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Abstract: The ubiquitous presence of plastics represents a global threat for all ecosystems and hu-
man health. In this study, we evaluated, in vitro and in vivo, the genotoxic potential of different
concentrations of polystyrene microplastics (PS-MPs) and their possible synergistic interactions with
bisphenol-A (BPA). For the in vitro and the in vivo assays, we used human lymphocytes and hemo-
cytes from Lymnaea stagnalis, respectively. The genomic damage was evaluated by the micronucleus
assay, and differences in eggs laid and growth of L. stagnalis were also evaluated. In human lympho-
cytes, PS-MPs alone at the concentration of 200 µg/mL and in association with BPA 0.100 µg/mL
significantly increased the frequencies of micronuclei and nuclear buds, indicating a possible in vitro
genotoxic additive action of these two compounds. Vice versa, PS-MPs did not result in genotoxicity
in hemocytes. Our results indicated that PS-MPs have genotoxic properties only in vitro and at a
concentration of 200 µg/mL; moreover, this compound could intensify the genomic damage when
tested with BPA, indicating possible cumulative effects. Finally, PS significantly reduced the growth
and the number of laid eggs in L. stagnalis.

Keywords: micronuclei; genotoxicity; microplastics; polystyrene; lymphocytes; hemocytes; Lymnaea
stagnalis

1. Introduction

Due to a massive plastic production, quantifiable at more than 300 million tons per
year [1], plastic debris is widespread and represents a threat to all ecosystems. In the
different environments, this amount of plastic is subjected to abiotic degradation, with
consequent formation of fragments of microplastics (MPs, diameter from 1 µm to 500 µm)
and, secondarily, of nanoplastics (NPs, diameter, <100 nm). The wastewater treatment
plants are not fully capable of trapping them through traditional filtration systems, and,
consequently, most of these plastic particles remain in the environment, reaching marine
and freshwater environments that represent their final acceptors [2,3].

MPs and NPs are able to enter living organisms and, due to their persistent nature, to
accumulate in various organs and tissues [4,5].

In humans, MPs have been detected in many biological fluids and organs [6–9], as well
as in the tumor tissue of patients with colorectal adenocarcinoma, indicating their possible
association with this type of cancer [10]. At the cellular level, several studies have shown
that MPs, due to their ability to penetrate and accumulate in cells, can induce inflammation,
cytotoxicity, oxidative stress, and genotoxicity [11–14].

Among the plastic polymers, polystyrene (PS) is one of the most produced and com-
monly present in the environment [15]. Because of its low cost and useful chemical-physical
properties, PS has been widely used in the production and packaging of food, in electronics,
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in the automotive sector, and in many other sectors, including biomedicine, as part of
diagnostic components and medical devices [16]. However, due to the massive produc-
tion and its extreme resistance to being degraded [17], the PS micro- and nanoplastics
are accumulating in all the ecosystems, causing great environmental concern [18]. Due to
their small size, MPs can be easily confounded as food particles and ingested by many
marine organisms, including zooplankton [19], bivalves [20], fish [21], crayfish [22], and
mammals [23,24]. From a human health perspective, PS particles were found able to enter
the human body, interact with blood and the lymphatic system, thereby reaching other
organs and inducing oxidative stress and genomic damage [15]. BPA is a xenobiotic with a
chemical structure similar to estrogen hormones (Figure 1); due to this structural similarity,
it can bind to estrogen receptors (ER) on cells, mimicking the effects of its counterpart. This
can lead to the activation of ER even in the absence of the hormone itself, causing an altered
biological response and the disruption of the endocrine system [25,26].

J. Xenobiot. 2024, 14, FOR PEER REVIEW 2 
 

 

physical properties, PS has been widely used in the production and packaging of food, in 
electronics, in the automotive sector, and in many other sectors, including biomedicine, as 
part of diagnostic components and medical devices [16]. However, due to the massive 
production and its extreme resistance to being degraded [17], the PS micro- and 
nanoplastics are accumulating in all the ecosystems, causing great environmental concern 
[18]. Due to their small size, MPs can be easily confounded as food particles and ingested 
by many marine organisms, including zooplankton [19], bivalves [20], fish [21], crayfish 
[22], and mammals [23,24]. From a human health perspective, PS particles were found 
able to enter the human body, interact with blood and the lymphatic system, thereby 
reaching other organs and inducing oxidative stress and genomic damage [15]. BPA is a 
xenobiotic with a chemical structure similar to estrogen hormones (Figure 1); due to this 
structural similarity, it can bind to estrogen receptors (ER) on cells, mimicking the effects 
of its counterpart. This can lead to the activation of ER even in the absence of the hormone 
itself, causing an altered biological response and the disruption of the endocrine system 
[25,26]. 

 
Figure 1. (a) Bisphenol A (BPA) and (b) estradiol; the molecular structure similarity between the two 
molecules allows them to interact with the same estrogen receptors (ER) [27]. The functional 
(phenolic) groups that give the xenobiotic BPA its similarity to estradiol in terms of interaction with 
the active site of the ER are highlighted in red (H-bond type interaction) and blue (π–π interaction). 

The cytotoxicity due to NPs/MPs and bisphenol-A (BPA) can be possibly explained 
by a brief overview of their interaction with the metabolic pathways of animal cells. 
NPs/MPs, which are water-insoluble nano- and micromaterials, have both a mechanical 
and chemically harmful action. The physical presence of NPs/MPs within the cell can 
cause structural disruption in the mitochondrial and endoplasmatic reticulum 
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membrane potential, which is crucial for proper mitochondrial functioning [28,29]. 
Furthermore, NPs/MPs can interfere with the normal functioning of the electron transport 
chain by a direct interaction with the electron transport protein; capturing electrons, 
NPs/MPs prevent O2 (the final electron acceptor) to be fully reduced to H2O, resulting in 
an excess of ROS production that is closely linked to oxidative stress and cellular 
disfunction [30]. Finally, NPs/MPs can further increase ROS production by acting as 
heterogenous catalysts in redox reactions since they are characterized by a carbon-based 
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atomic and structural composition corresponds to a change in the interaction mechanism. 
Evidence of that, the enhanced degree of oxidation increases the number of carbonyl 
groups, resulting in a disruption of aromatic rings; consequently, the π–π and 

Figure 1. (a) Bisphenol A (BPA) and (b) estradiol; the molecular structure similarity between the
two molecules allows them to interact with the same estrogen receptors (ER) [27]. The functional
(phenolic) groups that give the xenobiotic BPA its similarity to estradiol in terms of interaction with
the active site of the ER are highlighted in red (H-bond type interaction) and blue (π–π interaction).

The cytotoxicity due to NPs/MPs and bisphenol-A (BPA) can be possibly explained by
a brief overview of their interaction with the metabolic pathways of animal cells. NPs/MPs,
which are water-insoluble nano- and micromaterials, have both a mechanical and chemi-
cally harmful action. The physical presence of NPs/MPs within the cell can cause structural
disruption in the mitochondrial and endoplasmatic reticulum membranes, leading to leak-
age of ions (perturbation of calcium homeostasis) and loss of membrane potential, which is
crucial for proper mitochondrial functioning [28,29]. Furthermore, NPs/MPs can interfere
with the normal functioning of the electron transport chain by a direct interaction with
the electron transport protein; capturing electrons, NPs/MPs prevent O2 (the final elec-
tron acceptor) to be fully reduced to H2O, resulting in an excess of ROS production that
is closely linked to oxidative stress and cellular disfunction [30]. Finally, NPs/MPs can
further increase ROS production by acting as heterogenous catalysts in redox reactions
since they are characterized by a carbon-based skeleton, functional groups, and even metals
absorbed on surface [31].

Microplastics exhibit a high propensity for adsorbing diverse contaminants (metals
and organic compounds) present in the environment [32–36]. Focus on the chemical
structure of the polymer and xenobiotic allows to elucidate the way in which they interact.
The interaction between BPA and PS-MPs, finely described with computational calculations
and experimental analyses, involves physisorption, thus van der Waals forces [37–39].
Indeed, the greatest contributions are made by π–π stacking interaction, in which the
π-electrons from the benzene rings in BPA (Figure 1) and PS (Figure 2) attract each other,
electrostatic and hydrophobic interactions [39,40], and dispersion forces. It is important
to emphasize that PS-MPs can change their molecular structure over time due to oxygen
exposure and thermal and UV degradation. Consequently, a change in the atomic and
structural composition corresponds to a change in the interaction mechanism. Evidence of
that, the enhanced degree of oxidation increases the number of carbonyl groups, resulting in
a disruption of aromatic rings; consequently, the π–π and hydrophobic interactions decrease,
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favoring polar bonding with BPA and providing changes in the (still non-covalent) reaction
mechanism [32,38].
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PS-MPs therefore might act as a sink of BPA that can be released through a desorption
process once MPs enter inside the cell, possibly resulting in an exacerbated genotoxic effect
due to the contemporary action of the two compounds. It is important to highlight that
the physisorption mechanism is a crucial aspect for synergistic effects existence. Indeed,
its intrinsically reversible nature allows pollutants to desorb from the MP surface and so
potentially exert their toxic effect on cells. On the contrary, a chemisorption mechanism
would imply a covalent bond to the MP surface. The bioavailability of contaminants is
therefore suppressed; they still modify MP properties, possibly affecting its toxicity, but
they are not able to take part in biologic pathways because of their irreversible bond (for a
complete review on case history, see Huang et al., 2021) [41].

Expanding the discussion to other types of chemical actors, it has been observed
that MPs and NPs can bond and/or act as carriers for other pollutants, promoting their
bioaccumulation through the food chain [3,42–44]. Indeed, different in vivo studies showed
the ability of MPs and NPs to transfer xenobiotic compounds to marine organisms, with
their consequent accumulation in different tissues and organs, alteration of physiological
parameters, and genotoxic effects [42,45–48].

Although the simultaneous exposure of MPs to other toxic agents represents one
of the most important threats to aquatic organisms, conflicting data are available in the
literature on the cellular and genotoxic effects resulting from the interaction of MPs with
other pollutants [49,50].

The present study aimed to: (i) investigate the genotoxicity of PS-MPs at different
concentrations in vitro by using human lymphocytes and in vivo by using Lymnaea stag-
nalis; and (ii) to investigate, in the same in vitro and in vivo systems and with the same
polystyrene particles, the possible genotoxic synergistic action of PS-MPs in a mixture with
BPA at a concentration of 0.100 µg/mL, whose genotoxic action is known [51]. Indeed, it
is known that the absorption of chemical pollutants into plastic particles can increase the
adverse effects of the plastic or the pollutants considered [41,52].

Genotoxicity was evaluated by the micronucleus (MN) assay conducted on both
human lymphocytes and L. stagnalis hemocytes. Micronuclei originate from acentric
chromosome fragments or whole chromosomes that fail to segregate correctly during
the mitotic division, appearing as small additional nuclei in the cytoplasm of interphase
cells. They represent both the clastogenic damage due to chromosome/chromatid breaks
induced by xenobiotic compounds and the aneugenic damage due to agents that interfere
with the mitotic apparatus, thus leading to the missegregation of whole chromatids or
chromosomes during mitosis. Furthermore, chromosomal instability has been measured by
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evaluating nuclear buds (NBUDs), which represent the elimination process of amplified
DNA and excess chromosomes from aneuploid cells [53–55].

In addition, the possible adverse effects of PS-MPs, alone and in combination with
BPA, were also studied on two life-history traits of L. stagnalis: the number of laid eggs and
the body growth.

2. Materials and Methods
2.1. Chemicals and Media

Gibco RPMI-1640 cell culture media supplemented with L-glutamine, fetal calf serum,
phytohemagglutinin (PHA), and antibiotics were purchased from Invitrogen-Life Tech-
nologies, Milan, Italy. BPA, cytochalasin-B, mitomycin-C (MMC), Giemsa stain solution,
potassium chloride (KCl), and Sörensen buffer were obtained from Merck S.p.A., Milan,
Italy. Methanol, acetic acid, and conventional microscope slides were purchased from
Carlo Erba Reagenti, Milan, Italy. Vacutainer blood collection tubes were from Terumo
Europe, Rome, Italy. Polystyrene microplastic particles (PS-MP, product number: 89904)
with analytical standard size of 1.0 µm, particle specific gravity of 1.05 g/cm3, and solid
content of 10% were supplied by Merck S.p.A. (Milan, Italy) as an aqueous suspension
(520 mg/L).

The chemistry of the tap water used for L. stagnalis experiments was as follows:
pH: 7.3; dry residue at 180 ◦C: 313 mg/L; calcium: 71 mg/L; magnesium: 13 mg/L;
ammonium: <0.05 mg/L; chlorides: 17 mg/L; sulphates: 35 mg/L; potassium: 2 mg/L;
sodium: <10 mg/L; arsenic: <1 mg/L; bicarbonates: 238 mg/L; free residual chlorine:
0.1 mg/L; fluorides: <0.1 mg/L; nitrates: 21 mg/L; nitrites: <0.05 mg/L; manganese:
<1 µg/L; BPs and MPs: absent.

The selected polystyrene is a monodispersed aqueous solution with a density of
0.520 g/L and a diameter of 1.0 µm. This PS diameter was selected because it is borderline
between nano- and microplastics and because of its high environmental interest due to the
fact that zooplankton species are not able to distinguish it from phytoplankton during the
normal feeding and swimming activities [3].

Polystyrene was used at concentrations of 200, 100, 50, and 25 µg/mL. These con-
centrations were chosen to investigate potential synergistic effects with BPA, focusing on
non-lethal concentrations that are lower than those used in other studies [1], and avoiding
lethal doses that might mask any combined effect.

2.2. Subjects for In Vitro Experiments

Human lymphocytes were chosen as the in vitro model because blood is one of the
main tissues that MPs can interact with [12,51]. Peripheral venous blood was collected from
20 healthy female subjects (mean age ± S.D., 22.150 ± 1.565, range 20–25 years). This age
range was selected because the frequency of MNi can increase with age [56]. To minimize
potential biases related to age, only young adults were involved. The subjects involved
in the study received a questionnaire that included questions related to lifestyle factors.
Only individuals who met the following criteria were included in the study: non-smokers,
non-alcohol consumers, no recent drug therapy, or exposure to mutagenic substances or
radiations. Informed consent was obtained from all blood donors. The study was approved
by the University of Turin ethics committee (protocol number 0574348, date 18 October
2023) and was performed in accordance with the ethical standards laid down in the 2013
Declaration of Helsinki.

2.3. Blood Sample Collection, Lymphocyte Cultures and Cytokinesis-Block Micronucleus Assay

Blood samples were obtained by venipuncture and collected in heparinized tubes for
genotoxicity testing. All blood samples were coded, cooled (4 ◦C), and processed within
two hours after collection. Heparinized venous blood (0.3 mL) was cultured in 25 cm2

flasks in 6 mL of RPMI-1640 medium supplemented with 20% fetal calf serum (FCS), 2%
of the mitogenic agent PHA, L-glutamine (2 mM), and antibiotics (100 IU/mL penicillin,



J. Xenobiot. 2024, 14 1419

and 100 µg/mL streptomycin). In a humidified atmosphere, the cultures were incubated
for 72 h at 37 ◦C, under 5% CO2. After 24 h of incubation, PS-MPs were added to the
pure cultures to final concentrations of 200, 100, 50, and 25 µg/mL and in combination
with 0.100 µg/mL of BPA at the same concentrations. Moreover, two control cultures
were prepared: (1) positive control by adding only MMC (final concentration 0.1 µg/mL
culture); (2) negative control culture without polystyrene microplastics. After 44 h of
incubation, cytochalasin-B was added to the cultures at a 6 µg/mL concentration to block
the cytokinesis (Table 1).

Table 1. Experimental set-up for the in vitro human lymphocyte assay. Number of tested subjects:
20 for group; exposure time: 72 h.

Group Treatment

Negative control 0.000 µg/mL of fresh water
Positive control 0.100 µg/mL of mytomicin-C

Culture 1 0.100 µg/mL of BPA
Culture 2 200 µg/mL of PS
Culture 3 100 µg/mL of PS
Culture 4 50 µg/mL of PS
Culture 5 25 µg/mL of PS
Culture 6 200 µg/mL of PS + 0.100 µg/mL of BPA
Culture 7 100 µg/mL of PS + 0.100 µg/mL of BPA
Culture 8 50 µg/mL of PS + 0.100 µg/mL of BPA
Culture 9 25 µg/mL of PS + 0.100 µg/mL of BPA

After 72 h of incubation at 37 ◦C, the cells were collected by centrifugation and treated
for 10 min with a pre-warmed mild hypotonic solution (75 mM KCl). After centrifugation
and removal of the supernatant, the cells were fixed with a fresh mixture of methanol/acetic
acid (3:1 v/v). The treatment with the fixative was repeated three times. Finally, the
supernatant was discarded, and the pellet, dissolved in a minimal volume of fixative, was
seeded on the slides to detect MNi and other nuclear anomalies by conventional staining
with 5% Giemsa (pH 6.8) prepared in Sörensen buffer.

Microscope analysis was performed at 100× magnification on a light microscope
(Dialux 20, Leica, Germany). MNi were scored in 1000 binucleated lymphocytes with
well-preserved cytoplasm per subject per concentration (11,000 binucleated cells observed
per subject per tested concentration, for a total of 220.000 cells analyzed), following the
established criteria for MNi evaluation: (i) being morphologically identical to the nucleus
and with the same staining, but with a diameter ranging from 1/16 to 1/3; (ii) being non-
refractile; and (iii) lacking overlaps or connections to the main nucleus [53,54]. NBUDs
are evaginations of the main nucleus and represent a biomarker of elimination of ampli-
fied DNA and/or DNA repair complexes. They are characterized by having the same
morphology as an MN, but, unlike MN, they are linked to the nucleus by a narrow
or wide stalk of nucleoplasmic material depending on the stage of the budding pro-
cess [55,57]. 1000 lymphocytes per donor per concentration were scored to evaluate the
cytokinesis-block proliferation index (CBPI) calculated according to the following formula:
[1 × N1] + [2 × N2] + [3 × (N3 + N4)]/N, where N1–N4 represents the number of cells
with 1–4 nuclei, respectively, and N is the total number of cells scored.

2.4. Lymnaea stagnalis

L. stagnalis was selected as a model organism due to its sensitivity as a non-target
primary consumer in the trophic chain and to its high reproductive capability and rela-
tively short lifespan. Moreover, an interesting advantage that this animal provides is the
possibility to evaluate the influence of environmental xenobiotics on both its hemocytes
and on some physiological parameters (egg production, growth) without killing it [58].

L. stagnalis individuals are simultaneous hermaphrodites, with a lifespan of about
two years and a sexual maturity that occurs within three months after egg hatching [59].
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L. stagnalis can be easily maintained in laboratory conditions because of its capacity to
tolerate a wide range of temperatures, from about 0 ◦C to 26–28 ◦C, and pH values from 6 to
8.5. It is an omnivorous species and feeds mainly on algae and other plants [60]. L. stagnalis
individuals involved in the study came from our parasite-free laboratory culture and were
reared in the same water and feeding conditions. In order to avoid any confounding
factor involving incomplete sexual maturity, reproductively mature individuals capable of
producing eggs and with a shell length (i.e., distance from the apex to the farthest point
on the outer margin of the aperture of the shell, following the central axis) ≥20 mm were
randomly selected; this was done to exclude incomplete sexual maturity or inability to lay
eggs. The experiment was conducted using 10 L containers filled with 6 L of tap water.

To test the in vivo genotoxic effects of the different concentrations of PS-MPs alone
and in combination with 0.100 µg/mL of BPA, ten groups were randomly formed (Table 2).

Table 2. Experimental set-up for L. stagnalis. Exposure time: four weeks.

Group—20 Individuals per Container Treatment

Controls 0.000 µg/mL of fresh water
Group 1 0.100 µg/mL of BPA
Group 2 200 µg/mL of PS
Group 3 100 µg/mL of PS
Group 4 50 µg/mL of PS
Group 5 25 µg/mL of PS
Group 6 200 µg/mL of PS + 0.100 µg/mL of BPA
Group 7 100 µg/mL of PS + 0.100 µg/mL of BPA
Group 8 50 µg/mL of PS + 0.100 µg/mL of BPA
Group 9 25 µg/mL of PS + 0.100 µg/mL of BPA

In order to obtain the final concentrations of 200, 100, 50, and 25 µg/mL, a total of 10.5,
5.25, 2.625, and 1.3125 mL of PS were respectively dissolved in 6 L of water. The negative
control was represented by water without PS.

In order to exclude any effect of biological variability due to individual-specific re-
sponses to the changing water conditions, all subjects involved in the study were reared
under uniform conditions (i.e., tap water, temperature range between 18 and 22 ◦C, salad
as primary source of food) and were kept under the same light/dark regime. During the
4-week study period, chosen to be in line with previous research [59,61,62], water, food,
and BP concentrations were renewed twice a week for each group. The number of eggs
laid was recorded each week; changes in shell growth (length in mm) were measured at the
beginning and at the end of the experiment.

2.5. Micronuclei Assay on Hemocytes from Lymnaea stagnalis

After 4 weeks of xenobiotic exposure, hemolymph was collected by stimulating its
release by means of prodding the foot of the animal with a micropipette. Five hundred
microliters of hemolymph per subject was collected and distributed onto clear microscope
slides. The cells were then fixed by adding several drops of methanol/acetic acid solution
in a 3:1 ratio. The slides were dried and the cells stained for 10 min by a conventional
staining method using 5% Giemsa (pH 6.8) prepared in Sörensen buffer. The slides were
washed with distilled water and dried; after positioning the cover glass, the cells were
observed under a Leica Dialux 20 light microscope (magnification 1000×). 1000 hemocytes
with intact nuclear and cellular membranes were analyzed per subject per concentration,
and the number of MNi and NBUDs was scored.

2.6. Statistical Analysis

Data normality and data distribution were tested both graphically and with the
Shapiro–Wilk test. Since the CBPI and growth values had a normal distribution but did
not show homoschedasticity (tested with the Levene test), differences for these variables
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were tested with a one-way ANOVA with the approximate method of Welch for unequal
variances; post hoc analyses were performed using the Games–Howell test (rstatix package).
Micronuclei and nuclear buds were not normally distributed in the four groups: since
data on lymphocytes consisted of repeated measures on the same subjects, we applied the
Friedman test (tidyverse package) and the Conover post hoc test (PMCMRplus package)
to compare aberrations among the groups, while we used the Kruskal–Wallis test and the
Dunn test as post hoc for the hemocytes. Differences in terms of the number of L. stagnalis
laid eggs were tested with the chi-square test.

All statistical analyses were performed with R 4.3.2 (R core team, Vienna, Austria)
and the Rstudio interface (RStudio Team, Boston, MA, USA). Graphs were created with
GraphPad Prism 8 and R as well [63]. Statistical significance was indicated as * p < 0.05,
** p < 0.01, and ** p < 0.001.

3. Results
3.1. Lymphocytes

In Figure 3, differences in the levels of MNi, NBUDs, and CBPI values in lymphocytes
exposed to different concentrations of PS alone and in combination with BSA at the concen-
tration of 0.100 µg/mL are highlighted. The analytical data are reported in Supplementary
Material. PS significantly increased the MNI and NBUD frequencies only at concentrations
of 200 µg/mL. Vice versa, a significant reduction in the CBPI was observed when the NC
was compared with the positive control (MMC) and with all tested PS concentrations.

J. Xenobiot. 2024, 14, FOR PEER REVIEW 7 
 

 

2.6. Statistical Analysis 
Data normality and data distribution were tested both graphically and with the 

Shapiro–Wilk test. Since the CBPI and growth values had a normal distribution but did 
not show homoschedasticity (tested with the Levene test), differences for these variables 
were tested with a one-way ANOVA with the approximate method of Welch for unequal 
variances; post hoc analyses were performed using the Games–Howell test (rstatix 
package). Micronuclei and nuclear buds were not normally distributed in the four groups: 
since data on lymphocytes consisted of repeated measures on the same subjects, we 
applied the Friedman test (tidyverse package) and the Conover post hoc test 
(PMCMRplus package) to compare aberrations among the groups, while we used the 
Kruskal–Wallis test and the Dunn test as post hoc for the hemocytes. Differences in terms 
of the number of L. stagnalis laid eggs were tested with the chi-square test. 

All statistical analyses were performed with R 4.3.2 (R core team, Vienna, Austria) 
and the Rstudio interface (RStudio Team, Boston, MA, USA). Graphs were created with 
GraphPad Prism 8 and R as well [63]. Statistical significance was indicated as * p < 0.05, ** 
p < 0.01, and ** p < 0.001. 

3. Results 
3.1. Lymphocytes 

In Figure 3, differences in the levels of MNi, NBUDs, and CBPI values in lymphocytes 
exposed to different concentrations of PS alone and in combination with BSA at the 
concentration of 0.100 µg/mL are highlighted. The analytical data are reported in 
Supplementary Material. PS significantly increased the MNI and NBUD frequencies only 
at concentrations of 200 µg/mL. Vice versa, a significant reduction in the CBPI was 
observed when the NC was compared with the positive control (MMC) and with all tested 
PS concentrations. 

 
Figure 3. Graphs highlighting the differences in the levels of micronuclei, nuclear buds, and CBPI 
value in lymphocytes exposed to different concentrations of PS. CBPI = cytokinesis-block 
proliferation index; MMC = mitomycin C (positive control); MNI = micronuclei; NBUDs = nuclear 
buds; NC = negative control; PS = polystyrene. *** p < 0.001, ** p < 0.01, * p = 0.005, with respect to 
negative control. 

In Figure 4, differences in the levels of MNi, NBUDs, and CBPI values in lymphocytes 
exposed to BPA 0.100 µg/mL alone and in combination with different concentrations of 
PS are highlighted. The analytical data are reported in SM1. PS at the concentration of 200 
µg/mL, in association with BPA at the concentration of 0.100 µg/mL, significantly 
increased the MNI and NBUDs frequencies with respect to BPA 0.100 µg/mL tested alone. 
Compared to the latter, a significant reduction in the CBPI value was observed when BPA 
0.100 µg/mL concentrated was associated with PS at concentrations of 100 and 200 µg/mL. 

Figure 3. Graphs highlighting the differences in the levels of micronuclei, nuclear buds, and CBPI
value in lymphocytes exposed to different concentrations of PS. CBPI = cytokinesis-block prolifer-
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NC = negative control; PS = polystyrene. *** p < 0.001, ** p < 0.01, * p = 0.005, with respect to
negative control.

In Figure 4, differences in the levels of MNi, NBUDs, and CBPI values in lymphocytes
exposed to BPA 0.100 µg/mL alone and in combination with different concentrations of
PS are highlighted. The analytical data are reported in SM1. PS at the concentration of
200 µg/mL, in association with BPA at the concentration of 0.100 µg/mL, significantly
increased the MNI and NBUDs frequencies with respect to BPA 0.100 µg/mL tested alone.
Compared to the latter, a significant reduction in the CBPI value was observed when BPA
0.100 µg/mL concentrated was associated with PS at concentrations of 100 and 200 µg/mL.
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3.2. Hemocytes

In Figure 5 and SM1, differences in the levels of MNi and NBUDs in hemocytes of
L. stagnalis exposed to different concentrations of PS are highlighted. With respect to the
negative control, PS at all tested concentrations did not result in genotoxicity in hemocytes
in terms of increased levels of MNi or NBUDs.
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Figure 5. Frequencies of MNi and NBUDs in hemocytes of L. stagnalis exposed to different concentra-
tions of PS. MNi = micronuclei; NBUDs = nuclear Buds; NC = negative control.

In Figure 6 and SM1, differences in the levels of MNi and NBUDs in hemocytes of
L. stagnalis exposed to different concentrations of PS alone (A) and associated with BPA
0.100 µg/mL concentrated (B) are highlighted. With respect to the negative control, PS at
all tested concentrations did not result in genotoxicity in hemocytes in terms of increased
levels of MNi or NBUDs (A). We observed the same result when the genotoxicity of PS at
all concentrations and associated with BPA 0.100 to µg/mL was compared to that of BPA
0.100 µg/mL tested alone (B).
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and to BPA 0.100 to µg/mL associated with the different concentrations of PS. BPA = bisphenol-A;
MNi = micronuclei; NBUDs = nuclear buds; PS = polystyrene.

In Figure 7 and SM1, differences in shell growth of L. stagnalis exposed to different
concentrations of PS alone (A) and associated with BPA 0.100 µg/mL are shown (B). With
respect to the negative control, a significant shell growth reduction was observed in subjects
exposed to 100 and 200 µg/mL of PS (A). Vice versa, PS at all concentrations associated
with BPA 0.100 to µg/mL did not induce any significant difference in shell growth when
compared to BPA 0.100 to µg/mL tested alone (B).
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Figure 7. Differences in shell growth in L. stagnalis individuals exposed to different concentra-
tions of PS tested alone (A) and in association with BPA 0.100 µg/mL (B). BPA = bisphenol-A;
PS = polystyrene. *** p < 0.001.

In Figure 8, the trend of the number of eggs laid per week, for each PS concentration
(A) and for each PS concentration in association with BPA 0.100 µg/mL (B), is shown.
In SM1, the analytical data are reported. PS at all concentrations induced a significant
reduction in the number of laid eggs with respect to the negative control (A). Similarly,
with respect to BPA 0.100 µg/mL tested alone, when PS was tested in association with BPA



J. Xenobiot. 2024, 14 1424

0.100 µg/mL, it induced a significant reduction in egg production at all concentrations,
with the exception of 25 µg/mL.
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4. Discussion

The ubiquitous presence of plastics, and in particular of MPs and NPs, represents a
global threat for all ecosystems and for human health. Among plastic detritus, PS-MPs are
one of the most represented in the environment. These small particles are able to enter the
body of all organisms and to reach, by blood and the lymphatic systems, all organs [1].

In the present study, we aimed to investigate the genotoxicity of different concentra-
tions of PS-MPs with a diameter of 1.0 µm. Although it is known that the absorption of
chemical pollutants into plastic particles can increase the adverse effects of the plastic or
the pollutants considered, to date, the synergistic interactions between MPs and endocrine
disruptor compounds are still poorly explored [43,52]. For this reason, the second aim of
the study was to evaluate, in human lymphocytes and L. stagnalis hemocytes, the ability of
PS-MPs to amplify the genotoxic effects of the BPA.

4.1. In Vitro Experiment

For the in vitro study, we used human peripheral blood lymphocytes as a cell system
in order to evaluate the genotoxicity of PS-MPs tested alone at different concentrations or
in association with BPA 0.100 µg/mL. We investigated the genotoxic effects by the MNi
assay, which allows the evaluation of MNi and NBUD frequencies and the replication
capacity of the cells by the CBPI index. We observed genotoxic effects of PS in terms of
significantly increased frequencies of MNi and NBUDs, only at the highest concentration
of 200 µg/mL. This result partially agrees with those obtained by Cortés et al. (2020) [64],
who exposed Caco-2 cells to different concentrations of polystyrene nanoplastics, including
the highest concentration of 200 µg/mL. The authors demonstrated that exposure to
polystyrene nanoplastics was not able to induce significant increases in the frequency
of micronuclei, even at the concentration of 200 µg/mL that in our work resulted in
genotoxicity. Similarly, Hwang et al. (2022) [65] observed cytotoxic properties of PS in
human dermal fibroblasts and peripheral blood lymphocytes only at the extremely high
concentrations of 500 µg/mL, more than double the highest concentration we used. The
different susceptibility to xenobiotic compounds of the cells used in these different studies
could be a possible explanation of these partially discrepant results.

The situation is similar when considering the genotoxicity of PS nanoparticles. Indeed,
small-sized polystyrene nanoplastics were able to cause cytotoxic and genotoxic effects in
peripheral human blood cells, in terms of increased frequencies of MNi and NBUDs, and
in a concentration-dependent manner [1,14].
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MPs may also act as possible carriers of xenobiotic hydrophobic compounds, such
as endocrine-disrupting chemicals [66,67]. In our work, with respect to BPA at the con-
centration of 0.100 µg/mL, we observed that the binary association of BPA and PS-MPs
resulted in a significant increase in genotoxicity when PS-MPs were present at the highest
concentration of 200 µg/mL, indicating a possible cumulative genotoxic effect of BPA
and PS when this last is administered at the minimal concentration of 200 µg/mL. This
might be alarming, as the ubiquitous presence of both MPs and BPA in the environment
could be dangerous for both specifically exposed populations, such as industrial work-
ers, and for residents of industrial areas who are at a high risk of exposure to several
emerging pollutants.

A significant reduction in the CBPI was observed in culture treated with PS alone at
all concentrations, indicating that PS, at all tested concentrations, negatively affects the
replication capacity of the cells. Similar data were obtained by Inkielewicz-Stepniak et al.
(2018) [68], who observed that polystyrene nanoparticles affected cell viability, and by
Sarma et al. (2022) [1], who showed a reduction in the mitotic index in peripheral blood
monocytes after exposure to PS nanoplastics, although at higher concentrations (500, 1000,
and 2000 µg/mL) with respect to those tested in the present work. All these data seem to
indicate an increase in the cytostasis induced by both PS-MPs and PS-NPs on human blood
cells, evidencing the inhibitory role of PS-NP and PS-MPs on cellular proliferation. Finally,
a significant reduction in CBPI was observed also when PS was tested at the concentrations
of 100 and 200 µg/mL in association with BPA 0.100 µg/mL, confirming, also in this case,
a cumulative action of these compounds in determining the reduction in the replicative
capacity of the cells.

4.2. In Vivo Experiment

Published studies have highlighted that MPs and NPs can infiltrate the bodies of all
organisms, penetrate biological membranes, and access organs, tissues, and cells [15,69].
As to the selected biological model, hemocytes represent the most important front of im-
mune defense and, in toxicological studies, a suitable rapid screening tool for genotoxicity
profiling of pollutants [58,70,71].

As a principal result of our work, PS alone did not result in genotoxicity in hemocytes at
all tested concentrations, neither in terms of increased levels of MNi nor in terms of NBUDs.
This reduced genotoxicity observed in vivo with respect to the in vitro approach could be
probably explained by the capacity of organisms to better both metabolize xenobiotics and
repair the DNA damage, with respect to a cellular system.

However, our results are in contrast with those found by other authors, who observed
that PS-MPS were able to induce DNA damage in mussel hemocytes [72] and strand breaks
in the hemocytes of clams [73], respectively. Moreover, Nugnes et al. (2022) in Ceriodaphnia
dubia [3] and Ansoar-Rodríguez et al. (2015) in Oreochromis niloticus [74], observed that
PS-MPs cause DNA damage at concentrations in the order of units and hundreds of µg/L,
respectively. In both these last two cases, the authors explained the observed toxic effects
by the increase in ROS, which are able to affect the genetic material. These contrasting
results could also be justified by a possible different susceptibility of different organisms
to environmental xenobiotics. L. stagnalis is a mollusk that inhabits ponds and, in some
cases, highly polluted areas and, thus, probably evolved more efficient mechanisms of
DNA repair due to exposure to high concentrations of pollutants.

Although some studies reported that the combined exposure to microplastic particles
and drugs can increase the toxicity in aquatic organisms [75,76], in the present study we
did not observe any increase in genotoxicity when PS at all concentrations was tested in
associations with BPA at the concentration of 0.100 µg/mL.

This result is in contrast to results obtained by other authors. Indeed, in a previous
study, the immunotoxicity and neurotoxicity caused by BPA were aggravated by the ad-
dition of MPs in the clam Tegillarca granosa, suggesting synergistic interactions between
the two compounds [77]. Similarly, Zhou et al. (2020), exposing Tegillarca granosa to PS
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microplastic particles (500 nm) and veterinary antibiotics (oxytetracycline and florfenicol),
observed that microplastic particles aggravated the bioaccumulation of these antibiotics,
also suppressing the clam glutathione-S-transferase activity and other detoxification pro-
cesses [78].

Combined exposure to PS nanoparticles (110 nm, 0.05 mg/L) and carbamazepine
was also found to induce a significant increase in DNA damage and a downregulation
in the expression of some genes in hemocytes of the mussel Mytilus galloprovincialis [79].
Furthermore, Sun and collaborators (2021) observed that microplastics may favor the
accumulation of pesticides in earthworms, causing exacerbated oxidative damage and
alterations of different metabolic pathways [80]. One possible explanation might be driven
by the filtering and digging nature of such species, which may have predisposed them to
greater contact with the MPs compared to the snail L. stagnalis. In contrast, L. stagnalis, being
a surface grazer, may have less direct exposure to microplastics, limiting the extent of both
plastics and other contaminants bioaccumulation. This reduced contact with microplastics
could explain why no significant genotoxic or physiological effects were observed in our
study: the biological characteristics of L. stagnalis may provide a natural barrier to the
accumulation of contaminants, also contributing to the absence of synergistic effects in
our findings. Another possible reason for the lack of significant synergistic effects could
be the relatively low adsorption capacity of BPA by PS-MPs compared to other plastic
polymers, such as thermoplastic polyurethane (TPU) and polyamide (PA) [81]. Although
these data were known to us beforehand, we felt it was important to study the effects of
PS since, unlike TPU and PA, it is one of the most common plastic polymers produced
worldwide [82].

However, it is important to emphasize that even in other cases, the synergistic effects
were not so evident. Nobre et al. (2020), in the oyster Crassostrea brasiliana, found a lower
genotoxic effect after exposure to polyethylene (150–250 µm) and triclosan compared to
the exposure to the only microplastic particles [83]. Probably, as explained by Birben et al.
(2012), when organisms are stimulated by external factors, they generate free radicals as
a defense mechanism, but, in this case, their antioxidant defense system is stimulated to
remove these free radicals, protecting cells from oxidative damage [84]. The efficiency in
removing free radicals could be different in different organisms, and this would explain
the contrasting results of the literature.

Analyzing other physiological parameters, we found that, after 4 weeks of treatment,
PS at the concentrations of 100 and 200 µg/mL caused a significant reduction in the growth
rate, whereas a synergistic action with BPA 0.100 µg/mL was not observed. The latest
data are in contrast with those reported by Luo et al. (2021), who showed that PS and
imidacloprid combined in a chronic toxicity assay affected the growth of zebrafish [85].
Moreover, Zhu et al. (2019), combining different types of MPs (polystyrene, polyethylene,
and polyvinyl chloride; 74 µm) and antibiotic drugs (triclosan), observed an antagonistic
effect on growth inhibition in the algae Skeletonema costatum [86].

Finally, in the present study, an important effect was observed in terms of a significant
reduction in laid eggs, both of PS alone at all concentrations and in association with
BPA 0.100 µg/mL. These results are in line with those obtained by Nugnes et al. (2022),
who demonstrated that PS-MPs were able to reduce the C. dubia offspring [87]. Similarly,
Felten et al. (2020), in Daphnia magna, observed synergic adverse effects on the survival
and fertility when polyethylene microplastic particles were combined with the pesticide
deltamethrin [88].

5. Conclusions

In the present work, we evidenced in vitro genotoxic properties of PS-MPs when
tested alone at the highest concentration of 200 µg/mL or in association with BPA, also in
this case at the highest concentrations of 200 and 100 µg/mL. However, these effects were
not replicated in the in vivo experiment.
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While the additive genotoxic effects of PS and BPA in vitro raise concerns about the
potential risks of microplastics when combined with endocrine disruptors, this interactive
toxicity was not observed in our model organism. This discrepancy highlights a crucial
research gap in understanding species-specific responses to the combined exposure to
plastics and other contaminants.

In general, microplastics are known carriers of organic pollutants, posing severe threats
to the environment and human health. However, the mechanisms by which these particles
interact with pollutants, particularly in aquatic organisms, remain largely underexplored.
Future research will need to focus on understanding the factors that affect the variability
in bioaccumulation and toxicity across different taxa, particularly non-filter feeders like
L. stagnalis, where bioaccumulation may be less pronounced. Investigating the long-term
effects of exposure to microplastics and their associated pollutants is also essential, as
available literature is mainly limited to short-term exposures.

In aquatic ecosystems, the impact of combined exposures to microplastic particles and
drugs or pesticides raises several concerns. Addressing these research gaps will help to
develop a more complete understanding of the risks posed by microplastics and guide
environmental policies to mitigate their impacts.
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