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Major depressive disorder (MDD) is a recurrent episodic mood disorder that

represents the third leading cause of disability worldwide. In MDD, several factors

can simultaneously contribute to its development, which complicates its diagnosis.

According to practical guidelines, antidepressants are the first-line treatment for

moderate to severemajor depressive episodes. Traditional treatment strategies often

follow a one-size-fits-all approach, resulting in suboptimal outcomes for many

patients who fail to experience a response or recovery and develop the so-called

“therapy-resistant depression”. The high biological and clinical inter-variability within

patients and the lack of robust biomarkers hinder the finding of specific therapeutic

targets, contributing to the high treatment failure rates. In this frame, precision

medicine, a paradigm that tailors medical interventions to individual characteristics,

would help allocate themost adequate and effective treatment for each patient while

minimizing its side effects. In particular, multi-omic studies may unveil the intricate

interplays between genetic predispositions and exposure to environmental factors

through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut

microbiomics, and immunomics. The integration of the flow of multi-omic

information into molecular pathways may produce better outcomes than the

current psychopharmacological approach, which targets singular molecular factors

mainly related to the monoamine systems, disregarding the complex network of our

organism. The concept of systembiomedicine involves the integration and analysis of

enormous datasets generated with different technologies, creating a “patient

fingerprint”, which defines the underlying biological mechanisms of every patient.

This review, centered on precision medicine, explores the integration of multi-omic

approaches as clinical tools for prediction in MDD at a single-patient level. It

investigates how combining the existing technologies used for diagnostic,

stratification, prognostic, and treatment-response biomarkers discovery with

artificial intelligence can improve the assessment and treatment of MDD.
KEYWORDS

major depress ive disorder , prec is ion medic ine , system biomedic ine ,
biomarkers, antidepressant
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1 Major depressive disorder

Major depressive disorder (MDD) is a common, heterogenous,

episodic, and disabling psychopathological condition characterized

by a combination of signs and symptoms that negatively impact

patients’ productivity and well-being, including cognitive

dysfunction, emotional regulation, motor activity, motivation, and

possible suicidal ideation (1, 2). MDD is the most prevalent

psychiatric condition, represents approximately 30% of mental

disorders, and affects more than 300 million people worldwide,

with 5–17% of the world population suffering from the disorder at

least once in their lifetime (3). In 2019, MDD was the third cause of

years lived with disability in the world’s adult population and the

World Health Organization (WHO, Geneva, Switzerland) estimates

that, by 2030, depression will have become the leading cause of

disability worldwide (4–7). Moreover, MDD is associated with high

levels of morbidity and mortality: patients often develop comorbid

mental conditions, including posttraumatic stress disorder, anxiety

disorders, obsessive-compulsive disorder, substance use disorders,

and a lifetime risk of a suicide attempt of 31% (8, 9). The disorder is

also associated with non-psychiatric chronic illnesses, including

cardiovascular and cerebrovascular diseases, metabolic disorders

like type 2 diabetes mellitus and obesity, and cancer (9). In relation

to the abovementioned comorbidities, patients’ life expectancy is

reduced by 7–13 years (10). In addition to the impact on the people

affected, there are economic and social implications, such as the

reduction in productivity, higher healthcare costs, and costs

incurred by unpaid caregivers (11, 12).

The diagnosis of MDD is based on the assessment of symptoms

by the clinician, the self-assessed disease features, and the patient’s

lifetime history (13). The International Classification of Diseases

(ICD) (from the 6th to the 11th edition) and the Diagnostic and

Statistical Manual (DSM) (from I to V edition) provide a set of

criteria for diagnosing a major depressive episode (MDE).

According to the DSM-5 (14), the simultaneous manifestation of

at least five of the nine following groups of symptoms over a two-

week period is needed: depressed mood; markedly diminished

interest or pleasure in activities; reduced ability to think or

concentrate, or indecisiveness; feelings of worthlessness, or

excessive or inappropriate guilt; recurrent thoughts of death, or

suicidal ideation, or suicide attempts or plans; insomnia or

hypersomnia; significant change in appetite or weight;

psychomotor agitation or retardation; and fatigue or loss of

energy (14). Of these five symptoms, one of the first two must be

present (14). A diagnosis of MDD can be made if an MDE is present

or occurred in the patient’s history and is not explained by a

concomitant primary psychosis or by a known bipolar disorder

(14). Indeed, the main differential diagnosis to evaluate is bipolar

disorder (BD), with approximately 40% of patients with BD initially

misdiagnosed with MDD (15). Therefore, all patients showing

symptoms of depression should be screened for BD (16).

The binary approach proposed in the DSM and ICD defines

MDD as absent or present. This dichotomic classification has some

limitations as it represents a post-hoc construct that reduces

information, precision, validity, and reliability of the MDD

diagnosis (13). Further characterization of the disorder is needed
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to overcome the problem of binary diagnosis. This should include

an assessment of the current depressive symptoms and suicidal

behavior as well as a detailed history of the disorder, including the

number, duration, and severity of relapses, and the response to

treatments coupled with a good knowledge of the patient’s life

history, useful to differentiate between physiological and

pathological human stress-related responses (13, 16). The severity

of symptoms can be measured with standardized psychometric

scales (3) such as the Hamilton Depression Rating Scale (17),

Montgomery-Asberg Depression Rating Scale (18), and Beck

Depression Inventory (19). Suicidality, in terms of suicidal

ideation and attempts, is among the stronger predictors of suicide

(20) and should be assessed with validated scales like the Columbia-

Suicide Severity Rating Scale (21).

The clinical characterization of MDD is needed not only for

diagnostic purposes but also to develop a personalized management

plan at a single-patient level (16). This profiling consists of assessing

various clinical domains, including clinical subtypes,

neurocognition, clinical staging, and functioning and quality of

life. MDD is considered a heterogeneous disorder, and many

clinical subtypes with specific associations of signs and symptoms

were described, including melancholic, atypical, anhedonic,

inflammatory, suicidal, anxious, somatic-traits, reactive, psychotic,

pseudo-demented, and seasonal subtypes (3, 16). A worse prognosis

and a specific treatment indication consisting of antidepressants

and antipsychotics were supported by sufficient evidence only for

the psychotic subtype that includes delusions and/or hallucinations

in the clinical context of a severe MDE (16), suggesting that this

specific subtype may be studied as a partial autonomous

nosological entity.

Neurocognitive impairment is present in 85–94% of cases

during an MDE and 39–44% of cases during remissions. It

mainly involves attention, short-term memory, and executive

function and accounts for a disproportionately high percentage of

patients who have not completely reached the psychosocial

functioning they used to have before the onset of the MDE (22–

24). A better identification and characterization of patients with

MDD with neurocognitive dysfunction might promote the

development of new and personalized treatments (25).

Clinical staging refers to two main classifications: the first one

is related to the course of the disorder and the second one to the

response to treatment (26, 27). The former defines the following

five stages: (i) a prodromal phase with (a) non-specific significant

or (b) subthreshold depressive symptoms; (ii) a second stage

corresponding to the first MDE; (iii) a residual phase

characterized by (a) non-specific, (b) residual depressive, or (c)

mild chronic depressive (dysthymia) symptoms; (iv) a fourth stage

corresponding to (a) a recurrent MDE in a patient that fully

recovered from a previous depressive episode or (b) double

depression, i.e., an MDE superimposed on dysthymia; and (v) a

persistent MDE lasting at least two years without interruption (26).

The second classification also defines five stages: (0) no history of

treatment failure; (1) failure of one adequate treatment, i.e., 6–8

weeks for antidepressants or 36–52 weeks for psychotherapy; (2)

failure of two adequate treatments (12–16 weeks for antidepressants

or 36–52 weeks for psychotherapy); (3) failure of three
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adequate treatments; (4) failure of three or more adequate

treatments with at least one involving augmentation or

combination strategies (27). Stage 2 corresponds to the most

common definition of treatment-resistant depression (TRD) and

stage 4 to refractory depression (28).

According to the DSM-5 and ICD-11, an MDE results in a

significant impairment in personal, family, social, educational,

occupational, or other important areas of functioning (29). In

parallel, patients report an important reduction in their self-rated

quality of life and satisfaction with life and expect from treatments a

restoration of positive emotions, functioning, and meaningfulness

of life rather than merely symptom relief (30, 31). The routine

assessment of functioning, quality of life, and life satisfaction

with standardized instruments like the recovery index promotes a

patient-centered perspective, shifting the focus from a symptomatic

remission to a functional and personal recovery from MDD

(16, 32).

An in-depth clinical characterization can help clinicians in

treatment planning and potentially identify more homogenous

phenotypes of MDD that may be related to specific biological

processes, thus partly overcoming the obstacle of the clinical and

biological extreme heterogeneity of this psychopathological condition.

About pathogenesis, it is known that MDD emerges as a result

of a complex and mostly obscure interplay between genetic

vulnerabilities and environmental factors. There is evidence that

female sex, family history, childhood maltreatment, as well as more

recent stressors, are risk factors for the development of the disorder.

However, a clear understanding of how genetic information

interacts with early and recent environmental exposure through

epigenomic mechanisms is not available (9). At a genetic level, no

single variation was found to be solely responsible for an increased

risk of MDD development (33); instead, a combination of variations

in over 100 gene loci confer a genetic susceptibility towards disease

incidence. Even though MDD hereditability traits can range

between 30–50%, social and environmental factors, such as stress

and the occurrence of traumatic events, can greatly impact mental

health and drive disease pathogenesis (34). As an example, the

recent COVID-19 pandemic has led to an increased prevalence of

MDD, not only in COVID-19 patients but also in relatives and

significant persons, such as close friends (35). Other hypotheses that

justify the diversified etiology of MDD have identified dysregulated

biochemical pathways, including hormone dysregulation and

glucocorticoid increase, monoamine neurotransmitter deficiency

(serotonin, dopamine, and norepinephrine), exacerbated

neuroinflammation and scarcity of glial cells in the brain (36–38).

Postmortem studies of patients with MDD have reported a

neuroprogression associated with the disorder consisting of

changes in the density and size of neurons and glia in several

brain regions combined with a reduced expression of synaptic

genes (39).

Despite a wide range of effective treatments, including

antidepressants, evidence-based psychotherapies, nonpharmacological

somatic treatments, and numerous augmentation strategies, about half

of patients remain nonresponsive or poorly responsive to available

treatments, thus failing to reach symptomatic remission and functional

and personal recovery (9, 40).
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Precision medicine, which integrates clinical and biological

parameters specific to each individual to stratify treatment

groups, may represent a solution to the current standard trial-

and-error approach to treatment, moving to a more tailored

method that might improve the prognosis of MDD through the

allocation of the best treatment while minimizing side effects.
2 Precision medicine: a patient-
tailored approach

The multifactorial etiology of MDD, as well as the numerous

available treatments, mostly administered on a trial-and-error basis,

portray MDD as an interesting target for the application of

precision medicine (41). Also described as personalized medicine,

this approach aims to combine biologic high-throughput data

generated through omic approaches and environmental and

lifestyle factors to identify specific individual features predictive of

disease susceptibility, prognosis, and treatment response (42). The

idea of applying a personalized treatment in psychiatry has been

present for more than half a century (43), but only in recent years it

became possible to generate and interpret very large datasets, called

“big data”, and obtain complete individual profiling able to provide

patient-specific details that can be used as diagnostic, prognostic,

and treatment response biomarkers or therapeutic targets (44). In

fact, constant technological advances led to the shift from basic

blotting techniques (Northern, Southern andWestern blotting) (45)

to advanced genome-wide associating studies (GWAS) (46), single-

cell transcriptomics (47) and imaging mass cytometry (48),

generating larger amounts of data, which can be nowadays

analyzed through artificial intelligence (AI) and machine learning

techniques (49).

This opposes the classical approach or “imprecision medicine”,

as labeled by Schork, that has led to a huge economic burden

associated with MDD: in 2015, the fifth highest-grossing drug in the

United States was duloxetine, a serotonin and norepinephrine

reuptake inhibitor used to treat depression (50), which was only

able to help one in every nine patients (51). Indeed, MDD response

heterogeneity remains a critical problem for developing algorithms

for implementing recovery rates in clinical practice (52). Inevitably,

this represents a significant economic weight for patients and

national health systems, incentivizing public and private

investment in precision medicine (53).

Various techniques including magnetic resonance imaging

(MRI), positron emission tomography (PET) scans and

electroencephalography (EEG), have been adopted in the context

of MDD, as reviewed in (54); also, as previously introduced, several

omic approaches, most commonly genomic (55), transcriptomic

(56), proteomic (57), and metabolomic (58) studies have been

explored, but a definitive standardized and efficient strategy to

accurately categorize patients and apply the appropriate therapy

remains elusive.

Genomics aims to find genetic variants associated with disease,

response to treatment, or patient prognosis. In this regard, the

principal technologies used are whole-genome or whole-exome

sequencing, targeted next-generation sequencing (NGS),
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genotyping and GWAS, which allow for the identification of

thousands of genetic variants associated with complex diseases

(59, 60).

Epigenomics examines reversible modifications of DNA or

DNA-associated proteins, such as DNA methylation or histone

acetylation, that can be influenced by both genetic and

environmental factors (59, 60). These modifications are frequently

detected in pathological conditions, including MDD (61). The

technologies used to evaluate epigenetic modifications encompass

bisulfite treatment of DNA before routine NGS to evaluate DNA

methylation, immunoprecipitation and NGS-based analysis to

assess the protein-DNA interaction, and ATAC-seq (Assay for

Transposase-Accessible Chromatin using sequencing) to estimate

genome-wide chromatin accessibility (59, 60).

Transcriptomics focuses on RNA transcripts analyzing

expression levels of both quantity and quality of the transcripts,

including messenger RNA (mRNA) and non-coding RNA

(ncRNA). Transcriptomics can be performed using both bulk and

single-cell methods. Common techniques used in bulk

transcriptomics are microarrays and RNA sequencing (RNA-seq);

among single cell analysis the gold standards are targeted single-cell

transcriptomics (using for example, BD Rhapsody) and scRNA-seq

(Smart-Seq2) (59, 60).

Proteomics, on the other hand, focuses on the study of peptide

abundance, modification, and interactions. The main technologies

used are mass spectrometry (MS)-based, which ensure high-

throughput analyses of thousands of proteins in cells or body

fluids. Additionally, flow cytometry, including advanced

technologies such as FACS (Fluorescence-Activated Cell Sorting)

and CyTOF (Cytometry by Time of Flight), and fluorescence

imaging techniques are used to evaluate extra- or intracellular

proteins, providing information for a large number of cells at a

relatively low cost (59, 62).

Metabolomics quantifies various types of small molecules that

reflect metabolic functions, in order to measure the response to

perturbations like those connected to disease, as well as to observe

the intricate relationship between physiology and external events

(59). Techniques like liquid chromatography-MS (LC-MS) are

appropriate for human cohort discovery investigations since they

can accurately monitor tens to hundreds of metabolites

simultaneously (63).

Microbiomics involves the study of an entire microbial

community, identifying and quantifying the molecules that

contribute to its structure, dynamics, and function (59, 64). In

particular, metagenomics is the comprehensive analysis of

uncultured microorganisms and hosts’ genetic material that

applies genomic technologies, like metagenomic NGS (mNGS), in

patients’ samples. It represents a significant upgrade from classical

molecular assays that target only a restricted number of microbes

and give a limited description of the pathogens through the

diversity of one gene, using for instance the 16S ribosomal RNA

(rRNA) gene. The study of RNA and proteins from microbiota

can also be implemented through metatranscriptomics or

metaproteomics (65, 66).

In the specific case of brain disorders, connectomics utilizes

neuroimaging techniques, mainly MRI, to provide an exhaustive
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map of the whole neural connections, representing the study of

functional and structural brain connectivity (67, 68). These

techniques can improve the identification of personalized targets

for neuromodulatory treatments (69).

All the above-mentioned omic technologies may help to identify

new depression-specific biomarkers, even though this may rely on

the lack of integration of such big data by system biomedicine

approaches (41, 70). Overall, understanding the complex interplay

of genetic, environmental, and physiological factors in MDD is

crucial for improving prevention and treatment strategies for this

debilitating condition. For that, an integrated multi-omic approach,

which not only combines data from the single different omics but

also considers the interactions between them, is gaining importance

as an innovative strategy for biomarker discovery and validation in

MDD (46).

In particular, cytomics is a multi-omic strategy used to

determine the molecular phenotype of single cells that links

various aforementioned omics sciences with cell and tissue

dynamics and function, considering also its modulation by

external factors. Naturally, it takes advantage of techniques that

are transversal to other omic sciences, such as flow cytometry and

fluorescence microscopy, to generate a wide array of data from each

single cell of interest (71).

Lastly, immunomics integrates molecular immunology,

genomics , proteomics , transcriptomics, cytomics and

bioinformatics by studying antigens or epitopes that interact with

the host’s immune system with a multi-layer omic approach (72,

73). There has been increasing evidence that MDD is linked to a

systemic immunological activation over the last two decades (74),

affecting inflammatory markers, immune cell counts, and antibody

titers (75, 76).

In this review, the promising role of precision medicine-based

approaches as diagnostic, prognostic and therapeutic tools for

MDD will be explored, focusing particularly on the potential of

biomarkers associated with the immune system as well as the

current state of AI and machine learning approaches applied to

the psychiatric field (Figure 1).
3 Application of precision medicine
in MDD

Given the challenges in accurately diagnosing and treating

MDD, which has a misdiagnosis rate of approximately 66% (77)

and a treatment-resistant prevalence of 31% (78), finding more

effective alternative approaches has become essential. By integrating

both biological and non-biological characteristics of individuals,

precision medicine facilitates the clustering of patients, thereby

enabling more tailored and effective treatment strategies to improve

diagnosis, treatment, and prevention efficacy (77, 79).

Precision medicine, with its multi-omic profiling that integrates

genetic and epigenetic data, biomarkers, clinical characterization,

and environmental exposures, holds revolutionary potential in

psychiatry, aiming to enhance psychiatric diagnoses and

treatment efficacy (77, 79). Through the analysis of multi-omic

signatures, researchers can gain a deeper understanding of the
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complex interplay between genetic predispositions, metabolic

pathways, and environmental influences in the onset and

progression of depression, ultimately leading to more effective

personalized treatment strategies for MDD (46, 77, 79). Also,

another perceived challenge to adopt the biomarker approach in

depression and other psychiatric disorders has been the difficulty

in accessing tissue samples, a hurdle that has been surmounted

in diseases like cancer, where most advances in precision

medicine have occurred (80). However, the recent use of

circulating cancer biomarkers, such as microRNAs (miRNAs), to

detect early metastatic spread has validated the potential of

liquid biopsy. This is highly relevant to molecular studies in

MDD, where changes in circulating miRNAs, regulatory enzymes,

and inflammatory cytokines have been linked to treatment

outcomes (81).

Biomarkers are defined as “indicators of normal biological

processes, pathogenic processes or pharmacological responses to a

therapeutic intervention that can be measured and evaluated

objectively” (82). In clinical practice they can be distinguished in:

i) diagnostic biomarkers, if they are able to discriminate between the
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presence or absence of a specific disease, for example supporting the

differential diagnosis between MDD and BD in patients with a first

MDE; ii) predictive biomarkers, if they can predict the disease onset;

iii) treatment biomarkers, if they can predict optimal treatment

options and iv) treatment-response biomarkers, if they can measure

the effectiveness of the treatment (83).

Given that MDD is linked not only with changes in brain

structure and function, but also with gastrointestinal factors, the

immune system, the endocrine system, neurotrophic factors,

hormones, and oxidative stress, there are a plethora of biomarkers

associated with these domains. Unfortunately, due to the

heterogeneity of the disease, no specific biomarker has been

found for MDD yet (84).
3.1 Soluble biomarkers – proteomics and
metabolomics in MDD

Currently, a wide range of soluble biomarkers are used in the

context of MDD, including endocrine hormones, monoamine
FIGURE 1

Multi-omic approach in MDD. The heterogeneity of MDD and its diverse etiology hinders the accurate patient stratification and appropriate
treatment choice. The integration of high-throughput data generated by single omic technologies, such as genomics, transcriptomics and
proteomics, into a multi-omic system permits the identification of specific individual features able to predict disease susceptibility, prognosis, and
treatment response, leading to a more effective personalized care. Created with BioRender.com.
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neurotransmitters, neuropeptides, immune and inflammatory

products, growth factors, and metabolic substances (such as

adipokines and lipidemic factors). Among them, those linked to

the enhanced activity of the Hypothalamic–pituitary–adrenal

(HPA) axis, such as cortisol, serotonin, and brain-derived

neurotrophic factor (BDNF), are the most studied for MDD (85).

However, finding a more specific biomarker or a panel of

biomarkers able to reflect the patients’ neuroinflammatory state

and response to therapy has become a pressing need. In this context,

immune and inflammatory markers such as cytokines and oxidative

stress elements have been extensively studied in association with

depression. Indeed, several studies and meta-analyses highlighted a

strong association between inflammation and MDD, revealing

elevated concentrations of C-reactive protein (CRP), interleukin-6

(IL-6), IL-12, tumor necrosis factor-a (TNF-a), and IL-1b in the

serum of MDD patients (81, 86). Interestingly, the increased levels

of some of these cytokines (i.e. IL-6, TNF-a, CRP and IL-1b) have
been reported to correlate with lower response to pharmacological

treatment (87). These findings are in line with a recent work by Xu

et al., showing that specific sets of peripheral cytokines reached a

good accuracy in discriminating non-responders from responders

with sensitivity and specificity over 80%, revealing them as

promising biomarkers for MDD diagnosis and antidepressant

response (88). Along with inflammation, a recent study by Ait

Tayeb et al. suggests that also oxidative stress, measured on various

matrices such as serum, plasma, or erythrocytes, has a critical role in

MDD according to disease stage and clinical features (89).

In recent years, approaches that integrate multi-omic

platforms have been explored with the purpose of accelerating

clinical biomarker discovery and deeply investigating the

pathophysiological mechanisms in psychiatric disorders. Among

them, MS-based proteomic techniques can analyze the whole

proteome of an individual in an unbiased manner, overcoming

the limitations encountered with more traditional methods such as

western blotting or enzyme-linked immunosorbent assay (ELISA),

allowing for the discovery of novel disease biomarkers. In a work by

Silva-Costa et al., an untargeted MS proteomic approach unveiled a

first potential biomolecular signature for late life depression and the

biological pathways related to this condition, which could be

suitable targets for the development of novel strategies for its

prevention, early diagnosis, and treatment (90). In another work

by Schubert and colleagues, a workflow was developed starting from

the phenotype of cognitive impairment in remitted MDD to

illustrate an application of systems biology approach; using a

weighted gene co-expression network analysis (WGCNA) in the

discovery phase, followed by a targeted proteomic analysis of the

results, the authors were able to identify cellular mechanisms and

candidate biomarkers for cognitive dysfunction in MDD (91).

On the other hand, metabolomics can provide a functional

readout of the inner cell state and help identify biochemical

signatures or biomarkers specific to different disorders, including

MDD (92). In particular, MS-based analytical metabolomic

approaches can be used in the study of psychiatric conditions due

to their high-throughput capacity and ability to resolve a large

number of metabolites with little to no need for purification (93). In

a work conducted by Pan et al., using a GC-MS coupled with LC-
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MS/MS-based targeted metabolomics approach in the early stage of

MDD, the authors identified a plasma neuro-metabolite signature

able to discriminate first-episode, antidepressant drug-naïve

depressed patients from healthy controls with high accuracy.

Notably, their results indicate that the identified biomarker panel

– composed by gamma-aminobutyric acid (GABA), dopamine,

tyramine and kynurenine – was able to accurately diagnose

blinded samples with both high sensitivity and high specificity

(94). MacDonald et al. consider metabolomics a cost-effective and

non-invasive technique to screen MDD individuals, monitoring

their response to treatment and guiding their management.

Additionally, combined with the screening of online drug

registries, metabolomics can be a helpful tool to accelerate the

discovery of novel druggable targets (92).
3.2 Genetic biomarkers – genomics and
transcriptomics in MDD

Genomics, by finding genes that contribute in predicting MDD

susceptibility and therapy response, has played a significant role in

precision medicine for MDD, expanding the field of

pharmacogenetics and increasing clinical outcomes through an

accurate diagnosis (95–97). Genetic predisposition in MDD relies

on a polygenic trait: approximately 40% to 70% of MDD patients

have susceptibility loci mainly located in genes involved in the

serotonergic system and in the HPA axis, such as polymorphisms in

5-hydroxytryptamine (5HT; serotonin) transporter (5-HTT) and in

tryptophan hydroxylase (TPH) genes (TPH1 and TPH2) (95).

However, other genes have been studied in association with

antidepressant response and thus they could be considered as

treatment-response genetic biomarkers for MDD. This group

includes catechol-O-methyltransferase (COMT) which plays a

central role in noradrenaline degradation (98, 99), monoamino

oxydase A (MAOA), that contributes to monoamines degradation

(100–102), multi-drug resistance 1 (MDR1/ABCB1) genes encoding

P-glycoprotein (103–105), glutamate receptor ionotropic kainate 4

(GRIK4) (106, 107), Potassium Two Pore Domain Channel

Subfamily K Member 2 (KCNK2/TREK1), which encodes a

neuronal potassium channel, Phosphodiesterase 2A (PDE2A)

encoding for the enzyme which metabolizes cyclic AMP,

transcription factor cyclic adenosine monophosphate response

element binding protein (CREB1), BCL2 and many other

candidate genes (108, 109).

In order to advance the understanding of the complex genetic

architecture of depression and provide new tools for further

investigating the disease etiology, several studies of genome-wide

meta-analysis have been performed. Among them, a large-scale

genome-wide association study conducted by Howard and

colleagues identified 102 independent variants, 269 genes, and 15

gene sets associated with depression, including both genes and gene

pathways linked to synaptic structure and neurotransmission (55).

Interestingly, among the identified genes, the ones implicated in

immune dysregulation have been extensively discussed in (110). In

particular, Tubbs and coworkers grouped these 34 immune-related

genes in 5 main categories based on their functions. Into the first
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category falls the majority of these genes, which contributes to

general lymphoid development, implicating multiple white blood

cell types. In contrast, other genes exhibit cell-type specific

functions, for instance, some genes are involved in T-cell

activation and development, other are crucial regulators of B

cells, some of them have been associated to antigen presentation

or are cytokine-related genes. Finally, some played a role in

neuroinflammation, highlighting again the close link between

immune system and brain functions (110).

Of note, among the predictive markers of treatment-response,

in the context of personalized medicine, one of the most interesting

categories is represented by the drug-metabolizer enzymes

belonging to cytochrome P450 (CYP) family, which comprise

more than 200 isoenzymes responsible for antidepressant drugs’

metabolism (111). Indeed, several single nucleotide polymorphisms

(SNPs) in CYP family genes may significantly impact the

metabolism of these drugs, resulting in different categories of

patient metabolizers: poor metabolizers, intermediate

metabolizers, extensive metabolizers, and ultra-rapid metabolizers.

This is crucial when considering the potential for adverse effects or

therapy inefficacy (112–114). However, the CYP genotyping is still

not used in clinical application to predict MDD treatment response.

Thus, integrating pharmacogenetic testing for CYP enzymes into

MDD clinical management could allow healthcare providers to

establish a personalized antidepressant treatment, which would

minimize the risk of adverse drug reactions and improve the

effectiveness of pharmacotherapy for depression (112–114).

In recent years, also miRNAs have emerged as attractive clinical

biomarkers for diagnosing depression and other psychiatric

disorders. Indeed, miRNA levels have been found impaired in

schizophrenia, bipolar disorder, and depression (115). In

particular, it has been demonstrated that polymorphisms in the

let7 miRNA family and a variant of the miR-30 family (specifically

miR-30e) lead to increased MDD susceptibility (116, 117). More

specifically, let-7c and let-7b miRNA expression have been found

significantly lower in treatment-resistant patients (118).

Interestingly, a bioinformatic analysis revealed that those miRNAs

are involved in the regulation of PI3K-AKT-mTOR signaling

pathway, which has been previously reported to be dysfunctional

in depression (119). Circulating miR-134 is another example of

biomarker for neuropsychiatric disorders, reaching 79% sensitivity

and 84% specificity in MDD patients. Furthermore, reduced levels

of miR-200 have been found in depressed individuals, while the

miR-144 and miR-146a have an inverse relationship with depressive

symptoms (85). However, the interpretation of differential gene

expression in brain tissue homogenates remains challenging due to

the heterogeneous cellular composition of the sample. Thus, in the

last years, there has been a rising interest in using single-cell

sequencing approaches, which have revealed that gene expression

patterns in the brain are cell-type specific. A work by Nagy et al.

uses a single-nucleus transcriptomic technique in cells from the

dorsolateral prefrontal cortex of patients with MDD that committed

suicide, revealing the dysregulation of gene expression in almost

60% of the cell types identified, with a total of 96 differentially

expressed genes. Given the complexity of psychiatric disorders such

as MDD, investigating the role of each cell subtype in the brain
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could be relevant and requires single-cell resolution techniques

(120). A similar approach has been used in non-human primates to

integrate single-nucleus RNA-sequencing (snRNA-seq) and spatial

transcriptomics: the snRNA-seq data resulted in the identification

of six enriched gene modules linked to depressive-like behaviors,

which were resolved by spatial transcriptomics. Findings indicate

cell-type and cortical layer-specific gene expression changes and

identify one microglia subpopulation associated with depressive-

like behaviors in female non-human primates (121). This evidence

indicates that combining these two approaches of snRNA-seq and

spatial transcriptomics allows to improve spatial resolution of

depression traits, highlighting the role of microglia in

stress-inflammation.
3.3 Immune system – cytomics and
immunomics in MDD

There has been increasing evidence that MDD is linked to a

systemic immunological activation over the last two decades (74),

affecting inflammatory markers, immune cell counts, and antibody

titers (75, 76). Therefore, inflammation is a crucial factor to

consider when studying MDD (122): it has already been reported

that inflammatory diseases, e.g. rheumatoid arthritis, can increase

the risk of developing depressive symptoms (123); not only that,

levels of pro-inflammatory molecules are often augmented in MDD

patients (124), and the administration of antidepressants together

with anti-inflammatory drugs, such as celecoxib, are able to

counteract more quickly depressive episodes (125). However, this

strategy should be considered with caution, considering that anti-

inflammatory treatment is highly unspecific and only half of MDD

patients have a notable inflammatory profile (126).

The immune dysregulation extends beyond peripheral organs,

also impacting the brain (127). Interestingly, similar immune

system changes have been found in other mental health

conditions like bipolar disorder and schizophrenia. This suggests

that there might be common pathways in all these conditions (87).

For example, after persistent inflammatory stimuli, many cell types

of the brain undergo morphological, functional, and quantitative

changes, in particular microglia and astrocytes (128). Unexpectedly,

evidence also shows the opposite: some patients are affected not

only by immune activation but also by immune suppression (129).

This further complicates the immunological picture of MDD, which

may thus reflect the effects of an infection, an autoimmune disorder,

or genetic sensitivity that can exacerbate the innate and adaptive

immune systems’ response to stress. For instance, autoimmune

disorders and infections can influence CD4+ T helper (Th) cell

function, cytokine, and antibody production (74).

In the central nervous system (CNS), cytokines are produced

and released by immune (such as microglia), endothelial or

neuronal cells, being key regulators of inflammation and cellular

activities, and playing a crucial role in MDD pathology (130). There

are primarily two types of cytokines: pro-inflammatory cytokines,

which promote inflammation, and anti-inflammatory cytokines,

which mitigate it (131). In the brain, cytokines are involved in organ

development, influencing neuronal integrity, neurogenesis, and
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synaptic remodeling (132). However, psychological and physical

stressors may prolong the activation of pro-inflammatory cytokines

to a pathological level, disturbing multiple neuronal functions, like

neurotransmitter impairment, apoptosis, and reduced neurogenesis

(133, 134), thus supporting MDD-related neuroprogression (135).

Circulatory cytokines, instead, can impact brain inflammation

through various pathways, including humoral (through leaky

regions of the blood-brain barrier (BBB)), neural (through signals

via afferent nerve fibers, in particular vagus nerve), and cellular

routes (through stimulation of microglia in order to attract

monocytes in the brain), crossing the BBB (136, 137). In

particular, several pathways can lead to immune/cytokine

dysfunction that contribute to the pathogenesis of depression:

first, an activation of HPA due to environmental stress, as well as

elevated systemic pro-inflammatory cytokines, leads to an increase

of cortisol production. Even though cortisol is typically

immunosuppressive, emerging theories suggest that elevated levels

may lead to glucocorticoid resistance in immune cells, interrupting

the inhibitory feedback mechanism. Additionally, cortisol is

proposed to have a pro-inflammatory activity during stress by

stimulating the extrahepatic enzyme 2,3-indolinime dioxygenase

(IDO), which it is found in different types of cells including brain

and immune cells (138, 139), leading to serotonin depletion.

Specifically, IDO breaks tryptophan, a precursor of serotonin,

into kynurenine, leading again to a serotonin depletion (140).

Kynurenic acid, then, is not neurotoxic itself, but when it is

metabolized to quinolinic acid (141) it modulates the synthesis of

IL-1b and IL-6. These cytokines inhibit the glutamate re-uptake,

therefore impairing the production of trophic factors while

decreasing the brain plasticity and increasing the oxidative stress

damage (142). Consequently, significant tissue damage occurs in

many brain regions implicated in mood regulation (143) which

further triggers the inflammatory response (144). This explains the

detection of neuroactive substances such as quinolinic acid in the

plasma and cerebrospinal fluid of patients with MDD (132).

The inflammatory process in MDD is influenced by stress-

induced danger/damage-associated molecular patterns (DAMPs,

also known as alarmins) involving nuclear factor kappa B (NF-

kB) and the inflammasome pathway (74). It is important to

distinguish between inflammation and para-inflammation, as

both conditions coexist in MDD. The former is triggered by

pathogens via pathogen-associated molecular patterns (PAMPs),

while the latter is induced by psychological stress or DAMPs, and

therefore it is defined as “sterile inflammation”. DAMPs, produced

in response to stress, activate innate immune cells via the toll-like

receptor (TLR) pathway, in particular TLR4, stimulating pro-

inflammatory cytokine production, such as IL-1b, TNF-a, and
IL-18. These cytokines have been found with a higher expression

in patients with MDD, suggesting their involvement in the disease

(145, 146). Notably, as evidence of the significance of TLR4

involvement in MDD, its blood level decreases in patients

following a successful treatment (147).

Given the relevance of inflammation and the abundance of pro-

inflammatory biomarkers in MDD, understanding the role of

immune cells becomes of paramount importance, as these are

able to produce but also get modulated by cytokines (148). In a
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physiological state, an effective network of mononuclear phagocytes

is present in the CNS. The most prevalent cells in this network,

around 10% of cells in the brain, are called microglia and they are

considered the CNS’s innate immune system. They are produced as

early myeloid progenitors in the embryonic yolk sac and move to

populate the entire parenchyma (149). Peripheral immune cells, on

the other hand, cannot enter the parenchyma, being only present in

the meningeal borders of the CNS, as the presence of adaptive

immunity within the brain parenchyma is symptomatic of chronic

brain infection, inflammation or autoimmunity (150, 151).

The high interaction between microglia and neurons plays a

fundamental role in shaping brain circuits by influencing the

intensity of synaptic transmissions and modelling neuronal

synapses. These interactions have additional tasks, such as

phagocytosing and removing bacteria, dead cells, protein

aggregates, and other particulate and soluble antigens that could

harm the CNS after injury (149, 152). They contribute to various

aspects of immune responses and tissue repair in the CNS,

comprising the secretion of soluble factors, such as cytokines or

neurotropic factors (153). Microglia continuously monitor their

surrounding with motile multiple branches and processes to survey

any disturbance. When they become amoeboid-shaped it indicates a

highly activated state linked to pro-inflammatory processes,

mirroring their reaction to a wide range of stimuli (154).

Their activation is categorized as classical (M1) or alternative

(M2). M1 activation leads to a pro-inflammatory and neurotoxic

state; M2 activation, on the contrary, promotes the release of anti-

inflammatory cytokines (155). Disrupting the balance between

these two activation states through neuroinflammation can lead

to impaired microglial functions, which in turn have the potential to

promote acute or chronic pathologic processes in the CNS (149).

For example, abnormal activation of microglial cells was noticed in

patients with MDD, along with a decrease in neurogenesis and an

increase in glutamate toxicity (156–158).

Several studies have evaluated the immunophenotypic changes

in peripheral blood immune cells, recently summarized and meta-

analyzed in two systematic reviews (148, 159). Although in both

cases the authors conclude that immune cell alterations can be

found in MDD patients when compared to controls, representing

possible biomarkers of the disease, their outcomes do not provide a

clear answer on which cell subset(s) drive depression. Sørensen et al.

described twelve populations upregulated in MDD patients,

compared to healthy controls: these include total leukocyte,

granulocyte, basophil, neutrophil and monocyte absolute counts,

but also more specific subsets such as natural killer (NK) cells, B

cells, intermediate monocytes, both naïve and memory CD4+ Th

cells, immature double positive T cells and CD25+ and HLA-DR+

activated T cells. Additionally, the ratios between CD4+/CD8+ cells,

neutrophils/lymphocytes and Th17/T regulatory (Tregs) cells were

also higher in MDD patients than in controls. On the other hand, a

downregulation of CD16+ NK cells and NK T cells (NKT) was

observed in MDD (159). On the opposite, Foley et al., showed that

percentages of lymphocytes and both Th1 and Th2 subsets were

downregulated in MDD patients, while total CD4+ Th cell counts

were increased, compared with healthy controls (148). The

discrepancies between these two studies might be due to the
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methodology, the inclusion criteria, and consequently the number

of records included in the meta-analysis (104 vs 27). Of note, not all

original research articles converge in the same conclusion: the

results hereby reported refer to the pooled standardized mean

difference found between MDD patients and healthy controls, in

which for the same specific subset each article may report divergent

data, which are then grouped and given a different weight, based on

sample size. Also, regarding the chosen methodology, while

Sørensen et al. used both random- and fixed-effect models, Foley

et al. opted only for the fixed-effect meta-analysis, which can

contribute to their inconclusive results (148, 159).

Due to the heterogeneity of MDD, a general immune profiling

of the disease might not be relevant for treatment choice. As

previously introduced, not all MDD patients exhibit a strong

immune dysregulation. Interestingly, the culprit subsets can vary

even among subjects that demonstrate an exacerbated inflammatory

profile. Initially, Lynall et al. showed that a combined analysis of the

absolute counts of CD4+ Th cells, neutrophils, and eosinophils can

accurately distinguish MDD patients from controls; subsequently,

within the MDD group, a simultaneous assessment of neutrophils

with NKT, and B cells seemed to be the most reliable predictor of

disease severity (160). Attempting to categorize the data in an

unbiased manner, the authors applied a Gaussian finite
Frontiers in Psychiatry 09
multivariate mixture model with a consensus clustering algorithm:

this approach revealed four distinct subgroups of patients according

to their differential frequency of immune cell populations. While

one of the subgroups represented the already described “uninflamed

MDD” (58 out of 206 patients), exhibiting low immune cell counts

and pro-inflammatory cytokines expression (CRP and IL-6), the

other three subgroups represent different inflammatory phenotypes.

The rarest profile (10 patients) was enriched in non-classical and

intermediate monocytes, eosinophils, B cells, and CD16high NK

cells; in contrast, the most common phenotype (100 patients)

showed increased counts of lymphoid cells, particularly CD4+ and

CD8+ T lymphocytes and B cells; lastly, the third subgroup (38

patients) displays higher counts of granulocytes and myeloid cells,

with the exception of non-classical monocytes (160). Although the

authors could not find a correlation between the subgroups and

clinical/demographic features, it is clear how important the immune

system is in MDD. Therefore, an integrative immunological

approach could provide a crucial immunomics overview. This

approach utilizes immunophenotyping through flow cytometry,

combined with other immunological techniques such as MHC

tetramers, ELISpot assay, and HLA-binding assay, to aid in the

diagnosis, stratification, and treatment choice for MDD (Figure 2)

(72, 73, 161).
FIGURE 2

Immunomics approach in MDD. Various immunological techniques provide an overview of the involvement of the immune system in MDD.
Immunophenotyping through flow cytometry, MHC tetramers, HLA-binding assays, and ELISpot assays are used to study neuro- and systemic
inflammation, immunosuppression, blood-brain barrier (BBB) leakage, and cytokine production in MDD patients. Created with BioRender.com.
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3.4 Microbiota and gut-brain axis -
metagenomics in MDD

The connection between the gastrointestinal tract, including

gut-associated lymphoid tissue (GALT), the activation of a low-

grade inflammatory response, an increased intestinal permeability,

and psychiatric symptoms has become more and more clear in

recent years (162). The gastrointestinal tract is the interaction site of

the immune system with an extensive number of intestinal

microbiota, so it may be seen as the “immune gate” of many

pathological conditions, including mental disorders like

MDD (163).

Gut and brain are able to cross-regulate each other: gut affects

brain function, particularly in regions related to stress regulation. In

turn, the brain controls motor, sensory, and secretory modalities of

the gastrointestinal tract (164). This mutual cross-talk is the so-called

gut-brain axis (GBA). The permeability of the gut may be

compromised by the diet, antibiotic treatment, stress, or infections

(165), allowing antigenic material, such as food-derived antigens or

lipopolysaccharides (LPS), to cross to the periphery. This can trigger

immune-inflammatory responses, including neuroinflammation

through TLRs, which increase the production of pro-inflammatory

cytokines like IL-6, IFN-g, CRP, and TNF-a (166). For example, LPS

has been linked to cytokine-mediated illness behavior (described as

the coordinated set of behavioral alterations as a result of an infection,

caused by pro-inflammatory cytokines (167) and partly

superimposable with MDE symptoms), microglial activation,

neuronal cell death, and cognitive decline (168). A theory has been

proposed defending that exposure to stress through stress hormones,

inflammation and autonomic changes (169) modifies brain function

by altering the gut microbiome, which in turn alters NLR Family

Pyrin Domain Containing 3 (NLRP3) and IL-1b-driven pathways

(170). In this vision, microbiome modifications can happen early in

the disease and may even be a factor in the initiation of MDD,

creating a pathological vicious cycle in which pathogenic changes in

MDD over time further contribute to dysbiosis (171).

The interconnection between microbiota and brain can affect

MDD patients primarily through the HPA axis, tryptophan

metabolites, and microbial products, such as short-chain fatty

acids (SCFAs) (like acetate, butyrate, and propionate), indoles

(tryptophan metabolites) or through neurotransmitters.

Microbiota disbalance increases HPA axis activity in response to

stress (172, 173). It can influence serotoninergic, dopaminergic,

glutaminergic, noradrenergic, and GABA neurotransmission or, in

some cases, bacteria can produce these neurotransmitters by

themselves (174). In particular, Streptococcus, Escherichia, and

Enterococcus produce serotonin; Escherichia, Bacillus and

Saccharomyces produce norepinephrine/dopamine; Lactobacillus

and Bifidobacterium secrete GABA (175). Even if it is unlikely

that neurotransmitters produced by microbiota can reach the brain,

with the exception of GABA, they can indirectly influence the brain

activity through the enteric nervous system (176). Also, tryptophan

metabolism pathway can be controlled by products generated by

some bacteria, for example Bifidobacterium infantis (177, 178).

Specifically, SCFAs are not only involved in the BBB integrity, but

they can also increase the tryptophan conversion rate into
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serotonin, indirectly influencing its amount in the brain (179);

indeed, SCFAs resulted in being depleted in patients with MDD

(180). Moreover, products of tryptophan called indole have been

described as neuroactive signaling molecules able to regulate

emotional behavior. Indeed, increased tryptophan catabolism into

indoles is associated with reduced serotonin availability and

increased neuroinflammation. Moreover, several pathways may

include the direct effects of indole on central receptors or the

activation of the vagus nerve through the influence of gut bacteria

stimulating the neuroinflammatory state (173).

In addition, the gut microbiota can modulate distinct subsets of

CD4+ Th cells through the stimulation of immunological signaling

pathways. For example, different studies showed that Tregs and

CD4+ Th effector cells were decreased in animals receiving long-

acting antibiotic treatment. Foxp3+ Tregs are defective in germ-free

mice, and SFCAs can induce their proliferation instead.

Furthermore, Bacteroides fragilis stimulate Th1 cell growth (180).

Also, segmented filamentous bacteria have been shown to enhance

depression susceptibility through the induction of Th17 cells

releasing IL-17A (181, 182).

Given all of that, it is becoming evident that it is fundamental to

learn more about the landscapes of altered bacteria, bacteriophages,

and fecal metabolites as well as their reciprocal interaction in the gut

ecosystem of MDD patients, in order to better understand the

pathophysiology/pathogenesis and to identify diagnostic and

prognostic markers for clinical applications. Combination of

metagenomic and metabolomic analyses is the ultimate strategy

to explore the taxonomic and functional features of the

microbiome (183).

Several studies have shown that patients with depression display

abundance in some bacterial species and deficiency in others,

compared to healthy individuals (184, 185). Some of them have

focused on identifying differential bacteria with a phylogenetic

resolution to the genus or family level. Results showed that the

majority of the upregulated species in MDD belonged to the

phylum Bacteroidetes and Proteobacteria, whereas the major

downregulated species belonged to the phylum Firmicutes (186,

187). Bacteroides species are particularly important in the

interactions with the immune system since they can induce the

production of cytokines. On the other hand, beneficial anti-

inflammatory effects can be mediated by Blautia species,

decreased in MDD patients (188).

Furthermore, Zheng and colleagues discovered a unique

microbe-based panel that was capable of differentiating between

unipolar and bipolar depression, suggesting a specific alteration of

the Bacteroidaceae family in patients with MDD as compared to

those with BD (189).

In addition to metagenomics, also metabolomics plays an

important role in the MDD interaction with the microbiota. The

altered metabolites involved in MDD are mainly implicated in

amino acid, nucleotide, carbohydrate, and lipid metabolism. In fact,

MDD has been linked to significant disruptions in the metabolism

of amino acid neurotransmitters, including dopamine, glutamate,

and GABA. Moreover, Bacteroides and Blautia species were found

to be altered at genus levels and correlated with amino acid and lipid

metabolism (188).
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As already mentioned, all these processes lead to depressive-

and anxiety-like behavior (170). For this reason, the use of

probiotics (living non-pathogenic organisms beneficial for the

host), prebiotics (fibers that feed probiotics), and symbiotic

(probiotics and prebiotics together) could exhibit beneficial effects

in the regulation of depression pathogenesis. A meta-analysis of six

trials about the use of probiotics with MDD patients shows a

beneficial effect associated with its use in combination with

antidepressants (190). In particular, the action of probiotics seems

to promote the downregulation of HPA axis, which is overactive in

MDD patients (191); in parallel, probiotic administration increases

the biosynthesis of GABA (192), as well as upregulates tryptophan

production and consequently serotonin availability (178). Some

research also indicates that fecal transplantation of microbiota may

reduce depressive symptoms and improve quality of life in different

clinical samples, including patients with MDD (193–195).

Due to the strength of these techniques, it is highly relevant to

link metagenomics and metabolomics with other multi-omic

techniques, to obtain a complete overview of multifactorial

diseases, as is the case of MDD (196).
3.5 Neuroimaging biomarkers – image-
transcriptome analysis in MDD

Neuroimaging biomarkers are non-invasive intuitive tools that

permit the visualization of brain structures and functions in vivo,

allowing for a better understanding of psychiatric disorders and

their treatment response. Moreover, neuroimaging techniques have

the advantage of allowing the structural and functional study of the

CNS in vivo, overcoming the limitation of the post-mortem studies.

Various neuroimaging methods used to investigate MDD features

include functional MRI (fMRI), magnetic resonance spectroscopy

(MRS), PET scan, single photon emission computed tomography

(SPECT), EEG, and near-infrared spectroscopy (NIRS) (54, 85).

Among these techniques, fMRI is commonly used in both classical

neuroimaging and neuroimaging genetics, thus representing an

essential tool in personalized medicine in psychiatry (95). By

linking genetic variations with protein function, brain structure,

structural and functional brain connectivity, and mental

manifestations, neuroimaging genetics aims to integrate genetics,

psychiatry, and neuroscience. This is achieved by using

neuroimaging techniques to quantify biological properties (85, 95,

197). Interestingly, among the neuroimaging techniques, MRS can

also be a very reliable and robust metabolomic approach. Under a

high magnetic field, nuclei in different chemical groups resonate at

slightly different frequencies. This “chemical shift” allows the

identification and quantification of the metabolites in different

brain areas in vivo (198).

Recently, the idea of integrating neuroimaging data with

transcriptomic measures has provided unprecedented

opportunities for investigating the molecular features that

correlate with the organization of brain structures. This image-

transcriptome analysis requires three steps: i) processing

transcriptional map data, ii) linking expression measurement to

neuroimaging phenotypes, and iii) evaluating gene specificity and
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enrichment (199) and it has been explored to understand structural

and functional brain modifications associated with major

psychiatric disorders, including MDD (200).

For instance, Sun et al. conducted a combined neuroimaging-

transcriptome to explore the genetic mechanisms underlying the

cerebral blood flow (CBF) changes in MDD. Their findings

highlighted a set of genes expressed in brain tissue, immune cells,

and neurons showing correlation with CBF changes in MDD (201).

Another example of transcriptome-neuroimaging analysis is

provided by a study from Zhu et al, where the authors link

macroscopic brain functional changes in MDD patients to specific

molecular pathways, which could represent potential targets for

antidepressant treatment (202). Furthermore, a recent study by Oh

et al. integrates whole exome sequencing (WES) technique and

neuroimaging analysis to identify a set of MDD-related genes and

recurrent regions of copy number variation, providing insights into

the genetic basis of the disease and its neuro-structural

alterations (203).

Moreover, recent advancements in neuroimaging and

connectome models seem to suggest that multidimensional

depression symptoms are linked to alterations of neural network

connectivity and organization in different brain areas (67). In this

context, functional connectomics based on fMRI could be a

promising tool for a more complete understanding of

neurobiological mechanisms underlying human brain disorders,

and thus a more symptoms-specific personalized treatments.

Overall, these studies integrate analysis from micro to macro

level, using multi-scale and multi-omics approaches, and combining

genetic and neuroimaging information in order to deeply explore

the causal relationship between genes, phenotypes, and the

environment. This innovative approach represents a promising

strategy to elucidate the basis of the pathogenesis of complex

diseases, develop targeted therapies, and ultimately improve

disease prediction, diagnosis and precision treatment.
4 From current standards to
system biomedicine

Currently, the established characterization of diseases by

clinicians is based on a correlation between pathological analysis

and clinical syndromes. The main limitation of this method is that it

heavily relies on the available clinical tools and the clinician’s

observational skills. This methodology brings several issues such

as lack of sensitivity and specificity in identifying and defining

disease (204). In response to these shortcomings, a new branch of

thought, namely system biology, aims at getting rid of the simplistic

line of thought, by which a phenotype is a direct consequence of the

proteins transcribed by the organisms’ genome, replacing it with the

concept of a dynamic network between all the different

compartments that compose it (205). The idea that system

biology lives upon is that biological systems such as living beings,

or even cells themselves, are complex entities that, as such, contract

complex diseases (i.e. multifactorial and degenerative ones) which,

in order to get treated properly, require complex therapies. This

approach may possibly obtain better results than the current
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method, which focuses on single targets overlooking the remaining

components of the network introducing the concept of system

biomedicine (SB) (206).

SB aims at translating the data and knowledge derived from the

application of system biology into clinical application, with the

ultimate goal of improving patients’ quality of life by attributing

the most suitable treatment based on their biological background

(207). To achieve this goal, there is a need to produce what we could

define as a patient fingerprint. It is the result of the integration and

analysis of very large datasets coming from different advanced

technologies capable of representing all of the underlying biological

mechanisms of the patients (208). It is directly clear that to obtain this

kind of opportunity, there are some fundamental needs that must be

taken into consideration: the availability of the data and their

dimensionality, methods capable of being adapted to a wide

spectrum of applications taking advantage of different quantitative

approaches and, in the end, highly characterized systems under

physiological conditions so that they can be compared under

different circumstances (209). For a better understanding of the

complex hierarchy within the different systems, multi-omic

approaches are required to produce adequate data (210).

A common problem caused by the current level of our technologies

comes with the analysis, integration, and understanding of these

datasets derived from different omics. Considerable amounts of data

are being produced compared to our capacity to process them due to

the high pace of testing and development of new technologies (211).

Many groups have developed tools that attempt to reduce these gaps to

answer the need for instruments capable of analyzing and sorting the

data. For example, Singh et al. introduced DIABLO, which is a method

that relies on the Sparse Generalized Canonical Correlation Analysis

technique, capable of selecting correlated variables between different
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datasets, and on a Projection to Latent Structures technique for effective

visualization of the results (212). Another example is the xMWAS tool,

which can integrate data from biochemical and phenotypic assays and

those deriving from different omics platforms, demonstrating its

potential to aid the understanding of the interaction between

different systems (Figure 3) (213).
4.1 System Biomedicine in MDD

Due to the high biological inter-variability within patients of the

same groups, concepts such as TRD and Multiple-TRD have been

introduced referring to those cases, which account for almost 30% of

MDD patients, that fail to achieve clinically significant improvements

after different courses of antidepressants (214–216). Through an SB

approach, the pathophysiological processes underlying MDD need to

be deeply characterized by exploiting high throughput multi-omic

techniques capable of obtaining complete data from different

compartments for good quality analysis to be related with an in-

depth clinical characterization of the disorder (217).

To address this problem, various AI-based techniques, such as deep

learning algorithms, are being studied for the analysis of very large

datasets with the goal of improving patients’ stratification based on

their underlying biological features (218). AI is a comprehensive term

that includes many different learningmodels such asMachine Learning

(ML), Deep Learning (DL), Natural Language Processing (NLP), and

Large Languagemodels (LLM), and all can be adapted to the users need

(219). After proper training, their capacity for the analysis of large

datasets and pattern recognition can be exploited for them to be used

for tasks that range from day-to-day medical diagnostics to muchmore

complex analysis like modern-day omics (220). In particular, DL
FIGURE 3

Network for resolving heterogeneity in MDD. On a biological level, our bodies consist of numerous interconnected networks that communicate
across various scales (organ, cell, gene and metabolite). Artificial intelligence and machine learning-based bioinformatic tools analyze the role of
each single network component through the integration of high-throughput biological data, originated from multi-omic techniques. Created with
BioRender.com.
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showed a good performance in analyzing multi-omics data without the

need to reduce the dimensionality of the dataset. This method builds

models based on raw data to make predictions or decisions without

being explicitly programmed. DL can be unsupervised, for example, for

pathway analysis, or supervised, requiring labels for model training to

perform classification or regression tasks like patient stratification and

treatment response prediction. Supervised DL methods include

multilayer perceptron (MLP), convolutional neural network (CNN),

and recurrent neural network (RNN) and represent promising tools for

multi-omics integration in system and precision biomedicine (221).

The main application for the integration of multi-omic datasets

were performed in oncologymainly in breast and lung cancer to classify

tumor subtypes, prognosis, and treatment outcome (221). However, AI

introduction in psychiatry may bring a large set of benefits in the choice

of the correct therapy and in the guidance of the operator towards the

correct diagnosis, which has always been a difficult task, given the

overlapping symptoms between different diseases (222–225). This has

already been documented showing interesting results in many

instances. In the case of schizophrenia, DL, especially in combination

with principles from Bayesian statistics, showed good performance in

classification and prediction tasks in many neuroimaging studies (226).

In the particular case of MDD, Kleinerman et al. tested the

application of latent profile analysis for depression, which allows the

subgrouping and clustering of patients’ data coming from different

neuroimaging databases according to their underlying condition, to

try and predict the outcome of their treatments and to pinpoint the

most effective course out of all the available ones. With this strategy,

the authors achieved a remission rate of 35.5% over random

treatment allocation, achieving better results when compared to

the existing state-of-the-art method (i.e. CFRnet, Vulcan, case-

based recommender (CBR)) (227).

An example for the integration of heterogeneous data derived

from different omic and classical approaches could be seen in the

work by Li and colleagues (228). The authors analyzed and

integrated the data deriving from fecal metagenomic, serum

metabolomic, and neuroimaging techniques, from both healthy

controls and unmedicated patients with bipolar depression,

obtaining a detailed overview of the network concerning the

GBA. The results have been analyzed through a random forest

technique highlighting the presence of bipolar depression-typical

features of brain functionality influenced by neuroactive microbes

and metabolites (228). Overall, it is becoming evident how the

routes of system biology and SB are promising for the

characterization and treatment of these diseases for which

traditional methods do not function efficiently.
5 Future directions

MDD is a highly prevalent condition often misdiagnosed and

with therapy courses that show suboptimal results. As such, the

interest in finding a reliable system to address these problems has

been constantly increasing, in order to deliver an objective method

capable of identifying and treating the disorder (229). The lack of
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precise algorithms helping clinicians in choosing the appropriate

therapy for each patient, leads at the moment to a “trial and error”

approach that represents a heavy individual and socio-economic

burden (230). Although AI is a technology that is not yet

completely reliable for these purposes, some glimpses of it can

be seen with the introduction of Woebot, which is an AI-powered

automated conversational agent, designed to deliver a cognitive-

behavioral therapy comparable to those delivered by therapists. A

study regarding the use of Woebot proved that the software has

been able to diminish the depressive symptomatology registering,

on the other hand, a dropout rate of 17% (222). Other current

emerging technologies aim at remotely monitoring different

parameters like circadian rhythm, heart rate variations, change

in blood pressure, skin temperature and electrodermal activity

with the objective of tracking patient’s symptoms through

wearable devices, minimizing invasivity while also predicting

relapses and treatment response (231–234).

One of the main concerns that come with the introduction and

application of AI in medicine is, given the increasing amount of big

data, the necessity for robust data protection legislations for

individual privacy, along with one for the regulation of its

application, which becomes critical when data from AI

applications directly impact clinical decision-making. To

safeguard principles of medical ethics in the context of AI

technology implementation, both the European Union and the

United States have already introduced sets of laws: in particular,

the General Data Protection Regulation (GDPR) along with the

Artificial Intelligence Act (AIA) have been put in effect in the

former, while for the latter, the Health Insurance Portability and

Accountability Act (HIPAA) has already been established (235–

237). Thus, addressing these concerns and improving ethical

awareness are first steps towards a responsible and transparent

implementation of AI into healthcare practice (219).
6 Conclusions

The multifactorial etiology of MDD, involving genetic,

environmental, and biological factors, renders its diagnosis,

prognosis and treatment quite challenging. We believe that the

identification of specific biomarkers for MDD that allow for the

selection of the best antidepressant drug for each individual patient

and prediction of therapy response represents the most promising

approach in order to obtain an objective diagnosis and accurate

treatment. Although the use of the currently proposed biomarkers in

general clinical practice shows various limitations, the rapid

advancements in both omics and neuroimaging methodologies, but

most of all their possible integration with AI, could lead to a more

defined characterization of MDD and to the development of an

individualized psychiatric care model. For that, in this review, we

have highlighted the potential of applying multi-omics as standard

clinical practice to develop a more effective diagnostic and therapeutic

strategy able to reduce the burden associated withMDD and improve

patients’ quality of life, satisfaction, and well-being.
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depression and its pharmacological treatment. Salud Ment. (2016) 39:47–58.
doi: 10.17711/SM.0185-3325.2015.067

145. Guo H, Callaway JB, Ting JPY. Inflammasomes: Mechanism of action, role in
disease, and therapeutics. Nat Med. (2015) 21:677–87. doi: 10.1038/nm.3893

146. Zhu W, Cao FS, Feng J, Chen HW, Wan JR, Lu Q, et al. NLRP3 inflammasome
activation contributes to long-term behavioral alterations in mice injected with
lipopolysaccharide. Neuroscience. (2017) 343:77–84. doi: 10.1016/j.neuroscience.
2016.11.037

147. Raison CL, Miller AH. Pathogen-host defense in the evolution of depression:
insights into epidemiology, genetics, bioregional differences and female preponderance.
Neuropsychopharmacology. (2017) 42:5–27. doi: 10.1038/npp.2016.194
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Gut microbiota and major depressive disorder: A systematic review and meta-analysis.
J Affect Disord. (2020) 266:1–13. doi: 10.1016/j.jad.2020.01.102

191. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al.
Probiotic gut effect prevents the chronic psychological stress-induced brain activity
abnormality in mice. Neurogastroenterol Motil. (2014) 26:510–20. doi: 10.1111/
nmo.12295

192. Dhakal R, Bajpai VK, Baek KH. Production of GABA (g-aminobutyric acid) by
microorganisms: A review. Braz J Microbiol. (2012) 43:1230–41. doi: 10.1590/S1517-
83822012000400001

193. Chinna Meyyappan A, Forth E, Wallace CJK, Milev R. Effect of fecal microbiota
transplant on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry.
(2020) 20:299. doi: 10.1186/s12888-020-02654-5

194. Doll JPK, Vázquez-Castellanos JF, Schaub AC, Schweinfurth N, Kettelhack C,
Schneider E, et al. Fecal microbiota transplantation (FMT) as an adjunctive therapy for
depression—Case report. Front Psychiatry. (2022) 13. doi: 10.3389/fpsyt.2022.815422

195. Chang M, Chang KT, Chang F. Just a gut feeling: Faecal microbiota transplant
for treatment of depression – A mini-review. J Psychopharmacol. (2024) 38(4):353–61.
doi: 10.1177/02698811241240308

196. Zhao H, Jin K, Jiang C, Pan F, Wu J, Luan H, et al. A pilot exploration of multi-
omics research of gut microbiome in major depressive disorders. Transl Psychiatry.
(2022) 12:8. doi: 10.1038/s41398-021-01769-x

197. Drevets WC, Wittenberg GM, Bullmore ET, Manji HK. Immune targets for
therapeutic development in depression: towards precision medicine. Nat Rev Drug
Discovery. (2022) 21:224–44. doi: 10.1038/s41573-021-00368-1

198. Schuff N. In vivo NMR methods, overview of techniques. In: Encyclopedia of
Spectroscopy and Spectrometry. Cambridge, Massachusetts, US: Academic Press (2016).

199. Arnatkeviciute A, Markello RD, Fulcher BD, Misic B, Fornito A. Toward best
practices for imaging transcriptomics of the human brain. Biol Psychiatry. (2023)
93:391–404. doi: 10.1016/j.biopsych.2022.10.016

200. Fan JW, Gu YW, Wang DB, Liu XF, Zhao SW, Li X, et al. Transcriptomics and
magnetic resonance imaging in major psychiatric disorders. Front Psychiatry. (2023)
14. doi: 10.3389/fpsyt.2023.1185471

201. Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, et al. Cerebral blood flow
changes and their genetic mechanisms in major depressive disorder: a combined
neuroimaging and transcriptome study. Psychol Med. (2023) 53:1–13. doi: 10.1017/
S0033291722003750

202. Zhu W, Liu F, Fu J, Qin W, Xue K, Tang J, et al. Genes associated with
spontaneous brain activity changes in clinically different patients with major depressive
disorder: A transcription-neuroimaging association study. CNS Neurosci Ther. (2023)
29:3913–24. doi: 10.1111/cns.14311

203. Oh EY, Han KM, Kim A, Kang Y, TaeWS, Han MR, et al. Integration of whole-
exome sequencing and structural neuroimaging analysis in major depressive disorder: a
joint study. Transl Psychiatry. (2024) 14:141. doi: 10.1038/s41398-024-02849-4
Frontiers in Psychiatry 18
204. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the
postgenomic era: A complex systems approach to human pathobiology. Mol Syst
Biol. (2007) 3:124. doi: 10.1038/msb4100163

205. Noble D. Neo-Darwinism, the Modern Synthesis and selfish genes: Are they of
use in physiology? J Physiol. (2011) 589:1007–15. doi: 10.1113/jphysiol.2010.201384

206. Iyengar R. Complex diseases require complex therapies. EMBO Rep. (2013)
14:1039–42. doi: 10.1038/embor.2013.177

207. Antony PMA, Balling R, Vlassis N. From systems biology to systems
biomedicine. Curr Opin Biotechnol. (2012) 23:604–8. doi: 10.1016/j.copbio.2011.11.009

208. Pontrelli G, Olufsen MS, Ottesen JT. Mathematical methods and models in
system biomedicine. Math Biosci. (2014) 257:1. doi: 10.1016/j.mbs.2014.09.012

209. Capobianco E, Lió P. Advances in translational biomedicine from systems
approaches. Front Genet. (2014) 5. doi: 10.3389/fgene.2014.00273

210. Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for
single-cell and spatial multi-omics. Nat Rev Genet. (2023) 24:494–515. doi: 10.1038/
s41576-023-00580-2

211. Wassermann AM, Lounkine E, Glick M. Bioturbo similarity searching:
Combining chemical and biological similarity to discover structurally diverse
bioactive molecules. J Chem Inf Model. (2013) 53:692–703. doi: 10.1021/ci300607r

212. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al.
DIABLO: An integrative approach for identifying key molecular drivers from multi-
omics assays. Bioinformatics. (2019) 35:3055–62. doi: 10.1093/bioinformatics/bty1054

213. Uppal K, Ma C, Go YM, Jones DP. XMWAS: A data-driven integration and
differential network analysis tool. Bioinformatics. (2018) 34:701–2. doi: 10.1093/
bioinformatics/btx656

214. Nuñez NA, Joseph B, Pahwa M, Kumar R, Resendez MG, Prokop LJ, et al.
Augmentation strategies for treatment resistant major depression: A systematic review
and network meta-analysis. J Affect Disord. (2022) 302:385–400. doi: 10.1016/
j.jad.2021.12.134

215. Jha MK, Mathew SJ. Pharmacotherapies for treatment-resistant depression:
how antipsychotics fit in the rapidly evolving therapeutic landscape. Am J Psychiatry.
(2023) 180:190–9. doi: 10.1176/appi.ajp.20230025

216. Pandarakalam JP. Challenges of treatment-resistant depression. Psychiatr
Danub. (2018) 30:273–84. doi: 10.24869/psyd.

217. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune
activation, inflammation and oxidative and nitrosative stress pathways and their
sequels and concomitants play a role in the pathophysiology of unipolar depression.
Neurosci Biobehav Rev. (2012) 36:764–85. doi: 10.1016/j.neubiorev.2011.12.005

218. Mehltretter J, Rollins C, Benrimoh D, Fratila R, Perlman K, Israel S, et al.
Analysis of features selected by a deep learning model for differential treatment
selection in depression. Front Artif Intell. (2020) 2. doi: 10.3389/frai.2019.00031

219. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb
SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice.
BMC Med Educ. (2023) 23:689. doi: 10.1186/s12909-023-04698-z

220. Hamet P, Tremblay J. Artificial intelligence in medicine.Metabolism. (2017) 69:
S36–40. doi: 10.1016/j.metabol.2017.01.011

221. Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, et al. Artificial
intelligence (AI) and machine learning (ML) in precision oncology: a review on
enhancing discoverability through multiomics integration. Br J Radiol. (1150)
2023:96. doi: 10.1259/bjr.20230211

222. Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to
young adults with symptoms of depression and anxiety using a fully automated
conversational agent (Woebot): A randomized controlled trial. JMIR Ment Heal.
(2017) 4:e19. doi: 10.2196/mental.7785

223. Gabbard GO, Crisp-Han H. The early career psychiatrist and the
psychotherapeutic identity. Acad Psychiatry. (2017) 41:30–4. doi: 10.1007/s40596-
016-0627-7

224. Gao S, Calhoun VD, Sui J. Machine learning in major depression: From
classification to treatment outcome prediction. CNS Neurosci Ther. (2018) 24:1037–
52. doi: 10.1111/cns.13048

225. Vidal-Alaball J, Fibla DR, Zapata MA, Marin-Gomez FX, Fernandez OS.
Artificial intelligence for the detection of diabetic retinopathy in primary care:
Protocol for algorithm development. JMIR Res Protoc. (2019) 8:e12539. doi: 10.2196/
12539

226. Cortes-Briones JA, Tapia-Rivas NI, D’Souza DC, Estevez PA. Going deep into
schizophrenia with artificial intelligence. Schizophr Res. (2022) 245:122–40.
doi: 10.1016/j.schres.2021.05.018

227. Kleinerman A, Rosenfeld A, Benrimoh D, Fratila R, Armstrong C, Mehltretter
J, et al. Treatment selection using prototyping in latent-space with application to
depression treatment. PloS One. (2021) 16:e0258400. doi: 10.1371/journal.pone.
0258400

228. Li Z, Lai J, Zhang P, Ding J, Jiang J, Liu C, et al. Multi-omics analyses of serum
metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-
brain axis in bipolar depression. Mol Psychiatry. (2022) 27:4123–35. doi: 10.1038/
s41380-022-01569-9

229. Bilello JA. Seeking an objective diagnosis of depression. biomark Med. (2016)
10:861–75. doi: 10.2217/bmm-2016-0076
frontiersin.org

https://doi.org/10.1096/fj.14-259598
https://doi.org/10.1016/j.ebiom.2023.104527
https://doi.org/10.1176/appi.ajp.2020.19090960
https://doi.org/10.1016/j.immuni.2020.06.025
https://doi.org/10.1002/advs.201901441
https://doi.org/10.1038/mp.2016.44
https://doi.org/10.1038/s41564-018-0337-x
https://doi.org/10.3390/ijms19061592
https://doi.org/10.1007/s42000-020-00236-4
https://doi.org/10.1126/sciadv.aba8555
https://doi.org/10.1002/advs.201902862
https://doi.org/10.1002/advs.201902862
https://doi.org/10.1016/j.jad.2020.01.102
https://doi.org/10.1111/nmo.12295
https://doi.org/10.1111/nmo.12295
https://doi.org/10.1590/S1517-83822012000400001
https://doi.org/10.1590/S1517-83822012000400001
https://doi.org/10.1186/s12888-020-02654-5
https://doi.org/10.3389/fpsyt.2022.815422
https://doi.org/10.1177/02698811241240308
https://doi.org/10.1038/s41398-021-01769-x
https://doi.org/10.1038/s41573-021-00368-1
https://doi.org/10.1016/j.biopsych.2022.10.016
https://doi.org/10.3389/fpsyt.2023.1185471
https://doi.org/10.1017/S0033291722003750
https://doi.org/10.1017/S0033291722003750
https://doi.org/10.1111/cns.14311
https://doi.org/10.1038/s41398-024-02849-4
https://doi.org/10.1038/msb4100163
https://doi.org/10.1113/jphysiol.2010.201384
https://doi.org/10.1038/embor.2013.177
https://doi.org/10.1016/j.copbio.2011.11.009
https://doi.org/10.1016/j.mbs.2014.09.012
https://doi.org/10.3389/fgene.2014.00273
https://doi.org/10.1038/s41576-023-00580-2
https://doi.org/10.1038/s41576-023-00580-2
https://doi.org/10.1021/ci300607r
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1093/bioinformatics/btx656
https://doi.org/10.1093/bioinformatics/btx656
https://doi.org/10.1016/j.jad.2021.12.134
https://doi.org/10.1016/j.jad.2021.12.134
https://doi.org/10.1176/appi.ajp.20230025
https://doi.org/10.24869/psyd.
https://doi.org/10.1016/j.neubiorev.2011.12.005
https://doi.org/10.3389/frai.2019.00031
https://doi.org/10.1186/s12909-023-04698-z
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1259/bjr.20230211
https://doi.org/10.2196/mental.7785
https://doi.org/10.1007/s40596-016-0627-7
https://doi.org/10.1007/s40596-016-0627-7
https://doi.org/10.1111/cns.13048
https://doi.org/10.2196/12539
https://doi.org/10.2196/12539
https://doi.org/10.1016/j.schres.2021.05.018
https://doi.org/10.1371/journal.pone.0258400
https://doi.org/10.1371/journal.pone.0258400
https://doi.org/10.1038/s41380-022-01569-9
https://doi.org/10.1038/s41380-022-01569-9
https://doi.org/10.2217/bmm-2016-0076
https://doi.org/10.3389/fpsyt.2024.1422939
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Stolfi et al. 10.3389/fpsyt.2024.1422939
230. Harris MG, Kazdin AE, Chiu WT, Sampson NA, Aguilar-Gaxiola S, Al-
Hamzawi A, et al. Findings from world mental health surveys of the perceived
helpfulness of treatment for patients with major depressive disorder. JAMA
Psychiatry. (2020) 77:830–41. doi: 10.1001/jamapsychiatry.2020.1107

231. Ali FZ, Parsey RV, Lin S, Schwartz J, DeLorenzo C. Circadian rhythm
biomarker from wearable device data is related to concurrent antidepressant
treatment response. NPJ Digit Med. (2023) 6:81. doi: 10.1038/s41746-023-00827-6

232. Anmella G, Corponi F, Li BM, Mas A, Sanabra M, Pacchiarotti I, et al.
Exploring Digital biomarkers of illness activity in mood episodes: hypotheses
generating and model development study. JMIR mHealth uHealth. (2023) 11:e45405.
doi: 10.2196/45405

233. Koga N, Komatsu Y, Shinozaki R, Ishida I, Shimizu Y, Ishimaru S, et al.
Simultaneous monitoring of activity and heart rate variability in depressed patients: A
Frontiers in Psychiatry 19
pilot study using a wearable monitor for 3 consecutive days. Neuropsychopharmacol
Rep. (2022) 42:457–67. doi: 10.1002/npr2.12285

234. Matcham F, Leightley D, Siddi S, Lamers F, White KM, Annas P, et al. Remote
Assessment of Disease and Relapse in Major Depressive Disorder (RADAR-MDD):
recruitment, retention, and data availability in a longitudinal remote measurement
study. BMC Psychiatry. (2022) 22:136. doi: 10.1186/s12888-022-03753-1

235. Yuan B, Li J. The policy effect of the general data protection regulation (GDPR)
on the digital public health sector in the european union: An empirical investigation.
Int J Environ Res Public Health. (2019) 16:1070. doi: 10.3390/ijerph16061070

236. Schaake M. European Commission’s Artificial Intelligence Act. Stanford,
California, US: Stanford University, Human-Centered Artificial Intelligence (2021).

237. Cohen IG, Mello MM. HIPAA and protecting health information in the 21st
Century. JAMA - J Am Med Assoc. (2018) 320:231–2. doi: 10.1001/jama.2018.5630
frontiersin.org

https://doi.org/10.1001/jamapsychiatry.2020.1107
https://doi.org/10.1038/s41746-023-00827-6
https://doi.org/10.2196/45405
https://doi.org/10.1002/npr2.12285
https://doi.org/10.1186/s12888-022-03753-1
https://doi.org/10.3390/ijerph16061070
https://doi.org/10.1001/jama.2018.5630
https://doi.org/10.3389/fpsyt.2024.1422939
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Stolfi et al. 10.3389/fpsyt.2024.1422939
Glossary

AI Artificial Intelligence

AIA Artificial Intelligence Act

ATAC-seq Assay for Transposase-Accessible Chromatin
using sequencing

BBB Blood-Brain Barrier

BD Bipolar Disorder

BDNF Brain-Derived Neurotrophic Factor

CBF Cerebral Blood Flow

CBR Case-Based Recommender

CNN Convolutional Neural Network

CNS Central Nervous System

CRP C-reactive protein

CYP Cytochrome P450

CyTOF Cytometry by Time of Flight

DAMPs Danger/Damage-Associated Molecular Patterns

DL Deep Learning

DSM Diagnostic and Statistical Manual

EEG Electroencephalography

ELISA Enzyme-linked immunosorbent assay

FACS Fluorescence-Activated Cell Sorting

fMRI Functional MRI

GABA Gamma-Aminobutyric Acid

GALT Gut-Associated Lymphoid Tissue

GBA Gut-Brain Axis

GDPR General Data Protection Regulation

GWAS Genome-Wide Associating Studies

HIPAA Health Insurance Portability and Accountability Act

HPA Hypothalamic–pituitary–adrenal

ICD International Classification of Diseases

IDO Indolinime Dioxygenase

IL Interleukin

LC-MS Liquid Chromatography-Mass Spectrometry

LLM Large Language models

LPS Lipopolysaccharides

MDD Major Depressive Disorder

MDE Major Depressive Episode

miRNA microRNA

ML Machine Learning

MLP Multilayer Perceptron

(Continued)
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mNGS Metagenomic Next-Generation Sequencing

MRI Magnetic Resonance Imaging

mRNA Messenger RNA

MRS Magnetic Resonance Spectroscopy

MS Mass Spectrometry

ncRNA Non-coding RNA

NGS Next-Generation Sequencing

NIRS Near-Infrared Spectroscopy

NK Natural Killer cells

NKT Natural Killer T cells

NLP Natural Language Processing

NLRP3 NLR Family Pyrin Domain Containing 3

PAMPs Pathogen-Associated Molecular Patterns

PET Positron Emission Tomography

RNA-seq RNA sequencing

RNN Recurrent Neural Network

rRNA Ribosomal RNA

SB System Biomedicine

SCFA Short-Chain Fatty Acids

scRNA-seq Single cell RNA-sequencing

SNP Single Nucleotide Polymorphism

snRNA-seq Single-nucleus RNA-sequencing

SPECT Single Photon Emission Computed Tomography

Th T helper

TLR Toll-Like Receptor

TNF-a Tumor Necrosis Factor-a

TRD Treatment-Resistant Depression

Treg T regulatory cells

WES Whole Exome Sequencing

WGCNA Weighted Gene Co-expression Network Analysis

WHO World Health Organization
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