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Abstract 

Wason’s selection task is a paramount experimental problem in the study of human 
reasoning, often connected with the celebrated ravens paradox in the philosophical 
literature. Various normative accounts of the selection task rely on a Bayesian 
approach. Some claim vindication of participants’ rationality. Others don’t, thus 
following Wason’s original intuition that observed responses are mistaken. In this 
paper we argue that, despite claims to the contrary, all these accounts actually speak 
to the same effect: Wason was right. First, we provide a new accuracy-based analysis 
of the selection task, that includes the existing proposals as special cases. We then 
show on this basis that none can actually vindicate participants’ rationality. We 
conclude that all normative renditions considered eventually concur: all in all, 
Bayesians should follow Wason in the selection task. 
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1. Introduction 

No experimental paradigm has generated more psychological research on 
rationality than the Wason selection task (Wason [1966], [1968]). Content with 

Wason’s original interpretation, many psychologists and philosophers have 
thought of the selection task as a textbook example of how humans can 

systematically fall short of compelling norms of reasoning. Others have 
protested, however, providing a number of arguments to the effect that 
people’s behaviour in the task is actually rational, given alternative and 

allegedly appropriate normative accounts.1 The result: more than 50 years after 
Wason’s original experiment, we are left with a plurality of different normative 

analyses of the task. Most of them are explicitly Bayesian, all are implicitly 
based on various auxiliary assumptions and theoretical choices. Some claim 

vindication of participants’ rationality, others don’t, and no consensus is in 
sight. 

In this paper we argue that and explain why, despite prevailing views, all 
these accounts actually speak to the same effect: Wason’s original intuition 

was correct. First, we provide a novel accuracy-based framework for the 
selection task that includes the existing proposals (including Wason’s) as 

special cases. We then show on this basis that none of these proposals can 
vindicate participants’ rationality in the task without relying on highly debatable 

auxiliary assumptions that are quite independent of the Bayesian framework. 
We conclude that all normative renditions considered converge: Bayesians 

should follow Wason in the selection task.  
Here is an outline of the structure of our argument. First, we give a 

preliminary review of the main accounts that have been proposed to assess 
participants’ rationality in the task (section 2). Since these proposals reflect 

different approaches and theoretical choices, our second step is to make them 

                                                
1 For occurrences in the philosophical literature, see, e.g. (Stich [1990], pp. 4-6, Stein [1996], pp. 
79-93, Humberstone [1994], and Bradley [2015], pp. 118-119). 
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comparable, providing a unified model of the task (section 3). Third, we present 
our unified normative framework based on the notion of the minimization of 

epistemic inaccuracy (section 4). In the fourth and last step we discuss the 
implications (sections 5-7).  

We provide three main reasons why our analysis improves on current 

knowledge. One is that, in the light of our analysis, the existing accounts can 
be recovered as specifications of a unified view of rational inquiry as aiming at 

inaccuracy reduction. A further reason is that the resulting framework refines 
the existing accounts with crucial amendments and integrations – in particular, 

it provides additional justificatory grounds for their conclusions. The third key 
point of our contribution is the outcome of our analysis. Despite appearances 

to the contrary, all normative approaches considered actually concur: prevalent 
responses in the selection task are best seen as a systematic departure from 

compelling normative benchmarks of rational thinking. 

 

2. The Persistent Puzzle of the Wason Task 

First things first: let us review key episodes in the long history of the normative 

renditions of the Wason task. The task is as follows.2 Participants are 
presented with four cards (see example below), and they are told that each 

card has a letter on one side and a number on the other. 

 
Participants are asked to say which cards they would turn over in order to find 

out whether the following conditional statement is true: ‘if a card has a vowel 
on one side, then it has an even number on the other side’. In Wason’s original 

experiments, almost all subjects selected the first card (A), a majority also 

                                                
2 We are only concerned with so-called abstract version of the task here. 
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selected the third card (2), only a few selected the fourth one (7), and almost no 
one selected the second one (K).  

Wason considered these results a clear indication of biased reasoning. 
This is because most participants tended to select a card that is apparently 
useless for discovering the truth or falsity of the conditional statement (the third 

one), and they failed to select a card that is equally accessible and useful to 
that effect (the fourth one). According to Wason’s original story, turning the first 

and the fourth card is useful because, logically, these cards can potentially 
falsify the hypothesis at issue (by possibly revealing an odd number and a 

vowel, respectively, on the other side), whereas the other two cards cannot 
provide any refuting evidence for that hypothesis. Rational agents should then 

select the first and the last card, while the other two are useless: ‘The correct 
response is to choose cards displaying vowels and cards displaying numbers 

which are not even, i.e., odd numbers, since only this combination of letters 
and numbers on the same card would prove the statement false’ (Wason 

[1966], p. 146). Given this ‘quasi-Popperian’ analysis, the conclusion seems 
straightforward: since most participants selected the third card and did not 

select the fourth card, they behaved irrationally. However, when it comes to 
explaining why this conclusion has normative force, and more generally how 

the quasi-Popperian story really works, Wason’s informal remarks won’t help 
much (more on this below). 

More than 20 years after Wason’s original experiment, Oaksford and 
Chater ([1994]) did provide a detailed formal story. But their story subverted 

Wason’s conclusions. According to Oaksford and Chater, participants’ 
performance actually complies with compelling normative principles – simply, 

these principles are not the ones Wason was relying on: ‘[T]he psychological 
data […] has appeared to show human reasoning performance to be 

hopelessly flawed, [but] when appropriate rational theories are applied, 

reasoning performance may, on the contrary, be rational’ (Oaksford and Chater 
[2007], p. 31, emphasis added). Oaksford and Chater pointed out that 

participants in the task were asked for a judgment of epistemic utility: which 
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cards is most useful to turn over in order to discover whether the conditional 
statement is correct? And the right way to address a question like this — they 

submitted — is to assess to what extent turning each card can be expected to 
reduce subjects’ uncertainty about the truth of the conditional statement. 
According to Oaksford and Chater, the expected reduction of uncertainty for 

one card amounts to the weighted average of the difference between prior and 
posterior Shannon entropy for each possible outcome of turning that card. 

Importantly, Oaksford and Chater’s analysis implied that such expected 
uncertainty reduction is higher for choosing the third rather than the fourth 

card. If this is correct then, against the traditional view, the apparently useless 
selection of the third card is actually more rational than the choice of the fourth 

card, and the participants’ behaviour seems to be vindicated.   
Sixteen years after Oaksford and Chater’s key contribution we have the 

last main episode of our (condensed, yet winding enough) story. Fitelson and 
Hawthorne ([2010]) thoroughly investigated the connections between Wason’s 

selection task and Hempel’s paradox of the ravens (but see Humberstone 1994 
for an important precedent). Unlike Oaksford and Chater, Fitelson and 

Hawthorne quantify the epistemic utility of turning a certain card in the task as 
given by the ‘expected confirmational power’ of an evidence search option 

(e.g., turning over a specific card), thereby extending an earlier probabilistic 
analysis by Nickerson ([1996]) to a more general assessment. However, while 

Nickerson’s analysis had concluded that ‘people’s typical performance in the 
selection task can be explained by consideration of what constitutes an 

effective strategy for seeking evidence’ ([1996], p. 1), Fitelson and Hawthorne 
refrained from reassuring conclusions: “it is more difficult to rationalize the 

behaviour / performance of actual subjects on the Wason selection task than 
one might have thought” ([2010], p. 235, original emphasis). 

We thus have three major normative approaches to the Wason selection 
task. One (Wason’s original story) ascribed irrationality to the participants, but 

its justificatory basis was largely informal and incomplete. Another one 
(Oaksford and Chater’s) relies on a sophisticated probabilistic machinery and 
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an influential piece of formalism from information theory to allegedly vindicate 
participants’ performance as optimal decision making. The last one (Nickerson 

/ Fitelson and Hawthorne) draws on classical philosophical concerns in 
confirmation theory, but apparently delivers diverging implications about 
human rationality.  

 
 interpretation 

of the conditional 

performance measure 

addressed 

normative approach  

adopted 

 

material probabilistic 
response 

frequencies 
selection 

propensities 
quasi-

falsificationism 

expected 
entropy 

reduction 

expected 
confirmational 

power 

Wason ✓ ✘ ✓ ✘ ✓ ✘ ✘ 

Oaksford 

and Chater 
✘ ✓ ✘ ✓ ✘ ✓ ✘ 

Fitelson and 

Hawthorne 
✓ ✘ ✘ ✓ ✘ ✘ ✓ 

Table 1. A variety of theoretical choices in major normative analysis of Wason’s selection task. 

 

What these diverse proposals have in common is that they all had to make a 

number of theoretical choices and background assumptions along the way to 
establish their conclusions. Table 1 provides a schematic preview, to be further 

discussed later on. 
As Table 1 shows, the theoretical disunity in the normative accounts of 

the task is quite striking. Are then participants violating compelling normative 
prescriptions or not? Without a unified framework, it’s hard to assess the 

impact that each assumption has on the outcomes of a given normative 
analysis. This is especially true given that the parties in play did not always 

provide explicit independent motivations for their choices. As a result, it’s 
largely unclear what determines the relevant conclusions in each case: is it 
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really the application of diverse normative models or rather some of the 
auxiliary assumptions made? 

To answer this question, in the following we’ll first provide a unified model 
of the task (section 3) and a unified normative framework (section 4), allowing 
for a unified assessment of the previous accounts mentioned from a novel 

perspective (sections 5-7). 
 

3. Modelling the Task 

In this section we provide a unified and comprehensive model of the Wason 

task. Participants in the task are shown four cards, which we’ll call c1, c2, c3, c4 

respectively (from left to right as displayed above). Since each card can be 
turned over to gain new evidence about the truth of the conditional statement, 

there are exactly four elementary options available to assess whether such 
statement is true, as explicitly requested in the task. Each elementary search 

option is represented by the possible outcomes of turning the single card at 
issue. We thus denote these search options with upper case Cs, and treat 

them as binary variables, positing C1 = {even(c1), ~even(c1)}; C2 = {even(c2), 

~even(c2)}; C3 = {vowel(c3), ~vowel(c3)}; C4 = {vowel(c4), ~vowel(c4)}. 

Combinations of elementary options are search options too, e.g., C1 ´ C2 = 

{even(c1) Ù even(c2), even(c1) Ù ~even(c2), ~even(c1) Ù even(c2), ~even(c1) Ù 

~even(c2)}, and so on (a combination of n distinct elementary options is 
modeled as a variable with 2n values denoting mutually inconsistent and jointly 

exhaustive possibilities). Since participants are indeed allowed to turn multiple 

cards, the overall set of response options, call it R, includes all elementary 

search options and any combination of them (sixteen options in total). So, for 

instance: C1 Î R, C1 ´ C3 Î R, and C1 ´ C2 ´ C3 ´ C4 Î R. 

We want a generalized way to model the selection task to accommodate 
a variety of assumptions made in the literature. We thus have to choose how to 

best characterize the epistemic state of a rational agent addressing the task, 
represented by a probability distribution P. To this aim, we treat the four cards 

as randomly and independently sampled from a background population (a 
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large deck). Two possible statistical compositions of the large deck will be 
considered, and denoted as d and ~d. As they are assumed to specify the 

proportions of four kinds of objects (cards with a vowel vs. consonant and an 
even vs. odd number), the content of each of d and ~d can be determined by 

three parameters. We’ll call such parameters a, b, e, and a*, b*, e*, 

respectively.  

— a and a* are the probabilities of a card ci having a vowel on one side 

given d and given ~d, respectively. So a = P[vowel(ci)|d] and a* = 

P[vowel(ci)|~d]. We also assume 0 < a, a* < 1.   

— b and b* are the probabilities of a card ci having an even number on one 

side given d and given ~d, respectively. So b = P[even(ci)|d] and b* = 

P[even(ci)|~d]. We also assume 0 < b, b* < 1.  

— e and e* are the probabilities of a card ci having a non-even (odd) number 

on one side given a vowel on the other side and given d or given ~d, 

respectively. So e = P[~even(ci) | vowel(ci) Ù d] and e* = P[~even(ci) | 

vowel(ci) Ù ~d]. We also assume 0 ≤ e < 1 and 0 < e* < 1. 

To start making some intuitive sense of this setting, let us first briefly comment 

on e and e*. If e = 0, then d implies that the universally quantified material 

conditional "x[vowel(x) É even(x)] is true in the larger deck from which the four 

cards are meant to have been drawn. And given e* > 0, ~d implies that the 

same quantified material conditional is false. In fact, it is useful to take D = 

{d,~d} as another relevant binary variable in our model, because then (for e = 0 

< e*) d can represent “if a card has a vowel on one side, then it has an even 

number on the other side” as referred to the whole population (the whole deck 

of cards), and ~d its plain logical negation. Following a typical assumption of 
earlier Bayesian analyses of the Wason task, we also posit a flat prior 

distribution on D, i.e., P(d) = P(~d) = 0.5. As a consequence of this and the 

random independent sampling assumption about the four cards, a full 

probability distribution over C1 ´ C2 ´ C3 ´ C4 ´ D can be determined through 

our six parameters, as illustrated by Table 2 and Appendix 3 [as in the 
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corresponding models from the literature, probabilistic coherence is enforced 

positing a(1 – e) ≤ b ≤ 1 – ae and a*(1 – e*) ≤ b* ≤ 1 – a*e*].3 

As a final piece of formalism, we need to label the conjunction (vowel(c1) 

É even(c1)) Ù … Ù (vowel(c4) É even(c4)) or, more concisely, ⋀ [𝑣𝑜𝑤𝑒𝑙(𝑐*) ⊃-.*./

𝑒𝑣𝑒𝑛(𝑐*)]. This statement, call it f, represents ‘if a card has a vowel on one 

side, then it has an even number on the other side’ as referred to the sample 

(of the four cards available). Of course, f is a straightforward consequence of d 

provided that e = 0 (intuitively meaning that, there are ‘no exceptions’ in the 

whole deck). Also note that all probabilities involving f and its negation, thus 

propositional variable F = {f,~f}, are also fully determined by a, a*, b, b*, e, and 

e* (given the other background assumptions we made). 

 

         given d                   given ~d  

 even(ci) ~even(ci)    even(ci) ~even(ci)  

vowel(ci) a(1 – e) ae a  vowel(ci) a*(1 – e*) a*e* a* 

~vowel(ci) b – a(1 – e) (1 – b) – ae 1 – a  ~vowel(ci) b* – a*(1 – e*) (1 – b*) – a*e* 1 – a* 

 b 1 – b    b* 1 – b*  

Table 2. Probability distribution concerning a given card ci  

as determined by the parameters a, a*, b, b*, e and e*. 

 
Let us briefly comment on the motivations for our modelling framework. An 

important point for the analysis of the Wason task is: what is the actual 

                                                
3 More precisely, one should say that the probability distribution P over C1 ´ C2 ´ C3 ´ C4 ´ D 

arises by taking the ur-prior distribution determined through Table 2, and then conditionalizing 

on the evidence that is already given in the experimental scenario through the visible sides of 

the cards, namely (in our notation), vowel(c1) Ù ~vowel(c2), Ù even(c3) Ù ~even(c4). This 

elucidation is technically appropriate but immaterial for our purposes. (See Appendix 3 for two 

specific examples.) For the probabilistic coherence clauses – a(1 – e) ≤ b ≤ 1 – ae and a*(1 – e*) 

≤ b* ≤ 1 – a*e* – note that, given the background model, these are necessary and sufficient for 

all cells in Table 2 to embed values in [0,1]. 
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epistemic target, namely, the partition of hypotheses with regards to which the 
usefulness of the available information search options should be rationally 

assessed? If we label such target as T, the choice is between positing T = D or 
T = F. Bayesians have almost exclusively discussed the former case, while 

Wason clearly had in mind the second. As we will see, both can be explicitly 

included (and compared) in our treatment – something that no earlier analysis 
pursued, to the best of our knowledge. The choice to posit T = D enables the 

parallelism between the Wason task and the ravens paradox (see 

Humberstone [1994]), a move adopted by Fitelson and Hawthorne ([2010]), 

with the additional assumptions that e = 0 and e* > 0, as expressed in our 

formalism. T = D is also a key assumption in (Oaksford and Chater [1994], 

[2003]), but their interpretation of d is that the probability of a card ci having an 

even number of one side given that it has a vowel on the other side is high, 

allowing for e to be small but positive (0 ≤ e ≤ 0.1). In this vein, Oaksford and 

Chater have construed their foil hypothesis, ~d, as a probabilistic 

independence claim concerning vowel(ci) and even(ci), which implies b* = 1 – e* 

in our framework (check Table 2 on the right).  
Oaksford and Chater have also found it natural to posit two further 

independence constraints, to wit, P[vowel(ci)|d] = P[vowel(ci)|~d] and P[even(ci)|d] 

= P[even(ci)|~d], so that a = a*, and b = b* (compare Table 2 above and Oaksford 

and Chater [2003], p. 291). That’s why Oaksford and Chater’s model ends up 

requiring only three parameters: a, b, and e, in our notation. Nickerson’s ([1996]) 

model, in turn, retains the equalities a = a*, and b = b* (that Fitelson and 

Hawthorne [2010] challenge, see pp. 220-223, and also Vranas [2004]), but 
agrees with Fitelson and Hawthorne in that (unlike Oaksford and Chater) one has 

e = 0 and e* is independently set (see Nickerson [1996], p. 16).   

The integrated representation provided here will be of much help in our 

later discussion. But before getting there, we still have to articulate a similar 
unifying move concerning the normative foundations of an analysis of the 

selection task. 
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4. A Principled Normative Framework 

In this section we provide a general normative framework for the task. The key 

idea is simple and the relevant technical machinery is well understood in 
statistics and decision theory (see, e.g., Savage [1971], Dawid [1998], and 

Gneiting and Raftery [2007]). According to our proposal, epistemic utility is 
analyzed in terms of accuracy — roughly: closeness of probabilistic credences 

to actual truth-value assignments. In turn, our normative basis for an analysis 
of the selection task will be a measure of inaccuracy (to be minimized), to wit, a 
scoring rule.4 Let’s see in more detail how this works. 

Given a probability distribution P defined over C1 ´ C2 ´ C3 ´ C4 ´ D and a 

specific scoring rule as a measure of epistemic inaccuracy, each element in the 
set of the response options R can be assessed by the expected reduction of 

inaccuracy that it yields concerning D or F. In our approach, such expected 

reduction in inaccuracy will determine how much a given option is epistemically 

useful for an agent whose aim is to find out the truth about D or F. 

For our current purposes, a scoring rule is a function s : {H ´ P} ® Â, 

where H is a finite partition of hypotheses,5 H = {h1, …, hn}, and P the set of 

possible probability distributions over H, representing possible epistemic 

states of an agent. Then, s(hi,P) (with hi Î H and P Î P) will be a measure of the 

(actual) inaccuracy of P with respect to H assuming the hi is true. As a rule, of 

                                                
4 Following Joyce’s ([1998], [2009]) seminal work, an extensive literature has developed in 
formal epistemology where scoring rules are investigated (e.g., D’Agostino and Sinigaglia 

[2010], Dunn [2019], Fallis and Lewis [2016], Leitgeb and Pettigrew [2010], Pettigrew [2013], 

Predd et al. [2009], Shoenfield [2017]). Our discussion is of course closely connected to this 
strand of research by the reference to the key notion of accuracy. Notice, however, that while 

we do take probabilism (and conditionalization) as normatively compelling (much as Oaksford 

and Chater, Nickerson, and Fitelson and Hawthorne), our argument is not committed to the 
prospects of the specific project of motivating probabilism itself (and conditionalization) 

through so-called accuracy-based approach. As a consequence, criticism of the latter, 
however effective, does not generally apply to the former (see, for instance, Carr [2017], 

Greaves [2013], Konek and Levinstein [2019], Oddie [2019]).    
5 This means that one assumes h1 Ú … Ú hn and also ~(hj Ù hk) for each j ≠ k. 
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course, an epistemic agent will not initially have access to the truth in H. 
However, the expected inaccuracy of a given probability distribution Q over H 

can be assessed relative to a distribution P over H that provides the 

expectation weights, as follows: 

𝑆(𝑃, 𝑄) 	= 8 𝑃(ℎ*) ∙ 𝑠(ℎ*, 𝑄)
<=∈?

 

A scoring rule s is said to be proper if S(P,P) ≤ S(P,Q) for all P,Q. For a strictly 
proper score, moreover, it holds that, if S(P,P) = S(P,Q), then P = Q. That is, a 

score s will be strictly proper if and only if it is proper and any distribution Q 

other than P has an expected score given P that is strictly higher (indicating 

more inaccuracy) than P itself. There is wide consensus that rational agents 

measure epistemic inaccuracy through strictly proper scoring rules (see 
Campbell-Moore and Levinstein [2020] for a recent discussion). 

How does all this relate to the assessment of an information search 

option such as, say, C1 ´ C3 in the Wason selection task? To address this point 

in general, we have to consider a partition of hypotheses H = {h1, …, hn}, an 

evidence partition E = {e1, …, em}, their combination H ´ E = {h1 Ù e1, h1 Ù e2, 

…, hn Ù em–1, hn Ù em}, and a probability distribution P on H ´ E such that: P(hi) > 

0 for any i; the conditional probability of hi given ej, 𝑃@A(ℎ*), is defined for each i 

and j; and P represents the epistemic state of an agent. Then, given 

distribution P, a piece of evidence e can itself be assigned (indirectly, as it 

were) a certain amount of epistemic utility to the extent that it decreases the 
agent’s expected inaccuracy with respect to the target hypothesis partition H. 

Such epistemic utility, denoted 𝑢(𝐻, 𝑒), will thus correspond to the extent to 

which the expected inaccuracy given e is lower than the expected inaccuracy 

of the initial probability distribution, P, on the basis of the updated distribution, 

Pe, where the new information e is taken into account (see Roche and Shogenji 
[2018] for a neat recent discussion of this idea), namely: 

𝑢(𝐻, 𝑒) = 𝑆(𝑃@, 𝑃) − 𝑆(𝑃@, 𝑃@) 
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This allows us to define, eventually, the epistemic utility of a test E with respect 
to H, which is simply the expected utility of its possible outcomes: 

𝑈(𝐻,𝐸) = 8 𝑃(𝑒G) ∙ 𝑢H𝐻, 𝑒GI
@A∈J

 

It is important to emphasize that a measure 𝑈(𝐻,𝐸) here is not simply 

motivated as a matter of convenience, popularity, or intuitive appeal. It arises in 

a principled way from exactly three antecedent assumptions: (i) that the key 
epistemic utility is accuracy; (ii) that inaccuracy is measured by a (proper) 
scoring rule; and (iii) that an improvement in accuracy (decrease in inaccuracy) 

after updating on evidence e is appropriately assessed on the basis of the 

posterior (and more informed) distribution, Pe.  

This fundamental approach still leaves room for the choice of the scoring 
rule(s) to be employed as a basic building block in our setting (see, e.g., 

Douven [2020] for a recent discussion), but major specifications can be 
recovered as special cases of the comprehensive parametric family of the 

Tsallis scores:6 

𝑠K(ℎ*, 𝑃) = 𝜏𝑙𝑛K M
1
𝑝*
P − Q1 − 8 𝑝GK

<A∈?

R 

where t ≥ 0. The function lnt is a generalized version of the natural logarithm 

found in Tsallis’s (1988) work: 𝑙𝑛K(𝑥) =
T(UVW)X-
-XK

. The ordinary logarithm is 

recovered in the limit for t ® 1, so that one can safely equate lnt(x) = ln(x) for t 

= 1, and make the parametric family st continuous in t (see Appendix 1). 

Not only are Tsallis scores proper (in fact strictly proper as long as t > 0). 

Most importantly for our purposes, they also provide exactly the unified 

                                                
6 Tsallis’s name is mostly associated with a parametric family of entropies (see Tsallis [2011], 

and Crupi et al. [2018]). What we here call Tsallis scores can be derived working back towards 

st so that Tsallis entropies amount to St(P,P). Savage ([1971]) and Dawid ([1998]) spell out the 

details of this connection. 
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normative framework that we look for. As we will see in the next sections, with 

t = 0 we obtain a well-behaved variant of Wason’s original quasi-Popperian 

approach to the selection task (Section 5); with t = 1 we recover Oaksford and 

Chater’s formal machinery, now equipped with a thorough motivation (Section 

6); and with t = 2 we achieve a similar result with respect to Nickerson and 

Fitelson and Hawthorne (Section 7).  

In principle, one could provide a motivation for a particular choice of t 

rather than others. For example, as concerns the search for evidence, values of 

t close to 0 represent the attitude of an agent who is especially eager to prune 

down the list of the elements in H, whereas for very high values of t the agent 

is narrowly focused on the prospects of getting to near-certainty about the true 
item in H, and largely insensitive to anything else (see Crupi et al. [2018] for a 

related discussion). But we are not committed to such choice here: what 

matters for the present purposes is that prominent options yield the same 
result, as we will see later on. 

This approach has other advantages too. Intuitive desiderata may be 
valuable resources in support of specific normative choices, and indeed both 
Wason and Oaksford and Chater have appealed to intuitive considerations in 

support of their conclusions (see Sections 5-6, below). But regardless of 
whether one thinks that intuitive appeal is enough to justify particular normative 

choices, our approach also has a more thorough motivation. Unlike previous 
normative renditions of the Wason task, our proposal explicitly embeds the 

idea that rational inquiry has a specific epistemic goal: reducing inaccuracy. 
This implies, for instance, that authors who have challenged bits of Bayesian 

epistemology as ‘means with no end’ (Brössel and Huber [2014]) should find 
our line of thought particularly appealing here (see also Schurz [2011], [2015]).  

 

5. Wason Vindicated 

We are back to the first episode of our story: Wason’s original account. Wason 

unequivocally interpreted ‘if a card has a vowel on one side, then it has an 

even number on the other side’ as a material conditional, thus ruling out the 
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possibility of a card with a vowel and an odd number. Setting e = 0 will be 

enough to model such assumption in our framework. 

Wason’s analysis of the task is best seen as addressing response 
frequencies as performance measure for participants’ behaviour (see Table 1). 

Response frequencies are simply the proportions of participants who selected 
a given element in R, including all combinations of C1-C4. Observed behaviour 

shows that a majority of participants (60% to 80%) choose either C1 or C1 ´ 

C3.7 According to Wason, such participants are actively choosing a dominated 

option, for a strictly better one is available, namely, C1 ´ C4. In our notation, 

Wason’s diagnosis of irrationality is committed to the implication that U(T, C1 ´ 

C4) > U(T,C1), U(T, C1 ´ C3) (where T is a rational agent’s epistemic target in the 

task), and surely this is fully in line with Wason’s ([1966], [1968]) remarks. But 
how is this conclusion supported?   

Wason seemed to endorse the principle that U(T,C4) > U(T,C3) on the 
basis of an informal ‘quasi-Popperian’ line of reasoning.8 The general idea 

would be something like the following: given two options X,Y Î R, if any 

member xi of X can falsify an element in T (for example, it’s logically 

incompatible with h, so that P(h|xi) = 0), whereas no element in Y can falsify any 
element in T, then U(T,X) > U(T,Y). As plausible as it may sound, this claim still 

remains starkly insufficient for two reasons. First, it does not offer any insight 

as to why should the ranking at issue hold in general for a rational agent. 
Second, and no less important, the quasi-Popperian principle above is too 

weak: given the material interpretation of the conditional (thus e = 0), it justifies 

the ranking U(T,C4) > U(T,C3), but it is completely silent for just those 
comparisons that seem crucial to sustain Wason’s diagnosis of mistaken 

reasoning, namely, U(T, C1 ´ C4) vs. U(T,C1) and U(T, C1 ´ C4) vs. U(T, C1 ´ C3). 

                                                
7 There results remained robust across countless further replications – see e.g. (Stenning and 

van Lambalgen [2008], p. 46; Evans et al. [1993]; and Ragni, Kola, and Johnson-Laird [2018]). 
8 For further discussions of this point see, e.g., (Mercier and Sperber [2017], p. 212, and 
Humberstone [1994], p. 396). 
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Our approach outlined above provides a simple and satisfactory solution, 
filling both gaps in the traditional Wasonian approach to the task. The move 

required is to pick up s0 from the Tsallis score formalism (see Appendix 1): 

𝑠Y(𝑡*, 𝑃) = 8 𝑃H𝑡GI
Y

[A∈\

− 1 

Given the convenient convention that 00 = 0 (which is standard, in particular, in 

information theory), s0 will simply correspond to the number of false 

hypotheses in T that P does not rule out. s0 may well seem a poor measure of 
inaccuracy, as it actually ignores all the quantitative information conveyed by 

P, yet the measure u0(T,e) thus generated is not without interest: it yields the 

number of elements in T that become falsified by updating on the evidence e. 

In turn, we have that the corresponding expected reduction of inaccuracy 
U0(T,E) computes the expected number of hypotheses in T that will be falsified 

by performing evidence search E – a motivated form of ‘quasi-Popperianism’.9 

Given only our basic assumptions (see Section 3. above), one can then prove 

that U0(T, C1 ´ C4) > U0(T,C1) = U0(T, C1 ´ C3) for both T = F (Wason’s choice) 

and T = D (the typical Bayesian choice) (see Appendix 2). 

What’s the upshot? For t = 0 our framework provides the basis for the 

justification of Wason’s orderings that Wason himself lacked. This fills the 
relevant gaps in this first part of the story, clarifying the normative ground 

required to support Wason’s original argument for the diagnosis of irrational 
behaviour.  

 

6. Oaksford and Chater Revised 

We now turn to the second episode in our story, Oaksford and Chater’s 

analysis, that allegedly subvert the implications of Wason’s. As compared to 
Wason, Oaksford and Chater take a different target for the assessment of 

reasoning performance in the task: the percentage of participants selecting 

                                                
9 See (Baron et al. [1988], p. 106) for an earlier occurrence. 
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each single card. These values can be interpreted as selection propensities 
(see Table 1): how much one is willing to turn each single card. This plausibly 

indicates how much, on average, a participant considers each elementary 
search option epistemically useful. Notably, this choice amounts to a different 
representation of the possible experimental outcomes as one of the twenty-

four possible (strict) rankings of the four elementary evidence search options 
C1-C4. Actual figures for C1, C2, C3, C4 are 89%, 16%, 62%, and 25%, 

respectively, implying an aggregated judgment that U(T,C1) > U(T,C3) > U(T,C4) 

> U(T,C2).10 

We already know that Oaksford and Chater’s model of the task can be 
obtained by our Table 2, given some basic background assumptions – random 

independent sampling, and flat prior on D (Section 3 above) —, setting a = a*, 

b = b* = 1 – e*, and allowing for, e.g., e = 0.1. But what about the normative 

benchmark? Oaksford and Chater’s recurrent approach has been to 
characterize epistemic utility as complementary to uncertainty, and to rely on 

Shannon entropy as a measure of uncertainty (Shannon [1948]). As a 
consequence, the epistemic utility of, say, turning card C1 is given as the 

expected reduction of the initial uncertainty about T in view of the possible 

outcomes of the evidence search as determined by a probability distribution P 

(representing the agent’s credal state). As a partial justification for the adoption 
of this approach, Oaksford and Chater have pointed out that Shannon entropy 

‘captures our intuitions about a measure of uncertainty’ ([2003], p. 291). Evans 
and Over ([1996]), however, have labelled the choice of this formalism ‘a clear 

mistake’. The source of Evans and Over’s dissatisfaction is that a good 
measure for the epistemic utility of evidence search ‘must be positive 

whenever data are diagnostic, that is, lead one to revise one’s belief’ ([1996], p. 
362), a property that entropy reduction demonstrably lacks. Evans and Over 
have thus suggested an alternative measure — absolute log likelihood ratio 

                                                
10 See (Oaksford and Chater [1994]) for a summary of the influential meta-analysis from which 
relevant values have been derived. 
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([1996], p. 358) — against which, however, a powerful criticism was mounted 
by Nelson ([2005]).  

Our accuracy-based framework neatly solves this quandary. As it 

happens, the Tsallis score for t = 1 is 𝒔𝟏(𝒉𝒊, 𝑷) = 𝒍𝒏d 𝟏
𝑷(𝒉𝒊)

e, is the popular 

logarithmic score.11 If inaccuracy is measured by the logarithmic score, then 

the expected reduction in inaccuracy U1(H,E) is demonstrably equivalent to the 

expected value of the Kullback-Leibler divergence, which in turn is always 
numerically identical to Oaksford and Chater’s expected reduction of 

uncertainty as quantified by Shannon entropy.12 Given that the underlying 
actual values of the Kullback-Leibler divergence are always non-negative, this 

can be taken to address Evans and Over’s ([1996]) challenge, as noted by 
Oaksford and Chater themselves ([1996], pp. 381-2).  

Our accuracy-based framework also goes beyond both sides of this 
controversy as it explains why it makes sense for a measure of the actual 

epistemic utility of a piece of evidence to be non-negative. Following a key 
insight recently emphasized by Roche and Shogenji ([2018]), the reason is this: 

the assessment of how the current credal state is inaccurate in expectation as 
compared to the earlier one should be made on the common ground of the 
current credal state itself, represented by Pe, for it is by definition better 

informed (after all, unlike the prior P, the posterior Pe embeds the truthful 

assumption that e holds). But then the non-negativity of 𝒖(𝑯, 𝒆) = 𝑺(𝑷𝒆, 𝑷) −

𝑺(𝑷𝒆, 𝑷𝒆) follows straight away, provided that the underlying score s is proper, 

which is taken to be an independently compelling constraint (of course 
satisfied, in particular, by the logarithmic score s1). So our account recovers all 

                                                
11 See (Good [1952], and Gneiting and Raftery [2007]).  
12 See (Kullback and Leibler [1951], and Cover and Thomas [1991]). The choice of the logarithm 

base is a largely immaterial matter of convention. For 𝑠-(ℎ*, 𝑃), one can switch to the popular 

choice of base 2 by a multiplicative constant. Such simple transformation carries over to expected 
values (thus to expected inaccuracy as measured by 𝑆-(𝑃, 𝑄)), to differences of expected values 

(thus to expected inaccuracy reduction 𝑢𝟏(𝐻, 𝑒), KL divergence in this case), and to expected 

values of such differences (thus to 𝑈-(𝐻,𝐸)). Also see Appendix 1. 
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implications of Oaksford and Chater’s favourite machinery, while at the same 
time displaying principled normative foundations that are crucially lacking in 

their discussion. 
Oaksford and Chater’s analysis is still often portraited as a vindication of 

human reasoning in the Wason task through a ‘paradigm shift’ towards a 

probabilistic (rather than ‘logical’) interpretation of rationality. This idea is quite 
misleading, however. Oaksford and Chater’s analysis accommodates the 

observed response pattern on the basis of so-called ‘rarity assumption’, 
namely, P[vowel(ci)] < P[even(ci)] << P[~even(ci)] (also see Fitelson and 

Hawthorne [2010], p. 233). In Oaksford and Chater’s favourite parameter 

setting, in particular, one has a = 0.22 and b = 0.27, so that U1(D,C1) = 0.22 > 

U1(D,C3) = 0.14 > U1(D,C4) = 0.05 > U1(D,C2) = 0.03. (This also works for plain 

response frequencies, at least to the extent that U1(D, C1 ´ C3) = 0.31 > 0.25 = 

U0(D, C1 ´ C4. See Appendix 3 for specification of the full joint probability 

distribution on C1 ´ C2 ´ C3 ´ C4 ´ D.) And yet, however valid rarity may be as a 

default assumption in many settings (including the ravens paradox), it has no 

plausible normative justification for a probabilistic representation of the Wason 
abstract selection task as it is. In fact, we submit that in the Wason task a 

plausible argument can be made against rarity, especially with regards to b, 

i.e., P[even(ci)].13  

On reflection, why should one ever assume finding an even number on a 

card in the Wason task as significantly less probable than finding a non-even 
(odd) number? No clear suggestion in this direction arises from the 

hypothetical sampling procedures of the four cards available, and none has 
been put forward to the best of our knowledge. Quite on the contrary, for a 

Bayesian agent, the (second-order) levels of confidence in support of 
P[even(ci)] = x vs. P[even(ci)] = 1 – x must be indistinguishable for any x (with 0 

< x < 1) on the basis of symmetry considerations that seem very compelling in 

                                                
13 To what extent rarity is independently supported as a descriptive, psychological hypothesis 
about participants’ attitudes is yet another potentially relevant issue which we leave aside here, 

but see, e.g., (Oberauer et al. [1999]). 
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the context, and an estimate of b = ½ is of course the most natural 

consequence of this premise.14  

We have run a simple exhaustive grid search (at interval 0.01) of the 
parameter space of Oaksford and Chater’s model under the plausible 

assumption that b = ½, and found that all settings tested converge on Wason’s 

original diagnosis in two crucial respects: first, U1(D,C4) > U1(D,C3), against 

measured single-card selection propensities (see Figure 1); and second, U1(D, 

C1 ´ C4) > U1(D, C1 ´ C3), against plain observed response frequencies.  

The crucial role of the rarity assumption in Oaksford and Chater’s account 

is not a new topic, and its normative weakness was also noted before.15 Still, a 
key implication seems to have been underappreciated: as fascinating as it is, 

Oaksford and Chater’s analysis of the selection task does not imply a revision 
of Wason’s original normative assessment in a compelling way. In fact, the 

apparent rationalization of the participants’ behaviour does not arise from the 
application of Bayesian principles as ‘the appropriate normative theory’ 

(Oaksford and Chater [2007], p. 31), but from normatively questionable 
auxiliary assumptions. 

                                                
14 Oaksford and Chater’s discussion ([1994], see pp. 627-28) does not dispel this criticism, in 
our view. In fact, they indirectly argue for the claim that rarity is typically factually adequate ‘in 

our environment’, by which they clearly mean in ordinary language and reasoning outside the 
lab, thus not in the abstract Wason task itself. This reveals that their notion of ‘adaptive 

rationality’, even if correct, is consistent with systematic local departures from sound 

reasoning, which is the only relevant point for our current purposes. The ‘extrapolation’ of rarity 
‘from prior experience’ to the ‘novel’ Wason task (were it indeed the case) is no more and no 

less ‘reasonable’, we submit, than the analogue ‘extrapolation’ by which our perceptual system 
becomes liable to illusions such as Müller-Lyer. Illusion remains illusion, and mistake remains 

mistake. Indeed, in the abstract Wason task, such tendency to extrapolate (again, if real) 
unduly overrides very plausible motivations for a Bayesian agent to rely on P[even(ci)] = ½. And 

such specific and guarded motivations also elude Oaksford and Chater’s ([1994], p. 627) quick 

dismissal of the principle of indifference as an alternative to their own favourite assumptions. 
15 See, e.g., (Laming [1996], and Sloman and Fernbach [2008]). 
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Figure 1. Expected utility of single-card selections in Wason’s task in Oaksford and Chater’s 

([1994], [2003]) analysis. Parameter b (the probability of an even number on the card) is set at 0.5, 

whereas a (the probability of a vowel on the card) varies on the x axis while still satisfying rarity (< 

0.5).  

 

The upshot: for t = 1 our generalized framework provides a coherent normative 

justification converging with the formalism chosen by Oaksford and Chater 
([1994], [2003]). This fills a theoretical gap in their story. At the same time, it 

shows that, despite claims to the contrary, participants in the Wason selection 
task do not act as Bayesian rational agents plausibly would. Without key but 

doubtful assumptions about rarity, a sound reconstruction of Oaksford and 
Chater’s favourite model neatly follows Wason’s conclusions. 

 
7. Nickerson and Fitelson and Hawthorne Amended 

Both Nickerson ([1996]) and Fitelson and Hawthorne ([2010]) pursue the idea of 
an explicit connection between the Wason task and Bayesian confirmation 

theory — a project that we support. Still, we find their proposals defective in 
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some important respects. In this section we’ll explain why, but our constructive 
criticism and friendly amendments require careful preparation first.  

Drawing on (Nickerson [1996]) and contemporary Bayesian confirmation 
theory,16 Fitelson and Hawthorne ([2010]) define the confirmational power of 
evidence e for hypothesis h as the absolute value of the difference between 

posterior and prior probability: D(h,e) = |P(h|e) – P(h)|. So far so good: the 

absolute value here allows one to appropriately bracket whether e’s 

contribution increases or decreases the credibility of h, the idea being that e is 

equally useful either way. But here is how Fitelson and Hawthorne— again 
following Nickerson— extend this idea to a test or evidence search option E = 

{e1, …, em}: 

𝒫(ℎ, 𝐸) = 8k𝑃Hℎ|𝑒GI − 𝑃(ℎ)k𝑃
@A∈J

(𝑒G) 

This quantity, however, cannot represent the epistemic utility of E for an agent 

who aims at finding out the truth about a target hypothesis space to which h 

belongs. To illustrate, suppose we have: H = {h1, h2, h3, h4} and E = {e,~e}; a 

prior assignment on H of 40%, 30%, 20%, and 10%, respectively; 55%, 20%, 

15%, 10% as a posterior distribution given e; and 25%, 40%, 25% and 10% 
as a posterior distribution given ~e (all this implies that P(e) = 50%). We then 

have 𝒫(h1,E) = 0.15, 𝒫(h2,E) = 0.10, 𝒫(h3,E) = 0.05, and 𝒫(h4,E) = 0. What is then 

the overall epistemic utility of E to find out about H? We should have one 
number, but we have four — something is not quite working right.  

What one could (and should) have done instead with confirmational 
power as absolute probability difference is to posit: 

𝑢m(𝐻, 𝑒) =
1
|𝐻| 8

|𝑃(ℎ*|𝑒) − 𝑃(ℎ*)|
<=∈?

 

(where |H| denotes the cardinality of H) and then, as usual, 𝑈m(𝐻, 𝐸) =

∑ 𝑃(𝑒G) ∙ 𝑢H𝐻, 𝑒GI@A∈J . Now, this measure does yield a definite assessment of 

test E for target hypothesis set H in our illustrative example above (i.e., 0.075). 

                                                
16 See, e.g., (Crupi [2015], and Crupi and Tentori [2016]). 
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And predictably this measure also occurs in important earlier discussions in the 
literature (especially Nelson [2005], under the label of ‘impact’).  

It is true that 𝒫(h,E) = UD(H,E) for any E as long as H is a binary hypothesis 

set, i.e., H = {h,~h}, which happens to be the case in the Wason task as usually 

understood. But this should not obscure the fact that 𝒫(h,E) is just not the right 

kind of model, as it relates a single hypothesis and a possible experiment. Our 
favourite suggestion to make sense of 𝒫(h,E) is as a measure of the testability of 

the specific hypothesis h through experiment E. Quite plausibly, the more the 

hypotheses in H that are testable through E, and the more testable they are, the 
higher the epistemic value of E with respect to H overall. Yet the two notions are, 

and should be kept, conceptually and formally distinct. Conflating the testability of 

one single hypothesis h in H by E and the epistemic utility of E for H is a mistake. 

This is our first issue with Nickerson and Fitelson and Hawthorne. If it 
were the only issue, it could be solved by replacing 𝒫(h,E) with UD(H,E). That’s 

surely an improvement, but still limited, we believe. As far as we can see, the 

sole motivation to be found in favour of UD(H,E) is the plausible idea that the 

epistemic utility of test E for H should arise as a weighted average of the 

confirmational power of the elements of E relative to the elements of H. By 
construction, this approach will imply that uD(H,e) is strictly positive as long as 

the posterior probability departs from the prior — a property that at least some 

authors (such as Evans and Over [1996], see above) find very attractive. We 
tend to concur, and yet there are still some potential problems. First, these 

remarks do not go much deeper than Oaksford and Chater’s alternative idea 
that the epistemic utility of a test should amount to a reduction of uncertainty 

(which, as we know, can well be negative). Secondly, UD(H,E) lacks other 

important formal properties, like the following: 

Additivity: U(H,E´F) = U(H,E) + U(H,F|E) 

The above statement means that the epistemic utility of a combined test E ´ F 

amounts to the sum of the plain utility of E and the utility of F that is expected 

considering all possible outcomes of E (where 𝑈(𝐻, 𝐹|𝐸) = ∑ 𝑈H𝐻, 𝐹|𝑒GI ∙@A∈J
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𝑃(𝑒G) and 𝑈H𝐻,𝐹|𝑒GI denotes the expected utility of F for H computed when all 

probabilities are conditionalized on ej). Roughly, this additivity principle 

represents the idea that, for an agent assessing in advance the utility of E and 

F combined, it does not matter in which order the outcomes of those tests are 

expected to be revealed. Additivity is important and highly desirable as 
concerns the analysis of the rational assessment of tests. Yet it is 

demonstrably violated by UD(H,E).17  

Our generalized framework addresses all difficulties above by choosing t = 

2. The corresponding Tsallis score s2 amounts to the Brier score (or ‘squared 

Euclidean distance’ – see Selten [1998], and Appendix 1 for a proof of the 
connection). Expected reduction in inaccuracy will then be measured as follows: 

𝑈p(𝐻, 𝐸) = 8 8q𝑃Hℎ*|𝑒GI − 𝑃(ℎ*)r
p

<=∈?

𝑃(𝑒G)
@A∈J

 

This measure, we urge, retains the spirit and the attractive features of Nickerson’s 
and Fitelson and Hawthorne’s theoretical approaches while overcoming all 

limitations outlined above. Here, the actual epistemic utility u2(H,e) is indeed the 
sum of the confirmational power of e for every hypothesis in H as quantified by a 

confirmation measure that is ordinally equivalent to the traditional probability 

difference and also recently discussed by van Enk ([2014]). The additivity property 
above is also happily satisfied by U2(H,E).18 Finally, and importantly, this 

arrangement does not have to be accepted on purely intuitive grounds (as nice as 

they can be), but arises once again as a consequence of the general accuracy-
based approach given the specific choice of the Brier score.  

We are left, of course, with one final point to be discussed: the 
implications for observed behaviour in the Wason task. As is typical in the 
tradition of the Wason / ravens parallelism, both Nickerson ([1996]) and 

Fitelson and Hawthorne ([2010]) presuppose that T = D and e = 0, so that d = 

"x[vowel(x) É even(x)] (quantifying over all cards in the allegedly large sampled 

                                                
17 See (Nelson [2008]) for discussion. 
18 See (Crupi and Tentori [2014]). 
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deck) and the foil hypothesis, ~d, is the plain logical negation. Nickerson’s  

specific numerical model ([1996], p. 16) also embeds the assumption that e* = 

½. Given the material implication interpretation of d, this assumption can be 

supported again by a plausible symmetry argument. In fact, on the supposition 

that d is false, the probability for a card with a vowel to also have an even 

number will have to be strictly lower than 1, but for a Bayesian agent the 

(second-order) levels of confidence in support of e* = P[~even(ci) | vowel(ci) Ù 

~h] = x vs. P[~even(ci) | vowel(ci) Ù ~h] = 1 – x must be indistinguishable for any 

x (with 0 < x < 1). If this consideration is applied, then the agreement between 

Nickerson and Oaksford and Chater in defense of the rationality of participants’ 
behaviour rests on the same shaky ground. Here again, a grid search (at 

interval 0.01) of the parameter range for a shows that, if rarity is rejected at 

least for P[even(ci)] (so that b = ½), then Wason’s original diagnosis remains 

valid, namely: U2(D,C4) > U2(D,C3), against measured single-card selection 

propensities; and U2(D, C1 ´ C4) > U2(D, C1 ´ C3), against plain observed 

response frequencies.19 

Fitelson and Hawthorne have proven cautious about the rationalization of 
behaviour in the Wason selection task, and on this we definitely concur 
(although for quite different motivations, compare [2010], pp. 234-5). Still, one 

specific point in their extensive discussion deserves comment, as it contributes 
to the generality of our conclusions. In our understanding, Fitelson and 

Hawthorne’s parallelism between the ravens paradox and the Wason task 

suggests that the traditional setting a = a* and b = b* would better be relaxed 

to allow for a ≤ a*, and b ≥ b* (see [2010], pp. 221-3). Here is the idea, 

informally. If the universally quantified conditional d is false, then one may well 

expect a comparably higher probability for a vowel card (so that a < a*) or for 

                                                
19 It should be pointed that, while Nickerson’s ([1996]) ‘illustrative’ numerical example does 

embed rarity (with a = 0,05 and b = 0,10, in our notation) as well as Oaksford and Chater’s 

independence settings (with a = a* and b = b*), his discussion does not provide arguments in 

support of such assumptions as normatively sound for the abstract Wason task. 



	
	
	
	

	 26 

an odd number card (so that b > b*), for the instances in the population which 

would make d false must be of that kind.  

What is interesting for our purposes is that all the plausible conditions which 

Nickerson ([1996]) and Fitelson and Hawthorne ([2010]) favour can be jointly 
satisfied. And again, to the extent that rarity is rejected at least for P[even(ci)], the 

rationalization of observed behaviour typically fails. For an illustrative numerical 

example, consider the parameter setting a = 0.15 < a* = 0.25, b = 0.55 > b* = 0.45, 

and e* = 0.50, whereby one has U2(D,C4) = 0.064 > 0.00002 = U2(D,C3), against 

measured single-card selection propensities, and U2(D, C1 ´ C4) = 0.221 > 0.167 = 

U2(D, C1 ´ C3), against plain observed response frequencies. (See Appendix 3 for 

specification of the full joint probability distribution on C1 ´ C2 ´ C3 ´ C4 ´ D.)  

The upshot: For t = 2 our generalized framework recovers an amended 

version of Nickerson’s ([1996]) and Fitelson and Hawthorne’s ([2010]) analyses. 
At the same time, it clearly shows that, without theoretical analogues of the 

rarity assumption, Bayesian models of this kind neatly follow Wason as well. 

 
Conclusion 

Wason’s original intuition was correct. Meanwhile, claims have been made that 

controversies on human rationality in experimental reasoning tasks are 
pointless as they are bound to drown in the intractable problem of the 

‘arbitration’ between competing norms (e.g., Elqayam and Evans [2011]). At 
least in the paramount case of the selection task, our discussion suggests a 

very different picture. Three major approaches as different as a ‘logical’ 
(Wason), an information-theoretic (Oaksford and Chater), and a confirmation-

theoretic (Nickerson / Fitelson and Hawthorne) analysis have been all 
recovered as specifications of a unified view of rational inquiry as aiming at 

inaccuracy reduction. And as it turns out, the verdict of defective reasoning 
has remained unscathed across these variations.     

The Wason selection task has been called ‘a mysterious beast’ 
(Manktelow [2012], p. 113), bewitching three generations of reasoning scholars 
– and not without reasons. Despite extensive investigation, a complete 
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psychological account of observed behaviour is still an open scientific 
challenge (see, e.g., Ragni, Kola, and Johnson-Laird [2018]). Yet the normative 

interpretation of the task is no mystery, we believe: the routes of the Bayesians 
lead back to where it all started, with Wason.    
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TECHNICAL APPENDICES 

1. Special Cases of the Tsallis Scores 

The case t = 0 is straightforward. We have 

𝑠K(ℎ*, 𝑃) = 𝜏𝑙𝑛K M
1
𝑝*
P − Q1 − 8 𝑝GK

<A∈?

R = 8 𝑝GY − 1
<A∈?

 

For t = 1, we consider the Tsallis logarithm, 𝑙𝑛t(𝑥) =
-
-Xt

q𝑥(-Xt) − 1r. To show that the ordinary 

natural logarithm is recovered from 𝑙𝑛t(𝑥) (x > 0) in the limit for t ® 1, posit x = 1 – y and first 
consider x ≤ 1, so that |–y| < 1. Then we have  

lim
t→-

{𝑙𝑛t(𝑥)} = lim
t→-

{𝑙𝑛t(1 − 𝑦)} = lim
t→-

z -
-Xt

q(1 − 𝑦)(-Xt) − 1r{  

and, by the binomial expansion of (1 − 𝑦)(-Xt): 

lim
t→-

|
1

1 − t
q(1 − 𝑦)(-Xt) − 1r} = 

= lim
t→-

z -
-Xt

~−1 + d1 + (1 − t)(−𝑦) + (-Xt)(-XtX-)(X�)�

p!
+ (-Xt)(-XtX-)(-XtXp)(X�)�

�!
+ ⋯e�{  

= lim
t→-

z(−𝑦)+ (Xt)(X�)�

p!
+ (Xt)(XtX-)(X�)�

�!
+⋯ {  

= lim
t→-

z(−𝑦)− t(X�)�

p!
+ (t)(t�-)(X�)�

�!
−⋯ {  

= (−𝑦) − (X�)�

p!
+ p!(X�)�

�!
−⋯  

 = (−𝑦) − (X�)�

p
+ (X�)�

�
−⋯ 

which is the series expansion of 𝑙𝑛(1 − 𝑦) = 𝑙𝑛(𝑥) (recall that |–y| < 1). For the case x > 1, one 

can posit x = 1/(1 – y), so that again |–y| < 1 and compute lim
t→-

�
d U
UV�e

(UVt)
X-

-Xt
� = lim

t→-
z− -

tX-
q(1 −

𝑦)(tX-) − 1r{, thus getting the same result from a similar derivation. This justifies positing 

𝑙𝑛-(𝑥) = 𝑙𝑛(𝑥). As a consequence, 𝑠-(ℎ*, 𝑃) indeed amounts to the logarithmic score: 

𝑠-(ℎ*, 𝑃) = 𝑙𝑛- M
1
𝑝*
P − Q1 − 8 𝑝G

<A∈?

R = 𝑙𝑛 M
1
𝑝*
P 

Finally, for the case t = 2, we have: 

𝑠K(ℎ*, 𝑃) = 𝜏𝑙𝑛K M
1
𝑝*
P − Q1 − 8 𝑝GK

<A∈?

R = 2𝑙𝑛p M
1
𝑝*
P − Q1 − 8 𝑝Gp

<A∈?

R 

= 2(1− 𝑝*) − Q1 − 8 𝑝Gp

<A∈?

R = 1 − 2𝑝* + 8 𝑝Gp

<A∈?

 

= H1 − 2𝑝* + 𝑝*pI + 8 𝑝Gp

<A∈?X{<=}

= (1 − 𝑝*)p + 8 𝑝Gp

<A∈?X{<=}

 

and the latter just is the Brier score.  
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2. Accuracy in the Wason Task with t = 0 

First we show that U0(D,C1´ C3) = U0(D,C1). For simplicity, we start denoting even(c1) Ù vowel(c3), 

even(c1) Ù ~vowel(c3), ~even(c1) Ù vowel(c3), ~even(c1) Ù ~vowel(c3) as x, y, w, and z, respectively.  

𝑈Y(𝐷, 𝐶- × 𝐶�) = 𝑃(𝑥)	𝑢Y(𝐷, 𝑥) + 𝑃(𝑦)	𝑢Y(𝐷, 𝑦) + 𝑃(𝑤)	𝑢Y(𝐷,𝑤) + 𝑃(𝑧)	𝑢Y(𝐷, 𝑧) 

= 𝑃(𝑥)		[𝑆Y(𝑃T,𝑃) − 𝑆Y(𝑃T,𝑃T)] + 𝑃(𝑦)		q𝑆YH𝑃�,𝑃I − 𝑆YH𝑃�,𝑃�Ir+ 𝑃(𝑤)		[𝑆Y(𝑃�,𝑃) − 𝑆Y(𝑃�,𝑃�)]

+ 𝑃(𝑧)		[𝑆Y(𝑃�,𝑃) − 𝑆Y(𝑃�,𝑃�)] 
= 𝑃(𝑥){[𝑃T(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃T(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃T(𝑑)𝑠Y(𝑑, 𝑃T) + 𝑃T(~𝑑)𝑠Y(~𝑑, 𝑃T)]}

+ 𝑃(𝑦)�q𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)r− q𝑃�(𝑑)𝑠YH𝑑, 𝑃�I + 𝑃�(~𝑑)𝑠YH~𝑑, 𝑃�Ir�

+ 𝑃(𝑤){[𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃�(𝑑)𝑠Y(𝑑, 𝑃�) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃�)]}

+ 𝑃(𝑧){[𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃�(𝑑)𝑠Y(𝑑, 𝑃�) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃�)]} 
= 𝑃(𝑥){1 − 1} + 𝑃(𝑦){1− 1} + 𝑃(𝑤){1− 0} + 𝑃(𝑧){1− 0} 
= 𝑃(𝑤 ∨ 𝑧) 
= 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)] 
= 𝑃[𝑒𝑣𝑒𝑛(𝑐-)]{1 − 1} + 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)]{1 − 0}  

= 𝑃[𝑒𝑣𝑒𝑛(𝑐-)]�q𝑃@�@�(�U)(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃@�@�(�U)(~𝑑)𝑠Y(~𝑑, 𝑃)r

− q𝑃@�@�(�U)(𝑑)𝑠YH𝑑, 𝑃@�@�(�U)I + 𝑃@�@�(�U)(~𝑑)𝑠YH~𝑑, 𝑃@�@�(�U)Ir�

+ 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)]�q𝑃~@�@�(�U)(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃~@�@�(�U)(~𝑑)𝑠Y(~𝑑, 𝑃)r

− q𝑃~@�@�(�U)(𝑑)𝑠YH𝑑, 𝑃~@�@�(�U)I + 𝑃~@�@�(�U)(~𝑑)𝑠YH~𝑑, 𝑃~@�@�(�U)Ir� 

= 𝑃[𝑒𝑣𝑒𝑛(𝑐-)]		q𝑆YH𝑃@�@�(�U), 𝑃I − 𝑆YH𝑃@�@�(�U), 𝑃@�@�(�U)Ir

+ 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)]	q𝑆YH𝑃~@�@�(�U), 𝑃I − 𝑆YH𝑃~@�@�(�U), 𝑃~@�@�(�U)Ir 

= 𝑃[𝑒𝑣𝑒𝑛(𝑐-)]	𝑢YH𝐷, 𝑒𝑣𝑒𝑛(𝑐-)I + 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)]	𝑢YH𝐷,~𝑒𝑣𝑒𝑛(𝑐-)I = 𝑈Y(𝐷,𝐶-) 

 

Now we compute U0(D,C1´ C4), here denoting even(c1) Ù vowel(c4), even(c1) Ù ~vowel(c4), ~even(c1) 

Ù vowel(c4), ~even(c1) Ù ~vowel(c4) as x, y, w, and z, respectively. In this case, we have:  

𝑈Y(𝐷, 𝐶- × 𝐶/) = 𝑃(𝑥)	𝑢Y(𝐷, 𝑥) + 𝑃(𝑦)	𝑢Y(𝐷, 𝑦) + 𝑃(𝑤)	𝑢Y(𝐷,𝑤) + 𝑃(𝑧)	𝑢Y(𝐷, 𝑧) 
= 𝑃(𝑥){[𝑃T(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃T(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃T(𝑑)𝑠Y(𝑑, 𝑃T) + 𝑃T(~𝑑)𝑠Y(~𝑑, 𝑃T)]}

+ 𝑃(𝑦)�q𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)r− q𝑃�(𝑑)𝑠YH𝑑, 𝑃�I + 𝑃�(~𝑑)𝑠YH~𝑑, 𝑃�Ir�

+ 𝑃(𝑤){[𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃�(𝑑)𝑠Y(𝑑, 𝑃�) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃�)]}

+ 𝑃(𝑧){[𝑃�(𝑑)𝑠Y(𝑑, 𝑃) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃)] − [𝑃�(𝑑)𝑠Y(𝑑, 𝑃�) + 𝑃�(~𝑑)𝑠Y(~𝑑, 𝑃�)]} 
= 𝑃(𝑥){1 − 0} + 𝑃(𝑦){1− 1} + 𝑃(𝑤){1− 0} + 𝑃(𝑧){1− 0} 
= 𝑃(𝑥) + 𝑃(𝑤 ∨ 𝑧) = 𝑃[𝑒𝑣𝑒𝑛(𝑐-) ∧ 𝑣𝑜𝑤𝑒𝑙(𝑐/)] + 𝑃[~𝑒𝑣𝑒𝑛(𝑐-)] 

 

Then clearly, U0(D,C1´ C4) > U0(D,C1´ C3) = U0(D,C1), because 

𝑈Y(𝐷, 𝐶- × 𝐶/) − 𝑈Y(𝐷, 𝐶- × 𝐶�) = 	𝑃[𝑒𝑣𝑒𝑛(𝑐-) ∧ 𝑣𝑜𝑤𝑒𝑙(𝑐/)] 
= 𝑃[𝑒𝑣𝑒𝑛(𝑐-) ∧ 𝑣𝑜𝑤𝑒𝑙(𝑐/)|𝑑]𝑃(𝑑) + 𝑃[𝑒𝑣𝑒𝑛(𝑐-) ∧ 𝑣𝑜𝑤𝑒𝑙(𝑐/)|~𝑑]𝑃(~𝑑) 
= 𝑃[𝑒𝑣𝑒𝑛(𝑐-) ∧ 𝑣𝑜𝑤𝑒𝑙(𝑐/)|~𝑑]𝑃(~𝑑) 

= 𝑃[𝑒𝑣𝑒𝑛(𝑐-)|~𝑑]𝑃[𝑣𝑜𝑤𝑒𝑙(𝑐/)|~𝑑]𝑃(~𝑑) =
1
2𝛼

∗𝛽∗ 

which is strictly positive, as a*,b* > 0. 
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The above derivation applies with essentially no variation by replacing D with F. 

 
3. Full Joint Probability Distributions for the Wason Task 

Below is the full joint probability distribution over C1 ´ C2 ´ C3 ´ C4 ´ D arising from Oaksford 
and Chater’s analysis (see Section 6 above). Figures are obtained from Table 2 given a flat 
prior over D, the independent sampling assumption for the four cards, and the following 
parameter setting (including rarity): a = a* = 0.22; b = b* = 1 – e* = 0.27; e = 0.1. All probabilities 
are conditionalized on information about the visible sides of the four cards in the abstract 
Wason task, namely, on vowel(c1) Ù ~vowel(c2) Ù even(c3) Ù ~even(c4). 

P[even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù d]  = 918018967334036 • 10–18 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 176418 • 10–8 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 295435194942044 • 10–16 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 625482 • 10–8 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 333825079030559 • 10–18 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 625482 • 10–8 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 107430979978925 • 10–16 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 2217618 • 10–8 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 902718651211802 • 10–17 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 476982 • 10–8 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 290511275026343 • 10–15 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 1691118 • 10–8 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 328261327713382 • 10–17 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 1691118 • 10–8 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 105640463645943 • 10–15 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 5995782 • 10–8 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 10200210748156 • 10–17 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 476982 • 10–8 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 328261327713382 • 10–17 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d]  = 1691118 • 10–8 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 370916754478398 • 10–19 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 1691118 • 10–8 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 119367755532139 • 10–17 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 5995782 • 10–8 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 100302072356867 • 10–17 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 1289618 • 10–8 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 322790305584826 • 10–16 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 4572282 • 10–8 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 364734808570425 • 10–18 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 4572282 • 10–8 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 117378292939937 • 10–16 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 16210818 • 10–8 
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Below is the illustrative full joint probability distribution over C1 ´ C2 ´ C3 ´ C4 ´ D employed in 
Section 7 above, dismissing rarity for P[even(ci)] but otherwise in line with conditions favoured 
by Nickerson (1996) and Fitelson and Hawthorne (2010). Figures are obtained from Table 2 
given a flat prior over D, the independent sampling assumption for the four cards, and the 
following parameter setting: a = 0.15; a* = 0.25; b = 0.55; b* = 0.45; e = 0; and e* = 0.5. All 
probabilities are conditionalized on information about the visible sides of the four cards in the 
abstract Wason task, namely, on vowel(c1) Ù ~vowel(c2) Ù even(c3) Ù ~even(c4). 
 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù d]  = 0 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 683922558922559 • 10–17 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 641711229946524 • 10–16 
P[even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 23253367003367 • 10–15 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 0 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 177819865319865 • 10–16 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 171122994652406 • 10–15 
P[even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 604587542087542 • 10–16 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 0 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 894360269360269 • 10–17 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 72192513368984 • 10–15 
P[even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 304082491582492 • 10–16 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 0 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 23253367003367 • 10–15 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 192513368983957 • 10–15 
P[even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 790614478114478 • 10–16 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 0 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 683922558922559 • 10–17 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 0 
P[~even(c1) Ù even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d]  = 23253367003367 • 10–15 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 0 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 177819865319865 • 10–16 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 0 
P[~even(c1) Ù even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 604587542087542 • 10–16 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù d] = 0 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù vowel(c4) Ù ~d] = 894360269360269 • 10–17 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù d] = 0 
P[~even(c1) Ù ~even(c2) Ù vowel(c3) Ù ~vowel(c4) Ù ~d] = 304082491582492 • 10–16 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù d] = 0 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù vowel(c4) Ù ~d] = 23253367003367 • 10–15 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù d] = 0 
P[~even(c1) Ù ~even(c2) Ù ~vowel(c3) Ù ~vowel(c4) Ù ~d] = 790614478114478 • 10–16 
 


