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Abstract. We reconstruct the extra-galactic gamma-ray source-count distribution, or
dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifi-
cally, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are
built by varying parameters of underlying source-counts models and incorporate the Fermi-
LAT instrumental response functions. The trained neural network is then applied to the
Fermi-LAT data, from which we estimate the source count distribution down to flux levels
a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of
data collected in the (1, 10)GeV energy range. The results we obtain show a source count
distribution which, in the resolved regime, is in excellent agreement with the one derived
from cataloged sources, and then extends as dN/dS ∼ S−2 in the unresolved regime, down
to fluxes of 5 · 10−12 cm−2 s−1. The neural network architecture and the devised method-
ology have the flexibility to enable future analyses to study the energy dependence of the
source-count distribution.
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1 Introduction

A substantial portion of the gamma-ray radiation that we observe from Earth is produced
inside our own galaxy, mostly along the galactic plane. At high Galactic latitudes, however,
the gamma-ray emission is mostly of cosmological origin. This extragalactic background ra-
diation (EGB) is the sum of the emission from all the extragalactic gamma-ray sources [1, 2].
Most of the EGB is originated by various types of astrophysical sources which are seen from
our viewpoint as point sources. A relevant observable is therefore their differential source-
count distribution dN/dS which counts the number of sources at a given integral source flux
S (for gamma-ray energies in a specific interval). For bright sources, which are observation-
ally identified and therefore cataloged, the source-count distribution is directly measured by
counting the objects in the catalog, at least above the threshold for which the catalog de-
tection efficiency is equal to 100%. Below this flux threshold, where the detection efficiency
is less than 100%, dedicated Monte Carlo simulations are required to accurately determine

– 1 –



J
C
A
P
0
9
(
2
0
2
3
)
0
2
9

the efficiency and use it as a correction to reconstruct the true underlying dN/dS [3–6]. For
all those sources which are too faint to be resolved, their cumulative distribution of photons
in the sky defines an almost isotropic cosmic field, conventionally called the isotropic diffuse
gamma-ray background (IGRB) or, more precisely, the unresolved gamma-ray background
(UGRB). Even though individual sources below the detector flux-threshold cannot be individ-
ually seen, it has been shown [7–10] nevertheless, that it is possible to infer their source-count
distribution even in this regime, looking at the collective effects of these unresolved sources.
This technique, called pixel-count distribution (or 1-point PDF) and pioneered for gamma-
rays in [7], has been improved in [8–10] by employing a pixel-dependent approach, in order to
fully explore all the available information and to incorporate the morphological variation of
the gamma-ray emission components. Ref. [8] used the first 6 years of Fermi-LAT [11] data
to measure the dN/dS for photons in the energy range (1,10)GeV down to fluxes about one
order of magnitude below the Fermi-LAT detection threshold. In [9, 10] the same technique
was used to extend the measurement of the dN/dS to several energy bands between 1 and
171GeV, thus providing information on the energy dependence of the source-count distri-
bution. This technique has then been used to study the contribution of individual source
classes of emitters, in particular blazars [12–15]. The same methodology has also been used
to characterize the properties of the unresolved sources in the Galactic Center region in re-
lation to a possible signal from dark matter annihilation [16–25]. A further methodology
called Compound Poisson Generator has also been developed [26], in order to handle biases
possibly present in the 1-point PDF method.

In this paper we update the measurement of the dN/dS below the detection threshold
to the increased statistics offered by 14 years of Fermi-LAT data. However, differently from
refs. [8, 9], we adopt here a method based on machine learning techniques to obtain the
dN/dS below the detection threshold. A similar methodology has also been used recently to
investigate gamma-ray unresolved sources close to the Galactic center [27–29]. We train a
convolutional neural network (CNN) on synthetic gamma-ray maps, built from a wide variety
of source-count distributions and then apply the trained CNN to the 14-year Fermi-LAT map
for photon energies in the (1,10) GeV band. We show that the CNN is able to reconstruct the
dN/dS, thus obtaining an updated result which is fully compatible with the one obtained
in [8]. The methodology presented here is also meant to be a proof of principle for the
adoption of a CNN to the reconstruction of the source-count distribution of the extragalactic
sky, with the future aim of properly investigating additional features of the dN/dS, like
energy correlations and the presence of additional components which could be traced to dark
matter. An advantage of the CNN method is that it avoids the need to calculate complicated
and numerically demanding likelihoods, as in the 1-point PDF method. Furthermore, we will
describe an improved version of the treatment of a CNN on a spherical domain which will
further optimize the computational aspect.

Data selection and Fermi-LAT map generation is discussed in section 2, while section 3
discusses in detail how synthetic maps for the CNN training and validation are constructed.
Section 4 discusses the neural network architecture that we use and its implementation,
including validation and error estimation. Section 5 discusses the analysis of the Fermi-LAT
map with the trained CNN and presents the ensuing results for the dN/dS. Section 6 gives
our conclusions.
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Healpix order 6, 7
Weeks 9−745
Emin 1GeV
Emax 10GeV
Instrument Response Functions (IRFs) P8R3_SOURCEVETO_V3
EVCLASS 2048 (Source Veto)
EVTYPE 1 (Front)
ZMAX 90

Table 1. Fermi Tools settings used for the 14-year data set analysis.

2 Data selection

We process the Fermi-LAT data through the Fermi Tools suite [30] to produce a full-sky map
of photon counts for gamma-ray energies in the (1–10) GeV range. We choose this range as
a suitable balance between high statistics (which occurs at lower energies) and good angular
resolution (which is better the higher the energy) of the detector, as well as being able to
confront our results with those of ref. [8].

We consider the first 14 years of data collected by the Fermi-LAT (specifically, from
week 9 to week 745 of operation), and Pass 8 event selection [31, 32]. We adopt the
P8R3_SOURCEVETO_V3 instrument response functions (IRFs), event class (EVCLASS) 2048
(SOURCEVETO) and event type (EVTYPE) 1 (FRONT). We used standard quality selection
criteria, i.e. DATA QUAL==1 and LAT CONFIG==1. The atmospheric gamma rays from the
Earth limb emission is removed by adopting a cut on the maximum zenith angle ZMAX of
90 degrees. FRONT events refer to gamma-rays detected by the first layers of the tracking
module of the Fermi-LAT detector, and are optimised in order to have a better angular
resolution, which is a crucial requirement for our analysis. The SOURCEVETO class of events
achieves good suppression of the charged cosmic-ray (CR) background while still retaining
a large event statistics. All those settings are summarised in table 1. Finally, the maps are
constructed with equal-area pixels by adopting the Healpix [33] pixelisation scheme of order
n = 6 (Nside = 64 resolution, which corresponds to 0.92◦ pixel side) although for testing we
will also use maps with order n = 7 (Nside = 128). The photon count map, in counts per
pixel, for the 14 year data set is shown in figure 1. This is the map to which we will apply
the CNN to extract the source-count distribution of gamma-ray sources.

Using the Fermi-LAT tools we further extract the Fermi-LAT exposure map and the
point-spread-function (PSF) for photon energies in (1, 10)GeV, which will be needed to con-
struct the synthetic maps used to train and validate the CNN. Some care is required, since
the PSF is a rapidly varying function of energy. Following previous works [8, 34], we build
the (1, 10)GeV mean PSF by averaging the energy-dependent PSF in the (1, 10)GeV en-
ergy range with a E−2.4 weight, corresponding to the approximate energy spectrum of the
high Galactic latitude gamma-ray sky. The average exposure map in the (1, 10)GeV energy
bin and the averaged PSF profile are shown in figure 2 and in figure 3, respectively. The
Fermi-LAT exposure slightly changes with energy, although its variation inside our energy
bin is small.

A further dataset we will use is the catalog of resolved sources. In particular, we will
employ the recently released Data Release 3 of the fourth Fermi-LAT catalog of gamma-
rays sources (4FGL-DR3) [35], which increments the previous release to 12 years of data
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counts / pixel1 61215

Figure 1. Fermi-LAT photon-counts map in units of counts per pixel in the 1–10GeV energy range
for the 14-years dataset, at the Healpix resolution Nside = 128 (n = 7).

cm2 s2.16793e+11 3.80726e+11

Figure 2. Fermi-LAT mean exposure map in the 1–10GeV energy range for the 14-years data set,
in units of cm2 s, at the Healpix resolution Nside = 128 (n = 7).

taking and contains 6658 resolved sources. From this catalog, we obtain the (1–10) GeV
source-count distribution in the resolved regime, shown in figure 4. The detailed procedure
with which we obtain the dN/dS from the list of sources is described in appendix B of [8].
Here and through the rest of the manuscript S will always refer to an integral flux in the
range 1–10GeV. The blue points refer to the regime in which the catalog is fully efficient in
detecting sources, while the gray points denote sources for which the Fermi-LAT sensitivity
to point sources starts degrading. Our aim is to infer the behaviour of the source count in
the unresolved regime, i.e., for source fluxes below Sth ∼ 2 · 10−10 cm−2 s−1 by adopting a
CNN technique. We stress that in the following the dN/dS of resolved sources will be used
only for comparison with the result of the CNN analysis, which are completely independent
from it. Thus, the fact that we use 14 years of data while the catalog is based on 12 years
does not have an impact on the analysis.
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Figure 3. Average Fermi-LAT point spread function (PSF) for energies in (1, 10)GeV.

3 Synthetic map generation

In order to instruct the CNN to extract the dN/dS from the Fermi-LAT photon-count map,
we need to produce synthetic analogs of the map, constructed from a wide selection of dN/dS
and for the same characteristics (detector exposure and PSF, known physical foregrounds)
of the data we will be using. These maps will then be partly used to train a CNN and partly
used to validate the CNN, to determine its performance and to estimate the uncertainty on
the reconstructed dN/dS. Finally, we will apply the trained CNN to the Fermi-LAT data.

The gamma-ray maps are modeled as the sum of three contributions:

• A population of gamma-ray point sources. Since our analysis will be restricted to
the high galactic latitude region (in order to minimize in the analysis the impact of
the galactic foreground emission, as discussed in the following sections), these sources
will mostly be of extra-galactic origin and can therefore be assumed to be distributed
homogeneously across the sky. The high galactic latitude sky also contains a population
of millisecond pulsars which can also be approximately assumed to be isotropically
distributed [36], and thus are ideally included in our phenomenological dN/dS. In
terms of photon flux, the sources are extracted, for each map realization, from the
input dN/dS distributions, modeled as in section 3.1.

• Diffuse gamma-ray emission from the Milky Way. Galactic emission is the dominant
contribution at low galactic latitudes, with a declining intensity at high latitudes. We
model the galactic emission as discussed in section 3.2, by adopting a template model
normalized to the Fermi-LAT data. Stability of the results against foreground modeling
will be tested through the adoption of different templates.

• An isotropic background, which integrates all source emissions which are too faint
to be processed by the CNN and possible truly diffused emission mechanisms, such as
gamma-rays from cosmological cascades from ultra high energy cosmic rays or a possible
contribution from dark matter annihilation or decay, as well as a residual instrumental
CR background contamination. This term is modeled as a constant.

A flux mapM will therefore be obtained as the sum of three contributions:

M = S +Agal · G + Fiso (3.1)

– 5 –
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where S is the map due to the underlying distribution of sources (obtained from a dN/dS
model as described in the next subsection), G is a template map for the foreground emission
and Fiso is a constant that denotes the isotropic component discussed above. The constant
Agal is a normalization constant for the galactic foreground template.

The count map N is then obtained by multiplying the flux map by the Fermi-LAT
exposure map E , depicted in figure 2, and by taking into account the steradian-to-pixel
conversion factor. Specifically, the counts in pixel a are obtained as:

Na =Ma · Ea ·
4π
Npix

(3.2)

where the number of pixels in the Healpix scheme is Npix = 12 ·N2
side with Nside = 2n with

n the pixeling order.
Since the exposure slightly changes with energy, the above procedure could be improved

by performing a convolution in energy of the photon flux with the exposure, instead of directly
multiplying the two quantities as performed in eq. (3.2). However, the gradient in energy of
the exposure in the (1, 10)GeV energy range is small, and the two procedures would provide
very similar results. We, thus, use the simpler procedure outlined above. Eq. (3.2) also
implies that we do not adopt energy dispersion. In the energy range 1–10GeV the energy
dispersion is about 10% [31] and may induce normalization changes of similar size. Thus, as
explained in the next section, we will re-derive the galactic foreground normalization with a
dedicated fit in order to avoid possible biases in the normalization.

From the count map N , which contains the number of photon counts in each pixel as
determined by the model, we finally produce a Poisson realization NP , by extracting in each
pixel a photon count from a Poisson distribution with mean equal to the photon number of
the corresponding pixel in N . NP constitutes our synthetic map realization, which mimics a
count map of an experiment with the Fermi-LAT specifications, where the underling model
is the one of eq. (3.1).

In the next sections we discuss in more detail how the components of eq. (3.1) are
modeled.

3.1 Differential source-count distribution

Following [8], the differential source-count distribution dN/dS is modeled as a multi-break
power-law (MBPL). A MBPL with Nb breaks located at fluxes Sj (j = 1, 2, . . . , Nb) is de-
fined as:

dN

dS
= AS ×



(
S
S0

)−n1
, S > S1

(
S1
S0

)−n1+n2 ( S
S0

)−n2
, S2 < S 6 S1

...

...(
S1
S0

)−n1+n2 (S2
S0

)−n2+n3 · · ·
(
S
S0

)−nNb+1
, S 6 SNb

(3.3)

where S0 is a reference flux value which we choose to be S0 = 3 · 10−8 cm−2 s−1, and nj
are the power-law indices. S denotes the source flux in the energy interval (1, 10)GeV. The
dN/dS distribution is normalized with an overall factor AS .
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Parameter Prior Range
AS log-flat [1, 15]
Fiso log-flat [0.5 · 10−7, 7.0 · 10−7]

S1 log-flat [3 · 10−9, 5.0 · 10−8]
S2 log-flat [5 · 10−11, 3.0 · 10−9]
S3 log-flat [5 · 10−12, 5 · 10−11]
n1 flat [2, 4]
n2 flat [1.80, 2.15]
n3 flat [1.5, 2.5]
n4 flat [1.0, 3.0]

Table 2. Ranges of the parameters and their sampling priors adopted in the map generation with
Nb = 3 breaks. The normalization AS is in units of 107 cm2 s sr−1. Fiso is in units of cm−2 s−1 sr−1.
The breaks S1 S2 and S3 are given in units of cm−1 s−1. All other quantities are dimensionless.

For definiteness, in this work we adopt 3 breaks and 4 slopes. The ranges in which the
parameters are varied to produce different source-count distributions is reported in table 2.
The ranges have been chosen in order to intercept the expected features of the dN/dS and
are broad enough to allow for a good variability in the modeling of the source counts, in
order to expose the CNN to a wide set of options. In fact, the prior ranges of the three break
positions are chosen relative to the Fermi-LAT threshold for resolving point sources, Sth ∼
2 ·10−10 cm−2 s−1, such that S1, S2, S3 are respectively larger, across and below Sth. The flux
interval over which we will try to reconstruct the dN/dS is set as [5 ·10−12, 1 ·10−7] cm−2 s−1.
The upper limit of this interval is set by the brightest sources in the catalog, while the lower
limit is set at about 1.6 orders of magnitude below the Fermi-LAT threshold for resolving
sources. Sources fainter than the lower limit of this interval are assumed to just contribute to
the isotropic component. This lower limit, indeed, is also close to the theoretical sensitivity
given by the flux of a point source contributing exactly one photon, which we calculate as
Fsens = 1/Eav = 3.74 ·10−12 cm−2 s−1 where Eav is the average exposure in the region |b| > 30◦
where we perform the analysis.

The prior ranges for the power-law slopes are anchored to the results from the 4FGL
catalog in the resolved regime, and allow for progressively wider variability moving toward
the unresolved regime. Since catalog data exhibit a source count compatible with S−2,
except for large fluxes, where the slope increases, we adopt priors for n1 and n2 around these
behaviours. For n3 and n4, we progressively enlarge the prior ranges, in order to allow for
more variability especially in the sub-threshold (unresolved) regime we are interested in. An
example of a dN/dS generated from this procedure is shown in the right panel of figure 4,
which also illustrates the notation.

The maps S are generated according to the following procedure:

1. A dN/dS is selected by random sampling of its parameters in the intervals and with
the priors defined in table 2;

2. The number Ni of sources in the ith flux bin is calculated as Ni = 4π (Si,max −
Si,min) dN/dS|i where dN/dS|i is the value at the center of the ith bin. The flux
bins are determined by subdividing the interval of interest [5 · 10−12, 1 · 10−7] cm−2 s−1

in 103 log-intervals per decade;

– 7 –
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Figure 4. Left: the 1–10GeV dN/dS for resolved Fermi-LAT sources, obtained from the 4FGL-
DR3 [35] catalog. Right: an example of dN/dS with 3 breaks Sj (j = 1, 3) and four slopes, where ni

(i = 1, 4) is the inclination of the slope.

3. A Poisson extraction on Ni determines the number of sources NP,i in each flux interval;

4. The sources are randomly positioned on the sphere by uniformly sampling cos θ in
[−1, 1] and ϕ in [0, 2π], θ and ϕ being the spherical coordinates. The selected angular
position is then converted into a pixel position in the Healpix pixeling scheme with the
ang2pix routine. An example of a point-source map is shown in the upper panel of
figure 5;

5. Finally, convolution with the Fermi-LAT PSF shown in figure 3 is applied to each point
source. Since sources are assumed to be point-like, we simply replace each point source
with an extended circular object with a radial profile equal to the PSF, and whose
total flux is equal to the one of the original source. Since the image formation process
is linear in the intensity, in case of overlapping sources (either because of their spatial
position, or because of the PSF smearing) the resulting flux is additive. An example
of flux map with the PSF applied is shown in the lower panel of figure 5.

In order to avoid possible biases in the generated maps, due to the resolution of the
angular binning, the maps generated with the procedure described above have been produced
at a resolution higher than the one adopted for the analysis. We have therefore built our
maps with Nside = 128. These maps have then been downgraded to Nside = 64 for the
analysis.

3.2 Galactic foreground and isotropic background
The galactic foreground is implemented through the adoption of the Fermi-LAT template
model gll_iem_v07.1 The map of the integrated flux in the (1, 10)GeV energy range is shown
in figure 6. To check consistency and stability of our results, we will also adopt a different
version of the galactic template, namely model gll_iem_v05.1 The extragalactic isotropic
background instead is modeled as a constant flux Fiso, which captures all the unresolved
emission which is too faint to be associated to the emission modeled through the dN/dS
(i.e., which refers to fluxes S < 5 · 10−12 cm−2 s−1, below our region of interest).

As shown in figure 6, the galactic foreground dominates at low latitudes, although it
extends to high latitudes with a smaller flux. For these reasons, low latitudes are unsuitable

1https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.
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Figure 5. Simulated flux map of point sources extracted from a specific source-count distribution,
before (upper panel) and after (lower panel) the PSF is applied, in units of photons/(cm2 s sr). The
maps are shown at Healpix resolution Nside = 128 (n = 7).

for the study of the extra-galactic background. Our baseline analysis will therefore apply a
mask to the maps to cover the dominant part of the galactic emission, for which we adopt
a latitude cut |b| < 30◦. In order to check the stability of the results against the foreground
treatment, in section 5 we will show the results obtained with two additional latitude cuts:
|b| < 40◦ and |b| < 50◦.

Given the various approximations we use, instead of using the nominal normalization of
the galactic foreground models, we prefer to use a data-driven approach and normalize the
galactic templates gll_iem_v07 and gll_iem_v05 directly to the observed Fermi-LAT map.
This is realized by performing a maximum-likelihood Poisson fit, using as likelihood:

L =
Npix∏
a=1

λka
a e
−λa

ka!
(3.4)

where ka is the number of photons in pixel a of the Fermi-LAT count map and λa the
corresponding quantity from the model count-map, given by λa = (Agal Ga + F ′iso) · Ea · 4π

Npix
,

– 9 –
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Figure 6. gll_iem_v07 galactic foreground model [37], integrated in the (1, 10)GeV energy bin, in
units of photons/(cm2 s sr), at the Healpix resolution Nside = 128 (n = 7).

Foreground template Latitude cut Agal F ′iso

gll_iem_v07 |b| < 30◦ 0.888± 0.005 (4.91± 0.04) · 10−7

gll_iem_v07 |b| < 40◦ 0.874± 0.008 (4.90± 0.06) · 10−7

gll_iem_v07 |b| < 50◦ 0.838± 0.013 (5.05± 0.08) · 10−7

gll_iem_v05 |b| < 30◦ 1.030± 0.006 (2.57± 0.06) · 10−7

Table 3. Values of the Agal and F ′iso parameters obtained from a fit to the Fermi-LAT map, for
different galactic foreground template models and latitude cuts. F ′iso is in units of cm−2 s−1 sr−1.

where Agal and F ′iso are the two fit parameters. In performing the fit we mask the sky with
the low-latitude cut and with a 2◦ circular mask around each of the sources in the 4FGL
catalog. We added a prime on the F ′iso derived from the maximum-likelihood fit above to
explicitly distinguish it from the Fiso introduced earlier. Confronting with eq. (3.1), the
F ′iso term denotes the sum of the purely isotropic contribution Fiso and the contribution of
sources, S term, below the 4FGL detection threshold.

The results of the fit are shown in table 3, for three latitude cuts for the gll_iem_v07
template and for |b| < 30◦ for the alternative gll_iem_v05 model. We see that both the
normalisation parameter Agal and F ′iso are consistent among themselves for a fixed galac-
tic foreground model, implying consistency with respect to the latitude cut. The model
gll_iem_v05 instead requires a larger normalization, with an ensuing reduced value for F ′iso
by a factor of 2. This reflects a certain amount of degeneracy which is present at high
galactic latitude between the foreground emission and the isotropic emission, allowed by the
uncertainties in the foreground model. The normalization of the v07 model different from
1 is related to the fact that we do not include energy dispersion. The v05 model, instead,
has been created originally without including the effect of energy dispersion,2 and indeed we
obtain a normalization compatible with 1.

2https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.
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Figure 7. The same as in figure 5, with the galactic foreground model normalized with Agal = 0.886
and an isotropic background component Fiso = 4 · 10−7 cm−2 s−1 sr−1. Units are photons/(cm2 s sr).

Throughout the rest of the analysis we will fix the normalization parameter Agal to
the value determined from the above fit. The values of F ′iso are, instead, used to define the
range of the prior for Fiso in table 2 and a posteriori to check consistency of the results.
One illustration of a flux map obtained as the sum of all components is shown in figure 7.
Instead of fixing Agal, in principle, we could also leave it as a free parameter and instruct the
network to predict its value. We found, however, that the above procedure constrains Agal
very precisely and it is thus preferable. Furthermore, we also found that fixing Agal provides
a better stability of the neural network.

Nonetheless, to better asses the impact of fixing the Agal value, we also performed a
further test using different values in the range (0.78, 1.0) (i.e., a range centered on our fiducial
value 0.888±0.005, thus encompassing many standard deviations away from its central value.)
We found that the dN/dS reconstructed by the CNN is largely unaffected by the employed
value of Agal, while the specific Agal choice mostly affect Fiso, as expected because of the high
galactic latitude degeneracy between the foreground emission and the isotropic emission.
Example plots are shown in the appendix A.4.

3.3 Count maps

With a flux map M available, we can now produce a synthetic photon-count map N as
described in eq. (3.2). One example is shown in figure 8. In order to generate maps compatible
with a counting experiment like Fermi-LAT, we then add Poisson noise to the map performing
a Poisson realization of the number of photons in each pixel of the map N , and we dub this
final map as NP count map. One example is shown in figure 9, which also shows the same
map with the latitude cut applied: these are the type of maps that we use to train and
validate the neural network. We have generated in total 1 million maps, 90% of which have
been used for training and 10% for validation. The maps have been stored as a TFRecord
dataset3 for use with Tensorflow [38]. The maps have been generated in Healpix format with
Nside = 128 resolution (order n = 7) and then downsampled to Nside = 64 (order n = 6) for
the training and validation (this resolution corresponds to 49152 pixels).

3https://www.tensorflow.org/tutorials/load_data/tfrecord.
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Figure 8. Simulated count map in units of counts per pixel, at the Healpix resolution Nside = 128
(n = 7).

counts / pixel10 2000

counts / pixel10 2000

Figure 9. Simulated map in units of counts per pixel after adding Poisson noise from the synthetic
model map of figure 8, at the same Healpix resolution Nside = 128 (n = 7). The lower panel shows
the map with a |b| < 30◦ latitude cut.
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The training of the CNN and the subsequent analysis of the Fermi-LAT data can be
performed equivalently with maps in units of photon-count or in units of flux. Nonetheless,
we will work with maps in units of flux, which are easily obtained from the NP count maps by
using the exposure map and by inverting eq. (3.2). The reason to convert the NP count maps
in units of flux is motivated by the fact that count maps contain a spurious large-scale angular
dependence introduced by the exposure map (see figure 2) which might confuse the CNN,
while this potential issue is avoided using flux maps. Finally, to further ease the learning
process of the CNN we also apply a foreground subtraction procedure, i.e., to the above flux
maps we subtract the original galactic template flux map. In this way the CNN can focus on
learning the dN/dS, seeing the exposure and galactic foregrounds only as sources of noise,
instead of trying to learn their detailed structure. These foreground-subtracted flux maps
are the maps we use to train the CNN.

4 Neural network architecture and training

In this section we describe the architecture of the CNN we adopt and how data are handled.
The input of the CNN are synthetic foreground-subtracted flux maps, and the output vec-
tor ŷi = (dN/dS|j , Fiso) contains the reconstructed dN/dS|j in 20 flux bins in [5 · 10−12,
1 · 10−7] cm−2 s−1, plus the reconstructed value of Fiso. The index i, thus, has values
i = 1, . . . , 21. A possible alternative would be to choose as output the breaks and the
slopes of the dN/dS, i.e., the same parameters used to model the input dN/dS. Nonethe-
less, we found a better stability of the CNN using as output directly the dN/dS function as
discretized above, and we will thus use this as output.

As further described below, we will use an approach in which we will let the CNN
determine also the errors on the output parameters. The output vector will thus be effectively
doubled. Beside the ŷi, we thus have also σ̂i the output vector of the errors.

Since we are dealing with sky maps, we can approach the problem from the point of
view of image analysis. However, the image here is in spherical projection. We therefore
need to adopt a method able to deal with this situation.

4.1 Spherical neural networks

In the last years, the machine learning community has realised the importance of developing
neural network architectures on complex topologies. One of the most interesting non-trivial
domains is that of a sphere, since it cannot be mapped on a plane without introducing
distortion. This is the case we are confronting here, since we are dealing with sky maps.
There are many efforts to implement CNN architectures that can do convolutions on the
sphere [39–43], and while there have been many proposals, there is not yet agreement on a
standard algorithm.

In dealing with information extraction from spherical images, one has to cope with a
set of issues: i) the algorithm needs to properly deal with the topology of the sphere with-
out distorting the image or losing information; ii) the algorithm has to be computationally
efficient; iii) it would be desirable to be able to use the same neural network architectures
which already work for flat images, which have been proven to be very efficient and effective.

In fact, a full spherical architecture is usually slower than a flat architecture when
applied to images of the same size, and it often happens that it is not possible to adopt
pre-existing models without re-implementing them ad-hoc. On the other hand, the adoption
of a flat-image architecture either introduces spherical distortions, due to the mapping of a
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spherical image on a plane, or may loose some of the large scale information contained in
the image.

In this work, we implemented a fast and reliable spherical architecture on the Healpix
pixelisation of the sphere, taking inspiration from the idea proposed in [43] for the icosahe-
dron. This method proved to be reliable when the information we need to retrieve from the
maps is a small-scale effect, like in our case the distribution of sources, which are point-like
(although smeared by the PSF) and isotropically distributed.

The method is based on the fact that, in the Healpix pixelisation scheme, each pixel
has equal area and contains the information of the underlying field (in our case, the photon
counts) averaged over that pixel. As discussed above, we train our neural network on maps
of order n = 6 (Nside = 64), which contain 49152 pixels. Considering instead the Healpix
sphere with base pixelisation of order n = 0 (Nside = 1), we can subdivide the map into
12 equal-area patches, each of which containing 4096 pixels. Each patch is an independent
realisation of the underlying isotropic field and can be mapped into a 2D flat image. We call
this parsing algorithm map2patch. Notice that this is not a re-sampling of the map: it’s just
a subdivision of the spherical image into 12 patches, in a way that preserves the area and
content of each pixel. This allows us to use standard convolutional network techniques that
work efficiently on flat images, while preserving the whole available statistics of the full map.

Convolution is performed on each patch separately. In order to be able to extract
information from each patch in parallel, we define 3D convolutions, where the first two
dimensions are the spatial dimensions, and the third dimension specifies the patch. In order
to force the neural network to learn from each individual sky patch, we employ convolution
filters of size (N,N, 1), where N is the dimension of the filter. By doing so, we effectively
apply 2D filters to the whole sky. Note that by employing such filter size, the output of each
convolution will still have 12 separate images on the third axis, associated to each sky patch,
while the number of channels will vary according to the number of filters employed. This
technique will thus naturally scale for images with different color channels, such as RGB
images, or spherical images for which several channels are available, as is the case where
multiple energy bands are considered at once.

We stress that with our method we partially loose large-scale information and informa-
tion stored at the border of the patches. Thus our algorithm would not be suitable in the case
one is interested in recovering large-scale features. In our case, however, we are interested in
exploring information which is statistically isotropic and/or lies at scales much smaller then
the size of a patch. In this case our architecture is certainly viable and extremely efficient.
Also, since we build our patch on the pixels of the Healpix pixelisation scheme, there is no
spherical distortion in our images, unlike other architectures which employ the euclidean
projection of the sphere.

This approach is extremely fast, since it leverages on optimised 3D convolutions. Fur-
thermore the sphere-to-patch operation is performed asynchronously by the CPU while the
accelerator is training the model, allowing for virtually no bottlenecks in the processing
pipeline.

In order to cross-check our method, we also implemented the full-sky truly-spherical
convolutions of [42], obtaining very similar results. In appendix A.5, we report some examples
of the results and checks performed with a fully spherical convolution model. The two
methods are therefore interchangeable for the type of information we want extract from the
Fermi-LAT maps: however, our implementation allowed us to gain more than a factor of 10
in time of execution of the whole pipeline of training and validation. This convergence of
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results with the fully spherical method of [42] gives us confidence on the reliability of our
model, and the speed gain sets the basis for a future efficient extension of our analysis to
several energy bins in the full Fermi-LAT energy range, in order to determine also the energy
dependence of the dN/dS of unresolved sources.

4.2 Data pre-processing

The maps are constructed with the procedure outlined in section 3. As explained more in
detail there, even though we apply a latitude cut to the maps, in order to further reduce
the impact of the galactic foreground (and as it is customary in analyses of the extragalac-
tic gamma-ray background), we subtract the galactic foreground (normalized by the Agal
constant) from the input maps. This will also facilitate to some extent the training of the
CNN, whose goal is to reconstruct the source-count distribution. Photon-counts maps are
converted in units of flux, by using the exposure map. In order to reduce the variability of
the inputs seen by the CNN and stabilize its behaviour, we take the logarithm of the flux
values in the pixels and then map them in [−1, 1] range. Finally, each map is parsed into 12
patches using the map2patch algorithm discussed in the previous sections.

Given the approximate S−2 behavior of the dN/dS, for the output vector, we reconstruct
yi = S2dN/dS|i×1011 cm2 s deg2 (i = 1, 20) and y21 = Fiso ·107 cm2 s sr, in order to work with
(pure) numbers of order unity. We adopt this strategy in order to avoid that the mean square
error could favour the optimisation of any flux bin over another, making the deviations more
even across the range of S.

4.3 Network architecture

In recent years, we have seen the rise of many convolutional neural network models for
computer vision tasks [44–46]. Modern convolutional neural network architectures can have
a very large numbers of internal parameters. This is due to the complex links between each
neural unit, which allows for these models to be highly expressive and effectively behave
as universal approximators for many kinds of tasks [47]. Unfortunately this comes with
a downside: these models are prone to fitting too well the training dataset, which would
lead to poorer performance on new data. In the field of Machine Learning, this problem is
known as “overfitting” [48]. In order to prevent overfitting, a possible solution is to train the
model on a big enough dataset. This will render impossible for the NN to learn exactly the
representation of the training set, as well as showing a richer feature space, which will result
in better performance on any additional sample for which we may want to get a prediction,
like the real case scenario with the Fermi photon counts map. Another solution is to apply
regularisation layers which force the NN to learn a more general representation of the data,
by promoting several metrics. Some of the most common regularisation techniques include
L1 and L2 regularisation, batch normalisation, and dropout [49–52].

We choose as our convolutional neural network architecture the EfficientNet V2M
model [53]. This model has been proven to be faster to train then other models for computer
vision tasks, while retaining the same expressivity and predictive power. Furthermore, its
low memory footprint helps in training with more data at the same time (larger batch sizes),
which in turn reduces the risk of overfitting. In this work, following the original implemen-
tation of EfficientNet, we will adopt batch normalisation layers after each convolution.

We additionally employ a fairly new trainable implementation of dropout, called con-
crete dropout [54], before each convolution layer. Dropout [49] has been proven to be an
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efficient way to reduce overfitting in a model, by randomly turning off neurons or connec-
tions inside a model. Unfortunately, the dropout probability for each dropout layer has to be
either hand picked or optimised through grid search, which is practically unfeasible for very
large models. If the dropout probability is too small, the regularisation effect will not be
very significant, while on the other hand too high a dropout probability will result in slower
training and worse overall performance (underfitting). We therefore adopt the implementa-
tion of dropout as a concrete Bernoulli distribution [55], which allows the self-learning of the
optimal dropout probability, effectively saving a conspicuous amount of time while training
and ensuring that the model will be less prone to overfitting.

4.4 Bayesian error estimation and cost function

In order to correctly estimate the error on a prediction, it is necessary to correctly estimate
both the systematic error (sometimes called epistemic error [56]) and aleatory error com-
ponents of a measurement. One way to estimate such components together is through a
Bayesian approach, and in particular by defining a Bayesian neural network capable of esti-
mating the posterior distribution of the desired observables. It has been shown [57] that a
NN with arbitrary depth and non-linearities, with dropout applied before every weight layer,
is mathematically equivalent to an approximation of a Bayesian model.

In a subsequent analysis [58] it has been shown how to estimate the first and second mo-
menta (mean and variance) of the posterior distribution, under the assumption of a Gaussian
likelihood of unknown variance. In particular [58] shows how to define a neural network ca-
pable of determining the appropriate variances of such a multivariate Gaussian. In our case,
training a neural network with such an approach is advantageous, as the neural network will
learn to weight less the component of the measurement at low fluxes, which we expect to be
more uncertain, which helps in obtaining stable measurements for the test dataset.

Following [58] we define the heteroscedastic Gaussian negative log-likelihood:

NLL =
N∑
i=1

[
(ytrue
i − ypred

i )2

2σ2
i

+ 1
2 log(σ2

i ) + 1
2 log(2π)

]
(4.1)

where we compare the true dN/dS and Fiso (transformed as discussed in section 4.2) used to
generate the simulated map with the prediction of the neural network, and thus N = 20 + 1.
For the training of the neural network, we omit the last term of eq. (4.1) which is an irrelevant
constant. Regarding the errors, since the first term in eq. (4.1) is a decreasing function of
the σi while the second is increasing, this ensures that there will be a minimum which will
provide the optimal estimate for the σi themselves.

In principle, the above cost function can easily be generalized to account for the co-
variance among the different bins and Fiso. In practice, however, this implies estimating
also the off-diagonal terms of a 21 × 21 symmetric matrix. Such matrix has to be inferred
autonomously from data without any supervision, making the problem very challenging to
optimise in this form. We thus refrain from attempting estimating the covariance. For
CNN applications where the covariance between a set of parameters has been estimated, see
e.g. refs. [27, 29].

4.5 Training and validation

We train our model using a Tensor Processing Unit (TPU) v3, kindly provided by the
GoogleTM TPU Research Cloud. We adopt the Adam optimizer. We employ a cyclical
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Figure 10. Epoch evolution of the MSE for the training (blue line) and validation (orange line)
sets.

triangular learning rate [59] to avoid falling into local minima of the parameter space. We
adopt a batch size equal to 128× 8 = 1024 to fully exploit the computational capabilities of
the TPU. We train the model for 72 epochs, for a total of 9 triangular learning rate cycles,
with learning rate ranging from 10−6 to 10−3. As already anticipated, we have generated 1
million maps, 90% of which have been employed in the training and 10% for validation.

To test the convergence of the model we evaluate the mean square error (MSE) defined
as MSE = ∑N

i=1(ytrue
i − ypred

i )2. In figure 10 we plot the MSE as a function of the training
epoch for the training and validation dataset. We can see that, starting from epoch 10,
the validation and training lines are close to each other, which means that our model is
not overfitting the training dataset. We observe that the MSE reaches a plateau at around
epoch 60, meaning that further training of our model would not lead to improvement in
performance.

Once the CNN is fully trained, we extensively check the convergence of the reconstructed
dN/dS and Fiso against their inputs, by using the maps of the validation set. Figure 11
shows a few illustrative examples of dN/dS, randomly generated according to the priors and
parameters intervals listed in table 2, together with their reconstructions. The dashed black
lines show the input dN/dS and the black solid lines denote the corresponding distributions
reconstructed by the CNN. The input and reconstructed values of Fiso are also quoted. The
colored bands refer to the 1σ and 2σ confidence intervals as estimated by the CNN. The CNN
recovers a dN/dS which is compatible with the input. The error bands are large for high
fluxes, due to the fact that the number of sources at those values of S is low and therefore a
large statistical uncertainty is expected. The error band becomes large again at low fluxes,
indicating that the CNN reaches a confusion limit: even though here the number of sources is
very large, their faintness makes progressively harder to identify their number and a confusion
between faint sources and the average isotropic component Fiso arises, the lower the valus of
S becomes. This same behaviour also occurs in the 1point-PDF analysis of [8]. Concerning
the value of Fiso, the reconstruction is very good, compatible with the input and with a small
uncertainty.

4.6 Frequentist error estimation and bias

Besides the Bayesian error automatically provided as output by the CNN, we also estimate
the error in an alternative frequentist-like way, in order to provide a cross-check. This second
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Figure 11. Some example dN/dS from the validation dataset. Each panel shows the input dN/dS
and Fiso and the corresponding quantities reconstructed by the CNN. The colored bands indicate 1–2
σ uncertainty regions. See text for more details.

method gives as a further advantage also the possibility to estimate the amount of bias on the
reconstructed dN/dS. To this aim, we have built, for each of the 20 bins in flux and for Fiso,
the histogram of the deviations between the true and reconstructed dN/dS and Fiso. The
results for 14 values of S across its interval of interest, and for Fiso, are shown in figure 12
(the remaining histograms are similar in content and are not shown here for economy of
space). The plot shows the distribution of models which exhibit a specific relative deviation
(expressed as percentage of the true value). By using these distributions of the deviations
(normalized to unity), we derived the 1σ and 2σ confidence level intervals on the reconstructed
dN/dS and Fiso. As anticipated in section 4.5, at low and large fluxes the distributions are
wide, implying a poorer ability to reconstruct the underlying physical models, while in the
flux interval (1 · 10−11, 2 · 10−8) cm−2 s−1 the 1σ error is below 30%, with an error below 20%
for S in (1 · 10−10, 1 · 10−8) cm−2 s−1. The 1σ error on Fiso is also of the order of 20%. The
last panel of figure 12 shows the histogram for the reconstructed value of the total photon
flux: this is a sanity check and shows that the CNN correctly reproduces the normalization
of the maps in terms of total counting rate. The uncertainty on the total flux is 5%. The
1σ (non symmetric) intervals for all the 20 flux bins are also reported in figure 13. A more
direct comparison of the Bayesian and frequentist errors is provided in the results section.

The same histograms of figure 12 allow us also to check whether the reconstructed
values are biased. We define the bias as the deviation between the median of the distribution
and the input value. The values of the bias are shown, for each of the 20 values of flux, in
figure 13 as squares. We see that for all fluxes, the bias is very close to zero, which implies
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Figure 12. Histograms of the percentage deviations between the true and reconstructed dN/dS for
14 values of S across its interval of interest, and for Fiso. The bottom right panel shows the same,
but for a derived quantity, namely the total flux. The dotted vertical black lines indicate the 68%
confidence region.
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Figure 13. 68% error for the reconstructed dN/dS as function of S, for Fiso and for the total flux.
Also shown is the bias given by the median of the histogram for each S bin (squares).
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Figure 14. Reconstructed dN/dS and Fiso and their Bayesian errors, when the trained CNN is
applied to the Fermi-LAT map. This is the main baseline result of the analysis.

that the reconstructed values not only are determined with good precision (since the error
bar is small), but also without a bias toward larger or lower values. The only exception is a
positive bias for very low fluxes, where the CNN meets its confusion limit, and for very large
fluxes, where the low source-counts statistics produces a small overestimate of the underlying
dN/dS. In both cases, however, the bias is small compared to the overall error.

5 Results

After the training and validation processes described in the previous section, we have applied
the fully trained CNN to the 14 years Fermi-LAT data. The result of our baseline analysis,
which adopts the gll_iem_v07 galactic foreground and a latitude cut of |b| < 30◦, is shown
in figure 14. The blue line is the reconstructed dN/dS and the error bands are the Bayesian
errors obtained as described in section 4.4. The blue points show the dN/dS of the resolved
sources, obtained from the 4FGL-DR3 catalog. We can see that in the resolved limit, the
CNN reconstructs a dN/dS fully compatible with the one derived from the catalog, but then
extends it to the unresolved regime with a behaviour compatible with dN/dS ∼ S−2 down to
the smallest flux considered of S = 5 · 10−12 cm−2 s−1. Below S ∼ 10−10 cm−2 s−1 the dN/dS
exhibits a slight turn-up, although the feature has a very low statistical significance.

The result obtained here is also compatible with the one obtained in [8], as shown
in figure 15. The difference between the two analyses, apart from the technique adopted
to extract the dN/dS, stands in the fact that here we update the data set to 14 years of
Fermi-LAT data collection and to improved detector response functions, as compared to [8].
Another difference is that in [8] the dN/dS was reconstructed with a broken power-law, while
here we are allowing for a more flexible functional dependence (we are using 20 points in the
flux interval shown in figure 14). The result is nevertheless quite compatible with a power
law behaviour with dN/dS ∼ S−2 for mid-values of S, dN/dS ∼ S−3 for S > 10−8 cm−2 s−1

and a slight decrease in the power-law index for fluxes S < 10−10 cm−2 s−1.
In figure 16 we show the measurement for the Fermi map employing the frequestist

estimation of the error. It can be seen that the error is very similar to the Bayesian one,
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Figure 15. Same as figure 14, including a comparison with the result of ref. [8].
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Figure 16. Same as in figure 14, but with errors estimated through a frequentist approach.

with some minimal difference at low fluxes. This provides confidence that the estimated error
is robust.

The CNN provides also the value Fiso = 4.90± 0.43 · 10−7 cm−2 s−1 sr−1, which can be
compared with the value F ′iso = 4.91±0.04·10−7 cm−2 s−1 sr−1 reported in table 3. We remind
that F ′iso is the sum of Fiso and of the contribution of sources below the 4FGL catalog thresh-
old. Indeed, if we calculate the contribution of sources using our best fit dN/dS integrated
in the range [5 ·10−12, 1 ·10−10] cm−2 s−1, the upper limit being an approximate value for the
catalog threshold, and we add Fiso we obtain a value of (6.41 ± 0.61) · 10−7 cm−2 s−1 sr−1.
This is in slight tension with F ′iso, although the two agree at the ∼ 2σ level.

In order to test the stability of the results, we repeated the analysis by using the same
gll_iem_v07 galactic foreground but with two different latitude cuts: |b| < 40◦ and |b| < 50◦.
The positive consequence of a higher latitude cut is a lower residual foreground contamination.
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Figure 17. Same as figure 14 but for a latitude cut of 40◦ and 50◦. The blue datapoints of the
dN/dS of the 4FGL sources have been updated using only the source in the given region of interested.

However, the amount of available data is reduced. The CNN has been fully re-trained for
both of these situations, and the ensuing results when applied to the Fermi-LAT data are
shown in figure 17. We notice that the results, both in terms of behaviour and uncertainty
estimate, are fully compatible with the results of the baseline analysis. The dN/dS exhibits a
slight decrease toward lower fluxes as compared to the baseline case, although the size of this
effect is not statistically significant. The values of Fiso are also fully compatible among them.

A second test of stability has been performed in order to check the impact of galactic
foreground modeling. We have performed a new training of the CNN with the alternative tem-
plate gll_iem_v05, and with the |b| < 30◦ latitude cut. The result is shown in figure 18. The
reconstructed dN/dS matches to a large degree the source-count distributions obtained with
gll_iem_v07. This reassures us that, even though the galactic foreground modeling intro-
duces a degree of uncertainty, nevertheless the results of the CNN for dN/dS are remarkably
stable. The value of Fiso is smaller in this case, equal to Fiso = 1.82±0.15·10−7 cm−2 s−1 sr−1,
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Figure 18. Same as figure 14 but using a CNN trained using the foreground model v05.

which can be compared with the value F ′iso = 2.57 ± 0.06 · 10−7 cm−2 s−1 sr−1 reported in
table 3. Adding to Fiso the integral of the contribution of sources in the interval in the
range [5 · 10−12, 1 · 10−10] cm−2 s−1 using the obtained dN/dS, we obtain a total flux of
(2.92± 0.54) · 10−7 cm−2 s−1 sr−1, which is in very good agreement with F ′iso.

In appendix A, we also discuss the results of further tests that we performed to cross-
check the stability of the dN/dS derived in this section, and that confirm the robustness of
the result.

6 Conclusions

In this paper we have studied the differential source-count distribution of gamma-ray sources
below the Fermi-LAT threshold for source identification. We adopted a convolutional neural
network methodology devised to deal with spherical sky-maps and able to extract information
related to small scale fluctuations. The technique is based on the EfficientNet V2M model,
applied to a patched version of the 2-dimensional spherical sky-map projection of the gamma-
ray emission. The neural network has been trained on 900k synthetic maps and validated on
100k additional maps. These synthetic maps have been generated from the flux of random
selections of source-counts distributions, to which galactic foreground models and an isotropic
component have been added. After training and validation, the neural network has been
applied to the Fermi-LAT sky-map.

We concentrated our analysis on the photon energy interval (1, 10)GeV and to 14 years
of data. The main result is shown in figure 14: the reconstructed source count distribution
exhibits a dN/dS ∼ S−2 behaviour over almost four orders of magnitude in flux in the range
[5 · 10−12, 1 · 10−8] cm−2 s−1, which includes the unresolved regime range [5 · 10−12, 2 · 1010].
In the regime where Fermi-LAT has sensitivity to individually resolve gamma-ray sources,
figure 14 shows that the neural network fairly reproduces the observations, giving confidence
on its reliability and strength. While in the unresolved regime the result is in agreement with
previous studies performed with different methodologies. We have also further validated the
result performing several test of stability which have confirmed that our findings is stable
and robust.
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The methodology presented here provides a proof of principle for the adoption of a CNN
to the reconstruction of the source-count distribution of the extra-galactic sky. With respect
to other methods to extract the source-count distribution in the unresolved regime, like the
1-point PDF one, the use of a CNN avoids the need to calculate complicated and numerically
demanding likelihoods. Possible future applications includes the extension to multiple energy
ranges and energy correlations, and the investigation of features in the dN/dS which might
indicate the presence of exotic components like dark matter. A further aspect which would
be interesting to investigate is to compare different approaches to machine learning on spher-
ical domains. In particular, it might be interesting to employ a graph convolutional neural
network as suggested in [41], in order to preserve spatial relations between distant pixels,
and rotational invariance. Finally, recent developments in the field of simulation based infer-
ence, such as our case, suggest that a promising approach to estimate the complex posterior
distribution of the objective parameters are the so-called neural likelihood ratio estimation
techniques [60], and in particular Truncated Marginal Neural Ratio Estimation [61–63]. Since
these techniques are tailored for simulation based problems, we hypothesise that it would be
possible to achieve similar performance to our current neural network architecture with an
even simpler structure and possibly less training samples.
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Figure 19. Same as figure 11 but for 6 different random realization of the same flat S2dN/dS and
same Fiso,true = 4.84 · 10−7 cm−2 s−1 sr−1.

A Further tests

In this appendix we describe further tests that we have performed to cross-check the stability
and robustness of the dN/dS derived in the main text.

A.1 Flat S2 dN/dS

Figure 19 shows the stability of the CNN output for a specific repeated dN/dS input. In
this case, the CNN, trained on the wide variability of models of table 2, is applied to a set
of maps, all generated with a specific dN/dS ∼ S−2. This specific choice of input dN/dS
is meant to test a case which is expected to be similar to the real Fermi-LAT case, as was
found in [8] for mid-values of S. The plots show that the CNN is remarkably consistent in
reproducing the correct behaviour. The drop at high fluxes is mostly due to the fact that
the CNN has been instructed with maps that contain a dropping dN/dS at high fluxes (see
table 2 — the reason for this choice of prior is that sources in the 4FGL catalog exhibit this
drop in the source count). For mid-values of S, the reconstructed S2dN/dS is quite flat, with
a small error band. At low S, well below the Fermi-LAT threshold and when approaching
the confusion limit, some mild deviation occurs, but the true dN/dS lies always within the
uncertainties. These tests gives us confidence that the CNN should be able to faithfully
reconstruct the source distribution of the Fermi-LAT sky, when applied to the real data in
section 5.

As a further test, we show in figure 20 the case where we apply our method to maps
which contain a galactic foreground model different from the one used in the training. The
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Figure 20. Same as figure 19 but for synthetic maps generated using version v05 of the foreground
model.

CNN has been built (like in our baseline case) with maps generated with the galactic template
model gll_iem_v07. The same model is used in the foreground subtraction performed in
the analysis. On the contrary, for this test we have generated maps using the alternative
gll_iem_v05 foreground model, and let the above gll_iem_v07-trained CNN to analyze
them. This has been done in order to verify the resilience of the method on the imperfect
knowledge of the galactic foreground. Figure 20 shows that the reconstructed dN/dS has
a level of agreement with the input model comparable to the analogous case of figure 19.
Some larger deviation is present at very low fluxes, even though the reconstructed and input
models are compatible within 1σ.

A.2 UltraCleanVeto selection

In this section we further test the robustness of the results to the Fermi-LAT data selection.
In particular, while for the main results we used the SOURCEVETO event class selection, here we
test the ULTRACLEANVETO selection. This event class has more stringent cuts with respct to
the SOURCEVETO class, and it thus contains a lower residual charged cosmic-ray background,
at the prize of a lower effective area (by about 15%). Except for the different data selection
all the rest of the analysis is performed in the same identical way as for the SOURCEVETO case.
The resulting dN/dS is shown in figure 21 and it can be seen that it is compatible with the
main results, while, as expected, the value of Fiso is a bit lower.
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Figure 21. Same as figure 14 but for the ULTRACLEANVETO Fermi-LAT data selection.

A.3 Multipole analysis
Since foreground modeling can be an important source of systematic uncertainty, we investi-
gate this potential issue performing a further test. As discussed above, the signal we try to
extract from the gamma ray maps, is a small-scale effect, since it is due to a distribution of
point sources. To a large degree, this point sources are isotropically distributed in the sky and
contribute to the fluctuations of this isotropic field at small angular scales. On the contrary,
the galactic foreground is quite diffuse, as can be seen in figure 6, and therefore contributes
mainly to large-scale anisotropies. In order to further remove from the data the possible
large-scale residual component of the galactic foreground, which might still be present after
imperfect foreground removal performed with the use of the templates, we adopt a method
based on the transformation of the flux to harmonic space and the removal from the maps
of the low-multipoles (i.e., large angular scales) contribution. We stress that this procedure
is applied only to the Fermi-LAT data map, and not to the synthetic maps. For the latter,
the foreground subtracted is the same used to generate the maps, so foreground subtraction
is, by definition, “perfect”. The procedure follows these steps:

• We start with the foreground-subtracted flux map, to which we apply the |b| < 30◦
latitude cut and a 2◦ mask around each of the bright sources of the 4FGL catalog
(which would otherwise dominate the angular power spectrum). We first determine
and remove the monopole (l = 0) and dipole (l = 1) components from the masked map
(for this, we use the remove_dipole routine from the Healpy library). In this way,
after the subtraction procedure outlined below, the monopole (i.e. the total flux) and
dipole information of the Fermi-LAT map are retained.

• This map is then subject to harmonic space decomposition:

Mmasked(θ, φ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, φ) (A.1)

where θ and φ are angles on the sphere, Ylm(θ, φ) the spherical harmonics and the
harmonic coefficients alm completely encode the same information present in the map
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Mmasked (notice that, even though in eq. (A.1) we formally decompose over all multi-
poles, the monopole and dipole amplitude are vanishing, since they have been removed
fromMmasked);

• The harmonic coefficients alm are determined with the map2alm Healpy function. The
ones that are retained for the foreground cleaning are those referring to multipole values
l < lmax, where lmax will be varied and the dependence of the results with lmax will be
studied (at this level, the monopole and dipole are not present, because of the above
point);

• By using the alm corresponding to multipoles l < lmax, we use eq. (A.1) to construct a
mapMresidual which contains only the large-scale component. This is performed with
alm2map Healpy function.

• We subtract the residual map from the original map, thus obtaining a map where the
large scale residual components have been removed. The size of the scale is determined
by l < lmax.

With this algorithm we obtain maps where the large scale residual features associated
to imperfect galactic foreground subtraction are further removed. The results we obtain on
the reconstructed dN/dS for the Fermi-LAT data (after this “multipole cleaning”) are shown
in figure 22, for different values of lmax and for the gll_iem_v07 template. By comparing
figure 22 with figure 14, which refers to the same foreground template and latitude cut, we
can see that the results are extremely stable up to lmax ∼ 100. This means that our baseline
analysis is not affected by incomplete foreground subtraction, and can be considered reliable.
The fall-off of the dN/dS when lmax > 100 is expected since lmax = 100 corresponds to an
angular scale of the order of 2◦, which starts to be compatible with the size of (PSF-smeared)
point sources. Therefore, a cleaning with lmax > 100 starts to remove point sources instead
of galactic foregrounds.

The same analysis has been performed on a pipeline fully based on gll_iem_v05: the
result is shown in figure 23, to be compared with figure 18. Also in this case, the results are
extremely stable up to lmax ∼ 100, and the same above considerations apply.

Finally, to check the strength of the method against the imperfect knowledge of the
background, we performed the same analysis of multipole cleaning by adopting our baseline
pipeline (based on gll_iem_v07) on maps generated with gll_iem_v05 (similarly to what
has been done for figure 20). The results are shown in figure 24, where again we see that the
results are pretty consistent, up to l ∼ 100. It can be seen, moreover, that the procedure of
multipole cleaning helps in removing the, nonetheless small, positive bias which is present
toward low fluxes in this case.

In conclusion, these tests give confidence on the reliability of the method and that the
main result of figure 14 corresponds to a fair representation of the source-count distribution
of the unresolved gamma-ray sources.
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Figure 22. Same as figure 14 but where the Fermi-LAT map given as input to the CNN has
been processed with the improved foreground cleaning procedure based on multipole decomposition
described in the text. Each panel refer to a different maximal multipole `max used for the cleaning.

A.4 Changing Agal

In order to test the stability of the results against changes in the values of Agal, we have
provided, as input to our trained CNN, Fermi-LAT maps cleaned with different values of
Agal, ranging from 0.78 to 1.0 (our fiducial value is 0.888 ± 0.005, thus the chosen range
encompass many standard deviations around its central value). The results are shown in
figure 25 below. It can be seen that the dN/dS is considerably robust and stable to different
values of Agal, despite the large range explored. Instead, different values of Agal seem to
imply a significant variation in the reconstructed value of Fiso, as expected since at the large
Galactic latitudes explored in our analysis (|b| > 30◦) there is a certain amount of degeneracy
between a purely isotropic emission and the Galactic foreground emission itself. However,
this does not affect the reconstructed dN/dS.
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Figure 23. Same as figure 22 but using a CNN trained with the v05 version of the foreground model,
as well as using as input a Fermi-LAT count map processed with the same foreground model.

A.5 Fully spherical CNN

In this section we show a comparison of the results obtained using a fully spherical CNN,
instead of the map2patch algorithm used in the main analysis. In particular, we adopt here
the NNHealpix [42] algorithm.

Figure 26 shows the reconstructed dN/dS, Fiso and their frequentist errors, using the
spherical CNN applied to the Fermi-LAT map. The results are fully compatible with the
ones obtained with the map2patch algorithm, both for the mean value and the errors, as can
be seen by confronting with figure 16.

Figure 27 instead, shows some examples of random input dN/dS and Fiso from the
validation dataset of the Spherical CNN, and the corresponding quantities and their errors
reconstructed by the CNN. The spherical CNN has similar performances as the CNN that
uses map2patch, as can be seen comparing with figure 11. The same occurs also in figure 28,
which refers to a flat S2dN/dS, to be compared with figure 19 obtained with map2patch.
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Figure 24. Same as figure 22 but using as input a synthetic map generated with a flat S2dN/dS
and with the v05 version of the foreground model.
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Figure 25. Reconstructed dN/dS and Fiso and their Bayesian errors, when the trained CNN is
applied to the Fermi-LAT map using different values of Agal as indicated in the panel labels.
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Figure 26. Reconstructed dN/dS and Fiso and their errors, using a fully spherical CNN, trained on
simulated maps and then applied to the Fermi-LAT map.
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Figure 27. Some example dN/dS from the validation dataset of the spherical CNN. Each panel
shows the input dN/dS and Fiso and the corresponding quantities reconstructed by the CNN. The
colored areas indicate the 1σ and 2σ uncertainty bands.
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Figure 28. Same as figure 27 but for 6 different random realization of a flat S2dN/dS and same Fiso.
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