantee a good description of the deformed
geometry. Low quality inputs will results inevitably in poor deformations. This issue can
be worked around, for instance, by performing the FFD directly on the manifold of the
geometry, e.g. when morphing CAD geometries in the context of Isogeometric analysis,
as in Salmoiraghi et al. (2016b); alternatively, some curvature based refinement needs to
be introduced for mesh adaptation (see for instance Alliez et al. (2008) for a review of
re-meshing techniques) when the deformation becomes large, further complicating this
approach.

In the framework of shape optimization, it is also worth stressing that reachable
shapes depend on some user-defined parameters, like the number and disposition of
control points. Such choices define the mathematical subspace for the optimization:
consequently, poor and naive setups will result in a best solution that is far from being
optimal for the true physical problem. Adaptation procedures (Désidéri et al. (2007);
Duvigneau (2006)) may be used to increase the robustness of the process.

In its original formulation, the method is suited for global shape deformations and
unconstrained geometries. When dealing with real-life problems, however, it must be
taken into account that industrial components have to fulfil a wide range of geometrical
constraints, such as manufacturing or operational requirements. Moreover, parts are
often deformed locally and thus some continuity constraints between the deformable
and the fixed regions must be prescribed. Thanks to the properties of the Bernstein
polynomials, the FFD preserves the smoothness of the shape and the continuity of
its derivative within the lattice, but there is no guarantee on the boundary. As many
other classical parameterization techniques, the method is designed to manipulate the
geometrical object globally rather than locally: bounding the displacements of the control
points, as proposed in the original paper by Sederberg and Parry (1986), allows one
to achieve the desired continuity on the boundaries of the deformed part, as well as to
limit the deformation, but this approach is neither intuitive nor efficient for shapes and

10

2.2 Free-Form Deformation

constraints of arbitrary complexity, and it represents one of the main criticisms of the
method. In order to overcome this issue, we employ an extension of the FFD, based
on level-set methods. As presented in Scardigli et al. (2019), it is possible to efficiently
compute the approximate geodesic distance from the constraints through heat kernels
and to use this information to locally weight the deformation field, as depicted in Section
2.2.2.

When dealing with discretized geometries, as happens frequently in the industrial
context, there are two preferable FFD approaches (see Figure 2.2):

• Mesh Morphing. Performing the FFD directly on a volume mesh can be extremely
convenient for optimization problems, since it allows to skip the mesh generation
phase for every new configuration investigated, leading to significant time savings.
On large computational meshes, the deformation itself may be time consuming and
difficult to setup, but the mesh generation is usually more demanding in terms of
resources. The possibility to have topologically equivalent grids is also interesting
in view of model reduction strategies, since the solutions will have the same degrees
of freedom and the mapping among different meshes is trivial, without the need of
introducing interpolations.

In terms of deformation control, the FFD does not affect elements connectivity
and the non-penetration condition of the cells can be guaranteed by limiting the
displacements in order to avoid the overlapping of the control points. Nevertheless,
depending on the deformation type, different problems may affect the cells (e.g.
high skewness, high non-orthogonality, degenerated cells) and impair the quality
of the simulation results. To prevent such behaviours, application-specific mesh
quality constraints and deformation propagation strategies have to be implemented.
Despite this effort, guaranteeing the minimum quality of the volume mesh may be
infeasible or really difficult to achieve in those cases where non-small deformations
are required or the parameterization of rather complex geometries is involved.

• Surface Morphing. In this second option, the FFD is applied on the surface
tessellation of the model. As a consequence, the volume mesh needs to be generated
at every new parameter evaluation. This approach is then usually more expensive
than the previous one, even though the FFD works on a smaller subset. In terms
of model order reduction, dealing with meshes with varying topology implies that
different solutions are defined on different degrees of freedom: in order to build
the reduced model the solutions have to be mapped on a reference domain and an

11

Geometry Parameterization

(a) Surface morphing. (b) Mesh morphing.

Fig. 2.2 Examples of FFD industrial approaches.

additional interpolation step is required, further increasing the computational time
and the complexity of the ROM definition.

Nevertheless, surface morphing is generally less problematic than mesh morphing.
On the one hand, it is more flexible, supporting also big deformations and allowing
one to parameterize arbitrarily complex geometries with less effort. On the other
hand, deformation and constraints controls are usually easier to implement and to
use, a feature which should not be underrated for industrial applications.

Both strategies benefit from the fact that the so-called FFD map (see Section 2.2.1) can
be efficiently evaluated by exploiting an offline-online paradigm, where the transformation
is precomputed offline by a symbolic expression which is cheaply evaluated online for
the actual parameters and coordinates. Another interesting feature of the original FFD
algorithm is that it is embarassingly parallel: in fact, we can ideally move independently
each point of our geometrical object on a different CPU, without passing any information
among processors, since it requires only the points coordinates and not their connectivity.
Nevertheless, this may not be the case where more strict controls over the deformation
are required, as for the mesh morphing of large-scale problems. In the following chapters
(4 and 8), examples of both strategies will be provided and discussed.

A deeper insight over the FFD and its applications can be found for instance in
Andreoli et al. (2003); Ballarin et al. (2014); Forti and Rozza (2014); Koshakji et al.
(2013); Lassila and Rozza (2010).

12

2.2 Free-Form Deformation

2.2.1 Formulation

Here we recall the construction of the FFD map in the three-dimensional case, shown in
Figure 2.3. Given a reference (undeformed) domain Ω that we wish to perturb, we enclose
it in a control volume D ⊃ Ω and we define an affine map ψ : (x1, x2, x3)→ (t1, t2, t2),
so that it is possible to transform the volume D into the unit cube, i.e. ψ : D → D̂ with
D̂ = [0, 1]× [0, 1]× [0, 1]. The FFD will be defined later with respect to the coordinates
(t1, t2, t2) of the unit cube. Let us introduce a regular grid of (K + 1)× (L+ 1)× (M + 1)
control points over D̂

pklm =

k/K

l/L

m/M

 , with k = 0, . . . , K, l = 0, . . . , L, m = 0, . . . ,M

and the displacement vector µklm ∈ R3 of each control point, so that the perturbed point
becomes

p⋆klm(µklm) = pklm + µklm.

The deformation of the unitary cube is then obtained through the map T̂FFD(·;µ) : D̂ →
D̂⋆(µ) , defined as

T̂FFD((t1, t2, t3);µ) =
K∑
k=0

L∑
l=0

M∑
m=0

BK
k (t1)BL

l (t2)BM
m (t3)p⋆klm(µklm),

where the terms BJ
j (t) =

J
j

 tj(j − t)(J−j) are the one-dimensional Bernstein base

polynomials of the tensor product.

Finally, the FFD map is defined as the composition of the three maps:

TFFD(·;µ) = (ψ−1 ◦ T̂FFD ◦ψ)(·,µ).

2.2.2 Local deformations

The main idea is to efficiently compute the approximate geodesic distance from the
constraints through heat kernels (Crane et al. (2013)) and to use this information to
locally weight the deformation field.

13

Geometry Parameterization

D D(µ)

ψ ψ−1

D̂ D̂(µ)

T̂FFD

TFFD

pklm pklm + µklm

Fig. 2.3 Sketch of the FFD map construction.

Given a set of points X = [x1, . . . , xN] ∈ RD×N , representing for instance a tessellated
surface Ω, the deformed set X⋆ can be expressed as:

X⋆ = X + TFFD(µ),

where TFFD(µ) denotes the displacements fields imposed by the FFD through the pklm
control points.

We want to restrict the effect of the deformation on a subregion Ω̃ ⊆ Ω and guarantee
a certain continuity constraint (Ck, with k = 0, 1, . . . , K) at the interface between these
regions, denoted by ∂Ω̃. In the classical FFD approach, continuity between the deformable
and the fixed geometry regions is usually achieved by bounding the displacements of the
control points close to the interface, as shown in Sederberg and Parry (1986). Although
easy in principle, this approach is neither intuitive nor efficient, particularly for complex
geometries and lattices of arbitrary shape, and it tends to increase the number of control
points.

A possible solution to this problem consists in introducing a filter scalar function w

to weight the deformation, with the following features:

w = 0 in Ω/Ω̃
0 ≤ w ≤ 1 in Ω̃
w,Dkw = 0 on ∂Ω̃

(2.1)

14

2.2 Free-Form Deformation

(a) C0 continuity. (b) C2 continuity.

0 0.2 0.4 0.6 0.8 1

normalized

0

0.2

0.4

0.6

0.8

1

w

Free condition

C0 condition

C1 condition

C2 condition

(c) Deformation weight functions.

Fig. 2.4 Examples of deformation of a sphere imposing different continuity constraints on the
boundary of the deformable part (green).

and dependent on the function f(X|∂Ω̃), representing the topological information of each
point of Ω̃ with respect to the boundary ∂Ω̃. This implies that f vanishes at the boundary
and that given x1, x2 in X, f(x1) > f(x2) if x2 is closer to ∂Ω̃ than x1. Therefore, a
natural candidate for f is the geodesic distance function evaluated from the boundary,
i.e. φ(X|∂Ω̃). The new constrained deformation can be expressed as:

X⋆ = X + w(φ(X|∂Ω̃))TFFD(µ). (2.2)

By differentiating Equation (2.2), it is then possible to define the set of properties required
to assure the desired continuity of the deformation.

Some of these requirements are easily guaranteed. Since the FFD parameterizes
directly the deformation, rather than the shape itself, we know that the deformation field
will always be smooth, thanks to the properties of the Bézier curves, that are continuous
to any order by construction. On the other hand, the technique preserves the continuity
order of the original shape, meaning that the final geometry cannot be smoother than
the original one. The weight functions w, instead, are chosen to fulfil the requirements
expressed in Equation (2.1). In Figure 2.4 an example of resulting deformations with
different continuities on the interface is presented, as well as a set of suitable weight
functions (see Figure 2.4c).

The exact geodesic function can be efficiently evaluated through a fast marching
technique (see Sethian (1999) for a comprehensive review of level-set and fast marching

15

Geometry Parameterization

methods). However, it may present some discontinuities on the gradients depending on
the shape of ∂Ω̃, resulting in a deformation fields that will be at most C0 continuous
(see for instance Figure 2.5a). In order to improve smoothness, a more regular distance
field must be determined. To this end, we substitute the exact geodesic distance with an
approximate definition, following the method proposed by Crane et al. (2013), based on
the solution of a time-dependent heat equation over the three-dimensional surface mesh.
The method consists of three main steps:

1. integrate the heat equation ∂u
∂t

= ∆u in Ω̃, up to some time t⋆, with zero initial
conditions and non-homogeneous Dirichlet boundary conditions on ∂Ω̃, i.e. by
imposing u(t = 0) = 0 and u|∂Ω̃ = uD;

2. evaluate the normalized temperature gradient, in order to get the unit vector field
Z = − ∇u

∥∇u∥ , pointing along the geodesics;

3. solve the Poisson equation ∆φ = ∇ · Z with zero boundary conditions on ∂Ω̃, to
recover the distance.

The desired smoothness of the level set solution is achieved by tuning conveniently
the heat propagation time, t⋆. A larger time will result in a smoother deformation field,
whereas in the limit of t⋆ → 0 the approximate geodesic distance tends to the exact one.
A comparison of deformations is presented in Figure 2.5: due to the irregularity on the
surface contour the exact level-set is not smooth, but this issue can be overcome via the
heat kernel method.

This approach permits to handle a broad class of constrains and can be applied
straightforwardly to other parameterization methods, such as Radial Basis Functions
(RBF).

2.2.3 Geometrical constraints

As stated above, industrial components must satisfied a set of geometrical constraints
during the optimization process. The feasibility of the deformation can be controlled by
bounding the design parameters, especially when the constraint is intuitive, or by using
some control strategy. Most of the geometrical constraints, e.g. prescribed distances
among components or absolute positions, can be translated into volume constraints,
where the deformable part is not allowed to occupy a certain volume in the space. To
verify the compliance with such requirement, it is possible to use the level set method

16

2.2 Free-Form Deformation

(a) Exact geodesic distance function.

(b) Approximated geodesic distance function.

Fig. 2.5 Examples of distance functions from a non-smooth contour (red) and corresponding
surface deformations with C2 continuity constraint.

17

Geometry Parameterization

(distance from the constraint) and efficient ray-tracing and line search algorithms. In
principle, this information can be used to rescale the deformation and enforce the
feasibility of the new configuration. However, this approach tends to produce plateaus in
the optimization, that may slow down the process or be difficult to overcome, depending
on the optimization algorithm. For this reason we prefer to simply treat the constraints
violation as an inequality constraint for the optimizer, i.e. assigning gi(µ) < 0 for a
feasible deformation controlled by the µ parameter, and gi(µ) ≥ 0 for an unfeasible one,
where gi(µ) represents the maximum violation distance between the constraint surface
and the deformed component.

2.3 Numerical tools

The above features are implemented in a software package for computer-aided surface and
mesh morphing, called mimic1, which is a C++ library to manipulate three-dimensional
objects by means of FFD and Radial Basis parameterization techniques.

For some applications, we also rely on the PyGem2 python library, that provides an
implementation of the standard FFD technique.

1http://www.optimad.it/products/mimic/
2http://mathlab.sissa.it/pygem

18

http://www.optimad.it/products/mimic/
http://mathlab.sissa.it/pygem

Chapter 3

Full-Order Modelling

Part of the work described in this chapter has been previously submitted for publication
in Salmoiraghi et al. (2018) and Bergmann et al. (2018).

This chapter introduces the reference full-order model (Section 3.1) for the problems
of interest and provides some insight about the numerical tools and methods (Section
3.2) employed in its solution.

3.1 Fluid modelling

In Ω(µ) the flow motion is governed by the NSE. Generally speaking, the NSE are a system
of non-linear, time-dependent, partial differential equations, that in the conservation
form for incompressible newtonian fluids can be written as:

∂u
∂t

+∇ · (uu) = −1
ρ
∇p+∇ · (ν∇u) , (3.1)

∇ · u = 0, (3.2)

where u = u(µ) and p = p(µ) denote the velocity and pressure fields respectively, ν is
the kinematic viscosity and ρ is the density.

Further difficulties arise when turbulence is involved, as occurs in many engineering
applications: turbulent flows exhibit a chaotic behaviour, characterised by significant
and irregular variations in space and time, and their study represents a challenge under
both the analytical and numerical point of view (see for instance Pope (2011), for a more
comprehensive review of the problem). In terms of Reynolds number Re = UL

ν
, i.e. the

19

Full-Order Modelling

dimensionless number that represents the ratio between inertial and viscous forces for
given flow conditions, the applications of interest for the present work are characterised by
values of O(106 − 108), thus turbulence needs to be addressed. Nowadays, there are four
main approaches to deal with turbulence: Direct Numerical Simulation (DNS), Reynolds-
Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and hybrid LES-RANS
models, such as Detached Eddy Simulation (DES). In DNS, all the scales of motions are
resolved for one realization of the flow. Although easy in principle, solving the whole
range of spatial and temporal turbulence scales is often not feasible, given the complexity
of the phenomena. DNS is indeed very expensive and the computational costs tends to
increase cubically with Re: therefore, this approach can be applied to flows characterized
by low or moderate Re, whereas it has prohibitive costs for industrial applications at
higher Re. Other techniques for simulating turbulent flows, such as LES (Pope (2011);
Sagaut (2006)) and hybrid models (Fröhlich and von Terzi (2008)), have started to be
employed in engineering applications. Nevertheless, the solution of RANS equations
is still the most common approach in industry, especially in early stages of design or
during aerodynamic optimization, when several simulations are required. The general
idea behind the RANS approach is to decompose both u and p into ensemble-averaged
and fluctuating components (Reynolds decomposition)

u = ū + u′, p = p̄+ p′, (3.3)

in order to obtaining approximate solutions to the NSE. By substituting (3.3) into
Equations (3.1-3.2) and by applying the average operator, it is possible to derive the
RANS formulation for incompressible flows:

∂ū
∂t

+∇ · (ūū) +∇ ·
(
u′u′

)
= −1

ρ
∇p̄+∇ · (ν∇ū) , (3.4)

∇ · ū = 0. (3.5)

The averaging operator introduces an additional unknown to the problem, i.e. the
Reynolds stress tensor, whose components are defined as τ tij = −ρu′

ju
′
i. This new term

accounts for the fluctuations contribution (Pope (2011)), adding to the momentum
equation the macroscopic momentum transport due to turbulence. In order to provide
mathematical closure to the system of equations, a turbulence model is required to
determine such contribution. Although many different models are available in literature,
in this work we will address only linear-eddy viscosity models based on one or two

20

3.1 Fluid modelling

differential equations, since they represent the most common methods for the problems
of interest. Some insight regarding these models is provided in Section 3.1.1

In the following, we will refer to the RANS equations as the high-fidelity/full-order
model when addressing the general Problem (1.2) described in Section 1.1. In order to
simplify the notation, we will omit the bar over the averaged fields.

3.1.1 Turbulence modelling

The closure of RANS equations is a well known problem in fluid dynamics and various
models have been proposed in order to describe the Reynolds stress tensor. These models
belong to two main categories:

• Eddy viscosity models, where the Reynolds stresses are evaluated though a
constitutive relationship based on the mean velocity field. Depending on the
relationship type, a further distinction between linear and nonlinear models is
generally introduced. Linear models are the most commonly used. They rely on
the so-called Boussinesq hypothesis:

τ tij = µt

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
− 2

3ρkδij (3.6)

where k is the turbulent kinetic energy, k = 1
2u

′
iu

′
i. Equation (3.6) introduces a

direct proportionality between the deviatoric Reynolds stress, τ tij + 2
3ρkδij, and

the mean rate of strain, s̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
, through a positive factor equal to

2νt, with νt referred to as turbulent or eddy viscosity. The effect of turbulence
translates into an increased effective viscosity, given by µeff = µ + µt. Within
the class of linear models, early developed one-equation models are incomplete,
i.e. their constituent equations include flow-dependent specification, whereas more
recent ones and two-equations models are complete.

Although the eddy-viscosity hypothesis is not entirely correct, it usually leads to
reasonably good results.

• Reynolds stress equation models (RSM), where the eddy-viscosity hypothesis
is avoided and Reynolds stresses are computed individually, using exact transport
equations, in order to account for directional effects and complex interactions that
cannot be modelled otherwise.

21

Full-Order Modelling

The suitability of a turbulence model for a given problem is determined by a lot of factors,
like the level of description required, completeness, accuracy and range of applicability, but
also usability criteria, such as cost and ease to use: the difficulty of performing turbulent
calculations, in fact, depends on both the model and the flow features. Generally speaking,
the results show a strong dependency on the chosen RANS model. For these reasons,
given a certain class of turbulent problems, it does not exist an optimal turbulence model,
but rather a set of suitable models that can be applied. A comprehensive review of
turbulence flows and modelling can be found for instance in Pope (2011) and Wilcox
(2006).

In this work, the following complete models are employed.

Spalart-Allmaras

The Spalart-Allmaras model, introduced by Spalart and Allmaras (1992) for aerodynamic
applications, is a one-equation model which introduces an additional transport equation
for the turbulent viscosity νt, in the form:

∂νt
∂t

+ ū · ∇νt = ∇ ·
(
νt
σν
∇νt

)
+ Sν

where σν is a model constant and Sν is a source term depending on the laminar and
turbulent viscosities, ν and νt respectively, the rate of rotation, the wall distance and the
gradient of νt, as well as on several semi-empirical constants.

Realisable k − ϵ

The realisable k − ϵ model is a modification of the standard k − ϵ model introduced by
Jones and Launder (1972), one of the most commonly used turbulence models. The k− ϵ
model belongs to the class of two-equations models and introduces two extra transport
equations for the turbulent kinetic energy and for the turbulent energy dissipation rate,
i.e. k and ϵ. The transport equation for k is written as:

∂k

∂t
+ ū · ∇k = ∇ ·

(
νt
σk
∇k

)
+ P − ϵ

22

3.1 Fluid modelling

where νt = ρCµk
2/ϵ is a function of the kinetic energy and the wall distance and P is

the k production term, while the transport of ϵ is expressed in the empirical form:

∂ϵ

∂t
+ ū · ∇ϵ = ∇ ·

(
νt
σϵ
∇ϵ
)

+ Cϵ1
Pϵ
k
− Cϵ2

ϵ2

k
(3.7)

with the standard values of the constants determined by Launder and Sharma (1974). The
empirical nature of the ϵ equation is one of the main source of error of the standard model,
which is usually quite inaccurate for complex flows, e.g. round jets or boundary layers
under strong adverse pressure gradients. The realisable k − ϵ model (Shih et al. (1995))
tries to mitigate this effect by introducing a variable Cµ (constant in the standard model)
and a new definition of the ϵ transport equation. More specifically, the new equation
is derived from an exact dynamic equation for the mean-square vorticity fluctuation at
high Reynolds numbers:

∂ϵ

∂t
+ ū · ∇ϵ = ∇ ·

(
νt
σϵ
∇ϵ
)

+ C1ϵ+ Cϵ1
Pbϵ
k
− C2

ϵ2

k +
√
νϵ

(3.8)

The noteworthy feature is that the production term of Equation (3.8) does not involve
the production of k due to the mean velocity gradients, as in Equation (3.7), but only
the buoyancy contribution Pb, providing a better representation of the spectral energy
transfer. Moreover, the derived model satisfies certain realisability constraints on the
Reynolds stresses, assuring consistency with the physics of turbulent flows, differently
from the standard model. From the Boussinesq relationship (Equation (3.6)) and the νt
definition, it follows that the normal stresses

u2
i = 2k

(
1
3 − Cµ

k

ϵ

∂ūi
∂xi

)

becomes negative when the following condition holds:

k

ϵ

∂ūi
∂xi

>
1

3Cµ
.

The same can be shown also for shear stresses. In other words, the solution is not-realisable
when the strain is sufficiently large, unless a variable Cµ is introduced.

Further information about the numerical implementation of the models can be found
in Section 3.2.5.

23

Full-Order Modelling

3.2 Numerical tools

Numerical simulations are performed through the OpenFOAM® 1 C++ library developed
by OpenCFD Ltd and distributed by the OpenFOAM Foundation. It is an open-source
software for computational fluid dynamics which in the past decade has become a reference
point for both academic research and industrial users. As underlined in the works of
Weller et al. (1998) and Jasak et al. (2007), the main feature of OpenFOAM® is its
object-oriented and expressive syntax, that allows the users to easily customize and
implement complex physical models.

For the solution of the steady-state RANS equations, we use the simpleFoam solver,
which implements the SIMPLE pressure-velocity coupling proposed by Patankar (1980).

In the following, a brief description of the main ingredients of the numerical discretiza-
tion is provided.

3.2.1 Spatial discretization

The computational domain Ω is divided into a finite number of polyhedral control volumes,
i.e. the mesh cells, on which the governing equations are solved. Cells do not overlap and
their union covers the whole computational domain. Each control volume is delimited
by a set of flat faces and may have generic shape and a variable number of neighbours,
with no restriction on face alignment, resulting in an arbitrarily unstructured mesh that
allows handling complex geometries.

An example of control volume is illustrated in Figure 3.1: with reference to the face
f , it is possible to identify its owner and neighbour cell, whose centroids are denoted by
P and N respectively. The face area vector sf , instead, represents the outward-pointing
normal vector whose magnitude is given by the face area. As hinted before, such vector
sf and the vector pointing from the cell centre P to N , i.e. d, may be non-aligned:
therefore, mesh non-orthogonality must be addressed in the equations discretization. All
the unknown variables are computed at P and stored at one single location, according
to the co-located variable arrangement and following the typical implementation of the
cell-centred finite volume method (see for instance Versteeg and Malalasekera (2007) for
a comprehensive description of the finite volume method in fluid dynamics problems).

1https://openfoam.org/

24

https://openfoam.org/

3.2 Numerical tools

Fig. 3.1 Typical control volume and discretization parameters.

The mesh is described by its points, faces, cells and boundary patches. Each cell is
defined by the list of faces bounding its volume, each face as an ordered list of point
labels and each point by its spatial coordinates. Boundary faces, i.e. those sitting on the
boundary ∂Ω of the domain, are grouped into patches, in order to easily subdivide the
boundary into regions subject to different types of boundary conditions.

3.2.2 Equation discretization

Starting from Equations (3.5) and (3.4), it is possible to derive the finite volume dis-
cretization of the full-order model by linearisation and integration of each spatial term
over the control volumes, in order to transform the PDEs system into a set of algebraic
equations.

The continuity equation can be easily discretized by explicitly evaluating the diver-
gence term over the cells as∫

V
∇ · u dV =

∫
S
ds · u =

∑
f

sf · uf (3.9)

where the volume integral is converted into a surface integral thanks to Gauss’ theorem.

The discretization of the momentum equation, instead, requires particular attention
due to the presence of the non-linear convection term. The linearisation of such term is
achieved in the following way:∫

V
∇ · (uu) dV =

∫
S
ds · (uu) =

∑
f

sf · ufuf ≃ aPuP +
∑
N

aNuN (3.10)

25

Full-Order Modelling

where aP and aN depend on the velocity field and are computed using the velocity fluxes
from a previous iteration. This lagging has no relevant effect in steady-state calculation,
whereas needs to be properly addressed in transient problems. The Laplacian term and
the divergence of the Reynolds stress tensor are also computed using lagged turbulent
quantities, i.e. the eddy viscosity νt. In particular, the Laplacian is discretized as follows:∫

V
∇ · (νt∇u) dV =

∫
S
ds · (νt∇u) =

∑
f

(νt)f sf · (∇u)f

where the product sf · (∇u)f is given by the sum of the orthogonal contribution, i.e.
|sf |(uN − uP)/|d|, and a correction for the non-orthogonality (see for instance Jasak
(1996)). The pressure gradient is evaluated explicitly by Gaussian integration.

3.2.3 SIMPLE algorithm

As shown in Jasak (1996), the method relies on the derivation of an explicit equation for
the pressure. We start from a semi-discretized form of the momentum equation:

aPuP +
∑
N

aNuN = bP − (∇p)P . (3.11)

For the sake of simplification, the neighbours contributions and the source terms apart
from the pressure gradient, whose discretization is not made explicit at this stage, can
be grouped into HP (u). Equation (3.11) is then rewritten as:

aPuP = HP (u)− (∇p)P . (3.12)

Thus, for the cell velocities we have:

uP = HP (u)
ap

− (∇p)P
ap

. (3.13)

In addition to the momentum equation, the velocity field is also subject to the continuity
constraint, that according to the discretization procedure of Section 3.2.2, can be expressed
in terms of the face fluxes as: ∑

f

sf · uf = 0, (3.14)

26

3.2 Numerical tools

where sf is the face area vector and uf represents the velocity interpolated on the face,
which is obtain from Equation (3.13):

uf =
(

HP (u)
aP

)
f

−
(∇p
aP

)
f

. (3.15)

By substituting Equation (3.15) into Equation (3.14), we obtain the final form of the
discretised pressure equation:

∑
f

sf ·
(∇p
aP

)
f

=
∑
f

sf ·
(

HP (u)
ap

)
f

. (3.16)

Equations (3.11) and (3.16) are solved iteratively through under-relaxation, until
convergence is attained. Starting from an initial guess for the unknown variables and
the setup of suitable boundary conditions, the solution procedure consists of the steps
summarised in Algorithm 1. First, the momentum equation is under-relaxed implicitly
and solved in order to obtain the predicted velocity field u⋆ and the corresponding face
fluxes, using the pressure field from the previous iteration. u⋆ is then used in Equation
(3.16) to evaluate the new pressure distribution. Once the new p is obtained, the face
fluxes are corrected and the new pressure field for the momentum predictor step is
computed by under-relaxing p. Finally, the velocity is explicitly corrected and the values
on the boundary are updated in order to satisfy the prescribed boundary conditions. For
turbulent flows, the conservative fluxes are then used to solve the additional turbulence
equations, in order to calculate the effective viscosity to be imposed at the next solver
iteration.

Algorithm 1 SIMPLE algorithm
1: set the boundary conditions
2: initialize p and u
3: while convergence = false do
4: under-relax aP

αu
unew
P +

∑
N aNunew

N = bP − (∇p)P + 1−αu
αu

aPuold

5: u⋆ ← aPuP = HP (u)− (∇p)P
6: p′ ←

∑
f sf ·

[(
∇p
aP

)
f

]
=
∑
f sf ·

(
HP (u⋆)
ap

)
f

7: compute the conservative face fluxes sf · uf = −sf ·
(

∇p′

aP

)
f

+ sf ·
(

HP (u⋆)
ap

)
f

8: under-relax pnew = pold + αp(p′ − pold), with 0 < αp ≤ 1
9: correct the cell velocities up = HP (u⋆)

ap
− (∇pnew)P

ap

10: update the boundary conditions
11: check for convergence
12: end while

27

Full-Order Modelling

Further details can be found in Ferziger and Peric (2002) and Versteeg and Malalasek-
era (2007).

The SIMPLE algorithm loop is implemented in the C++ code as follows:

while (simple.loop())
{

// --- Pressure-velocity SIMPLE corrector
{

#include "UEqn.H"
#include "pEqn.H"

}

turbulence->correct();
}

addressing first the momentum predictor step (UEqn.H), and then the pressure correction
step (pEqn.H): when required the pressure equation may be solved more than once in
order to introduce the correction for the non-orthogonality.

3.2.4 Numerical schemes

The equations are discretised with Gaussian integration, using different schemes for each
term. For the gradient terms, we use a second-order accurate Gauss linear scheme for
p and u and the cell-limited version for turbulent quantities, which limits the gradient
in order to guarantee boundedness. Such schemes are defined in the OpenFOAM®
dictionaries by Gauss linear and cellLimited Gauss linear ψ, with ψ = 1. In both
schemes, the face value of the variable y is obtained from the cell centre values as:

yf = wyP + (1− w) yN ,

where the interpolation factor is defined in terms of the cell centre-face centre distance
vector, df , computed with respect to N , and the distance vector between the cell centres
P and N , i.e. d:

w = |df |
|d|

. (3.17)

When dealing with turbulence, the cell gradient is limited to ensure that the extrapolated
face values are bounded by the minimum and maximum values in the neighbouring cells,

28

3.2 Numerical tools

i.e.:
min
N

(yN) ≤ yP + d · (∇y)P ≤ max
N

(yN).

In order to prevent local over or under-shoots in the reconstructed field, a gradient limiter
is applied. When using ψ = 1, if for example the extrapolated face value exceeds yN , the
gradient is scaled in order to reach exactly yN .

The surface normal gradient scheme is a central-difference scheme with limited non-
orthogonal correction. The correction is controlled by a coefficient ψ ranging between 0
and 1: when ψ = 0 the correction is off, when set to 1 the scheme is fully corrected, whereas
when set to intermediate values the limiter is calculated such that the non-orthogonal
correction does not exceed ψ times the orthogonal contribution. With reference to the
nomenclature introduced in Figure 3.1, the uncorrected gradient scheme of a property y
at a face can be evaluated as:

∇⊥
f y = α

yp − yN
|d|

(3.18)

with
α = 1

cos(θ) ,

being θ the angle between the vector d, that joins the two cell centres, and the surface
normal n. The full corrected scheme, instead, is evaluated by adding an explicit correction
term to Equation 3.18:

∇⊥
f y = α

yP − yN
|d|

+
(

n− α d
|d|

)
· (∇y)f ,

where (∇y)f is cell-based gradient interpolated on the face. In order to improve stability
even for highly non-orthogonal meshes, we set ψ = 0.333, by specifying limited 0.333.

The Laplacian terms, ∇ · (γ∇y) are approximated by a blending of a bounded,
first order, non-conservative scheme and an unbounded, second order, conservative
scheme, More specifically, the scheme applies the Gauss theorem with linear interpolation,
required to transform the diffusion coefficient cell values into face values, through central
differencing:

γf = wγP + (1− w) γN ,

where w is defined as in Equation 3.17.

The surface normal gradient is then computed by employing the same limited scheme
discussed above, with a 0.333 non-orthogonal correction. The Laplacian scheme is
specified by Gauss linear limited 0.333: once again, such scheme is less accurate

29

Full-Order Modelling

with respect to the fully corrected counterpart, but it performs better on non-orthogonal
meshes.

The convective terms in the turbulence equations are discretised using a Total
Variation Diminishing (TVD) bounded scheme, i.e. limited linear differencing. Generally
speaking, TVD schemes introduce a blend between a low-order and a higher-order scheme,
according to the calculation of a limiter (see Jasak (1996)):

yf = yUD + ψ(r) (yHO − yUD) ,

where ψ(r) represent the TVD flux limiter, and yUD and yHO are the face value of y for
the first-order upwind differencing scheme and the higher-order scheme, that is central
differencing in our case. ψ(r) is evaluated through a compact stencil, as shown in Jasak
et al. (1999), and defined as a function of the variable r:

r = 2d · (∇y)P
yN − yP

− 1,

where the gradient at cell P , (∇y)P is computed through second order, Gaussian integra-
tion. The selected scheme is bounded Gauss limitedLinear 1, where the value 1 set
the limiter ψ(r) = 2r, that is TVD conforming. This guarantees the best performance of
the scheme in terms of convergence.

As for the momentum equation, for the convective term we employed a linear upwind
differencing scheme, specified through bounded Gauss linearUpwind grad(U). The
scheme is second order accurate and employs upwind interpolation with an explicit
correction based on the local cell gradient, following Warming and Beam (1976). With
reference to Figure 3.2, where the nodes U, C and D are chosen according to the direction
of the flux across f , the face value is discretized as:

yf = yC + df · (∇y)C ,

where df represents the vector directed from the C cell centre to the face centre and
the variable gradient on C is computed through the corresponding gradient scheme, i.e.
Gauss linear.

30

3.2 Numerical tools

U C D

f

N P

u > 0

UCD

f

N P

u < 0

Fig. 3.2 Cells stencils used in the construction of yf for convection schemes: the subscripts U,
C and D denote the upstream, central and downstream nodes, coinciding with the cell centres.

3.2.5 Turbulence

Spalart-Allmaras

The SpalartAllmaras model implemented in OpenFOAM® references Spalart and
Allmaras (1994) with some minor changes. The transport equation is written for the
viscosity-like variable ν̃:

∂ν̃

∂t
+ ūi

∂ν̃

∂xi
= Cb1S̃ν̃ − Cw1fw

(
ν̃

d

)2
+ 1
σ

{
∂

∂xj

[
(ν + ν̃) ∂ν̃

∂xj

]
+ Cb2

∂ν̃

∂xj

∂ν̃

∂xj

}

from which the turbulent viscosity is obtained as

νt = ν̃fv1

with

fv1 = χ3

χ3 + C3
v1
,

χ = ν̃

ν
.

Contrary to the standard SA model, this implementation expresses the quantity S̃ in the
production term as follows:

S̃ = max
(
Q+ ν̃

k2d2fv2, CsQ
)
,

31

Full-Order Modelling

where Q is the vorticity magnitude, Q =
√

2QijQij with Qij = 1
2

(
∂ūi
∂xj
− ∂ūj

∂xi

)
, and the

term fv2 is:
fv2 = 1− χ

(1 + χfv1)
.

Additional definitions of the model are:

fw = g

[
1 + C6

w3
g6 + C6

w3

] 1
6

, g = r + Cw2
(
r6 − r

)
,

r = min
(

ν̃

S̃k2d2
, 10.0

)
,

with coefficients:

Cb1 = 0.1355,
Cw2 = 0.2,
Cv1 = 7.1,
σ = 0.66666,

Cb2 = 0.622,
Cw3 = 2.0,
Cs = 0.3,
k = 0.41,

Cw1 = Cb1
k2 + 1 + Cb2

σ
.

Realisable k − ϵ

OpenFOAM® includes the realizableKE model developed by Shih et al. (1995). The
kinetic energy and dissipation equations are written in the form:

∂k

∂t
+ ∂(kui)

∂xi
= ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
+G− ϵSk ,

∂ϵ

∂t
+ ∂(ϵui)

∂xi
= ∂

∂xj

[(
ν + νt

σϵ

)
∂ϵ

∂xj

]
+ C1Sϵ− C2

ϵ2

k +
√
νϵ

+ Sϵ ,

where:

C1 = max
(

η

η + 5 , 0.43
)
, η = S

k

ϵ
,

G = νtS
2, S =

√
2s̄ij s̄ij , s̄ij = 1

2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
.

As in standard k − ϵ models, the turbulent viscosity is computed as

νt = Cµ
k2

ϵ

32

3.2 Numerical tools

with Cµ varying through the relation

Cµ = 1
A0 + As

kUs
ϵ

.

Additional definitions of the model are:

C1 = max
(

η

η + 5 , 0.43
)
,

Us =
√
s̄ij s̄ij + R̃ijR̃ij , R̃ij = Rij − 2ϵijkωk , Rij = R̄ij − ϵijkωk ,

where R̄ij represents the mean rate-of-rotation expressed in a reference frame rotating
with ωk angular velocity. The model is closed by the following constants and relationships:

A0 = 4.0, As =
√

6 cosφs ,

φs = 1
3 cos−1(

√
6W) ,

W = s̄ij s̄jks̄ki√
s̄ij s̄ij

3 ,

C2 = 1.9, σk = 1.0, σϵ = 1.2.

3.2.6 Boundary conditions

To better understand the implementation of the boundary conditions for the hybrid
full-order/reduced-order approach described in Sections 5.3 and 5.3.2, it is worth noting
how OpenFOAM® handles the prescription of Dirichlet and Neumann conditions on the
boundary.

Dirichlet boundary conditions are equivalent to fix the value on the boundary for
the given variable y. For convective terms, the prescribed value on the boundary face,
namely yb, is directly substituted into the discretization; alternatively, the face value is
used together with the cell centre value in the computation of the face gradient (∇y)b,
through the relation

sf · (∇y)b = sf
yb − yP
|dn|

,

where dn is the outward pointing normal vector between the cell centre P and the
boundary face, as shown in Figure 3.3 for a generic control volume. Such vector can be

33

Full-Order Modelling

Fig. 3.3 Discretization parameters for a control volume of centre P with a boundary face b.
The dn vector is orthogonal to b.

easily computed as
dn = sf

|sf |
d · sf
|sf |

and its definition is required in order to take into account the non-orthogonality of the
mesh.

Neumann boundary conditions, instead, require to specify the component of the
gradient normal to the boundary face, i.e.(

sf
|sf |
· ∇y

)
b

= gb.

For diffusion terms, gb can be directly prescribed through the relation sf · (∇y)b = |sf |gb;
whereas for convection terms the face value yb is derived from the prescribed gradient as
yb = yP + |dn|gb.

From these two main types of numerical boundary conditions, it is possible to
straightforwardly derive different types of physical boundary conditions, such as inlet,
outlet and no-slip impermeable wall.

For incompressible flows, due to numerical reasons, the inflow is usually modelled by
imposing a fixed velocity and a gradient condition for the pressure, whereas the opposite
is recommended for the outflow. At turbulent inlets, turbulent quantities are defined
through the specification of the turbulent length scale l and intensity I:

k = 3
2(UrefI), ϵ = C

3
4
µ k

3
2

l
, ν̃ = C

1
4
µ

√
3
2(UreflI).

Both slip and non-slip boundary conditions for solid walls are obtained imposing
a null pressure normal gradient and the desired wall velocity. In terms of turbulence,

34

3.2 Numerical tools

the realisable k − ϵ model is a high-Reynolds model and requires near-wall treatment,
while the Spalart-Allmaras can be used as a low-Reynolds model to solve the boundary
layer up to the viscous sublayer, introducing a first cell such that y+ ≈ 1 and imposing
ν̃ = νt = 0 at the wall. However, a uniform boundary layer mesh respecting this condition
is usually difficult to attain for complex industrial geometries. If this this requirement is
not satisfied, the resulting wall shear-stress will not be accurate.

In order to restore a physically correct solution, wall functions are usually employed
for both methods to set an adequate value of the eddy viscosity at the wall, valid when
the first cell centre is in the logarithmic area. For the Spalart-Allmaras model, we use the
nutUSpaldinfWallFuntion available in OpenFOAM®, that implements the Spalding’s
blended law (Spalding (1961)):

y+ = u+ + 1
E

[
exp

(
ku+

)
− 1− ku+ − 1

2
(
ku+

)2
− 1

6
(
ku+

)3
]
. (3.19)

By definition, the curve fits u+ = y+ in the viscous layer and u+ = Ey+/k in the
logarithmic area, but its slope is always continuous even in the buffer layer (5 < y+ < 30).
As a consequence, its usage is recommended when the position of the first cell centre is
not known a priori. As shown in Liu (2016), the corrected turbulent viscosity value is
recovered by

νt = (uτ)2

|∂uwall
∂n
|
− ν

where the friction velocity uτ is computed through an iterative Newton-Raphton method.
After substituting y+ = yuτ/ν and u+ = u/uτ in Equation (3.19), the Spalding’s law
becomes:

−yuτ
ν

+ u

uτ
+ + 1

E

[
exp

(
k
u

uτ

)
− 1− k u

uτ
− 1

2

(
u

uτ

)2
− 1

6

(
u

uτ

)3
]

= 0,

which is solved in each near-wall cell.

The realisable k− ϵ model, instead, requires the introduction of wall functions also for
the turbulent kinetic energy and dissipation rate. For k, we impose the kqRWallFunction,
which provides a pure zero-gradient boundary condition, whereas for ϵ we use the
epsilonWallFunction, that calculates the cell centre value as a weighted sum of the
face values:

ϵ = 1
W

∑
f

Wf

(
C3/4
µ k3/2

kyf

)
.

35

Full-Order Modelling

For turbulent viscosity, a condition based on the turbulent kinetic energy, namely
nutkWallFunction, is recommended. This condition operates in the following way:

νt = ν

(
ky+

ln(Ey+) − 1
)

if y+ > y+
lam ,

νt = 0 if y+ ≤ y+
lam ,

with y+
lam the limit between the linear laminar part and the logarithmic layer.

36

Chapter 4

Benchmark Case

In this chapter we introduce the simplified test case that will be employed later on to
assess the numerical properties of the proposed approaches.

4.1 2DCAR: flow past a 2D car profile

This test case involves the study of the incompressible flow around a 2-dimensional car
profile, given by the mid-section of the DrivAer1 car model with fastback body style (see
Section 8.1 for further details), referred to as the 2DCAR benchmark in the following.

4.1.1 Problem specification

The geometry of the problem is shown in Figure 4.1. The solution domain is a L×H
box with L = 50 m and H = 12 m. The car is moving at a reference speed U∞ = 16 m/s
and the reference system is assumed vehicle-fixed: therefore, we have an inflow velocity
condition of u = (U∞, 0) and the ground moves in the x-direction with the same reference
speed. In terms of physical properties, such as air density and viscosity, we refer to the
standard atmosphere model at 15 ◦C. With this setup, the Re number of the simulations,
defined in terms of the free-stream velocity U∞ and the car profile length lref = 4.61 m, is
set equal to 4.87 · 106, that is a realistic value for automotive applications with turbulent
flows. For the definition of turbulent quantities, we assume that the inlet turbulence is

1http://www.drivaer.com

37

http://www.drivaer.com

Benchmark Case

L

Hu

u
x

z

Fig. 4.1 Geometry of the 2DCAR benchmark.

isotropic and characterized by fluctuations of 0.005U∞ , with a turbulent length scale of
10 cm.

In terms of boundary conditions, with reference to Figure 4.1, we have:

• inflow conditions with fixed velocity and turbulence in inlet;

• no-slip walls on the car;

• slip wall on the ground;

• outflow with fixed pressure in outlet;

• symmetry on the roof.

The solution domain is discretized by a hex-dominant polyhedral mesh of 93388 cell,
generated through the snappyHexMesh utility supplied with OpenFOAM®. A prismatic
layer is created starting from the solid walls of both the car model and the ground, in
order to assure a good resolution of the physical boundary layer, with a target y+ of 40.

The solution is obtained through the resolution of the steady RANS equations on
the computational domain, employing the Spalart-Allmaras turbulence model described
in Section 3.2.5, with wall functions for near-wall treatment, as common practice for
automotive applications.

In order to assess the accuracy of the proposed methodologies on some output of
interest, we introduce the definition of the aerodynamic drag and lift coefficients

Cx =
∫
S (−pn + τ) · ex ∂S

1
2ρU

2
∞lf

, Cz =
∫
S (−pn + τ) · ez ∂S

1
2ρU

2
∞lf

38

4.1 2DCAR: flow past a 2D car profile

Fig. 4.2 Mesh morphing of the 2DCAR model: original (left) and deformed (right) configurations
with corresponding lattices of control points. The red points are the ones allowed to move.

xcp zcp
lower bound -0.18 -0.3
upper bound 0.18 0.3

Table 4.1 Limits of the parameter space.

resulting from the integration of the pressure and shear-stresses over the car profile. n is
the outward-pointing unit vector normal to the profile, whereas ex and ez denote the
unit vectors in the x and z directions, respectively. Both coefficients are adimensionalised
with the reference dynamic pressure, i.e. 1

2ρU
2
∞, and a characteristic length lf, that in

this case corresponds to the maximum thickness of the profile, equal to 1.21 m.

4.1.2 Parameterization

In this test case, we consider a simple geometry parameterization of the car front bumper,
obtained through FFD-based mesh morphing technique and realised with the PyGem
library. The deformation is controlled by a lattice of 6 × 4 control points, wrapped
around the frontal region of the model. In order to guarantee a smooth transition
between the deformable and fixed regions of the mesh, most of the points are fixed, apart
from the three points highlighted in Figure 4.2, that are allowed to move in the x-z
plane, resulting in the extension and compression of the bumper in the same directions.
The same displacement is applied to the three control points: therefore, we have a
2-dimensional vector of parameters µ = (xcp, zcp), where xcp denotes the displacement in
the x−direction and zcp the one along z. The limits of the parameter space, normalised
with respect to the x and z extensions of the lattice, are listed in Table 4.1.

39

Benchmark Case

40

Chapter 5

Reduced-Order Modelling

Part of the work described in this chapter has been previously submitted for publication
in Salmoiraghi et al. (2018) and Bergmann et al. (2018).

In this chapter we present the main techniques employed to derive a robust and
efficient reduced-order model to be used as surrogate model during the optimization. In
Section 5.1 the POD method is introduced, as well as its applications to model order
reduction. Particular stress is placed on the state-of-the-art of reduced-order models for
turbulent, large-scale, aerodynamic problems. Then, in Section 5.3 we described a hybrid
full-order/reduced-order model based on domain-decomposition.

5.1 Proper Orthogonal Decomposition

The POD is a method that allows the computation of a low-dimensional representation
of a high-dimensional state. It provides an optimally ordered, orthonormal basis starting
from a set of empirical observations, e.g. experimental or computational data. It was
first introduced by Lumley (1967) in the framework of fluid mechanics, as a method
to identify coherent structures in turbulent flows, loosely defined as those regions of
concentrated vorticity, characterised by a specific organization, scale and appreciable
lifetime.

The same technique was developed independently in other fields, such as stochastic
process modelling and statistical analysis, and it is also known as Karhunen-Loève
expansions or decomposition (Kosambi (1943), Karhunen (1946), Loéve (1955)), Principal
Component Analysis (Jolliffe (1986)) or Hotelling Analysis (Hotelling (1933)) and Singular

41

Reduced-Order Modelling

Value Decomposition (see for instance Golub and Van Loan (2013)). Beside from fluid
mechanics, the method has been used in different applications, such as data compression,
image processing, signal analysis and optimal control. A comprehensive description and
review of the POD can be found for example in Aubry (1991), Berkooz et al. (1993),
Holmes et al. (1996), Cordier and Bergmann (2003), Benner et al. (2015) and Chinesta
et al. (2017).

As already stated, the fundamental idea behind the method is rather simple. Following
the general context of approximation theory, we introduce the POD method directly in
terms of its relationship with the SVD, focusing on its application to discretized flow
solutions: analogous considerations, however, hold also for time-dependent problems. Let
us consider a set of N snapshots y1,y2, . . . ,yN where each yj = y(µj) ∈ Rn represents
a steady flow solution computed for a given parameter value. Such snapshots can be
arranged into a rectangular, real-valued matrix Y ∈ Rn×N with rank r ≤ min{n,N},
containing the yj snapshot as its jth column.

The SVD of Y can then be written as:

Y = ΨΣΦ⊤ (5.1)

where the columns of the matrices Ψ ∈ Rn×N and Φ ∈ RN×N , namely ψi and φi, are
respectively the left and right singular vectors of Y, whereas Σ = diag(σ1, σ2, . . . , σr) is
the N ×N diagonal matrix containing the singular values of Y in decreasing order, also
named POD singular values, i.e. σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. The vectors ψi and φi satisfy
Y ⊤ψi = σiφi and Y φi = σiψi for i = 1, ..., r, and represent the eigenvectors of Y Y ⊤

and Y ⊤Y , respectively, with positive eigenvalues λi = σ2
i .

Equation (5.1) can be rewritten in the form

Y = ΨrBr with Br = ΣrΦ⊤
r (5.2)

where the subscript r means that the columns corresponding to zero singular values are
discarded from the matrices. Thus, it is possible to express the columns yj in terms of
the r linearly independent columns ψi of Ψr, with the coefficients of the linear expansion
given by the columns of Br. Exploiting Ψ orthogonality, it follows that (see for instance
Volkwein (2013)):

yj =
r∑
i=1
⟨yj,ψi⟩Rn ψi for j = 1, . . . , N

where ⟨·, ·⟩Rn denotes the Euclidean inner product in Rn.

42

5.1 Proper Orthogonal Decomposition

Starting from this first remark, we now discuss the relationship between POD and
SVD, referring to Volkwein (2013) for the mathematical demonstrations. In terms of
POD, one of the main objectives is to provide an efficient representation of the data in
Y , by expressing the relevant information through a limited number Mr ≤ r of basis
vectors. We can therefore define the POD basis as the solution, for any Mr ∈ {1, . . . , r},
of problem :

max
∼
ψ1,··· ,

∼
ψMr∈Rn

N∑
j=1

Mr∑
i=1

∣∣∣∣⟨yj, ∼
ψi⟩Rn

∣∣∣∣2 s.t. ⟨
∼
ψi,

∼
ψj⟩Rn = δij for 1 ≤ i, j ≤Mr . (5.3)

Problem (5.3) is an equality-constrained optimization problem, that is equivalent to find
the stationary points of the Lagrangian

L(
∼
ψ1, . . .

∼
ψMr

,Λ) =
N∑
j=1

Mr∑
i=1

∣∣∣∣⟨yj, ∼
ψi⟩Rn

∣∣∣∣2 +
Mr∑
i,j=1

Λij

(
δij − ⟨

∼
ψi,

∼
ψj⟩Rn

)
,

for
∼
ψ1, ...,

∼
ψM−r ∈ Rn and Λ ∈ RMr×Mr , with elements Λij, 1 ≤ i, j ≤ Mr. Thus, the

first-order necessary conditions for optimality are given by

∇ψ̃kL(
∼
ψ1, . . .

∼
ψMr

,Λ) = 0 , 1 ≤ k ≤Mr. (5.4)

From (5.4) it follows that

N∑
j=1
⟨yj,

∼
ψk⟩Rnyj = 1

2

Mr∑
i=1

(Λik + Λki)
∼
ψi , 1 ≤ k ≤Mr,

or, equivalently,

YY⊤ ∼
ψk = 1

2

Mr∑
i=1

(Λik + Λki)
∼
ψi , 1 ≤ k ≤Mr. (5.5)

Starting from Mr = 1 and proceeding by induction, it possible to verify that the conditions
found in (5.5) yields to the symmetric n× n eigenvalue problem

YY⊤ ∼
ψi = λi

∼
ψi , (5.6)

of which we consider only the solutions for i = 1, ..,Mr. Note that λi = Λii, whereas
Λik = −Λki for i ̸= k.

43

Reduced-Order Modelling

From the SVD of Y , it follows that the singular vectors ψi solve Equation (5.6).
Moreover, the terms ψi are a solution to Problem (5.3), whose maximum value is given
by ∑Mr

i=1 σ
2
i = ∑Mr

i=1 λi (Volkwein (2013)).

Solving the eigenvalue problem associated with the spatial correlation matrix, YY⊤,
or evaluating the SVD of Y is usually very expensive when n is large. To overcome
such difficulty, if N ≪ n, it is more convenient to compute the POD basis through the
so-called Method of snapshots proposed by Sirovich (1987), by solving the equivalent
eigenvalue problem

Y⊤Yφi = λiφi for i = 1, . . . ,Mr (5.7)

and setting
ψi = 1√

λi
Yφi. (5.8)

The N × N eigenproblem associated with the parameter correlation matrix, Y⊤Y, is
then easier to deal with. Nevertheless, it is worth noting that for badly conditioned Y
matrices, the correlation matrix would be worse conditioned than the original: in this
eventuality, the SVD approach is more reliable to compute the information associated
with small eigenvalues (Demmel (1997)).

To sum up, the following technical result holds.

Theorem 5.1. Given the matrix Y = [y1, ...yN] ∈ Rn×N with rank d ≤ min{n,N}, and
let Y = ΨΣΦ⊤ being its SVD decomposition, then, for any Mr ∈ {1, ..., d}, the singular
vectors ψi are solutions to Problem (5.3), whose arg max is given by ∑Mr

i=1 σ
2
i = ∑Mr

i=1 λi .

In the following sections, we further discuss some relevant properties of the POD
method.

5.1.1 Properties of the POD basis

Assuming that all the hypothesis of Theorem 5.1 are satisfied, it can be shown that the
first Mr POD modes capture more energy, in an average sense, than any other Mr-rank
approximation of Y. In order to prove such optimality property of the POD basis, we
start by demonstrating that the POD coefficients are mutually uncorrelated and their
mean square value corresponds to the eigenvalue itself (Volkwein (2013)).

44

5.1 Proper Orthogonal Decomposition

Corollary 5.1 (Uncorrelated POD coefficients). Let all the hypotheses of Theorem 5.1
hold. Then

N∑
j=1
⟨yj,ψi⟩Rn⟨yj,ψk⟩Rn = λiδik for 1 ≤ i, k ≤Mr .

Proof. Exploiting the orthonormality of the POD modes, from (5.6) it follows that:

N∑
j=1
⟨yj,ψi⟩Rn⟨yj,ψk⟩Rn =

〈
N∑
j=1
⟨yj,ψi⟩Rnyj︸ ︷︷ ︸

YY⊤ψi

,ψk

〉
Rn

= ⟨σ2
iψi,ψk⟩ = λjδjk

for 1 ≤ i, k ≤Mr.

The notion of optimality of the POD method is then assessed in the following corollary.

Corollary 5.2 (Optimality of the POD basis). Let all the hypotheses of Theorem 5.1
hold and let

yj =
Mr∑
i=1
⟨yj,ψi⟩Rnψi

be the decomposition of the jth column of Y with respect to the POD basis. If

yj =
Mr∑
i=1
⟨yj,ϕi⟩Rnϕi

denotes the approximation of yj with respect to an arbitrary orthonormal basis, then, for
every choice of Mr, it holds:

Mr∑
i=1

N∑
j=1
|⟨yj,ψk⟩Rn|2 =

Mr∑
i=1

λi ≥
Mr∑
i=1

N∑
j=1
|⟨yj,ϕk⟩Rn|2 (5.9)

Proof. The equality in (5.9) is easily verified from the proof of Corollary 5.1, whereas
the inequality follows from Theorem 5.1.

It is worth noting that the optimality condition also implies that (see Volkwein (2013))

N∑
i=1

∥∥∥∥∥yj −
Mr∑
i=k
⟨yj,ψk⟩Rnψk

∥∥∥∥∥
2

Rn
≤

N∑
i=1

∥∥∥∥∥yj −
Mr∑
i=k
⟨yj,ϕk⟩Rnϕk

∥∥∥∥∥
2

Rn
,

45

Reduced-Order Modelling

i.e. the POD basis minimizes the least-squares error of the snapshot reconstruction.
Therefore, it can also be determined by solving the equivalent of Problem (5.3), that is

min
∼
ψ1,··· ,

∼
ψMr∈Rn

N∑
i=1

∥∥∥∥∥yj −
Mr∑
i=k
⟨yj,

∼
ψk⟩Rn

∼
ψk

∥∥∥∥∥
2

Rn
s.t. ⟨

∼
ψi,

∼
ψj⟩Rn = δij for 1 ≤ i, j ≤Mr ,

(5.10)
whose minimum value is given by ∑N

i=Mr+1 σ
2
i = ∑N

i=Mr+1 λi.

The POD is then the most efficient among all linear decompositions, in the sense
that, given a certain Mr, the projection on the subspace spanned by the Mr leading
eigenfunctions will have the greatest possible energy content. In view of model order
reduction, this aspect suggests that the number of modes necessary to described the
solution space is indeed quite small. Therefore, the choice of Mr represents a critical
task in the tuning of any POD-based ROM. A long-established approach (Cordier and
Bergmann (2003)) exploits the notion that the λi eigenvalues permit to estimate the
energy contribution of each mode to the reconstruction of the snapshots. The so-called
Relative Information Content (RIC) indicator for a basis of size Mr, is then defined as

RIC(Mr) =
∑Mr
i=1 λi∑N
i=1 λi

, with 0 < Mr ≤ N ,

whose denominator represents the total information content of the snapshots. Assuming
that the eigenvalues are ordered in decreasing values, the POD basis size is chosen by
truncating the expansion after the first Mr terms that satisfy the condition RIC(Mr) ≥ τE,
where τE represents a predefined percentage of energy, e.g. 99.9% or greater.

From Equation (5.8) it is also clear that the POD basis space is a linear combination of
the solution space spanned by empirical observations, i.e. the snapshots. Thus, the POD
modes inherit all the linear properties of the original realizations. For incompressible flows,
for example, if we built the basis starting from a set of velocity fields uj, the resulting
eigenmodes will be divergence free, since the velocity field is solenoidal. Moreover, the
modes verifies the boundary conditions of the flow realizations.

In this framework, it is often common practice to introduce a forcing field in the POD
projection operator

ΠPOD(y) := ȳ +
Mr∑
i=1

αiψi with αi = ⟨y− ȳ,ψi⟩Rn (5.11)

46

5.1 Proper Orthogonal Decomposition

and set this additional term equal to the average field among the flow realizations, i.e.
ȳ = 1

N

∑N
j=1 yj. This is useful for example in external aerodynamic problems, where

the average velocity field fixes the far-field velocity: in this way, all the corresponding
modes will tend to zero in the far-field. As a consequence the smallest POD eigenvalue is
equal to zero and its corresponding mode should be omitted, setting Mr ≤ N − 1. In the
applications of interest for this work, all the POD bases will be defined introducing this
forcing term.

5.1.2 Weighted inner product

So far, we have described the POD method in the context of the standard L2 inner
product. In fluid dynamics, this is usually the natural choice, since it corresponds
to optimality in the sense of the flow kinetic energy. However, for some applications,
employing different definitions, such as the H1 inner product, could be beneficial for the
robustness of the ROM, as hinted in Iollo et al. (2000).

Since our problems are often defined on unstructured computational grids, it is natural
for us to write the discrete L2 inner product as a weighted inner product in the form

⟨ψ, ψ̃⟩W = ψ⊤Wψ̃ for ψ, ψ̃ ∈ Rn,

where W ∈ Rn×n is a symmetric, positive definite matrix, whose principal diagonal
contains the cell volumes. The associated induced norm is then ∥ψ∥W =

√
⟨ψ,ψ⟩W .

Following the same steps as above, the optimality condition yields the generalised
eigenvalue problem

(WY)(WY)⊤ψi = λiWψi for i = 1, ...,Mr. (5.12)

Given that W is symmetric and positive definite, we can multiply (5.12) by W− 1
2 from

the left, obtaining the eigenproblem

ŶŶ⊤ψ̂i = λiψ̂i for i = 1, ...,Mr

with Ŷ = W
1
2 Y and ψ̂i = W

1
2ψi, or equivalently

Y⊤WYφ̂i = λiφ̂i for i = 1, ...,Mr.

47

Reduced-Order Modelling

Clearly, the resulting eigenmodes ψ̂i = 1√
λi

Ŷφ̂i, are now orthonormal with respect to
the weighted inner product, whereas

⟨ψi,ψj⟩W = ψ⊤
i Wψj = λj√

λiλj
δij for 1 ≤ i, j ≤Mr.

5.2 POD-based reduced models

As in classical model reduction strategies, POD-based ROMs usually follow the offline-
online paradigm. The general idea is to decompose the method in two phases. During
the offline stage, first a database of solution snapshots is generated through expensive
full-order simulations, in order to compute the POD basis following the approaches
described in Section 5.1. Next, the dimensionality and complexity of the problem are
reduced by projecting the full model onto the subspace spanned by the POD modes
and introducing other approximations, such as interpolation, to efficiently represent
non-linearities and parameter dependence. In the online phase, instead, the ROM is used
to obtain rapid responses varying the parameters of interest.

Commonly used POD-based reduction strategies in fluid dynamics include POD-
Galerkin and POD with interpolation (PODI). The first method relies on the Galerkin-
projection of the NSE onto the POD modes, in order to built a low order approximation
of the equations (see Section 5.2.1). The resulting model shows a strong reduction with
respect to the original one, and can be used for flow estimation and optimal control.
However, the ability of the ROM to perform predictive simulations is generally affected by
stability and robustness issues, that make the approach quite intrusive and dependent on
the application and flow features. Moreover, a very fine sampling of the parameter space is
usually required to obtain accurate results. PODI, instead, is based on the simple idea that
if the POD expansion coefficients are smooth functions of the parameters, interpolation
methods can be used to determine the values corresponding to snapshots not included in
the original ensemble (see Section 5.2.2). This simple strategy allows us to significantly
reduce the computation time without any concern in terms of stability, but, again,
out-of-sample accuracy can be attained only with an adequately large initial database
of simulations. Another possibility, mostly used in aeronautic applications, consists in
restricting the standard full-order solver to the reduced POD space and achieving model
reduction by residual minimization, replacing the fluid dynamics governing equation
with a least-squares optimization problem (see Section 5.2.3). This method has a limited
impact on canonical CFD solvers and usually leads to more accurate results than PODI,

48

5.2 POD-based reduced models

but at a higher computational cost. However, all these POD-based methods suffer from
the fact that the POD basis is a linear combination of the solution space, trying to
represent non-linear phenomena.

To overcome some of these difficulties, it is possible to exploit a hybrid full-order/reduced-
order method, namely the zonal-POD approach, that will be thoroughly discussed in
Section 5.3 and following. The method is based on a Schwarz-type domain decomposition
method, and guarantees a moderate reduction with respect to standard ROMs: neverthe-
less, thanks to the full-order feedback, it has been proven to be stable and robust, with a
good prediction accuracy even with a coarse initial sampling of the parameter space.

In order to compare the ROMs outlined in the coming sections, we take into consider-
ation six main criteria, that will be addressed in the following sections:

• online reduction, i.e. the computation speed-up observed during the online phase,
defined as the ratio between the cost of a FOM evaluation over a ROM evaluation,
both expressed in computational time: cputFOM/cputROM;

• offline cost, i.e. the overall cost of the offline phase, evaluated as NFOM×cputFOM,
where NFOM indicates the number of FOM evaluations required in order to train
the underlying POD model. Such aspect is often not discussed in model reduction
literature, but it cannot be overlooked in an industrial context and in particular
for optimization problems: if the offline cost is comparable with the cost of a
standard optimization loop (without model reduction), it is not clear why we
should introduce an additional layer of complexity given by the ROM;

• range of applicability of the reduction strategy to problems characterised by dif-
ferent parameterization, flow regimes, properties and conditions, without significant
modifications;

• intrusiveness, in terms of numerical implementation. Generally speaking, non-
intrusive methods do not rely on the discretization of the FOM: hence, they do not
require substantial rewriting of the numerical schemes and are easy to implement
even when the source code is not available. This aspect is particularly relevant
when commercial codes are employed, as frequently happens in industry;

• stability of the numerical model, in the sense that approximation errors in the
calculation are not magnified, resulting in the simulation to explode;

49

Reduced-Order Modelling

• robustness, or rather the ability of the model to perform predictive simulations
even when its tuning is not optimal, without producing extremely different results
for small changes in its setup.

5.2.1 POD-Galerkin

The POD-Galerkin method permits to reduce the NSE to a low-dimensional system of
ordinary differential equations (ODEs), through Galerkin projection. In general, the
model is derived for time-varying problems, by replacing the u expansion (from Equation
5.11) into the NSE and applying a Galerkin projection of the resulting system onto the
subspace spanned by the POD modes. If we consider for instance the incompressible
NSE, we obtain the following dynamic system:

dαj(µ, t)
dt

= Aj +
Mr∑
i=1

Cijαi(µ, t)−
Mr∑
i=1

Mr∑
k=1

Bikjαi(µ, t)αk(µ, t)−Dj ,

αj(µ, 0) = ⟨u(µ, 0),ϕj⟩Ω

for j = 1, . . . ,Mr, where

Aj = −⟨(ū · ∇) ū,ϕj⟩Ω + ν⟨∆ū,ϕj⟩Ω
Bikj = ⟨(ϕi · ∇)ϕk,ϕj⟩Ω
Cij = −⟨(ū · ∇)ϕi,ϕj⟩Ω − ⟨(ϕi · ∇) ū,ϕj⟩Ω + ν⟨∆ϕi,ϕj⟩Ω

Dj = 1
ρ
⟨∇p,ϕj⟩Ω .

Generally speaking, this class of methods is used mainly in time-dependent flow
control problems, as in Noack et al. (2011), Weller et al. (2009a,b), Kunisch and Volkwein
(2002) and Hinze and Volkwein (2005)) but they can also be employed in PDE-constrained
optimization and in steady problems, often coupled with EIM and DEIM techniques in
order to reduce the complexity of the evaluation of the non-linear term. Similar models
are derived for RANS and LES approaches. For incompressible flows, note that since
the solution snapshots satisfy the continuity equation, also the modes, that are a linear
combination of said snapshots (as follows from Equation (5.8)), are divergence-free. This
implies that in the Galerkin projection of the pressure term,

⟨∇p,ϕj⟩Ω =
∫

Ω
∇p ·ϕjdv = −

∫
Ω
p (∇ ·ϕj) dv +

∫
∂Ω
p (ϕj · n) ds ,

50

5.2 POD-based reduced models

the only contribution is given by the surface integral. If the velocity field is almost
constant at the boundaries, the resulting POD modes are almost null and so the pressure
term can be neglected. This is generally true when the computational domain is large
enough, or for confined flows. In any other cases, additional terms or a POD basis for
the pressure need to be introduced. A review of the problem can be found for instance
in Noack et al. (2005).

One of the main issues of the POD-Galerkin method, is that it may give unstable
results, especially for flows characterized by high Re, because the stabilization effect due
to the truncation of the small scales is lost. A typical remedy to this problem consists
in the introduction of artificial dissipation terms, as in Bergmann et al. (2009), Wang
et al. (2012), Weller et al. (2010), Buffoni and Willcox (2010) and Östh et al. (2014).
Alternatively, methods based on Petrov-Galerkin projections are also employed (Giere
et al. (2015), Carlberg et al. (2011)). The main issue with such stabilization methods,
however, is that they are usually dependent on the flow features, and cannot be extended
to a general case.

The benefits and drawbacks of the method, can be outlined as follows:

• the approach is characterised by a strong online reduction, that allows us to reduce
the complexity of the computations by several order of magnitude, passing from
O(106− 107) degrees of freedom of the FOM discretization, to O(10− 102), i.e. the
coefficients of the POD expansion;

• the prediction accuracy strongly depends on the sampling used to train the under-
lying POD model and a sufficiently high number of snapshots is usually required:
as a consequence, the offline phase is extremely expensive.

• it represents an intrusive model reduction technique, since it requires to derive the
system of ODE for the application of interest;

• to assure stability, problem-dependent stabilisation terms need to be introduced,
further limiting the range of applicability of the method;

• in terms of robustness, it is difficult to perform predictive simulations when the
model setup is not optimal.

POD-Galerkin methods usually show reasonable accuracy and are widely studied in
literature, even in turbulent flows; nevertheless, the intrusiveness of the approach, coupled
with stability and robustness issues, made its application to industrial problems arduous.

51

Reduced-Order Modelling

5.2.2 PODI

POD with interpolation was first introduce in the work of Bui-Thanh (2003) and it
has been recently used in aerodynamic and automotive applications, as in Dolci and
Arina (2016) and Salmoiraghi et al. (2018), with good results. As hinted before, the
rationale behind the PODI methods regards the evaluation of the POD coefficients for
out-of-sample configurations by interpolation. As seen in Section 5.1, each database
snapshot yj = y(µi) ∈ RN can be expanded as

yj =
Mr∑
i=1

αijψi ,

where the parameter dependence is limited to the projection coefficients αij = ⟨yj,ψi⟩Rn .
Note that the same considerations hold if we consider a forcing field in the POD projection
operator. By construction the αij are discrete functions of the µj points of the parameter
space, but they can be transformed into continuous functions αi in order to perform
predictions, assuming a smooth dependence of the coefficients on the parameters. Thus,
in any generic parameter point, the corresponding solution can be approximated by

y⋆(µ) =
Mr∑
i=1

αi(µ)ψi .

Clearly, the approximation error is guaranteed to be null only in the points µi ∈ Ξ,
where y(µj) = y⋆(µj). The accuracy on the prediction for out-of-sample configuration,
instead, is determined by both the distribution and the number of the yj solutions,
as well as by the interpolant employed, unless a fine sampling is provided. For one-
dimensional problems, linear or spline interpolation is generally used (Bui-Thanh et al.
(2003)), whereas response surfaces are adopted in the multidimensional case. Rather than
regression techniques, that tend to introduce an undesirable smoothing of the data, e.g.
in order to filter numerical or experimental noise, multivariate interpolation seems to be
preferable, since it guarantees the fitting of the data, and therefore the consistency of the
method for in-sample points. A few examples of application, exploiting both least-square
regression and radial basis functions are reported in Dolci and Arina (2016), whereas
in Salmoiraghi et al. (2018) a natural neighbour interpolation based on the Voronoi
tessellation of the database points is used in an industrial framework.

The strengths of the PODI strategy can be summarised in terms of its non-intrusiveness
and ease to use, making it suitable for large-scale industrial applications and turbulent
flows. More specifically:

52

5.2 POD-based reduced models

• the method does not rely neither on the chosen numerical discretization, nor on
the flow features, and it can be straightforwardly employed in a broad class of fluid
dynamic problems;

• the associated reduction is remarkable during the online stage (O(106− 107)), since
the interpolation time is negligible and the reconstruction step has a small cost
compared to the full-order simulation, enabling the real-time processing of the flow
variables;

• convergence or stability are not an issue;

• a parameterization is required, in order to perform the interpolation, but its features
are not relevant.

On the other hand, the out-of-sample performance of the method strongly depends on
the sampling of the parameter space: a coarse or not significant initial sampling will
likely lead to inaccurate results. In order to increase robustness, an extensive offline
phase is required to train the POD model.

5.2.3 POD with residual minimization

The idea behind this method was first proposed by LeGresley and Alonso (2000) in
the framework of airfoil design. Recent applications for compressible flows include the
works of Zimmermann and Görtz (2010), Zimmermann and Görtz (2012) and Amsallem
et al. (2013). In this strategy, the coefficients of the POD-expansion are determined by
minimizing, in the least-squares sense, the associated CFD residual, which is evaluated
through the standard full-order solver. By introducing the POD representation of an
out-of-sample solution snapshots, i.e. y⋆(α) = ∑Mr

i=1 α(µ)ψi, the problem reduces to solve

min
α
∥r (α) ∥2

L2 ,

where r denotes the residuals.

In terms of robustness, it appears that the performance of the method strongly
depends on the definition of such residual, as stressed in Amsallem et al. (2013) for
unsteady CFD applications. In addition, also in this approach the snapshots sampling
represents a crucial aspect in the ROM construction, that usually requires O(10− 102)
full-order solutions, depending on the complexity of the problem.

Among the benefits of the method, it is worth citing the following ones:

53

Reduced-Order Modelling

• the impact on the full-order solver is very limited, and therefore it represents a
non-intrusive tool for model order reduction;

• with respect to PODI, the POD coefficients corresponding to the snapshots used
in the model construction are not used during the evaluation of the coefficients
for out-of-sample configurations: as a consequence, the method is more suited for
extrapolation than interpolation-based approaches;

• the features of the underlying parameterization are not relevant;

• it is potentially suited for a wide range of applications, since it does not depend
neither on the numerical discretization nor on the flow characteristics, although
particular attention must be placed on the residuals definition.

In terms of reduction of the computational cost, the method shows a moderate gain
in the online phase (O(10− 102)), but such performance may be improved when coupled
with other techniques, such as Missing Point Estimation (MPE) and DEIM. In fact,
as in POD-Galerkin methods, the evaluation of the non-linear residual may require
the introduction of additional techniques in order to achieve any speed-up. Despite
showing promising results for unsteady, compressible, aerodynamic problems, there are
no examples in literature of its application to incompressible turbulent flows, to the best
of the authors’ knowledge.

5.3 Zonal-POD

As mentioned in the previous section, POD-based ROMs generally suffer from the fact
that the basis space is a linear combination of the solution space spanned by the snapshots:
this means that the model is not capable to represent non-linear phenomenology, unless
a sufficient rich database is provided, as happens in standard POD-Galerkin and PODI
methods. In order to overcome such difficulties, a hybrid full-order/reduced-order method,
also knows as zonal-POD, can be used. The main idea behind this hybrid approach, first
proposed by Buffoni et al. (2009), is to split the domain of interest in two subdomains
and to use a different approximation method in each region. More specifically, the
full-order model is employed where the effects of non-linearities and geometry variations
are predominant, whereas linear and weakly non-linear phenomenology is addressed by
the reduced-model. The low-dimensional modal representation of the snapshot data is
computed offline, using the POD method introduced in Section 5.1. During the online

54

5.3 Zonal-POD

phase, instead, the two models are coupled through a Schwarz-type domain decomposition
method in order to perform predictive simulations for new values of the parameter µ.

A similar notion can be found in Lucia et al. (2003), where POD is coupled with
domain decomposition for the first time, in the analysis of 2-dimensional high-speed flow
fields with moving shock waves. In such zonal approach, the region interested by the
shock wave is described through the FOM or an accurate ROM, whereas in the majority
of the domain a less accurate ROM is used, with satisfactory results. In LeGresley and
Alonso (2003), the same concept is instead applied to derive an a posteriori correction of
the original POD approximation.

A detailed description of the method is provided in the following, whereas the
algorithm convergence is addressed in Section 5.3.4

5.3.1 Schwarz-POD iterative algorithm

With reference to the Navier-Stokes problem introduced in Section 1.1 (Problem (1.2)),
we decompose the initial domain into two regions, Ω1(µ) and Ω2, by exploiting this
rationale: the former domain, Ω1(µ), is such that its boundary ∂Ω1(µ) contains the
portion of ∂Ω(µ) depending on µ, whereas the latter, Ω2, is not dependent on the
parameter. Furthermore, we assume that:

Ω(µ) = Ω1(µ) ∪ Ω2, Ω0 := Ω1(µ) ∩ Ω2 ̸= ∅

where the non-empty set Ω0 represents the overlapping region shared by both subdomains,
as sketched in Figure 5.1. Its boundary Γ := ∂Ω0 can be split into

Γ1 := Γ ∩ Ω2, Γ2 := Γ ∩ Ω1(µ), Γ0 := ∂Ω0\(Γ1 ∪ Γ2) ⊂ ∂Ω(µ)

where the internal boundary Γ1 is assumed to be independent on µ. Γ0, instead, is a
subset of the original boundary ∂Ω(µ).

The classical Schwarz’ method (see for instance Quarteroni and Valli (1999) or Mathew
(2008)) defines a sequence for k ≥ 1:

(u1, p1)(1) 7→ (u2, p2)(1) 7→ · · · 7→ (u1, p1)(k) 7→ (u2, p2)(k) 7→ · · · (5.13)

where each (ui, pi)(k) for i = 1, 2 is an approximation of the exact solution restricted to
the respective subdomain, i.e. (u, p)|Ωi , at the kth iteration of the algorithm.

55

Reduced-Order Modelling

Ω2

µ

Ω1(µ)

(a) Ω1 (light blue), Ω2(µ) (white) and Ω0 (diagonal pattern).

Γ0

Γ0

Γ0

Γ2

Γ1

(b) Detail of boundaries.

Fig. 5.1 Example of domain decomposition in the framework of the zonal-POD approach.

In the following we describe how each stage of Sequence (5.13) is realized, in the
framework of the Schwarz-POD iterative method.

Stage 1 (u2, p2) 7→ (u1, p1). Given (u2, p2) in Ω2, consider its restriction to Γ1. We
define (u1, p1) as the solution of Problem (1.2) restricted to the Ω1(µ) domain:

NS(u1, p1) = 0 in Ω1(µ) ,
B(u1, p1) = 0 on ∂Ω1(µ) ∩ ∂Ω(µ) ,
C(u1, p1) = C(u1, p1) on Γ1 ,

(5.14)

where C(u, p) = g denotes an admissible boundary condition on Γ1 for the NSE, e.g.
Dirichlet or Neumann boundary conditions, and the last equation represents a matching
condition between the two approximations of the solution, namely (u1, p1) and (u2, p2),
across the interface.

Stage 2 (u1, p1) 7→ (u2, p2). Given (u1, p1) in Ω1(µ), we recover (u2, p2)|Ω0 by solving
the least-squares problems

min
α

∥∥∥∥∥∥u1 − ū|Ω0 −
Mψ
r∑

i=1
αiψi|Ω0

∥∥∥∥∥∥
2

Ω0

min
β

∥∥∥∥∥∥p1 − p̄|Ω0 −
Mϕ
r∑

i=1
βiϕi|Ω0

∥∥∥∥∥∥
2

Ω0

that minimize, in the least-square sense, the distance between the full-order solution
(u1, p1) and the its POD reconstruction over Ω0. (u2, p2)|Ω0 can be easily extended to the
whole Ω2. By construction, in fact, each field is a linear combination of the snapshots

56

5.3 Zonal-POD

restricted to Ω0, thus we have:

u2 = ū|Ω2 +
Mψ
r∑

i=1
αiψi|Ω2 , p2 = p̄|Ω2 +

Mϕ
r∑

i=1
βiψi|Ω2 . (5.15)

This extension, however, is not required during the algorithm iterations, since in practice
we only need (u2, p2) on Γ1, which is a subset of ∂Ω0. If convergence is attained, i.e. if
there exist (u⋆1, p⋆1) and (u⋆2, p⋆2) such that

lim
k→∞

(u1, p1)(k) = (u⋆1, p⋆1), lim
k→∞

(u2, p2)(k) = (u⋆2, p⋆2),

the following matching condition holds:

C(u⋆1, p⋆1) = C(u⋆2, p⋆2) on Γ1 .

While (u⋆1, p⋆1) satisfies NS(u⋆1, p⋆1) = 0 in Ω1(µ), and the original problem boundary
conditions B(u⋆1, p⋆1) on Ω1(µ)\Γ1, (u⋆2, p⋆2) will not be a solution of the Navier-Stokes
problem in Ω2. This is due to the fact that the Navier-Stokes operator is nonlinear,
hence the linear combination of the solution snapshots is not, in turn, a solution, except
for special circumstances. By construction, however, (u⋆2, p⋆2) is divergence-free in Ω2.
A further investigation of the convergence properties of the Schwarz-POD algorithm is
presented in Section 5.3.4.

The iterative method is then integrated within the zonal-POD approach, whose details
are summarized in Algorithm 2. In particular, every Schwarz-POD iteration is coupled
with a step of the full-order solver, e.g. an iteration of the SIMPLE algorithm.

Algorithm 2 Zonal-POD algorithm
1: set initial boundary conditions for (u1(µ), p1(µ))(0) on ∂Ω1

2: while convergence = false do
3: evaluate (u1, p1)(k) by integrating the governing equations in Ω1(µ)
4: α← arg minα

(
∥ u1 − ū−

∑Mψ
r

i=0 αiψi ∥2
Ω0

)
5: β ← arg minβ

(
∥ p1 − p̄−

∑Mϕ
r

i=1 αiϕi ∥2
Ω0

)
6: (u2(µ), p2(µ))(k) ← α, β

7: evaluate (u2, p2)(k)
|Γ1

8: update boundary conditions for (u1, p1)(k+1) on Γ1

9: check for convergence
10: end while
11: retrieve the solution on Ω2 (if needed)

57

Reduced-Order Modelling

With respect to the original work from Buffoni et al. (2009), where the hybrid method
is applied to Laplace and Euler equations, we generalize the approach for incompressible
Navier-Stokes problems. The proposed method is straightforwardly applied to turbulent
flows by substituting the NS operator with the RANS operator: in this case, also the
turbulent variables introduced by the closure model will be represented by a separate
POD expansion.

Although this thesis is mainly developed in the framework of automotive and naval
applications, hence for incompressible flows, it is worth noting that the method may be
extended also to compressible flows, introducing the POD approximation of the additional
flow variables, i.e. density and internal energy. This generalization, even though easy in
principle, implies the definition of a new set of internal boundary conditions on Γ1, in
order to attain a well-posed mathematical problem, and may require extra care for the
presence of shock waves, that cannot be accurately described by the ROM.

5.3.2 Numerical implementation

In this section, we report the details of the OpenFOAM® implementation of the hybrid
strategy, with particular focus on the boundary conditions treatment on the fluid interface
Γ1.

Implementation of the zonal-POD method

In the simpleFoam code, we introduce the following modifications:

#include "initialize.H"
#include "createModes.H"
#include "refValues.H"

<...>
while (simple.loop())
{

// --- Pressure-velocity SIMPLE corrector
{
#include "UEqn.H"
#include "pEqn.H"
}

58

5.3 Zonal-POD

turbulence->correct();

#include "calcPODCoeffs.H"
#include "updateBoundaryField.H"

}

Before entering the solution loop, we load the POD modes, initialize the fields with ȳ and
pre-compute the minimization matrix A of the algebraic system Aα = b, with Ajk =
⟨ψj,ψk⟩Ω0 and bj = ⟨y1− ȳ,ψj⟩Ω0 , resulting from the least-square problem in Algorithm
2. At every solver iteration, instead, we compute the right-hand side b of the minimization
problem and we solve the linear system in the variables given by the coefficients of the
POD expansion (calcPODCoeffs.H); once the POD coefficients are known, the boundary
conditions on the fluid interface are updated (updateBoundaryField.H). Since the size
of the minimization problem is small (we employ O(10) POD modes), the cost of the
CFD solver iteration is not affected by this modifications, that are negligible with respect
to the resolution of the fluid dynamics. Note that the code modifications do not enter in
the equations discretization, nor alter the SIMPLE loop.

During the full-order simulation over Ω1(µ), there is no need to retrieve the POD
solution y2 over the entire Ω2 domain, but it is sufficient to evaluate its trace over
Γ1. Therefore, we extend y2 outside of the reduced domain through a dedicated post-
processing utility after the solution on Ω1 is converged.

Implementation of the boundary conditions

For physical boundaries, i.e. those in common between ∂Ω(µ) and ∂Ω1(µ), when
simulating the flow in the reduced domain we impose the same conditions defined for
the FOM. The boundary conditions on Γ1, instead, are updated at every solver iteration
solving the minimisation problem described in Section 5.3. Due to the nature of the
problem and its numerical discretization, it is not possible to use Dirichlet conditions on
all the faces belonging to the boundary Γ1.

Dirichlet or Neumann conditions are then imposed depending on the sign of the
velocity flux through the boundary faces. For inflow boundaries, we use the POD modes
to recover the velocity field and the turbulent variables, whereas we assign the pressure

59

Reduced-Order Modelling

gradient normal to the boundary. For outflows, instead, we prescribe Dirichlet conditions
for the pressure field and Neumann conditions for velocity and turbulent quantities.

A similar mechanism is already available in OpenFOAM® , implemented in two
classes of derived boundary conditions, namely inletOutlet and outletInlet. Such
classes constitute a wrapper around mixed conditions, i.e. Robin conditions, performing
a linear blend between fixed value and gradient condition through the definition of a
certain value fraction w:

yf = wyb + (1− w) (yc + |dn|gb) ,

where yf and yc represent the face and first cell values respectively, |dn| is the face-to-cell
distance and yb and gb are the prescribed reference values at the boundary. The standard
versions of inletOutlet and outletInlet boundary types, compute locally the value
fraction according to the flow flux but enforce a zero gradient condition, that it is not
physically accurate for internal interfaces as Γ1, where there is no evidence that the
gradients will be small (see for instance Figure 5.2, where we report the components of
∇p for a case of interest).

For this reason, we implement two new classes of boundary conditions, called
inletOutletFxGrad and outletInletFxGrad, in which the normal gradients on Γ1

are recovered from the gradients of the solution on Ω2. Since the expansion coefficients in
the POD projection operator (Equation (5.11)) do not depend on the spatial coordinates,
the gradient of the y2 field can be simply expressed as:

∇y2 = ∇ȳ +
Mr∑
i=1

αi∇ψi ,

where the gradients of the average field and POD modes can be conveniently pre-computed
and stored at the beginning of the iterative algorithm. Anyway, since we are interested
only in the normal gradient on the faces belonging to the interface Γ1, we need only to
compute y2 on the boundary faces and on the first internal cell and then we can evaluate
the reference gradient as (y2f − y2c)/|dn|.

In Figure 5.3 we report a comparison between two full-order simulations on the
Ω1(µ) subdomain for the 2DCAR benchmark, evaluated imposing the different classes of
boundary conditions described above. The errors are defined as |p− p⋆|Ω1(µ)/pdyn, where
pdyn denotes the reference dynamic pressure, defined as 1

2ρU
2
ref. In order to discern the

error component due only to the numerical implementation of the boundary conditions,

60

5.3 Zonal-POD

(a) Pressure gradient, x-component.

(b) Pressure gradient, z-component.

Fig. 5.2 Detail of the pressure gradient in proximity of the Γ1 interface (white line) for a FOM
snapshot of the 2DCAR benchmark.

61

Reduced-Order Modelling

(a) Mixed boundary conditions with zero gradients.

(b) Mixed boundary conditions with non-zero gradients.

Fig. 5.3 Error on the pressure field due to the different types of boundary conditions for the
2DCAR benchmark.

the zonal-POD iterative method is disabled in this context: for both simulations, the
boundary values are interpolated from the corresponding FOM solution over Ω(µ) and
kept fixed during the iterations of the SIMPLE algorithm. With respect to Figure 5.3a,
showing the error obtained with null normal gradients, the solution is more accurate
when we recover not only the variables values but also the gradients, as depicted in
Figure 5.3b.

5.3.3 Preliminary numerical results

In order to provide some insight about the performance of the zonal-POD method for high
Re turbulent flows, we now present some numerical results on the 2DCAR benchmark
introduced in Section 4.1.

62

5.3 Zonal-POD

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Z
CP

Database 2x2 Database 3x3 Database 5x5 Predictions

Fig. 5.4 2DCAR benchmark parameter space: database sampling points and prediction points.

Γ1

Fig. 5.5 Domain decomposition of the 2DCAR benchmark: Ω1(µ) (blue) coincides with Ω0.

The ability of the hybrid approach to perform predictive simulations is investigated
by testing 25 new configurations not included in the database. Such prediction points
are generated through a pseudo-random Sobol sequence and their distribution in the
parameter space is shown in Figure 5.4, along with the points belonging to the database
of snapshots. At this stage, we consider a uniform sampling of the parameter space
to generate the snapshots, and in particular three different sets of increasing size are
tested, containing N = 4, N = 9 and N = 25 points (see Figure 5.4). Clearly, a uniform
distribution is hardly an optimal choice for the parameter space exploration, and more
efficient sampling strategies needs to be introduced: this aspect will be later addressed
in Chapter 6. In addition, we assume that the domain decomposition is chosen as in
Figure 5.5. Since the 2DCAR benchmark parameterization exploits a mesh morphing
strategy, it is possible to set Ω0 = Ω1(µ). The preservation of the mesh topology, in
fact, permits to maintain a one-to-one correspondence between the grid elements of the
different configurations: this allows us to define the POD basis with respect to the cells
ordering, rather than their physical coordinates, without affecting the effectiveness of the
approach.

63

Reduced-Order Modelling

We aim at recovering the full solution in Ω(µ), by setting Ω2 = Ω(µ) and evaluating
the POD on the whole domain. The predicted drag and lift coefficients for the whole
car profile are then computed by summing the FOM contribution in Ω1(µ) and the one
given by the POD reconstruction on Ω2\Ω1(µ):

C⋆
x = C⋆

x,1 + C⋆
x,2 ,

C⋆
z = C⋆

z,1 + C⋆
z,2 .

The terms C⋆
x,1 and C⋆

x,2 are thus obtained through the integrals
∫
∂Ω1\Γ1

(−p⋆1n + τ ⋆1)·ex∂S
and

∫
∂Ω2\∂Ω1

(−p⋆2n + τ ⋆2)·ex∂S, respectively, where τ1 and τ2 represent the shear-stresses
given by the solution approximation in the corresponding region. C⋆

z,1 and C⋆
z,2 are derived

with analogous considerations. The relative importance of the contributions is shown in
Table 5.1, for the predictive simulation with µtest = (0.13568, 0.09835); the flow solution
in Ω1(µ) accounts for approximately 31% of Cx and 69% of Cz. Both regions are then
equally relevant for the determination of the aerodynamic performance of the profile. In
Table 5.1, we also illustrate the efficacy of the zonal-POD approach. For this purpose,
we perform different hybrid simulations with the given decomposition, by varying the
size of the database (N = 4 and N = 9), and without truncating the corresponding
POD bases (i.e. Mψ

r = Mϕ
r = Mr = N − 1). As expected, the finer database leads to

a better approximation of the solution. To evaluate the importance of the boundary
conditions updating mechanism, an additional simulation with Mr = 0 is performed,
whose boundary conditions are derived from the average of N = 9 database snapshots. In
this case, the contribution of the POD modes is set to zero, and we use only the forcing
term of the POD projection operator defined in (5.11), which becomes ΠPOD(y) = ȳ. As
shown in Table 5.1, with the introduction of the POD modes, the relative error on the
drag coefficient drops from 8.4% to 0.5%, and from 15.8% to 0.3% for the downforce. This
trend is not an artefact of the integration, but can be observed also when we consider
spatial-distributed variables, as in the case of Figure 5.6, where we report the distribution
of the pressure coefficient, Cp, on the vehicle underbody in both Ω1(µ) (solid lines) and
Ω2\Ω1(µ) (dotted lines). The discrepancy with respect to the FOM is remarkable using
N = 9 and Mr = 0, whereas it becomes imperceptible for N = 9 and Mr = 8.

The same analysis is carried out for the remaining prediction points. The results
are shown in Figure 5.7, where we report the relative error on the total drag coefficient,
evaluated as |Cx(µ) − C⋆

x(µ)|/|Cx(µ)|. The hybrid approach with N = 9 and Mr = 8
shows a good behaviour on the parameter space, with an average error over the predictions
of 0.93% (maximum error 3.01%), compared to the 7.00% (maximum error 14.83%) with

64

5.3 Zonal-POD

Cx Cx,1 Cz Cz,1
FOM 0.015075 0.004716 -0.143092 -0.099199

C⋆
x C⋆

x,1 C⋆
z C⋆

z,1
zonal-POD w N = 9, Mr = 0 0.016346 0.006969 -0.120436 -0.096443
zonal-POD w N = 4, Mr = 3 0.015271 0.004795 -0.146132 -0.100173
zonal-POD w N = 9, Mr = 8 0.015153 0.004791 -0.142726 -0.098935

Table 5.1 2DCAR benchmark: contribution of the flow solution in Ω1(µ) to the global aero-
dynamic coefficients for a predictive simulation, using the FOM and different zonal-POD
approaches.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

C
p

FOM
zonal-POD w N=9, Mr=0

zonal-POD w N=9, Mr=0

zonal-POD w N=4, Mr=3

zonal-POD w N=4, Mr=3

zonal-POD w N=9, Mr=8

zonal-POD w N=9, Mr=8

Fig. 5.6 2DCAR benchmark: underbody Cp distribution varying N and Mr.

65

Reduced-Order Modelling

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Database Predictions

Fig. 5.7 2DCAR relative error on drag coefficient: predictive zonal simulations with Mr = 0
(left) and Mr = 8 (right), using N = 9 snapshots.

no POD reconstruction of the boundary conditions (Mr = 0). The convergence of the
average prediction error, varying the size of the database, is reported in Table 5.2.

Database ēCx

N = 4 0.01126
N = 9 0.00934
N = 25 0.00184

Table 5.2 Convergence of the average error ēCx varying the size of the database.

It is also interesting to observe how the error is distributed between the two contribu-
tions. As noticeable in Figure 5.8, since we employ the full-order model in Ω1(µ), albeit
with approximate boundary conditions on Γ1, the error contribution in this subregion
is much smaller than the one outside. This means that the method tends to become
particularly accurate when the output of interest is a quantity localized in such domain,
as happens for instance when the optimization is focused on a single component of a
multi-body configuration.

Finally, in Figure 5.9 we present a comparison of the accuracy between the PODI
and zonal-POD approaches, using the same POD basis built over the entire domain. Our
method performs significantly better when the database is coarse, whereas the benefits
of the hybrid approach tends to vanish when N increases.

66

5.3 Zonal-POD

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.005

0.01

0.015

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.005

0.01

0.015

Database Predictions

Fig. 5.8 2DCAR error contributions for predictive zonal simulations with Mr = 3 using N = 4
snapshots: |C⋆

x,1 − Cx,1|/Cx (left) and |C⋆
x,2 − Cx,2|/Cx (right).

In terms of computational performance, the achievable speed-up is highly application-
dependent and may vary a lot from case to case, ranging from O(10) up to O(100).
Generally speaking, two main factors contribute to its performance. In the first place, in
the zonal-POD approach the FOM is solved on a domain that is a subset of the original
one and contains fewer cells; secondly, the convergence of the FOM in Ω1 is usually faster
thanks to a better flow initialization.

As for the geometrical contribution, the critical regions requiring the full-order
approximation are usually located near the body (see Chapter 6) where the computational
grid tends to be very fine, in order to better represent geometrical details and properly
describe the near-wall field. Consequently, for unstructured meshes, even if Ω1 dimensions
are small in the physical space, such subdomain may contain almost as many cells as
Ω, with a resulting geometrical speed-up factor close to 1. For automotive and naval
applications, representing the main target of this work, this is unlikely to happen thanks
to the usage of wall-functions, that permits to reduce the near-wall grid resolution,
leading to typical speed-up factors up to O(10)−O(20), depending on the deformation
type, as it will be addressed later in Chapter 8. On the other hand, this may be an issue
for highly accurate aeronautical applications, requiring for instance a very refined grid in
order to fully resolve the boundary layer (i.e. y+ < 1), with deformations that greatly
perturb the flow field. Anyway, when the effects of geometry variation are more localized,
the performance of the method is expected to improve also in these cases, since Ω1 will

67

Reduced-Order Modelling

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Database Predictions

(a) N = 4, Mr = 3.

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.005

0.01

0.015

0.02

0.025

0.03

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.005

0.01

0.015

0.02

0.025

0.03

Database Predictions

(b) N = 9, Mr = 8.

Fig. 5.9 2DCAR relative error on drag coefficient: PODI with RBF interpolation (left) vs
zonal-POD (right).

68

5.3 Zonal-POD

include only a portion of the geometrical body. For Cartesian grids, instead, the speed-up
factors are typically of order O(50)−O(100), as shown for instance in Bergmann et al.
(2018).

In terms of flow initialization, the hybrid computations can be initialized using a
combination of POD modes, leading to convergence in fewer iterations with respect to
runs initialized with free-stream and potential conditions, or other flow solutions. The
same rationale, however, can also be applied to initialize the full-order simulations, as
shown for instance in Mifsud et al. (2015), where different ROMs over the full domain
are used in order to obtain the initial fields for the FOM, accelerating the convergence
of the model. A comparison among the zonal-POD approach and the FOM starting
from different initial fields is reported in Figure 5.10, for a configuration not included in
the snapshots database. We test the FOM convergence performance using two different
initialization methods: the standard potential solution, and an approximate solution
obtained through POD with RBF interpolation. In agreement with Mifsud et al. (2015),
initializing the full-order simulation with the ROM allows us to halve the number of
iterations required to converge. Even so, the hybrid method, initialized with the POD
forcing term ȳ, shows a better performance of all the FOM considered, leading to a
speed-up factor of about 4, as can be observed for instance in the trend of both the
residual (Figure 5.10 left) and the drag coefficient (Figure 5.10 right). For the zonal-POD
simulations, it should be noted that both quantities are computed within Ω1 and so
all the Cx values are normalized with the respective converged value, in order to ease
the comparison. Increasing the size of the database, instead, produces only a slight
acceleration for both the FOM with PODI initialization and the zonal-POD approach.

5.3.4 Convergence analysis

The Schwarz method and its variations are robustly convergent for a wide class of
equations (see for instance Quarteroni and Valli (1999)), with a convergence speed
depending on the overlap between the subdomains. Since the Schwarz-POD algorithm
deviates from the classical method, a further investigation of its convergence properties
is necessary. For the sake of simplicity, let us consider a simplified linear problem, where
we focus on a single domain Ω = Ω(µ̂) in the given family, so that the µ dependence
is no longer explicit and the decomposition simplifies as Ω = Ω1 ∪ Ω2, Ω0 := Ω1 ∩ Ω2.
The boundary ∂Ω of the domain is assumed to be sufficiently smooth, e.g. Lipschitz
continuous.

69

Reduced-Order Modelling

0 1000 2000 3000 4000 5000

iteration

10-7

10-6

10-5

10-4

10-3

10-2

10-1

U
x
 r

e
s
id

u
a
l

FOM-potential

FOM-PODI w N=4, M
r
=3

FOM-PODI w N=9, M
r
=8

zonal-POD w N=4, M
r
=3

zonal-POD w N=9, M
r
=8

0 1000 2000 3000 4000 5000

iteration

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

n
o
rm

a
lis

e
d

 C
x

FOM-potential

FOM-PODI w N=4, M
r
=3

FOM-PODI w N=9, M
r
=8

zonal-POD w N=4, M
r
=3

zonal-POD w N=9, M
r
=8

Fig. 5.10 Convergence performance of the zonal-POD approach w.r.t. full-order simulations
initialized with different methods for an out-of-sample configuration: ux residuals (left) and
normalised drag coefficient Cx (right).

The NS problem, is then replaced by the following scalar Dirichlet problem:

Lu = f in Ω,
u = g on ∂Ω,

(5.16)

where the convection-diffusion operator Lu := ∇·(ν∇u+au), with f , g, ν > 0 sufficiently
smooth and a satisfying ∇·a = 0 in Ω, in order to assure that the problem is well posed
in H1(Ω).

The solutions snapshots ui, i = 1, . . . , N , used to train the POD model, are generated
by solving Problem (5.16) for different values of the parameter µ. Thus, the snapshots
are supposed to solve the equation Lui = f in Ω2, common among them all, as well as the
boundary condition ui = g on ∂Ω2 ∩ ∂Ω. Given the linearity of the problem, also their
average ū satisfies Lū = f in Ω2 ∪Γ2, ū = g on ∂Ω2 ∩ ∂Ω, whereas the natural extensions
of each POD basis function to Ω2, denoted for simplicity with ϕi, i = 1, . . . ,Mr, satisfies
Lϕi = 0 in Ω2 ∪ Γ2, ϕi = g on ∂Ω2 ∩ ∂Ω. We also assume that ⟨ϕi, ϕj⟩Ω0 = δij for
1 ≤ i, j ≤ Mr, i.e. the modes are orthonormal in the overlapping region. As seen in
Section 5.3, the snapshots generate the following spaces

S0 := span{ϕi : i = 1, . . . ,Mr}, S := ū+ S0,

70

5.3 Zonal-POD

where the terms ϕi represent the POD basis functions. The corresponding spaces of
traces on Γ1 are then

S0
Γ1 := {v|Γ1 : v ∈ S0}, SΓ1 := {v|Γ1 : v ∈ S} = ū|Γ1 + S0

Γ1 .

For the problem at hand, the Schwarz-POD algorithm results in the concatenation of
the following stages:

Stage 1. Given u2 ∈ S, set λ := u2 |Γ1 ∈ SΓ1 and find u1 ∈ H1(Ω1) as a solution of

Lu1 = f in Ω1,

u1 = g on ∂Ω1 ∩ ∂Ω,
u1 = λ on Γ1.

(5.17)

Stage 2. Given u1 ∈ H1(Ω1), compute the POD projection of its restriction to the
overlapping region ũ1 := u1 |Ω0

ũ2 := ΠPOD(ũ1) (5.18)

and get its natural extension to the whole of Ω2, i.e. u2 ∈ S.

The sequence can be conveniently seen in terms of the action of an operator on the
trace space S|Γ1 . In fact, if we introduce the mapping T : S|Γ1 → S|Γ1 such that

T (λ) = µ,

with µ := ũ2 |Γ1 depending on λ through ũ1, the Schwarz-POD algorithm can be rewritten
as

λk+1 = T (λk), k ≥ 1.

If the sequence {(u1, u2)(k)} converges to a pair (u∗
1, u

∗
2) ∈ H1(Ω1)×S, then we have that

the trace of the solution on Γ1, namely λ⋆, is a fixed point of T , i.e.

λ∗ = T (λ∗).

Thus, if T is proven to be a contraction with respect to a certain norm in S|Γ1 , the
algorithm converges.

71

Reduced-Order Modelling

For the sake of clarity, let us express the solution u1 of (5.17) as a sum of two
contributions, i.e. u1 = v + w, so that we have

Lv = f in Ω1,

v = g on ∂Ω1 ∩ ∂Ω,
v = λ̄ on Γ1,

(5.19)

and

Lw = 0 in Ω1,

w = 0 on ∂Ω1 ∩ ∂Ω,
w = λ0 on Γ1.

(5.20)

where λ̄ denotes the restriction ū|Γ1 , so that any λ ∈ S|Γ1 can be split as λ = λ̄+ λ0 for
some λ0 ∈ S0

|Γ1
. Thus, the POD projection of ũ1 can be made explicit in the following

way:

ũ2 = ΠPOD(ũ1) = ū+
Mr∑
i=1
⟨ũ1 − ū, ϕi⟩Ω0 ϕi

= ū+
Mr∑
i=1
⟨ṽ − ū, ϕi⟩Ω0 ϕi︸ ︷︷ ︸

χ̃

+
Mr∑
i=1
⟨w̃, ϕi⟩Ω0 ϕi︸ ︷︷ ︸

z̃

where z̃ = ΠPOD,0(w̃) represents the L2-orthogonal projection of w̃ onto S0 and χ̃ is the
contribution of the average. Through this distinction, we have that

T (λ) = µ = χ̃|Γ1 + z̃|Γ1 =: χ̃|Γ1 + T 0λ0,

where T 0 : S0 → S0 is the linear operator resulting from the composition of the mappings
λ0 7→ w 7→ z̃ = ΠPOD,0w̃ 7→ µ0 := z̃|Γ1 . Since the term χ̃|Γ1 is constant between
consequential iterates, we have that T (λ1)− T (λ2) = T 0(λ0

1− λ0
2), and thus the following

result is obtained.

Theorem 5.2. For a suitable norm ∥ · ∥ in S|Γ, one has

∥T 0∥L(S0, S0) < 1. (5.21)

Hence, the operator T is a contraction with respect to this norm, and the Schwarz-POD
algorithm converges at a geometric rate towards a limit pair (u∗

1, u
∗
2) ∈ H1(Ω1)×S, which

72

5.3 Zonal-POD

satisfies the conditions

u∗
1 |Γ1 = u∗

2 |Γ1 , ũ∗
2 = ΠPOD(ũ∗

1) in Ω0.

In view of providing a sufficient condition for Theorem 5.2, we recall the following
two results, that hold for any norm ∥ · ∥ in S|Γ1 .

Lemma 5.1. There exists a constant C1 > 0 such that

∥w∥L2(Ω0) ≤ C1∥λ0∥, ∀λ0 ∈ S0
|Γ1 ,

where w is the solution of (5.20).

Proof. From the theory of double-layer potentials (see for instance Jerison and Kenig
(1995)), we know that w satisfies ∥w∥H1/2(Ω1) ≤ c∥λ0∥L2(Γ1) since Ω1 is assumed to be a
Lipschitz domain. Since λ0 belongs to the finite dimensional space S0

|Γ1
, where all norms

are equivalent, the following relation holds

∥w∥L2(Ω0) ≤ ∥w∥L2(Ω1) ≤ ∥w∥H1/2(Ω1) ≤ c∥λ0∥L2(Γ1).

Lemma 5.2. There exists a constant C2 > 0 such that

∥z|Γ1∥ ≤ C2∥z∥L2(Ω0), ∀z ∈ S0.

Proof. Given that any z ∈ S0 satisfies Lz = 0 in Ω2, we also know that Lz = 0 in Ω0. For
a sufficiently smooth test function v, through integration by part we obtain the following
relation:

0 =
∫

Ω0
Lz v =

∫
Ω0
z L⊤v +

∫
∂Ω0

(
−∂z
∂n

+ a·n z
)
v +

∫
∂Ω0

z
∂v

∂n
. (5.22)

For any ξ ∈ H1/2(∂Ω0), we consider the solution v = vξ ∈ H2(Ω0) of the fourth-order
problem LL⊤v = 0 in Ω0, v = 0 and ∂v

∂n
= ξ on ∂Ω0, for which we have ∥vξ∥H2(Ω0) ≤

c∥ξ∥H1/2(∂Ω0). If we take supremum over ξ in the identity
∫
∂Ω0

z vξ = −
∫

Ω0
z L⊤vξ

73

Reduced-Order Modelling

we obtain that ∥z|∂Ω0∥H−1/2(∂Ω0) ≤ c∥z∥L2(Ω0). As in 5.1, the result easily follows by
observing that z|∂Ω0 ranges in the finite dimensional space S0 and by invoking again the
norms equivalence in finite dimension.

It is worth noting that Lemma 5.1 and 5.2 only guarantee the existence of the C1, C2

constants, whose value and dependence on the dimension of the S0
|Γ1

space are related
with the choice of an appropriate norm.

Finally, we have the following result.

Theorem 5.3. Given a suitable norm in S0, let C1 and C2 be constants for which the
inequalities in Lemma 5.1 and 5.2 are valid. Then, the operator T 0 satisfies ∥T 0∥L(S0, S0) ≤
C1C2. Hence,

C1C2 < 1

is a sufficient condition for (5.21) to hold.

Proof. We consider an arbitrary λ0 ∈ S0
|Γ1

, and let µ0 = T 0λ0. Using Lemma 5.1 and 5.2
and the property of the L2-orthogonal projection, we have

∥µ0∥ = ∥z̃|Γ1∥ ≤ C2∥z̃∥L2(Ω0) ≤ C2∥w̃∥L2(Ω0) ≤ C2C1∥λ0∥. (5.23)

In the following section we prove the convergence for a simplified problem, i.e. a linear
operator over a Cartesian decomposition, whereas for the NS/RANS problem we limit
ourselves to simply verify the convergence condition by explicitly evaluating the C2C1

constant through the computation of the ⟨w̃, ϕi⟩Ω0 terms for the 2DCAR benchmark
with N = 4. The resulting constant is equal to 0.56917, showing compliance with the
condition in Theorem 5.3.

5.3.5 Cartesian domains

We now consider the Cartesian domain Ω = (O,A)× (O,B) ⊂ R2 of Figure 5.11, that we
decompose on the subdomains Ω1 = (O,C)× (O,B) and Ω2 = (D,A)× (O,B). After
applying a change of independent variables, we can assume that Ω = (0, s) × (0, π),
and, coherently, Ω2 = (q, s) × (0, π) and Ω2 = (q, s) × (0, π) for 0 < q < r < s. As a
consequence, Ω0 = (q, r)× (0, π) and Γ1 = {r} × [0, π].

74

5.3 Zonal-POD

O D C A

B
Ω

Ω1 Ω2Ω0

Γ1Γ2

Fig. 5.11 Decomposition of the rectangular domain Ω in two overlapping subdomains.

In order to solve Problem (5.20) by separation of variables, we assume that the L
operator has constant coefficients in Ω: after dividing by the diffusion coefficient ν, we
obtain that Lu = −∆u+ aux + buy for a suitable pair of real numbers a, b. At this point,
if we look for a solution of the problem in the form w(x, y) = η(x)Θ(y), imposing Lw = 0
yields

(−ηxx + aηx)Θ + η(−Θyy + bΘy) = 0.

Let Θ be a solution of the eigenvalue problem

−Θyy + bΘy = λΘ in (0, π), Θ(0) = Θ(π) = 0.

If we substitute Θ(y) = eby/2ϑ(y), it is easy to check that ϑ is a solution of the eigenvalue
problem

−ϑyy = (λ− b2

4)ϑ in (0, π), ϑ(0) = ϑ(π) = 0,

whose solutions are given by

ϑk(y) =
√

2
π

sin ky, with λk = k2 + b2

4 , k ≥ 1. (5.24)

By denoting with ηk(x) the solution of the kth boundary-value problem

− ηxx + aηx + λkη = 0 in (0, r), η(0) = 0, η(r) = 1, (5.25)

we can express the solution of Problem (5.20) as

w(x, y) =
∑
k≥1

αkηk(x)Θk(y) = eby/2 ∑
k≥1

αkηk(x)θk(y),

where the boundary condition on Γ1 is enforced by requiring that the αk coefficient
are the sine-Fourier coefficients of the function h(y) := e−by/2λ0(y), which is surely

75

Reduced-Order Modelling

square-integrable in (0, π). Thus, the matching condition is:

w(r, y) = eby/2 ∑
k≥1

αkθk(y) = λ0(y), 0 < y < π ,

To asses the convergence of our method for the problem at hand, we need to bound
the L2-norm of w in Ω0. In order to do so we need to recall the following result.

Lemma 5.3. The functions ηk, solutions of the boundary-value problem defined in (5.25),
are monotone with respect to the index k in the interval [0, r], precisely

ηk+1(x) ≤ ηk(x) ∀x ∈ [0, r], ∀k ≥ 1.

Proof. Setting σ1k := a
2 + pk and σ2k := a

2 − pk, with pk :=
√
a2+4λk

2 , allows us to rewrite
the |ηk functions as

ηk(x) = eσ1kx − eσ2kx

eσ1kr − eσ2kr
.

The result follows if
ηk(x)
ηk+1(x) = ψk(x)

ψk(r)
≤ 1

with
ψk(x) := eσ1kx − eσ2kx

eσ1,k+1x − eσ2,k+1x
= epkx − e−pkx

epk+1x − e−pk+1x
, (5.26)

that it is certainly true if we prove that ψk does not increase with respect to x ≥ 0, i.e.
if its derivative

ψ′
k(x) = γk(eδkx − e−δkx)− δk(eγkx − e−γkx)

(epk+1x − e−pk+1x)2 < 0

with γk := pk+1 + pk > pk+1 − pk =: δk > 0. By expanding the exponential functions of
the fraction numerator Nk(x) in Taylor series, we get that

Nk(x) = 2δkγk
∞∑
n=1

(δ2n
k − γ2n

k) x2n+1

(2n+ 1)! < 0 for x > 0,

which proves the result.

76

5.3 Zonal-POD

Applying Lemma 5.3 and exploiting the L2-orthogonality of the eigenfunctions (5.24),
we have that

∥w∥2
L2(Ω0) =

∫ r

q

∫ π

0

∑
k≥1

αkηk(x)θk(y)
2

eby dy dx (5.27)

≤ Cb

∫ r

q

∑
k≥1

(αkηk(x))2 dx = Cb
∑
k≥1

α2
k

∫ r

q
η2
k(x) dx (5.28)

≤ Cb

∫ r

q
η2

1(x) dx
∑
k≥1

α2
k, (5.29)

with the constant Cb = maxy∈[0,π] eby. On the other hand,

∑
k≥1

α2
k = ∥h∥2

L2(0,π) =
∫ π

0
e−by(λ0)2(y) dy ≤ 1

cb
∥λ0∥2

L2(Γ1), (5.30)

with cb = miny∈[0,π] eby. By substituting (5.30) in (5.27), it follows that the solution of
Problem (5.20) satisfies the relation

∥w∥2
L2(Ω0) ≤

Cb
cb

∫ r

q
η2

1(x) dx ∥λ0∥2
L2(Γ1) (5.31)

that provides an expression for the C1 constant in Lemma 5.1, when the L2-norm is
considered.

Let us now consider any z ∈ S0, that satisfies Lz = 0 in Ω2 and z = g on ∂Ω2 \ Γ2,
where Γ2 = {q} × [0, π]. As above, we can expressed it as

z(x, y) =
∑
k≥1

βkξk(x)Θk(y) = eby/2 ∑
k≥1

βkξk(x)θk(y),

where ϑk is the same function defined in (5.24), whereas ξk represents the solution of the
boundary-value problem

− ξxx + aξx + λkξ = 0 in (q, s), ξ(r) = 1, ξ(s) = 0. (5.32)

Therefore, the trace z|Γ1 on Γ1 can be expressed as:

z(r, y) = eby/2 ∑
k≥1

βkθk(y), 0 < y < π. (5.33)

As in Lemma 5.3, the following result holds.

77

Reduced-Order Modelling

Lemma 5.4. The functions ξk, solutions of the boundary-value problem defined in (5.32),
are monotone with respect to the index k in the interval [q, r], precisely

ξk+1(x) ≥ ξk(x) ∀x ∈ [q, r], ∀k ≥ 1.

Proof. Let ψk be the same function introduced in the proof of Lemma 5.3 (see (5.26)).
Then, it is easily verified that

ξk(x)
ξk+1(x) = ψk(s− x)

ψk(s− r)
≤ 1, if q ≤ x ≤ r < s,

whence the result.

As above, by applying 5.4, we can derive an expression for the C2 constant in Lemma
5.2, when the L2-norm is used on Γ1. With the same definition of Cb and cb, we obtain
that

∥z∥2
L2(Ω0) ≥ cb

∑
k≥1

β2
k

∫ r

q
ξ2
k(x) dx ≥ cb

∫ r

q
ξ2

1(x) dx
∑
k≥1

β2
k

and ∑
k≥1

β2
k =

∫ π

0
e−byz2

|Γ1(y) dy ≥ 1
Cb
∥z|Γ1∥2

L2(Γ1),

Therefore, any z ∈ S0 satisfies

∥z|Γ1∥2
L2(Γ1) ≤

Cb
cb

1∫ r
q ξ

2
1(x) dx ∥z∥

2
L2(Ω0). (5.34)

By combining Theorem 5.2 with relations (5.31) and (5.34), the following result is
obtained.

Theorem 5.4. With respect to the L2-norm in S0, it holds

∥T 0∥L(S0, S0) ≤
(
Cb
cb

)2 ∫ r
q η

2
1(x) dx∫ r

q ξ
2
1(x) dx .

Hence, if the ratio Cb
cb
≥ 1 is sufficiently small, ∥T 0∥L(S0, S0) < 1 and the Schwarz-POD

algorithm is convergent.

Proof. The result follows if we prove that
∫ r
q η

2
1(x) dx∫ r

q ξ
2
1(x) dx < 1,

78

5.3 Zonal-POD

0 0.2 0.4 0.6 0.8 1

0 / # 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 it

er
at

io
ns

Database
Prediction

Fig. 5.12 2DCAR convergence velocity (iterations normalised w.r.t. to the maximum number
of iterations required to converge) of the zonal-POD algorithm with respect to the number of
cells in Ω0 (normalised w.r.t the number of cells in Ω1).

that is certainly true as a consequence of the inequalities η1(x) < η1(r) = 1 and
ξ1(x) > ξ1(r) = 1, verified for all x < r.

It is worth noting that the ratio Cb
cb

is close to 1 when the absolute value |b| of the
convection coefficient in the y-direction is sufficiently small. Anyway, it is always possible
to reduce the

∫ r
q
η2

1(x) dx∫ r
q
ξ2

1(x) dx ratio by increasing the size of the integration interval [q, r], which
is equivalent to select a larger Ω0. As in classical Schwarz methods, a more extended
overlapping region will benefit the convergence performance of the algorithm, as shown
for instance in Figure 5.12, where we report the convergence velocity with respect to
the size of Ω0 for the 2DCAR benchmark, both for an in-sample and out-of-sample
configuration. The plots are generated by initializing the algorithm with the average
fields and maintaining fixed the size of Ω1. The convergence speed is expressed in terms
of the number of iterations required for the SIMPLE algorithm to reach a steady solution
in Ω1, calling a POD-update of the boundary condition at every iteration. As expected,
the zonal-POD algorithm converges faster with a larger overlapping region, whereas
instabilities may arise when a very small Ω0 is used (O(100) cells): it appears that in
these cases, the CFD feedback is no longer sufficient to guarantee a stable solution. Note
that for configurations belonging to the snapshots database, in the limit of no truncation
of the POD basis, the converged solution in Ω1, y⋆1, is equal to the actual full-order

79

Reduced-Order Modelling

POD-Galerkin PODI zonal-POD
cputFOM/cputROM O(104 − 106) O(106 − 107) O(10− 102)

offline cost O(102)× cputFOM O(102)× cputFOM O(10)× cputFOM
range of applicability narrow large large

intrusiveness high very low low
stability needs stabilizers - -

robustness low low medium

Table 5.3 Comparison of POD-based model reduction strategies for the applications of interest.

solution y|Ω1 , whereas for predictive simulations the converged solution obtained through
the zonal-POD approach will be just an approximation.

5.3.6 Conclusions

The performance of the POD-Galerkin, PODI and zonal-POD strategies with respect to
the above-mentioned set of criteria is summarised in Table 5.3. Among the advantages
of the zonal-POD method, it is worth citing the following ones:

• it is easy to implement straight forwardly in the canonical CFD solver, since it
reduces to the imposition of a non-local boundary condition, and therefore its usage
has limited impact on existing CFD codes;

• it does not rely on the choice of the numerical discretization, so it can be used
coupled to different discretization methods, e.g. finite-element, finite-volume or
immersed-boundary, as in Bergmann et al. (2018);

• it does not exploit flow specific properties, meaning that it can be employed in
both laminar and turbulent conditions, for incompressible and compressible flows;

• it does not depend on the parameterization or on its properties, since the POD model
is based on empirical observations and the parameterization does not intervene in
the coupling strategy;

• it presents good stability and robustness properties, thanks to FOM feedback in
the region of interest.

The main drawback of the approach, instead, is constituted by its moderate reduction
with respect to standard techniques, making it less performing during the online phase. In

80

5.3 Zonal-POD

addition, the accuracy for out-of-sample configurations depends not only on the database
used to train the POD model, as for PODI and POD-Galerkin, but also on the choice of
the domain decomposition. This aspect introduces an additional layer of complexity in
the tuning of the strategy.

However, thanks to its low intrusiveness and limited offline cost, the zonal-POD
method represents a competitive tool for model reduction of large-scale aerodynamic
problems, that may be efficiently employed in an industrial framework, as addressed in
Chapter 8.

81

Reduced-Order Modelling

82

Chapter 6

Accuracy Estimation

Part of the work described in this chapter has been previously submitted for publication
in Bergmann et al. (2018) and Salmoiraghi et al. (2018).

In this chapter we focus on the accuracy estimation of the zonal-POD method, and
in particular on the choice of the domain decomposition (Section 6.2) and on an efficient
initial sampling of the parameter space (Section 6.3).

6.1 Cross-validation

As already addressed, by construction the POD basis gives an optimal representation, in
terms of energy, of the solution space. This means that, in the limit of no-compression, the
basis is capable to reproduce exactly the snapshots belonging to the solution database.
As a consequence, the zonal-POD algorithm converges to the exact solution for in-
sample configurations, neglecting numerical errors that may arise from a slightly different
discretization, e.g. when surface morphing requires a new computational grid generation
for the reduced domain.

Nevertheless, a good ROM should ensure sufficiently robust and accurate results
over the entire parameter space. In terms of accuracy, the approximation error for
out-of-sample simulations depends on both the choice of the decomposition and the
sampling of the parameters space used to create the database. While this analysis can
always be done a posteriori, it is usually not clear how to proceed a priori, especially when
very limited data is available in early stages of design. Despite guaranteeing significant
time savings, it should be remembered that the computational cost of the zonal-POD

83

Accuracy Estimation

simulation is not negligible with respect to the complete model, since it requires to solve
the FOM over a subset of the original domain, leading to a less severe on-line reduction
compared to standard ROMs. Thus, the model cannot be extensively used to assess
accuracy and we must rely only on relevant information already available in the initial
dataset, that may be generated randomly or through other criteria.

In order to identify an estimation method characterized by low bias and variance,
we employ cross-validation over the initial set of instances D = {zi = (µi,yi), i =
1, . . . , N}, with µi belonging to the input space M, i.e. the parameter space, and yi
representing the corresponding solution in the output space Y. Generally speaking,
cross-validation is used in statistics to estimate the capability of the model to perform
on previously unseen data, i.e. on predictions. The rationale behind the so-called k-fold
cross-validation, also known as rotation estimation (see Kohavi (1995)), is to divide the
dataset D into k disjoint subsets Di, i.e. the folds, and to train the resulting k models on
D \ Di and test them on all the remaining partitions Di. It is then possible to formally
define the cross-validation estimate of accuracy as:

RCV = 1
N

∑
zi∈D

δ (I(D \ Di,µi),yi) , (6.1)

where the term δ (I(D \ Di,µi),yi), sometimes referred to as loss functional, represents
the error made when predicting the output yi through I(D\Di,µi), i.e. the model trained
over partitions not containing the instance (µi,yi). Clearly such empirical estimate
depends on the dataset partitioning: complete k-fold cross-validation will require to
evaluate all the possible combinations for choosing the N/k sets, but it is usually too
expansive to perform. The simplest way to obtain a complete cross-validation, is to
adopt the N -fold cross-validation, usually referred to as leave-one-out method (Geisser
(1993)). In the leave-one-out approach k is chosen equal to the number of samples in the
database and each instance is removed from the training set and used to test the model.
In terms of cross-validation variance, the following result from Kohavi (1995) holds.

Lemma 6.1 (Variance of k-fold cross-validation). If the training algorithm for a system
is stable with respect to the perturbations caused by deleting the instances during the
cross-validation procedure, the variance of the k-fold estimate will be approximately

Var = RCV
(1−RCV)

N
(6.2)

where N represents the number of instances in the dataset.

84

6.1 Cross-validation

Since the variance in Lemma 6.1 does not depend on k, it follows that, providing a
sufficiently large dataset, the variance of the leave-on-out estimate coincides with the
k-fold one. For the leave-one-out estimator, it is intuitive to understand that the effect
of removing a single instance from the loss functional tends to vanish increasing the size
of the dataset, and then the model will become stable.

Another attractive quality of the leave-on-out estimate is that it provides an almost
unbiased estimate of the classifier generalisation ability (see for example Cawley and
Talbot (2003)).

Lemma 6.2 (Bias of leave-on-out cross-validation). The leave-one-out cross-validation
gives an almost unbiased estimate in the following sense:

ED[Rloo(yD)] = ED′ [Rgen(yD)] (6.3)

where Rloo is the leave-one-out error (from Equation (6.1)) and Rgen(y) = Ez[δ(I(D,µ),y)],
i.e. the generalization error of y w.r.t. the loss δ, evaluated on the D′ set of dimensions
N − 1.

This lemma, however, is not valid when the learning algorithm is unstable, in which
case the use of the leave-one-out error is not recommended. A comprehensive review of
the leave-one-out method strengths and drawbacks, in the framework of machine learning,
can be found in Elisseeff and Pontil (2003). For the applications of interest, the amount
of training data available is usually very limited, due to the cost of FOM evaluations. As
a consequence, small perturbations of the data are likely to result in significant changes
in the model. Thus, it makes sense for us to adopt the leave-one-out strategy rather than
k-fold cross-validation, since it is less affected by such perturbations.

In terms of the zonal-POD, we perform the leave-one-out cross-validation over the
snapshots database in order to assess the goodness of the POD model. For i = 1, . . . , N
we iteratively remove the snapshot (µi,yi) from the dataset and project it onto the
subspace spanned by the POD basis built with all the remaining ones. In this way, it is
possible to quantify how much the snapshots in the database are mutually independent:
if its associated projection error tends to zero, the snapshot can be expressed as a linear
combination of the others, and therefore it adds no significant information to the database,
whereas relevant points in the parameter space are characterized by high projection
errors.

Such information is used differently in order to either identify the domain decomposi-
tion or select a sufficiently representative database of simulations, as explained in detail

85

Accuracy Estimation

in Sections 6.2 and 6.3. Clearly, the two aspects are not uncorrelated: generally speaking,
we can reasonably assume that a finer sampling will permit to reduce the extent of the
full-order region in the hybrid approach, whereas a poorer exploration of the parameter
space will required a more disadvantageous decomposition.

6.2 Domain decomposition

In terms of domain decomposition, two problems need to be addressed:

1. the detection of the crucial regions where the POD basis fails to represent non-
linearities, and therefore the position of the boundary Γ1;

2. the choice of the overlapping region, Ω0.

6.2.1 Interface detection

Focusing on the first aspect, the leave-one-out out-of-sample estimate allows us to obtain
a spatial error map for each snapshot, based on the POD projection error, defined as:

e(k)(x) = |y(x,µk)− y∗(x,µk)| ,

where the vector field x represents the spatial coordinates and y∗(µk) := ΠPOD(y(µk)),
using the POD projection operator definition introduced in Equation (5.11) (for the sake
of simplicity, the x dependence is omitted). Since the kth snapshot is not employed in
the basis construction, the corresponding error distribution represents an out-of-sample
estimate of the error associated to the prediction of new configurations.

By repeating this procedure for every snapshot in the database, it is possible to
combine all these error fields, in order to evaluate a global error map, defined as the
envelope of the maximum errors over the database:

e(x) = max
1≤k≤N

e(k)(x) . (6.4)

Such error distribution map can be used to identify the most critical domain regions,
where the representation of the flow field by the POD basis is strongly affected by a
change in the input parameters.

The main steps of the strategy are summarised in Algorithm 3.

86

6.2 Domain decomposition

Algorithm 3 Leave-one-out algorithm for Γ1 detection
1: Ξ = [µ1, ...,µN], set of parametric points
2: Θ = [y(µ1), ..., y(µN)], database of N solutions
3: for all µk in Ξ do
4: Θk ← remove y(µi) from Θ
5: POD basis ← Θk

6: y∗(µk)← POD projection
7: e(k)(x) = |y(µk)− y∗(µk)|
8: end for
9: e(x) = max

1≤k≤N
e(k)(x)

Since we use a different POD basis for each involved physical quantity, in order to
have a better representation, the leave-on-out strategy described above can be employed
to individually compute the error map indicator for all the unknowns, i.e. the velocity
field u, the pressure p and the turbulent quantities. Although it is reasonable to suppose
that the larger error values will be localized near the body, since the effects of the flow
perturbation introduced by the varying geometry are expected to be weakly-non linear
in the far field, there is no evidence that the different error maps will present the same
structures. On the contrary, it won’t be the case.

Let us consider the 2DCAR benchmark. As expected, the most crucial zones are
localised close to the front bumper and in the turbulent wakes, as shown in Figures 6.1
and 6.2, reporting, for different sizes of the initial database, the global error maps for
both velocity and pressure, i.e. eu and ep. In particular we plot the results for three
uniform samplings on the two-dimensional parameter space, corresponding to N = 4,
N = 9 and N = 25 snapshots. The errors are normalised with respect to the reference
far-field velocity, U∞, and the reference dynamic pressure 1

2ρU
2
∞, common among all the

snapshots. As expected, by enriching the database the maximum error is reduced, as
well as the extension of critical regions, i.e. where the POD basis fails to represents
the non-linear phenomenology. When such zones cover almost the full Ω domain, this
indicates that the database does not contain enough information and should be improved,
as we will address in Section 6.3. In this example, the RIC analysis confirms that all the
snapshots provide a sensible contribution to the energy, and therefore the POD bases are
not truncated.

The domain Ω1, used for the zonal-POD simulations, is then chosen as the quasi-
rectangular bounding box surrounding the deformable part of the geometry and containing
all the cells characterized by an error on the velocity larger than a certain threshold

87

Accuracy Estimation

(a) N = 4, Mr = 3.

(b) N = 9, Mr = 8.

(c) N = 25, Mr = 24.

Fig. 6.1 Leave-one-out velocity prediction error for the 2DCAR benchmark, using three different
databases.

88

6.2 Domain decomposition

(a) N = 4, Mr = 3.

(b) N = 9, Mr = 8.

(c) N = 25, Mr = 24.

Fig. 6.2 Leave-one-out pressure prediction error for the 2DCAR benchmark, using three different
databases.

89

Accuracy Estimation

(a) σR = 0.01U∞.

(b) σR = 0.005U∞.

(c) σR = 0.001U∞.

Fig. 6.3 2DCAR benchmark: Ω1 domain varying the error threshold σR.

value σR, i.e. Ω1(µ) ⊂ {∀x|e(x) > σR}. This approach forces to include in Ω1 also cells
that are well represented by the POD model, penalising the achievable reduction. In
principle, considering only those cells whose error exceeds the assigned threshold would
fix this issue, but it may results in a domain Ω1(µ) given by a set of disjoint subdomains,
each with a number of cells equal or greater than 1: an occurrence that may originate
problems for the CFD solver, as it happens for the numerical tools employed in this
work. Since we aim at developing a general and easy-to-implement strategy within the
canonical CFD solver, the definition of the reduced domain through the bounding-box of
the error, albeit not optimal, leads to a remarkable simplification in the workflow.

Figures 6.3 and 6.4, both obtained with N = 9, show how the size of Ω1 tends to
decrease for higher values of the error threshold σR. Given a certain database, if the
field reconstruction is not sufficiently good, it is always possible to extend the domain

90

6.2 Domain decomposition

#Ω1
#Ω

σR

Fig. 6.4 Number of cells in Ω1 normalised w.r.t. the cells in Ω as a function of the prediction
error threshold σR.

where we solve the FOM and obtain more accurate results: obviously, the larger Ω1, the
less we gain in terms of computational speed-up. In the limit of σR tending to zero, Ω1

will coincide with the original Ω, and the full-order problem will be solved on the whole
domain, vanishing the computational gain of the zonal-POD approach. Therefore, a
trade-off between accuracy and speed-up is always required. For example, if we choose
to include in Ω1 all those cells with σR > 0.01U∞, the resulting reduction of the problem
size will be of a factor 10.

In this example, since mesh morphing is involved, the computational grid in Ω1 is
a subset of the original mesh in Ω, and it maintains the same resolution and topology.
When dealing with surface morphing, a new grid needs to be generated in Ω1, taking care
to guarantee the same resolution as in the FOM simulations. Note that this is a general
requirement, since the grid resolution determines the spatial scales that are present in
the solution snapshots, and, consequently, in the POD model.

Besides being non-intrusive and efficient to compute, this error indicator built on
the full-order solutions is also correlated with the predictive performance of the hybrid
model, as shown in Figure 6.5, where we report the error on the overall drag coefficient
varying the size of the full-order domain. In particular, we perform the predictions
using the domain Ω1 corresponding to two different error thresholds, i.e. σR = 0.017U∞

and σR = 0.001U∞. The average error in the output of interest drops from 0.9341%

91

Accuracy Estimation

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.005

0.01

0.015

0.02

0.025

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

1

2

3

4

5

6

7

10-3Database Predictions

Fig. 6.5 2DCAR prediction error ϵCx on the drag coefficient varying the decomposition with
N = 9, Mr = 8: σR = 0.017U∞ (left) vs σR = 0.001U∞ (right).

to 0.2992%: this accuracy increase, however, is traded with a sensible reduction of the
hybrid model geometrical speed-up, that shift from a factor 10 to a factor 2.

6.2.2 Overlapping detection

Regarding the identification of the overlapping region, where the full-order and reduced-
order model are coupled, it would seem natural to set Ω0 = Ω1(µ), considering the benefits
in terms of algorithm convergence. Nevertheless, two additional considerations need be
made. First, when dealing with surface morphing, the most natural choice is to define
the POD modes in physical space, by interpolating for instance all the snapshots on a
reference grid. However, the solution domain changes for different configurations, meaning
that the spatial coordinates affected by the geometry variation in some configurations
belong to the solution domain, whereas in other cases this is no longer true. In order to
define the spatial correlation of the snapshots and compute the POD, the region covered
by the shape deformation is removed. Consequently, we have that Ω0 is a certain subset
of Ω1(µ) and does not depend on the parameter.

Second, we have to recall that the best POD approximation that we can obtain for an
out-of-sample configuration in Ω2, namely yp = y(µp), is given by the orthogonal POD

92

6.2 Domain decomposition

projection y⋆p = ∏POD(yp), that corresponds to the solution of the least-squares problem

min
α
∥ (yp − ȳ)−Ψα ∥2

Ω2 .

However, this is not generally true if we solve the same problem in an arbitrary chosen
Ω0 ⊂ Ω2, meaning that if we need to recover the solution outside Ω0, the approximation
is no longer optimal. In principle, in the zonal-POD approach we simulate through the
FOM those regions that are most affected by the perturbations introduced by the shape
deformations: thus, it is safe to assume that the modes will be strong in Ω1, whereas
they will tend to vanish at the far-field, where the solution is given mostly by the average
field. Therefore, the contribution of the outer region to the POD projection should be
minimal. When this assumption is not valid, it could be useful to investigate how the
choice of the overlapping region influences the prediction performance of the method.
In order to do so, we follow the same rationale of the Missing Point Estimation (MPE)
(Astrid et al. (2008)). The MPE aims at reducing the computational cost associated
with the solution of reduced-order systems, by evaluating the residual vector only on a
subset of the computational points (control volumes) (see for instance Vendl et al. (2014)
and Zimmermann and Willcox (2016) for POD-based applications).

Let us consider all the n cells included in Ω0, and arrange their indices in the vector
C = (1, ..., n). Let C0 = (c1, ..., cn0) denote a subset of Ω0, where n0 is the number of
selected points and c1, ..., cn0 their indices. For each flow variable we can define a filtering
matrix as

P := [ec1 , ..., ecn0
] ∈ Rn×n0 ,

whose columns, ei ∈ Rn, are the canonical unit vectors. We want then to identify an
optimal subset of points in Ω0 such that the solution of the following masked least-squares
problem

min
α
∥ P⊤(yp − ȳ)−P⊤Ψα ∥2

Ω0

corresponds to a good approximation of yp in Ω2. Rather than using fast low-rank
approximations, computationally intractable for our applications, we select the subsets
based on the flow physics, and in particular according to given leave-one-out error
thresholds: then, several hybrid simulations are performed, aimed at identifying the best
Ω0 with respect to a certain goal function (e.g. some aerodynamic coefficient). Despite
making the offline phase more demanding, this approach does not show a significant
improvement in the 2DCAR benchmark, as illustrated in Figure 6.6. Consequently, we
will select the whole Ω0 in the following.

93

Accuracy Estimation

100 101 102

o
/U [%]

10-3

10-2

10-1

100

o

Sim. 1 left out

Sim. 2 left out

Sim. 3 left out

Sim. 4 left out

Sim. 5 left out

Sim. 6 left out

Sim. 7 left out

Sim. 8 left out

Sim. 9 left out

Fig. 6.6 L2-norm error on the boundary conditions imposed on Γ1, as a function of the error
threshold, using N = 9 snapshots.

In other cases, however, such effort seems legitimate, as in the problem of the
interaction between a NACA0012 airfoil and a vortex, studied in Bergmann et al. (2018)
with the same methodology.

6.3 Snapshots selection

Since the systematic exploration of the parameter space is usually prohibitive for the
applications of interest, efficient sampling strategies must be introduced. With respect to
standard near-random or uniform sample generation, the greedy method (see for instance
Hesthaven et al. (2016)) represents a natural choice for optimal space identification. The
basic idea is to define a sharp and inexpensive a posteriori error bound, ∆m(µ), and to use
this information to drive the algorithm, by computing only winning candidate snapshots.
The greedy sampling strategy is then an iterative procedure, in which new snapshots are
sequentially added in order to improve the overall precision of the POD model. Formally,
we have to provide an estimate of the error due to the ROM approximation, that satisfies:

∥y(µ)− y⋆(µ)∥X ≤ ∆m(µ), ∀µ ∈M

94

6.3 Snapshots selection

with X ⊆ Ω(µ). Here we consider the L2 norm defined over a certain subset of the
domain, but alternatively it is possible to use other norms, or directly the measure of
the error over the optimization objective function |f(µ) − f ⋆(µ)|, for a goal-oriented
approach. At the m-iteration of the procedure, the next point to be evaluated through
the FOM is selected as:

µm+1 = arg max
µ∈M

∆m(µ)

and then we compute the corresponding solution y(µm+1), to be added to the snapshots
database. Convergence is attained where the maximum estimated error drops below a
certain value.

Even if its cost is small, the error bound cannot be computed over the entire parameter
space: therefore it is necessary to define a suitable and finite trial set, Ξtrial, for the
evaluation of ∆m(µ).

In the following section we investigates two possible definitions of such error indicator,
coupled with different strategies for the trial set selection.

6.3.1 Error indicator based on the NSE residuals

In the first approach, the error indicator is based on the residuals of the NSE computed
using the flow fields predicted by the POD model, following the same idea proposed by
Grepl and Patera (2005) and Lombardi et al. (2011) for POD-Galerkin approaches. In our
case, we do not have an approximation of the Navier-Stokes operator, so we evaluate the
residual corresponding to a given parameter value by substituting the predicted solution
into the FOM discretization of the NSE. In this framework, the predictive solution
y⋆(µt) = (u⋆(µt), p⋆(µt)) is not the one resulting from the zonal-POD simulation, but it
is evaluated using only the POD model. Without introducing the numerical discretization,
the full-order snapshots are exact solutions to Equations (3.1) and (3.2), while this won’t
be the case for linear combination of such snapshots, given the non-linear nature of the
Navier-Stokes operator. In terms of the discrete problem, it seems reasonable to assume
that the FOM residuals will be lower than the ones computed with the POD solution.

We propose two different approaches based on the NSE residuals, referred to in the
following as resGA-PODI and resGA-L1O. In the first strategy, summarized in Algorithm
4, we computed the complete POD basis using all the snapshots available and then we
employ POD with interpolation, as described in Section 5.2.2, in order to evaluate the
approximate y⋆ solutions for different values of the parameter.

95

Accuracy Estimation

Algorithm 4 resGA-PODI
greedy algorithm with ∆m based on NSE residuals and POD interpolation
1: Ξ0 = [µ1, ...,µN], initial set of parametric points
2: Θ0 = [y(µ1), ..., y(µN)], initial database of solutions
3: POD basis ← Θ0

4: select a trial set of new parameters Ξtrial

5: while max ∆m > tol do
6: for all µt in Ξtrial do
7: α(µt) , β(µt)← interpolation
8: u⋆(µt) =

∑Mψ
r

i=1 αi(µt)ψi for i = 1, ..., Mψ
r

9: p⋆(µt) =
∑Mϕ

r
i=1 βi(µt)ϕi for i = 1, ..., Mϕ

r

10: r⋆(µt) = NS(u⋆(µt), p⋆(µt))
11: r⋆(µt)← r⋆(µt)
12: ∆m(µt) = r⋆(µt)
13: end for
14: µm+1 ← arg max ∆m(µt)
15: Ξm+1 = [Ξm,µm+1]
16: compute y(µm+1)
17: Θm+1 = [Θm, y(µm+1)]
18: POD basis ← Θm+1

19: end while

For our applications, the NSE residual is evaluated coherently with the FOM employed.
The general approach for the residual computation in the OpenFOAM® solvers is
described in the following. Given a matrix system Mx = b, e.g. the one resulting from
the discretization of the momentum equation, the vector of cell residuals is defined as:

r = b−Mx .

The scalar residual r is then computed through a normalization procedure that involves
the evaluation of the normalization factor:

n =
∑
c

(|Mx−Mx̄|+ |b−Mx̄|) + ε ,

where x̄ represents the average over the cells of the solution vector and ε is set to a small
value in order to avoid dividing by zero. Finally, r is given by the sum of r over the cells
normalised with respect to the factor n:

r = 1
n

∑
c

|b−Mx| .

96

6.3 Snapshots selection

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

10-5Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

1.5

2

2.5

3

3.5

10-5Database

Fig. 6.7 2DCAR benchmark: response surfaces of the error indicator ∆0 at the first greedy
iteration for resGA-PODI (left) and resGA-L1O (right).

Hence, with reference to Algorithm 4, from the y⋆ solutions we compute the corre-
sponding approximate residuals vector and the scalar residual, namely r⋆ and r⋆, and
then we use the latter to drive the greedy algorithm. Since the interpolation and the
residual evaluation can be performed at low cost, in this framework it is possible to select
a very fine trial set, using for example quasi-random strategies for points generation,
such as Sobolov sequences or latin-hypercube sampling. While showing promising results
for trivial laminar test cases, the method fails for industrial turbulent flows, where the
NSE residuals are usually higher, in a way that makes it impossible to discern between
the error due to the numerical discretization and the one due to the POD approximation,
as highlighted in Figure 6.7.

The main issue of this approach is represented by the fact that the greedy error
indicator for in-sample configuration does not depend on the quality of the POD model,
but it is an intrinsic feature of the flow field that is not affected by the enrichment of the
database.

In order to improve the robustness of the algorithm, we propose a modified version
based on the leave-one-out method. This allows us to compute the approximate solution
y⋆k by projecting the FOM solution yk onto the POD basis built with the remaining
snapshots in the database, and so without introducing an additional approximation layer,
that is the interpolation. Moreover, since the full-order solution is available, we can

97

Accuracy Estimation

compare the actual FOM residual with the one computed with the POD solution. The
resGA-L1O sampling strategy is outlined in Algorithm 5.

Algorithm 5 resGA-L1O
greedy algorithm with ∆m based on NSE residuals and leave-one-out cross-validation
1: Ξ0 = [µ1, ...,µN], initial set of parametric points
2: Θ0 = [y(µ1), ..., y(µN)], initial database of solutions
3: POD basis ← Θ0

4: select a trial set of new parameters Ξtrial

5: while max ∆m > tol do
6: for all µi in Ξm do
7: Θi ← remove y(µi) from Θm

8: POD basis ← Θi

9: u∗(µi), p∗(µi)← POD projection
10: r⋆(µt) = NS(u⋆(µt), p⋆(µt))
11: r⋆(µt)← r⋆(µt)
12: ∆m(µi) = |r(µi)− r⋆(µi)|
13: end for
14: evaluate the response surface with ∆m(µ) as density function
15: for all µt in Ξtrial do
16: compute ∆m(µt)
17: end for
18: µm+1 ← arg max ∆m(µt)
19: Ξm+1 = [Ξm,µm+1]
20: compute y(µm+1)
21: Θm+1 = [Θm, y(µm+1)]
22: POD basis ← Θm+1

23: end while

Despite preforming better with respect to the resGA-PODI approach, as shown in
Figure 6.7 this second method still suffers from the dependence on the residual definition,
that may vary among different CFD solvers and be not totally reliable for steady RANS
simulations of turbulent complex flows. For this reason, we focus on a definition of ∆m

based on the POD projection error, as addressed in the following section.

6.3.2 Error indicator based on the POD projection error

The main idea behind this second approach is to use the leave-one-out method to evaluate
the POD out-of-sample projection error for each snapshot of the database. The leave-
one-out algorithm has been employed in the past as a procedure to perform adaptive

98

6.3 Snapshots selection

sampling in order to built robust POD models, as in the works of Braconnier et al. (2011)
and Zhan et al. (2015).

Constrained Centroidal Voronoi Tessellation

In order to guarantee both the exploration and the exploitation of the parameter space, we
coupled the greedy method with a Constrained Centroidal Voronoi Tessellation (CCVT),
built using the greedy error indicator ∆m as density function. We follow the same
rationale proposed by Lombardi et al. (2011), but with a different definition of the error.
Starting from an initial set of points, Ξ0, containing the vertices of the parametric domain,
the new candidate points are represented by the centroids of the Voronoi tessellation
elements computed with respect to the chosen density function. Among those points,
the greedy algorithm selects the one where the error indicator ∆m(µt), weighted with
a measure of the corresponding tessellation element, reaches its highest value. In this
strategy, well-spaced points are added iteratively, favouring the unexplored regions of the
parameter space as well as the ones badly represented by the POD model. The proposed
errors, are in fact good local error estimates in the neighbourhood of the points µi ∈ Ξ,
but little can be said far from these regions. The pGA-CCVT algorithm is outlined in
Algorithm 6.

Algorithm 6 pGA-CCVT
greedy algorithm with ∆m based on leave-one-out POD projection error and CCVT
1: Ξ0 = [µ1, ...,µN], initial set of parametric points
2: Θ0 = [y(µ1), ..., y(µN)], initial database of solutions
3: while max ∆m > tol do
4: for all µi in Ξm do
5: Θi ← remove y(µi) from Θm

6: POD basis ← Θi

7: y∗(µi)← POD projection
8: ∆m(µi) = ∥y(µi)− y∗(µi)∥X ◃ if goal-oriented: f(y∗(µi))
9: end for

10: compute CCVT with ∆m(µ) as density function
11: compute ∆m(µ) of the centroids µc
12: µm+1 ← arg max ∆m(µc)
13: Ξm+1 = [Ξm,µm+1]
14: compute y(µm+1)
15: Θm+1 = [Θm, y(µm+1)]
16: end while

99

Accuracy Estimation

-0.2 -0.1 0 0.1 0.2

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Z
CP

1

2

3

4

5

Database pGA-L1O

0 1 2 3 4 5

m

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

∆
m

×10-3

Fig. 6.8 pGA-CCVT algorithm: sampling sequence over the parameter space (left) and trend of
the error indicator ∆m w.r.t. the mth greedy iteration.

The performance of the sampling strategy for the 2DCAR benchmark is shown in
Figures 6.8 and 6.9, where we reported the greedy sampling sequence as well as the
corresponding output errors on the drag coefficient, starting from an initial distribution
containing only the vertices of the parameter space. The average and maximum errors
over the prediction points at every greedy iteration, instead, are reported in Table 6.1.
With respect to the uniform distribution with N = 4 used in Chapter 5, the average error
on the prediction drag coefficients, ēCx , drops from 1.126% to 0.542%, by adding only two
greedy points, whereas the maximum error, max eCx , decreases from 2.584% to 1.379%.
Moreover, the out-of-sample accuracy obtained with only 6 solutions is even better than
the performance of the database with 9 uniformly distributed snapshots, characterised by
an average error of 0.934% and a maximum error of 3.097%. Therefore, the pGA-CCVT
sampling strategy represents an improvement with respect to the uniform one, leading to
a sensible reduction of the prediction errors and proving that the leave-one-out projection
error is a good indicator of the predictive performance of the zonal-POD approach.

Such sampling method can be easily transposed to parameter spaces of P dimension,
but it requires the computation of the solutions in the extreme points of the space, i.e.
2P solutions are needed in order to start the greedy algorithm. Such exponential growth
of the computational effort with respect to the number of parameters involved represents
the bottleneck of this strategy, that is highly affected by the curse of dimensionality.

100

6.3 Snapshots selection

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

(a) N = 4 (b) N = 5

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

(c) N = 7 (d) N = 9

Fig. 6.9 pGA-CCVT algorithm: overall drag coefficient error over the parameter space at
different greedy iterations.

In order to mitigate this issue, other methods are taken into considerations. Specifically,
another possible way to select the new greedy point is to employ surrogate models that
involve interpolation or regression of the error dataset. Similarly to what happens in

101

Accuracy Estimation

Iteration ēCx max eCx

0 0.01126 0.02584
1 0.00702 0.01763
2 0.00542 0.01379
3 0.00541 0.01521
4 0.00423 0.01081
5 0.00420 0.01073

Table 6.1 Average error ēCx and maximum error max eCx over the prediction points at every
iteration of the pGA-CCVT algorithm.

surrogate-based global optimization (see Chapter 7), an approximation of the error
response surface is built over the entire parameter space and the new sampling point
is chosen at its maximum. Among the available data fit models, we replace the CCVT
with surrogate models based on Gaussian Process (GP) spatial interpolation.

Gaussian-Process Spatial Interpolation

The last strategy considered is based on GP interpolation and on the same principle
of the Efficient Global Optimization (EGO) method, that will be discussed in detail in
Chapter 7. The basic idea behind the method is to build a GP approximation of the ∆m

values, in the form
G∆m(µ) = h(µ)⊤β + Z(µ)

and to select the new candidate point as the one that maximise a certain Expected
Improvement Function (EIF), providing a balance between exploiting regions with good
solutions and exploring those where the prediction uncertainty is high. At the next
iteration, the values of projection errors are updated and a new GP approximation is
computed, as illustrated in Algorithm 7.

102

6.3 Snapshots selection

Algorithm 7 pGA-EGO
greedy algorithm with ∆m based on leave-one-out POD projection error and GP interpolation
1: Ξ0 = [µ1, ...,µN], initial set of parametric points
2: Θ0 = [y(µ1), ..., y(µN)], initial database of solutions
3: while max ∆m > tol do
4: for all µi in Ξm do
5: Θi ← remove y(µi) from Θm

6: POD basis ← Θi

7: y∗(µi)← POD projection
8: ∆m(µi) = ∥y(µi)− y∗(µi)∥X ◃ if goal-oriented: f(y∗(µi))
9: end for

10: compute G∆m
(µ)

11: compute EIF
12: µm+1 ← arg maxµ EIF
13: Ξm+1 = [Ξm,µm+1]
14: compute y(µm+1)
15: Θm+1 = [Θm, y(µm+1)]
16: end while

Such strategy recalls the same principle of the pGA-CCVT algorithm, in the sense
that it tends to add points also on those regions scarcely populated, as illustrated for
instance in Figure 6.10. With respect to the first strategy, the trend of the ∆m indicator is
similar, even though the second approach prefers the exploration of the limits of the space,
generating a different selection sequence. In terms of accuracy on the predictions (see
Table 6.2 and Figure 6.11), the first iteration halves the errors on the drag coefficients, and
the reduction trend is confirmed also by the next iterations. As in the previous case, the
improvement with respect to the uniform distribution appears clear, and the performance
of the pGA-CCVT and pGA-EGO algorithms after 5 greedy iteration is comparable. It
is worth noting, however, that the latter only requires P + 1 initial points (trend function
with polynomial terms of order 0), although a minimum of (P+1)(P+2)

2 samples are usually
recommended, and so it appears more suitable for large parameterizations.

Even if the pGA-EGO strategy is less affected by the curse of dimensionality than the
pGA-CCVT one, both algorithms tend to become extremely costly when employed in
high-dimensional parameter spaces, mainly because they required a far greater number
of full-order simulations, but also due to the cost of POD model evaluations within
the leave-one-out method. Given that we are usually dealing with databases of limited
dimensions, the method selected to add and remove solution snapshots to the POD basis
is not as critical as it would be for larger problems. However, both the pGA-CCVT
and pGA-EGO strategies can benefit from an efficient update of the POD model, based

103

Accuracy Estimation

-0.2 -0.1 0 0.1 0.2

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Z
CP

12

3

4
5

Database pGA-EGO

0 1 2 3 4 5

m

1

1.5

2

2.5

3

3.5

m

10-3

Fig. 6.10 pGA-EGO algorithm: sampling sequence over the parameter space (left) and trend of
the error indicator ∆m w.r.t. the mth greedy iteration.

Iteration ēCx max eCx

0 0.01126 0.02584
1 0.00559 0.01260
2 0.00515 0.01399
3 0.00497 0.01452
4 0.00489 0.01315
5 0.00400 0.01116

Table 6.2 Average error ēCx and maximum error max eCx over the prediction points at every
iteration of the pGA-EGO algorithm.

for instance on a SVD-update, as suggested by Zimmermann (2011) in his analysis of
state-of-the-art algorithms. Additionally, even if the number of design variables is about
10-20 for the applications of interest, in other fields, such as aeronautics, it is not unusual
to consider up to O(100) parameters (see for instance Han et al. (2018)). In these cases,
both the approaches may become intractable. For a given objective functional, as the
leave-one-out error, the right choice of initial and in-fill sampling points is not a trivial
problem and has been the main focus of several studies on surrogate-based optimization,
without reaching a general rule. Numerical and computational problems associated
with the EGO algorithm, and in general with surrogate models are further discussed
in Chapter 7. It is worth noting, however, that one of the strengths of the zonal-POD
method is that it requires a lower number of samples with respect to other POD-based

104

6.3 Snapshots selection

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

(a) N = 4 (b) N = 5

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

-0.1 0 0.1

X
CP

-0.3

-0.2

-0.1

0

0.1

0.2

Z
CP

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Database Predictions

(c) N = 7 (d) N = 9

Fig. 6.11 pGA-EGO algorithm: overall drag coefficient error over the parameter space at
different greedy iterations.

reduced-order techniques, and it makes possible to accelerate the FOM simulations,
with reasonable results, also when the database is rather small. For high-dimensional
optimization problems, it is more likely to allocate a fraction of the computational budget

105

Accuracy Estimation

for the training of the POD model, instead of fixing an error threshold on the greedy
indicator. For this reason, it is preferably for us to asses the sampling performance in
the first iterations, rather than in the long run.

106

Chapter 7

Optimization

In this chapter we provide an overview of the optimization algorithms and tools employed
in the present work.

7.1 Methods

Optimization methods can be classified according to different criteria. In terms of search
method, i.e. the approach used by the algorithm to locate new candidate points, two
different classes of algorithms exist:

• Gradient-based methods, where gradients of the response functions are evalu-
ated in order to identify the best direction of improvement;

• Derivative-free methods, such as pattern search methods and genetic algorithms,
that do not rely on derivatives computation.

Generally speaking, gradient-based optimization methods are usually highly efficient
in terms of convergence rates and represent the best choice for convex design spaces
or when the local minimum is close to the initial point. However, they are lacking in
robustness for more general cases, e.g. for non-smooth, non-convex or poorly behaved
problems, and are rather sensitive to initial guesses. A critical aspect for these optimizers
is represented by the accuracy of the computed derivatives: analytic gradients and
Hessians would be ideal, but for most engineering applications this information is not
available, and a finite difference method will be used to find a numerical estimate of the
derivatives. Inaccuracy in this evaluation, due for instance to numerical noise or improper

107

Optimization

finite difference step size, will lead to failures or unreliable results. In addition, numerical
gradients are usually computationally expensive, since their cost is often associated
with the number of design variables. Such issue may be overcome by using the adjoint
method (see for instance Giles and Pierce (2000)), that represents the most efficient
approach for gradient evaluation in very large design spaces, since its cost is virtually
independent on the number of design variables. Despite that, adjoint solvers are difficult
to be implemented in pre-existing numerical codes and represent and extremely intrusive
tool for optimization. Derivative-free approaches, on the contrary, are more robust and
intrinsically parallel, besides being designed to work with black-box functions. These
methods, however, suffer from the curse of dimensionality, and may become intractable
for high-dimensional problems.

In terms of performance, it is worth noting that while the first class of methods
permits to find the optimum only locally, the second one can be used also for global
optimization. According to the search goal of the algorithm, we refer to:

• Local optimization, if the goal is to find a best feasible design point in a neigh-
bourhood of the initial point;

• Global optimization, when it is aimed at finding the best feasible objective
function value over the whole design space.

The capability of derivative-free algorithms to find the global optimum is a feature that
is obviously considered attractive in industrial applications. Moreover, since they do not
rely on smoothness assumptions in the objective or in the constraints, as gradient-based
methods do, they are also suitable for discrete problems. Nevertheless, global optimization
usually requires a much larger number of functional evaluations than the local counterpart,
and this number grows superlinearly with the number of design parameters. In addition,
the convergence rate is much slower for derivative-free optimizers. Therefore, finding the
global optimum rather than the local one will be more expensive in almost all cases. In
many large-scale engineering problems, however, the optimization stopping criterion is
often dictated by design costs and scheduling: therefore, for high-dimensional problems
with expensive objective evaluations, it is common practice to assume a sub-optimal
solution as converged point, provided that it introduces a valuable improvement with
respect to the baseline.

Nevertheless, for our target applications, we prefer to focus on global optimization,
given its non-intrusiveness and since it is more robust and versatile than the local

108

7.1 Methods

counterpart. Among the derivative-free global methods, we employ two common methods
based on response surface surrogates, as described in the following sections.

7.1.1 Surrogate-based global methods

Surrogate-based global minimization is based on the construction of a global surrogate
over a set of sample points, which is used by the optimizer to find the optimum. The
method is often used within an iterative scheme, that consists of globally updating the
surrogate, once new high-fidelity evaluations are available. At every iteration, minimizers
of the surrogate are found, and then a subset of these points is evaluated with the
high-fidelity model. In the next iteration, the new points are added to the set used to
build the surrogate. The surrogate tends to become more accurate at each iteration,
although there is no guarantee of convergence (see Adams et al. (2014a)). Nevertheless,
it is particularly suited for multi-objective optimizers based on genetic algorithms, since
it allows us to select points directly on the surrogate Pareto frontier. In other terms, the
approach does not necessitate to create a set of surrogates, one for each objective function,
as happens for instance in trust-regions methods, leading to a significant reduction of
the number of points initially required.

The approximation of the response surface is given by a Gaussian Process (GP)
spatial interpolation, also known as Kriging (see Cressie (1993)). Developed originally
in geostatistics, the main idea behind the Kriging interpolation method is to use the
spatial correlation between the input sampling points to interpolate the values in the
parameter space. With respect to other surrogate models, GP models introduce not
only a prediction of the objective function value, but also an estimate of the prediction
variance, providing an indication of the uncertainty in the model.

Given an initial set of N training points, Ξ = [µ1, ...,µN], the Kriging emulator G(µ)
of the true response function, representing an estimated distribution of the unknown true
surface, can be expressed in terms of a given deterministic component plus a stochastic
correction

G(µ) = h(µ)⊤β + Z(µ) ,

where h(µ) and β represent the vector of Nβ trend basis function and the corresponding
generalized least-squares coefficients estimates, respectively, whereas Z(µ) is a stationary
GP. Commonly, the trend function is chosen as a general polynomial function whose
coefficients are determined through least-squares regression (universal Kriging), while
Z(µ), also known as error model, introduces a correction to the trend function in order

109

Optimization

to guarantee that the model interpolates the data points with null uncertainty. By
construction, Z(µ) has zero mean, and the process covariance at two arbitrary points µi
and µj is given by

Cov [Z(µi, Z(µj)] = σ2
Zr(µi,µj),

where σ2
Z is the unadjusted process variance and r(µi,µj) is a correlation function,

generally chosen among powered-exponential, Matérn and Cauchy families, as pointed
out in Adams et al. (2014b). In this work, the squared exponential (Gaussian) correlation
function is selected:

r(µi,µj) = exp
(
−

P∑
k=1

θk|µi,k − µj,k|2
)
,

with µi,k and µj,k denoting the kth components of the P -dimensional vectors µi and
µj. The terms θk, instead, are adjustable correlation parameters, depending on the
correlation lengths Lk (i.e. the standard deviations in the Gaussian distribution) as
follows:

θk = 1
2L2

k

> 0.

Thus, a large θk is representative of a small correlation length and vice versa.

Given a finite number of sample points, N , the suitable value of the vector β is
usually not known a priori, but can be modelled in terms of a distribution of possible
values. Assuming no preliminary knowledge of this distribution, i.e. under the so-called
vague prior hypothesis, the maximum likelihood value of the coefficients is computed
solving the generalized least-square problem:

β̂ =
(
H⊤R−1H

)−1 (
H⊤R−1f

)
,

where H is the matrix containing the trend basis functions at all points in Ξ, i.e.
Hi,k = hk(µi), f denotes the vector of true responses and R is the correlation matrix for
all the data point in the sample design, defined as

Ri,j = Rj,i = r(µi,µj) = r(µj,µi).

The terms in R are therefore dependent on the vector of correlation parameters θ =
[θ1, ..., θP]⊤, that is determined via a Maximum Likelihood Estimation (MLE) procedure.
MLE consists in searching the θ set that maximises the plausibility of the Kriging model
prediction, given the input data. Numerically, this is attained by maximising the natural

110

7.1 Methods

logarithm of the likelihood (i.e. the probability of observing the true response values f
given R), that under the vague prior assumption can be written as:

log(lik(θ)) = −1
2

(
(N −Nβ)

(
σ̂2
Z

σ2
Z

+ log(σ2
Z) + log(2π)

)
+

log(det(R)) + log(det(H⊤R−1H))
)
.

(7.1)

By substituting into Equation (7.1) the MLE of the unadjusted variance, i.e.

σ̂2
Z = (f −Hβ̂)⊤R−1(f −Hβ̃)

N −Nβ

,

it follows that the maximization problem is equivalent to find the minimum of the
functional

F(θ) = log(σ̂2
Z) + log(det(R)) + log(det(HTR−1H))

N −Nβ

,

where the determinants can be efficiently computed through Cholesky factorization. After
evaluating the correlation parameters, R and β̂ are determined. The estimated response
of the model at an arbitrary point is then given by the relation:

fG(µ) = E [G(µ)|f] = h(µ)⊤β̂ + r(µ)TR−1(f −Hβ̂) , (7.2)

where r(µ) is the correlation function vector, defined as rk = (µ) = r(µ,µk), with
µk ∈ Ξ.

It is worth noting that Equation (7.2) represents a best linear unbiased estimator
of the unknown true function, that interpolates the data as long as R is numerically
non-singular. A known issue in determining the optimal θk for a GP is that the condition
number of the correlation matrix R tends to significantly increase when many sampling
points cluster in a small region, resulting in a poor predictive capability of the model. In
addition, input spaces with large dimensions will result in a large R matrix, that must be
inverted several times in order to determine the model parameters, making the process
computationally expensive. For the applications of interest, matrix ill-conditioning is
unlike to happen, especially at early optimization stages, when the sampling of the
parameter space is rather coarse and well-spaced, but some problems may arise when the
algorithm starts to converge, introducing a significant amount of duplicate information.
In order to avoid this, two strategies are commonly employed. In the first one, some noise
(often referred to as nugget) is added to the matrix diagonal to improve the conditioning

111

Optimization

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

f()

confidence interval
FOM eval.
zonal-POD eval.
true response
kriging interpolation

Fig. 7.1 Example of data interpolation by Kriging, using both FOM and zonal-POD simulations.

and account for measurement error in the input data, whereas the second one consists
in choosing an optimal subset of points. Such choice can be made a priori, through a
greedy heuristic, or within the maximum likelihood optimization loop, by discarding the
points that contain the least unique information. Further detail can be found in Adams
et al. (2014b).

The Surrogate-based Global Optimization (SBGO) strategy, as employed in the
following sections, is outlined in Algorithm 8. Note that the initial response outputs
are evaluated through the FOM, whereas during the optimization loop the zonal-POD
approach is employed: the GP process is then built over solutions of mixed accuracy, but
given the consistency of the proposed ROM, we have that the full-order and reduced
order response surfaces coincide for the points belonging to the initial database, since
f(µk) = f ⋆(µk) ∀µk ∈ Ξ (see Figure 7.1). As a consequence, the true response surface
that the Kriging model tries to emulate maintains its smoothness.

112

7.1 Methods

Algorithm 8 SBGO algorithm
1: compute an initial distribution of µk ∈ Ξ
2: evaluate the response outputs f(µk) ∀µk ∈ Ξ
3: while convergence = false do
4: determine θ through MLE
5: evaluate fG(µ)
6: µnew ← arg minµ fG(µ)
7: evaluate the new response output f⋆(µnew)
8: update the training set and the responses set
9: end while

In terms of performance, the method relies on the choice of the initial population,
used to start the algorithm, and on the criteria employed to sample the promising regions
of the parameter space, the so-called in-fill sample criteria (see for instance Forrester and
Keane (2009) for a complete review of the problem and Liu et al. (2012) for a comparison
of infill techniques). For this work, we adopt a popular criterion, i.e. minimization of
the surrogate prediction, whereas a more efficient strategy is illustrated in the following
section.

7.1.2 Efficient Global Optimization

Efficient Global Optimization (EGO) is a surrogate-based global optimization technique
originally proposed by Jones et al. (1998) for expensive black-box functions, as in the
case of simulation driven optimizations. Starting from a sample of true simulations, a GP
approximation of the objective function is build during each EGO iteration and the new
point in the parameter space is chosen by maximising an Expected Improvement Function
(EIF), defined as the expectation that any point in the design space will enhance the
current best, in terms of the GP model predicted variances and expected values. The
rationale behind the algorithm is to provide balance between exploiting regions with
good solutions and exploring regions where the prediction uncertainty is high.

As in the previous section, the true response function is expressed as G(µ) =
h(µ)Tβ + Z(µ), with the difference that the trend of the model is assumed constant for
simplicity, whereas the trend coefficients β are selected as the mean of the input data.
The process variance is determined through the MLE procedure, whereas the correlation
function is assumed to be a squared-exponential (see Adams et al. (2014b)).

113

Optimization

Thus, the model expected values fG and variance σ2
G at the generic point µ can be

computed as:
fG(µ) = h(µ)Tβ + r(µ)TR−1(f −Hβ) ,

σ2
G(µ) = σ2

Z −
[
h(µ)T r(µ)T

] 0 HT

H R

h(µ)
r(µ)

 ,

where the vector r(µ) contains the covariation terms between µ and every point µk ∈ Ξ
and R is the N ×N covariation matrix for the training points, both defined as in Section
7.1.1, the vector f contains the training points outputs, and H is a N × 1 matrix whose
rows are the trend function evaluated at the training points, i.e. h(µk)⊤.

At every point of the design space, the GP prediction G(µ) is then a normal Gaussian
distribution N [fG(µ);σ2

G(µ)]. Thus, the following definition for the EIF can be derived:

EIF(G(µ)) := E
[
max

(
Gbest −G(µ), 0

)]
,

where Gbest is the current best solution on the training set. The expected value is then
computed integrating over the distribution G(µ), obtaining the following analytical
formulation:

EIF(G(µ)) = (Gbest − fG(µ))Φ
(
Gbest − fG(µ)

σG(µ)

)
+ σG(µ)φ

(
Gbest − fG(µ)

σG(µ)

)
. (7.3)

Generally speaking, from Equation (7.3) it is possible to note that the points maximising
the EIF can be either the ones with good expected values or those with greater vari-
ance, providing a compromise between the exploitation of the parameter space and its
exploration.

The basic steps of the EGO algorithms are summarised in the following pseudo-code
(Algorithm 9). As in Section 7.1.1, the outputs are computed through both the FOM
(initial distribution) and the hybrid ROM/FOM (EGO iterations).

114

7.2 Numerical tools

Algorithm 9 EGO algorithm
1: compute an initial distribution of µk ∈ Ξ
2: evaluate the response outputs f(µk) ∀µk ∈ Ξ
3: set EIF(µ) = 1
4: while EIF(µ) ≤ 0 + ϵ do
5: build G(µ)
6: evaluate Gbest

7: compute EIF
8: µnew ← arg maxµ EIF
9: evaluate the new response output f⋆(µnew)

10: update the training set and the responses set
11: end while

When dealing with constrained optimization problems, if the constraints are de-
terministic, they can be handled by introducing a merit function and using the EGO
method straightforwardly. Otherwise a new formulation of the algorithm, which includes
the definition of an Expected Feasibility Function (EFF), is required (see Adams et al.
(2014b) for further details).

With respect to the standard Kriging model, the EGO algorithm presents a more
efficient in-fill criterion, i.e. the maximization of the EIF. Nevertheless, for large design
spaces and consequently complicated objective functions, the real global optimum is
often difficult to obtain, especially when the deformation range varies a lot. This issue
can be mitigated using a concept similar to the trust-region method, as demonstrated
in Han et al. (2018), where a dynamic and adaptive search of the design space for the
maximum of the EIF is performed, improving the optimizer performance in a problem of
drag minimization for a full aircraft configuration with 80 design parameters.

7.2 Numerical tools

The optimization procedures are driven by the algorithms provided in the Dakota1

toolkit, a multilevel parallel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis developed at Sandia
National Laboratories (see Adams et al. (2014a)). Dakota contains a variety of iterative
analysis methods and algorithms, in order to perform parameter studies, design of
experiments, uncertainty quantification, calibration and optimization. Such capabilities

1https://dakota.sandia.gov/

115

https://dakota.sandia.gov/

Optimization

may be used individually or as fundamental blocks in more advanced strategies, including
surrogate-based optimization, optimization under uncertainty or mixed aleatory/epistemic
uncertainty quantification. All the tools are designed to exploit High Performance
Computing, providing a flexible interface towards numerical simulation codes.

116

Chapter 8

Industrial Applications

Part of the work described in this chapter has been previously submitted for publishing in
Scardigli et al. (2019) and Salmoiraghi et al. (2018).

The results of the integrated approach proposed in the previous chapters are shown
for two cases of interest, namely the front-bumper optimization of a three-dimensional
car model (Section 8.1) and a sailing boat thrust maximization problem (Section 8.2).

8.1 DrivAer

In this section, we present the aerodynamic shape optimization of the front bumper of
the DrivAer1 car model. The DrivAer model is a realistic generic car model developed
by TU Munich in collaboration with Audi AG and BMW Group, and made available in
several configurations for research purposes. Based on two medium-size cars (see Heft
et al. (2011, 2012) for further details), the model represents a good compromise between
complex production cars and strongly simplified models. Generic models like the Ahmed
body (Ahmed et al. (1984)) or the SAE model (Cogotti (1998)), are widely used in
vehicle aerodynamics to investigate basic flow structures but fail to predict more complex
phenomena, due to the oversimplification of the geometries in relevant regions, e.g. rear
end, underbody and wheelhouses. On the other hand, real cars are unlikely to be used for
validation purposes, due to data access restrictions. In this scenario, the DrivAer model
constitutes a solid benchmark for industrial applications, merging a realistic and detailed
geometry description with the availability of numerical and experimental validation data.

1http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/

117

http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/

Industrial Applications

For the case under investigation, we adopt a fastback configuration with mirrors,
rotating wheels and smooth underbody. All the numerical investigations are carried out
with ground simulation and at realistic Reynolds numbers, increasing the complexity
of the phenomena: the flow is fully three-dimensional and turbulent, characterized by
separation, recirculation bubbles and unsteady wakes (Hucho (1987)). Details about the
numerical setup are provided in the following sections.

8.1.1 FOM setup

A three-dimensional hex-dominant mesh of about 15×106 cells is generated around the car
model by the snappyHexMesh utility, introducing a symmetry plane in the longitudinal
direction, as shown in Figure 8.1. The computational domain Ω is 50 m long, with a
height H of 12 m and a width W of 10 m, chosen in order to guarantee the same blockage
ratio, defined in terms of the car frontal area Af as

b = Af

HW
≈ 8%,

as the one considered by Heft et al. (2012) for the experimental investigation of the same
problem.

In terms of boundary conditions, we impose inflow and outflow conditions at the
boundaries corresponding to the wind tunnel inlet and outlet sections (Figure 8.1),
whereas the ground is modelled as a moving wall with tangential velocity equal to the
inlet free-stream velocity U∞ = 16 m/s. The Reynolds number of the simulations, based
on the free-stream speed and on the car reference length lref = 4.61 m, is equal to
4.87× 106.

The flow solution is obtained by solving the steady RANS equations in Ω, with
the Spalart-Allmaras turbulence model, as presented in Section 3.2.5, introducing wall
functions to describe the near-wall flow. The target y+ for this application is set equal
to 35.

The output of interest for the simulations is the aerodynamic drag coefficient, defined
as

Cx =
∫
Scar (−pn + τ) · ex ∂S

1
2ρU

2
∞Af

(8.1)

where n represents the outward-pointing surface normal, ex is the versor in the longitudinal
direction, ρ the air density, and U∞, Af previously defined.

118

8.1 DrivAer

L

H

W

Fig. 8.1 Geometry and computational domain of the DrivAer car model. The moving ground is
depicted in grey.

Undoubtedly, the physics of the problem is unsteady. The main focus of this simulation,
however, is the aerodynamic performance of the car, that is usually expressed in terms
of the average coefficients. A common practice in the industrial framework, is to employ
nevertheless the steady RANS solver, and to obtain the actual coefficients from the field
averaged over the SIMPLE iterations. In this case, we choose to average the quantities
over the last 1000 solver iterations, as shown in the example of Figure 8.2. Even if
the field oscillations are a numerical artefact and do not correspond to the physical
counterpart, this approach leads to reasonable results: compared with experimental data
(see Heft et al. (2012)), for instance, the numerical setup presented above produce an
error smaller than 5% on the average Cx, which is considered acceptable for our purposes.

8.1.2 Geometry parameterization

In this application, we employ the FFD parameterization technique directly on the com-
putational mesh, using the PyGEM tool. The mesh region close to the car front bumper is
wrapped in a lattice of 6×3×4 control points, as shown in Figure 8.3. In order to guarantee
a smooth transition between the deformable and fixed regions of the mesh, most of such
control points are not allowed to move, except the ones highlighted in red in Figure 8.3, i.e.
the points with indices (nx, ny, nz) = (1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1).
This set of points is moved by the same quantity in the longitudinal and vertical direc-
tions, resulting in a two-dimensional parameter space, µ = (µ1, µ2), whose upper and
lower bounds are outlined in Table 8.1. The limits are expressed in percentage of the
corresponding lattice dimension, and are chosen in order to avoid intersections between
two consecutive points in the control grid.

119

Industrial Applications

0 500 1000 1500 2000

iteration

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

A
er

o.
 c

oe
ff.

Fig. 8.2 Convergence of the aerodynamic coefficients for the baseline configuration: Cx, Cz and
averaged quantities C̄x and C̄z.

µ1 µ2
lower bound −0.18 −0.30
upper bound 0.18 0.30

Table 8.1 Limits of the parameter space.

The chosen parameterization guarantees the overall satisfaction of our set of mesh
quality constraints, verified a posteriori for the limit configurations (i.e. the ones
corresponding to the vertices of the parameter space). In Figure 8.4, we report the
comparison between the original mesh and the resulting deformed mesh for the parameter
µ = (0.18, 0.30), shown on the symmetry plane in the inward-pointing direction.

Since the FFD is applied directly to the volumetric mesh, we have a set of topologically
equivalent computational domain and there is no need to rebuild the mesh for the
others configurations, resulting in a noticeable simplification of the model reduction and
optimization workflow, as highlighted in the following sections.

8.1.3 ROM setup

For each physical variable involved, i.e. p, u and the viscosity-like turbulent quantity
ν̃, a separate POD basis is computed, using as forcing term of Equation (5.11) the

120

8.1 DrivAer

Fig. 8.3 FFD lattice and a possible deformation (red control points): (µ1, µ2) = (0.18, 0.30).

Fig. 8.4 Mesh morphing of the DrivAer front bumper: original mesh (blue lines) vs modified
mesh (red lines) for (µ1, µ2) = (0.18, 0.3). The white box identifies the deformed region.

121

Industrial Applications

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

2

1

2

3

4

5

Database 3x3 Greedy points Database 2x2 Predictions

Fig. 8.5 Sampling of the parameter space: initial points (blue) and greedy points (green).

ensemble-averaged fields. As for the aerodynamics coefficients, the solution snapshots
are also averaged over the last 1000 solver iterations.

The snapshot used to train the POD model are selected through the pGA-CCVT
algorithm outlined in Section 6.3. As shown in Figure 8.5, we start from a uniform
distribution of N = 9 points and then 5 more points are added iteratively, computing
the error estimator using only the restriction of the pressure field to the surface of the
model, i.e. ∆m(µi) = ∥pwall(µi) − p⋆wall(µi)∥, where pwall represents the FOM solution
and p⋆wall its POD approximation. The choice is justified by the fact that we are interested
only in integral quantities over the car surface, and the pressure drag is the main drag
component for this kind of applications. The most critical region appears to be the
south-east quadrant of the parameters space, but the algorithm also explores regions
with fewer points.

Then we extract the POD bases that will be used in the optimization computations.
The pressure forcing term and the first three modes are reported in Figure 8.6, whereas
the eigenvalues for all the physical variables are presented in Figure 8.7. The RIC analysis
shows that for the velocity and pressure bases, all 13 modes are required in order to
capture the 99.99% of the energy, and therefore the complete bases will be employed
in the following. The contribution of the modes is localized in the front region of the
model, and in particular near the bumper. Nevertheless, as expected, also the underbody

122

8.1 DrivAer

(a) p̄. (b) ϕ1.

(c) ϕ2. (d) ϕ3.

Fig. 8.6 Average pressure field and three more energetic POD modes on the DrivAer symmetry
plane.

0 5 10 15

M
r

10-4

10-3

10-2

10-1

100

E
ig

en
va

lu
es

Fig. 8.7 POD eigenvalues for velocity, pressure and turbulent quantity, scaled with the corre-
sponding maximum value.

123

Industrial Applications

Fig. 8.8 Leave-one-out error distribution for the velocity field.

flow is affected by the geometry changes in the front and, consequently, the turbulent
wakes in the back of the car.

Such trend is also confirmed from the error maps that we compute through the
leave-one-out cross-validation method (see Section 6.1), in order to identify a suitable
domain decomposition. The results of this analysis are shown in Figure 8.8, where we
report the velocity error map evaluated using the snapshots previously computed. The
Ω1(µ) domain is then chosen by imposing an error threshold on the velocity σR = 0.25U∞:
as a rule of thumb in the selection of such subdomain, we make sure to include all the
cells in the prismatic layers and to position the Γ1 interface sufficiently away from the
wheels. These requirements are due to the performance of the full-order solver, which
may not be able to handle very irregular boundaries in critical regions such as boundary
layers and in proximity of rotating components. The discretization of the resulting
domain, shown in Figure 8.9, includes only 2 · 106 cells (with respect to the 15 · 106) and
leads to a reduction in the computational time of a factor 8, considering that the FOM
requires around 160 cpuh, whereas the zonal-POD model only 20. In this application,
given that both the hybrid and full-order solutions need to be averaged over a thousand
solver iterations, the acceleration due to the flow initialization is less relevant, and the
achievable speed-up is mainly limited to the geometrical contribution.

In order to assess the predictive capacity of the hybrid approach, four additional
out-of-sample configurations (marked in red in Figure 8.5) are tested, varying the size of
the database. The results of this analysis are illustrated in Figure 8.10, where we plot
the average error (among the four predictions) on the two drag contributions, i.e. Cx,1

and Cx,2. When considering only the average fields (Mr = 0), both errors are quite high:
around 2% in the outer region and more than 5% in the inner domain. This condition
significantly improves when using the databases with N = 4 or N = 9 snapshots, and the

124

8.1 DrivAer

Fig. 8.9 Ω1(µ) domain (light blue) for the DrivAer problem, as selected through the leave-one-out
method.

Fig. 8.10 Average error on predictions varying Mr.

corresponding POD bases with Mr = N − 1: with N = 4 and Mr = 3, the error in Ω1(µ)
drops to 1% and keeps getting better by adding new snapshots to the database. Using all
the 13 snapshots, for instance, the average error on the total drag coefficient is equal to
0.4%. All the computed errors are normalized with respect to the corresponding full-order
drag coefficient. In Figure 8.11 we report the errors fields between the full-order and
hybrid solution of the worst (in terms of accuracy) out-of-sample configuration, evaluated
on the surface of the car and adimensionalised with respect to the dynamic pressure
pdyn = 1

2ρU
2
∞. Both the wall shear-stress τwall and pressure pwall are well approximated

by the zonal-POD model in Ω1 (delimited by a white line in the figure), except in the
wheel region, where the difference between the FOM solution and the hybrid one become
more noteworthy. This is not surprising given the complexity of the flow in such area,

125

Industrial Applications

(a) |pwall−p⋆wall|
pdyn

. (b) |τwall−τ⋆wall|
pdyn

.

Fig. 8.11 Surface error fields for the worst out-of-sample configuration: the white line identifies
the interface between the FOM and ROM regions.

highly characterised by turbulence and unsteady phenomena. The higher errors, about
2% of the dynamic pressure, can be partially justified by the fact the ROM model is
tuned on the overall drag coefficient, as well as the window for the fluctuations average.
The approximation of the solution in this region would presumably benefit from a longer
statistics accumulation. In addition, it should be noted that the Γ1 interface is located
quite close to the wheel (see Figure 8.9): the pressure distribution, therefore, can be easily
influenced by the boundary proximity. The effects of the turbulent wakes originating
from wheels and wheelhouses appear evident also considering the error in the outer
domain, where the solution is given by a linear combination of the POD modes: the
approximation in this region is less accurate, and the errors are localized mainly past the
wheels and on the underbody, as also predicted by the leave-on-out error analysis. The
combination of such local contributions, however, leads to a 0.8% error on the integral
objective function.

8.1.4 Optimization setup

The optimization procedure is driven by the EGO method introduced in Section 7.1.2,
using the parameter set previously defined, i.e. µ = (µ1, µ2), and the total drag coefficient
as objective function. In terms of constraints, the design parameters are bounded in
order to guarantee, for every new configuration of the bumper, a vehicle approach angle
of at least 20 degrees. The response surface is modelled through a GP, which initially is
based on the 13 high-fidelity simulations evaluated with the FOM, during the training

126

8.1 DrivAer

of the POD model. The GP model is then updated using the zonal-POD simulations,
whenever a new functional evaluation is required. The point that maximises the EIF is
found through the DIRECT algorithm (Jones (2001)) available in Dakota.

The optimization process is stopped either when convergence is attained, or when
the number of evaluations exceeds a certain maximum value.

8.1.5 Results

The configuration that minimizes the Cx coefficient of the vehicle is found after 13 full-
order and 25 zonal-POD simulations. Compared to a a standard optimization strategy
employing global surrogate models, the proposed approach allows us to save around the
58% of the computational time, considering also the offline phase required to train the
POD model. In fact, the whole cost of the optimization is roughly 2580 cpuh, against
the 6080 cpuh that will be required to reproduce the same process with only full-order
evaluations of the optimization functional.

The optimal configuration is found for the parameter set

µbest = (0.0866, 0.2999),

corresponding to a control point displacement of (xcp, zcp) = (0.0693 mm, 0.1799 mm),
that results in the front-bumper modification highlighted in Figure 8.12. With respect
to the baseline configuration, the optimizer tends to lift the bumper, in the attempt to
reduce the frontal area exposed to the flow and, consequently, the extent of the stagnation
region (see Figure 8.14). As shown in Figure 8.13, this allows the velocity streamlines
to make a gentler turn around the car, reducing the flow separation after the bumper
edge. This permits to reduce the vehicle aerodynamic resistance by 1.1%, verified on the
full-order solution. The comparison between the coefficient values predicted by the ROM
and the ones verified through the full-order simulation is reported in Table 8.2. With
respect to the objective function, i.e. the drag coefficient, the hybrid model is found to
be rather accurate, leading to a relative error < 0.3%. In this case, the predicted drag
reduction is slightly greater than the actual value. In terms of lift coefficient, instead, the
error on prediction is 2.4%, which is not surprising given that the ROM setup is tuned
only on the objective function.

127

Industrial Applications

Fig. 8.12 DrivAer optimization: best front-bumper configuration (orange) vs baseline (white).

(a) Baseline configuration.

(b) Best configuration.

Fig. 8.13 Velocity streamlines on the symmetry plane for the DrivAer model: front region
detail.

128

8.2 J80 sailing boat

(a) Baseline configuration. (b) Best configuration.

Fig. 8.14 Surface pressure field pwall for the DrivAer model.

FOM ROM |Ci − C⋆
i |/|Ci|

Cx 0.11488 0.11456 0.0028
Cz −0.02623 −0.02686 0.0240

Table 8.2 Aerodynamic coefficients for the optimized configuration: full-order solution, reduced-
order solution and relative errors.

8.2 J80 sailing boat

In this application, a combined shape optimization and optimal control problem of a
sailing boat is addressed. Specifically, the sailing boat under investigation is equipped
with an inflatable device, which controls the shape of the mainsail profile (see Figure
8.15). The introduction of such system is aimed at reducing the flow separation zone
due to the mast, allowing the flow to recover faster and improving the efficiency of
the mainsail, as shown in Scardigli et al. (2019). The final goal of the problem is to
maximize the thrust developed by the sailing system, through the optimization of the
inflatable device and the definition of the correct trim angles of the sails, in a condition
of close-hauled sailing. In order to simplify the problem, the mainsail and the jib are
considered rigid, whereas no wind-wave modelling is introduced.

8.2.1 FOM setup

In Figure 8.16 we report the geometry of the problem and the full-order solution domain.
In terms of working conditions, the boat sails at a speed Vboat = 6.474 knots with an

129

Industrial Applications

Fig. 8.15 J80 sailing boat with inflatable device on the mainsail (red).

L

H

W

x

z

y

Fig. 8.16 Geometry of the J80 sailing boat model. The sea surface is depicted in blue.

130

8.2 J80 sailing boat

Vboat

TWVAWV

Fig. 8.17 True and apparent wind conditions.

apparent wind velocity V AW = 11.32 knots, sensed at a reference height of 10.6 m above
water. The bearing respect to the apparent wind is BAW = 37.7◦, whereas the angle
of heel is equal to 10◦. Given the apparent wind conditions, true wind conditions are
derived from the relations:

V TW =
√

(V AW sin(BAW))2 + (V AW cos(BAW)− Vboat)2) ,

BTW = arctan
(

V AW sin(BAW)
V AW cos(BAW)− Vboat

)
,

where V TW and BTW denote the true wind velocity and bearing, respectively (see
Figure 8.17). True wind conditions are used to define the free-stream conditions. For this
purpose, we need to introduce a fully-developed Atmospheric Boundary Layer (ABL)
profile. As addressed for instance in Blocken et al. (2007), the ABL profiles for the mean
wind speed, and the turbulent kinetic energy and dissipation rate, are usually simplified
by assuming a constant shear-stress distribution along the vertical direction. This leads
to the following definitions:

uw(z) = u⋆ABL
κ

ln
(
z + z0

z0

)
, (8.2)

k(z) = |u
⋆
ABL|2√
Cµ

,

ϵ(z) = |u⋆ABL|3

κ(z + z0)
,

where u⋆ABL represents the ABL friction velocity, z the height coordinate and κ the von
Karman constant, set to 0.41. z0, instead, is the aerodynamic roughness length: according
to the classification by Davenport and Wieringa (1992), for an open sea landscape we can
assume z0 = 0.0002 m. The friction velocity is obtained by substituting in Equation 8.2

131

Industrial Applications

the true wind velocity derived from wind readings at the reference height, that leads to

u⋆ABL = κuw(zref)
ln
(
zref+z0
z0

) .
The ABL velocity profile uw is then composed with the boat velocity uboat = (Vboat, 0, 0)
to obtain the correct profile of the free-stream apparent velocity, which is a warped profile
whose intensity and direction at the reference height is equal to the measured apparent
velocity.

The boundary conditions are assigned consequently: the sea surface is modelled as
a slip wall, with tangent velocity equal to Vboat, the boat surfaces are treated as solid
walls, under the assumption of rigid sails, whereas free-stream conditions are prescribed
in the remaining boundaries.

The atmosphere physical properties are standard sea level conditions at the reference
temperature of 20 ◦C. It follows that the Re number, defined in terms of the V AW and
a reference length lref = 4 m, is set equal to 1.54 · 106.

The computational domain Ω has an extension of 224 m × 196 m × 98 m and it
is discretized through a grid of approximately 26 · 106 cells, generated through the
snappyHexMesh utility, with prismatic boundary layers on both the geometry and the
sea surfaces. In Ω the steady RANS equation are solved, employing the realisable
k − ϵ turbulence model (see Section 3.2.5), with wall functions for near-wall treatment.
Depending on the jib and mainsail angles, the fluctuations of the flow may become more
noticeable in the numerical solution, meaning that the steady solver is no longer capable
to reach a converged solution. In principle, in order to capture the time dynamics, a
transient solver should be introduced. Nevertheless, since the main focus of the simulation
is finding out the aerodynamic forces on the sails, we employ the steady solver even in
this eventuality, as it is common practice in similar industrial problems. The actual
forces are obtained from the fields averaged over the SIMPLE iterations.

The sailing system performances are assessed in terms of the overall driving force
(the developed thrust) and lateral force, defined as:

T = −
∫
SJib+SMain

(−pn + τ) · ex ∂S, FL = −
∫
SJib+SMain

(−pn + τ) · ey ∂S, (8.3)

where n is the outward-pointing surface normal, and ex and ey denote the unit vectors
in the x and y directions, respectively.

132

8.2 J80 sailing boat

θM θJ p1 p2 p3
lower bound −10◦ −5◦ −10 mm −5 mm −5 mm
upper bound 10◦ 5◦ 100 mm 50 mm 50 mm

Table 8.3 Limits of the parameter space.

8.2.2 Geometry parameterization

With reference to Figures 8.19a and 8.18, the following five design variables are chosen
to modify the trim of the sails and the device inflation:

• two rigid rotations, i.e. θM, the absolute rotation of the sailing system, and θJ, the
relative rotation of the jib, with respect to the fastening axes;

• three independent parameters controlling the inflatable profile deformation, i.e.
p1, p2 and p3.

More specifically, the device shape parameters represent the displacements along the
surface normals of the interior control points of the inflatable root contour. In order to
enhance a better control over the geometry, the lattice is mapped directly on the surface.
In this application it is crucial to control the feasibility of the design by introducing
some manufacturing constraints. In particular, the inflatable chambers on the port and
starboard surfaces of the mainsail must be symmetric, and the fold that originates where
the device is attached to the sail must be preserved, as well as the curvature of the
profile at the leading and trailing edges. This latter requirement is attained through the
level-set approach introduced in Section 2.2.2: in particular, the deformability field of
the points belonging to the geometry surface is weighted by the scalar field depicted in
Figure 8.19b. The control points corresponding to the leading and trailing edges of the
profile are then fixed, whereas the others move symmetrically with respect to the profile
chord, as illustrated in Figure 8.19a. The displacements along the tangent direction to
the mainsail are suppressed. Between the head-side control points and the foot-side, a
linear relation is imposed, so that (p1, p2, p3)foot = 3 · (p1, p2, p3)head.

The bounds of the parameters are reported in Table 8.3.

With the current set of parameters, the maximum thickness on the chord of the
inflatable device ranges from a minimum value of 10 cm up to a maximum of 30 cm,
whereas for the reference configuration the maximum thickness is equal to 14 cm.

133

Industrial Applications

(a) Initial configuration of the sail system.

(b) Jib and mainsail rotations.

Fig. 8.18 Trimming of sails around mast and jib axes. Positive rotations in counter-clockwise
direction.

(a) Lattice of control points.

(b) Deformation weighting field based on the
approximate geodesic distance.

Fig. 8.19 Parameterization of the J80 sailing boat inflatable device.

134

8.2 J80 sailing boat

Since the two rigid rotations introduce relevant displacements of the sails trailing
edges, we prefer to parameterize the surfaces rather than the computational grid. This
means that the mesh is regenerated for each analysed configuration.

8.2.3 ROM setup

In order to build the POD model, an initial database of simulations is created, using
as snapshots the fields obtained for each sampling point, averaged over the steady-state
solver iterations. In this application, we use only N = 9 full-order simulations, including
the baseline configuration, corresponding to the parameter set µ1 = (0, 0, 0, 0, 0). The
remaining sampling points are given by the 23 combinations of the limits of the parameters
excursion, considering the maximum and minimum sails rotations and the set of shape
parameters p1, p2 and p3 that lead to the maximum and minimum inflation of the device.
No greedy sampling strategy is employed at this stage.

A separate POD basis is computed for each physical variable (i.e. p, u and the
turbulence quantities k and ϵ). As a consequence of the fact that we pre-process the
fields by removing the average among the snapshots, choosing to represent through POD
the fluctuations with respect to such average fields, the maximum size of the POD basis
will be equal to N − 1. The POD modes for the velocity are depicted in Figure 8.20: as
expected, the more energetic modes are characterized by bigger flow structures, localized
mostly in the turbulent wakes. Since we deal with surface morphing, rather than mesh
morphing, the modes are defined in physical space, through the interpolation of the
flow snapshots over a reference grid. In terms of the overlapping domain Ω0 we are
forced to remove all those cells swept by both the sails rotations and the inflation of the
device, i.e. the ones interested by the geometry variation, where the POD bases cannot
be defined. Figure 8.21, instead, shows the eigenvalues decay for the velocity, pressure,
turbulent kinetic energy and turbulent dissipation rate fields. To chose a suitable size of
the POD basis, we use the RIC criterion, truncating the expansion after the first term
that guarantees an energy content greater than the 99.99%. Anyway, due to the relatively
small size of the snapshots database, the desired level of information can be achieved
only by considering the totality of the modes. Therefore, the zonal-POD computations
are carried out with Mr = 8 for each POD basis.

The domain decomposition and the position of the fluid interface Γ1 are chosen
accordingly to the algorithm presented in Section 6.2. Thanks to the leave-one-out
method, we can obtain a separate error map for each physical variable in Ω2: an example

135

Industrial Applications

(a) ū. (b) ψ1.

(c) ψ2. (d) ψ3.

Fig. 8.20 Average velocity field and three more energetic POD modes represented in a mid-section
of the sailing boat.

136

8.2 J80 sailing boat

0 1 2 3 4 5 6 7 8 9

M
r

10-4

10-3

10-2

10-1

100

E
ig

e
n

v
a

lu
e

s

λ
u

λ
p

λ
k

λ
ǫ

Fig. 8.21 POD eigenvalues for velocity, pressure and turbulent quantities, scaled with the
corresponding maximum value.

of these error distributions can be found in Figure 8.22, where we report ep(x) and eu(x)
for a plane cut along the z-axis, normalised with the reference dynamic pressure and the
reference velocity, respectively. As expected, the most critical regions are localised close
to the body and in the turbulent wakes, especially in the proximity of the mainsail.

In order to derive a suitable decomposition, we consider different error thresholds
σR for the field eu(x), as shown in Figure 8.24. The corresponding Ω1(µ) domains are
rectangular boxes containing all the deformable part of the geometry and all those cells
that exceed the threshold value. For each domain, we verify the predictive capabilities of
the setup for an out-of-sample configuration, corresponding to an intermediate maximum
thickness of the inflatable device, equal to 20 cm. The performance of the zonal-POD
approach for the domains of Figure 8.24 are collected in Table 8.4, where the term
ϵT = |T − T ⋆|/|T | represents the relative error on the objective function, i.e. the sailing
system thrust. For the optimization, we chose the domain corresponding to σR = 0.4Uref,
characterized by an error less than 1% and by a speed-up factor of 19 with respect to
the FOM. It should be noted how the overall speed-up factor is given not only by the
ratio between the number of cells in the computational domain, but it is enhanced by
a faster convergence of the hybrid model: the average number of iterations required

137

Industrial Applications

(a) ep(x). (b) eu(x) magnitude.

Fig. 8.22 Pressure and velocity leave-one-out error distributions on the z = 4 m section. The
white areas near the sails represent those cells where the POD modes cannot be defined.

to obtain convergence on the forces is at least three times smaller than the full-order
case, thanks to a better flow initialization, as shown in Figure 8.23. Considering for
instance a sail configuration not included in the database, we observe that the simulation
residuals (Figure 8.23(left)) tend to get stable after about 1000 iterations for the hybrid
approach, whereas the FOM requires approximately 3000 iterations. The same is trend is
confirmed also by the evolution of the integral objective function T (Figure 8.23(right)),
although with less evidence: convergence in the driving force for the ROM is reached in
half the iterations with respect to the FOM simulation. For this application anyway, we
employ a convergence criterion based on residuals, rather than objective functions As a
consequence, while the full-order simulation requires about 230 cpuh, for the zonal-POD
approach in the selected domain the computational time drops to 12 cpuh.

domain σR ϵT #cells iters speed-up
full 25.7 · 106 3000 1
(a) 0.1 0.0066 5.3 · 106 1000 15
(b) 0.2 0.0093 4.8 · 106 1000 17
(c) 0.4 0.0099 4.1 · 106 1000 19

Table 8.4 Performance of the zonal-POD approach for the reduced domains (a), (b) and (c) of
Figure 8.24. The error on the objective function, ϵT , refers to a predictive simulation for an
intermediate configuration not included in the initial database.

138

8.2 J80 sailing boat

0 500 1000 1500 2000 2500 3000

iteration

350

360

370

380

390

400

410

420

430

440

T
 [N

]
zonal-POD
FOM

0 500 1000 1500 2000 2500 3000

iteration

10-6

10-5

10-4

10-3

10-2

10-1

100

U
x r

es
id

ua
l

zonal-POD
FOM

Fig. 8.23 Convergence performance of the ROM w.r.t. the FOM for an out-of-sample configura-
tion: residual of the ux component of the velocity field (left) and sailing system thrust (right)
over the SIMPLE iterations.

(a) σR = 0.1Uref. (b) σR = 0.2Uref. (c) σR = 0.4Uref.

Fig. 8.24 The domain Ω1(µ) for three different tolerance values of the leave-one-out error on the
velocity field eu(x). The blue isosurfaces represent the error envelope for a given error threshold,
whereas the black lines delimit the corresponding reduced domain used in the computations.

139

Industrial Applications

(a) u (colormap) vs u⋆ (black isolines).

(b) Cp (colormap) vs C⋆
p (black isolines).

Fig. 8.25 FOM-ROM fields comparison for an out-of-sample configuration (optimization best)
on the z = 4 m section.

In this case, since we include the whole sailing boat within the Ω1(µ) domain, the
optimization objective function is given only by the fluid dynamic contribution addressed
by the full-order model in the reduced domain, and there is no need to recover the
solution outside. Thus, the POD is calculated only in a slightly bigger domain than
Ω1(µ), to interpolate correctly the boundary values on the interface.

The accuracy of the method for an out-of-sample configuration is shown in Figure
8.25, where we report a comparison between the full-order and hybrid solutions for the
velocity and pressure coefficients fields. The ROM approximation is quite good on the
windward side of the sails, whereas more discrepancy can be observed on the leeward
side and in the wakes of both jib and main sail, in agreement with the error analysis
discussed in the previous paragraphs.

140

8.2 J80 sailing boat

8.2.4 Optimization setup

The optimization procedure is driven by a surrogate-based global method (see Section
7.1.1), using the parameter set given by µ = (θM, θJ, p1, p2, p3) and the driving force
T as objective function, as introduced in the previous sections. Starting from the 9
high-fidelity simulations performed with the FOM, a meta-model of the thrust response
surface is built, using a Kriging regression model. When the algorithm requires to update
the response surface, a new functional evaluation is performed using the zonal-POD
approach.

The optimization process is stopped when convergence is attained, or when the
number of evaluations exceeds a certain prescribed value.

8.2.5 Results

The optimum, in terms of maximum sailing boat thrust, is found after 9 full-order
and 90 zonal-POD functional evaluations. As for the computational costs, the hybrid
full-order/reduced-order model permits to significantly reduce the total cost of the opti-
mization process, compared to standard strategies. The total cost of the process is about
3000 cpuh, including also the time spent for the mesh generation and the interpolation
of the POD modes. If we consider an analogous surrogate-based optimization, performed
using 99 full-order simulations, whose individual cost is about 230 cpuh, we obtain that
the boost factor given by the hybrid strategy let us save around the 86% of the cpu time.

The optimal configuration is found for the parameter set

µbest = (−0.726◦, 0.588◦, 93.8 mm, 17.81 mm, 24.26 mm),

that leads to a driving force Tbest = 434.91 N, with a net gain (evaluated on the
FOM simulations) of 4.03% with respect to the baseline mainsail configuration without
inflatable device (Tbase = 418.07 N). As shown in Table 8.5, the zonal-POD prediction of
the aerodynamic force originated by the sailing system is very accurate (relative error
< 0.3%) for the x-component, i.e. in the thrust direction, whereas the errors are more
relevant in the lateral and vertical directions, about 1% and 3% respectively. This is
not surprising given that the ROM has been set using the error on the driving force.
Moreover, the prediction in this case is conservative, meaning that the hybrid approach
tends to underestimate the objective function, leading to a true improvement that slightly
exceeds the expectation. A comparison between the full-order and reduced-order solution

141

Industrial Applications

for the best configuration is depicted in Figure 8.25, representing the discrepancies in the
flow field, in terms of velocity and pressure. The results of the optimization are shown

FOM ROM |Fi − F ⋆
i |/|Fi|

Fx(= −T) −434.91 N −433.64 N 0.0029
Fy 936.15 N 946.77 N 0.0113
Fz −85.60 N −88.12 N 0.0294

Table 8.5 Aerodynamic forces for the optimized configuration: full-order solution, reduced-order
solution and relative errors.

in Figures 8.27, 8.28 and 8.26. The new position of the sails is rather close to the baseline
configuration, with global rotations of −0.138◦ for the jib and 0.588◦ for the main sail,
meaning that the device introduction does not significantly alter the trim of the system.
The inflation of the profile can be observed in Figure 8.26, showing the velocity fields on
a plane cut at z = 4 m for both the baseline and best configuration: as an effect of the
altered mainsail profile, the flow recovers faster, allowing the leeward side of the sail to
work in more efficient conditions, as appears clear from the behaviour of the streamlines
in this area. Such result is also confirmed in Figure 8.27, representing the recirculation
bubble that originates downstream of the mast: the separation is considerably reduced
in the optimized configuration, with the exception of the head region, where the device
is truncated. In terms of pressure distribution (Figure 8.28), the profile increases the
suction on the leewards side, while partially reducing the pressure on the windward one.
In this way, a fraction of the benefits are lost: generally speaking, an asymmetrical profile
would probably be more efficient in terms of driving force generated by the system, but
manufacturability and tack manoeuvrability requirements would be more challenging to
meet.

142

8.2 J80 sailing boat

(a) Baseline configuration.

(b) Optimized configuration.

Fig. 8.26 Velocity streamlines and velocity field on the z = 4 m section.

143

Industrial Applications

(a) Baseline configuration. (b) Optimized configuration.

Fig. 8.27 Flow separation over the mainsail.

144

8.2 J80 sailing boat

(a) Baseline configuration. (b) Optimized configuration.

(c) Baseline configuration. (d) Optimized configuration.

Fig. 8.28 Cp distribution on the windward (bottom) and leeward (top) sides of the sailing
system.

145

Industrial Applications

146

Chapter 9

Conclusions

In the present work we have dealt with the shape optimization of large-scale aerodynamic
problems, focusing in particular on the definition of an accurate surrogate model from
POD-based model order reduction techniques. Generally speaking, the non-linearity and
complexity of NSE for turbulent flows make the use of ROMs extremely challenging for
real-life parameterized CFD problems, mainly due to stability and robustness issues,
as discussed in Chapter 5. Moreover, for this kind of problems, the training of the
ROM is extremely demanding, further limiting the applicability of such techniques in
the industrial framework.

In order to mitigate some of these difficulties, we have adapted the zonal-POD
approach first proposed by Buffoni et al. (2009), to the solution of incompressible flow
on unstructured grids, further investigating the convergence properties of the method, as
well as its capability to perform predictive simulations, like the ones required during an
optimization loop. In this approach, the computational domain is split in two overlapping
subdomains, Ω1(µ) and Ω2, and different approximation methods are employed in each
one: in particular, the canonical FOM is used to describe the flow field within a crucial
region, where the solution strongly depends on the design parameters, while the rest of
the domain is described by a semi-empirical model based on POD. The two model are
then coupled in an overlapping region through a modified Schwarz method, resulting in
a non-local boundary condition for the full-order solver on the reduced subdomain.

The convergence conditions of the algorithm have been discussed and then mathe-
matical proof of convergence has been presented for a simplified linear problem: for the
NS and RANS operators, stability and convergence properties have been verified on a

147

Conclusions

two-dimensional turbulent problem representative of the applications of interest, i.e. the
2DCAR benchmark.

Starting from a set of preliminary results on the 2DCAR benchmark, we have tested
the hybrid approach performance for two industrial applications, namely the DrivAer car
model and the J80 sailing boat, under realistic working condition (i.e. Re of O(106)).
The method has been proved to be stable and robust thanks to the CFD feedback, as
well as able to perform predictive simulations, enabling the low cost evaluation of fluid
dynamic quantities, with a speed-up factor in terms of computational time of O(10− 20).
Although the numerical results presented in this work have been obtained for the finite
volume discretization of the RANS equations, the choice of the numerical discretization
is not relevant for the definition of the hybrid method, making the approach potentially
suitable for a wide class of fluid dynamic problems, as shown in recent applications
(Iuliano and Quagliarella (2013), Scardigli et al. (2019), Bergmann et al. (2018)).

In terms of accuracy, we have shown that the approximation error for out-of-sample
simulations depends on both the choice of the decomposition and the selection of the
solution snapshots used to build the underlying POD model, as addressed in Chapter
6. For this reason, we have initially focused on domain decomposition, through the
detection of the crucial zones where the POD basis fails to represent non-linearities,
that need to be addressed by the FOM. In order to build an error indicator, we have
adopted a leave-one-out strategy which consists in iteratively projecting one snapshot of
the database onto the subspace spanned by all the remaining ones. This cross-validation
procedure is an out-of-sample estimate of how much the samples are independent and
allows one to obtain a spatial error map for each snapshot. By combining all these error
fields, it is possible to evaluate a global error map that can be used to identify the most
critical regions, hence a suitable domain decomposition. Besides being non-intrusive and
efficient to compute, this error indicator built on the full-order solutions has been proven
to be a good indicator also for the hybrid full-order/reduced-order model, as shown by
numerical results in Chapters 6 and 8, where the correlation between leave-one-out error
threshold and predictive results accuracy is clearly documented. For the cases under
examination, the error map built on the velocity fields has been used and we have selected
Ω1(µ) as the bounding box of the cells characterized by certain error values: however,
there is no evidence at this stage whether such choice is optimal or a more meaningful
error maps combination should be preferable. In addition, taking the bounding box
of the error map is surely a suboptimal option: this approach simplifies the workflow,
but forces to include in Ω1(µ) also cells that are well represented by the POD model,
penalising the achievable reduction. Considering only those cells whose error exceeds the

148

assigned threshold would fix this issue, but it may results in a Ω1(µ) domain given by
a set of disjoint subdomains, each with a number of cells equal or greater than 1: an
eventuality that may originates problems for the CFD solver. Thus, a more sophisticated
approach for the Γ1 interface positioning needs to be introduced and it is currently under
investigation.

The possibility to employ a masked least-squares approach for the selection of the
overlapping region has been also taken into account, but the results on the 2DCAR
benchmark have shown limited variations in terms of solution accuracy.

Then, we have focused on the definition of an efficient sampling strategy for selecting
the snapshots to build the POD model. As in standard model reduction techniques, the
sampling of the parameter space represent a crucial point in assessing the predictive
performance of the method. Since the systematic exploration of the parameter space
tends to be prohibitive for industrial applications, sampling strategies based on the
Greedy method represent a natural choice for optimal space identification. The core
concept of greedy sampling is the definition of a sharp and inexpensive a posteriori
error bound, to be used to drive the algorithm, by computing only winning candidate
snapshots. Two possible definitions of such error indicator have been proposed. In
the first approach, the error indicator is based on the residuals of the fluid dynamics
equations evaluated by projecting the flow solution onto the POD basis. While promising
in principle, both the resGA-PODI and resGA-L1O methods fail for industrial turbulent
flows, where the FOM residuals are usually higher, in a way that makes it impossible
to discern between the error due to the numerical discretization and the one due to the
POD approximation. For this reason, we have chosen to employ as greedy error indicator
the projection error built exploiting the leave-one-out method. In order to guarantee
both the exploration and the exploitation of the parameter space, we have started by
coupling the Greedy method with a CCVT, built using the projection error as density
function. In this strategy, new well-spaced points are added iteratively, enriching the
database in those regions where the error indicator exceeds a fixed tolerance. This leads
to good results for both academic and industrial test cases (as shown in the 2DCAR
benchmark and in the DrivAer car model optimization), allowing us to obtain the same
predictive accuracy on the output of interest with a very limited number of sampling
point, compared to uniform distributions. In particular, for the 2DCAR problem, the
pGA-CCVT strategy shows better results on the average prediction error with respect
to the uniform sampling, by using only 5 full-order simulations instead of 9. The main
drawback of this method appears to be the curse of dimensionality, since the number of
sampling points required to start the algorithm depends on the number of parameters P

149

Conclusions

through the relation 2P . Another method taken into consideration in order to partially
minimize this issue is GP regression, coupled with the EGO algorithm, in place of
the CCVT. When a coarse initial sampling is provided, the pGA-EGO approach has
comparable performances with respect to the pGA-CCVT, but it needs only a maximum
of (P+1)(P+2)

2 points for its initialization, which is an attractive feature of this second
strategy. In order to extend the sampling methodology for higher-dimensional problems,
however, more efficient POD-basis updating strategies need to be introduced, as well as
some remedies to improve the performance of the error response surrogate model.

The complete model-reduction pipeline has been applied to two industrial shape
optimization problems, i.e. the optimization of the DrivAer car model front bumper
with 2 design variables, and of the J80 sailing boat, with 5 parameters, resulting in
a considerable speed-up of the process (58% and 86% respectively), evaluated taking
into account both the offline phase required to train the POD-based surrogate model
and the time spent online for new function evaluations. In terms of accuracy, even in
these more complex cases, the zonal-POD approach guarantees a good approximation
of the full-order solution, with small errors on the outputs of interest (< 0.4% and
< 1%, respectively). The method appears to be particularly convenient for the second
problem, where the deformations are global and the design space is characterized by a
greater number of parameters, but similar benefits are found also in cases where localized
geometry variations are considered, as in the DrivAer case. The two problems introduce
a geometry parameterization based on FFD techniques, applied to volume meshes, as in
the first case, or to surfaces, as in the latter, whereas the optimizer relies on multi-fidelity
global optimizations strategies, employing three different levels of fidelity: the FOM, the
zonal-POD model and a GP model. Despite such differences in the parameterization
approach, the zonal-POD model has been successfully applied in both cases, as a further
proof of the flexibility of the method.

Thus, the proposed framework, based on non-intrusive tools for model reduction,
appears to be suitable for a wide class of problems and has been successfully integrated
within industrial workflows. Moreover, since the POD method does not rely on the
parameterization, it allows one to re-use pre-existing simulation data (e.g. in the
automotive industry, where new car models often differ from older ones for minor details),
leading to significant cost savings in various design stages. Future perspectives include
increasing the dimensions of the design space, in the limit of the range of applicability of
global optimization.

150

The extension of the developed methodology to the study of unsteady turbulent flows
through DNS or LES, although easy in principle, represents a future challenge, due to
the extreme variability of the temporal and spatial scales appearing in the flow solutions,
that usually require a very large POD basis.

151

Conclusions

152

References

Adams, B. M., Bauman, L. E., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy,
J. P., Eldred, M. S., Hough, P. D., Hu, K. T., Jakeman, J. D., Stephens, J. A., Swiler,
L. P., Vigil, D. M., and Wildey, T. M. (2014a). Dakota, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual. Sandia National
Laboratories, Tech. Rep. SAND2014-4633. Updated May 2017 (Version 6.6).

Adams, B. M., Bauman, L. E., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy,
J. P., Eldred, M. S., Hough, P. D., Hu, K. T., Jakeman, J. D., Stephens, J. A., Swiler,
L. P., Vigil, D. M., and Wildey, T. M. (2014b). Dakota, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 6.0 Theory Manual. Sandia National
Laboratories, Tech. Rep. SAND2014-4253. Updated May 2017 (Version 6.6).

Ahmed, S. R., Ramm, G., and Faltin, G. (1984). Some Salient Features of the Time-
Averaged Ground Vehicle Wake. SAE Transactions, 93:473–503.

Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. (2008). Recent Advances in Remeshing
of Surfaces, pages 53–82. Mathematics and Visualization. Springer.

Amoiralis, E. I. and Nikolos, I. K. (2008). Freeform Deformation Versus B-Spline
Representation in Inverse Airfoil Design. J. Comput. Inf. Sci. Eng., 8(2):024001–
024001–13.

Amsallem, D., Farhat, C., and Zahr, M. (2013). On the Robustness of Residual Mini-
mization for Constructing POD-Based Reduced-Order CFD Models. In 21st AIAA
Fluid Dynamics Conference. San Diego, CA. AIAA 2013-2447.

Anderson, G. R., Aftosmis, M. J., and Nemec, M. (2012). Parametric Deformation of
Discrete Geometry for Aerodynamic Shape Design. In 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, TN.
AIAA 2012-0965.

Andreoli, M., Janka, A., and Désidéri, J. A. (2003). Free-form-deformation parameteriza-
tion for multilevel 3D shape optimization in aerodynamics. Research Report RR-5019,
INRIA.

Astrid, P., Weiland, S., Willcox, K., and Backx, T. (2008). Missing Point Estimation
in Models Described by Proper Orthogonal Decomposition. IEEE Transactions on
Automatic Control, 53(10):2237–2251.

153

References

Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition. Theor.
Comp. Fluid. Dyn., 2(5):339–352.

Ballarin, F., Manzoni, A., Rozza, G., and Salsa, S. (2014). Shape Optimization by
Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows.
J. Sci. Comput., 60(3):537–563.

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004). An ’empirical
interpolation’ method: application to efficient reduced-basis discretization of partial
differential equations. C. R. Math., 339(9):667–672.

Benner, P., Gugercin, S., and Willcox, K. (2015). A Survey of Projection-Based Model
Reduction Methods for Parametric Dynamical Systems. SIAM review, 57(4):483–531.

Bergmann, M., Bruneau, C.-H., and Iollo, A. (2009). Enablers for robust POD models.
J. Comput. Phys., 228(2):516–538.

Bergmann, M., Colin, T., Iollo, A., Lombardi, D., Saut, O., and Telib, H. (2014). Reduced
Order Models at Work in Aeronautics and Medicine. In Quarteroni, A. and Rozza, G.,
editors, Reduced Order Methods for Modeling and Computational Reduction, volume 9,
pages 305–332. Springer.

Bergmann, M., Ferrero, A., Iollo, A., Lombardi, E., Scardigli, A., and Telib, H. (2018).
A zonal Galerkin-free POD model for incompressible flows. J. Comput. Phys., 352:301–
325.

Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The Proper Orthogonal Decomposition
in the Analysis of Turbulent Flows. Annu. Rev. Fluid Mech., 25(1):539–575.

Blocken, B., Stathopoulos, T., and Carmeliet, J. (2007). CFD simulation of the atmo-
spheric boundary layer: wall function problems. Atmos. Environ., 41(2):238–252.

Braconnier, T., Ferrier, M., Jouhaud, J.-C., Montagnac, M., and Sagaut, P. (2011).
Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput.
Fluids, 40(1):195–209.

Buffoni, M., Telib, H., and Iollo, A. (2009). Iterative methods for model reduction by
domain decomposition. Comput. Fluids, 38(6):1160–1167.

Buffoni, M. and Willcox, K. (2010). Projection-based model reduction for reacting flows.
In 40th Fluid Dynamics Conference and Exhibit. Chicago, IL. AIAA 2010-5008.

Bui-Thanh, T. (2003). Proper Orthogonal Decomposition Extensions and Their Applica-
tions in Steady Aerodynamics. Master’s thesis, Singapore-MIT Alliance.

Bui-Thanh, T., Damodaran, M., and Willcox, K. (2003). Proper Orthogonal Decomposi-
tion Extensions for Parametric Applications in Compressible Aerodynamics. In 21st
AIAA Applied Aerodynamics Conference. Orlando, FL. AIAA 2003-4213.

Carlberg, K., Bou-Mosleh, C., and Farhat, C. (2011). Efficient non-linear model reduction
via a least-squares Petrov–Galerkin projection and compressive tensor approximations.
Int. J. Numer. Meth. Eng., 86(2):155–181.

154

References

Cawley, G. C. and Talbot, N. L. C. (2003). Efficient leave-one-out cross-validation of
kernel fisher discriminant classifiers. Pattern Recogn., 36(11):2585–2592.

Chaturantabut, S. and Sorensen, D. C. (2010). Nonlinear Model Reduction via Discrete
Empirical Interpolation. SIAM J. Sci. Comput., 32(5):2737–2764.

Chinesta, F., Huerta, A., Rozza, G., and Willcox, K. (2017). Model Reduction Methods,
volume 3 of Encyclopedia of Computational Mechanics. John Wiley & Sons, 2nd
edition.

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., González, D., Alfaro,
I., Ammar, A., and Huerta, A. (2013). PGD-Based computational vademecum for
Efficient Design, Optimization and Control. Arch. Comput. Methods Eng., 20(1):31–59.

Cogotti, A. (1998). A Parametric Study on the Ground Effect of a Simplified Car Model.
SAE Techincal Paper 980031.

Cordier, L. and Bergmann, M. (2003). Proper Orthogonal Decomposition: an overview.
Lecture series 2003-2004 on post-processing of experimental and numerical data, Von
Karman Institute for Fluid Dynamics. https://www.math.u-bordeaux.fr/~mbergman/
PDF/OuvrageSynthese/vki03-1.pdf.

Crane, K., Weischedel, C., and Wardetzky, M. (2013). Geodesics in Heat: A New
Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph., 32(5):152:1–
152:11.

Cressie, N. (1993). Statistics for Spatial Data. John Wiley & Sons.

Demmel, J. W. (1997). Applied Numerical Linear Algebra. SIAM.

Désidéri, J.-A., El Majd, B. A., and Janka, A. (2007). Nested and self-adaptive Bézier
parameterizations for shape optimization. J. Comput. Phys., 224(1):117–131.

Dolci, V. and Arina, R. (2016). Proper Orthogonal Decomposition as Surrogate Model
for Aerodynamic Optimization. Int. J. Aerospace Eng., 2016.

Duvigneau, R. (2006). Adaptive Parameterization using Free-Form Deformation for
Aerodynamic Shape Optimization. Research Report RR-5949, INRIA.

Elisseeff, A. and Pontil, M. (2003). Leave-one-out error and stability of learning algorithms
with applications. NATO science series sub series iii computer and systems sciences,
190:111–130.

Ferziger, J. H. and Peric, M. (2002). Computational Methods for Fluid Dynamics.
Springer-Verlag, 3rd edition.

Forrester, A. I. J. and Keane, A. J. (2009). Recent advances in surrogate-based optimiza-
tion. Progr. Aerosp. Sci., 45(1–3):50–79.

Forti, D. and Rozza, G. (2014). Efficient geometrical parametrisation techniques of inter-
faces for reduced-order modelling: application to fluid-structure interaction coupling
problems. Int. J. Comput. Fluid D., 28(3-4):158–169.

155

https://www.math.u-bordeaux.fr/~mbergman/PDF/OuvrageSynthese/vki03-1.pdf
https://www.math.u-bordeaux.fr/~mbergman/PDF/OuvrageSynthese/vki03-1.pdf

References

Fröhlich, J. and von Terzi, D. (2008). Hybrid LES/RANS methods for the simulation of
turbulent flows. Prog. Aerosp. Sci., 44(5):349–377.

Geisser, S. (1993). Predictive Inference: An Introduction, volume 55 of Monographs on
Statistics and Applied Probability. Chapman & Hall, 1st edition.

Giere, S., Iliescu, T., John, V., and Wells, D. (2015). SUPG reduced order models for
convection-dominated convection-diffusion-reaction equations. Comput. Methods Appl.
Mech. Eng., 289:454–474.

Giles, M. B. and Pierce, N. A. (2000). An Introduction to the Adjoint Approach to
Design. Flow Turbul. Combust., 65(3-4):393–415.

Golub, G. H. and Van Loan, C. F. (2013). Matrix Computations. JHU Press, 4th edition.

Grepl, M. A. and Patera, A. T. (2005). A posteriori error bounds for reduced-basis
approximations of parametrized parabolic partial differential equations. ESAIM Math.
Model. Numer. Anal., 39(1):157–181.

Han, Z.-H., Abu-Zurayk, M., Görtz, S., and Ilic, C. (2018). Surrogate-Based Aerodynamic
Shape Optimization of a Wing-Body Transport Aircraft Configuration. In Heinrich, R.,
editor, AeroStruct: Enable and Learn How to Integrate Flexibility in Design, volume 138
of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 257–282.

Heft, A. I., Indinger, T., and Adams, N. A. (2011). Investigation of Unsteady Flow
Structures in the Wake of a Realistic Generic Car Model. In 29th AIAA Applied
Aerodynamics Conference. Honolulu, HI. AIAA 2011-3669.

Heft, A. I., Indinger, T., and Adams, N. A. (2012). Introduction of A New Realistic
Generic Car Model for Aerodynamic Investigations. SAE Techincal Paper 2012-01-0168.

Hesthaven, J. S., Rozza, G., and Stamm, B. (2016). Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer.

Hinze, M. and Volkwein, S. (2005). Proper Orthogonal Decomposition Surrogate Models
for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control. In Di-
mension reduction of large-scale systems, volume 45 of Lecture Notes in Computational
Science and Engineering, pages 261–306. Springer.

Holmes, P., Lumley, J., and Berkooz, G. (1996). Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge University Press, 1st edition.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal compo-
nents. J. Educ. Psychol., 24(6):417–441.

Hucho, W.-H. (1987). Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle
Engineering. Elsevier, Butterworth-Heinemann, 1st edition.

Iollo, A., Lanteri, S., and Désidéri, J. A. (2000). Stability Properties of POD-Galerkin
Approximations for the Compressible Navier-Stokes Equations. Theor. Comp. Fluid
Dyn., 13(6):377–396.

156

References

Iuliano, E. and Quagliarella, D. (2013). Proper Orthogonal Decomposition, surrogate
modelling and evolutionary optimization in aerodynamic design. Comput. Fluids,
84:327 – 350.

Jasak, H. (1996). Error Analysis and Estimation for the Finite Volume Method with
Applications to Fluid Flows. PhD thesis, University of London and Imperial College.

Jasak, H., Jemcov, A., and Tukovic, Z. (2007). OpenFOAM: A C++ library for complex
physics simulations. In International Workshop on Coupled Methods in Numerical
Dynamics. IUC Dubrovnik, Croatia.

Jasak, H., Weller, H. G., and Gosman, A. D. (1999). High resolution NVD differencing
scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids, 31(2):431–
449.

Jerison, D. S. and Kenig, C. E. (1995). The Inhomogeneous Dirichlet Problem in Lipschitz
Domains. J. Funct. Anal., 130:161–219.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag.

Jones, D. R. (2001). Direct Global Optimization Algorithm. In Floudas, C. A. and
Pardalos, P. M., editors, Encyclopedia of Optimization, pages 431–440. Springer US.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. J. Global Optim., 13(4):455–492.

Jones, W. P. and Launder, B. E. (1972). The prediction of laminarization with a
two-equation model of turbulence. Int. J. Heat Mass Transf., 15(2):301 – 314.

Karhunen, K. (1946). Zur Spektraltheorie stochastischer Prozesse. In Ann. Acad. Sci.
Fenn., volume 34 of Series A.I. Mathematica-Physica.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In 14th International Joint Conference on Artificial Intelligence,
volume 2, pages 1137–1145. Montreal, Canada.

Kosambi, D. D. (1943). Statistics in Function Space. J. Indian Math. Soc., 7:76–88.

Koshakji, A., Quarteroni, A., and Rozza, G. (2013). Free Form Deformation techniques
applied to 3D shape optimization problems. Comm. App. Industr. Math., 4.

Kunisch, K. and Volkwein, S. (2002). Galerkin Proper Orthogonal Decomposition Methods
for a General Equation in Fluid Dynamics. SIAM J. Numer. Anal., 40(2):492–515.

Lassila, T. and Rozza, G. (2010). Parametric free-form shape design with PDE models
and reduced basis method. Comput. Methods Appl. Mech. Eng., 199(23–24):1583–1592.

Launder, B. E. and Sharma, B. I. (1974). Application of the energy-dissipation model
of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Trans.,
1(2):131 – 138.

157

References

LeGresley, P. A. and Alonso, J. (2000). Airfoil Design Optimization Using Reduced
Order Models Based on Proper Orthogonal Decomposition. In Fluids 2000 Conference
and Exhibit. Denver, CO.

LeGresley, P. A. and Alonso, J. (2003). Dynamic Domain Decomposition and Error
Correction for Reduced Order Models. In 41st Aerospace Sciences Meeting and Exhibit,.
Reno, NV.

Liu, F. (2016). A Thorough Description Of How Wall Functions Are Implemented In
OpenFOAM. CFD with OpenSource Software. http://www.tfd.chalmers.se/~hani/
kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf.

Liu, J., Han, Z., and Song, W. (2012). Comparison of infill sampling criteria in Kriging-
based aerodynamic optimization. In 28th Congress of the International Council of the
Aeronautical Sciences. Brisbane, Australia.

Loéve, M. (1955). Probability theory. Foundations. Random sequences. D. Van Nostrand
Company Inc., 1st edition.

Lombardi, E., Bergmann, M., Camarri, S., and Iollo, A. (2011). Low-order models.
Optimal sampling and linearized control strategies. Journal Européen des Systèmes
Automatisés, 45(7–10):575–593.

Lucia, D. J., King, P. I., and Beran, P. S. (2003). Reduced order modeling of a two-
dimensional flow with moving shocks. Comput. Fluids, 32(7):917–938.

Lumley, J. (1967). The Structures of Inhomogeneous Turbulent Flow. In Yaglom, A. M.
and Tatarski, V. I., editors, Atmospheric Turbulence and Radio Wave Propagation,
pages 166–178. Publishing House Nauka.

Maday, Y., Patera, A. T., and Turinici, G. (2002). A Priori Convergence Theory
for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential
Equations. J. Sci. Comput., 17(1-4):437–446.

Mathew, T. (2008). Domain Decomposition Methods for the Numerical Solution of
Partial Differential Equations, volume 61 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag.

Mifsud, M., Zimmermann, R., and Görtz, S. (2015). Speeding-up the computation of
high-lift aerodynamics using a residual-based reduced-order model. 6(1):3–16.

Mohammadi, B. and Pironneau, O. (2010). Applied Shape Optimization for Fluids.
Numerical Mathematics and Scientific Computation. Oxford University Press, 2nd
edition.

Noack, B. R., Morzynski, M., and Tadmor, G. (2011). Reduced-Order Modelling for
Flow Control, volume 528 of CISM International Centre for Mechanical Sciences.
Springer-Verlag.

Noack, B. R., Papas, P., and Monkewitz, P. A. (2005). The need for a pressure-term
representation in empirical Galerkin models of incompressible shear flows. J. Fluid
Mech., 523:339–365.

158

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf

References

Östh, J., Noack, B. R., Krajnovic, S., Barros, D., and Borée, J. (2014). On the need
for a nonlinear subscale turbulence term in POD models as exemplified for a high-
Reynolds-number flow over an Ahmed body. J. Fluid Mech., 747:518–544.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Computational
Methods in Mechanics and Thermal Sciences. CRC press.

Perotto, S., Reali, A., Rusconi, P., and Veneziani, A. (2017). HIGAMod: A Hierarchical
IsoGeometric Approach for MODel reduction in curved pipes. Comput. Fluids, 142:21–
29.

Pope, S. B. (2011). Turbulent Flows. Cambridge University Press.

Prud’Homme, C., Rovas, D. V., Veroy, K., Machiels, L., Maday, Y., Patera, A. T., and
Turinici, G. (2001). Reliable Real-Time Solution of Parametrized Partial Differential
Equations: Reduced-Basis Output Bound Methods. J. Fluids Eng., 124(1):70–80.

Quarteroni, A. and Rozza, G. (2014). Reduced Order Methods for Modeling and Com-
putational Reduction, volume 9 of MS&A - Modeling, Simulation and Applications.
Springer.

Quarteroni, A. and Valli, A. (1999). Domain Decomposition Methods for Partial Differen-
tial Equations. Numerical Mathematics and Scientific Computation. Oxford University
Press.

Sagaut, P. (2006). Large Eddy Simulation for Incompressible Flows: An Introduction.
Scientific Computation. Springer-Verlag, 3rd edition.

Salmoiraghi, F., Ballarin, F., Corsi, G., Mola, A., Tezzele, M., and Rozza, G. (2016a).
Advances in geometrical parametrization and reduced order models and methods for
computational fluid dynamics problems in applied sciences and engineering: overview
and perspectives. In VII European Conference on Computational Methods in Applied
Sciences and Engineering. Crete, Greece.

Salmoiraghi, F., Ballarin, F., Heltai, L., and Rozza, G. (2016b). Isogeometric analysis-
based reduced order modelling for incompressible linear viscous flows in parametrized
shapes. Adv. Model. and Simul. in Eng. Sci., 3(1).

Salmoiraghi, F., Scardigli, A., Telib, H., and Rozza, G. (2018). Free Form Deformation,
mesh morphing and reduced order methods: enablers for efficient aerodynamic shape
optimization. Int. J. Comput. Fluid Dyn. To appear.

Samareh, J. A. (2001). Survey of Shape Parameterization Techniques for High-Fidelity
Multidisciplinary Shape Optimization. AIAA journal, 39(5):877–884.

Scardigli, A., Arpa, R., Chiarini, A., and Telib, H. (2019). Enabling of Large Scale Aero-
dynamic Shape Optimization Through POD-Based Reduced-Order Modelling and Free
Form Deformations. In Minisci, E., Vasile, M., Periaux, J., Gauger, N., Giannakoglou,
K., and Quagliarella, D., editors, Advances in Evolutionary and Deterministic Methods
for Design, Optimization and Control in Engineering and Sciences., volume 48 of
Computational Methods in Applied Sciences, pages 49–63. Springer.

159

References

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data.
J. Fluid Mech., 656:5–28.

Sederberg, T. W. and Parry, S. R. (1986). Free-Form Feformation of Solid Geometric
Models. ACM SIGGRAPH Computer Graphics, 20(4):151–160.

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,
volume 3 of Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2nd edition.

Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., and Zhu, J. (1995). A new k-ϵ
eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids,
24(3):227–238.

Sieger, D., Menzel, S., and Botsch, M. (2015). On Shape Deformation Techniques for
Simulation-Based Design Optimization. In Perotto, S. and Formaggia, L., editors, New
Challenges in Grid Generation and Adaptivity for Scientific Computing, volume 5 of
SEMA SIMAI Springer Series, pages 281–303. Springer.

Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Part I, II and
III. Q. Appl. Math., 45(3):561–590.

Sobieczky, H. (1997). Geometry Generator for CFD and Applied Aerodynamics. In New
Design Concepts for High Speed Air Transport, volume 366 of International Centre for
Mechanical Sciences, pages 137–157. Springer.

Spalart, P. R. and Allmaras, S. R. (1992). A One-Equation Turbulence Model for
Aerodynamic Flows. In 30ty Aerospace Sciences Meeting and Exhibit. Reno, NV.

Spalart, P. R. and Allmaras, S. R. (1994). A One-Equation Turbulence Model for
Aerodynamic Flows. La Recherche Aérospatiale, 1:5–21.

Spalding, D. B. (1961). A Single Formula for the “Law of the Wall”. J. Appl. Mech.,
28(3):455–458.

Vendl, A., Faßbender, H., Görtz, S., Zimmermann, R., and Mifsud, M. (2014). Model
order reduction for steady aerodynamics of high-lift configurations. CEAS Aeronaut.
J., 5(4):487–500.

Versteeg, H. K. and Malalasekera, W. (2007). An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Pearson Education, 2nd edition.

Volkwein, S. (2013). Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling. Lecture Notes, University of Konstanz. http://www.math.uni-konstanz.de/
numerik/personen/volkwein/teaching/POD-Book.pdf.

Wang, Z., Akhtar, I., Borggaard, J., and Iliescu, T. (2012). Proper orthogonal decompo-
sition closure models for turbulent flows: A numerical comparison. Comput. Methods
Appl. Mech. Eng., 237–240:10–26.

160

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf

References

Warming, R. F. and Beam, R. M. (1976). Upwind Second-Order Difference Schemes and
Applications in Aerodynamic Flows. AIAA Journal, 14(9):1241–1249.

Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tensorial approach to
computational continuum mechanics using object-oriented techniques. Comput. Phys.,
12(6):620–631.

Weller, J., Camarri, S., and Iollo, A. (2009a). Feedback control by low-order modelling
of the laminar flow past a bluff body. J. Fluid Mech., 634:405–418.

Weller, J., Lombardi, E., Bergmann, M., and Iollo, A. (2010). Numerical methods for
low-order modeling of fluid flows based on POD. Int. J. Numer. Methods Fluids,
63(2):249–268.

Weller, J., Lombardi, E., and Iollo, A. (2009b). Robust model identification of actuated
vortex wakes. Physica D, 238(4):416–427.

Wieringa, J. (1992). Updating the Davenport roughness classification. J. Wind Eng. Ind.
Aerod., 41(1-3):357–368.

Wilcox, D. C. (2006). Turbulence Modeling for CFD. DCW Industries, 3rd edition.

Zhan, Z., Habashi, W. G., and Fossati, M. (2015). Local Reduced-Order Modeling and
Iterative Sampling for Parametric Analyses of Aero-Icing Problems. AIAA Journal,
53(8):2174–2185.

Zimmermann, R. (2011). A Comprehensive Comparison of Various Algorithms for
Efficiently Updating Singular Value Decomposition Based Reduced Order Models.
DLR-Interner Bericht DLR-IB 124-2011/3, DLR. https://elib.dlr.de/70251/.

Zimmermann, R. and Görtz, S. (2010). Non-linear reduced order models for steady
aerodynamics. Procedia Comput. Sci., 1(1):165–174.

Zimmermann, R. and Görtz, S. (2012). Improved extrapolation of steady turbulent
aerodynamics using a non-linear POD-based reduced order model. Aeronaut. J.,
116(1184):1079–1100.

Zimmermann, R. and Willcox, K. (2016). An Accelerated Greedy Missing Point Estima-
tion Procedure. SIAM J. Sci. Comput., 38(5):A2827–A2850.

161

https://elib.dlr.de/70251/

References

162

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem definition
	1.2 Thesis outline

	2 Geometry Parameterization
	2.1 Parameterization
	2.2 Free-Form Deformation
	2.2.1 Formulation
	2.2.2 Local deformations
	2.2.3 Geometrical constraints

	2.3 Numerical tools

	3 Full-Order Modelling
	3.1 Fluid modelling
	3.1.1 Turbulence modelling

	3.2 Numerical tools
	3.2.1 Spatial discretization
	3.2.2 Equation discretization
	3.2.3 SIMPLE algorithm
	3.2.4 Numerical schemes
	3.2.5 Turbulence
	3.2.6 Boundary conditions

	4 Benchmark Case
	4.1 2DCAR: flow past a 2D car profile
	4.1.1 Problem specification
	4.1.2 Parameterization

	5 Reduced-Order Modelling
	5.1 Proper Orthogonal Decomposition
	5.1.1 Properties of the POD basis
	5.1.2 Weighted inner product

	5.2 POD-based reduced models
	5.2.1 POD-Galerkin
	5.2.2 PODI
	5.2.3 POD with residual minimization

	5.3 Zonal-POD
	5.3.1 Schwarz-POD iterative algorithm
	5.3.2 Numerical implementation
	5.3.3 Preliminary numerical results
	5.3.4 Convergence analysis
	5.3.5 Cartesian domains
	5.3.6 Conclusions

	6 Accuracy Estimation
	6.1 Cross-validation
	6.2 Domain decomposition
	6.2.1 Interface detection
	6.2.2 Overlapping detection

	6.3 Snapshots selection
	6.3.1 Error indicator based on the NSE residuals
	6.3.2 Error indicator based on the POD projection error

	7 Optimization
	7.1 Methods
	7.1.1 Surrogate-based global methods
	7.1.2 Efficient Global Optimization

	7.2 Numerical tools

	8 Industrial Applications
	8.1 DrivAer
	8.1.1 FOM setup
	8.1.2 Geometry parameterization
	8.1.3 ROM setup
	8.1.4 Optimization setup
	8.1.5 Results

	8.2 J80 sailing boat
	8.2.1 FOM setup
	8.2.2 Geometry parameterization
	8.2.3 ROM setup
	8.2.4 Optimization setup
	8.2.5 Results

	9 Conclusions
	References

