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Abstract. Modern Machine Learning (ML) has significantly advanced
various research fields, but the opaque nature of ML models hinders their
adoption in several domains. Explainable AI (XAI) addresses this chal-
lenge by providing additional information to help users understand the
internal decision-making process of ML models. In the field of neuro-
science, enriching a ML model for brain decoding with attribution-based
XAI techniques means being able to highlight which brain areas correlate
with the task at hand, thus offering valuable insights to domain experts.
In this paper, we analyze human and Computer Vision (CV) systems
in parallel, training and explaining two ML models based respectively
on functional Magnetic Resonance Imaging (fMRI) and movie frames.
We do so by leveraging the "StudyForrest" dataset, which includes func-
tional Magnetic Resonance Imaging (fMRI) scans of subjects watching
the "Forrest Gump" movie, emotion annotations, and eye-tracking data.
For human vision the ML task is to link fMRI data with emotional an-
notations, and the explanations highlight the brain regions strongly cor-
related with the label. On the other hand, for computer vision, the input
data is movie frames, and the explanations are pixel-level heatmaps.
We cross-analyzed our results, linking human attention (obtained through
eye-tracking) with XAI saliency on CV models and brain region activa-
tions. We show how a parallel analysis of human and computer vision
can provide useful information for both the neuroscience community (al-
location theory) and the ML community (biological plausibility of con-
volutional models).

Keywords: eXplainable Artificial Intelligence · NeuroImaging · Com-
puter Vision · Emotion Recognition · Neuroscience

1 Introduction

Machine Learning (ML) algorithms have revolutionized data analysis by leverag-
ing big data to extract valuable insights that might surpass and enhance human
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understanding. In the realm of emotion decoding, ML can be applied to process
diverse data sources to unravel the complexities of human emotion, decoding
the emotional content from various sensory sources like facial expressions, voice
tones, and contextual cues [1]. By integrating high-level semantic information,
ML goes beyond traditional methods, enabling the analysis of emotional cues
within natural scenes with sufficient accuracy [43]. Indeed, the construction of
emotional perception in the human brain is intrinsically complex and mediated
by multiple hierarchical and parallel layers of processing, ranging from visual
low-level features to the complex reconstruction of affective semantics. Each af-
fective information is processed through feedback loops that extensively involve
the entire brain, from subcortical to cortical areas and vice versa; the identifica-
tion of the brain regions linked to emotion representation remains an unresolved
issue [50][64]. The current debate features a clash between two opposing the-
ories regarding the neural correlates involved in the creation and perception
of emotional feelings: the locationist theory posits that discrete emotion cate-
gories consistently and specifically correspond to distinct brain regions, whereas
the constructionist approach argues that discrete emotion categories are con-
structed of more general brain networks not specific to those categories [44].
In recent years, the application of ML techniques in neurophysiological stud-
ies regarding the decoding of emotional states from neuroimaging data (such
as EEG and fMRI) has uncovered intriguing insights into the brain’s process-
ing of emotions [33][34]. The classification of emotional states has always been
a challenge for computer vision as well, because of the complex nature of emo-
tional information, which does not rely uniquely on low level spatial features, but
mainly on high level semantic information. Numerous studies have focused on
applying artificial intelligence to the task of decoding facial expressions [48][31],
yet employing ML models to derive emotional information from natural scenes
proves to be more challenging [55][66]. One of the central goals of this work is
to examine side by side the processes by which the human brain and deep learn-
ing models decode emotional states from natural scenes, with the objective of
properly comparing biological and artificial vision systems. The ambition to an-
alyze the similiarities between human and artificial vision is motivated by many
works, which have highlighted fundamental analogies between state-of-the-art
computer vision algorithms and human brain visual system [35][5][58]. Specifi-
cally, it has been shown that the layers within Convolutional Neural Networks
(CNNs) exhibit a similar structure to the brain’s areas in the ventral stream
visual pathways in terms of their internal representations [69][59][45]. However,
little is known about the similarities and the differences regarding emotional de-
coding of human and machines. Does artificial intelligence generate similar inner
representations of emotional visual input with respect to human beings? In order
to pursue this research direction, we leveraged XAI techniques [4]. Since mod-
ern ML models (including CNNs) offer no human-understandable representation
of their inner decision logic, XAI tackles this problem by providing additional
information with respect to a ML model decision; in this work we rely on two
canonical attribution methods, LIME [56] and SHAP [47]. When dealing with
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brain decoding models, the explanation scores highlight the brain areas strongly
correlated with the task at hand, while for CV models the explanation heatmaps
provide saliencies at pixel level on movie frames. To explore the complexity of
the human emotional spectrum, we exploited a dataset derived from fMRI acqui-
sitions of subjects viewing the "Forrest Gump" movie, namely the StudyForrest
project [23][60]. Although the dataset came with emotional annotations [39],
we chose to use the annotations provided by Lettieri et al. in their work about
emotionotopy in the human brain [41].

The present work aims to address the problem of the neural correlates related
to emotion processing in the human brain exploiting machine learning models
and XAI techniques. Moreover, merging eyetracking data, XAI results from brain
decoding models and the explanation obtained from the emotion decoding on
movie frames, we tried to bridge CV models with the human visual system, look-
ing for neural patterns correlating with the degree of attention match between
CNNs and human beings.

2 Related works

2.1 Explainable Computer Vision

Since Alexnet [37], Deep Learning models have been the de-facto architecture
for Computer Vision. However, these models offer no human-understandable rep-
resentation of their inner decision processes, behaving like black boxes. The re-
search field of XAI tackles this problem, developing approaches that help human
understand the behaviour of black-box models. Since there is no mathematical
definition of explainability and interpretability, it is important to keep in mind
that this concept is linked only to the human understanding of neural network
decision process: in [49] interpretability is explained as "the degree to which a
human can understand the cause of a decision".

XAI is therefore a broadly defined concept which is implemented through
a plethora of competing algorithms [8]. There are fundamental differences that
help categorise these approaches: (i) ante-hoc vs post-hoc, (ii) local vs global, and
(iii) model-agnostic vs model-aware. Ante-hoc approaches try to directly train
explainable models, while post-hoc approaches aim at explaining an already
existing opaque model. Local explanations pertain to a single data-point (e.g.
why was this image classified as deepfake?), while global explanations try to
extract a general description of the black-box model as a whole (e.g. how does this
deepfake detector work?). Finally, model-aware explainers leverage the internals
of a black-box, for instance computing scores based on gradients, while model-
agnostic explainers only require to query a black-box at will. Most explainers
are post-hoc and local, and there exist both model-aware and model-agnostic
explainers for CV models, but the two most used ones, LIME [56] and SHAP [47],
are model-agnostic.

LIME [56] (Local Interpretable Model-Agnostic Explanations) focuses on per-
turbing the single input sample, querying the model on the newly obtained syn-
thetic point cloud in order to observe the impact on the output, and training
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a white-box surrogate on the labelled point cloud. For computer vision tasks,
LIME segments the input image into superpixels (patches of pixels) and exploits
masking as a perturbation function.

SHAP (Shapley Additive exPlanations) [47] exploits the concept of Shapley
value coming from cooperative game theory. The Shapley approach was to con-
sider the power-set of players in a team, in order to measure the impact of each
single player in the team outcome. SHAP keeps the same mindset, substitut-
ing players with features and team outcome with black-box output. Like LIME,
there is a fundamental activity of perturbation/masking, but SHAP computes
importance scores through marginalisation, without training a surrogate model.

2.2 Brain decoding: Machine Learning on fMRI data

Brain decoding refers to the process of interpreting both exogenous and endoge-
nous brain states from observable brain activities, taking brain activity as input
and brain states as output [32]. Concerning fMRI experiments, in which brain
activity is measured through an indirect estimation of the metabolic changes
in blood flow [25], decoding analysis has been traditionally performed through
single-voxel univariate methods, like general linear model (GLM) [10]. This type
of approach is referred to as ‘univariate’ because the corresponding statistical
tests only consider the value of a single voxel or ROI (Region Of Interest) per
condition at a time. Recently, an increasing number of researchers are adopting
analyses that focus on patterns of responses across multiple voxels, known as
multivariate pattern analysis (MVPA), instead of relying on values from sin-
gle voxels or regions, in order to better assess the highly nonlinear information
processing in the human brain [24][68]. MVPA techniques can be implemented
using straightforward correlation analysis, linear classifiers, partial least squares
algorithms [40] or by employing traditional machine learning algorithms, such
as Support Vector Machines [38], with the most prominent examples of MVPA
leveraging deep neural networks [17][32].

Compared to the CV case, less research work from the XAI field has focused
on brain decoding tasks: except for a few valuable examples mostly regarding
diagnostic brain imaging [15] [54], fMRI and brain decoding studies lack of appli-
cation of explainability approaches. With the present work we aimed to explore
the possibility to exploit XAI to explore and study complex brain states.

2.3 Emotion decoding for human and Computer Vision

Numerous studies in CV have tackled the problem of emotion decoding, with
a primary focus on decoding emotions from facial expressions [21]. While some
studies categorize emotion through a limited set of basic emotional states (happi-
ness, sadness, surprise, anger, fear, and disgust) [16], others decompose emotions
into fundamental dimensions like valence and arousal [20]. State-of-the-art emo-
tion decoding models exploit CNNs [46], while recent works analyze dynamic
emotional facial expressions in videos [13].
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Since fMRI data provide extensive insights into high-level cognitive processes
in the human brain, numerous studies have focused on the task of decoding emo-
tions through machine learning algorithms utilizing this type of neuroimaging
data [34][33]. The state-of-the-art literature has demonstrated the possibility to
predict at least information about emotional dimensions (valence and arousal)
of emotional feelings perceived by human beings [7][26].

3 Experimental setup

3.1 Frames, fMRI and labels

The StudyForrest project The keystone of our study is the StudyForrest
project [23] [22]. This work is a scientific initiative that involves the collection
and analysis of neuroimaging data, particularly functional magnetic resonance
imaging (fMRI) data, related to dynamic visual and auditory stimuli, in order to
study various aspects of human cognition and brain functions. "Forrest Gump"
is a movie directed by Robert Zemeckis and released in 1994. Recognized as a
classic of american cinema, the complexity of its narrative lay the foundation
for our exploration into the emotional dynamics portrayed throughout its dura-
tion. It was shot at a standard cinematic frame rate of 23.97 frames per second
(fps) The resolution, adhering to the standards of cinema, is 16:9. In total, the
film comprises 204501 frames. For the ML+XAI pipelines described below, we
adopted the movie version described of the original StudyForrest work: 8 movie
segments, for a total of 172405 frames and an overall duration of 120 minutes,
in order to divide the fMRI acquisition of each subject in 8 runs.

Emotion annotation An important component of this work is the inclusion of
an emotional labeling, which we use as ground-truth labels for both the CV-ML
model and the fMRI-based brain decoder. The StudyForrest project provides
emotional labeling, but we decided to exploit the emotion annotations by Let-
tieri et al. [41] that has enriched the original dataset with the inclusion of labels
related to the emotional responses associated with the fMRI. In this work 12
healthy Italian native speakers participants have been instructed to rate the
movie with respect of 6 basic emotions (happiness, surprise, fear, sadness, anger
and disgust) during the same reduced version of Forrest Gump used for the
StudyForrest project. Annotators were allowed to report more than one emotion
at the same time and ratings were continuously recorded. Therefore, six differ-
ent times series for each of the twelve subjects has been produced. A temporal
resampling has been implemented, in order to align the emotion data with the
fMRI data in terms of temporal resolution. In this paper we focused on the four
fundamental emotions of happiness, fear, sadness, and anger, as depicted in Fig-
ure 1. In order to binarize our labels dataset and determine whether an emotion
was dominant or not, a criterion was established. An emotion was considered
dominant if at least one annotator assigned it a value greater than the other
emotions at a given moment. If an emotion was dominant for one annotator at
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a specific instant, it was considered positive; otherwise, it was considered nega-
tive. This binarization process allowed us to transform the continuous emotion
intensity annotations into a binary representation, providing a clear distinction
between dominant and non-dominant emotions. Regarding the brain decoding
task, a further preprocessing step has been implemented before the binarization
procedure. A sliding-windows smoothing has been applied over the emotion an-
notations time-series, with a windows size equal to 10 second and a stride equal
to 2 seconds.

Fig. 1: Time series of emotion annotations. The work by Lettieri et al. provides
the emotion annotation by 12 indipendent human annotators of the whole Forrest
Gump movie; in our work we focused on happiness, fear, sadness and anger.

Through the procedure described above we built 5 different binary dataset,
4 for the emotions and 1 for the face, which were provided to 5 different ML
models. The choice to have different models for different emotions lies on the
theoretical prior of our work. One of our aims has been to investigate the dualism
between constructionist and locationist theories of emotion processing in the
human brain. By definition of the model itself, a single multi-class model would
not allow us to see shared networks among different emotions, resulting in an
imbalance towards the locationist vision.

Movie frames datasets The first preprocessing step aimed to build the frames
datasets for the emotion decoding task has been to resample the whole movie
according to the fMRI repetition time (TR), namely 2 seconds. Thus, we ob-
tained a set of 3599 frames. However, we observed that some subsequent frames
were identical or nearly-identical, especially for long, static scenes. We wanted
to remove duplicates in order to avoid a train-test leakage. We first tried to do
so by measuring pixel-level difference between consecutive frames, but this ap-
proach did not capture semantical similarities: for instance, in scenes with crops
blowing in the wind, we had high-pixel level differences - within a semantically
monotone scene. In order to select significative frames, we resorted to exploit an
Imagenet-pretrained CNN, specifically the EfficientNet B0 model [65]. For all
frames, the EfficientNet was employed to derive labels indicative of the elements
present in the input image. From these labels, the top 3 values among the 1000
provided by the network were selected. Subsequently, for each pair of consecutive
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frames, the indices of the obtained labels were compared, leading to the elimi-
nation of frames that shared one or two labels. This process effectively removed
frames that exhibited similarities in their content, enhancing the diversity and
relevance of the dataset.

Alongside the emotion decoding task, in this work we aimed to asses the
problem of facial recognition. To do that, we exploited DeepFace [61], an open-
source library which embeds face recognition and facial expressions decoding.
Through a specific function, we were able to extract bounding boxes around
faces in individual frames. The binary labels were then selected based on the
following criteria: frames without faces were labelled as negative cases, while
frames with 1 or 2 faces with a bounding box’s area greater than or equal to
4 % of the whole frame were labelled as positive cases. In order to adapt our
movie frames to the requirements of the CNN, which demands square images,
we applied ad hoc cropping and padding to the whole collection of frames. Since
our frames datasets were highly imbalanced, we performing an undersampling
procedure. To conclude, after the preprocessing steps described above, we ob-
tained 5 binary datasets of movie frames: 4 related to the 4 basic emotions and
the last concerning the presence of faces within frames.

The fMRI dataset For the brain decoding task we exploited the rich fMRI
dataset provided by StudyForrest, where 15 German native subjects partici-
pated to fMRI recording sessions, during which they were engaged in watching
Forrest Gump. All subjects underwent 8 fMRI runs, for a total o 120 minutes
of acquisition. The data preprocessing pipeline was prepared using AFNI [12]
and FSL (FMRIB Software Library) [29] software. Structural images were re-
sampled to 1mm3 (3dAllineate). Then they were brain extracted (standard-
spaceroi; bet2 ), corrected for intensity bias (3dUnifize), and spatially normalized
to the Montreal Neurological Institute (MNI) space with non-linear registration
(3dQwarp). All functional volumes were slice timing corrected (3dTshift), spa-
tially realigned to the first volume of the functional acquisition and corrected for
scan motion (3dvolreg). All functional volumes were then spatially smoothed
(3dBlurToFWHM ) with a 6mm full-width half-maximum isotropic Gaussian
kernel (FWHM) and the signal was normalized (center: 0; variations in per-
centage). Each average EPIs were aligned to correspondent high resolution T1w
and then re-sampled in the size of the functional acquisition using a weighted
sinc-interpolation method. After the standard preprocessing pipeline described
above, we introduced a lag of 2 seconds to account for the delay in hemody-
namic activity. The resulting timeseries were then temporally smoothed using a
moving average procedure (10 seconds window). This method allowed us to fur-
ther account for the uncertainty of the temporal relationship between the actual
onset of emotions and the time required to report the emotional state. As for
the movie’s frames dataset, we applied undersampling to our dataset in order to
assess the imbalance in the class distribution, for each of the 5 datasets.
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Eyetracking In addition to the fMRI acquisition, the StudyForrest project also
provides an eyetracking registration for each subject during each session. Such
data enriches our analysis with an insightful information about the dynamics
of the human attention of each subject with respect to the visual stimulus. In
our study, we exploited the normalized version of the eye movement recordings,
sampled uniformly at 1000 Hz, with a spatial resolution of 1280x546 pixels, the
same as the original movie.

3.2 Machine Learning on movie frames

In order to decode emotional states from movie frames, we exploited a transfer
learning approach [72]. We first chose a pretrained CNN, namely the EfficientNet
B0 [65], then we added a customized layer on the top of the pre-trained network,
allowing the model to learn features related to the binary emotion decoding
and face/no-face tasks. The pre-training endowed the model with the ability to
capture general features and patterns present in images, while the subsequent
training phase allowed it to adapt to the variations of our domain-specific task.
The additional layer was made by a global average pooling 2D layer, a dropout
layer and dense layer (1024 neurons) and an output neuron implementing a
sigmoid function for the classification. A key step of the fine-tuning procedure has
been a grid-search over the hyper-parameters of the tailored layer. We explored
the following space of hyperparameters: number of units in dense layers (128, 256,
512), dropout rate (0.1, 0.3, 0.5), learning rate (0.01, 0.001, 0.0001) and batch
size (8, 16, 32). Moreover, we included in the grid-search two possible choices
as the first layer, namely a global average pooling 2D layer or a flatten layer.
To avoid overfitting and improve the model’s generalizability, we relied on early
stopping [70] in the fine-tuning procedure. Finally, to enrich the original datasets
with the aim to further enhance the generalization capabilities of our models, we
performed data augmentation [62], applying random flip, random rotation and
random zoom to the frames. For what concerns the train-test splitting, we relied
on a standard leave-one-out k-fold procedure, splitting each of the datasets in
5 folds. The results shown in the experimental results section are the average
accuracy over the 5 splits.

3.3 Machine Learning on fMRI data

In the context of the brain decoding task, the goal is infer information about
dominant emotions and face occurrences from fMRI data. A key feature of our
work has been to parcel each brain volume according to a brain atlas, namely
the one by Glasser et al. [18]. Thus, each input of the ML models consists in a
set of 394 features, representing the mean activity of each area of the brain in
a given moment of the fMRI acquisition. We chose a within-subject approach,
training and testing one model for each of the experimental subjects provided
by the StudyForrest database. Our choice of training subject-specific models is
due to the high variability, noisy nature and high dimensionality of the BOLD
activity from different brains, which makes the generalization of the fmri signal
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across-subject one of the main issues in brain decoding tasks [2]. Many solutions
have been explored to address the possibility to obtain subject-independent mod-
els, such as hyperalignment [42] and roi-specific models [71]. In our work, we
tried to apply a simple leave-one-subject-out approach, without the exploitation
of more sophisticated techniques, achieving bad results in terms of generaliza-
tion performance. Considering our goal of performing a whole-brain analysis,
we then decided to implement a subject-wise paradigm, which was able to pro-
vide a sufficient amount of information about the structure of the processing
of high-level semantic information within the human brain. We built a multi-
layer perceptron [19] model, with relu as activation function, a single output
neuron employing a sigmoid function and Adam algorithm as optimizer [30].
A grid-search procedure has been implemented in order to choose the best set
of hyperparameters among the following: number of hidden layer (1 or 2) and
the numbers of neurons for each layer (ranging from 40 to 300). In order to en-
force generalization capabilities of the models, the learning algorithm has been
equipped with a regularization parameters. As for the computer vision models,
we performed a leave-one-out k-fold splitting, with k=5, averaging the resulting
accuracy values over the 5 splits.

3.4 XAI for emotion decoding

For both our set of emotion and face decoding models, namely the CV and the
fMRI-based models, we exploited LIME and SHAP as XAI techniques, in order
to unveil the decision-making processes behind the ’black-box’. An overview of
these two ML+XAI pipelines is visualized in Figure 2. Since exploring different
explainability methods in brain decoding problems wasn’t the aim of our work
we do not exploit other XAI methods, such as gradient-based ones. Thus, we
prefer to adopt the most used model-agnostic approaches.

For CV models, the XAI methods we applied generated heatmaps across
frames, assigning significance scores to different areas of each frame. Specifically,
for each frames of each dataset (regarding the four binary emotion plus face
classification) we generated an explanatory heatmap, giving us an importance
score for each pixel regarding the class discrimination task.

For what concerns the brain decoding models, we exploited XAI techniques
in order to assign a score of importance to each area of the brain, namely the
features for our ML problem. This approach produces a brain map of area im-
portances for each sample of our dataset, i.e. the brain volumes of the fMRI
acquisition.

In order to asses the statistical validity of the XAI brain maps that we ob-
tained applying SHAP and LIME to our brain decoding models, we compute
a null model. To do so, we trained the ML model with a shuffled set of binary
labels, to assess chance-level performance. The set of feature importance values
obtained by explaining the null model are used to build a null distribution, which
in turn we will use to validate our explanation scores.
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Fig. 2: Emotion decoding and XAI pipelines for brain data (A) and computer
vision (B).

3.5 CNN-humans attentional match: a comparative analysis

A crucial step of our work has been the cross-analysis between explainable CV
and fMRI XAI results, alongside with the information provided by the eyetrack-
ing. Due to the temporal synchronization of all the different domains of our
analysis, we could compare the visual attention of the CV model and of the
human beings involved in the experiment. Our basic aim has been to identify
which brain areas process the emotional content of the movie when the CNN and
human look at the same spot within the visual stimulus. To do so, we first define
a frame-wise score of overlap of visual attention. Exploiting the XAI heatmaps,
we set this overlap score as the percentile of the heatmap’s value for which the
eyetracking recording fall within the pixels with importance values above that
percentile. In order to provide more robustness to our analysis and to asses the
timing of the human visual attention process, we consider a window of 1 second
around the given frame when measuring the overlap score. Once we computed
this measure for each of the movie’s frames, we performed an area-wise corre-
lation between overlap score of each frame and importance value of the given
area at the time of each frame. This analysis provides a whole-brain map that
describes which brain areas contain more information about the emotional con-
tent of the visual stimulus whenever the human subject and the computer vision
model focus their attention on the same spot within the movie frame.
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4 Experimental results

4.1 Machine Learning on movie frames

Our investigation into emotion recognition through computer vision involved
training distinct models for four key emotions (happiness, sadness, fear, and
anger) and one for face detection. In order to optimize the performance of our
emotion recognition models, we employed the grid search method, as mentioned
in the experimental setup section. As reported in Table 1, each model shows good
in-sample and out-of-sample performance. Specifically, the classifier designed to
determine whether happiness is present in the frames exhibits higher accuracy
compared to other emotion-related models.

For the face detection task, we obtained a remarkably higher performance
with respect to the emotion classification models. This result is certainly due to
the lower complexity of the face recognition problem, which relies on low-level
visual features. On the contrary, the emotion decoding problem lives in a multi-
faced semantic space making the identification of the visual features which define
the presence of a certain emotion in a visual scene a non-trivial issue.

Table 1: Computer vision models performance

Model Happiness Fear Sadness Anger Face
In-sample Accuracy 0.99 0.99 0.98 0.99 0.99
Out-of-Sample Accuracy 0.84 0.80 0.76 0.76 0.96

4.2 Machine Learning on fMRI data

To assess the emotion and face decoding problem with fMRI data we trained
5 classifiers for each of the 15 experimental subjects. The overall out-of-sample
performance we obtained, displayed in Table 2, is appreciably above the chance
level. Moreover, the results seem stable across the subjects. Among the 5 models,
the one related to face recognition shows the lowest performance. Such a result
can be justified by a complex brain representation related to the face processing
within the visual stimuli with respect to the emotional content of the movie.
Moreover, the information about the faces rely only on visual stimuli, while the
emotional nuances of the movie are carried by both visual and auditory stimuli.
Thus, the emotion decoders can rely on a richer set of information through-
out the brain with respect to the face decoder model. However, we analyzed in
depth the brain representations related to each of the 5 decoder models through
explainability techniques, as discussed in the following section.
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Table 2: Brain decoding models performance

Model Happiness Fear Sadness Anger Face
In-sample Accuracy 0.976 0.971 0.945 0.970 0.925
Out-of-Sample Accuracy 0.911 0.923 0.887 0.894 0.797

4.3 Explainability for fMRI-based models

One of the most intriguing aspects of our study has been the evaluation of
the features’ importance within the brain decoding models. The application of
SHAP and LIME as explainers for our fMRI-based classifiers lead us to unveil
the most important brain areas in terms of emotion and face processing, by
defining a set of brain networks related to each of the 5 models. Figure 3 shows
a representation of both SHAP and LIME brain maps related to the fear model.
Table 3 summarizes the most significant areas for each of the four basic emotions
and the face recognition, with respect to a null model.

At first, looking at the similarity among the two different explanatory maps
obtained with SHAP and LIMES for each of the 5 models, we observed a good
consistency in terms of resulting areas. As a stronger clue for this robustness
with respect to XAI techniques, we compute pairwise spearman correlation cor-
rected for a spin permutation test [3] among the couples of explanation for each
classification task, resulting in a strong correlation for all the models (Spearman
R values: Happiness - 0.81, Fear - 0.83, Sadness - 0.85, Anger - 0.82, Face - 0.81).

The feature importance maps we obtained provide interesting elements in
context of the debate regarding how the brain processes different emotions. Look-
ing at the overall pairwise Spearman correlation among the different maps cor-
rected for a spin permutation test, (Figure 4), we observe a high correlation level
among all the emotions, including the face-related map. This result underlines
the existence of a common brain network for the processing of all the basic emo-
tions we studied through our analysis. In particular, the most significant region
represented in all the 5 explanation maps is the Orbital and Polar Frontal Cortex
(OPFC). Historically, OPFC plays a crucial role with respect to the locationist
hypothesis regarding the brain representation of the anger [53] [67]. Nevertheless,
our results provide strong clues regarding a constructionist description of how
emotional feelings and perceptions are represented in the human brain. From a
psychological constructionist perspective, it is theorized that parts of the Or-
bital Frontal Cortex (OFC) contribute to core affect by serving as a hub for
merging exteroceptive and interoceptive sensory data, thereby influencing be-
havior [44]. With the term core affect we describe the mental representation of
bodily changes that are sometimes experienced as feelings of hedonic pleasure
and displeasure with some degree of arousal [6]. Sensory information from the
external environment and the body collectively direct an organism’s reactions
to its surroundings, allowing it to make actions that are appropriately adjusted
to the context. Multiple connections involving the OFC to both various sen-
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Fig. 3: Brain-wise feature importance maps obtained with SHAP and LIME.
Through a null model we assess the significance of each area, obtaining a limited
set of regions which process most information about the emotional content of
the movie.

sory systems and regions controlling visceral functions make this brain structure
anatomically equipped to fulfill this function effectively [36]. Thus, OFC serves
as an high-level decision making core, which produces behavioral and cognitive
response to emotional stimuli.

Our results depict more complex pictures than a single brain network in-
volved in the processing of all the emotions. In fact, beyond the OFPC, other
areas emerge in more than one model. Looking at the feature importance maps
that we obtained, the Insula Cortex seems to convey much information about
the emotional processing in the human brain, specifically for happiness, fear and
anger. From a locationist perspective, the Insular cortex, in particular the An-
terior Insula, is more involved in processing of emotional content, indicating a
transition from sensory to emotional processing within this area, and represent-
ing the core of the sensation of disgust [28]. The insula’s intricate connections
with other brain regions and its ability to integrate interoceptive inputs make it
a key player in representing emotional experiences and bodily reactions to stim-
uli, as its activation has been linked to subjective feelings and cognitive factors,
influencing decision-making processes and behavioral responses. Indeed, a more
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Table 3: Most significant brain regions with respect to feature importance related
to each brain decoding model.

SHAP LIME
Model Macro Area Value Macro Area Value

Early Auditory Cortex 0.0027 Insular Cortex 0.053
Ventral Stream Visual Cortex 0.035
Orbital and Polar Frontal Cortex 0.032
Early Auditory Cortex 0.031

Happiness

Dorsal Stream Visual Cortex 0.030
Lateral Temporal Cortex 0.0065 Orbital and Polar Frontal Cortex 0.043

Insular Cortex 0.041
Lateral Temporal Cortex 0.040
Early Auditory Cortex 0.028

Fear

Superior Parietal Cortex 0.027
Early Auditory Cortex 0.0044 Orbital and Polar Frontal Cortex 0.053
Lateral Temporal Cortex 0.0035 Auditory Association Cortex 0.039

Lateral Temporal Cortex 0.037
Early Auditory Cortex 0.030

Sadness

Dorsolateral Prefrontal Cortex 0.019
Superior Parietal Cortex 0.0039 Insular Cortex 0.048
Auditory Association Cortex 0.0038 Lateral Temporal Cortex 0.030
Premotor Cortex 0.0038 Premotor Cortex 0.030

Superior Parietal Cortex 0.027
Anger

Orbital and Polar Frontal Cortex 0.024
Lateral Temporal Cortex 0.0032 Orbital and Polar Frontal Cortex 0.034
Anterior Cingulate Cortex 0.0022 Anterior Cingulate Cortex 0.019

Auditory Association Cortex 0.017Face

Superior Parietal Cortex 0.013

refined hypothesis, based on a constructionist approach, has identified a more
complex role of this region in representing core affective feelings in awareness
[9]. A core feature in the mental states labeled “disgust” is a representation of
how an object will affect the body. In support of a psychological constructionist
view, Insula activation emerges in a number of tasks that involve awareness of
body states, shedding light on how specific aspects of insular activity can drive
accurate emotional state predictions, but also on its potential inhibitory role in
emotional processing.

Another notable brain area which emerges from our analysis is the Lateral
Temporal Cortex, resulting as an important region for the classification models
related to fear, sadness and anger. Looking with more details at our results,
we find a peak of importance values in the Inferior Temporal Gyrus, namely the
(bilateral) TE and TF areas. The state-of-the art literature describes these brain
structures as a key step in the ventral visual stream implicated in object, face,
and scene perception [11].

Alongside the Lateral Temporal Cortex’s role in processing the visual aspects
of emotions, it’s important to highlight the significance of auditory character-
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istics in depicting emotional states. In this regard, it is crucial to mention the
emergence of the Early Auditory Cortex as a significant area with respect to the
feature importance score assigned by the explainers. Such a brain region can be
observed in the models related to happiness, fear and anger.

Thus, the results just discussed depict a well-defined emotion processing net-
work which conveys most of the information about the emotional content of
a complex visual and auditory stimulus. This set of brain regions seems to
show a precise hierarchical structure. The OFPC represents a high-level cog-
nitive stage, which integrate outer stimuli and inner representations influencing
decision-making and modulating behavioral responses. At a mid-level, the Insu-
lar cortex acts as a relay for the aware response to sensory inputs, which can
drive an emotional response. Finally, at the lower level, visual and auditory areas,
namely the Lateral Temporal Cortex and the Early Auditory Cortex, represent
a first integration step for the multisensory features conveying the emotional
information.

Fig. 4: Correlation among brain maps related to different models. The high cor-
relation values we observed are due to the existence of a common brain network
which processes information about the emotional content of a multisensory in-
put. All the resulting correlations have a strong statistical significance, with
p-values always below than 0.0002.

Finally, looking at the neural correlates obtained from our analysis associ-
ated with face-related visual stimuli, we basically observe the interplay of two
brain regions. The OPFC seems to play an important role in the processing of
human faces. As discussed before, this area represents a high-level stage in the
processing of emotional stimuli, merging inner and outer signals and providing
a behavioral output. Alongside this cognitive step in the processing pathway we
are trying to discuss, the Anterior Cingulate Cortex (ACC) seems to process a
significant amount of information regarding the presence of a face in a natural
visual scene, as it is involved in the processing of various types of face stimuli,
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including social and self-related faces [51]. ACC represents a crucial hub in the
human brain, integrating information at various levels through connection with
both the “emotional” limbic system and the “cognitive” prefrontal cortex [63]. In-
terestingly, many works have highlighted the role of the ACC in processing face
stimuli, both social or self-related [27] [52]. In particular, this region plays a sig-
nificant role in the rapid processing of emotionally salient facial expressions, such
as fear, thus providing an immediate emotional assessment of faces; additionally,
the ACC’s connections with various brain regions, including the amygdala and
temporal cortical areas, facilitate its role for interpreting facial expressions and
understanding social cues [14] . The medial prefrontal network, which includes
the ACC, is involved in processing emotional and social information from faces,
indicating the ACC’s role in social cognition and emotional regulation [57].

4.4 Comparative analysis

Since the advent of Deep Learning models for effective CV, comparing how hu-
mans and artificial intelligence systems process visual information has been an
open research question. In this paper we tried to address such a complex issue,
exploiting eye-tracking registration, fMRI data and XAI techniques. In partic-
ular, our challenge has been to understand if a specific brain pattern emerges
whereas the attention of the human visual system and the CNN focus on the
same spot within the presented visual stimuli, i.e. the frame of the Forrest Gump
movie. Our hypothesis is that, if some region in the brain activates more when
human eye-tracking and explainability cover the same pixels over the frame, it
may represent a region of high similarity with CNNs with respect to the way
they process visual information. This local (in the sense that we tried to look at
a brain-region level) analysis produced a brain map for each of our 5 decoding
model, highlighting the areas with a feature importance which correlates more
with the degree of overlap between computer vision explanation over the frames
and eye-tracking (Figure 5).

The brain maps we found exhibit an intricate set of regions, different among
models and not robust with respect to the choice of the explainer, making the
results hard to discuss. However, we can move at a global whole-brain level in
order to get some insights from this kind of analysis. Looking at the distribution
of the correlation values for each brain region, displayed in Figures 6, we can ob-
serve interesting phenomena, mostly regarding the results with SHAP. Despite
the distributions of the emotion-related models seem to basically overlap, with
no appreciable difference with respect to a null distribution, the values associ-
ated to the face model displayed higher correlation values. Such a result tells us
that, globally, there are some brain regions with a non-negligible tendency to
activate the most when the computer vision and the human being focus on the
same part of the visual stimulus. At a first level, this finding can be interpreted
as a natural consequence of the multisensory nature of the emotional content.
The face recognition task is a visual-only task, thus it is more probable to find
correlations between visual attention and fMRI-based explanations. Then, an-
other level of interpretation of our results regards the context-based nature of
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Fig. 5: Area-wise correlation between Brain’s explanation and overlap score.

Fig. 6: Correlation distributions per model and Kolmogorov-Smirnov distance.
For what concern SHAP results, the face-related distribution shows globally
higher correlation values, highlighting the locality of the visual information about
faces, in contrast with the context-based nature of the emotional content of a
visual stimulus.

the emotional content of visual stimuli. The face recognition task is basically
driven by local features of the visual input. The presence of a face within a
frame is not related to the context where the face is located. For what concerns
emotions, it’s clear that this kind of information about a stimulus is conveyed
by the whole, not only by a limited detail. Under these assumptions, it’s easier
to understand why the information about the attentional match among humans
and machines does not convey information about similarities among CNN and
the brain visual pathways.



18 A. Borriero et al.

Table 4: Most signigficative areas in terms of correlation among shap values and
overlap between eyetracking and explainability over the frames.

SHAP LIME
Model Macro Area Correlation Macro Area Correlation

Early Auditory Cortex 0.119 Premotor Cortex 0.123
Orbital and Polar Frontal Cortex 0.110
Medial Temporal Cortex 0.103Happiness

Mid Cingulate Cortex 0.098
TPOJ 0.119 Dorsal Stream Visual Cortex 0.134
Insular Cortex 0.119 Early Auditory Cortex 0.109
Superior Parietal Cortex 0.116 Nucleus Accumbens 0.108
Neighboring Visual Areas 0.111 Premotor Cortex 0.107

Fear

Ventral Stream Visual Cortex 0.107 Mid Cingulate Cortex 0.100
Orbital and Polar Frontal Cortex 0.0966 Auditory Association Cortex 0.086
Posterior Cingulate Cortex 0.0936Sadness
Dorsolateral Prefrontal Cortex 0.0836
Dorsal Stream Visual Cortex 0.134 Insular Cortex 0.142
Somatosensory and Motor Cortex 0.125 Anterior Cingulate Cortex 0.134
Lateral Temporal Cortex 0.123 Premotor Cortex 0.132Anger

Posterior Cingulate Cortex 0.122 TPOJ 0.124
Anterior Cingulate 0.223 Posterior Opercular Cortex 0.163
Insular Cortex 0.218 Mid Cingulate Cortex 0.161
Medial Temporal Cortex 0.217 Superior Parietal Cortex 0.161
Posterior Cingulate Cortex 0.204 Dorsal Stream Visual Cortex 0.155

Face

Ventral Stream Visual Cortex 0.199

5 Conclusions

To decode emotional states from visual stimuli in an ecological environment
represents a challenging problem, in terms of understanding how the human
brain processes such information and with respect to the attempt of building
artificial intelligence systems able to replicate human perceptive and cognitive
capabilities. In this paper we explored the possibility to retrieve information
about emotional content of sensory input exploiting ML models. Moreover, we
exploited XAI techniques in order to unveil how the brain processes emotional
states. Through a computer vision-based emotion decoding analysis, we explored
state-of-the-art techniques regarding the emotion classification within a set of
complex visual stimuli, by showing that high-level semantic information can be
successfully decoded by a CV model with high performance.

For the brain decoding problem, we obtained high performance results in
terms of classification. Moreover, the XAI analysis we performed outlined the
existence of a fundamental network which processes the emotional content of a
complex sensory stimulus, with various levels of processing stages, from a lower-
level sensory elaboration to a higher-level cognitive processing. These findings
confirm a constructionist vision regarding how the brain creates emotional feel-
ings, without the involvement of emotion-specific regions. However, the evidence
put forth in this research is not compelling enough to invalidate the locationist
theory. In fact, our machine learning-based analysis has been designed to dis-
criminate the presence or absence of a single emotion at times, not accounting
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for the discrimination among different emotions. The emotion-wise network that
we observe tells us that an emotion-independent set of brain regions processes
the whole spectrum of emotional content of a stimulus, but does not exclude
that some specific areas can be involved in the elaboration of specific emotions.

Applying XAI techniques also to the computer vision models, we tried to
compare the attentional mechanisms beyond the elaboration of emotional con-
tent of a stimulus in CNNs and human beings. This comparative analysis was
aimed at eliciting specific patterns of activations in the brain whereas the human
vision system and the artificial intelligence focus their attention in the same spot
within the visual input. We found that it’s possible to define some kind of coher-
ent patterns of correlation with the attention match between humans and CNN
only in the context of face recognition, because the evaluation of emotional con-
text is intrinsically a context-based process. In other words, this kind of analysis
aims to exploit an attentional similarity between CNN and human vision, which
can be found in face recognition, but not in emotion decoding tasks, in order to
define a relation about brain regions which show analogy with CNNs.

Through our analysis we addressed the emotion decoding problem from an
XAI perspective, exploring innovative tools to explore the way the human brain
and CNNs process emotional sensory stimuli. We also tried to look at the bridge
between CNNs and the human visual system from a different perspective, ex-
ploiting the attentional mechanisms incorporated within these two systems in
order to identify which portions of the brain show some kind of synchronized
behavior. Our work has been focused on single CNN architecture, namely the
EfficientNet B0 architecture. Further works could explore the relations between
more complex models and the human brain. However, the transfer learning pro-
cedure we adopted provides to the CNN general visual features, ensuring a strong
reliability of our results.

A further analysis that would extend our observations is the representation
similarity analysis (RSA) between the fMRI brain activity and the emotion de-
coding with CNN [35]. RSA would be able to measure the similarity of process-
ing between biological and artificial visual systems, as well as quantifying the
differences of their inner representations.
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