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Abstract

Networks are a powerful paradigm to model complex systems. Specific network models enrich the
standard network representation with additional information to better capture real-world phenom-
ena. For instance, multilayer networks allow multiple edges of various types among the same set
of entities. Temporal networks, that represent how the relations between the entities of a system
are established/broken along time, and signed networks, that report whether each edge interaction
is positive or negative, can be considered special cases of multilayer networks. Despite the keen
interest in a variety of problems, algorithms, and analyses, these types of networks together with
the unprecedented increasing availability of data still hold new challenges and opportunities.

Extracting dense structures from complex networks has emerged as a key graph-mining prim-
itive in a variety of scenarios. In the first part of this thesis, we present advancements to the
state of the art by the introduction of novel definitions and algorithms for the extraction of dense
structures from multilayer, temporal, and signed networks. Moreover, in the second part, we show
how the study of the substructures of temporal and signed networks can lead to the finding of
valuable insights about real-world phenomena.
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Chapter 1

Introduction

“Complex system” is a terminology widely used to define a set of entities that interact with each
other in a variety of different ways. So far, researchers could not converge to a unique definition
of complex system given the vast diversity of systems that are defined as such [8]. Nonlinear
interactions are one of the greatest challenges in the study of complex systems and the reason of the
emergence of states that are not mere combinations of the states of the individual units comprising
the system. Complex systems are extremely pervasive; examples are the brain, the immune system,
biological cells, ant colonies, the Internet and the World Wide Web, the stock market, and the
society. The modern study of complex systems aims to understand how interactions give rise to
behavioral patterns, the process of formation of complex systems through pattern formation and
evolution, and ideal ways of describing complex systems [198].

Complex networks are the main instrument for describing and studying complex systems. The
simplest network (or graph) model is composed of two elements: a set of nodes and a set of edges
which represent the entities and the interactions occurring between the entities, respectively1. By
such a simple representation, researchers are able to model a lot of variegated phenomena. For
instance, our brain is a network in which nodes are regions of interest and links map functional
correlations observed during fMRI (functional magnetic resonance imaging) scans. The World
Wide Web is probably the most popular example of network: hyperlinks (edges) connect the web
pages (vertices). Larry Page et al. [187] based the first algorithm for ranking web pages in the
Google search engine on the structure of the web graph. Again, many graph-analysis methods
have been proposed to study spreading processes of diseases, e.g., seasonal influenza, in contact
networks where humans are represented by vertices while edges report proximity interactions [105].

The need to obtain better understanding of complex systems summed with their inherent
complexity are factors that explain the increasing interest in enhancing complex-networks analytics
tools and algorithms. The growing diffusion of the Internet, the increasing pervasiveness of personal
and wearable devices, and the rising of the Internet of Things provide the possibility to access
unprecedented amounts of data and to exploit them to unveil additional findings about complex
systems. Moreover, each piece of information may be extremely rich and detailed: when we record
an interaction we often know by which means it happened (e.g., by phone call or text messages),
the time when it occurred, and whether it had positive or negative acceptation (e.g., a smiling
emoji or a sad one).

These changes led to the introduction of network models that enrich the standard network
representation with additional features to capture novel and interesting structural properties of the
phenomena under analysis. Multilayer networks [142] model complex systems where various types
of relations might occur among the same set of entities; temporal networks [127] are representations
of entities, their relations, and how these relations are established/broken along time; and, signed
networks represent networked data where edge annotations express whether each edge interaction
is friendly (positive) or antagonistic (negative). Both temporal and signed networks can be seen
as special cases of multilayer networks. In the first case, the snapshots of a temporal network
correspond to the layers of a multilayer network ordered in time. In the latter case, signed networks

1We use the terms “network” and “graph” interchangeably throughout the thesis. Analogously, we will inter-
change the usage of “node” and “vertex” , and of “edge” and “link”, unless otherwise specified.
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CHAPTER 1. INTRODUCTION

are composed of two layers, one positive and one negative; in addition, positive and negative
interactions are not allowed between the same pair of entities.

Such an exciting mix of exceptional data sources and of complex models presents new challenges
and opportunities. On the one hand, some of key graph-mining primitives, e.g., the identification
of dense structures in networks [156], are not directly applicable to these more complicated network
models and would prevent us to fully exploit of their characteristics. How can the definition of a
dense structure take into account multiple layers of interactions? Which are the substructures of
interest in a graph with positive and negative relations? Therefore, we are called to design novel
definitions of the ordinary graph-mining primitives and the corresponding algorithms to take full
advantage of these types of complex networks. On the other hand, the abundance of information
allows us to carry out more sophisticated and in-depth analysis of real-world events. For example,
by temporal networks, we are able to study evolving phenomena, e.g., the evolution of a migration
process or the behavioral patterns of children during a school day.

In this thesis, we at first propose a set of novel definitions of dense structures in multilayer,
temporal, and signed networks with particular attention to the algorithmic aspects. Then, we in-
vestigate specific applications of such network paradigms to concrete studies of real-world datasets.

Contributions and structure of the thesis

Extracting dense structures from large graphs has emerged as a key graph-mining primitive in a va-
riety of scenarios [156], ranging from web mining [110], to biology [91, 154], and finance [72]. Dense
structures can help in studying contact networks among individuals to quantify the transmission
opportunities of respiratory infections [107]. Anomalously dense structures among entities in a
co-occurrence network have been used to identify, in real-time, events and buzzing stories [12, 44].
Peculiar dense structures are often associated to polarization and unbalance in online debate net-
works [59]. Although the literature about complex networks has recently grown extremely fast,
the problem of identifying dense structures in specific types of networks has, surprisingly, still
unexplored facets.

Among the many definitions of dense structures, core decomposition plays a central role. The
k-core of a graph is defined as a maximal subgraph in which every vertex is connected to at
least k other vertices within such subgraph. The set of all k-cores of a graph G forms the core
decomposition of G [208]. The importance of core decomposition relies in the fact that it can be
computed in linear time [30], and can be used to speed-up/approximate dense-subgraph extraction
according to various other definitions [78, 148, 10, 123]. In addition, it has been recognized as an
important tool to analyze and visualize complex networks in several domains [7, 29].

Orthogonal approaches focus on the identification of a single dense portion of a complex net-
work. Extracting dense subgraphs according to the average degree (i.e., two times the number of
edges divided by the number of vertices) has attracted most of the research in the field since it is
solvable in polynomial time [114]. This problem is commonly referred to as the densest subgraph.
Many of other notions of density have been proposed in literature, most of which have been shown
to be NP-hard [227, 234].

A different bulk of literature deals with methods to find many communities, i.e., dense struc-
tures, while partitioning the whole complex network [89]. Among the many approaches, of partic-
ular interest is the one provided by the correlation clustering framework [24] for signed networks,
which asks to partition the vertices into communities so as to maximize (minimize) the number of
edges that “agree” (“disagree”) with the partitioning, i.e., the number of positive (negative) edges
within clusters plus the number of negative (positive) edges across clusters.

The first purpose of the present thesis is to introduce novel definitions and algorithms for the
extraction of dense structures from multilayer, temporal, and signed networks. Specifically, in
Part I, we generalize the concept of core decomposition to multilayer networks and we show a
series of applications built on top of it; then, we define temporal core decomposition in temporal
networks; and, finally, in the context of discovering polarization in large-scale online data, we study
the problem of identifying polarized communities in signed networks. The specific contribution of
each chapter of Part I is summarized as follows:

• Chapter 3 studies the problem of core decomposition in multilayer networks and presents a
series of applications built on top of it. We first focus on the problem of finding only the max-
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CHAPTER 1. INTRODUCTION

imal cores, i.e., the densest ones, in the decomposition. Then, we show how multilayer core
decomposition finds application to the problem of densest-subgraph extraction from multi-
layer networks and in the speed-up the extraction of frequent cross-graph quasi-cliques [137].
Finally, we show how multilayer core decomposition can be used to generalize the community-
search problem [215] to the multilayer setting. The original contributions of this chapter have
been published in the Proceedings of the 26th ACM International Conference on Information
and Knowledge Management (CIKM 2017) [96] and have been accepted for publication in
the Journal of ACM Transactions on Knowledge Discovery from Data (TKDD) [97].

• Chapter 4 introduces the definition of span-core decomposition in temporal networks where
span-cores are dense structures, based on minimum degree, during an interval of contiguous
timestamps. Also in this case, we investigate the problem of identifying the maximal span-
cores only. Finally, we introduce the problem of temporal community search [215]. The
original contributions of this chapter have been published in the Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (CIKM 2018) [95] and
are currently submitted for review [98].

• Chapter 5 proposes the 2-Polarized-Communities problem which requires finding a
dense structure composed two warring (i.e., polarized) communities in a signed network.
Our hypothesis is that such 2-community polarized structure accurately captures contro-
versial discussions in real-world social-media platforms. The original contributions of this
chapter have been published in the Proceedings of the 28th ACM International Conference
on Information and Knowledge Management (CIKM 2019) [45].

The design of ad-hoc definitions and algorithms for the identification of specific substructures in
complex networks is only the first step towards gaining better understanding of complex systems.
Of fundamental importance is finding reliable data sources that can describe phenomena of interest,
identifying the network representation that better models the characteristics of the data, and apply
the most suitable methods for the extraction of valuable insights.

For instance, the migration of humans can be considered a complex system where different
locations on the Earth interact by exchanging individuals with the others. It has shown to be
crucial importance in modern history [185, 146]. Among the many types of migrations, the mobil-
ity of researchers, scientists, and academics is fundamental since it moves knowledge, ideas, and
information, which are considered to be among the major economic production factors in today’s
economy [177]. Fortunately, data obtained from online academic platforms, such as ORCID [43],
can be modeled as complex networks to derive specific insights about how academics move between
countries, e.g., which role each state plays in the system.

On a smaller scale, people gather in public environments, such as schools, workplaces, and
conferences. The network representation has proved useful to understand the structure of the sys-
tems of interactions between individuals and to describe processes occurring in these systems [26].
Each face-to-face relation is now easy to record thanks to non-obtrusive sensing systems and in-
frastructures. In particular, the study of mixing patterns of children in school environments has
resulted to be of extreme interest because they can help to quantify the transmission opportunities
of respiratory infections and to identify situations within schools where the risk of transmission is
higher [176, 113].

Finally, polarization around controversial issues is rapidly growing due to the scale and speed
of discussions enabled by modern large-scale social-media platforms. Even in this case, complex
(signed) networks are able to depict such phenomena [151] to ease its understanding by the ap-
plication of balance theory [124]. Network visualization can be powerful in this scenario, and in
many others, to complement standard network analysis techniques since it is extremely effective
in communicate findings [150].

The second aim of this thesis is to show how temporal and signed networks can be exploited
to carry out analysis of real-world data to derive interesting insight about the substructures in the
corresponding complex systems. In the details, in Part II, we study international migrations of
researchers employing data coming from ORCID; we then apply the tools introduced in Chapter 4
for the analysis of face-to-face interaction networks recorded in schools; in the final chapter, we
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CHAPTER 1. INTRODUCTION

propose a network visualization technique to highlight balanced/polarized structures in signed
networks. The contributions of each chapter of Part II are the following:

• Chapter 6 studies the international migration of researchers with the aim of identifying mea-
sures and substructures describing the countries that play a central role in such phenomenon.
We define the scientific migration network from ORCID data, where nodes represent world
countries and edges account for a migratory flow from a country to another, and employ
the HITS algorithm [143] to find which countries are hubs (providers) and authorities (at-
tractors). Moreover, we investigate local patterns and characteristics of the neighborhood
of hubs and authorities to derive the motivations behind the HITS algorithm. The original
contributions of this chapter are currently submitted for review [229].

• Chapter 7 complements Chapter 4 in the study of temporal networks. Specifically, we
exploit the concept of (maximal) span-core for deriving temporal patterns, detecting anoma-
lous interactions, and classifying individuals in face-to-face interaction networks gathered in
schools. As for Chapter 4, the original contributions of this chapter have been published in
the Proceedings of the 27th ACM International Conference on Information and Knowledge
Management (CIKM 2018) [95] and are currently submitted for review [98].

• Chapter 8 proposes a novel method for visualizing signed networks whose purpose is to
identify balances/polarized structures in real-world data modeling discussions, e.g., in online
social media or political debates. The core of the visualization relies on balance theory,
similarly to Chapter 5. The original contributions of this chapter have been accepted for
publication in the Proceedings of the 8th International Conference on Complex Networks and
Their Applications (COMPLEX NETWORKS 2019) [99].

Chapter 2 introduces the background about network analysis and the work related to the
content of this thesis. Chapter 9 concludes the thesis and proposes interesting avenues for future
work.
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Chapter 2

Background and related work

In this chapter we first introduce some background about network theory (Section 2.1), with
particular emphasis on measures of density and centrality, which are the topics mostly related to
the proposed works. Then, we describe the bunches of works related to the contents of this thesis
(Section 2.2).

2.1 Network theory

We define a standard network by a pair G = (V,E) consisting of a set of vertices V and a set
of edges E ⊆ V × V . We say that two vertices u, v ∈ V are connected, equivalently adjacent or
neighbors, if edge (u, v) belongs to E.

In general, graphs may have peculiar features and may carry specific information over the
edges (as well over the vertices). For example, graphs can be partitioned into two main categories
on the basis of whether the edges are undirected or directed. Given two vertices u, v ∈ V of an
undirected graph, the edge (v, u) is equal to the edge (u, v), and it has not a direction associated
whit it. Differently, for a directed graph the edge (v, u) is distinct from the edge (u, v), and it has
a direction associated with it. In this thesis we consider both undirected and directed networks.

As introduced beforehand, graphs’ edges might be enriched by different types of information.
Often we want to assign a weight to each edge; then, we refer to a weighted graph by a triplet
G = (V,E,w) where w : E → R is a weighting function that assigns a weight to each edge.
Weights may be restricted to be rational or integer numbers, or to be positive. A special case of
a weighted graph is a signed graph or signed network, which is a network whose edges are either
positive or negative, or, equivalently, have weight +1 or −1. Signed graphs are usually referred to
G = (V,E+, E−) where E+ is the set of positive edges and E− the set of negative edges.

Additional complex network paradigms allow multiple edges between the same pair or vertices.
For example, multilayer networks [142] model complex systems where multiple interactions of
different types may exist between any pair of entities. A multilayer graph is defined asG = (V,E, L)
where L is a set of layers and E ⊆ V × V × L is a set of labeled edges; then, in this case edges
are represented by triplets composed of two vertices and a layer. Similar to multilayer networks,
temporal networks [127] represent systems whose topology changes over time. Instead of having a
layer, temporal edges are labeled by a timestamp which assigns a temporal collocation. We denote
a temporal network as G = (V, T, τ) where T = [0, 1, . . . , tmax] ⊆ N is a discrete time domain, and
τ : V ×V ×T → {0, 1} is a function defining for each pair of vertices u, v ∈ V and each timestamp
t ∈ T whether edge (u, v) exists in t. The main difference between multilayer graphs and temporal
networks is that layers are not ordered while timestamps follow the temporal ordering.

Examples. A standard undirected graph might depict, e.g., a static network of friends, where each
edge represents a relationship of friendship between two persons, which is bidirectional. Directed
networks are used in other context where the direction of the connections matters, e.g., in a citation
network of academics, in which an edge (u, v) ∈ E indicates that the researcher u cited a work
of the researcher v but no viceversa. Weighted networks are often employed to represent supply
chains since edge weights can include information about the amount (or the worth) of the goods

5



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Zachary’s karate club network: a social network of friendships between 34 members
of a karate club in a US University in the 70s. Nodes’ size and color (on a scale from yellow to
blue) is according to the number of their connections.

moved from a point to another of the supply. Social networks in which relations can be either
friendly or antagonistic, e.g., a debate on Twitter, are represented by signed networks since they
can differentiate positive and negative interactions. Biological systems are extremely complex.
For example, proteins communicate between each other in many different ways and by different
means. Therefore, biologists prefer multilayer networks to study protein-to-protein interactions.
Temporal networks find application in a variety of contexts where the topology of the system
changes over time. They have been recently applied to the study of face-to-face contact networks
for the understanding of respiratory diseases.

In general, the types of systems that we can model and study by means of complex networks is
endless; even in very small environments, as in the real-world case shown in Figure 2.1 representing
a social network, we are able to derive complex patterns in the structure of the interpersonal
relations, i.e., the presence of two individuals more central (important) than the others and the
division of the vertices into two clusters [244].

2.1.1 Dense structures

In almost every kind of network, density is an indication of importance of certain regions of the
graph. Dense structures in a network may indicate high degrees of interaction, or mutual similarity
and hence collective characteristics, attractive forces, favorable environments, or critical mass.
From a theoretical point of view, dense structures have many interesting properties. They naturally
have small diameter1, therefore routing within these components is rapid. Dense regions are also
robust, in the sense that many connections can be broken without splitting the component [156].
A less known but equally important property of dense structure comes from percolation theory: if
a graph is sufficiently dense, then there is very high probability of propagating a message across
the whole graph [117].

Various definitions of dense structures have been explored in different studies. Generally, they

1We define the diameter of a graph as the greatest distance, in term of edges, between any pair of vertices.
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CHAPTER 2. BACKGROUND AND RELATED WORK

are based on two different concepts of density, i.e., absolute density and relative density. An abso-
lute density measure establishes the conditions for what constitutes a dense pattern independently
of what is outside the patterns itself. The definition of k-core is an example: a subgraph is a
k-core if and only if every vertex is connected to at least k other vertices. On the other hand, a
relative density measure has no preset parameters for deciding whether a structure is sufficiently
dense or not; rather, it compares the density of one region of the graph to another, with the goal of
finding the densest regions. In order to set the boundaries of such structures, a metric is used with
the aim of maximizing the difference between intra-component density and inter-component den-
sity [156]. Cut (i.e., the number of edges between a component and what is outside the component)
minimization is an example of objective used for this purpose.

Degree-based densities. In literature, the most-in-use definitions of density are average degree
and minimum degree. Given a standard undirected graph G = (V,E) and a subset of vertices
S ⊆ V , we denote the degree of a node u ∈ S in the induced subgraph G[S] = (S,E[S]) as
degS(u) = {v ∈ S | (u, v) ∈ E[S]}, i.e., the number of neighbor nodes of u in G[S]. As a
consequence, the average degree of a subgraph G[S] is

avg
u∈S

degS(u). (2.1)

We analogously define the minimum degree of G[S] as

min
u∈S

degS(u). (2.2)

In the following section, we will dive deeper into the algorithms that find dense structures based
on average degree and minimum degree, and variations of such densities.

Cliques and quasi-cliques. The densest structure that we can find in a graph is a clique. A
subset of vertices S ⊆ V in a graph G represents a clique if each pair of vertices in S is connected
by an edge in the induced subgraph G[S] = (S,E[S]); or, equivalently, degS(u) = |S| − 1 for each
node u ∈ S, where degS(u) indicates the degree of u in G[S]. The definition of clique is quite strict
and cliques of remarkable dimension are rare to find in real-world complex networks. For this
reason, many relaxations of the clique definition have been proposed in terms of density, degree,
or distance. The most common one is the concept of quasi-clique in which a parameter γ ∈ [0, 1]
defines how close the quasi-clique is to be a clique. A subset of vertices S ⊆ V is a γ-quasi-clique if
G[S] = (S,E[S]) has at least γ

(|S|
2

)
edges [1] or, alternatively, each vertex in S has at least degree

γ(|S| − 1) [175].

Minimum-degree-based dense structures. The most used definitions of dense structure based
on minimum degree are core and plex. A k-core (or a core of order k) is a maximal subset of vertices
S ⊆ V of G such that each node u ∈ S has degS(u) > k [208]. Similarly, S is a k-plex if each vertex
in S has at least degree |S| − k in G[S] [209]. The parameter k ∈ N indicates the importance of
cores and plexes: the higher k the more dense and cohesive a core is; viceversa for plexes.

Distance-based dense structures. Other definitions of dense structure are build upon the
concept of distance and, in particular, of shortest path2. Given a graph G = (V,E) and an integer
number k, the subset of vertices S ⊆ V is a kd-clique if the shortest path from any vertex to any
other of S is no more than k. In this case, paths may go outside G[S], i.e., the subgraph induced
by S, and include any vertices and edges of G [168]. The definition of k-club is exactly the same;
however, in this case, paths may not go outside G[S] [178]. Again, k ∈ N is an indication of how
cohesive a core or a club is: the shorter shortest paths are, the more the structures are cohesive
and relevant.

Related works about cores and core decomposition, and other types of dense structure in
different kinds of networks are discussed in greater detail in Section 2.2.

2.1.2 Centrality measures

In many applications, researchers and practitioners are not only interested in studying the im-
portant regions of a network, rather they want to understand the role that specific entities (or

2The shortest path between two vertices u, v ∈ V in a graph G = (V,E) is the path such that the number of its
constituent edges is minimized.
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connections) play with respect to the global topology of the graph. The importance of a node (or
an edge) is assessed by centrality measures [92], that may be defined on several structural features
of the node, like its connectivity or its position with respect to the other vertices.

Degree-based centrality measures. The simplest and most commonly used centrality measure
is degree centrality. For a vertex u ∈ V in a standard graph G = (V,E), it is defined as its degree:

cd(u) = deg(u). (2.3)

Distance-based centrality measures. Other centrality measures rely upon the concepts of
distance/proximity and, as a consequence, of shortest path. Closeness centrality [31] has been
defined from the intuition that a node is more central when it is closer to all other nodes. The
closeness centrality of a node u ∈ V is defined by the following ratio:

cc(u) =
1∑

v∈V d(u, v)
, (2.4)

where d(u, v) is the length of the shortest path between nodes u and v. Similar is the definition
of betweenness centrality [92] which counts the number of times a node acts as a bridge along the
shortest path between two other nodes. The betweenness centrality of a node u is

cb(u) =
∑
v,z∈V
u 6=v 6=z

σvz(u)

σvz
, (2.5)

where σvz is the total number of shortest paths from node v to node u, and σvz(u) is the number
of such paths passing through node u. Finally, Katz centrality [139] is a generalization of degree
centrality. While degree centrality measures the number of direct neighbors of a vertex u, Katz
centrality takes into account the number of nodes in the graph that can be connected through a
path from u. The contribution of nodes distant from the origin u are penalized by an attenuation
factor.

PageRank. PageRank centrality [187] is at the basis of the algorithms used by Google for ranking
web pages in their search engine. Differently than the centrality measures described above, which
are usually employed in undirected graphs, it is defined for directed networks. Since its introduc-
tion, it has found application in many areas and many variations have been proposed, e.g., [190].
The assumption at the basis of PageRank is that the quality of the edges adjacent to a node is
more important than their quantity for defining the importance of the node itself; and, the quality
of an edge is defined as the PageRank centrality of the node at the other endpoint of the edge.

HITS. Another edge-based method for ranking vertices of a graph is the HITS algorithm, introduced
by Kleinberg [143]. HITS computes two scores (centralities) for each node, i.e., the hub score
and the authority score. The underlying idea is similar to PageRank: nodes of high hub score
have many outgoing edges towards vertices of high authority score, while authorities have many
incoming edges from hubs. The details of (slightly modified versions of) PageRank and HITS are
reported in Chapter 6 (Section 6.2) in which we employ different centrality measures to propose a
network-driven study of mobility/migration of scientists across the world countries.

2.2 Related work

2.2.1 Core decomposition

Here we recall the concept of core as a dense structure and we introduce the definition of core
number of a vertex and core decomposition in standard graphs.

Definition 2.1 (k-core, core number, and core decomposition). The k-core (or core of order k) of
a standard graph G = (V,E) is a maximal set of vertices Ck ⊆ V such that ∀u ∈ Ck : degCk(u) ≥ k.
The core number (or core index) of a vertex u is the highest order of a core that contains u. The
set of all k-cores V = C0 ⊇ C1 ⊇ · · · ⊇ Ck∗ (k∗ = arg maxk Ck 6= ∅) is the core decomposition of
G.

8
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Figure 2.2: Example of core decomposition of a standard graph. The graph has 4 cores: the 0-core
is the entire graph, while the 3-core includes two connected components.

Core decomposition can be computed in linear time by iteratively removing the smallest-degree
vertex and setting its core number as equal to its degree at the time of removal [30]. Among
the many definitions of dense structures, core decomposition is particularly appealing as, among
others, it is fast to compute, and can speed-up/approximate dense-subgraph extraction accord-
ing to various other definitions. For instance, core decomposition allows for finding cliques more
efficiently [78], as a k-clique is contained into a (k−1)-core, which can be significantly smaller
than the original graph. Moreover, core decomposition is at the basis of approximation algorithms
for the densest-(at-least-k-)subgraph problem [148, 10], and betweenness centrality [123]. Core
decomposition has also been recognized as an important tool to analyze and visualize complex
networks [29, 7] in several domains, e.g., bioinformatics [20, 239], software engineering [246], and
social networks [141, 102]. It has been studied under various settings, such as distributed [180],
streaming/maintenance [205, 161], and disk-based [57], and generalized to various types of static
graphs, such as uncertain [47], directed [109], weighted [101, 75], bipartite graphs [165], or in-
cluding attributes on the nodes [245]. For a comprehensive survey about theory, algorithms, and
applications of core decomposition we refer to [171].

In Chapter 3 of this thesis we adopt the definition of multilayer core by Azimi-Tafreshi et al. [19]
to study how to efficiently compute the complete core decomposition of multilayer networks. In [19]

a core identified by an |L|-dimensional integer vector ~k (with |L| being the number of layers of the

given multilayer network), where every component of ~k refers to the minimum-degree constraint

required for that core in the corresponding layer (i.e., every ~k[i] component states the minimum
degree required for that core in the i-th layer). Apart from introducing the definition of multilayer
core, Azimi-Tafreshi et al. study the core-percolation problem from a physics standpoint, without
providing any algorithm. Specifically, they characterize cores on 2-layer Erdős-Rényi and 2-layer
scale-free networks, then they analyze real-world (2-layer) air-transportation networks.

Wu et al. [237] have proposed a core decomposition on temporal networks, which does not take
any kind of temporal constraint into account. They define indeed the (k, h)-core as the largest
subgraph in which every vertex has at least k neighbors and there are at least h temporal edges
between the vertex and its neighbors, without any restriction on when these h edges occur: the
sequentiality of connections is not taken into account and non-contiguous timestamps can support
the same core. In fact, the (k, h)-core decomposition can be seen as a kind of weighted static
core decomposition on the weighted static network resulting from the aggregation of the temporal
network. In Chapter 4 we devise a formulation of cores for temporal networks having a clear
temporal collocation and continuous spans. As we will see in Chapter 7, associating a temporal
collocation to each core is important in concrete applications.

9
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2.2.2 Community search

Given a standard graph and a set of query vertices, the community search problem aims at finding
a cohesive subgraph containing the query vertices. Community search has attracted a great deal of
attention in the last years [86, 132]. Sozio and Gionis [215] are the first to introduce this problem
by employing the minimum degree as a cohesiveness measure. Their formulation can be solved by a
simple (linear-time) greedy algorithm, which resembles the traditional 2-approximation algorithm
for densest subgraph proposed in [73]. More recently, Cui et al. [64] devise a local-search approach
to improve the efficiency of the method defined in [215], but only for the special case of a single
query vertex. The case of multiple query vertices has instead been addressed by Barbieri et al. [25],
who exploit core decomposition as a preprocessing step to improve efficiency. They also tackle the
problem of minimum community search, i.e., a variant of community search where the size of the
output subgraph has to be minimized.

Community search has also been studied under different names and/or settings. Huang et
al. [130] introduce a community-search model based on the k-truss notion. Andersen and Lang [11]
and Kloumann and Kleinberg [145] study seed set expansion in social graphs, in order to find com-
munities with small conductance or that are well-resemblant of the characteristics of the query ver-
tices, respectively. Other works define connectivity subgraphs based on electricity analogues [83],
random walks [226], the minimum-description-length principle [6], the Wiener index [202] and
network efficiency [201]. Recent approaches also introduce the flexibility of having query vertices
belonging to different communities [39, 242]. Finally, community search has been formalized for
attributed graphs [131, 84] and spatial graphs [85] as well.

In Chapters 3 and 4 we formulate the community-search problem for multilayer and temporal
graphs, respectively. The problem statement for multilayer networks (Chapter 3) adopts the early
definition by Sozio and Gionis [215] which measures the cohesiveness of a subgraph by means
of its minimum degree. On the other hand, in Chapter 4, we provide a novel definition of the
problem by asking for a set of subgraphs containing the given query vertices, along with their
corresponding temporal collocation, such that a global density measure (based on minimum degree)
of the identified subgraphs is maximized and the union of the temporal intervals spanned by those
subgraphs covers the whole underlying temporal domain.

2.2.3 Densest subgraph

Several notions of density exist in the literature, each of which leading to a different version of
the problem of extracting a single dense subgraph. While most variants are NP-hard, or even
inapproximable, extracting dense subgraphs according to average degree is solvable in polynomial
time [114]. As a result, such a density has attracted most of the research in the field, so that the
subgraph maximizing the average-degree density is commonly referred to as the densest subgraph.

Goldberg [114] provides an exact solution based on iteratively solving ad-hoc-defined minimum-
cut problem instances. Although principled and elegant, Goldberg’s algorithm cannot scale to large
graphs. Asahiro et al. [18] and Charikar [73] provide a more efficient (linear-time) 1

2 -approximation
algorithm that is capable of handling large graphs. The algorithm greedily removes the smallest-
degree vertex, until the graph has become empty. Among all subgraphs produced during this
vertex-removal process, the densest one is returned as output. Note that this algorithm resembles
the one used for core decomposition. In fact, it can be proved that the inner-most core of a graph
is itself a 1

2 -approximation of the densest subgraph.

In the classic definition of densest subgraph there is no size restriction of the output. Variants
of the problem with size constraints turn out to be NP-hard. Thus, approximation algorithms
and other (mostly theoretic) results have been presented [17, 87, 16, 10]. A number of works
depart from the classic average-degree maximization problem and focus on extracting a subgraph
maximizing other notions of density. For instance, Tsourakakis et al. [228] resort to the notion
of quasi-clique to define an alternative measure of density, while Tsourakakis [227] and Wang et
al. [234] focus on notions of density based on k-cliques and/or triangles. The densest-subgraph
problem has also been studied in different settings, such as streaming/dynamic context [21, 38, 76],
and top-k fashion [22, 94, 183].

10
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2.2.4 Substructures in multilayer networks

A number of recent contributions have emerged on the problem of extracting dense structure
from a set of multiple graphs sharing the same vertex set, which is a setting equivalent to the
multilayer one. Jethava and Beerenwinkel [136] define the densest common subgraph problem,
i.e., find a subgraph maximizing the minimum average degree over all input graphs, and devise
a linear-programming formulation and a greedy heuristic algorithm for it. Reinthal et al. [195]
provide a Lagrangian relaxation of the Jethava and Beerenwinkel’s linear-programming formula-
tion, which can be solved more efficiently. Semertzidis et al. [210] introduce three more variants
of the problem, whose goal is to maximize the average average degree, the minimum minimum
degree, and the average minimum degree, respectively. They show that the average-average vari-
ant easily reduces to the traditional densest-subgraph problem, and that the minimum-minimum
variant can be exactly solved by a simple adaptation of the classic algorithm for core decom-
position. They also devise heuristics for the remaining two variants. A very recent work by
Charikar et al. [56] further focuses on the minimum-average and average-minimum formulations,
by providing several theoretical findings, including NP-hardness, hardness of the approximation
(for both minimum-average and average-minimum), an integrality gap for the linear-programming
relaxation introduced in [136, 195] (for minimum-average), a characterization in terms of parame-
terized complexity (for average-minimum).

Other contributions in this area deal with specific cases of 2-layer networks [238, 213] and with
the community-detection problem [37, 181, 188, 51, 220, 225, 243]. Boden et al. [41] study subspace
clustering for multilayer graphs, i.e., find clusters of vertices that are densely connected by edges
with similar labels for all possible label sets. Yan et al. [241] introduce the problem of mining
closed relational graphs, i.e., frequent subgraphs of a multilayer graph exhibiting large minimum
cut. Jiang et al. [137] focus on extracting frequent cross-graph quasi-cliques, i.e., subgraphs that are
quasi-cliques in at least a fraction of layers equal to a certain minimum support and have size larger
than a given threshold. Interdonato et al. [135] are the first to study the problem of local community
detection in multilayer networks, i.e., when a seed vertex is given and we want to reconstruct its
community by having only a limited local view of the network. Finally, Zhu et al. [247] address the
problem of finding the k most diversified d-coherent cores, i.e., the k subgraphs having minimum
degree at least d that maximize the coverage of the vertices.

In Chapter 3 we introduce a formulation of the densest-subgraph problem in multilayer networks
that trades off between high density and number of layers where the high density is observed. More-
over, we show that our formulation generalizes the minimum-average densest-common-subgraph
problem studied in [56, 136, 195, 210] and our method to solve our formulation provides approxi-
mation guarantees for this definition as well. Furthermore, we show how to speed-up the problem
of finding frequent cross-graph quasi-cliques [137].

2.2.5 Substructures in temporal networks

A number of works on extracting dense structures from a temporal network focus on the notion
of densest subgraph introduced above. The densest common subgraph problem introduced by
Jethava and Beerenwinkel [136] considers as input a set of graphs sharing the same vertex set,
which can thus also be interpreted as a temporal network. The theoretical advancements [195, 56]
and the variants of the problem [210] later introduced are valid for the temporal scenario al well.

Complementary works focus on variants of the densest-subgraph-discovery problem. Rozen-
shtein et al. study the problem of discovering dense temporal subgraphs whose edges occur in
short time intervals considering the exact timestamp of the occurrences [200], and the problem of
partitioning the timeline of a temporal network into non-overlapping intervals, such that the inter-
vals span subgraphs with maximum total density [199]. Epasto et al. [76] deal with the problem
of maintaining the densest subgraph in a dynamic setting.

Attention in the literature has also been devoted to densities other than the average degree. The
notion of ∆-clique, as a set of vertices in which each pair is in contact at least every ∆ timestamps,
has been proposed in [231, 126]. Bentert et al. [35] introduce the ∆-k-plex, a relaxation of ∆-clique
in which each vertex has an edge to all but at most k−1 vertices at least once every ∆ consecutive
timestamps. Li et al. [160] study the problem of finding the maximum (θ,∆)-persistent k-core in
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a temporal network, i.e., the largest subgraph that is a connected k-core in all the subintervals of
duration θ of a given temporal interval ∆.

A different, but still slightly related body of literature focuses on other definitions of tem-
poral patterns, such as frequent evolution patterns in temporal attributed graphs [36, 134, 67],
link-formation rules in temporal networks [49, 159], frequency-estimation algorithms for counting
temporal motifs [149, 166], finding a small vertex set whose removal eliminates all temporal paths
connecting two designated terminal vertices [248], finding a subgraph that maximizes the sum of
edge weights in a network whose topology remains fixed but edge weights evolve over time [42, 170],
and the discovery of dynamic relationships and events [65], or of correlated activity patterns [106].

The work enclosed in Chapter 4 differs from all the above ones as our notions do not correspond
(or are straightforwardly reducible) to any of those temporal patterns.

2.2.6 Substructures in signed networks

The concept of structural balance first appears as psychological theory of balance in triangles of
sentiments [124]. Signed networks are later introduced in the seminal work by Harary [121], who
also generalizes the balance theory to signed networks [52]. Harary and Kabell develop a simple
algorithm to test whether a given signed network is balanced [122] by enumerating the cycles in the
network containing an even number of negative edges; in this case, the network can be partitioned
into two clusters of nodes having only positive edges within and only negative edges in-between.
A complete signed network is balanced if and only if all its triangles are balanced [73]. Akiyama
et al. [5] study how to estimate the minimum number of sign changes required so that a signed
network satisfies the balance property. Recent works link spectral properties of signed networks
to the balance theory. Hou et al. [128] prove that a signed network is balanced if and only if
the smallest eigenvalue of the signed Laplacian is 0. Moreover, [129] investigates the relationship
between the smallest eigenvalue of the signed Laplacian and the level of balance of a signed network.

A fundamental problem studied in signed networks is correlation clustering [24], i.e., partition
the nodes into clusters so as to maximize (minimize) the number of edges that “agree” (“disagree”)
with the partitioning. The 2-correlation-clustering problem [60], also known as the frustration-
index problem [14], is also widely studied.

Signed graphs have also been studied in different contexts. Guha et al. [119] and Leskovec et
al. [158] study directed signed graphs and develop status theory, which complements balance theory,
to reason about the importance of the vertices in such graphs. Other lines of research include edge
and vertex classification [54, 221], link prediction [157, 219], community detection [3, 9, 24, 218],
recommendation [222], and more. A detailed survey on the topic is provided by Tang et al. [223].

A few recent works explore the problem of finding antagonistic communities in signed networks.
Lo et al. consider directed graphs and search for strongly-connected positive subgraphs that are
negative bi-cliques [167], which severely limits the size of the resulting communities. A relaxed
variant for undirected networks was described in subsequent work [100]. Chu et al. propose a
constrained-programming objective to find k warring factions [59], as well as an efficient algorithm
to find local optima.

The problem we study in Chapter 5 could be seen at the intersection of correlation clustering
and the problem of identifying antagonistic communities: we search for two clusters while we allow
vertices not to be part of any cluster.

2.2.7 Scientific migration and network analysis

The mobility of scientists is a topic of broad interest that has been investigated in a series of
works. It is studied in [108] adopting an economic point of view mixed with the traditional
sociology of science. Saxenian [206] and Agrawal et al. [2] discuss about the concept of brain drain
and argue that connections between migrant scientists and their home countries are persistent in
time and might ease knowledge transfer backward. For these reasons, they call this phenomenon
brain circulation or brain bank. Since reliable data sources about the topic are often problematic,
Franzoni et al. [90] devise a survey with the intent of providing consistent data about cross-country
researches. [177] explores how Scopus3 can be exploited as data source for the study of international

3https://www.scopus.com
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scientific mobility for countries with high adoption of the platform. The authors of [177] do not
propose any network model, while they show quantitative metrics and general trends about the
observed countries and researchers. A recent study by Verginer et al. [230] describes a method to
extract mobility networks from a collection of four bibliographic data sources to characterize the
mobility of scientists at city granularity.

Human migration was studied by means of complex networks in the recent past. [81] defines the
international migration network as temporal weighted direct network having countries as nodes
and whose edges represent stocks of migrants. Following up the seminal work by Fagiolo et al. [81],
many other approaches are proposed with similar purposes, studying for example human migration
from a multilayer perspective using data gathered from social networks [34]. A complementary
work [82] correlates per-capita income and labor productivity with human migration and network
centrality. It has been explored also how to build complex networks from worldwide migration
flows to identify a socioeconomic indicator that explains the reasons behind the phenomenon [53].
Finally, Robinson et al. [197] propose a machine learning approach to predict long-term human
mobility.

In Chapter 6 we propose novel attempt to model and analyze human migration, the migration
of the scientific population in particular, by means of network analysis. We follow up the work
by Bohannon and Doran [43] which claims that ORCID data can be used to survey scientific
migration. [43] provides a collection of basic statistics about the dataset without deepening the
temporal evolution of the phenomenon nor introducing a network approach.

2.2.8 Network visualization

Many network visualizations have been proposed in literature in order to graphically express specific
characteristics, properties, and patterns of networks [69, 125, 140]. An example is reported in
Figure 2.1 in which nodes’ size and color highlight the degree centrality of the vertices, and nodes’
position depicts a strong community structure of the network.

Force-based visualizations map an energy function to the desired layout and minimize it [140];
among the most famous, we recall the Fruchterman-Reingold [93] and the Kamada-Kawai [138]
algorithms. Bastert and Matuszewski [27] propose a layout for directed networks to empathize
the the flow direction. Hive plots [150] place nodes on radially oriented linear axes according to
a coordinate system defined by nodes characteristics and/or network properties. Eigenvectors are
exploited for visualizing networks in different works [191, 147, 48]. In particular, [152] studies the
application of clustering, prediction, and visualization methods to signed networks by using the
signed Laplacian and its eigenvalue decomposition. In particular, the proposed visualization wants
show a clustering of the nodes.

In Chapter 8 we propose a novel visualization algorithm targeted to signed networks. We
borrow the theoretical principles of Chapter 5 and [152] to highlight structural balance properties
of a given signed network.
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Chapter 3

Core decomposition in multilayer
networks

In social media and social networks, as well as in several other real-world contexts – such as bio-
logical and financial networks, transportation systems and critical infrastructures – there might be
multiple types of relation among entities. Data in these domains is typically modeled as a a graph
composed of a superimposition of different layers, i.e., a graph where multiple edges of different
types may exist between any pair of vertices [70, 51, 155]. In the literature different terminologies
have been used to refer to graphs of this kind: multilayer networks, multiplex networks, multi-
dimensional networks, multirelational networks, multislice networks, and more. There is no real
uniformity in this regard, and the various terms may also refer to slightly different concepts. In this
work we deal with networks composed of multiple layers, with no inter-layer links, and hereinafter
use the term “multilayer networks” to refer to them.1

In this chapter we study the problem of core decomposition in multilayer networks: although the
number of multilayer cores can be exponential in the number of layers, we devise efficient algorithms
to compute the complete core decomposition. However, efficiency of the core decomposition is
not enough. Given the potentially high number of cores, we need to provide the data analyst
with additional tools to browse through the output, being able to focus only on the patterns of
interest. The situation resembles that of the classic association rules and frequent itemsets mining:
a potentially exponential output, efficient algorithms to extract all the patterns, the need to define
concise summaries of the extracted knowledge, and the opportunity of using the extracted patterns
as building blocks for more sophisticated analyses.

Going in this direction, we present a series of applications built on top of our multilayer core
decomposition. First we focus on the problem of extracting only the maximal or, as we call them
in this work, the inner-most cores, i.e., cores that are not “dominated” by any other core As we
will see experimentally, inner-most cores are orders of magnitude less than all the cores. Therefore,
it is interesting to develop algorithms that effectively exploit the maximality property and extract
inner-most cores directly, without first computing a complete decomposition. Then, we show how
multilayer core decomposition finds application to the problem of densest-subgraph extraction from
multilayer networks [136, 56]. As a further application, we exploit multilayer core decomposition to
speed-up the extraction of frequent cross-graph quasi-cliques [137]. Finally, we show how multilayer
core decomposition can be used to generalize the community-search problem [215] to the multilayer
setting.

Challenges, contributions, and roadmap

Let G = (V,E,L) be a multilayer graph, where V is a set of vertices, L is a set of layers, and

E ⊆ V ×V ×L is a set of edges. Given an |L|-dimensional integer vector ~k = [k`]`∈L, the multilayer
~k-core of G is a maximal subgraph whose vertices have at least degree k` in that subgraph, for all

1Another quite popular terminology adopted in the literature to denote networks with multiple layers and no
inter-layer links is “multiplex networks”.
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layers ` ∈ L [19]. Vector ~k is dubbed coreness vector of that core. The set of all non-empty and
distinct multilayer cores constitutes the multilayer core decomposition of G. A major challenge of
computing the complete core decomposition of multilayer networks is that the number of multilayer
cores can be exponential in the number of layers, which makes the problem inherently hard, as the
potentially exponential size of the output precludes the existence of polynomial-time algorithms in
the general case. In fact, unlike the single-layer case where cores are all nested into each other, no
total order exists among multilayer cores. Rather, they form a core lattice defining a relation of
partial containment. As a result, the multilayer core-decomposition problem cannot be solved in
linear time like in single-layer graphs: algorithms in the multilayer setting must be crafted carefully
to handle this exponential blowup, and avoid, to the maximum possible extent, the computation
of unnecessary (i.e., empty or non-distinct) cores.

A näıve way of computing a multilayer core decomposition consists in generating all possible
coreness vectors ~k, run for each vector a subroutine that iteratively removes vertices whose degree
in some layer ` is less than the `-th component of ~k, and filter out duplicated cores. This method
has evident efficiency issues, as every core is computed starting from the whole input graph, and
a significant number of unnecessary (i.e., empty or non-distinct) cores may be generated. Within
this view, our first contribution is to devise three algorithms that exploit effective pruning rules
during the visit of the lattice, thus being much more efficient than the näıve counterpart. The first
two methods are based on a bfs and a dfs strategy, respectively: the bfs method exploits the rule
that a core is contained into the intersection of all its fathers in the lattice, while the dfs method
iteratively performs a single-layer core decomposition that computes cores along a path from a
non-leaf lattice core to a leaf all at once. The third method adopts a hybrid strategy embracing
the main pros of bfs and dfs, and equipped with a look-ahead mechanism to skip non-distinct
cores.

We then shift the attention to the problem of computing all and only the inner-most cores,
i.e., the cores that are not dominated by any other core in terms of their index on all the layers.
A straightforward way of approaching this problem would be to first compute the complete core
decomposition, and then filter out the non-inner-most cores. However, as the inner-most cores are
usually much less than the overall cores, it would be desirable to have a method that effectively
exploits the maximality property and extracts the inner-most ones directly, without computing a
complete decomposition. The design of an algorithm of this kind is an interesting challenge, as it
contrasts the intrinsic conceptual properties of core decomposition, based on which a core of order
k (in one layer) can be efficiently computed from the core of order k−1, of which it is a subset, thus
naturally suggesting a bottom-up discovery. For this reason, at first glance, the computation of the
core of the highest order would seem as hard as computing the overall core decomposition. In this
work we show that, by means of a clever core-lattice visiting strategy, we can prune huge portions
of the search space, thus achieving higher efficiency than computing the whole decomposition.

As a major application of multilayer core decomposition, we then focus on the problem of
extracting the densest subgraph from a multilayer network. Other methods in the literature, i.e.,
the ones defined in [56, 136, 195, 210], aim at extracting a subgraph that maximizes the minimum
average degree over all layers. A major limitation of this formulation is that, considering all layers,
even the noisy/insignificant layers would contribute to selecting the output subgraph, which would
be not really dense, thus preventing us from finding a subgraph being dense in a still large subset of
layers. Another simplistic approach at the other end of the spectrum corresponds to flattening the
input multilayer graph and resorting to single-layer densest-subgraph extraction. However, this
would mean disregarding the different semantics of the layers, incurring in a severe information
loss. Within this view, in this work we generalize the problem studied in [56, 136, 195, 210] by
introducing a formulation that accounts for a trade-off between high density and number of layers
exhibiting the high density. Specifically, given a multilayer graph G = (V,E, L), the average-
degree density of a subset of vertices S in a layer ` is defined as the number of edges induced by S

in ` divided by the size of S, i.e., |E`[S]|
|S| . We define the multilayer densest subgraph as the subset

of vertices S∗ such that the function

max
L̂⊆L

min
`∈L̂

|E`[S∗]|
|S∗|

|L̂|β (3.1)

is maximized. β ∈ R+ is a parameter controlling the importance of the two sides of the same coin
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of our problem, i.e., high density and number of layers exhibiting such a density. It can be observed
that this problem statement naturally achieves the desired trade-off: the larger the subset L̂ of

selected layers, the smaller the minimum density min`∈L̂
|E`[S]|
|S| registered in those layers. Similarly

to the single-layer case in which the core decomposition can be used to obtain a 1
2 -approximation

of the densest subgraph, in this work we show that computing the multilayer core decomposition
of the input graph and selecting the core maximizing the proposed multilayer density function
achieves a 1

2|L|β -approximation for the general multilayer-densest-subgraph problem formulation,

and a 1
2 -approximation for the all-layer specific variant studied in [136, 56].

As a further application of our multilayer core-decomposition tool, we show how it can be
used as a profitable preprocessing step to speed-up the problem of extracting frequent cross-graph
quasi-cliques defined in [137]. Specifically, we prove that the search of frequent cross-graph quasi-
cliques can be circumstantiated to a number of restricted areas of the input multilayer graph,
corresponding to multilayer cores that comply with the quasi-clique condition. This allows for
skipping visiting unnecessary parts of the input graph, and, thus, speeding up the whole process,
no matter which specific algorithm is used.

Finally, we also provide a generalization of the community-search problem [215] to the multilayer
setting, and show how to exploit multilayer core decomposition to obtain optimal solutions to this
problem.

Summarizing, this work has the following contributions:

• We define the problem of core decomposition in multilayer networks, characterizing its use-
fulness, its relation to other problems, and its intrinsic complexity. We then devise three
algorithms that solve multilayer core decomposition efficiently based on different pruning
techniques (Section 3.2).

• We devise further algorithms that are specifically suited for the computation of the inner-
most cores only (Section 3.3).

• We study the problem of densest-subgraph extraction in multilayer networks, by devising a
novel formulation as an optimization problem that trades-off between high density and num-
ber of layers exhibiting high density. We exploit multilayer core decomposition to solve the
multilayer densest-subgraph problem with provable approximation guarantees (Section 3.4).

• We show how the multilayer core-decomposition tool can be exploited to speed up the ex-
traction of frequent cross-graph quasi-cliques (Section 3.5).

• We formulate the multilayer community-search problem and show that multilayer core de-
composition provides an optimal solution to this problem (Section 3.6).

An extensive experimental evaluation on a large variety of real multilayer networks is reported
in order to assess the effectiveness of the proposed methods in all the aforementioned contexts.
For each of these contexts, experiments are provided within the corresponding section.

3.1 Multilayer core decomposition and related problems

In this section we introduce the needed preliminaries and notation, we provide some fundamental
properties of multilayer cores, and then formally define all the problems studied in this work.

3.1.1 Multilayer core decomposition

We are given an undirected multilayer graph G = (V,E, L), where V is a set of vertices, L is a set of
layers, and E ⊆ V ×V ×L is a set of edges. Let E` denote the subset of edges in layer ` ∈ L. For a
vertex u ∈ V we denote by deg(u, `) and deg(u) its degree in layer ` and over all layers, respectively,
i.e., deg(u, `) = |{e = (u, v, `) : e ∈ E`}|, deg(u) = |{e = (u, v, `) : e ∈ E}| =

∑
`∈L deg(u, `).

For a subset of vertices S ⊆ V we denote by G[S] the subgraph of G induced by S, i.e.,
G[S] = (S,E[S], L), where E[S] = {e = (u, v, `) | e ∈ E, u ∈ S, v ∈ S}. For a vertex u ∈ V we
denote by degS(u, `) and degS(u) its degree in subgraph S considering layer ` only and all layers,
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A B C

D E F

Figure 3.1: Example 2-layer graph (solid edges refer to the first layer, while dashed edges to the

second layer) with the following ~k-cores: (0, 0) = (1, 0) = (0, 1) = (1, 1) = {A,B,C,D,E,F}, (2, 0) =
(2, 1) = {A,B,D,E,F}, (3, 0) = (3, 1) = {A,B,D,E}, (0, 2) = (1, 2) = (0, 3) = (1, 3) =
{B,C,E,F}, (2, 2) = {B,E,F} .

respectively, i.e., degS(u, `) = |{e = (u, v, `) : e ∈ E`[S]}|, degS(u) = |{e = (u, v, `) : e ∈ E[S]}| =∑
`∈L degS(u, `). Finally, let µ(`) and µ(L̂) denote the minimum degree of a vertex in layer ` and

in a subset L̂ ⊆ L of layers, respectively. Let also µ(S, `) and µ(S, L̂) denote the corresponding
counterparts of µ(`) and µ(L̂) for a subgraph (induced by a vertex set) S.

A core of a multilayer graph is characterized by an |L|-dimensional integer vector ~k = [k`]`∈L,
termed coreness vector, whose components k` denote the minimum degree allowed in layer `. This
corresponds to the notion of ~k-core introduced by Azimi-Tafreshi et al. [19] for the multilayer core-
percolation problem. We recall that Azimi-Tafreshi et al. do not study (or devise any algorithm for)
the problem of computing the entire core decomposition of a multilayer graph. Core percolation is
studied by analyzing a single core of interest computed with the simple iterative-peeling algorithm
(Algorithm 3.1). Formally:

Definition 3.1 (multilayer core and coreness vector [19]). Given a multilayer graph G = (V,E,L)

and an |L|-dimensional integer vector ~k = [k`]`∈L, the multilayer ~k-core of G is a maximal subgraph

G[C] = (C ⊆ V,E[C], L) such that ∀` ∈ L : µ(C, `) ≥ k`. The vector ~k is referred to as the coreness
vector of G[C].

Given a coreness vector ~k, we denote by C~k the corresponding core. Also, as a ~k-core is fully
identified by the vertices belonging to it, we hereinafter refer to it by its vertex set C~k and the
induced subgraph G[C~k] interchangeably.

It is important noticing that a set of vertices C ⊆ V may correspond to multiple cores. For
instance, in the graph in Figure 3.1 the set {A,B,D,E} corresponds to both (3, 0)-core and (3, 1)-core.
In other words, a multilayer core can be described by more than one coreness vector. However, as
formally shown next, among such multiple coreness vectors there exists one and only one that is
not dominated by any other. We call this vector the maximal coreness vector of C. In the example
in Figure 3.1 the maximal coreness vector of {A,B,D,E} is (3, 1).

Definition 3.2 (maximal coreness vector). Let G = (V,E,L) be a multilayer graph, C ⊆ V be a

core of G, and ~k = [k`]`∈L be a coreness vector of C. ~k is said maximal if there does not exist any

coreness vector ~k′ = [k′`]`∈L of C such that ∀` ∈ L : k′` ≥ k` and ∃ˆ̀∈ L : k′ˆ̀> kˆ̀.

Theorem 3.1. Multilayer cores have a unique maximal coreness vector.

Proof. We prove the theorem by contradiction. Assume two maximal coreness vectors ~k =
[k`]`∈L 6= ~k′ = [k′`]`∈L exist for a multilayer core C. As ~k 6= ~k′ and they are both maximal,

there exist two layers ˆ̀ and ¯̀ such that kˆ̀ > k′ˆ̀ and k′¯̀ > k¯̀. By definition of multilayer core

(Definition 3.1), it holds that ∀` ∈ L : µ(C, `) ≥ k`, µ(C, `) ≥ k′`. This means that the vector
~k∗ = [k∗` ]`∈L, with k∗` = max{k`, k′`},∀` ∈ L, is a further coreness vector of C. For this vector it

holds that ∀` 6= ˆ̀, ` 6= ¯̀ : k∗` ≥ k′`, k∗ˆ̀ > k′ˆ̀, and k∗¯̀ > k¯̀. Thus, ~k∗ dominates both ~k and ~k′, which

contradicts the hypothesis of maximality of ~k and ~k′. The theorem follows.

20



CHAPTER 3. CORE DECOMPOSITION IN MULTILAYER NETWORKS

The first (and main) problem we tackle in this work is the computation of the complete multi-
layer core decomposition, i.e., the set of all non-empty multilayer cores.

Problem 3.1 (Multilayer Core Decomposition). Given a multilayer graph G = (V,E, L),
find the set of all non-empty and distinct cores of G, along with their corresponding maximal
coreness vectors. Such a set forms what we hereinafter refer to as the multilayer core decomposition
of G.

3.1.2 Inner-most multilayer cores

Cores of a single-layer graph are all nested one into another. This makes it possible to define the
notions of (i) inner-most core, defined as the core of highest order, and (ii) core index (or core
number) of a vertex u, which is the highest order of a core containing u. In the multilayer setting
the picture is more complex, as multilayer cores are not necessarily all nested into each other. As
a result, the core index of a vertex is not unambiguously defined, while there can exist multiple
inner-most cores.

Definition 3.3 (inner-most multilayer cores). The inner-most cores of a multilayer graph are all

those cores with maximal coreness vector ~k = [k`]`∈L such that there does not exist any other core

with coreness vector ~k′ = [k′`]`∈L where ∀` ∈ L : k′` ≥ k` and ∃ˆ̀∈ L : k′ˆ̀> kˆ̀.

To this purpose, look at the example in Figure 3.1. It can be observed that: (i) cores are not
nested into each other, (ii) (3, 1)-core, (1, 3)-core and (2, 2)-core are the inner-most cores, and (iii)
vertices B and E belong to (inner-most) cores (3, 1), (1, 3), and (2, 2), thus making their core index
not unambiguously defined.

The second problem we tackle in this work is the development of smart algorithms to compute all
the inner-most cores, without the need of computing the complete multilayer core decomposition.

Problem 3.2 (Inner-most cores computation). Given a multilayer graph G = (V,E, L), find the
set of all non-empty and inner-most cores of G, along with their corresponding maximal coreness
vectors.

3.1.3 Multilayer densest subgraph

As anticipated in Section 3, the densest subgraph of a multilayer graph should provide a good
trade-off between large density and the number of layers where such a large density is exhibited.
We achieve this intuition by means of the following optimization problem:

Problem 3.3 (Multilayer Densest Subgraph). Given a multilayer graph G = (V,E,L), a
positive real number β, and a real-valued function δ : 2V → R+ defined as:

δ(S) = max
L̂⊆L

min
`∈L̂

|E`[S]|
|S|

|L̂|β , (3.2)

find a subset S∗ ⊆ V of vertices that maximizes function δ, i.e.,

S∗ = arg max
S⊆V

δ(S). (3.3)

The role of parameter β in Problem 3.3 is to control the importance of the two ingredients of the
objective function δ, i.e., density and number of layers exhibiting such a density: the smaller β the
larger the importance to be given to the former aspect (density), and vice versa. Also, as a nice side
effect, solving the Multilayer Densest Subgraph problem allows for automatically finding a
set of layers of interest for the densest subgraph S∗. In Section 3.4 we will show how to exploit
it to devise an algorithm with approximation guarantees for Multilayer Densest Subgraph,
thus extending to the multilayer case the intuition at the basis of the well-known 1

2 -approximation
algorithm [18, 55] for single-layer densest-subgraph extraction.
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3.1.4 Frequent cross-graph quasi-cliques

Another interesting insight into the notion of multilayer cores is about their relationship with
(quasi-)cliques. In single-layer graphs it is well-known that cores can be exploited to speed-up the
problem of finding cliques, as a clique of size k is guaranteed to be contained in the (k − 1)-core.
Interestingly, a similar relationship holds in the multilayer context too. Given a multilayer graph
G = (V,E,L), a layer ` ∈ L, and a real number γ ∈ (0, 1], a subgraph G[S] = (S ⊆ V,E[S], L)
of G is said to be a γ-quasi-clique in layer ` if all its vertices have at least γ(|S| − 1) neighbors
in layer ` within S, i.e., ∀u ∈ S : degS(u, `) ≥ γ(|S| − 1). Jiang et al. [137] study the problem of
extracting frequent cross-graph quasi-cliques, defined next.

Problem 3.4 (Frequent cross-graph quasi-cliques mining [137]). Given a multilayer graph G =
(V,E,L), a function Γ : L → (0, 1] assigning a real value to every layer in L, a real number
min sup ∈ (0, 1], and an integer min size ≥ 1, find all maximal subgraphs G[S] of G of size larger
than min size such that there exist at least min sup× |L| layers ` for which G[S] is a Γ(`)-quasi-
clique.

In Section 3.5 we will prove that a frequent cross-graph quasi-clique of size K is necessarily
contained into a ~k-core described by a maximal coreness vector ~k = [k`]`∈L such that there exists
a fraction of at least min sup layers ` where k` = bΓ(`)(K − 1)c. Based on this property we will
show how, by exploiting multilayer core decomposition as a preprocessing step, we can speed-up
any algorithm for Problem 3.4.

3.1.5 Multilayer community search

The last application of multilayer core decomposition we study is the so called community search
problem. Given a graph G = (V,E) and a set VQ ⊆ V of query vertices, a very wide family
of problem requires to find a connected subgraph H of G, which contains all query vertices VQ
and exhibits an adequate degree of cohesiveness, compactness, or density. This type of problem
has been termed in the literature in different ways, e.g., community search [215, 64, 25], seed set
expansion [11, 145], connectivity subgraphs [83, 226, 202, 6, 201], just to mention a few: see [132]
for a recent survey. In this work we adopt the early definition by Sozio and Gionis [215] which
measures the cohesiveness of the resulting subgraph by means of the minimum degree inside the
subgraph, and we adapt it to the multilayer setting as follows.

Problem 3.5 (Multilayer Community Search). Given a multilayer graph G = (V,E,L), a set of
vertices S ⊆ V , and a set of layers L̂ ⊆ L, we define the minimum degree of a vertex in S, within
the subgraph induced by S and L̂ as:

ϕ(S, L̂) = min
`∈L̂

min
u∈S

degS(u, `). (3.4)

Given a positive real number β, we define a real-valued density function ϑ : 2V → R+ as:

ϑ(S) = max
L̂⊆L

ϕ(S, L̂)|L̂|β . (3.5)

Given a set VQ ⊆ V of query vertices, find a subgraph containing all the query vertices and
maximizing the density function, i.e.,

S∗ = arg max
VQ⊆S⊆V

ϑ(S). (3.6)

In Section 3.6 we will show how to adapt multilayer core decomposition to efficiently provide
an exact solution to Problem 3.5.

3.2 Algorithms for multilayer core decomposition

A major challenge of the Multilayer Core Decomposition problem is that the number of
multilayer cores to be output may be exponential in the number of layers. Specifically, denoting by
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3,0,0 0,3,0 0,0,32,1,0 2,0,1 0,1,21,0,21,2,0 0,2,11,1,1

2,0,0 1,1,0 0,2,0 1,0,1 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

0,0,0

Figure 3.2: Section of core lattice of a 3-layer graph.

K` the maximum order of a core for layer `, the number of multilayer cores is O(
∏
`∈LK`). This

makes Multilayer Core Decomposition intrinsically hard: in the general case, no polynomial-
time algorithm can exist. The challenge in this context hence lies in handling this exponential
blowup by early recognizing and skipping unnecessary portions of the search space, such as non-
distinct and/or empty cores.

Given a multilayer graph G = (V,E, L) and a coreness vector ~k = [k`]`∈L, finding the corre-
sponding core can easily be solved in O(|E| + |V | × |L|) time by iteratively removing a vertex u
having degG′(u, `) < k` in some layer `, where G′ denotes the current graph resulting from all pre-
vious vertex removals (Algorithm 3.1, where the set S of vertices to be considered is set to S = V ).
Therefore, a näıve algorithm to compute the entire multilayer core decomposition consists of gen-
erating all possible coreness vectors, run the multilayer core-detection algorithm just described for
each of such vectors, and retain only non-empty and distinct cores. This näıve method requires all
vectors [k`]`∈L, where each k` component is varied within the interval [0..K`].

2 This corresponds
to a Θ(

∏
`∈LK`) number of vectors. As a result, the overall time complexity of the method is

O
(
(|E|+ |V | × |L|)×

∏
`∈LK`

)
.

This approach has two major weaknesses: (i) each core is computed starting from the whole
input graph, and (ii) by enumerating all possible coreness vectors beforehand a lot of non-distinct
and/or empty (thus, unnecessary) cores may be computed. In the following we present three
methods that solve Multilayer Core Decomposition much more efficiently.

3.2.1 Search space

Although multilayer cores are not all nested into each other, a notion of partial containment can
still be defined. Indeed, it can easily be observed that a ~k-core with coreness vector ~k = [k`]`∈L is

contained into any ~k′-core described by a coreness vector ~k′ = [k′`]`∈L whose components k′` are all
no more than components k`, i.e., k′` ≤ k`, ∀` ∈ L. This result is formalized next:

Fact 3.1. Given a multilayer graph G = (V,E, L) and two cores C~k and C~k′ of G with coreness

vectors ~k = [k`]`∈L and ~k′ = [k′`]`∈L, respectively, it holds that if ∀` ∈ L : k′` ≤ k`, then C~k ⊆ C~k′ .

Proof. Combining the definition of multilayer core (Definition 3.1) and the hypothesis on vectors
~k and ~k′, it holds that ∀` ∈ L : µ(C~k, `) ≥ k` ≥ k′`. This means that C~k satisfies the definition of
~k′-core, thus implying that all vertices in C~k are part of C~k′ too. The fact follows.

Based on Fact 3.1, the search space of our problem can be represented as a lattice defining a
partial order among all cores (Figure 3.2). Such a lattice, which we call the core lattice, corresponds
to a dag where nodes represent cores,3 and links represent relationships of containment between
cores (a “father” node contains all its “child” nodes). We assume the core lattice keeping track
of non-empty and not necessarily distinct cores: a core is present in the lattice as many times as

2K` values can be derived beforehand by computing a single-layer core decomposition in each layer `. This
process overall takes O(|E|) time.

3Throughout the chapter we use the term “node” to refer to elements of the core lattice, and “vertex” for the
elements of the multilayer graph.
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Algorithm 3.1: ~k-core

Input: A multilayer graph G = (V,E, L), a set S ⊆ V of vertices, an |L|-dimensional

integer vector ~k = [k`]`∈L.

Output: The ~k-core C~k of G.
1 while ∃u ∈ S, ∃` ∈ L : degS(u, `) < k` do
2 S ← S \ {u}
3 C~k = S

Algorithm 3.2: bfs-ml-cores

Input: A multilayer graph G = (V,E, L).
Output: The set C of all non-empty multilayer cores of G.

1 C←∅, Q←{[0]|L|}, F([0]|L|)←∅ // F keeps track of father nodes

2 while Q 6= ∅ do

3 dequeue ~k = [k`]`∈L from Q

4 if |{k` : k` > 0}| = |F(~k)| then // Corollary 3.2

5 F∩ ←
⋂
F∈F(~k) F // Corollary 3.1

6 C~k ← ~k-core(G,F∩,~k) // Algorithm 3.1

7 if C~k 6= ∅ then
8 C←C ∪ {C~k}
9 forall ` ∈ L do // enqueue child nodes

10 ~k′ ← [k1, . . . , k` + 1, . . . , k|L|]

11 enqueue ~k′ into Q

12 F(~k′)← F(~k′) ∪ {C~k}

the number of its coreness vectors. Each level i of the lattice represents the children of cores at
lattice level i− 1. In particular, level i contains all those cores whose coreness vector results from
increasing one and only one component of its fathers’ coreness vector by one. Formally, a lattice
level i contains all ~k-cores with coreness vector ~k = [k`]`∈L such that there exists a core at lattice

level i − 1 with coreness vector ~k′ = [k′`]`∈L where: ∃` ∈ L : k` = k′` + 1, and ∀ˆ̀ 6= ` : kˆ̀ = k′ˆ̀.

As a result, level 0 contains the root only, which corresponds to the whole input graph (i.e., the
[0]|L|-core), the leaves correspond to inner-most cores, and any non-leaf node has at least one and
at most |L| children. Moreover, every level i contains all cores whose coreness-vector components
sum to i.

Solving the Multilayer Core Decomposition problem is hence equivalent to building the
core lattice of the input graph. The efficient methods we present next are all based on smart
core-lattice building strategies that extract cores from smaller subgraphs, while also attempting to
minimize the visit/computation of unnecessary (i.e., empty/non-distinct) cores.

3.2.2 Breadth-first algorithm

Two interesting corollaries can be derived from Fact 3.1. First, any non-empty ~k-core is necessarily
contained in the intersection of all its father nodes of the core lattice. Second, any non-empty ~k-core
has exactly as many fathers as the number of non-zero components of its coreness vector ~k:

Corollary 3.1. Given a multilayer graph G, let C be a core of G and F(C) be the set of fathers
of C in the core lattice of G. It holds that C ⊆

⋂
Ĉ∈F(C) Ĉ.

Proof. By definition of core lattice, the coreness vector of all father cores F(C) of C is dominated
by the coreness vector of C. Thus, according to Fact 3.1, it holds that C ⊆ C ′, ∀C ′ ∈ F(C).
Assume a vertex u ∈ C, u /∈

⋂
Ĉ∈F(C) Ĉ exists. This implies that there exists a father core

C ′ ∈ F(C) such that C 6⊆ C ′, thus leading to a contradiction.
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Algorithm 3.3: dfs-ml-cores

Input: A multilayer graph G = (V,E, L).
Output: The set C of all non-empty multilayer cores of G.

1 C← {V }, R← L, Q← {[0]|L|}, Q′ ← ∅
2 while R 6= ∅ do

3 remove a layer from R1; forall ~k ∈ Q do

4 ∀`∈R s.t. k` = 0 : Q′ ← Q′ ∪ {~k′ | C~k′ ∈ ~k-coresPath(G,C~k,
~k, `)}

5 ∀`∈L \R s.t. k` = 0 : C← C ∪ ~k-coresPath(G,C~k,
~k, `)

6 C← C ∪ {C~k | ~k ∈ Q′}, Q← Q′, Q′ ← ∅

Corollary 3.2. Given a multilayer graph G, let C be a core of G with coreness vector ~k = [k`]`∈L,
and F(C) be the set of fathers of C in the core lattice of G. It holds that |F(C)| = |{k` : ` ∈
L, k` > 0}|.

Proof. By definition of core lattice, a core C at level i is assigned a coreness vector whose compo-
nents sum to i, while the fathers F(C) of C have coreness vector whose components sum to i− 1.
Then, the coreness vector of a father of C can be obtained by decreasing a non-zero component
of the coreness vector of C by one (zero components would lead to negative coreness vector com-
ponents, thus they do not count). This means that the number of fathers of C is upper-bounded
by the non-zero components of its coreness vector. More precisely, the number of fathers of C is
exactly equal to this number, as, according to Corollary 3.1, no father of C can be empty, otherwise
C would be empty too and would not be part of the core lattice.

The above corollaries pave the way to a breadth-first search building strategy of the core lattice,
where cores are generated level-by-level by properly exploiting the rules in the two corollaries
(Algorithm 3.2). Although the worst-case time complexity of this bfs-ml-cores method remains
unchanged with respect to the näıve algorithm, the bfs method is expected to be much more
efficient in practice, due to the following main features: (i) cores are not computed from the initial
graph every time, but from a much smaller subgraph given by the intersection of all their fathers;
(ii) in many cases, i.e., when the rule in Corollary 2 (which can be checked in constant time)
arises, no overhead due to the intersection among father cores is required; (iii) the number of
empty cores computed is limited, as no empty core may be generated from a core that has already
been recognized as empty.

3.2.3 Depth-first algorithm

Although being much smarter than the näıve method, bfs-ml-cores still has some limitations.
First, it visits every core as many times as the number of its fathers in the core lattice. Also,
as a second limitation, consider a path P of the lattice connecting a non-leaf node to a leaf by
varying the same `-th component of the corresponding coreness vectors. It is easy to see that
the computation of all cores within P with bfs-ml-cores takes O(|P| × (|E| + |V | × |L|)) time,
as the core-decomposition process is re-started at every level of the lattice. This process can in
principle be performed more efficiently, i.e., so as to take O(|P|+ |E|+ |V |×|L|) time, as it actually
corresponds to (a simple variant of) a single-layer core decomposition.

To address the two above cons, we propose a method performing a depth-first search on
the core lattice. The method, dubbed dfs-ml-cores (Algorithm 3.3), iteratively picks a non-

leaf core ~k = [k1, . . . , k`, . . . , k|L|] and a layer ` such that k` = 0, and computes all cores

[k1, . . . , k` + 1, . . . , k|L|], . . . , [k1, . . . ,K`, . . . , k|L|] with a run of the ~k-coresPath(G,C~k,
~k, `) sub-

routine. Specifically, such a subroutine returns the cores corresponding to all coreness vectors
obtained by varying the `-th component of ~k within [0, . . . ,K`]. Also, it discards vertices violating

the coreness condition specified by vector ~k, i.e., vertices whose degree in some layer ˆ̀ 6= ` is less
than the ˆ̀-th component of ~k. The pseudocode of ~k-coresPath is reported as Algorithm 3.4: it
closely resembles the traditional core-decomposition algorithm for single-layer graphs, except for
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Algorithm 3.4: ~k-coresPath

Input: A multilayer graph G = (V,E, L), a set S ⊆ V of vertices, an |L|-dimensional

integer vector ~k = [k`]`∈L, and a layer ` ∈ L.

Output: The set C~k,` of the multilayer cores of G varying the `-th component of ~k.

1 C~k,` ← ∅, D ← ∅
2 forall u ∈ S do
3 D(degS(u, `))← D(degS(u, `)) ∪ {u}
4 forall k ∈ [0, . . . ,K`] do
5 while D(k) 6= ∅ do
6 remove a vertex u from D(k)
7 S ← S \ {u}
8 forall v ∈ S : (u, v, `) ∈ E ∧ degS(v, `) ≥ k do
9 D(degS(v, `) + 1)← D(degS(v, `) + 1) \ {v}

10 D(degS(v, `))← D(degS(v, `)) ∪ {v}
11 forall ˆ̀∈ L \ {`} do

12 forall v ∈ S : (u, v, ˆ̀) ∈ E ∧ degS(v, ˆ̀) < kˆ̀ do
13 D(degS(v, `))← D(degS(v, `)) \ {v}
14 D(k)← D(k) \ {v}

15 C~k,` ← C~k,` ∪ {S}

the addition of the cycle starting at Line 11, which identifies the aforementioned vertices to be
discarded.

A side effect of this strategy is that the same core may be computed multiple times. As an
example, in Figure 3.2 the (1, 2, 0)-core is computed by core decompositions initiated at both
cores (1, 0, 0) and (0, 2, 0). To reduce (but not eliminate) these multiple core computations, the
dfs-ml-cores method exploits the following result.

Theorem 3.2. Given a multilayer graph G = (V,E, L), let [`1, . . . , `|L|] be an order defined over set

L. Let Q0 = {[0]|L|}, and, ∀i ∈ [1..|L|], let Qi = {~k′ | C~k′ ∈ ~k-coresPath(G,C~k,
~k, `),~k ∈ Qi−1, ` ∈

(`i..`|L|], k` = 0} and Ci = {~k′ | C~k′ ∈ ~k-coresPath(G,C~k,
~k, `),~k ∈ Qi−1, ` ∈ [`1..`i], k` = 0}. The

set C = {C~k | ~k ∈
⋃|L|
i=0 Qi ∪

⋃|L|
i=1 Ci} is the multilayer core decomposition of G.

Proof. The multilayer core decomposition of G is formed by the union of all non-empty and distinct
cores of all paths P of the lattice connecting a non-leaf node to a leaf by varying the same `-th
component of the corresponding coreness vectors.

For any i ∈ [1..|L|], let Pi ∈ P denote the subset of paths whose coreness vectors ~k′ = [k′`]`∈L
have a number of non-zero components equal to i. By definition of Qi and Ci it holds that all
coreness vectors ~k′ of the cores along the paths in Pi are in Qi∪Ci = {~k′ : |{k′` : ` ∈ L, k′` > 0}| = i}.
Also, since some of the paths may overlap, all cores along the paths Pi are computed by executing
single-layer core decompositions initiated at a subset of cores along the paths Pi−1. Such a subset

of cores is represented by the subset of coreness vectors within Qi−1 = {~k : |{k` : ` ∈ [`2..`|L|], k` >
0}| = i− 1}. Moreover, note that single-layer core decompositions for the layers where k` 6= 0 are

discarded, as it boils down to visit cores in Pi−1. As a result, the set {C~k | ~k ∈
⋃|L|
i=0 Qi∪

⋃|L|
i=1 Ci}

correctly contains all possible coreness vectors of the core lattice.

Referring to the pseudocode in Algorithm 3.3, the result in Theorem 3.2 is implemented by
keeping track of a subset of layers R ⊆ L. At the beginning R = L, and, at each iteration of the
main cycle, a layer ` is removed from it. The output of the algorithm is independent of the layer-
removal order, i.e., the algorithm is guaranteed to be sound and complete regardless of the layer
ordering. Instead, layer-removal order may in principle affect running time. In our experiments
we tested several orders: random, non-decreasing average-degree density, non-increasing average-
degree density. All those orders gave comparable results in terms of running time, we therefore
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Algorithm 3.5: hybrid-ml-cores

Input: A multilayer graph G = (V,E, L).
Output: The set C of all non-empty multilayer cores of G.

1 Q←{[0]|L|}, F([0]|L|)←∅ // F keeps track of father nodes

2 Q′←
⋃
`∈L{~k | C~k ∈ ~k-coresPath(G,V,[0]|L|,`)} // looked-ahead cores

3 C← {C~k | ~k ∈ Q′}
4 while Q 6= ∅ do

5 dequeue ~k = [k`]`∈L from Q

6 if |{k` : k` > 0}| = |F(~k)| ∧ ~k /∈ Q′ then // Corollary 3.2

7 F∩ ←
⋂
F∈F(~k) F // Corollary 3.1

8 C~k ← ~k-core(G,F∩,~k) // Algorithm 3.1

9 if C~k 6= ∅ then
10 C←C ∪ {C~k}
11 ~dµ(C~k)← [µ(C~k, `)]`∈L // look-ahead mechanism (Corollary 3.3)

12 Q′ ← Q′ ∪ {~k′ | ~k ≤ ~k′ ≤ ~dµ(C~k)}

13 if ~k ∈ Q′ then
14 forall ` ∈ L do // enqueue child nodes

15 ~k′ ← [k1, . . . , k` + 1, . . . , k|L|]

16 enqueue ~k’ into Q

17 F(~k′)← F(~k′) ∪ {C~k}

decided to stick to the the simplest one, i.e., random, in our implementation. Set Q keeps
track of (the coreness vector of) all lattice nodes where the current single-layer core-decomposition
processes need to be run from. Q′ stores the (coreness vector of) cores computed from each node
in Q and for each layer within R, while also forming the basis of Q for the next iteration.

In summary, compared to bfs-ml-cores, the dfs method reduces both the time complexity of
computing all cores in a path P from a non-leaf node to a leaf of the core lattice (from O(|P| ×
(|E|+ |V |× |L|)) to O(|P|+ |E|+ |V |× |L|)), and the number of times a core is visited, which may
now be smaller than the number of its fathers. On the other hand, dfs-ml-cores comes with the
aforementioned issue that some cores may be computed multiple times (while in bfs-ml-cores every
core is computed only once). Furthermore, cores are computed starting from larger subgraphs, as
intersection among multiple fathers can not exploited.

3.2.4 Hybrid algorithm

The ultimate output of both bfs-ml-cores and dfs-ml-cores correctly corresponds to all distinct
cores of the input graph and the corresponding maximal coreness vectors.4 Nevertheless, none of
these methods is able to skip the computation of non-distinct cores. Indeed, both methods need
to compute every core C as many times as the number of its coreness vectors in order to guarantee
completeness. To address this limitation we devise a further method where the main peculiarities of
both bfs-ml-cores and dfs-ml-cores are joined into a “hybrid” lattice-visit strategy. This hybrid-
ml-cores method exploits the following corollary of Theorem 3.1, stating that the maximal coreness
vector of a core C is given by the vector containing the minimum degree of a vertex in C for each
layer:

Corollary 3.3. Given a multilayer graph G = (V,E, L), the maximal coreness vector of a multi-

layer core C of G corresponds to the |L|-dimensional integer vector ~dµ(C) = [µ(C, `)]`∈L.

4Pseudocodes in Algorithms 3.2 and 3.3 guarantee this as cores are added to a set C that does not allow
duplicates. Any real implementation can easily take care of this by checking whether a core is already in C, and
update it in case the corresponding coreness vector contains the previously-stored one.
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Figure 3.3: Running example of our algorithms for multilayer core decomposition over a core lattice
of a 2-layer graph. Nodes and links depicted by solid lines have been visited in previous steps of the
algorithm, those in thick lines are visited during the current step, while the remaining in dotted
lines have not been visited yet.

Proof. By Definition 3.1, vector ~dµ(C) is a coreness vector of C. Assume that ~dµ(C) is not

maximal, meaning that another coreness vector ~k = [k`]`∈L dominating ~dµ(C) exists. This implies

that k` ≥ µ(C, `), and ∃ˆ̀∈ L : kˆ̀> µ(C, ˆ̀). By definition of multilayer core, all vertices in C have

degree larger than the minimum degree µ(C, ˆ̀) in layer ˆ̀, which is a clear contradiction.

Corollary 3.3 gives a rule to skip the computation of non-distinct cores: given a core C with
coreness vector ~k = [k`]`∈L, all cores with coreness vector ~k′ = [k′`]`∈L such that ∀` ∈ L : k` ≤ k′` ≤
µ(C, `) are guaranteed to be equal to C and do not need to be explicitly computed. For instance, in
Figure 3.2, assume that the min-degree vector of the (0, 0, 1)-core is (0, 1, 2). Then, cores (0, 0, 2),
(0, 1, 1), and (0, 1, 2) can immediately be set equal to the (0, 0, 1)-core. The hybrid-ml-cores
algorithm we present here (Algorithm 3.5) exploits this rule by performing a breadth-first search
equipped with a “look-ahead” mechanism resembling a depth-first search. Moreover, hybrid-
ml-cores starts with a single-layer core decomposition for each layer so as to have more fathers
early-on for intersections. Cores interested by the look-ahead rule are still visited and stored in Q′,
as they may be needed for future core computations. However, no further computational overhead
is required for them. The time complexity of hybrid-ml-cores is the same as bfs-ml-cores, plus
an additional O(|E|) time for every visited multilayer core, which is needed in the look-ahead rule
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to compute the min-degree vector of that core.

3.2.5 Discussion

To have a concrete comparison of the characteristics of the proposed algorithms for multilayer core
decomposition, we report in Figure 3.3 a running example over a core lattice of a simple 2-layer
graph. All the algorithms start by visiting the root of the core lattice, which corresponds to the
whole input multilayer graph (this preliminary step is left out from Figure 3.3 since it is shared by
all the methods). bfs-ml-cores visits the core lattice level by level, and exploits every containment
relationship. The execution pattern of dfs-ml-cores is instead much different: it starts by finding
those multilayer cores having a single component of the coreness vector other than zero and, in
a later step, visits the rest of the core lattice. In both steps (a) and (b) dfs-ml-cores visits
cores following straight paths in the search space, i.e., from a core to a leaf. As a result, not
all the containment relationships are exploited. For instance, the computation of the (2, 1)-core
exploits the containment from the (2, 0)-core, but not from the (1, 1)-core. hybrid-ml-cores is, as
expected, a mix of the two other methods. The first step is identical to dfs-ml-cores. At step (b),
hybrid-ml-cores starts to visit the remaining cores by a breadth-first-search strategy, while also
exploiting the look-ahead mechanism. In particular, the minimum degree vector of the (1, 1)-core
is found to be equal to (1, 2); therefore, the (1, 2)-core is not computed directly, but set equal to
the (1, 1)-core. In the final step hybrid-ml-cores visits the remaining core by going on with the
breadth-first search.

We already discussed (in the respective paragraphs) the strengths and weaknesses of bfs-ml-
cores and dfs-ml-cores: the best among the two is determined by the peculiarities of the specific
input graph. On the other hand, hybrid-ml-cores profitably exploits the main nice features of
both bfs-ml-cores and dfs-ml-cores, thus is expected to outperform both methods in most cases.
However, in those graphs where the number of non-distinct cores is limited, the overhead due to
the look-ahead mechanism can make the performance of hybrid-ml-cores degrade.

In terms of space requirements, bfs-ml-cores needs to keep in memory all those cores having at
least a child in the queue, i.e., at most two levels of the lattice (the space taken by a multilayer core
is O(|V |)). The same applies to hybrid-ml-cores with the addition of the cores computed through
single-layer core decomposition and look-ahead, until all their children have been processed. dfs-
ml-cores instead requires to store all cores where the single-layer core-decomposition process should
be started from, both in the current iteration and the next one. Thus, we expect dfs-ml-cores to
take more space than bfs-ml-cores and hybrid-ml-cores, as in practice the number of cores to be
stored should be more than the cores belonging to two lattice levels.

3.2.6 Experimental results

In this subsection we present experiments to (i) compare the proposed algorithms in terms of
runtime, memory consumption, and search-space exploration; (ii) characterize the output core
decompositions, also by comparing total number of cores and number of inner-most cores.

Datasets. We select publicly-available real-world multilayer networks, whose main characteristics
are summarized in Table 3.1.

Homo5 and SacchCere5 are networks describing different types of genetic interactions between
genes in Homo Sapiens and Saccharomyces Cerevisiae, respectively. ObamaInIsrael5 represents
different types of social interaction (e.g., re-tweeting, mentioning, and replying) among Twitter
users, focusing on Barack Obama’s visit to Israel in 2013. Similarly, Higgs5 is built by tracking the
spread of news about the discovery of the Higgs boson on Twitter, with the additional layer for
the following relation. Friendfeed6 contains public interactions among users of Friendfeed collected
over two months (e.g., commenting, liking, and following). FriendfeedTwitter6 is a multi-platform
social network, where layers represent interactions within Friendfeed and Twitter between users
registered to both platforms [70]. Amazon7 is a co-purchasing temporal network, containing four

5https://comunelab.fbk.eu/data.php
6http://multilayer.it.uu.se/datasets.html
7https://snap.stanford.edu/data/
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Table 3.1: Characteristics of the real-world datasets: number of vertices (|V |), number of overall
edges (|E|), number of layers (|L|), minimum, average, and maximum number of edges in a layer
(min |E`|, avg |E`|, max |E`|), and application domain.

dataset |V | |E| |L| min |E`| avg |E`| max |E`| domain
Homo 18k 153k 7 256 21k 83k genetic

SacchCere 6.5k 247k 7 1.3k 35k 91k genetic
DBLP 513k 1.0M 10 96k 101k 113k co-authorship

ObamaInIsrael 2.2M 3.8M 3 557k 1.2M 1.8M social
Amazon 410k 8.1M 4 899k 2.0M 2.4M co-purchasing

FriendfeedTwitter 155k 13M 2 5.2M 6.8M 8.3M social
Higgs 456k 13M 4 28k 3.4M 12M social

Friendfeed 510k 18M 3 226k 6.2M 18M social

snapshots between March and June 2003. Finally, DBLP8 is derived following the methodology
in [46]. For each co-authorship relation (edge), the bag of words resulting from the titles of all
papers co-authored by the two authors is collected. Then LDA topic modeling [40] is applied
to automatically identify a hundred topics. Among these, ten topics that are recognized as the
most relevant to the data-mining area have been hand-picked. Every selected topic corresponds
to a layer. An edge between two co-authors in a certain layer exists if the relation between those
co-authors is labeled with the topic corresponding to that layer.

Implementation. All methods are implemented in Python (v. 2.7.12) and compiled by Cython:
all our code is available at github.com/egalimberti/multilayer core decomposition. All experiments
are run on a machine equipped with Intel Xeon CPU at 2.1GHz and 128GB RAM except for
Figure 3.4, whose results are obtained on Intel Xeon CPU at 2.7GHz with 128GB RAM.

Comparative evaluation. We compare the näıve baseline (for short n) and the three proposed
methods bfs-ml-cores (for short bfs), dfs-ml-cores (dfs), hybrid-ml-cores (h) in terms of run-
ning time, memory usage, and number of computed cores (as a measure of the explored search-space
portion). The results of this comparison are shown in Table 3.2. As expected, n is the least efficient
method: it is outperformed by our algorithms by 1–4 orders of magnitude. Due to its excessive
requirements, we could not run it in reasonable time (i.e., 30 days) on the Friendfeed dataset.

Among the proposed methods, h is recognized as the best method (in absolute or with per-
formance comparable to the best one) in the first five (out of a total of eight) datasets. In the
remaining three datasets the best method is dfs. This is mainly motivated by the fact that those
three datasets have a relatively small number of layers, an aspect which dfs takes particular advan-
tage from (as also better testified by the experiment with varying the number of layers discussed
below). In some cases h is also comparable to bfs, thus confirming the fact that in datasets where
the number of non-distinct cores is not so large the performance of the two methods gets closer.
A similar reasoning holds between bfs and dfs (at least with a small/moderate number of the
layers, see next): bfs is faster in most cases, but, due to the respective pros and cons discussed in
Section 3.2, it is not surprising that the two methods achieve comparable performance in a number
of other cases.

To test the behavior with varying the number of layers, Figure 3.4 shows the running times of
the proposed methods on different versions of the DBLP dataset, obtained by selecting a variable
number of layers, from 2 to 10. While the performance of the three methods is comparable up
to six layers, beyond this threshold the execution time of dfs grows much faster than bfs and
h. This attests that the pruning rules of bfs and h are more effective as the layers increase. To
summarize, dfs is expected to have runtime comparable to (or better than) bfs and h when the
number of layers is small, while h is faster than bfs when the number of non-distinct cores is large.

The number of computed cores is always larger than the output cores as all methods might
compute empty cores or, in the case of dfs, the same core multiple times. Table 3.2 shows that
dfs computes more cores than bfs and h, which conforms to its design principles.

Finally, all methods turn out to be memory-efficient, taking no more than 1.5GB of memory.

8http://dblp.uni-trier.de/xml/
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Table 3.2: Comparative evaluation: proposed methods and baseline. Runtime differs from [96]
since a different server was employed.

dataset #output cores method runtime (s) memory (MB) #computed cores
Homo 1 845 n 1 145 27 12 112

bfs 13 26 3 043
dfs 27 27 6 937
h 12 25 2 364

SacchCere 74 426 n 24 469 55 278 402
bfs 1 134 34 89 883
dfs 2 627 57 223 643
h 1 146 35 83 978

DBLP 3 346 n 103 231 608 34 572
bfs 68 612 6 184
dfs 282 627 38 887
h 29 521 5 037

Obama 2 573 n 37 554 1 286 3 882
InIsrael bfs 226 1 299 3 313

dfs 150 1 384 3 596
h 177 1 147 2 716

Amazon 1 164 n 11 990 425 1 823
bfs 3 981 534 1 354
dfs 5 278 619 2 459
h 3 913 536 1 334

Friendfeed 76 194 n 409 489 220 80 954
Twitter bfs 61 113 215 80 664

dfs 1 973 267 80 745
h 59 520 268 76 419

Higgs 8 077 n 163 398 474 22 478
bfs 2 480 465 12 773
dfs 640 490 14 119
h 2 169 493 9 389

Friendfeed 365 666 bfs 58 278 465 546 631
dfs 13 356 591 568 107
h 47 179 490 389 323

Figure 3.4: Runtime of the proposed methods with varying the number of layers (DBLP dataset).

Core-decomposition characterization. Figure 3.5 reports the distribution of number of cores,
core size, and average-degree density (i.e., number of edges divided by number of vertices) of the
subgraph corresponding to a core. Distributions are shown by level of the lattice9 for the SacchCere
and Friendfeed datasets. Although the two datasets have very different scales, the distributions
exhibit similar trends. Being limited by the number of layers, the number of cores in the first levels

9Recall that the lattice level has been defined in Section 3.1: level i contains all cores whose coreness-vector
components sum to i.
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Figure 3.5: Distribution of number of cores (left), average core size (center), and average average-
degree density of a core (right) to the core-lattice level, for datasets SacchCere (top) and Friendfeed
(bottom).

Figure 3.6: Number of output cores (total and inner-most).

of the lattice is very small, but then it exponentially grows until reaching its maximum within the
first 25 − 30% visited levels. The average size of the cores is close to the number of vertices in
the first lattice level, when cores’ degree conditions are not very strict. Then it decreases as the
number of cores gets larger, with a maximum reached when very small cores stop “propagating” in
the lower lattice levels. Finally, the average (average-degree) density tends to increase for higher
lattice level. However, there are a couple of exceptions: it decreases (i) in the first few levels of
SacchCere’s lattice, and (ii) in the last levels of both SacchCere and Friendfeed, where the core size
starts getting smaller, thus implying small average-degree values.

In Figure 3.6 we show the comparison between the number of all cores and inner-most cores
for all the datasets. The number of cores differs quite a lot from dataset to dataset, depending
on dataset size, number of layers, and density. The fraction of inner-most cores exhibits a non-
decreasing trend as the layers increase, ranging from 0.3% of the total number of output cores
(FriendfeedTwitter) to 22% (DBLP).

Given that the inner-most cores are per-se interesting and typically one or more orders of
magnitude fewer in number than the total cores, it would be desirable to have a method that
effectively exploits the maximality property and extracts the inner-most ones directly, without
computing a complete decomposition. This is presented in the next section.
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Algorithm 3.6: im-ml-cores

Input: A multilayer graph G = (V,E, L).
Output: The set I of all inner-most multilayer cores of G.

1 sort L by non-decreasing average-degree density
2 M← ∅
3 I← rim-ml-cores(G,V, [0]|L|, `1,M)

3.3 Algorithms for inner-most multilayer cores

In this section we focus on the problem of finding the inner-most multilayer cores of a multilayer
graph (Problem 3.2). Specifically, the main goal here is to devise a method that is more efficient
than a näıve one that computes the whole multilayer core decomposition and then a-posteriori
filters non-inner-most cores out. To this end, we devise a recursive algorithm, which is termed
im-ml-cores and whose outline is shown as Algorithm 3.6 (and Algorithm 3.7). We provide the
details of the algorithm next. In the remainder of this section we assume the layer set L of the
input multilayer graph G = (V,E,L) to be an ordered list [`1, . . . , `|L|]. The specific ordering we
adopt in this work is by non-decreasing average-degree density, as, among the various orderings
tested, this is the one that provides the best experimental results.

The proposed im-ml-cores algorithm is based on the notion of `r-right-inner-most multilayer
cores of a core C~k, i.e., all those cores having coreness vector ~k′ equal to ~k up to layer `r−1, and
for which the inner-most condition holds for layers from `r to `|L|.

Definition 3.4 (`r-right-inner-most multilayer cores). Given a multilayer graph G = (V,E, L)

and a layer `r ∈ L, the `r-right-inner-most multilayer cores of a core C~k of G, where ~k = [k`]`∈L,

correspond to all the cores of G with coreness vector ~k′ = [k′`]`∈L such that ∀` ∈ [`1, `r) : k′` = k`,

and there does not exist any other core with coreness vector ~k′′ = [k′′` ]`∈L such that ∀` ∈ [`1, `r) :

k′′` = k`, ∀` ∈ [`r, `|L|] : k′′` ≥ k′`, and ∃ˆ̀∈ [`r, `|L|] : k′′ˆ̀ > k′ˆ̀.

Let C[0]|L| be the root of the core lattice. C[0]|L| has a coreness vector composed of zero
components. Therefore, according to the above definition, it is easy to observe that the `1-right-
inner-most multilayer cores of C[0]|L| correspond to the desired ultimate output, i.e., to all inner-
most multilayer cores of the input multilayer graph.

Fact 3.2. Given a multilayer graph G = (V,E,L), let I`1 be the set of all `1-right-inner-most
multilayer cores of core C[0]|L| . I`1 corresponds to all inner-most multilayer cores of G.

The proposed im-ml-cores algorithm recursively computes `r-right-inner-most multilayer cores,
starting from the root of the core lattice (Algorithm 3.6). The goal is to exploit Fact 3.2 and
ultimately have the `1-right-inner-most multilayer cores of core C[0]|L| computed. The algorithm
makes use of a data structureM which consists of a sequence of nested maps, one for each layer but
the last one (i.e., `|L|). For every layer `r that has been so far processed by the recursive procedure,
M keeps track of the minimum-degree that a core should have in layer `r to be recognized as an
ineer-most one. Specifically, given a coreness vector ~k and a layer `r, the instruction M(~k, `r)

iteratively accesses the nested maps using the elements of ~k up to layer `r as keys. As an example,
consider a coreness vector ~k = [k`]`∈L, with |L| = 3. M(~k, `|L|−1) first queries the outer-most
map with key k`1 , and obtains a further map. Then, this second map is queried with key k`2 , to

finally get the ultimate desired numerical value. Note that, if `r < `|L|−1, thenM(~k, `r) returns a

further map. Conversely, if `r = `|L|−1, then M(~k, `r) returns a numerical value. If ~k does not
correspond to a sequence of valid keys forM, we assume that 0 is returned as a default value. M
is initialized as empty, and populated during the various recursive iterations.

Algorithm 3.7 may be logically split into two main blocks: the first one (Lines 3 – 7) taking care
of the recursion, and the second one (Lines 9 – 19) computing the `r-right-inner-most cores. The
first block of the algorithm is executed when the current `r layer is not the last one. In that block
the ~k-coresPath subroutine (already used in Algorithm 3.3 and described in Section 3.2.3) is run

on set S of vertices, layer `r, and taking into account the constraints in vector ~k (Lines 3 and 4).

33



CHAPTER 3. CORE DECOMPOSITION IN MULTILAYER NETWORKS

Algorithm 3.7: rim-ml-cores

Input: A multilayer graph G = (V,E, L), a set S ⊆ V of vertices, a coreness vector
~k = [k`]`∈L, a layer `r ∈ L, and a data structure M.

Output: The set Ir of all right-inner-most multilayer cores of C~k given `r.
1 Ir ← ∅
2 if `r 6= `|L| then

3 Q← {~k′ | C~k′ ∈ ~k-coresPath(G,S,~k, `r)} ∪ {~k}
4 C← ~k-coresPath(G,S,~k, `r) ∪ {S}
5 forall ~k′ ∈ Q in decreasing order of k′`r do

6 M(~k′, `r)← ∅
7 Ir ← Ir ∪ rim-ml-cores(G,C~k′ ,

~k′, `r+1,M)

8 else
9 kM ← 0

10 forall ` ∈ [`1, `|L|) do

11 ~k` = [k`1 , . . . , k` + 1, . . . , k`|L| ]

12 kM ← max{kM,M(~k`, `|L|−1)}

13 ~k′ ← [k`1 , . . . , k`|L|−1
, kM]

14 ~kI ← Inner-mostCore(G,S, ~k′, `|L|)

15 if ~kI 6= null then

16 Ir ← Ir ∪ ~kI

17 M(~kI , `|L|−1)← kI`|L| + 1

18 else

19 M(~k′, `|L|−1)← k′`|L|

Then, for each coreness vector ~k′ that has been found, a recursive call is made, where the layer of
interest becomes the next layer `r+1, and the data structure M is augmented by adding a further
(empty) nested map (this new map will be populated within the upcoming recursive executions).
The coreness vectors are processed in decreasing order of k′`r . This processing order ensures the

correctness of the following: once a multilayer core has been identified as `r-right-inner-most, it
permanently becomes part of the ultimate output cores (no further recursive call will remove it

from the output). Note also that, for each ~k′, rim-ml-cores can be run on C~k′ only, i.e., the core

of coreness vector ~k′. This guarantees better efficiency, without affecting correctness.

The second block of the algorithm (Lines 9 – 19) works as follows. When the last layer has
been reached, i.e., `r = `|L|, the current recursion ends, and an `r-right-inner-most multilayer core

is returned (if any). First of all, the algorithm computes a coreness vector ~k′ which is potentially
`r-right-inner-most (Lines 9 – 13). In this regard, note that the kM value is derived from the
information that has been stored in M in the earlier recursive iterations. Finally, the algorithm
computes the inner-most core in `|L| constrained by ~k′, by means of the Inner-mostCore subroutine.

Such a subroutine, similarly to the ~k-coresPath one, takes as input a multilayer graph G, a subset
S of vertices, a coreness vector ~k, and a layer `. It returns the multilayer core having coreness
vector of highest `-th component of the vertices in S, considering the constraints specified in ~k. If
the Inner-mostCore procedure actually returns a multilayer core, then it is guaranteed that such a
core is `r-right-inner-most, and is therefore added to the solution (andM is updated accordingly).

In Figure 3.7 we show an example of the execution of the proposed im-ml-cores algorithm for a
simple 3-layer graph, while Figure 3.8 reports the content of theM data structure for this example.
Every box corresponds to a call of Algorithm 3.7, for which we specify (i) the input parameters

(G and M are omitted for the sake of brevity), (ii) the calls to the ~k-coresPath or Inner-mostCore
subroutines, and (iii) the content of Q (when it is instantiated). For instance, the coreness vector
given as input to Inner-mostCore at box 1.3.4 has the last element equal to the maximum between
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rim-ml-cores(V, (0,0,0), `1)

~k-coresPath(V, (0, 0, 0), `1)
Q← {(2, 0, 0), (1, 0, 0), (0, 0, 0)}

1

rim-ml-cores(C(2,0,0), (2,0,0), `2)

~k-coresPath(C(2,0,0), (2, 0, 0), `2)
Q← {(2, 0, 0)}

1.1

rim-ml-cores(C(2,0,0), (2,0,0), `3)

Inner-mostCore(C(2,0,0), (2, 0, 0), `3)→ (2, 0, 3)
1.1.1

rim-ml-cores(C(1,0,0), (1,0,0), `2)

~k-coresPath(C(1,0,0), (1, 0, 0), `2)
Q← {(1, 2, 0), (1, 1, 0), (1, 0, 0)}

1.2

rim-ml-cores(C(1,2,0), (1,2,0), `3)

Inner-mostCore(C(1,2,0), (1, 2, 0), `3)→ (1, 2, 4)
1.2.1

rim-ml-cores(C(1,1,0), (1,1,0), `3)

Inner-mostCore(C(1,1,0), (1, 1, 5), `3)→ null
1.2.2

rim-ml-cores(C(1,0,0), (1,0,0), `3)

Inner-mostCore(C(1,0,0), (1, 0, 5), `3)→ (1, 0, 7)
1.2.3

rim-ml-cores(C(0,0,0), (0,0,0), `2)

~k-coresPath(C(0,0,0), (0, 0, 0), `2)
Q← {(0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 0)}

1.3

rim-ml-cores(C(0,3,0), (0,3,0), `3)

Inner-mostCore(C(0,3,0), (0, 3, 0), `3)→ (0, 3, 1)
1.3.1

rim-ml-cores(C(0,2,0), (0,2,0), `3)

Inner-mostCore(C(0,2,0), (0, 2, 5), `3)→ null
1.3.2

rim-ml-cores(C(0,1,0), (0,1,0), `3)

Inner-mostCore(C(0,1,0), (0, 1, 5), `3)→ (0, 1, 5)
1.3.3

rim-ml-cores(C(0,0,0), (0,0,0), `3)

Inner-mostCore(C(0,0,0), (0, 0, 8), `3)→ null
1.3.4

Figure 3.7: Execution of the im-ml-cores algorithm (Algorithm 3.6) on a toy 3-layer graph.

what is stored inM at the end of the paths 1→ 0 and 0→ 1, i.e., 8 and 5, that have been set at
boxes 1.2.3 and 1.3.3, respectively.

3.3.1 Experimental results

Running time. We asses the efficiency of im-ml-cores (for short im) by comparing it to the
aforementioned näıve approach for computing inner-most multilayer cores, which consists in firstly
computing all multilayer cores (by means of one of the three algorithms presented in Section 3.2)
and filtering out the non-inner-most ones. The results of this experiment are reported in Table 3.3.
First of all, it can be observed that the a-posteriori filtering of the inner-most multilayer cores does
not consistently affect the runtime of the algorithms for multilayer core decomposition: this means
that most of the time is spent for computing the overall core decomposition. The main outcome of
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∅1

2→ ∅1.1

2→ {0→ 4}1.1.1

2→ {0→ 4}
1→ ∅1.2

2→ {0→ 4}
1→ {2→ 5}1.2.1

2→ {0→ 4}
1→ {2→ 5; 1→ 5}1.2.2

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}1.2.3

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}

0→ ∅
1.3

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2}
1.3.1

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2; 2→ 5}
1.3.2

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}
0→ {3→ 2; 2→ 5; 1→ 6}

1.3.3

2→ {0→ 4}
1→ {2→ 5; 1→ 5; 0→ 8}

0→ {3→ 2; 2→ 5; 1→ 6; 0→ 8}
1.3.4

Figure 3.8: Content of theM data structure during the execution of the im-ml-cores algorithm as
per the example shown in Figure 3.7.

this experiment is that the running time of the proposed im method is smaller than the time required
by bfs, dfs, or h summed up to the time spent in the a-posteriori filtering, with considerable speed-
up from 1.3 to an order of magnitude on the larger datasets, e.g., FriendfeedTwitter and Friendfeed.
The only exception is on the DBLP dataset where bfs and h run slightly faster, probably due to
fact that its edges are (almost) equally distributed among the layers, which makes the effectiveness
of the ordering vanish.

Characterization. We also show the characteristics of the inner-most multilayer cores. Figure 3.9
reports the distribution of number, size, and average-degree density of all cores and inner-most
cores only. Distributions are shown in a way similar to what previously done in Figure 3.5, i.e., by
level of the core lattice, and for the SacchCere and Amazon datasets.

For both datasets, there are no inner-most cores in the first levels of the lattice. As expected,
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Table 3.3: Runtime (in seconds) of the methods for multilayer core decomposition, the a-posteriori
filtering of the inner-most multilayer cores, and the proposed im-ml-cores method for directly
computing inner-most multilayer cores.

dataset bfs dfs h filtering im
Homo 13 27 12 0.5 5

SacchCere 1 134 2 627 1 146 24 336
DBLP 68 282 29 1 148

ObamaInIsrael 226 150 177 7 120
Amazon 3 981 5 278 3 913 129 2 530

FriendfeedTwitter 61 113 1 973 59 520 276 1 583
Higgs 2 480 640 2 169 33 356

Friendfeed 58 278 13 356 47 179 394 2 640
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Figure 3.9: Comparison of the distributions, to the core-lattice level, of number (left), average size
(center), and average average-degree density (right) of multilayer cores and inner-most multilayer
cores, for datasets SacchCere (top) and Amazon (bottom).

the number of inner-most cores considerably increases when the number of all cores decreases.
This is due to the fact that some cores stop propagating throughout the lattice, hence they are
recognized as inner-most. In general, inner-most cores are on average smaller than all multilayer
cores. Nonetheless, for the levels 12 and 13 of the Amazon dataset, inner-most cores have greater
size than all cores. This behavior is consistent with our definitions: inner-most cores are cores
without descendants, thus they are expected to be the smallest-sized ones, but they do not nec-
essarily have to. Finally, the distribution of the average-degree density exhibits a similar trend to
the distribution of the size: this is expected as the two measures depend on each other.

3.4 Multilayer densest subgraph

In this section we showcase the usefulness of multilayer core-decomposition in the context
of multilayer densest-subgraph discovery. Particularly, we show how to exploit the mul-
tilayer core-decomposition to devise an algorithm with approximation guarantees for the
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Multilayer Densest Subgraph problem introduced in Section 3.1 (Problem 3.3), thus ex-
tending to the multilayer setting the intuition at the basis of the well-known 1

2 -approximation
algorithm [18, 55] for single-layer densest-subgraph extraction.

3.4.1 Hardness

We start by formally showing that the Multilayer Densest Subgraph problem (Problem 3.3)
is NP-hard.

Theorem 3.3. Problem 3.3 is NP-hard.

To prove the theorem, we introduce two variants of Problem 3.3’s objective function, i.e., δall(·),
which considers all layers in L, and δ¬all(·), which considers all subsets of layers but the whole
layer set L. Specifically, for any given multilayer graph G = (V,E, L) and vertex subset S ⊆ V ,
the two functions are defined as:

δall(S) = min
`∈L

|E`[S]|
|S|

|L|β , (3.7)

δ¬all(S) = max
L̂∈2L\{L}

min
`∈L̂

|E`[S]|
|S|

|L̂|β . (3.8)

We also define degmax as the maximum degree of a vertex in a layer:

degmax = max
`∈L

max
u∈V

deg(u, `), (3.9)

and introduce the following three auxiliary lemmas.

Lemma 3.1. δall(S) ≥ 1
|V | |L|

β, for all S ⊆ V such that ∀` ∈ L : |E`[S]| > 0.

Proof. For a vertex set S spanning at least one edge in every layer, it holds that min`∈L
|E`[S]|
|S| ≥

1
|V | , and, therefore, δall(S) = min`∈L

|E`[S]|
|S| |L|

β ≥ 1
|V | |L|

β .

Lemma 3.2. δ¬all(S) ≤ degmax
2 (|L| − 1)β, for all S ⊆ V .

Proof. The maximum density of a vertex set S in a layer can be at most equal to the density of

the maximum clique, i.e., at most (degmax+1) degmax
2 (degmax+1) = degmax

2 . At the same time, the size of a layer

set L̂ in the function δ¬all(·) can be at most |L| − 1 (as the whole layer set L is not considered in

δ¬all(·)). This means that δ¬all(S) = maxL̂∈2L\{L}min`∈L̂
|E`[S]|
|S| |L̂|

β ≤ degmax
2 (|L| − 1)β .

Lemma 3.3.

β >
log|L|−1

(
|V |
2 degmax

)
× log|L|(|L| − 1)

1− log|L|(|L| − 1)
⇔ 1

|V |
|L|β > degmax

2
(|L| − 1)β . (3.10)
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Proof.

β >
log|L|−1

(
|V |
2 degmax

)
× log|L|(|L| − 1)

1− log|L|(|L| − 1)
(3.11)

⇔
(

1− log|L|(|L| − 1)
)
β > log|L|−1

(
|V |
2 degmax

)
× log|L|(|L| − 1) (3.12)

⇔ β > log|L|−1

(
|V |
2 degmax

)
× log|L|(|L| − 1) + β log|L|(|L| − 1) (3.13)

⇔ β

log|L|(|L| − 1)
> log|L|−1

(
|V |
2 degmax

)
+ β (3.14)

⇔
log|L| |L|β

log|L|(|L| − 1)
> log|L|−1

(
|V |
2 degmax

)
+ log|L|−1(|L| − 1)β (3.15)

⇔ log|L|−1 |L|β > log|L|−1

(
|V |
2 degmax(|L| − 1)β

)
(3.16)

⇔ |L|β > |V |
2 degmax(|L| − 1)β (3.17)

⇔ 1

|V |
|L|β >

degmax
2

(|L| − 1)β . (3.18)

With Lemmas 3.1–3.3 in place, we are now ready to provide the ultimate proof of Theorem 3.3.

Proof. We reduce from the Min-Avg Densest Common Subgraph (DCS-MA) problem [136],
which aims at finding a subset of vertices S ⊆ V from a multilayer graph G = (V,L, S) maximizing

min`∈L
E`[S]
|S| , and has been recently shown to be NP-hard in [56]. We distinguish two cases. The

first (trivial) one is when G has a layer with no edges. In this case any vertex subset would
be an optimal solution for DCS-MA (with overall objective function equal to zero), including
the optimal solution to our Multilayer Densest Subgraph problem run on the same G (no
matter which β is used). In the second case G has at least one edge in every layer. In this
case solving our Multilayer Densest Subgraph problem on G, with β set to any value >
log|L|−1(

|V |
2 degmax)×log|L|(|L|−1)

1−log|L|(|L|−1) , gives a solution that is optimal for DCS-MA as well. Indeed, it can

be observed that, for all S ⊆ V such that ∀` ∈ L : |E`[S]| > 0:

δall(S) ≥ 1

|V |
|L|β {Lemma 3.1} (3.19)

>
degmax

2
(|L| − 1)β {Lemma 3.3} (3.20)

≥ δ¬all(S). {Lemma 3.2} (3.21)

This means that, for that particular value of β, the optimal solution of
Multilayer Densest Subgraph on input G is given by maximizing the δall(·) function,
which considers all layers and is, as such, equivalent to the objective function underlying the
DCS-MA problem. This completes the proof.

3.4.2 Algorithms

The approximation algorithm we devise for the Multilayer Densest Subgraph problem is very
simple: it computes the multilayer core decomposition of the input graph, and, among all cores,
takes the one maximizing the objective function δ as the output densest subgraph (Algorithm 3.8).
Despite its simplicity, the algorithm achieves provable approximation guarantees proportional to
the number of layers of the input graph, precisely equal to 1

2|L|β . We next formally prove this

result.
Let C be the core decomposition of the input multilayer graph G = (V,E,L) and C∗ denote the

core in C maximizing the density function δ, i.e., C∗ = arg maxC∈C δ(C). Then, C∗ corresponds
to the subgraph output by the proposed ml-densest algorithm. Let also C(µ) denote the subgraph
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Algorithm 3.8: ml-densest

Input: A multilayer graph G = (V,E, L) and a real number β ∈ R+.
Output: C∗ ⊆ V .

1 C← MultiLayerCoreDecomposition(G) // Any of Algorithms 3.2, 3.3, 3.5 can be used

2 C∗ ← arg maxC∈C δ(C) // Equation (3.2)

maximizing the minimum degree in a single layer, i.e., C(µ) = arg maxS⊆V f(S), where f(S) =
max`∈L µ(S, `), while `(µ) = arg max`∈L µ(C(µ), `). It is easy to see that C(µ) ∈ C. Finally, let S∗sl
be the densest subgraph among all single-layer densest subgraphs, i.e., S∗sl = arg maxS⊆V g(S),

where g(S) = max`∈L
|E`[S]|
|S| , and `∗ be the layer where S∗sl exhibits its largest density, i.e., `∗ =

arg max`∈L
|E`[S∗sl]|
|S∗sl|

. We start by introducing the following two lemmas that can straightforwardly

be derived from the definitions of C∗, C(µ), S∗sl, `(µ), and `∗:

Lemma 3.4. δ(C∗) ≥ δ(C(µ)).

Proof. By definition, C(µ) is a multilayer core described by (among others) the coreness vector
~k = [k`]`∈L with k`(µ) = max`∈L µ(C(µ), `), and k` = 0, ∀` 6= `(µ). Then C(µ) ∈ C. As C∗ =
arg maxC∈C δ(C), it holds that δ(C∗) ≥ δ(C(µ)).

Lemma 3.5. δ(S∗) ≤ |E`∗ [S
∗
sl]|

|S∗sl|
|L|β.

Proof.

δ(S∗) = max
L̂⊆L

min
`∈L̂

|E`[S∗]|
|S∗|

|L̂|β ≤ max
`∈L

|E`[S∗]|
|S∗|

|L|β ≤
|E`∗ [S∗sl]|
|S∗sl|

|L|β . (3.22)

The following further lemma shows a lower bound on the minimum degree of a vertex in S∗sl:

Lemma 3.6. µ(S∗sl, `
∗) ≥ |E`∗ [S

∗
sl]|

|S∗sl|
.

Proof. As S∗sl is the subgraph maximizing the density in layer `∗, removing the minimum-degree
node from S∗sl cannot increase that density. Thus, it holds that:

|E`∗ [S∗sl]|
|S∗|

≥
|E`∗ [S∗sl]| − µ(S∗sl, `

∗)

|S∗sl| − 1
(3.23)

⇔ µ(S∗sl, `
∗) ≥ |E`∗ [S∗sl]|

|S∗sl| − 1

|S∗sl|
− |E`∗ [S∗sl]| (3.24)

⇔ µ(S∗sl, `
∗) ≥

|E`∗ [S∗sl]|
|S∗sl|

. (3.25)

The approximation factor of the proposed ml-densest algorithm is ultimately stated in the next
theorem:

Theorem 3.4. δ(C∗) ≥ 1
2|L|β δ(S

∗).
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Figure 3.10: Multilayer densest-subgraph extraction (Homo and Higgs datasets): minimum
average-degree density in a layer, number of selected layers, size, and objective-function value
δ of the output densest subgraphs with varying β.

Proof.

δ(C∗) ≥ δ(C(µ)) {Lemma 3.4} (3.26)

≥ max
`∈L

|E`[C(µ)]|
|C(µ)|

1β = max
`∈L

|E`[C(µ)]|
|C(µ)|

{Equation (3.2)} (3.27)

≥ 1

2
max
`∈L

µ(C(µ), `) {as avg degree ≥ min degree} (3.28)

=
1

2
µ(C(µ), `(µ)) {by definition of C(µ)} (3.29)

≥ 1

2
µ(S∗sl, `

∗) {optimality of C(µ) w.r.t. min degree} (3.30)

≥ 1

2

|E`∗ [S∗sl]|
|S∗sl|

{Lemma 3.6} (3.31)

≥ 1

2|L|β
δ(S∗). {Lemma 3.5} (3.32)

The following corollary shows that the theoretical approximation guarantee stated in Theo-
rem 3.4 remains the same even if only the inner-most cores are considered (although, clearly,
considering the whole core decomposition may lead to better accuracy in practice).

Corollary 3.4. Given a multilayer graph G = (V,E, L), let Cim be the set of all inner-most
multilayer cores of G, and let C∗im = arg maxC∈Cim

δ(C). It holds that δ(C∗im) ≥ 1
2|L|β δ(S

∗).

Proof. Let C
(µ)
im ∈ Cim be an inner-most core of G whose coreness vector has a component equal

to `(µ). It is easy to see that the result in Lemma 3.4 holds for C∗im and C
(µ)
im too, i.e., becoming

δ(C∗im) ≥ δ(C(µ)
im ), while the proof of Theorem 3.4 holds as is, by simply replacing C∗ with C∗im and

C(µ) with C
(µ)
im .
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Figure 3.11: Multilayer densest subgraph extracted by Algorithm 3.8 from the DBLP dataset
(β = 2.2).

Finally, we observe that the result in Theorem 3.4 carries over to the Min-Avg Densest
Common Subgraph (DCS-MA) problem studied in [56, 136, 195, 210] as well, as that problem
can be reduced to our Multilayer Densest Subgraph problem (as shown in Theorem 3.3).

3.4.3 Experimental results

We experimentally evaluate our ml-densest algorithm (Algorithm 3.8) on the datasets in Table 3.1.
Figure 3.10 reports the results – minimum average-degree density in a layer, number of selected
layers, size, objective-function value δ – on the Homo and Higgs datasets, with varying β. The
remaining datasets, which we omit due to space constraints, exhibit similar trends on all measures.

The trends observed in the figure conform to what expected: the smaller β, the more the
objective function privileges solutions with large average-degree density in a few layers (or even
just one layer, for β close to zero). The situation is overturned with larger values of β, where the
minimum average-degree density drops significantly, while the number of selected layers stands
at 6 for Homo and 4 for Higgs. In-between β values lead to a balancing of the two terms of the
objective function, thus giving more interesting solutions. Also, by definition, δ as a function of β
draws exponential curves.

Finally, as anecdotal evidence of the output of Algorithm 3.8, in Figure 3.11 we report the dens-
est subgraph extracted from DBLP. The subgraph contains 10 vertices and 5 layers automatically
selected by the objective function δ. The minimum average-degree density is encountered on the
layers corresponding to topics “graph” and “algorithm” (green and yellow layers in the figure), and
is equal to 1.2. The objective-function value is δ = 41.39. Note that the subgraph is composed of
two connected components. In fact, like the single-layer case, multilayer cores are not necessarily
connected.

3.5 Multilayer quasi-cliques

Another interesting insight into the notion of multilayer cores is about their relationship with
(quasi-)cliques. In single-layer graphs it is well-known that cores can be exploited to speed-up the
problem of finding cliques, as a clique of size k is guaranteed to be contained into the (k− 1)-core.
Interestingly, a similar relationship holds in the multilayer context too. Given a multilayer graph
G = (V,E, L), a layer ` ∈ L, and a real number γ ∈ (0, 1], a subgraph G[S] = (S ⊆ V,E[S], L)
of G is said to be a γ-quasi-clique in layer ` if all its vertices have at least γ(|S| − 1) neighbors
in layer ` within S, i.e., ∀u ∈ S : degS(u, `) ≥ γ(|S| − 1). Jiang et al. [137] study the problem of
extracting frequent cross-graph quasi-cliques:10 given a multilayer graph G = (V,E, L), a function

10The input in [137] has the form of a set of graphs sharing the same vertex set, which is clearly fully equivalent
to the notion of multilayer graph considered in this work.

42



CHAPTER 3. CORE DECOMPOSITION IN MULTILAYER NETWORKS

Table 3.4: Comparison of the runtime of the efficient extraction of frequent cross-graph quasi-
cliques by Corollary 3.5 and of the original algorithm [137], for the SacchCere dataset. The eval-
uation is proposed varying one of the parameters, i.e., Γ, min sup, and min size, at a time. The
number of solution quasi-cliques and the number of vertices |V ′| of the subgraph G′ are also
reported.

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

1 1 1 1 .2 .2 1 0.5 6 2 371 3 169
.9 .9 .9 .9 .2 .2 .9 2 371 25 17 561
.8 .8 .8 .8 .2 .2 .8 6 1 196 734 22 932
.7 .7 .7 .7 .2 .2 .7 6 1 196 728 23 376
.6 .6 .6 .6 .2 .2 .6 59 2 300 5 200 28 948
.5 .5 .5 .5 .2 .2 .5 59 2 300 5 123 29 677

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

.5 .5 .5 .5 .2 .2 .5 1 3 2 152 2 281
0.9 2 152 2 282
0.8 28 940 23 292
0.7 323 3 271 205 411
0.6 323 3 271 203 414
0.5 1 630 4 581 2 569 3 075

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

.5 .5 .5 .5 .2 .2 .5 0.5 7 27 2 254 5 606 34 904
6 59 2 300 5 123 29 677
5 357 3 363 4 493 21 206
4 378 3 363 3 704 15 465
3 1 630 4 581 2 569 3 075

Γ : L → (0, 1] assigning a real value to every layer in L, a real number min sup ∈ (0, 1], and an
integer min size > 1, find all maximal subgraphs G[S] of G of size larger than min size such that
there exist at least min sup × |L| layers ` for which G[S] is a Γ(`)-quasi-clique.

The following theorem shows that a frequent cross-graph quasi-clique of size ≥ min size is
necessarily contained into a ~k-core described by a coreness vector ~k = [k`]`∈L such that there
exists a fraction of min sup layers ` where k` = dΓ(`)(min size − 1)e.

Theorem 3.5. Given a multilayer graph G = (V,E, L), a real-valued function Γ : L → (0, 1], a
real number min sup ∈ (0, 1], and an integer min size > 1, a frequent cross-graph quasi-clique of

G complying with parameters Γ, min sup, and min size is contained into a ~k-core with coreness
vector ~k = [k`]`∈L such that |{` ∈ L : k` = dΓ(`)(min size− 1)e}| = dmin sup× |L|e.

Proof. Assume that a cross-graph quasi-clique S of G complying with parameters Γ, min sup, and
min size is not contained into any ~k-core with coreness vector ~k = [k`]`∈L such that |{` ∈ L :
k` = dΓ(`)(min size − 1)e}| = dmin sup × |L|e. This means that S contains a vertex u such that
|{` ∈ L : degS(u, `) ≥ Γ(`)(min size−1)}| < min sup×|L|, which means that |{` ∈ L : degS(u, `) ≥
Γ(`)(|S|−1)}| < min sup×|L| as well, since |S| ≥ min size. This violates the definition of frequent
cross-graph quasi-clique.

As a simple corollary, the computation of frequent cross-graph quasi-cliques can therefore be
circumstantiated to the subgraph given by the union of all multilayer cores complying with the
condition stated in Theorem 3.5.

Corollary 3.5. Given a multilayer graph G = (V,E,L), a real-valued function Γ : L → (0, 1], a
real number min sup ∈ (0, 1], and an integer min size > 1, let G′ = (V ′, E′, L) the subgraph of
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Table 3.5: Comparison of the runtime of the efficient extraction of frequent cross-graph quasi-
cliques by Corollary 3.5 and of the original algorithm [137], for the DBLP dataset. The evaluation
is proposed varying one of the parameters, i.e., Γ, min sup, and min size, at a time. The number
of solution quasi-cliques and the number of vertices |V ′| of the subgraph G′ are also reported. ++
indicates runtime longer than 259 200 seconds (i.e., 3 days).

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

1 1 1 1 1 1 1 1 1 1 0.2 8 2 18 0.2 26 496
.9 .9 .9 .9 .9 .9 .9 .9 .9 .9 2 18 0.2 26 112
.8 .8 .8 .8 .8 .8 .8 .8 .8 .8 13 75 0.3 26 867
.7 .7 .7 .7 .7 .7 .7 .7 .7 .7 18 196 1 27 387
.6 .6 .6 .6 .6 .6 .6 .6 .6 .6 18 196 1 27 084
.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 121 801 18 31 508

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 0.5 3 8 182 0.2 26 969
0.4 195 2 375 1 26 964
0.3 3 394 22 659 210 32 981

# solution runtime (s)
Γ min sup min size quasi-cliques |V ′| Corollary 3.5 [137]

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 0.2 13 1 75 0.2 26 644
12 1 75 0.2 27 136
11 8 196 0.7 26 966
10 10 196 0.7 27 116
9 116 801 18 32 372
8 121 801 18 31 508
7 1 292 3 468 181 113 558
6 1 370 3 468 198 113 520
5 7 599 15 316 3 790 ++
4 8 578 15 316 3 502 ++

G given by the union of all multilayer cores of G complying with Theorem 3.5. It holds that all
cross-graph quasi-cliques of G complying with parameters Γ, min sup, and min size are contained
into G′.

The finding in Corollary 3.5 can profitably be exploited to have a more efficient extraction of
frequent cross-graph quasi-cliques. Specifically, the idea is to (i) compute all multilayer cores of
the input graph G (including the non-distinct ones, as the condition stated in Theorem 3.5 refers
to not necessarily maximal coreness vectors); (ii) process all multilayer cores of G one by one,
retain only the ones complying with Theorem 3.5, and compute the subgraph G′ induced by the
union of all such cores; (iii) run any algorithm for frequent cross-graph quasi-cliques on G′. Based
on the above theoretical results, such a procedure is guaranteed to be sound and complete, and
it is expected to provide a significant speed-up, as G′ is expected to be much smaller than the
original graph G.

3.5.1 Experimental results

We show in Tables 3.4 and 3.5 the experimental results about the comparison of the algorithm
proposed by Jiang et al. [137] and the more efficient extraction of frequent cross-graph quasi-
cliques by Corollary 3.5. Table 3.4 refers to the SacchCere dataset, while Table 3.5 to the DBLP
dataset. To evaluate the effect of the parameters, i.e., the function Γ, min sup, and min size,
on the performance of the two approaches, we vary a parameter at a time keeping the other two
fixed. With regards to the values selected for Γ, we fix Γ(`5) = Γ(`6) = 0.2 in all the experiments
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involving the SacchCere dataset, due to the imbalance of the distribution of the edges in favor of
the other five layers (i.e., layers `1, . . . , `4, `7). Instead, given the uniformity of the edge density
across the layers of the DBLP dataset, Γ is modified coherently for all the layer in this latter
case. In addition to the execution times, for each configuration of the parameters, we also report
the number of solution frequent cross-graph quasi-cliques and the number of vertices |V ′| of the
subgraph G′ identified by Corollary 3.5.

The first thing to notice is that, in both datasets and for every configuration, our approach is
faster than the algorithm by Jiang et al. [137]. The actual speed-up varies with the size of |V ′|
(with respect to |V |) which, in turn, is affected by the mining parameters. For the SacchCere
dataset, we obtain the most extreme cases when varying min sup (middle table): our approach is
able to prune from 30% (min sup = 0.5) up to 98% (min sup = 1) of the input multilayer graph.
For the DBLP dataset, the results are even stronger: in the worst case (i.e., Γ(`) = 0.5 ∀` ∈ L,
min sup = 0.3, and min size = 3) we prune the 95% of the original vertex set. The runtime of
both our approach and Jiang et al.’s [137] algorithm varies consistently according to parameters
and to |V ′|. The speed-up that our method reaches ranges from 1.2 to two orders of magnitude for
the SacchCere dataset, and from one order up to six orders of magnitude for the DBLP dataset.

3.6 Multilayer community search

The idea here is very similar to that of the multilayer densest subgraph.

Problem 3.5 (Multilayer Community Search). Given a multilayer graph G = (V,E,L), a set of
vertices S ⊆ V , and a set of layers L̂ ⊆ L, we define the minimum degree of a vertex in S, within
the subgraph induced by S and L̂ as:

ϕ(S, L̂) = min
`∈L̂

min
u∈S

degS(u, `). (3.33)

Given a positive real number β, we define a real-valued density function ϑ : 2V → R+ as:

ϑ(S) = max
L̂⊆L

ϕ(S, L̂)|L̂|β . (3.34)

Given a set VQ ⊆ V of query vertices, find a subgraph containing all the query vertices and
maximizing the density function, i.e.,

S∗ = arg max
VQ⊆S⊆V

ϑ(S). (3.35)

Let C be the set of all non-empty multilayer cores of G. For a core C ∈ C with coreness vector
~k = [k`]`∈L, we define the score

σ(C) = max
L̂⊆L

(min
`∈L̂

k`)|L̂|β , (3.36)

and denote by C∗ a core that contains all query vertices in VQ and maximizes the score σ, i.e.,

C∗ = arg max
C∈C,VQ⊆C

σ(C). (3.37)

As shown in the following theorem, C∗ is a (not necessarily unique) exact solution to Prob-
lem 3.5.

Theorem 3.6. Given a multilayer graph G = (V,E, L), and a set VQ ⊆ V of query vertices, let
S∗ and C∗ be the vertex sets defined as in Equation (3.35) and Equation (3.37), respectively. It
holds that ϑ(C∗) = ϑ(S∗).

Proof. We prove the statement by contradiction, assuming that ϑ(C∗) < ϑ(S∗). Let µ` =
minu∈S∗ degS∗(u, `), and ~µ = [µ`]`∈L. By definition of multilayer core, there exists a core C ∈ C
of G with coreness vector ~µ such that S∗ ⊆ C. This means that

σ(C) = max
L̂⊆L

(min
`∈L̂

µ`)|L̂|β = max
L̂⊆L

(min
`∈L̂

min
u∈S∗

degS∗(u, `))|L̂|β = ϑ(S∗). (3.38)

Thus, there exists a core C ∈ C whose ϑ(·) score is equal to ϑ(S∗), which contradicts the original
assumption ϑ(C∗) < ϑ(S∗).
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Table 3.6: Comparison of the average runtime (in seconds) between the original algorithms for mul-
tilayer core decomposition and modified methods for community search, with varying the number
|VQ| of query vertices. In each dataset and for each |VQ|, the smallest runtime is bolded.

|VQ|
dataset method original 1 2 3 4 5 6 7 8 9 10
Homo bfs 13 2 1 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6

dfs 27 3 2 1 1 1 0.9 0.9 0.9 0.9 0.9
h 12 0.9 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

SacchCere bfs 1 134 162 25 6 3 1 1 0.7 0.7 0.5 0.5
dfs 2 627 390 58 13 6 2 2 1 1 0.7 0.6
h 1 146 166 25 5 2 0.5 0.8 0.2 0.2 0.1 0.1

DBLP bfs 68 35 35 34 34 34 34 35 34 35 36
dfs 282 55 42 39 39 38 38 38 38 39 39
h 29 5 5 5 5 5 6 6 6 6 6

Obama bfs 226 42 36 34 33 31 32 32 32 32 33
InIsrael dfs 150 51 38 34 33 31 31 31 30 31 31

h 177 15 10 10 9 9 9 9 9 9 9
Amazon bfs 3 981 2 125 1 364 608 582 441 234 231 192 175 167

dfs 5 278 3 103 2 105 1 198 1 072 851 523 515 434 406 371
h 3 913 2 109 1 342 570 546 405 190 190 150 134 127

Friendfeed bfs 61 113 2 464 1 004 597 333 243 185 117 108 85 59
Twitter dfs 1 973 129 73 48 33 30 27 22 21 19 17

h 59 520 2 340 916 523 278 193 136 78 69 49 28
Higgs bfs 2 480 351 149 91 65 62 56 50 45 40 41

dfs 640 125 77 60 52 51 46 46 42 42 39
h 2 169 239 80 43 23 21 16 14 9 8 8

Friendfeed bfs 58 278 150 51 27 25 25 24 23 23 23 23
dfs 13 356 803 220 82 68 68 66 58 58 59 57
h 47 179 10 4 2 2 2 2 2 2 2 2

Algorithms. The core C∗ can be straightforwardly found by running any of the proposed al-
gorithms for multilayer core decomposition – bfs-ml-cores (Algorithm 3.2), dfs-ml-cores (Algo-
rithm 3.3), or hybrid-ml-cores (Algorithm 3.5) – and taking from the overall output core set the
core maximizing the σ(·) score. However, thanks to the constraint about containment of query
vertices VQ, the various algorithms can be speeded up by preventively skipping the computation of
cores that do not contain VQ. Specifically, this corresponds to the following simple modifications:

• bfs-ml-cores (Algorithm 3.2): replace the condition at Line 7 with “if VQ ⊆ C~k then”.

• dfs-ml-cores (Algorithm 3.3): stop the ~k-coresPath subroutine used at Lines 4 and 5 as soon
as a core not containing VQ is encountered and make the subroutine return only the cores
containing VQ.

• hybrid-ml-cores (Algorithm 3.5): replace the condition at Line 9 with “if VQ ⊆ C~k then”.

3.6.1 Experimental results

We experimentally prove the efficiency of the modifications adopted by our algorithms for multi-
layer community search by reporting a comparison against the original algorithms with no such
modifications. Therefore, we consider as baselines the algorithms introduced in Section 3.2 for
computing the entire multilayer core decomposition, i.e., the bfs-ml-cores, dfs-ml-cores, and
hybrid-ml-cores algorithms. We vary the size |VQ| of the query-vertex set from 1 to 10. For
every query-set size, we select – uniformly at random – a number of 100 different query-vertex sets
from the whole vertex set. We also vary β from 0.1 and 100. The runtime with varying |VQ| is
shown in Table 3.6. All results are averaged over the various query-vertex sets sampled.
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In all datasets and for all algorithms, the modifications yield considerable improvement. For
|VQ| = 1, which is the most demanding scenario in terms of runtime, we achieve from one to three
orders of magnitude of speedup in all the cases (with the exception of Amazon). As the number
of query vertices increases, the modifications become even more effective: for |VQ| > 2, we obtain
at least one order of magnitude of speedup, up to a maximum of four orders of magnitude on the
Friendfeed dataset.

As a further insight, for a number of query vertices |VQ| ≤ 2, the runtime of the methods
for multilayer community search is strongly dependent on the underlying algorithm for multilayer
core decomposition. For example, on the SacchCere and Higgs datasets, h is outperformed by
bfs and dfs, respectively. The picture is instead different for |VQ| > 2: h turns out to be the
fastest algorithm in all the datasets, with the exception of FriendfeedTwitter, for which dfs achieves
better performance up to 10 query vertices. Therefore, in general, the core-lattice visit performed
by h results to be more effective in identifying the solution multilayer core quickly. In the case of
FriendfeedTwitter instead, the gap between the original runtime of dfs and h is so marked that,
even if h yields better speedup, it is not able to outperform dfs. This behavior is mainly motivated
by the small number of layers of FriendfeedTwitter (only 2), which, as already observed beforehand,
favors dfs in terms of runtime.

3.7 Summary

In this chapter we study core decomposition in multilayer networks, characterizing its usefulness, its
relation to other problems, and its intrinsic complexity. We then devise three efficient algorithms
for computing the whole core decomposition of a multilayer network and we show a series of
non-trivial applications of the core decomposition to solve related problems. In particular:

• Given the large number of multilayer cores, we devise a recursive algorithm for efficiently
computing the inner-most cores only.

• We study densest-subgraph extraction in multilayer graphs as a proper optimization problem
trading off between high density and layers exhibiting high density, and show how core
decomposition can be used to approximate this problem with quality guarantees.

• We show how the multilayer core-decomposition tool can be theoretical exploited to speed
up the extraction of frequent cross-graph quasi-cliques, and experimentally prove the ef-
fectiveness of our approach with respect to the original algorithm for frequent cross-graph
quasi-cliques.

• We generalize the multilayer community-search problem to the multilayer case and show how
to exploit multilayer core decomposition to obtain optimal solutions to this problem.
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Chapter 4

Core decomposition in temporal
networks

A temporal network is a representation of entities (vertices), their relations (links), and how these
relations are established/broken over time. Notice that here we will consider discrete times, i.e.,
the temporal networks can be represented as a time-ordered series of snapshots (instantaneous
graphs). Extracting dense structures together with their temporal span (i.e., the period of time
for which the high density is observed) is a key mining primitive to characterize such temporal
networks and to identify relevant patterns. This type of pattern enables fine-grain analysis of
the network dynamics and can be a building block towards more complex tasks and applications,
such as finding temporally recurring subgraphs or anomalously dense ones. For instance, they can
help in studying contact networks among individuals to quantify the transmission opportunities
of respiratory infections in a population and uncover situations where the risk of transmission is
higher, with the goal of designing mitigation strategies [107]. Anomalously dense temporal patterns
among entities in a co-occurrence graph (e.g., extracted from the Twitter stream) have also been
used to identify events and buzzing stories in real time [12, 44]. Another example concerns scientific
collaboration and citation networks, where these patterns can help understand the dynamics of
collaboration in successful professional teams, study the evolution of scientific topics, and detect
emerging technologies [79].

In this chapter we adopt as a measure of density of a pattern the minimum degree holding
among the vertices in the subgraph during the pattern’s span. The problem of extracting all
these patterns is tackled by introducing a notion of temporal core decomposition in which each
core is associated with its span, i.e., an interval of contiguous timestamps, for which the coreness
property holds. We term such a notion of temporal core span-core. Moreover, in several application
scenarios it is typically required to identify only those dense patterns that contain a given set of
query vertices. We therefore introduce the problem of temporal community search, whose goal is
to find a set of cohesive temporal subgraphs containing the input query vertices and covering the
whole temporal domain.

Challenges and contributions

As the number of possible time intervals is quadratic in the size of the input temporal domain T ,
the total number of span-cores is, in the worst case, quadratic in T too. The naive method to find
all span-cores, which would be to operate a core decomposition for each of these time intervals,
would therefore be very time-consuming. This is a major challenge that we tackle by deriving
containment properties between span-cores and by exploiting them to devise an algorithm for
computing all the span-cores that is significantly more efficient than the näıve exhaustive method.

We then shift our attention to the problem of finding only the maximal span-cores, defined as
the span-cores that are not dominated by any other span-core by both the coreness property and the
span. A straightforward way of approaching this problem is to filter out non-maximal span-cores
during the execution of an algorithm for computing the whole span-core decomposition. However,
as the maximal ones are usually much less numerous than the overall span-cores, it would be
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desirable to have a method that effectively exploits the maximality property and extracts maximal
span-cores directly, without computing the complete decomposition. The design of an algorithm
of this kind is an interesting challenge, as it contrasts with the intrinsic conceptual properties of
core decomposition, based on which a core of order k can be efficiently computed from the core of
order k−1, of which it is a subset. For this reason, at first glance, the computation of the core
of the highest order would seem as hard as computing the overall core decomposition. Instead, in
this work we derive a number of theoretical properties about the relationship among span-cores
of different temporal intervals and, based on these findings, we show how such a challenging goal
may be achieved.

Finally, we focus on the problem of community search in temporal networks. Community search
has been extensively studied in static graphs. It requires to find a subgraph containing a given
set of query vertices and maximizing a certain density measure [86, 132]. Here, we propose a
formulation of the community-search problem in temporal networks as follows: given a set Q of
query vertices, and a positive integer h, find a segmentation of the underlying temporal domain in
h segments {∆i}hi=1 and a subgraph Si for every identified segment ∆i such that each Si contains
the query vertices Q and the total density of the subgraphs is maximized. Following the bulk of
the literature in community search on static networks, in our definition of temporal community
search we adopt the minimum degree as a density measure.

We show that, with some manipulations, temporal community search can be reformulated as
an instance of the popular sequence segmentation problem, which asks for partitioning a sequence
of numerical values into h segments so as to minimize the sum of the penalties (according to some
penalty function) on the identified segments [33]. Therefore, the classical dynamic-programming
algorithm for sequence segmentation by Bellman [33] can be easily adapted to solve temporal
community search in polynomial time. A criticality of this approach is that a näıve adaptation of
the Bellman’s algorithm takes quadratic time in the size of the input temporal domain T . As a
major contribution in this regard, we prove that the set of maximal span-cores provide a sound and
complete basis to still have an optimal solution to temporal community search, while at the same
time leading to a significant speed-up with respect to the näıve method. In fact, let T ∗ ⊆ T be the
subset of timestamps that are covered by the span of at least one maximal span-core, together with
the timestamps that immediately precede or succeed any of such spans. We show that considering
T ∗ (instead of T ) in the (adaptation of the) Bellman’s algorithm is sufficient to optimally solve the
underlying temporal-community-search problem instance. As, typically, |T ∗| � |T |, this finding
guarantees a considerable improvement in efficiency (as confirmed by our experiments).

A further challenge in our temporal-community-search problem is a typical one in community-
search formulations based on minimum degree, namely, that the output subgraphs are typically
large in size. We tackle this challenge by devising a method to reduce the size of the output
subgraphs without affecting optimality. The proposed method is inspired by the one devised by
Barbieri et al. [25] for the problem of minimum community search (in static graphs).

To summarize, the main contributions of this work are as follows:

• We introduce the notion of span-core decomposition and maximal span-core in temporal
networks, characterizing structure and size of the search space and providing important
containment properties (Section 4.1).

• We devise an algorithm for computing all span-cores that exploits the aforementioned contain-
ment properties and is orders of magnitude faster than a näıve method based on traditional
core decomposition (Section 4.2).

• We study the problem of finding only the maximal span-cores. We derive several theoretical
findings about the relationship between maximal span-cores and exploit these findings to
devise an algorithm that is more efficient than computing all span-cores and discarding the
non-maximal ones (Section 4.3).

• We introduce the problem of temporal community search and show how it can be solved
in polynomial time via dynamic programming. We prove an important connection between
temporal community search and maximal span-cores, which allows us to devise an algorithm
that is considerably more efficient than the näıve dynamic-programming one. We also pro-
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pose a method to achieve the critical challenge of having too large communities as output
(Section 4.4).

• We provide a comprehensive experimentation on several real-world temporal networks, with
millions of vertices, tens of millions of edges, and hundreds of timestamps, which attests
efficiency and scalability of our methods (Section 4.5).

4.1 Temporal core decomposition

In this section we provide preliminary definitions and the needed notations, introduce the problem
of finding all span-cores and only the maximal ones, and prove containment properties among
span-cores that are at the basis of our efficient algorithms.

4.1.1 Span-cores

We are given a temporal graph G = (V, T, τ), where V is a set of vertices, T = [0, 1, . . . , tmax] ⊆ N
is a discrete time domain, and τ : V ×V ×T → {0, 1} is a function defining for each pair of vertices
u, v ∈ V and each timestamp t ∈ T whether edge (u, v) exists in t. We denote E = {(u, v, t) |
τ(u, v, t) = 1} the set of all temporal edges. Given a timestamp t ∈ T , Et = {(u, v) | τ(u, v, t) = 1}
is the set of edges existing at time t. A temporal interval ∆ = [ts, te] is contained into another
temporal interval ∆′ = [t′s, t

′
e], denoted ∆ v ∆′, if t′s ≤ ts and t′e ≥ te. Given an interval ∆ v T ,

we denote E∆ =
⋂
t∈∆Et the edges existing in all timestamps of ∆. Given a subset S ⊆ V of

vertices, let E∆[S] = {(u, v) ∈ E∆ | u ∈ S, v ∈ S} and G∆[S] = (S,E∆[S]). Finally, the temporal
degree of a vertex u within G∆[S] is denoted d∆(S, u) = |{v ∈ S | (u, v) ∈ E∆[S]}|.

Definition 4.1 ((k,∆)-core). The (k,∆)-core of a temporal graph G = (V, T, τ) is (when it exists)
a maximal and non-empty set of vertices ∅ 6= Ck,∆ ⊆ V , such that ∀u ∈ Ck,∆ : d∆(Ck,∆, u) ≥ k,
where ∆ v T is a temporal interval and k ∈ N+.

A (k,∆)-core is thus a set of vertices implicitly defining a cohesive subgraph (where k represents
the cohesiveness constraint), together with its temporal span, i.e., the interval ∆ for which the
subgraph satisfies the cohesiveness constraint. In the remainder of the chapter we refer to this
type of temporal pattern as span-core.

The first problem we tackle in this work is to compute the span-core decomposition of a temporal
graph G, i.e., all span-cores of G.

Problem 4.1 (Span-core decomposition). Given a temporal graph G, find the set of all (k,∆)-cores
of G.

Unlike standard cores of simple graphs, span-cores are not all nested into each other, due to
their spans. However, they still exhibit containment properties. Indeed, it can be observed that a
(k,∆)-core is contained into any other (k′,∆′)-core with less restrictive degree and span conditions,
i.e., k′ ≤ k, and ∆′ v ∆. This property is depicted in Figure 4.1, and formally stated in the next
proposition.

Proposition 4.1 (Span-core containment). For any two span-cores Ck,∆, Ck′,∆′ of a temporal
graph G it holds that

k′ ≤ k ∧∆′ v ∆ ⇒ Ck,∆ ⊆ Ck′,∆′ . (4.1)

Proof. The result can be proved by separating the two conditions in the hypothesis, i.e., by sepa-
rately showing that (i) k′ ≤ k ⇒ Ck,∆ ⊆ Ck′,∆, and (ii) ∆′ v ∆⇒ Ck,∆ ⊆ Ck,∆′ . The first point
holds as, keeping the span ∆ fixed, the maximal set of vertices C for which d∆(C, u) ≥ k is clearly
contained in the maximal set of vertices C ′ for which d∆(C ′, u) ≥ k′, if k′ ≤ k. To prove (ii), it can
be noted that ∆′ v ∆ ⇒ E∆ ⊆ E∆′ , which implies that ∀u ∈ Ck,∆ : d∆(Ck,∆, u) ≤ d∆′(Ck,∆, u).
Therefore, all vertices within Ck,∆ satisfy the condition to be part of Ck,∆′ too.

The following observation directly derives from Proposition 4.1 and states that finding all the
span-cores having a fixed span ∆ corresponds to computing the core decomposition of a simple
graph.
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Figure 4.1: Search space: for a temporal span ∆ = [ts, te], the (k,∆)-core is depicted as a node
labeled “k, [ts, te]”. An arrow C1 → C2 denotes C1 ⊇ C2 (the distinction between solid and dotted
arrows is for visualization sake only).

Observation 4.1. For a fixed temporal interval ∆ v T , finding all span-cores that have ∆ as
their span is equivalent to computing the classic core decomposition [30] of the simple graph G∆ =
(V,E∆).

4.1.2 Maximal span-cores

As the total number of temporal intervals that are contained into the whole time domain T is
|T |(|T |+1)/2, the total number of span-cores is potentially O(|T |2 × kmax), where kmax is the
largest value of k for which a (k,∆)-core exists. It is thus quadratic in |T |, which may be too large
an output for human direct inspection. In this regard, it may be useful to focus only on the most
relevant cores, i.e., the maximal ones, as defined next.

Definition 4.2 (Maximal span-core). A span-core Ck,∆ of a temporal graph G is said maximal if
there does not exist any other span-core Ck′,∆′ of G such that k ≤ k′ and ∆ v ∆′.

Hence, a span-core is recognized as maximal if it is not dominated by another span-core both
on the order k and the span ∆. Differently from the innermost core (i.e., the core of the highest
order) in the classic core decomposition, which is unique, in our temporal setting the number of
maximal span-cores is O(|T |2), as, in the worst case, there may be one maximal span-core for every
temporal interval. However, as observed in empirical temporal-network data, maximal span-cores
are always much less than the overall span-cores: the difference is usually one order of magnitude
or more. The second problem we tackle in this work is to compute the maximal span-cores of a
temporal graph.

Problem 4.2 (Maximal Span-core Mining). Given a temporal graph G, find the set of all
maximal (k,∆)-cores of G.

Clearly, one could solve Problem 4.2 by solving Problem 4.1 and filtering out all the non-
maximal span-cores. However, an interesting yet challenging question is whether one can exploit
the maximality condition to develop faster algorithms that can directly extract the maximal ones,
without computing all the span-cores. We provide a positive answer to this question in Section 4.3.
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4.2 Computing all span-cores

In this section we devise algorithms for computing a complete span-core decomposition of a tem-
poral graph (Problem 4.1).

A näıve approach. As stated in Observation 1, for a fixed temporal interval ∆ v T , mining
all span-cores Ck,∆ is equivalent to computing the classic core decomposition of the graph G∆ =
(V,E∆). A näıve strategy is thus to run a core-decomposition subroutine [30] on graph G∆ for
each temporal interval ∆ v T . Such a method has time complexity O(

∑
∆vT (|∆| × |E|)), i.e.,

O(|T |2 × |E|).
A more efficient algorithm. Looking at Figure 4.1 one can observe that the näıve algorithm
only exploits one dimension of the containment property: it starts from each point on the top level,
i.e., from cores of order 1, and goes down vertically with the classic core decomposition. Based on
Proposition 4.1, it is possible to design a more efficient algorithm that exploits also the “horizontal
containment” relationships.

Example 4.1. Consider core C1,[0,2] in Figure 4.1: by Proposition 4.1 it holds that it is a subset
of both C1,[0,1] and C1,[1,2]. Therefore, to compute C1,[0,2], instead of starting from the whole V ,
one can start from C1,[0,1] ∩ C1,[1,2]. Starting from a much smaller set of vertices can provide a
substantial speed-up to the whole computation.

This observation, although simple, produces a speed-up of orders of magnitude as we will
empirically show in Section 4.5. The next straightforward corollary of Proposition 4.1 states that,
not only C1,[0,2] ⊆ C1,[0,1] ∩ C1,[1,2], but this is the best one can get, meaning that intersecting
these two span-cores is equivalent to intersecting all span-cores structurally containing C1,[0,2].

Corollary 4.1. Given a temporal graph G = (V, T, τ), and a temporal interval ∆ = [ts, te] v T ,
let ∆+ = [min{ts + 1, te}, te] and ∆− = [ts,max{te − 1, ts}]. It holds that

C1,∆ ⊆ (C1,∆+
∩ C1,∆−) =

⋂
∆′v∆

C1,∆′ . (4.2)

Example 4.2. Consider again C1,[0,2] in Figure 4.1: Proposition 4.1 states that it is a subset of
C1,[0,0], C1,[0,1], C1,[1,1], C1,[1,2], C1,[2,2]. Corollary 4.1 suggests that there is no need to intersect them
all, but only C1,[0,1] and C1,[1,2]: in fact, C1,[0,1] ⊆ C1,[0,0] ∩C1,[1,1] and C1,[1,2] ⊆ C1,[1,1] ∩C1,[2,2].

The main idea behind our efficient Span-cores algorithm (whose pseudocode is given as Algo-
rithm 4.1) is to generate temporal intervals of increasing size (starting from size one) and, for each
∆ of width larger than one, to initiate the core decomposition from (C1,∆+

∩ C1,∆−), i.e., the
smallest intersection of cores containing C1,∆ (Corollary 4.1). The intervals to be processed are
added to queue Q, which is initialized with the intervals of size one (Lines 2–3): these are the only
intervals for which no other interval can be used to reduce the set of vertices from which the core
decomposition is started, thus they have to be initialized with the whole vertex set V . The algo-
rithm utilizes a map A that, given an interval ∆, returns the set of vertices to be used as a starting
set of the core decomposition on ∆. The algorithm processes all intervals stored in Q, until Q has
become empty (Lines 4–16). For every temporal interval ∆ extracted from Q, the starting set of
vertices is retrieved from A[∆] and the corresponding set of edges is identified (Line 6). Unless this
is empty, the classic core-decomposition algorithm [30] is invoked over (A[∆], E∆[A[∆]]) (Line 8)
and its output (a set of span-cores of span ∆) is added to the ultimate output set C (Line 9).

Afterwards, the two intervals, denoted ∆1 and ∆2, for which C1,∆ can be used to obtain
the smallest intersections of cores containing them (Corollary 4.1) are computed at Line 10. For
∆1 (and analogously ∆2), we check whether A[∆1] has already been initialized (Line 12): this
would mean that previously the other “father” (i.e., smallest containing core) of C1,∆1 has been
computed, thus we can intersect C1,∆ with A[∆1] and enqueue ∆1 to be processed (Lines 13–
14). Instead, if A[∆1] was not yet initialized, we initialize it with C1,∆ (Line 16): in this case
∆1 is not enqueued because it still lacks one father to be intersected before being ready for core
decomposition. This procedural update of Q ensures that both fathers of every interval in Q exist
and have been previously computed, thus no a-posteriori verification is needed.
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Algorithm 4.1: Span-cores

Input: A temporal graph G = (V, T, τ).
Output: The set C of all span-cores of G.

1 C← ∅; Q← ∅; A ← ∅
2 forall t ∈ T do
3 enqueue [t, t] to Q; A[t, t]← V

4 while Q 6= ∅ do
5 dequeue ∆ = [ts, te] from Q
6 E∆[A[∆]]← {(u, v) ∈ E∆ | u ∈ A[∆], v ∈ A[∆]}
7 if |E∆[A[∆]]| > 0 then
8 C∆ ← core-decomposition(A[∆], E∆[A[∆]])
9 C← C ∪C∆

10 ∆1 = [max{ts − 1, 0}, te]; ∆2 = [ts,min{te + 1, tmax}]
11 forall ∆′ ∈ {∆1,∆2} | ∆′ 6= ∆ do
12 if A[∆′] 6= null then
13 A[∆′]← A[∆′] ∩ C1,∆

14 enqueue ∆′ to Q

15 else
16 A[∆′]← C1,∆

Example 4.3. Consider again the search space in Figure 4.1. Algorithm 4.1 first processes the
intervals [0, 0], [1, 1], [2, 2], and [3, 3]. Then, it intersects C1,[0,0] and C1,[1,1] to initialize C1,[0,1],
intersects C1,[1,1] and C1,[2,2] to initialize C1,[1,2], and intersects C1,[2,2] and C1,[3,3] to initialize
C1,[2,3]. Then, it continues with the intervals of size 3: it intersects C1,[0,1] and C1,[1,2] to initialize
C1,[0,2] and so on.

The next theorem formally shows soundness and completeness of our Span-cores algorithm.

Theorem 4.1. Algorithm 4.1 is sound and complete for Problem 4.1.

Proof. The algorithm generates and processes a subset of temporal intervals X ⊆ {∆ | ∆ v T}.
For every interval ∆ ⊆ X , it computes all span-cores C∆ = {C1,∆, C2,∆, . . . , Ck∆,∆} defined on ∆
by means of the core-decomposition subroutine on the graph (A[∆], E∆[A[∆]]). The set of vertices
A[∆] is equivalent to (C1,∆+ ∩ C1,∆−) because of Line 13 (Corollary 4.1) and the fact that ∆ is
enqueued (Line 14) only when both fathers have been processed and the intersection done. The
correctness of doing the classic core decomposition is guaranteed by Observation 4.1.

As for completeness, it suffices to show that the intervals ∆ /∈ X that have not been processed
by the algorithm do not yield any span-core. The algorithm generates all temporal intervals size
by size, starting from those of size one and then going to larger sizes. This is done by maintaining
the queue Q. As said above, an interval ∆ is enqueued as soon as both C1,∆+ and C1,∆− have
been processed. Thus, an interval ∆ is not in X only if either C1,∆+

or C1,∆− does not exist. In
this case C1,∆ and all other Ck,∆ do not exist as well.

Discussion. Algorithm 4.1 exploits the “horizontal containment” relationships only at the first

level of the search space. For a given ∆, once the restricted starting set of vertices has been defined
for k = 1, the traditional core decomposition is started to produce all the span-cores of span ∆.
In other words, for k > 1 only the “vertical containment” is exploited. Consider the span-core
C3,[1,2] in Figure 4.1: we know that it is a subset of C2,[1,2] (“vertical” ) and of C3,[1,1] and C3,[2,2]

(“horizontal” ). One could consider intersecting all these three span-cores before computing C3,[1,2].
We tested this alternative approach, but concluded that the overhead of computing intersections
and data-structure maintenance was outweighing the benefit of starting from a smaller vertex set.

The worst-case time complexity of Algorithm 4.1 is equal to the näıve approach, however, in
practice, it is orders of magnitude faster, as shown in Section 4.5.
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4.3 Computing maximal span-cores

In this section we focus on Problem 4.2: computing the maximal span-cores of a temporal graph.

A filtering approach. As anticipated above, a straightforward way of solving this problem con-
sists in filtering the span-cores computed during the execution of Algorithm 4.1, so as to ultimately
output only the maximal ones. This can easily be accomplished by equipping Algorithm 4.1 with a
data structureM that stores the span-core of the highest order for every temporal interval ∆ v T
that has been processed by the algorithm. Moreover, at the storage of a span-core Ck,∆ inM, the
span-cores previously stored in M for subintervals of the temporal interval ∆ and with the same
order k are removed fromM. This removal operation, together with the order in which span-cores
are processed, ensures that M eventually contains only the maximal span-cores.

Efficient maximal-span-core finding. Our next goal is to design a more efficient algorithm that
extracts maximal span-cores directly, without computing complete core decompositions, passing
over more peripheral ones, and without generating all temporal cores. This is a quite challenging
design principle, as it contrasts the intrinsic structural properties of core decomposition, based
on which a core of order k is usually computed from the core of order k−1, thus making the
computation of the core of the highest order as hard as computing the overall decomposition.
Nevertheless, thanks to theoretical properties that relate the maximal span-cores to each other, in
the temporal context such a challenge can be achieved. In the following we discuss such properties
in detail, by starting from a result that has already been discussed above, but only informally.

Consider the classic core decomposition in a standard (non-temporal) graph G (Definition 2.1)
and let Ck∗ [G] denote the innermost core of G, i.e., the non-empty k-core of G with the largest k.

Lemma 4.1. Given a temporal graph G = (V, T, τ), let CM be the set of all maximal span-cores
of G, and Cinner = {Ck∗ [G∆] | ∆ v T} be the set of innermost cores of all graphs G∆. It holds
that CM ⊆ Cinner.

Proof. Every Ck,∆ ∈ CM is the innermost core of the non-temporal graph G∆: else, there would
exist another core Ck′,∆ 6= ∅ with k′ > k, implying that Ck,∆ /∈ CM .

Lemma 4.1 states that each maximal span-core is an innermost core of a G∆, for some temporal
interval ∆ v T . Hence, there can exist at most one maximal span-core for every ∆ v T (while
an interval ∆ may not yield any maximal span-core). The key question to design an efficient
maximal-span-core-mining algorithm thus becomes how to extract innermost cores of the graphs
G∆ more efficiently than by computing the full core decompositions of all G∆. The answer to this
question comes from the result stated in the next two lemmas (with Lemma 4.2 being auxiliary to
Lemma 4.3).

Lemma 4.2. Given a temporal graph G = (V, T, τ), and three temporal intervals ∆ = [ts, te] v T ,
∆′ = [ts−1, te] v T , and ∆′′ = [ts, te+1] v T . The innermost core Ck∗ [G∆] is a maximal span-core
of G if and only if k∗ > max{k′, k′′} where k′ and k′′ are the orders of the innermost cores of G∆′

and G∆′′ , respectively.

Proof. The “⇒” part comes directly from the definition of maximal span-core (Definition 4.2): if
k∗ were not larger than max{k′, k′′}, then Ck∗ [G∆] would be dominated by another span-core both
on the order and on the span (as both ∆′ and ∆′′ are superintervals of ∆). For the “⇐” part, from
Lemma 4.1 and Proposition 4.1 it follows that max{k′, k′′} is an upper bound on the maximum
order of a span-core of a superinterval of ∆. Therefore, k∗ > max{k′, k′′} implies that there cannot
exist any other span-core that dominates Ck∗ [G∆] both on the order and on the span.

Lemma 4.3. Given G, ∆, ∆′, ∆′′, k′, and k′′ defined as in Lemma 4.2, let Ṽ = {u ∈ V |
d∆(V, u) > max{k′, k′′}}, and let Ck∗ [G∆[Ṽ ]] be the innermost core of G∆[Ṽ ]. If k∗ > max{k′, k′′},
then Ck∗ [G∆[Ṽ ]] is a maximal span-core; otherwise, no maximal span-core exists for ∆.

Proof. Lemma 4.2 states that, to be recognized as a maximal span-core, the innermost core of
G∆ should have order larger than max{k′, k′′}. This means that, if the innermost core of G∆ is

a maximal span-core, all vertices u /∈ Ṽ cannot be part of it. Therefore, G∆ yields a maximal
span-core only if the innermost core of subgraph G∆[Ṽ ] has order k∗ > max{k′, k′′}.
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Algorithm 4.2: Maximal-span-cores

Input: A temporal graph G = (V, T, τ).
Output: The set CM of all maximal span-cores of G.

1 CM ← ∅
2 K′[t]← 0, ∀t ∈ T
3 forall ts ∈ [0, 1, . . . , tmax] do
4 t∗ ← max{te ∈ [ts, tmax] | E

[ts,te]
6= ∅}

5 k′′ ← 0
6 forall te ∈ [t∗, t∗−1, . . . , ts] do
7 ∆← [ts, te]
8 lb← max{K′[te], k′′}
9 Vlb ← {u ∈ V | d∆(V, u) > lb}

10 E∆[Vlb]← {(u, v) ∈ E∆ | u ∈ Vlb, v ∈ Vlb}
11 C ← innermost-core(Vlb, E∆[Vlb])
12 k∗ ← order of C
13 if k∗ > lb then
14 CM ← CM ∪ {C}
15 k′′ ← max{k′′, k∗}; K′[te]← max{K′[te], k′′}

Lemma 4.3 provides the basis of our efficient method for extracting maximal span-cores. Ba-
sically, it states that, to verify whether a certain temporal interval ∆ = [ts, te] yields a maximal
span-core (and, if so, compute it), there is no need to consider the whole graph G∆, rather it
suffices to start from a smaller subgraph, which is given by all vertices whose temporal degree is
larger than the maximum between the orders of the innermost cores of intervals ∆′ = [ts−1, te] and
∆′′ = [ts, te+1]. This finding suggests a strategy that is opposite to the one used for computing the
overall span-core decomposition: a top-down strategy that processes temporal intervals starting
from the larger ones. Indeed, in addition to exploiting the result in Lemma 4.3, this way of explor-
ing the temporal-interval space allows us to skip the computation of complete core decompositions
of the whole “singleton-interval” graphs {G

[t,t]
}t∈T , which may easily become a critical bottleneck,

as they are the largest ones among the graphs induced by temporal intervals.

The Maximal-span-cores algorithm. Algorithm 4.2 iterates over all timestamps ts ∈ T in
increasing order (Line 3), and for each ts it first finds all the maximal span-cores that have span
starting in ts. This way of proceeding ensures that a span-core that is recognized as maximal will
not be later dominated by another span-core. Indeed, an interval [ts, te] can never be contained in
another interval [t′s, t

′
e] with ts < t′s. For a given ts, all maximal span-cores are computed as follows.

First, the maximum timestamp ≥ ts such that the corresponding edge set E
[ts,te]

is not empty is
identified as t∗ (Line 4). Then, all intervals ∆ = [ts, te] are considered one by one in decreasing
order of te (Lines 6–7): this again guarantees that a span-core that is recognized as maximal will
not be later dominated by another span-core, as the intervals are processed from the largest to the
smallest. At each iteration of the internal cycle, the algorithm resorts to Lemma 4.3 and computes
the lower bound lb on the order of the innermost core of G∆ to be recognized as maximal, by taking
the maximum between K′[te] and k′′ (Line 8). K′ is a map that maintains, for every timestamp
t ∈ [ts, t

∗], the order of the innermost core of graph G∆′ , where ∆′ = [ts−1, t] (i.e., K′[t] stores
what in Lemmas 4.2–4.3 is denoted as k′). Whereas k′′ stores the order of the innermost core
of G∆′′ , where ∆′′ = [ts, te + 1]. Afterwards, the sets of vertices Vlb and of edges E∆[Vlb] that
comply with this lower-bound constraint are built (Lines 9–10), and the innermost core of the
subgraph (Vlb, E∆[Vlb]) is extracted (Lines 11–12). Ultimately, based again on Lemma 4.3, such a
core is added to the output set of maximal span-cores only if its order is actually larger than lb
(Lines 13–14), and the values of k′′ and K′[te] are updated (Line 15). Specifically, note that the
order k∗ of core C may in principle be less than k′′, as C is extracted from a subgraph of G∆.
If this happens, it means that the actual order of the innermost core of G∆ is equal to k′′. This
motivates the update rules (and their order) reported in Line 15.

Theorem 4.2. Algorithm 4.2 is sound and complete for Problem 4.2.
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Proof. The algorithm processes all temporal intervals ∆ v T yielding a non-empty edge set E∆,
in an order such that no interval is processed before one of its superintervals: this guarantees that
a span-core recognized as maximal will not be dominated by another span-core found later on.
For every ∆ it extracts a core C that is used as a proxy of the innermost core of graph G∆. C is
added to the output set CM only if Lemma 4.3 recognizes it as a maximal span-core, otherwise it
is discarded. This proves the soundness of the algorithm. Completeness follows from Lemma 4.1,
which states that to extract all maximal span-cores it suffices to focus on the innermost cores of
graphs {G∆ | ∆ v T}, and Lemma 4.3 again, which states the condition for a proxy core C to be
safely discarded because it is a non-maximal span-core.

Discussion. The worst-case time complexity of Algorithm 4.2 is the same as the algorithm for
computing the overall span-core decomposition, i.e., O(|T |2 × |E|). It is worth mentioning that it
is not possible to do better than this, as the output itself is potentially quadratic in |T |. However,
as we will show in Section 4.5, the proposed algorithm is in practice much more efficient than
computing the overall span-core decomposition and filtering out the non-maximal span-cores as,
in this case, we avoid the visit of portions of the span-core search space and the computations are
run over subgraphs of reduced dimensions.

To conclude, we discuss how the crucial operation of building the subgraph (Vlb, E∆[Vlb]) may
be carried out efficiently in terms of both time and space. Consider a fixed timestamp ts ∈
[0, . . . , tmax]. The following reasoning holds for every ts. Let E−(te) = E

[ts,te]
\ E

[ts,te+1]
be the

set of edges that are in E
[ts,te]

but not in E
[ts,te+1]

, for te ∈ [ts, . . . , t
∗− 1]. As a first general

step, for each ts, we compute and store all edge sets {E−(te)}te∈[ts,t∗−1]. These operations can be
accomplished in O(|T | × |E|) overall time, because every E−(te) can be computed incrementally
from E

[ts,te]
as E−(te) = {(u, v) ∈ E

[ts,te]
| τ(u, v, te+1) = 0}. Moreover, for any timestamp te, we

keep a map D storing all vertices of G
[ts,te]

organized by degree. Specifically, the set D[k] contains
all vertices having degree > k in G

[ts,te]
. Every vertex in D is thus replicated a number of times

equal to its degree. This way, the overall space taken by D is O(|E|), i.e., as much space as G. D
is initialized as empty (when te = t∗) and repeatedly augmented as te decreases, by a linear scan
of the various E−(te). The overall filling of D (for all te) therefore takes O(|T | × |E|) time. Then,
the desired Vlb can be computed in constant time simply as Vlb = D[lb].

As for E∆[Vlb], for any te, we first reconstruct E
[ts,te]

as E
[ts,te+1]

∪ E−(te), having previously

computed E
[ts,te+1]

. Note that storing all E−(te) takes O(|E|) space. That is why we store all

E−(te) and reconstruct E
[ts,te]

afterward (instead of storing the latter, which would take O(|T | ×
|E|) space). E∆[Vlb] is ultimately derived by a linear scan of E

[ts,te]
, taking all edges in E

[ts,te]

having both endpoints in Vlb. This way, the step of building E∆[Vlb] for all te takes again O(|T | ×
|E|) overall time.

4.4 Temporal community search

Community search in static graphs aims at finding a dense subgraph (community) containing a
set of input query vertices [86, 132]. In the temporal setting it is very likely that the communities
spanning the query vertices change over time. To be more precise, it may happen that a certain
subgraph S is a well-representative community for the given query vertices Q, but only for a
certain time interval ∆. Instead, for another time interval ∆′, a relevant community for Q might
correspond to a completely different subgraph S′. For this reason, we formulate community search
on temporal networks as the problem of finding h subgraphs (with h > 0 being an input parameter)
containing the query vertices, together with their temporal span, such that the sum of the density
of those subgraphs is maximized and the union of their temporal spans corresponds to the whole
input temporal domain. Among the many densities proposed in the literature, here we follow the
seminal work by Sozio and Gionis [215] on community search and adopt the minimum degree.
Formally:

Problem 4.3 (Temporal Community Search). Given a temporal graph G = (V, T, τ), a set
Q ⊆ V of query vertices, and a positive integer h ∈ N+, find a set {〈Si,∆i〉}hi=1 of h pairs such
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that (i) ∀1 ≤ i ≤ h : Q ⊆ Si ⊆ V , (ii)
⋃

1≤i≤h ∆i = T , and (iii) the following is maximized:

h∑
i=1

min
u∈Si

d∆i(Si, u). (4.3)

The input integer h is a user-defined parameter that gives the analyst the flexibility of re-
quiring a specific number of output temporal communities, which might vary from application to
application.

4.4.1 Connection with sequence segmentation

Here we provide some theoretical insights into the Temporal Community Search problem.
The main result we provide at the end of this subsection is an interesting connection with the
well-established Sequence Segmentation problem [33]. As shown in the next subsections, such
a result forms the basis for algorithmic design.

Let us first consider a single-interval variant of Problem 4.3: for a fixed temporal interval ∆,
find a subgraph containing the input set Q of query vertices that maximizes the minimum temporal
degree within ∆. Formally:

Problem 4.4 (Single Temporal Community Search). Given a temporal graph G = (V, T, τ),
a set Q ⊆ V of query vertices, and an interval ∆ v T , find

S∗ = argmaxQ⊆S⊆V min
u∈S

d∆(S, u). (4.4)

It is easy to see that solving Problem 4.4 corresponds to solving minimum-degree-based commu-
nity search on graph G∆. Therefore, a solution to Problem 4.4 can straightforwardly be computed
by applying a standard result on minimum-degree-based community search, which states that the
highest-order core containing all query vertices is a solution to that problem [25]. This finding is
formalized next.

Definition 4.3 ((Q,∆)-highest-order-span-core). Given a temporal graph G = (V, T, τ), a set
Q ⊆ V of query vertices, and an interval ∆ v T , the (Q,∆)-highest-order-span-core of G, denoted
C∗Q,∆, is defined as the highest-order span-core among all span-cores of G with temporal span ∆
and containing all query vertices in Q. Let also v∗Q,∆ denote the order of C∗Q,∆.

Fact 4.1. Given a temporal graph G = (V, T, τ), a set Q ⊆ V of query vertices, and an interval
∆ v T , the (Q,∆)-highest-order-span-core of G is a solution to Problem 4.4 on input 〈G,Q,∆〉.

Note that Problem 4.4 may have multiple solutions: C∗Q,∆ is only one of those possibly many
ones. C∗Q,∆ can be computed by running a core decomposition on (static) graph G∆, and stopping
it when the first core that does not contain all query vertices in Q has been encountered. Therefore,
Problem 4.4 can be solved in O(|∆| × |E|) time.

In light of the above findings, an alternative yet equivalent way of formulating our Temporal
Community Search problem is to ask for a segmentation (i.e., a partition) of the time domain

T into a set {∆i}hi=1 of h intervals so as to maximize the sum
∑h
i=1 v

∗
Q,∆i

of the orders of the
(Q,∆)-highest-order-span-cores of those identified intervals. Once such an optimal segmentation
of T has been computed, the ultimate {〈Si,∆i〉}hi=1 pairs are derived by simply setting Si = C∗Q,∆i

,
∀1 ≤ i ≤ h. Formally:

Problem 4.5 (Alternative formulation of Problem 4.3). Given a temporal graph G = (V, T, τ),
a set Q ⊆ V of query vertices, and a positive integer h ∈ N+, find a set {〈Si,∆i〉}hi=1 of h pairs
such that (i) ∀1 ≤ i ≤ h : Si = C∗Q,∆i

, (ii) {∆i}hi=1 is a partition of T , and (iii) the following is
maximized:

h∑
i=1

v∗Q,∆i
. (4.5)
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Algorithm 4.3: Temporal-community-search

Input: A temporal graph G = (V,E, T ), a set Q ⊆ V of query vertices, an integer h ∈ N+.
Output: A set {〈Si,∆i〉}hi=1, where Q ⊆ Si ⊆ V , ∀1 ≤ i ≤ h, and {∆i}hi=1 is a partition

of T .

/* Initialization */

1 Compute v∗Q,∆ and C∗Q,∆, ∀∆ v T , via Q-constrained span-core decomposition

2 P← an empty (|T | × h)-dimensional matrix // Penalty matrix

3 R← an empty (|T | × h)-dimensional matrix // Reconstruction matrix

4 forall t ∈ T do
5 P[t, 0]← −v∗Q,[0,t]
6 R[t, 0]← 0

/* Dynamic-programming step */

7 forall t ∈ T do
8 forall i ∈ [1, h) do
9 P[t, i]← min`∈[0,t] P[`, i− 1]− v∗Q,[`+1,t]

10 R[t, i]← argmin`∈[0,t] P[`, i− 1]− v∗Q,[`+1,t]

/* Reconstruction of the solution */

11 ub← tmax
12 forall i ∈ (h, 0] do
13 lb← R[ub, i]
14 ∆i ← [lb, ub]
15 ub← lb− 1

16 forall i ∈ (h, 0] do
17 Si ← C∗Q,∆i

Correspondence between Problem 4.3 and Problem 4.5 easily follows from Fact 4.1 and from the
observation that for any feasible solution {〈Si,∆i〉}hi=1 to Problem 4.3 with overlapping intervals,
there exists an overlapping-interval-free feasible solution with not smaller objective-function value.
To see the latter, for any two overlapping intervals ∆i and ∆j , simply replace one of the two
intervals, say ∆i, with ∆′i = ∆i \ (∆i ∩∆j). As ∆′i v ∆i, it holds that v∗Q,∆′i

≥ v∗Q,∆i
, therefore

the resulting overlapping-interval-free solution will have objective-function value greater than or
equal to the objective-function value of the starting solution with overlapping intervals.

Thanks to the reformulation in Problem 4.5, it is immediate to observe that our Temporal
Community Search problem is an instance of the well-established Sequence Segmentation
problem, which asks for partitioning a sequence of numerical values into b segments so as to mini-
mize the sum of the penalties (according to some penalty function) on each identified segment [33]:

Problem 4.6 (Sequence Segmentation [33]). Given a sequence X = (x0, x1, . . . , xmax) of
numerical values, and a function p : {Y }YvX → R that assigns a penalty score to every subsequence

Y of X, partition X into a set {Xi}bi=1 of b subsequences such that
∑b
i=1 p(Xi) is minimized.

Fact 4.2. Temporal Community Search (Problem 4.3) on input 〈G = (V, T, τ), Q, h〉 is an
instance of Sequence Segmentation (Problem 4.6) with X = T , b = h, and ∀∆ v T : p(∆) =
−v∗Q,∆.

In the following two subsections we show how to exploit the result in Fact 4.2 (and a further
important finding about maximal span-cores) to design efficient algorithms for our Temporal
Community Search problem.

4.4.2 A basic algorithm (based on all span-cores)

Sequence Segmentation can be solved in O(|X|2 × h+ τp) time via dynamic programming [33],
where τp is the overall time spent for computing the penalty score of all subsequences of the
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input sequence X (according to the given penalty function p). Thanks to the connection shown
in Fact 4.2, the dynamic-programming algorithm for Sequence Segmentation can be easily
adapted to solve Temporal Community Search as well. The pseudocode of this algorithm –
termed Temporal-community-search – is reported as Algorithm 4.3, and described next.

The Temporal-community-search algorithm makes use of two (|T |×h)-dimensional matrices, i.e.,
P and R. Matrix P represents the penalty matrix. It contains, ∀t ∈ T , ∀i ∈ [0, h), the minimum
cost of segmenting the sequence corresponding to the first t timestamps of T into i+ 1 segments.
As a result, P[tmax, h − 1] contains the objective-function value of the ultimate optimal solution
to Problem 4.5. Matrix R is the reconstruction matrix. It provides information about the optimal
segmentation, and is used at the end of the algorithm to reconstruct the output {∆i}hi=1. Note
that the algorithm does not explicitly compute the Si subgraphs corresponding to the optimal ∆i

intervals. In fact, as discussed above, each Si can be easily retrieved at the end of the algorithm,
by simply setting it equal to the corresponding (Q,∆i)-highest-order-span-core C∗Q,∆i

. According
to Fact 4.2, the penalty score of an interval ∆ v T corresponds to −v∗Q,∆, i.e., the negative of the
order of the (Q,∆)-highest-order-span-core C∗Q,∆. All individual v∗Q,∆ values, for all ∆ v T , are
efficiently computed altogether, at the beginning of the algorithm, via a “Q-constrained” variant
of span-core decomposition (an alternative, but much less efficient strategy consists in computing
every single v∗Q,∆ from scratch, on the fly). Specifically, a simple (yet more efficient) variant of the
span-core decomposition algorithm (Algorithm 4.1) is employed for this purpose, which outputs
only those span-cores containing all the vertices in Q. This is easily achievable by stopping the
core-decomposition subroutine, for every interval ∆ v T , as soon as a core not containing all query
vertices in Q has been encountered.

The time complexity of Algorithm 4.3 is O(|T |2 × h + τsc), where τsc is the time spent for
computing the Q-constrained span-core decomposition of the input graph G.

4.4.3 A more efficient algorithm (based on maximal span-cores)

A more efficient algorithm can be designed by noticing that, actually, one does not need to consider
all timestamps in T in the dynamic-programming step. Rather, focusing on a subset T ∗ ⊆ T –
which is properly defined based on the maximal span-cores of the input graph, see next – allows for
significantly reducing the dimensionality of the penalty matrix P and the reconstruction matrix
R, hence the overall time complexity of the algorithm, without affecting optimality of the output
solution. The following fact provides the theoretical basis for defining such a reduced temporal
domain T ∗.

Fact 4.3. Given a temporal graph G = (V, T, τ) and a set Q ⊆ V of query vertices, let CM (Q) be
the set of all Q-constrained maximal span-cores of G. For a temporal interval ∆ v T , it holds that
v∗Q,∆ = max{0,max{k | Ck,∆′ ∈ CM (Q),∆ v ∆′}}.

Fact 4.3 states that the penalty score v∗Q,∆ of an interval ∆ corresponds to the maximum among
the orders of the Q-constrained maximal span-cores whose span includes ∆, if some exist. If an
interval ∆ is not a subset of any span of a Q-constrained maximal span-core, then v∗Q,∆ = 0. In
that case, therefore, ∆ can be safely discarded, as it cannot be part of the optimal solution of
the given Temporal Community Search problem instance (unless it is needed to fill possible
“holes”, see below). The ultimate consequence of this finding is that the aforementioned reduced
temporal domain T ∗ is identified by the timestamps covered by the spans of the maximal span-
cores, along with auxiliary timestamps, which are needed to ensure a smooth execution of the
dynamic-programming step, as well as a correct handling of some extreme cases. Specifically, let
D = {∆ v T | Ck,∆ ∈ CM (Q)} be the set of the spans of the Q-constrained maximal span-
cores of the input graph, and TD =

⋃
∆∈D ∆ be the set of timestamps that are part of a span

of a Q-constrained maximal span-core. The first two sets of auxiliary timestamps correspond to
the timestamps that immediately precede and succeed the intervals in D, i.e., the sets T+

D =
{min{te + 1, tmax} | [ts, te] ∈ D} and T−D = {max{ts − 1, 0} | [ts, te] ∈ D}, respectively. The
timestamps in T+

D and T−D (along with the last timestamp tmax of the input temporal domain T )
are needed to allow the dynamic-programming step to identify a solution that actually covers the
whole temporal domain T (as per Condition (ii) of Problem 4.3). In particular, such timestamps
may be interpreted as a trick to give the dynamic-programming step the flexibility to select “holes”
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Algorithm 4.4: Efficient-temporal-community-search

Input: A temporal graph G = (V,E, T ), a set Q ⊆ V of query vertices, an integer h ∈ N+.
Output: A set {〈Si,∆i〉}hi=1, where Q ⊆ Si ⊆ V , ∀1 ≤ i ≤ h, and {∆i}hi=1 is a partition

of T .
/* Identification of T ∗ */

1 Compute the set CM (Q) of Q-constrained maximal span-cores of G
2 D← {∆ v T | Ck,∆ ∈ CM (Q)}
3 TD ←

⋃
∆∈D ∆; T+

D ← {min{te+1, tmax} | [ts, te] ∈ D};
T−D ← {max{ts−1, 0} | [ts, te] ∈ D}

4 Tsup ← {ti ∈ T \ (TD ∪ T−D ∪ T
+
D ∪ {tmax}) | i ∈ [1, h+ 1− |TD ∪ T−D ∪ T

+
D ∪ {tmax}|]}

5 T ∗ ← TD ∪ T+
D ∪ T−D ∪ {tmax} ∪ Tsup

/* Initialization */

6 Compute v∗Q,∆, ∀∆ v T
7 M← mapping function [0, |T ∗|)→ T ∗

8 P← an empty (|T ∗| × h)-dimensional matrix // Penalty matrix

9 R← an empty (|T ∗| × h)-dimensional matrix // Reconstruction matrix

10 forall r ∈ [0, |T ∗|) do
11 P[r, 0]← −v∗Q,[0,M[r]]

12 R[r, 0]← 0

/* Dynamic-programming step */

13 forall r ∈ [0, |T ∗|) do
14 forall i ∈ [1, h) do
15 P[r, i]← min`∈[0,r] P[`, i− 1]− v∗Q,[M[`+1],M[r]]

16 R[r, i]← argmin`∈[0,r] P[`, i− 1]− v∗Q,[M[`+1],M[r]]

/* Reconstruction of the solution */

17 ub← |T ∗| − 1
18 forall i ∈ (h, 0] do
19 lb← R[ub, i]
20 ∆i ← [M[lb],M[ub]]
21 ub← lb− 1

22 forall i ∈ (h, 0] do
23 Si ← C∗Q,∆i

(i.e., time intervals in-between two consecutive but not necessarily contiguous timestamps in TD).
Moreover, we define Tsup as the set of the first h + 1 − |TD ∪ T−D ∪ T

+
D ∪ {tmax}| timestamps of

T not contained in TD ∪ T−D ∪ T
+
D ∪ {tmax}, i.e., Tsup = {ti ∈ T \ (TD ∪ T−D ∪ T

+
D ∪ {tmax}) | i ∈

[1, h + 1 − |TD ∪ T−D ∪ T
+
D ∪ {tmax}|]}. The timestamps in Tsup are further auxiliary timestamps

that are needed to return a correct h-sized solution when the timestamps in TD∪T−D ∪T
+
D ∪{tmax}

are less than h+ 1 (the minimum number of timestamps required in T ∗ to have a solution of size
h). Note that Tsup is nonempty only if |TD ∪T−D ∪T

+
D ∪{tmax}| < h+ 1. Ultimately, T ∗ is defined

as

T ∗ = TD ∪ T+
D ∪ T−D ∪ {tmax} ∪ Tsup. (4.6)

The proposed more efficient method for Temporal Community Search, termed Efficient-
temporal-community-search, is summarized in Algorithm 4.4 and described next. The first five lines
of the algorithm are devoted to the identification of T ∗. As said above, matrices P and R have here
reduced dimensionality with respect to Algorithm 4.3: they are (|T ∗| × h)-dimensional matrices,
where |T ∗| ≤ |T |. A mapping function M is used to assign an index within [0, |T ∗|) to every
timestamp in |T ∗| (Line 6). Such a mapping is needed to have every timestamp in |T ∗| logically
assigned to a row of matrices P and R. The rest of the algorithm resembles Algorithm 4.3, except
for the fact that M is used every time that a row index has to be mapped to its corresponding
timestamp (e.g., during the reconstruction of the solution).
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An important point to clarify is that, during the execution of the Efficient-temporal-community-
search algorithm, we might need the penalty score v∗Q,∆ of intervals ∆ v T corresponding to
non-maximal (Q-constrained) span-cores. Therefore, the algorithm needs the v∗Q,∆ score of all
intervals ∆ v T . To compute these v∗Q,∆ scores (and, related to this, the set CM (Q) of Q-
constrained maximal span-cores, at Line 1), there are two main options. The first one consists
in computing the whole Q-constrained span-core decomposition (as done in Algorithm 4.3), keep
the v∗Q,∆ scores of all such cores, and eventually compute CM (Q) by simply filtering out non-
maximal span-cores. The second option corresponds instead to compute CM (Q) directly, without
passing through the whole Q-constrained span-core decomposition. This may be carried out by
running a simple variant of the algorithm for computing maximal span-cores (Algorithm 4.2),
where containment of query vertices is added as a further constraint. The computation of all
the v∗Q,∆ scores comes for free during the execution of this algorithm for Q-constrained maximal
span-cores: these scores can therefore be retained by adding a few straightforward (constant-time)
instructions to that algorithm. In our implementation we stick to the latter, as the Maximal-span-
cores algorithm has been experimentally recognized as faster than the näıve filtering approach in
all tested datasets.

The time complexity of the proposed Efficient-temporal-community-search algorithm is O(|T ∗|2×
h+τmsc), with τmsc being the time spent in computing the Q-constrained maximal span-cores and
the penalty scores v∗Q,∆. As in practice (attested by our experiments) |T ∗| � |T |, the proposed
Efficient-temporal-community-search algorithm is expected to be much more efficient than its näıve
counterpart, i.e., Algorithm 4.3.

4.4.4 Minimum community search

An instance of Temporal Community Search may admit several optimal solutions which might
differ either in terms of output intervals {∆i}hi=1, or in terms of subgraphs assigned to the various
identified intervals. More precisely, the latter refers to the fact that two optimal solutions might
find the same segmentation {∆i}hi=1 of the input temporal domain, but select different subgraphs
Si for any interval ∆i. Therefore, if the communities Si are not chosen carefully, they may result
to be excessively large, not really cohesive, and containing redundant/outlying vertices. This
is a well-recognized issue of minimum-degree-based community search [215]. At the same time,
large communities might include more cohesive and denser subgraphs that still exhibit optimality.
Motivated by this, in this subsection we devise a method to refine the communities originally found
by our algorithms for Temporal Community Search, specifically attempting to minimize their
size while preserving optimality. The main idea behind our refinement method is based on the
following result:

Proposition 4.2 (Community containment). Given a temporal graph G = (V, T, τ), a set Q ⊆ V
of query vertices, and a positive integer h ∈ N+, let {〈Si,∆i〉}hi=1 be a solution to Problem 4.3 on
input 〈G,Q, h〉 with Si corresponding to the (Q,∆i)-highest-order-span-core of G, ∀i ∈ [1, h]. For
every other solution {〈S′i,∆i〉}hi=1 (referring to the same segmentation {∆i}hi=1) to Problem 4.3 on
input 〈G,Q, h〉 it holds that S′i ⊆ Si, ∀i ∈ [1, h].

Proof. Let ki be the minimum degree of Si, i.e., ki = v∗Q,∆i
is the order of the (Q,∆i)-highest-

order-span-core. Assume that there exists a solution S′i to Problem 4.4 that is not contained in
Si. This implies that (i) the minimum degree of a vertex of S′i in ∆i is ki, and (ii) the minimum
degree of a vertex of Si ∪ S′i in ∆i is ki as well. This violates the maximality condition of the
definition of span-core, since, by hypothesis, Si corresponds to the (Q,∆i)-highest-order-span-core
of G.

The above proposition states that, given a solution {〈Si,∆i〉}hi=1 to the Temporal Commu-
nity Search problem where every Si corresponds to the (Q,∆i)-highest-order-span-core of the
input graph, one can focus on the various Si solely to refine the output communities, as such Si are
guaranteed to contain all optimal solutions of the underlying problem instance (while keeping the
segmentation {∆i}hi=1 fixed). Within this view, we formulate the following optimization problem
(which is a variant of Problem 4.4, with the additional constraint of requiring a smallest-sized
solution):
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Algorithm 4.5: Greedy-minimum-community-search

Input: A temporal graph G = (V,E, T ), a set Q ⊆ V of query vertices, an interval
∆ v T , a subset of vertices S∗ ⊆ V containing all the solutions to Problem 4.4 on
input 〈G,Q,∆〉.

Output: A subset S∗min of vertices such that Q ⊆ S∗min ⊆ S∗ and
minu∈S∗min d∆(S∗min, u) ≥ minu∈S∗ d∆(S∗, u).

1 S∗min ← ∅; P ← ∅; A ← ∅
2 add every q ∈ Q to P with priority +∞
3 k∗ ← minu∈S∗ d∆(S∗, u); k∗min ← 0
4 while k∗min < k∗ or Q 6⊆ S∗min do
5 dequeue u from P
6 S∗min ← S∗min ∪ {u}
7 forall v ∈ neigh∆(S∗, u) \ S∗min \ P do
8 A[v]← score(v)
9 add v to P with priority A[v]

10 forall v ∈ neigh∆(S∗min, u) do
11 if d∆(S∗min, v) = k∗ then
12 forall w ∈ neigh∆(P, v) do
13 A[w]← A[w]− 1

14 k∗min ← minv∈S∗min d∆(S∗min, v)

Problem 4.7. Given a temporal graph G = (V, T, τ), a set Q ⊆ V of query vertices, and an
interval ∆ v T , let S∗ ⊆ V be the subset of vertices containing all the solutions to Problem 4.4 on
input 〈G,Q,∆〉 (according to what stated in Proposition 4.2). Find

S∗min = argmin{S|Q⊆S⊆S∗,minu∈S d∆(S,u)≥minu∈S∗ d∆(S∗,u)} |S|. (4.7)

Theorem 4.3. Problem 4.7 in NP-hard.

Proof. Consider (the optimization version of) the NP-hard mCST problem introduced by Cui et
al. [64]: given a graph H = (VH , EH) and a query vertex q ∈ VH , find a minimum-sized subgraph
that contains q, is connected, and maximizes the minimum degree. Given an instance 〈H, q〉 of
the mCST problem, construct an instance 〈G,Q,∆〉 of Problem 4.7 by defining G as composed
by a single temporal snapshot corresponding to graph H, ∆ as a singleton interval composed
of the single timestamp of G, and setting Q = {q}. It is straightforward to see that solving
Problem 4.7 on input 〈G,Q,∆〉 is equivalent to solving mCST on input 〈H, q〉, as the constraint
about connectedness is automatically satisfied in Problem 4.7 for the special case of a single query
vertex.

As Problem 4.7 is NP-hard, we devise a heuristic that is inspired to the greedy one proposed
for the Minimum Community Search problem in [25]. The proposed heuristic is outlined in
Algorithm 4.5 and described next. In the pseudocode and in the following we denote as k∗ and
k∗min the minimum degree of S∗ and S∗min, respectively, and as neigh∆(S, u) the neighbors of a
vertex u ∈ V in the subgraph induced by S ⊆ V and ∆ v T . Algorithm 4.5 iteratively adds
vertices to the solution S∗min according to a priority queue P . Priorities of vertices in P are defined
based on a score that measures how promising a vertex is for making the current solution S∗min
reach the optimal minimum degree. Specifically, the score of a vertex u ∈ S∗ is defined as:

score(u) = score+(u)− score−(u), (4.8)

where
score+(u) = |{v ∈ neigh∆(S∗min, u) | d∆(S∗min, v) < k∗}|; (4.9)

score−(u) = max{0, k∗ − d∆(S∗min, u)}. (4.10)
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Table 4.1: Temporal graphs used in the experiments.

dataset |V | |E| |T | window size domain
HighSchool 327 47k 1212 5 mins face-to-face

PrimarySchool 242 55k 390 5 mins face-to-face
HongKong 806 2M 2976 5 mins face-to-face

ProsperLoans 89k 3M 307 7 days economic
Last.fm 992 4M 77 21 days co-listening

WikiTalk 2M 10M 192 28 days communication
DBLP 1M 11M 80 366 days co-authorship

StackOverflow 2M 16M 51 56 days question answering
Wikipedia 343k 18M 101 56 days co-editing
Amazon 2M 22M 115 28 days co-rating
Epinions 120k 33M 25 21 days co-rating

score+(u) is the gain effect of adding u to S∗min, while score−(u) is the penalty effect. In particular,
score+(u) counts the number of neighbors of u in S∗min that would benefit from the inclusion of u
to S∗min, i.e., that have degree less than k∗. On the other hand, score−(u) represents the number
of neighbors of u still required in S∗min so that u has degree at least k∗. The algorithm starts
by adding the query vertices to the queue P with priority +∞, in order to ensure that they will
be selected at the very beginning. At each iteration of the main cycle of the algorithm (starting
at Line 4), the vertex u exhibiting the highest priority is dequeued from P and is added to the
solution S∗min. As a consequence, a couple of updates are performed. First, u’s neighbors not in
the priority queue P are added to it (Lines 8-9). Note that this is the only step of the algorithm
where the score of a vertex is computed from scratch and stored in A, a map that keeps the scores
of all vertices in P up-to-date during the whole execution of the algorithm. The second update
consists in recomputing the score of every v’s neighbor w in the queue, if a vertex v ∈ S∗min has
reached the desired minimum degree k∗ after the addition of u.

4.5 Experiments

In this section we present an experimental evaluation to empirically assess the performance of all
the proposed methods. Specifically, we focus on whole span-core decomposition (Section 4.5.1),
maximal span-cores (Section 4.5.2), characterization of the extracted span-cores (Section 4.5.3),
and temporal community search (Section 4.5.4).

Datasets. We use eleven real-world datasets recording timestamped interactions between entities.
For each dataset we select a window size to define a discrete time domain, composed of contigu-
ous timestamps of the same duration, and build the corresponding temporal graph. If multiple
interactions occur between two entities during the same discrete timestamp, they are counted as
one. The characteristics of the resulting temporal graphs, along with the selected window sizes,
are reported in Table 4.1.

The three smallest datasets were gathered by using wearable proximity sensors in schools,
with a temporal resolution of 20 seconds. PrimarySchool1 contains the contact events between
242 volunteers (232 children and 10 teachers) in a primary school in Lyon, France, during two
days [217]. HighSchool1 describes the close-range proximity interactions between students and
teachers (327 individuals overall) of nine classes during five days in a high school in Marseilles,
France [174]. HongKong reports the same kind of interactions for a primary school in Hong Kong,
whose population consists of 709 children and 65 teachers divided into thirty classes, for eleven
consecutive days [204]. ProsperLoans2 represents the network of loans between the users of Prosper,
a marketplace of loans between privates. Last.fm2 records the co-listening activity of the Last.fm
streaming platform: an edge exists between two users if they listened to songs of the same band
within the same discrete timestamp. WikiTalk2 is the communication network of the English

1sociopatterns.org
2konect.cc
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Wikipedia. DBLP2 is the co-authorship network of the authors of scientific papers from the DBLP
computer science bibliography. StackOverflow3 includes the answer-to-question interactions on
the stack exchange of the stackoverflow.com website. Wikipedia2 connects users of the Italian
Wikipedia that co-edited a page during the same discrete timestamp. Finally, for both Amazon2

and Epinions2, vertices are users and edges represent the rating of at least one common item within
the same discrete timestamp.

Implementation. All methods are implemented in Python (v. 2.7.16) and compiled by Cython.
All the experiments were run on a machine equipped with Intel Xeon CPU at 2.1GHz. The
experiments reported in Sections 4.5.1 and 4.5.2 used 64GB RAM, while the ones in Section 4.5.4
used 32GB RAM.

Reproducibility. Our code is available at github.com/egalimberti/span cores.

4.5.1 Span-core decomposition

We compare the two methods to compute a complete decomposition described in Section 4.2, i.e.,
the baseline Näıve-span-cores and the proposed Span-cores, in terms of execution time, memory,
and total number of vertices input to the core-decomposition subroutine. We report these measures,
together with the number of span-cores and maximal span-cores of each dataset, in Table 4.2.

In terms of execution time, Span-cores considerably outperforms Näıve-span-cores in all datasets,
achieving a speed-up from 2.1 up to two orders of magnitude. The speed-up is explained by
the number of vertices processed by the core-decomposition subroutine, which is the most time-
consuming step of the algorithms albeit linear in the size of the input subgraph. The difference
of this quantity between Span-cores and Näıve-span-cores reaches over an order of magnitude in
the WikiTalk, Wikipedia, and Epinions dataset, confirming the effectiveness of the “horizontal con-
tainment” relationships. The memory required by the two procedures is comparable in all cases
since the largest structures needed in memory are the temporal graph itself and the set C of all
span-cores.

4.5.2 Maximal span-cores

We compare our Maximal-span-cores algorithm to the näıve approach, described at the beginning
of Section 4.3, based on running the Span-cores algorithm and filtering out the non-maximal span-
cores, which we refer to as Näıve-maximal-span-cores. The results are again reported in Table 4.2.

Näıve-maximal-span-cores behaves very similarly to Span-cores: they only differ for the filtering
mechanism which requires a few additional seconds in most cases. Maximal-span-cores is much
faster than Näıve-maximal-span-cores for all datasets, with a speed-up from 1.3 for the Epinions
dataset to one order of magnitude for the HongKong dataset. Except for the school datasets and
Last.fm, the difference in terms of number of processed vertices is between one and three orders of
magnitude, attesting the advantages of the top-down strategy of Maximal-span-cores, which avoids
the visit of portions of the span-core search space and handles the overhead of reconstructing
graphs, i.e., (Vlb, E∆[Vlb]), efficiently. Finally, the memory requirements of the two methods are
comparable for all datasets.

4.5.3 Span-cores characterization

We compare and characterize all span-cores against maximal span-cores. At first, Table 4.2 shows
that span-cores are at least one order of magnitude more numerous than maximal span-cores for
all datasets, with the maximum difference of three orders of magnitude for the HongKong dataset.

In Figure 4.2 we show the number (top) and the average size (bottom) of span-cores and
maximal span-cores as a function of the order k for the DBLP and Epinions datasets. For both
datasets, the number of maximal span-cores is at least one order of magnitude lower than the total
number of span-cores up to a quarter of the k domain, where the span-cores are more numerous.
Instead, in the rest of the domain, they mostly coincide due to the maximality condition over |∆|.
The average size is also smaller for maximal span-cores, difference that wears thin when the gap

3snap.stanford.edu
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Table 4.2: Evaluation of the proposed algorithms: number of output span-cores, running time,
memory, and number of processed vertices.

# output running memory # processed
dataset method span-cores time (s) (GB) vertices

HighSchool

Näıve-span-cores
12 320

18 0.1 3M
Span-cores 1 0.1 581k

Näıve-maximal-span-cores
450

1 0.1 581k
Maximal-span-cores 0.3 0.1 181k

PrimarySchool

Näıve-span-cores
4 703

4 0.1 818k
Span-cores 0.6 0.1 174k

Näıve-maximal-span-cores
409

0.6 0.1 174k
Maximal-span-cores 0.1 0.1 63k

HongKong

Näıve-span-cores
2 367 743

85 180 1 819M
Span-cores 18 389 0.8 216M

Näıve-maximal-span-cores
1 807

18 641 0.8 216M
Maximal-span-cores 339 0.5 212M

ProsperLoans

Näıve-span-cores
4 273

101 2 55M
Span-cores 46 2 27M

Näıve-maximal-span-cores
293

48 2 27M
Maximal-span-cores 8 2 980k

Last.fm

Näıve-span-cores
126 819

707 0.5 2M
Span-cores 199 0.5 531k

Näıve-maximal-span-cores
1 670

202 0.5 531k
Maximal-span-cores 57 0.5 271k

WikiTalk

Näıve-span-cores
19 693

322 302 36 25B
Span-cores 1 084 36 555M

Näıve-maximal-span-cores
632

1 194 36 555M
Maximal-span-cores 126 35 2M

DBLP

Näıve-span-cores
6 135

10 506 11 1B
Span-cores 278 11 150M

Näıve-maximal-span-cores
268

292 11 150M
Maximal-span-cores 116 11 620k

StackOverflow

Näıve-span-cores
1 238

5 360 10 1B
Span-cores 245 10 127M

Näıve-maximal-span-cores
129

245 10 127M
Maximal-span-cores 128 10 3M

Wikipedia

Näıve-span-cores
125 191

17 155 4 1B
Span-cores 522 4 35M

Näıve-maximal-span-cores
2 147

537 4 35M
Maximal-span-cores 201 4 320k

Amazon

Näıve-span-cores
29 318

10 415 18 2B
Span-cores 409 18 247M

Näıve-maximal-span-cores
303

580 18 247M
Maximal-span-cores 123 18 688k

Epinions

Näıve-span-cores
63 111

699 4 39M
Span-cores 186 4 3M

Näıve-maximal-span-cores
320

201 4 3M
Maximal-span-cores 154 5 129k

between the numbers of span-cores and maximal span-cores starts decreasing since, for high values
of k, most (or all) span-cores are maximal.

Figure 4.3 shows a different picture when numbers and average sizes of span-cores are shown
as a function of the size of the span |∆|. For both datasets, the number of span-cores and maximal
span-cores is decreasing – which is expected since the number of intervals decreases when |∆|
increases – with a constant gap close to one and two orders of magnitude, respectively. On the
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Figure 4.2: Top plots: number of span-cores and maximal span-cores as a function of the order k.
Bottom plots: average size of all span-cores and maximal span-cores as a function of the order k.

DBLP Epinions

Figure 4.3: Top plots: number of span-cores and maximal span-cores as a function of the size of
the temporal span |∆|. Bottom plots: average size of all span-cores and maximal span-cores as a
function of the size of the temporal span |∆|.

other hand, the behavior of the average size is quite different between the two datasets. For low
values of |∆|, the average size of span-cores of the DBLP dataset is much higher than the average
size of maximal span-cores, then the difference decreases and vanishes at the end of domain where
a maximal span-core of |∆| = 37 dominates all other span-cores with |∆| ≥ 20. Instead, for the
Epinions dataset, the average size of all span-cores and of maximal span-cores follow the same
behavior, with a difference of less than an order of magnitude, because the maximality condition
over k excludes the largest span-cores from the set of maximal span-cores.
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Figure 4.4: Running time of the algorithms for Temporal Community Search, as a function
of the number h of output communities. Each boxplot corresponds to 15 data points.

4.5.4 Temporal community search

In this subsection we assess the performance of the proposed algorithms for temporal community
search (presented in Sections 4.4.2–4.4.3), as well as the greedy procedure for reducing the size of
the output communities (presented in Section 4.4.4). In the remainder of this subsection we refer
to our basic algorithm (i.e., Algorithm 4.3, which precomputes the penalty scores via span-core
decomposition) as SC-TCS, and to our more efficient algorithm (i.e., Algorithm 4.4, which exploits
maximal span-cores to reduce the number of timestamps to be considered) as MSC-TCS. We also
involve in the comparison a näıve version of Algorithm 4.3, where the penalty scores of the various
intervals are computed from scratch during the execution of the algorithm, instead of precomputing
them all via span-core decomposition. We refer to such a näıve method as Näıve-TCS.

The experimental setting we consider here is as follows. We vary the number |Q| of query
vertices from 1 to 3. In particular, when |Q| = 1, we sample the single query vertex uniformly
at random from the whole vertex set V . Instead, for |Q| > 1, we employ a more sophisticated
sampling strategy that aims at finding meaningful query-vertex sets, i.e., vertices interacting with
each other during the temporal observations, and, at the same time, independent from the specific
form of the resulting span-core decomposition. Specifically, the sampling strategy we use is based
on an adaptation of random walk to the temporal settings:

• Select a vertex uniformly at random from the whole V and add such a vertex to the set
Qvisited of visited vertices

• Starting from the first timestamp of the temporal domain T , iteratively:

– With probability p, move the random walker to a neighbor of the current vertex and add
the neighbor to Qvisited. If the current vertex has no neighbors in a given timestamp,
the random walker jumps to the first next timestamp in which that vertex has at least
one neighbor

– With probability 1 − p, keep the random walker at the current vertex, but go to the
next timestamp

• Restart if the last timestamp of T is reached

• Stop when |Qvisited| reaches a proper (user-defined) size ν
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Figure 4.5: Split of the average running time of the SC-TCS and MSC-TCS algorithms into dynamic
programming (DP) and precomputation, for the Wikipedia and Last.fm datasets.

• Sample |Q| query vertices from Qvisited with probability proportional to the frequency of the
visits during the random walk

In our experiments we set p = 0.8 and ν = 3|Q|. As far as the number h of output communities, we
consider the range h ∈ [10, 20, 30, 40, 50, 60] on all datasets, with the exception of StackOverflow,
for which we discard h = 60, and Epinions, for which we consider h ∈ [4, 8, 12, 16, 20, 24]. For
every parameter configuration, we perform five runs of every algorithm (in every run we sample
a different query-vertex set). Note that we were not able to run the algorithms for temporal
community search on the WikiTalk dataset due to memory constraints.

Running time. In Figure 4.4 we show the running time of the proposed algorithms as a function of
the number h of output communities, for the HighSchool, DBLP, Wikipedia, and Amazon datasets.
The first general observation we make is that the running time of all algorithms increases as h
gets higher. This in accordance with the time-complexity analysis reported in Section 4.4. Also,
running times are independent of the selected query-vertex set Q. Looking at the individual
performance, we notice that, as expected, the Näıve-TCS method has severe limitations in terms
of efficiency: it takes hours to run on the HighSchool and Wikipedia datasets, while it is not
able to terminate in less than 10 days on the remaining datasets. SC-TCS and MSC-TCS are
much faster than Näıve-TCS, achieving a speedup of up to more than four orders of magnitude.
MSC-TCS is in most cases faster than SC-TCS, with speedup up to one order of magnitude (on
HighSchool, for h = 60). This confirms that the exploitation of the maximal span-cores is effective
in both shortening the precomputation time and reducing the temporal domain considered in the
dynamic-programming step. The only exception is the Wikipedia dataset. To dive deeper into the
motivations of this exception, we report in Figure 4.5 the split of the average running time of SC-
TCS and MSC-TCS into the time spent in the dynamic-programming step (DP) (which also includes
the identification of the reduced temporal domain T ∗ for MSC-TCS), and the precomputation time
(i.e., the time required for computing all penalty scores via span-core decomposition or maximal
span-cores). Interestingly, what affects the most the running time is the precomputation of the
scores. Apparently, the Q-constrained version of Span-cores is more efficient than Maximal-span-
cores in some datasets, which we believe is due to the structure of the search space. On the other
hand, these results confirm that the reduction of the temporal domain considered by the dynamic-
programming step is actually effective since the DP running time of MSC-TCS is always less than
(or equal to) the DP running time of SC-TCS.

Greedy-minimum-community-search. Here we evaluate the performance of the proposed Greedy-
minimum-community-search algorithm (Algorithm 4.5) for reducing the size of the output com-
munities. We recall that the proposed algorithms for Temporal Community Search (eval-
uated above) output communities corresponding to the (Q,∆i)-highest-order-span-cores for all
{∆i}hi=1 temporal intervals identified. The Greedy-minimum-community-search algorithm takes ev-
ery (Q,∆i)-highest-order-span-core and attempts to reduce its size, while preserving optimality.
Thus, the ultimate goal of the evaluation presented next is to show how well Greedy-minimum-
community-search is able to reduce the size of the original span-cores, and what is its overhead in
terms of running time.

Figure 4.6 compares the size of the starting (Q,∆i)-highest-order-span-cores and the size of the
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Figure 4.6: Comparison of the size of the communities in the solutions to Temporal Community
Search: original output of the algorithms for Temporal Community Search (CS) and after
running the Greedy-minimum-community-search algorithm on top of them (minimum CS). Each
boxplot corresponds to 15 data points.

Table 4.3: Average running time of an execution of the Greedy-minimum-community-search algo-
rithm.

HighSchool PrimarySchool HongKong ProsperLoans Last.fm
running time (s) 0.003 0.001 0.02 0.3 0.06

DBLP StackOverflow Wikipedia Amazon Epinions
running time (s) 7 8 1 7 6

corresponding reduced community yielded by the Greedy-minimum-community-search algorithm, for
the PrimarySchool, HongKong, Last.fm, and Epinions datasets. It can be easily observed that, as a
general trend, the reduced communities are much smaller than the original ones, in all datasets,
up to four orders of magnitude. The results on the Epinions dataset are a bit different than the
other three datasets. In fact, on that dataset, the original communities (CS) always include the
whole 120k vertices of the graph, while the communities found by Greedy-minimum-community-
search (minimum CS) have median size smaller than 10, and, in many cases, they correspond to
communities composed of the query vertices only. This means that, on the Epinions dataset, for our
tested queries, the algorithms for Temporal Community Search do not extract communities
that are really cohesive around the query vertices. This way, the benefits of exploiting an a-
posteriori community-size-reduction step are less evident. Also, we do not notice any evident
pattern as a function of h, for any dataset.

In Table 4.3 we report the average running time of an execution of Greedy-minimum-community-
search, for all datasets. Note that this is the average time required to process one of the h commu-
nities in a solution to Temporal Community Search. Greedy-minimum-community-search runs
in 8 seconds or less in all tested datasets. Therefore, the additional running time required by the
algorithm is rather negligible.

To summarize, Greedy-minimum-community-search is empirically recognized as a powerful post-
processing method for improving the quality of the solutions to Temporal Community Search:
it finds much smaller communities at a very small additional computational cost.
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4.6 Summary

Temporal networks are a powerful representation of how relations are established and interrupted
along time among a given population of entities. An interesting primitive for analyzing this type
of networks is the extraction of relevant patterns, such as dense subgraphs, together with their
time interval of existence (or span). Following this idea, we introduced a notion of temporal core
decomposition where each core is associated with its span. Exploiting containment properties
among cores we developed efficient algorithms for computing all the span-cores, and also only the
maximal ones. We then introduced the problem of temporal community search and showed how
it can be solved in polynomial time via dynamic programming. We also proved an interesting
connection between temporal community search and maximal span-cores, which made it possible
to devise a considerably more efficient algorithm than the näıve dynamic-programming one.

In Chapter 7 we show the usefulness of the definitions proposed here by direct application to
practical problems in face-to-face interaction networks, i.e., the HighSchool, PrimarySchool, and
HongKong datasets introduced in Section 4.5.
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Chapter 5

Polarized communities in signed
networks

The increase of polarization around controversial issues is a growing concern with important so-
cietal fallouts. While controversy can be engaging, and can lead to users spending more time on
social-media platforms, in disproportionate amounts it can generate a negative user experience,
potentially leading to the abandonment of the platform. Excessive polarization, together with
the emergence of bots and the spread of misinformation, has thus become an urgent technologi-
cal problem that needs to be solved. It is not surprising that the last few years have witnessed
an uptake of the research on methods for the detection and suppression of these phenomena
[103, 163, 164, 233, 182, 116]. While polarization is a well studied phenomenon in political and
social sciences [23, 50, 80, 88, 104, 236], modern social-media platforms brought it to a different
scale, providing an unprecedented wealth of data. The necessity to analyze the available data and
gain valuable insights brings new algorithmic challenges.

In order to study polarization in large-scale online data, one first step is to detect it. In this
chapter we study a fundamental problem abstraction for this task, i.e., the problem of discov-
ering polarized communities in signed networks. A signed network is a simple, yet general and
powerful, representation: vertices represent entities and edges between vertices represent interac-
tions, which can be friendly (positive) or antagonistic (negative) [121]. Signed graphs analysis has
many applications from modeling interactions in social media [151], to mining user reviews [32],
to studying information diffusion and epidemics [162], to recommending products in e-commerce
sites [169, 232], and to estimating the structural balance of a (physical) complex system [13, 172].

In this chapter, we introduce the 2-Polarized-Communities problem (2PC), which requires
finding two communities (subsets of the network vertices) such that within communities there are
mostly positive edges while across communities there are mostly negative edges. Furthermore, we
do not aim to partition the whole network, so the two polarized communities we are searching
can be concealed within a large body of other network vertices, which are neutral with respect to
the polarized structure. Our hypothesis is that such 2-community polarized structure accurately
captures controversial discussions in real-world social-media platforms.

Figure 5.1 shows an example of the two most polarized communities found in the Congress
network (details in Section 5.4). The two communities involve 34 and 37 vertices (out of 219),
respectively, having more than 98% of positive edges within and 78% negative edges across. The
vertices in gray do not participate in any of the two polarized communities: either they have too
few connections with any community, or the polarity of their relations are mixed and thus their
position within the debate unclear.

This work is, to the best of our knowledge, the first to propose a spectral method for ex-
tracting polarized communities from signed networks. In addition, we present hardness results
and approximation guarantees. Our problem formulation deviates from the bulk of the litera-
ture where methods typically look for finding many communities while partitioning the whole
network [9, 24, 58, 60, 112, 152]. The closest approach to our problem statement is the work by
Coleman et al. [60], who employ the correlation-clustering framework and search for exactly two
communities. However, while in that work all vertices must be included in a cluster, in our setting
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Figure 5.1: An example of two polarized communities in the Congress network (dataset details in
Section 5.4). Solid edges are positive, while dashed edges are negative.

we allow vertices not to be part of any cluster. This captures the fact that polarized communities
are typically concealed within a large body of neutral vertices in a social network. An algorithm
that attempts to partition the whole network would fail to reveal these communities. As an ad-
ditional feature, our methods can be fine-tuned to increase or decrease the size of the discovered
communities. Finally, while some spectral techniques promote balanced partitions, we hypothesize
that two polarized communities might be of very different sizes, and thus our problem formulation
does not enforce evenly sized subgraphs.

Our reliance on spectral methods carries several benefits. First, it is possible to leverage
readily available, highly optimized, and parallelized software implementations. This makes it
straightforward for the practitioner to analyze large networks in real settings using our approach.
Second, even though by this work we focus on the case of two communities, we can take inspiration
from the existing literature on spectral graph partitioning to easily extend our algorithms to the
case of an arbitrary number of subgraphs, e.g., by recursive two-way partitioning or the analysis
of multiple eigenvectors [214].

In this chapter we make the following contributions:

• We formulate the 2-Polarized-Communities problem (2PC) as a “discrete eigenvector”
problem (Section 5.1).

• Exploiting a reduction from classic correlation clustering, we prove that 2PC is NP-hard
(Theorem 5.1).

• We devise two intuitive spectral algorithms (Section 5.2), one deterministic, and one ran-
domized with quality guarantee

√
n (Theorem 5.2), which is tight up to constant factors. We

believe these to be the first purely combinatorial bounds for spectral methods. Our results
apply to graphs of arbitrary weights. Our algorithms’ running time is essentially the time
required to compute the first eigenvector of the adjacency matrix of the input graph.

• Our experiments (Section 5.4) on a large collection of real-world signed networks show that
the proposed algorithms discover higher quality solutions, are much faster than the baselines,
and can scale to much larger networks. In addition, they are able to identify ground-truth
planted polarized communities in synthetic datasets.
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5.1 2-Polarized-Communities

Our setting is reminiscent to the correlation-clustering problem [24], which we recall here. Given a
signed network G = (V,E+, E−), where E+ is the set of positive edges and E− the set of negative
edges, the goal is to find a partition of the vertices into k clusters, so as to maximize the number
of positive edges within clusters plus the number of negative edges between clusters.

An interesting property of the correlation-clustering formulation is that one does not need to
specify in advance the number of clusters k, instead it is part of the optimization. In certain
cases, however, the number of clusters is given as input. The general problem (given k) has been
studied by Giotis and Guruswami [112], while Coleman et al. [60] studied the 2-Correlation-
Clustering problem (k = 2). The problem arises, for instance, in the domain of social networks,
where two well-separated clusters reveal a polarized structure. It can be defined as follows.

Problem 5.1 (2CC). Given a signed network G = (V,E+, E−), find a partition S1, S2 of V so as
to maximize

cc(S1, S2) =
∑

i∈{1,2}
(u,v)∈Si×Si

1

2
1E+

(u, v) +
∑

(u,v)∈S1×S2

1E−(u, v), (5.1)

where 1S is the indicator function of the set S.

A crucial limitation of the 2CC problem is that all vertices must be accounted for in one of
the two clusters. From an application perspective, however, this may be a strong assumption. For
example, in a social network, we may expect two polarized communities on a topic, but there may
be many individuals who are neutral.

In order to find communities embedded within large networks, we need to exclude neutral
vertices from the solution. Therefore, a first approach might be to consider maximizing agreements
including a neutral cluster, that is, finding a partition of V into S1, S2, and S0, so that S1 and
S2 are the two polarized communities, and S0 is the neutral community, and the 2CC objective
cc(S1, S2) is maximized. However, this modification does not change the problem significantly: it
is always no worse to switch a vertex from cluster S0 to one of the other two clusters.

Proposition 5.1. Let S0, S1, S2 be any partition of V , with S0 6= ∅. Then there is always a
partition S′1, S

′
2 of V (i.e., S′1 ∪ S′2 = V and S′1 ∩ S′2 = ∅) with S1 ⊆ S′1 and S2 ⊆ S′2 so that

cc(S′1, S
′
2) ≥ cc(S1, S2). (5.2)

A further modification might be to subtract disagreements from the value of the solution,
that is, to maximize agreements minus disagreements. In other words, we consider the following
problem.

Problem 5.2 (2CC-Full). Given a signed network G = (V,E+, E−), find a partition S0, S1, S2

of V so as to maximize

cc(S1, S2) =
∑

i∈{1,2}
(u,v)∈Si×Si

1

2

(
1E+(u, v)− 1E−(u, v)

)
+

∑
(u,v)∈S1×S2

(
1E−(u, v)− 1E+(u, v)

)
, (5.3)

where 1S is the indicator function of the set S.

Unfortunately, problem 2CC-Full suffers from the same issue as problem 2CC: switching a
vertex from the neutral cluster S0 to one of the polarized clusters S1 or S2 (the one that is best)
leads to no worse solution according to the objective cc.

Proposition 5.2. Let S0, S1, S2 be any partition of V , with S0 6= ∅. Then there is always a
partition S′1, S

′
2 of V (i.e., S′1 ∪ S′2 = V and S′1 ∩ S′2 = ∅) with S1 ⊆ S′1 and S2 ⊆ S′2 so that

cc(S′1, S
′
2) ≥ cc(S1, S2). (5.4)
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Algorithm 5.1: Eigensign

Input: An adjacency matrix A.
Output: An n-dimensional vector ~x.

1 compute ~v, the eigenvector corresponding to the largest eigenvalue λ1 of A
2 construct ~x as follows: for each i ∈ {1, . . . , n}, xi = sgn(vi)

A nice property of the cc objective is that it can be written neatly in a matrix notation. Let A
be the adjacency matrix of the signed network G = (V,E+, E−), where positive edges (i, j) ∈ E+

are indicated by Aij = 1, negative edges (i, j) ∈ E− are indicated by Aij = −1, and non-edges are
indicated by Aij = 0. A partition S0, S1, S2 of V can be represented by a vector ~x ∈ {−1, 0, 1}n,
whose i-th coordinate is xi = 0 if i ∈ S0, xi = 1 if i ∈ S1, and xi = −1 if i ∈ S2. Then 2CC-Full
can be reformulated as follows.

Problem 5.3 (2CC-Full). Given a signed network G = (V,E+, E−) with n vertices and signed
adjacency matrix A, find a partition S0, S1, S2 of V represented by vector ~x ∈ {−1, 0, 1}n maxi-
mizing

cc(S1, S2) = ~xTA~x. (5.5)

Since our goal is to discover polarized communities S1 and S2 that are potentially concealed
within other neutral vertices S0, we want to find minimal sets S1 and S2. This can be achieved
by normalizing ~xTA~x with the size of S1 and S2, which in vector form is ~xT~x. This consideration
motivates our last problem formulation, which we dub 2-Polarized-Communities (2PC).

Problem 5.4 (2PC). Given a signed network G = (V,E+, E−) with n vertices and signed
adjacency matrix A, find a vector ~x ∈ {−1, 0, 1}n that maximizes

~xTA~x

~xT~x
. (5.6)

In the rest of this chapter we refer to the objective function of Problem 5.4 as polarity. As
polarity is penalized with the size of the solution, vertices are only added to one of the two clusters
if they contribute significantly to the objective. We show this problem to be NP-hard (proof in
Section 5.3) and propose algorithms with approximation guarantees.

Theorem 5.1. 2PC is NP-hard.

It should be noted that 2PC does not enforce balance between the communities. This can be
beneficial if there exist polarized communities of significantly different size in the input network.
In an extreme case, the solution could even be comprised of a single cluster if there is a large,
dense community that overwhelms any other polarized formation.

5.2 Algorithms for 2-Polarized-Communities

The formulation of 2PC is suggestive of spectral theory, which we utilize to design our algo-
rithms. We propose and analyze two spectral algorithms: one is deterministic, while the second
is randomized and achieves approximation guarantee

√
n. The running time of both algorithms

is dominated by the computation of a spectral decomposition of the adjacency matrix. In prac-
tice, this can be done using readily available implementations that exploit sparsity and can run in
parallel on multiple cores.

The first algorithm, Eigensign, works by simply discretizing the entries of the eigenvector of
the adjacency matrix corresponding to the largest eigenvalue.

To illustrate the difficulty of approximating 2PC, we analyze the following simple algorithm,
which we refer to as Pick-an-edge. Pick an arbitrary edge: if it is positive, put the endpoints in
one cluster, leaving the other cluster empty; if it is negative, put the endpoints in separate clusters.

Proposition 5.3. The Pick-an-edge algorithm gives an n-approximation of the optimum.
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Proof. The described algorithm outputs a solution ~x such that

~xTA~x

~xT~x
≥ 1. (5.7)

The result now follows from the fact that OPT ≤ λ1 ≤ n, where λ1 is the largest eigenvalue of
A.

In the case of networks with arbitrary real weights, it can be shown that despite the close
relationship between the 2PC objective and the leading eigenvector of A, Eigensign cannot do
better than this up to constant factors. Consider a fully connected network with one edge (u, v)
of weight w � 0. The rest of the edges have weight close to zero. The primary eigenvector of the
adjacency matrix has two entries — those corresponding to u and v — of the form 1/

√
2 − ε for

some small ε, while the rest are close to zero. We construct a solution vector ~y as follows: the two
entries corresponding to u and v are set to 1, and the rest to 0. We have ~yTA~y/~yT~y ≈ w. On
the other hand, the Eigensign algorithm outputs a vector ~x for which ~xTA~x/~xT~x ≈ 2w/n. It
should be noted however, that the focus of this work is the analysis of the 2PC problem on signed
networks. The approximation capabilities of the Eigensign algorithm on signed networks (the
adjacency matrix A contains entries with values only −1, 0, and 1) are left open.

Eigensign generally outputs a solution comprised of all the vertices in the graph — unless some
components of the eigenvector are exactly zero — which is, of course, counter to the motivation of
our problem setting.

To overcome this issue we propose a randomized algorithm, Random-Eigensign, which also
computes the first eigenvector, i.e., ~v, of the adjacency matrix. Instead of simply discretizing the
entries of ~v, it randomly sets each entry of ~x to 1 or -1 with probabilities determined by the entries
of ~v. Entries vi with large magnitude |vi| are more likely to turn into sgn(vi) (−1 or 1), while
entries vi with small magnitude |vi| are more likely to turn into 0. For details see Algorithm 5.2.
Note that if ~x is the output of Random-Eigensign, then E[~x] = ~v.

The next theorem shows approximation guarantees of Random-Eigensign for signed networks.

Theorem 5.2. Algorithm Random-Eigensign gives a
√
n-approximation of the optimum in ex-

pectation.

Proof. First, observe that we can rewrite the expected value of the objective as follows:

E
[
~xTA~x

~xT~x

]
=

n∑
k=1

E
[
~xTA~x

~xT~x

∣∣∣∣ ~xT~x = k

]
Pr(~xT~x = k) (5.8)

=

n∑
k=1

1

k
E
[
~xTA~x|~xT~x = k

]
Pr(~xT~x = k) (5.9)

=

n∑
k=1

1

k

∑
i 6=j

E
[
Aijxixj |~xT~x = k

]
Pr(~xT~x = k). (5.10)

If we define sij = sgn(vi)sgn(vj), where sgn(x) denotes the sign of x ∈ R, for all i, j we have

E
[
Aijxixj |~xT~x = k

]
Pr(~xT~x = k)

= AijsijPr(xi = 1, xj = 1|~xT~x = k)Pr(~xT~x = k). (5.11)
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Algorithm 5.2: Random-Eigensign

Input: An adjacency matrix A.
Output: An n-dimensional vector ~x.

1 compute ~v, the eigenvector corresponding to the largest eigenvalue λ1 of A
2 construct ~x as follows: for each i ∈ {1, . . . , n}, run a Bernoulli experiment with success

probability |vi|. If it succeeds, then xi = sgn(vi), otherwise xi = 0

We now invoke Bayes’ theorem and proceed.

n∑
k=1

1

k

∑
i 6=j

AijsijPr(xi = 1, xj = 1)Pr(~xT~x = k|xi = 1, xj = 1) (5.12)

=

n∑
k=1

1

k

∑
i 6=j

AijvivjPr(~x
T~x = k|xi = 1, xj = 1) (5.13)

=
∑
i 6=j

Aijvivj

n∑
k=1

1

k
Pr(~xT~x = k|xi = 1, xj = 1) (5.14)

=
∑
i 6=j

AijvivjE
[

1

~xT~x
|xi = 1, xj = 1

]
. (5.15)

Since 1/x is a convex function, by Jensen’s inequality it is

E
[

1

~xT~x
|xi = 1, xj = 1

]
≥ 1

E [~xT~x|xi = 1, xj = 1]
. (5.16)

Furthermore, for any i, j,
E
[
~xT~x|xi = 1, xj = 1

]
≤ 2 +

√
n− 2. (5.17)

To see this, observe that E
[
~xT~x

]
= ‖~v‖1 ≤

√
n. So we have

E
[

1

~xT~x
|xi = 1, xj = 1

]
≥ 1

2 +
√
n− 2

. (5.18)

Therefore,

E
[
~xTA~x

~xT~x

]
=
∑
i 6=j

AijvivjE
[

1

~xT~x
|xi = 1, xj = 1

]
(5.19)

≥
∑
i 6=j

Aijvivj
1

2 +
√
n− 2

=
λ1

2 +
√
n− 2

. (5.20)

That is,

O(
√
n)E

[
~xTA~x

~xT~x

]
≥ λ1 ≥ OPT. (5.21)

In Section 5.3 we show that this result is tight.

5.2.1 Enhancements for practical use

When using these algorithms to analyze real-world networks in practical applications, it might be
beneficial to apply tweaks to enhance their flexibility and produce a wider variety of results. We
propose the following simple enhancements.

Eigensign: As discussed above, Eigensign always outputs a solution involving all the vertices
in the network. We can circumvent this shortcoming by including only those vertices such that the
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corresponding entry of the eigenvector ~v is at least a user-defined threshold τ . That is, xi = sgn(vi)
if |vi| ≥ τ , 0 otherwise.

Random-Eigensign: The
√
n-approximation guaranteed by Random-Eigensign is matched

in the extreme case in which all entries of the eigenvector ~v are of equal magnitude. Paradoxically,
in this situation a solution comprised of all vertices would be optimal, but each vertex is included
with a small probability of 1/

√
n. We could of course fix this by modifying the probabilities to be

min{1,
√
n|vi|} for each i. However, in the opposite extreme, where most of the magnitude of ~v

is concentrated in one entry, modifying the probabilities this way might disproportionately boost
the likelihood of including undesirable vertices. An adequate multiplicative factor for both cases
is ‖~v‖1, modifying the probabilities to be min{1, ‖~v‖1|vi|} for each i; in the first case, all vertices
are taken with probability 1, while in the second, the probabilities remain almost unchanged. We
employed this factor in our experiments with satisfactory results.

An obvious question arising is whether the approximation guarantee of Random-Eigensign
could be improved using the modification described above. This question is left for future investi-
gation.

5.3 Hardness and tightness

5.3.1 Hardness (Theorem 5.1)

In this section, we refer to a solution of 2PC as S1, S2, which denote the subsets of vertices that
are assigned a 1 or a −1, respectively, in the solution vector ~x. Given a vertex v ∈ V and a
subset of vertices S ⊆ V , we use d+(v, S) (respectively d−(v, S)) to denote the number of ‘+’ edges
(respectively ‘−’ edges) connecting v to other vertex in S.

We exploit the following result in our proof. It can be easily verified by examining the behavior
of the cost functions when moving one vertex from one set to the other, so we omit the proof.

Proposition 5.4. If we require S1 ∪S2 = V , problem 2CC-Full is equivalent to 2CC, i.e., their
optimal solutions are the same.

We now prove that 2PC is NP-hard by reduction from 2CC, which has been shown to be
NP-hard by Shamir et al. [211].

Proof of Theorem 5.1. Given a graph G̃ = (Ṽ , Ẽ) with n vertices as instance of 2CC, we construct
a graph G = (V,E) to be an instance of 2PC as follows. For every vertex in Ṽ we create a
corresponding vertex in V , and for every edge in Ẽ we add an edge in E between the corresponding
vertices in Ṽ , and having the same sign. Furthermore, for every vertex v in Ṽ we introduce a clique
of m > 3n vertices (and positive edges) and a ‘+’ edge between v and every vertex in the clique.
The strategy to prove hardness is the following. We first restrict ourselves to complete solutions
of 2PC (i.e. S1 ∪ S2 = V ), which can of course be mapped to solutions of 2CC. We prove that
if one such complete solution S1, S2 optimizes 2PC, the corresponding solution of 2CC is also
a maximizer. Second, we show that any optimal solution of the constructed instance of 2PC is
complete.

We denote the objective of the problems 2CC and 2PC, on instances G̃ and G, by W2CC and
WHPC , respectively. We consider a solution S̃1, S̃2 of 2CC, and a solution S1, S2 of 2PC, such that
S̃1 ⊆ S1 and S̃2 ⊆ S2. Let us first restrict our attention to complete solutions of 2PC. Observe
that

WHPC (S1, S2) =
1

n+ nm

(
W2CC (S̃1, S̃2)−D(S̃1, S̃2)

)
+

1

n+ nm

(
|S1|m+ |S2|m+ n

(
m

2

))
, (5.22)

where D(S̃1, S̃2) =
∑
v∈S̃1

d+(v, S̃2) +
∑
v∈S̃2

d+(v, S̃2) + d−(v, S̃1) + d−(v, S̃2), that is, the sum

of disagreements in the resulting clustering. Note that W2CC (S̃1, S̃2) − D(S̃1, S̃2) is exactly the
objective of the 2CC-Full problem. In other words, the obective of 2PC on G is proportional to
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the objective of 2CC-Full on G̃ plus a constant. By Proposition 5.4, the first part of the proof is
complete.

We now consider a complete solution S1, S2 and show that removing vertices leads to no further
improvement. Suppose we remove a set R of r vertices from the solution. We want to show

ν(WHPC (S1, S2))−∆(R)

n+ nm− r
<
ν(WHPC (S1, S2))

n+ nm
, (5.23)

where ν(WHPC (S1, S2)) is the numerator of WHPC (S1, S2), and ∆(R) is the net change after
removing the vertices in R (i.e., the number of agreements minus disagreements that are removed).
Equivalently, we want to show ∆(R)(n + nm) > rν(WHPC (S1, S2)). We first consider that the
removed vertices are in Ṽ . Observe that

∆(R) ≥ rm−
(
r

2

)
− r(n− r), (5.24)

ν(WHPC (S1, S2)) ≤
(
n

2

)
+ nm+ n

(
m

2

)
. (5.25)

This upper bound holds because the right hand side simply counts all possible ‘+’ and ‘−’ edges,
the edges between each actual vertex and its clique, and the edges within cliques. It is therefore
sufficient to show

rm− rn+ r2 −
(
r

2

)
> r

(
n
2

)
+ nm+ n

(
m
2

)
n+ nm

. (5.26)

After some manipulations and relaxing the condition to remove the dependence on r, we arrive at
the following sufficient condition:

(m− n) (n+ nm) >

(
n

2

)
+ nm+ n

(
m

2

)
, (5.27)

which holds for m > 3n. The case where the removed vertices are not in Ṽ can be analyzed in
the same manner. We have shown that we can reduce an instance of 2CC to a polynomially-sized
instance of 2PC.

5.3.2 Tight example for Random-Eigensign.

We consider a complete graph where all edges are positive, except for one Hamiltonian cycle
comprised of negative edges. Without loss of generality, we can order the vertices so that the
adjacency matrix is

A =



0 −1 1 . . . 1 −1
−1 0 −1 1 . . . 1
1 −1 0 −1 1 . . .

...
...

1 1 . . . −1 0 −1
−1 1 . . . 1 −1 0 . . .


.

That is, matrix A is comprised entirely of ones, save for the subdiagonal and superdiagonal entries,
which are -1, and An1 = A1n = −1. Note that a constant vector ~v, i.e., satisfying vi = vj is an
eigenvector of eigenvalue n− 5. Since

∑
i λ

2
i (A) = ‖A‖2F = n(n− 1), the eigenvalue n− 5 will be

the largest if

n(n− 1)

2
< (n− 5)2, (5.28)

which holds for n > 16. Note that
√
n~v is a feasible solution for 2PC. We now show that Ran-

dom-Eigensign attains a value of Θ(
√
n).
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We first rely on Equality (5.11) to obtain the following:

E
[
~xTA~x

~xT~x

]
=

n∑
k=1

1

k

∑
i6=j

AijsijPr(xi = 1, xj = 1)Pr(~xT~x = k|xi = 1, xj = 1) (5.29)

=

n∑
k=1

1

k

∑
i6=j

AijvivjPr(~x
T~x = k|xi = 1, xj = 1) (5.30)

Now, observe that given k, Pr(~xT~x = k|xh = 1, xl = 1) is constant for all i 6= j. Thus, for
arbitrary h, l,

E
[
~xTA~x

~xT~x

]
=

n∑
k=1

1

k
Pr(~xT~x = k|xh = 1, xl = 1)

∑
i 6=j

Aijvivj (5.31)

= (n− 5)E
[

1

~xT~x

∣∣∣∣xh = 1, xl = 1

]
. (5.32)

Observe that when all entries of ~v are equal in absolute value, ~xT~x is a binomial variable with
parameters (n, |vi|) = (n, 1/

√
n). Thus, by Jensen’s inequality we have

E
[

1

~xT~x

∣∣∣∣xh = 1, xl = 1

]
≥ 1

E [~xT~x|xh = 1, xl = 1]
= Ω(1/

√
n). (5.33)

Furthermore, it is known [63] that

E
[

1

~xT~x

∣∣∣∣xh = 1, xl = 1

]
= O(1/

√
n). (5.34)

That is,

E
[

1

~xT~x

∣∣∣∣xh = 1, xl = 1

]
= Θ(1/

√
n). (5.35)

Combining this with Equality (5.31) we get

E
[
~xTA~x

~xT~x

]
= Θ(

√
n) = Θ

(
OPT√
n

)
. (5.36)

5.4 Experiments

This section presents the evaluation of the proposed algorithms: first (Section 5.4.1) we present a
characterization of the polarized communities discovered by our methods; then (Section 5.4.2) we
compare our methods against non-trivial baselines in terms of objective, efficiency and scalability,
and ability to detect ground-truth planted polarized communities in synthetic datasets. Finally,
we show a case study about political debates (Section 5.4.3).

Datasets. We select publicly-available real-world signed networks, whose main characteristics are
summarized in Table 5.1. HighlandTribes1 represents the alliance structure of the Gahuku–Gama
tribes of New Guinea. Cloister1 contains the esteem/disesteem relations of monks living in a cloister
in New England (USA). Congress1 reports (un/)favorable mentions of politicians speaking in the
US Congress. Bitcoin2 and Epinions2 are who-trusts-whom networks of the users of Bitcoin OTC
and Epinions, respectively. WikiElections1 includes the votes about admin elections of the users
of the English Wikipedia. Referendum3 [153] records Twitter data about the 2016 Italian Refer-
endum: an interaction is negative if two users are classified with different stances, and is positive

1konect.cc
2snap.stanford.edu
3researchgate.net/publication/324517807 Annotated Corpus for Stance Detection -

Italian Constitutional Referendum 2016
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Table 5.1: Signed networks used: number of vertices and edges; ratio of negative edges (ρ− =
|E−|

|E+∪E−| ); L1-norm of the eigenvector corresponding the largest eigenvalue of A (‖~v‖1); and, ratio

of non-zero elements of A (δ = 2|E+∪E−|
|V |(|V |−1) ).

Real-world datasets |V | |E+ ∪ E−| ρ− ‖~v‖1 δ

HighlandTribes 16 58 0.50 3.61 0.48
Cloister 18 125 0.55 3.71 0.81
Congress 219 521 0.20 10.51 0.02
Bitcoin 5 k 21 k 0.15 31.21 1.2e−03
WikiElections 7 k 100 k 0.22 35.96 3.9e−03
Referendum 10 k 251 k 0.05 42.66 4.2e−03
Slashdot 82 k 500 k 0.23 59.46 1.4e−04
WikiConflict 116 k 2 M 0.62 119.66 2.9e−04
Epinions 131 k 711 k 0.17 72.20 8.2e−05
WikiPolitics 138 k 715 k 0.12 91.48 7.4e−05

WikiConflict16|V | 1 M 67 M 0.62 129.04 3.4e−05
Epinions16|V | 2 M 23 M 0.17 75.99 9.5e−06

otherwise. Slashdot2 contains friend/foe links between the users of Slashdot. The edges of Wiki-
Conflict2 represent positive and negative edit conflicts between the users of the English Wikipedia.
WikiPolitics1 represents interpreted interactions between the users of the English Wikipedia that
have edited pages about politics.
In order to study scalability, we artificially augment two of the largest datasets to produce networks
with millions of vertices and tens of millions of edges (details in Section 5.4.2).

Implementation. All methods, with the exception of algorithm FOCG (details in Section 5.4.2),
are implemented in Python (v. 2.7.15) and compiled by Cython. The experiments run on a
machine equipped with Intel Xeon CPU at 2.1GHz (32 cores) and 128GB RAM.4

5.4.1 Solutions characterization

We first characterize the solutions discovered by our methods Eigensign (for short E) and Ran-
dom-Eigensign (RE), and we show how the tweaks described in Section 5.2.1 enhance their
flexibility in producing a wider variety of results. In particular, algorithm E evaluates the threshold
τ for each |vi| discretized at the third decimal digit. This operation is carried out efficiently, since
~v is computed only once regardless of the number of evaluated values of τ . On the other hand,
algorithm RE employs ‖v‖1 as multiplicative factor, therefore the probabilities are modified to be
min{1, ‖~v‖1|vi|}. In the following, we refer to the two communities included in the solutions as
S1 and S2, namely the subsets of vertices that are assigned with 1 and −1, respectively, by the
solution vector ~x.

Figure 5.2 shows how the solutions returned by algorithm E are affected by parameter τ in
terms of polarity, edge-agreement ratio (i.e., the portion of edges in the solution that comply
with the polarized structure), and size on four datasets. In all of them, the three measures follow
very similar trends. The highest polarity is achieved at about a fourth of the domain of τ , when
most of the neutral vertices are discarded. The edge-agreement ratio, instead, is consistently
close or equal to 1: the solutions have a coherent polarized structure regardless of the chosen τ .
Finally, as expected, the number of vertices included in the solutions decreases as τ grows, and
presents a substantial decay at the beginning of the domain. Therefore, parameter τ is a powerful
enhancement that allows algorithm E to be tuned to return the most suitable solution for the
domain under analysis.

For algorithm RE, due to the randomness, we report the best solution with respect to polarity
out of 100 runs. We do the same for the baseline LS, that we introduce in Section 5.4.2. Figure 5.3
shows the boxplots of the edge-agreement ratio over the larger datasets. It has significant values in

4Code and datasets available at github.com/egalimberti/polarized communities.
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Figure 5.2: Solutions produced by E as a function of τ .
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Figure 5.3: Edge-agreement ratio of the solutions of RE.

all cases, above 0.9, and is stable among the different executions. Polarity and solution size for all
datasets are reported in Figure 5.4. For such measures, we do not show boxplots as they are highly
dependent on the specific dataset and very stable over different runs: their index of dispersion is
lower than 0.01 and 3.2e−05, respectively, for all datasets. This confirms that algorithm RE is
very stable and does not require multiple executions to identify high-quality solutions.

5.4.2 Comparative evaluation

We next compare algorithms E and RE against non-trivial baselines inspired by methods proposed
in the literature for different yet related problems.

FOCG. The first method we compare to, whose objective is to find k oppositive cohesive groups
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Figure 5.4: Polarity and solution size (normalized) of the proposed algorithms and baselines.

(i.e., k-OCG) in signed networks, is taken from [59]. Algorithm FOCG detects p different k-OCG
structures within the input signed network, among which we elect the one having highest polarity
as the ultimate solution to our problem. We setup the algorithm with the default configuration
(i.e., α = 0.3 and β = 50) and k = 2. The code is provided by the authors.

Greedy. Our second baseline is inspired by the 2-approximation algorithm for densest sub-
graph [55]. Algorithm Greedy (for short G), iteratively removes the vertex minimizing the
difference between the number of positive adjacent edges and the number of negative adjacent
edges, up to when the graph is empty. At the end, it returns the subgraph having the highest
polarity among all subgraphs visited during its execution. The assignment of the vertices to the
clusters is guided by the sign of the components of the eigenvector ~v, corresponding to the largest
eigenvalue of A.

Bansal. A different approach, motivated by the strong similarity to our setting, is inspired by
Bansal’s 3-approximation algorithm for 2CC on complete signed graphs [24]. For each vertex
u ∈ V , this algorithm, which we refer to as Bansal (for short B), identifies u together with the
vertices sharing a positive edge with u as one cluster, and the vertices sharing a negative edge as
the other. Of these |V | possible solutions, it returns the one maximizing polarity.

LocalSearch. Finally, we consider a local search approach (LocalSearch, for short LS), guided
by our objective function. Algorithm LS starts from a set of vertices chosen at random; at each
iteration, it adds (removes) to (from) the current solution the vertex that maximizes the gain in
terms of polarity, and finally terminates when the gain of moving any vertex is lower than 0.2.
Also for this algorithm, the assignment of the vertices to the clusters is guided by the signs of ~v.

Note that algorithms E, RE, and FOCG exploit the multi-core architecture (all 32 cores),
while the other baselines run on a single core except for the computation of polarity which is
implemented to use multiple cores.

Figure 5.4 reports the achieved values of polarity for all compared algorithms on all datasets,
as well as the size (normalized by |V |) of the solutions returned. In most of the cases, algorithm E
results the be the most competitive method with respect to polarity; on the other hand, algorithm
RE is able to return solutions of high polarity for the small-sized datasets. Algorithm FOCG is
instead not competitive since its solutions are of extremely small size (note that the numerator of
our objective can be up to quadratic in the size of the denominator, so size matters for reaching
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Figure 5.5: F1-score as a function of the noise parameter η (nc = 100, nn = 800).
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Figure 5.6: F1-score as a function of the number noisy vertices nn (nc = 100, η = 0.5).

high polarity). Algorithm G has, in general, polarity comparable to algorithm E, slightly higher in
a few cases (with the exception of WikiConflict, in which algorithm E clearly outperforms algorithm
G). However, it must be noted that algorithm G often returns a very dense subgraph as one of
the two communities, leaving the second community totally empty, which is, of course, undesirable
in our context. Algorithms B and LS, instead, exhibit weak performance in terms of polarity:
their search spaces strongly depend on the neighborhood structure of the vertices (for B), or on
the random starting sets (for LS). About the solution size, all methods, with the exception of
algorithms FOCG and LS, return solutions of reasonable dimension with respect to the number
of vertices of the networks. Excluding the small empirical datasets (i.e., HighlandTribes, Cloister,
and Congress), the size of the solutions is below 20% of the input.

Planted polarized communities. In order to better assess the effectiveness of the various
algorithms, we test their ability to detect a known planted solution, concealed within varying
amounts of noise. For our purposes we create a collection of synthetic signed networks identified by
three parameters: the size of each planted polarized community nc = |S1| = |S2| (for convenience,
we consider communities having the same size); the number of noisy vertices external to the two
polarized communities nn = |V \ (S1 ∪ S2)|; and, a noise parameter η ∈ [0, 1] governing the edge
density and agreement to the model. In detail:

• edges inside S1 (respect. S2) exist and are positive with probability 1 − η, exist and are
negative with probability η/2, and do not exist with probability η/2;

• edges between S1 and S2 exist and are negative with probability 1− η, exist and are positive
with probability η/2, and do not exist with probability η/2;

• all other edges (outside the two polarized communities) exist with probability η and have
equal probability of being positive or negative.

The higher η, the less internally dense and polarized the two communities are, and the more
connected the noisy vertices are, both between themselves and to the communities. Observe how
the case with no noise (η = 0) corresponds to the “perfect” structure.

For each configuration of the parameters, we create 10 different networks and we report the
average F1-score in detecting which vertices belong to S1 (respect. S2) and which ones to V \ (S1∪
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Figure 5.7: Runtime of the proposed algorithms and baselines.
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Figure 5.8: Scalability: runtime of the proposed algorithms and baselines as a function of the
number of injected dummy vertices, for WikiConflict and Epinions.

S2)5.
In Figure 5.5 we fix the size of the synthetic network to 1 000 (nc = 100, nn = 800) and vary

η. For η = 0, all algorithms have, as expected, maximum F1-score with the exception of algorithm
G that, even in the case without noise, is not able to exactly identify the planted structure. As
expected, as η increases, the F1-score decays for all methods; however, our algorithms E and RE
clearly outperform the others. Figure 5.6 shows the F1-score varying the number nn of vertices
external to the polarized communities, with fixed nc = 100 and η = 0.5. Again algorithms E and
RE stand out, especially E that presents F1-score close to the maximum in all cases. Algorithm
FOCG has the poorest performance: the small size of its solutions penalizes the recall, which is
never greater than 0.1.

Runtime and scalability. Figure 5.7 reports the runtime of all algorithms over all datasets.
Algorithms E and RE, with their practical enhancements discussed in Section 5.2.1, always ter-
minate in less than 40 seconds. The runtime of the baselines is instead more than an order of
magnitude higher than algorithms E and RE.

In order to assess the scalability of our methods, we augment two of the larger datasets (i.e.,
WikiConflict and Epinions) by artificially injecting dummy vertices having a number of randomly-
connected edges equal to the average degree of the original network, while maintaining ρ− (i.e.,
the ratio of negative edges). The largest datasets created in this way contain up to 2 M vertices
and 67 M edges (see Table 5.1 for details). Note that, as the quantity of noise increases, δ, i.e., the
ratio of non-zero elements of the adjacency matrix, decreases. Nonetheless, δ differs with respect
to the original datasets less than an order of magnitude in both cases, making the following results
about scalability significant.

Figure 5.8, which reports on the x-axis the number of dummy vertices added, shows that the
runtime of both algorithms E and RE grows linearly with the number of vertices. Among the two,
algorithm E is slightly slower than algorithm RE due to the evaluation of multiple values of the

5For instance recall is defined as (|S∗
1 ∩ S1| + |S∗

2 ∩ S2|)/|S1 ∪ S2|, where S∗
1 (S∗

2 ) denotes the first (second)
community returned by the algorithm while S1 (S2) denotes the corresponding ground-truth one.
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threshold τ . In the worst case, algorithms E returns in about 21 minutes. On the other hand, the
baselines cannot complete each computation within the 10 000 seconds timeout that we apply. No
baseline terminates for more than |V | additional dummy vertices on both datasets. In particular,
algorithm FOCG is able to handle in reasonable time only the original versions, with no dummy
vertices. It should be noted that algorithm FOCG recursively finds a polarized structure, removes
the corresponding subgraph, and repeats the process on the remaining vertices. While each one of
these iterations runs efficiently, most of the found structures are too small to be of interest in our
setting. Thus, it is necessary to allow the algorithm to complete many of such iterations in order
to find interesting solutions.

5.4.3 Case study: political debate

We finally analyze the solution extracted by algorithm RE from Referendum to show tangible ben-
efits of our problem formulation and algorithms in identifying the two most polarized communities
in a signed network modeling political debates. The Referendum dataset includes Twitter data
about the Italian Constitutional Referendum held on December 4, 2016 (more information about
the Referendum can be found at this link). The original data seed consists of about 1 M tweets
posted between November 24 and December 7, 2016, extended by collecting retweets, quotes, and
replies. The users (10 884 in total) are annotated with a stance about their outlook towards the
Referendum as favorable (5 137), against (1 510), or none (4 237) when the stance cannot be in-
ferred. An interaction (edge) is considered negative if occurred between two users (vertices) of
different stances, and is positive otherwise, i.e., we treat “none” users as neutral, in agreement
with both favorable and against users.

The solution output by algorithm RE consists of two communities of 27 and 1 558 users, ac-
counting for 14% of the overall user set. Both communities have more than 99% of positive edges
within and 74% of negative edges in-between, and thus, are highly polarized. Interestingly, all
the 27 users of the smaller community are classified as favorable to the Referendum, while the
users in the larger community as against (75%) or “none” (24%), with the exception of 3 favor-
ables. Moreover, the vertices in the solution have, on average, 183.12 adjacent edges compared to
the average 22.85 contacts of the vertices outside, meaning that the solution identifies the “core”
of the controversies, i.e., a set of intensely debating users about the Referendum. These results
provide evidence of the practical value of our problem formulation and algorithms to identify two
communities that are polarized about a certain topic.

5.5 Summary

Detecting extremely polarized communities might enable fine-grained analysis of controversy in
social networks, as well as open the door to interventions aimed at reducing it [103]. As a step
in this direction, in this chapter we introduce the 2-Polarized-Communities problem, which
requires finding two communities (subsets of the network vertices) such that within communities
there are mostly positive edges while across communities there are mostly negative edges. We
prove that the proposed problem is NP-hard and devise two efficient algorithms with provable
approximation guarantees. Through an extensive set of experiments on a wide variety of real-
world networks, we show how the proposed objective function can be optimized to reveal polarized
communities. Our experiments confirm that our algorithms are more accurate, faster, and more
scalable than non-trivial baselines.

87

https://en.wikipedia.org/wiki/2016_Italian_constitutional_referendum




Part II

Applications

89





Chapter 6

Measures and patterns of the
scientific migration network

Human migration is a phenomenon of crucial importance in modern history that radically evolves
over time, is affected by historical and economical events, and is rooted in the alliance system of
the countries. It is known for shaping local demographics, politics, and regulations; and, also,
for influencing global wealth and world-wide society [185]. In recent years, human migration has
become elder and is likely to increase even more in the next decades, leaving huge implications
in both origin and destination countries of the migrants [146]. The definitive outcome of human
migration is subtle and extremely unpredictable, especially on the long term, due to the need of
addressing different borders: geographical, political, and even cultural [196]. For these reasons,
human migration is perceived in many different manners and, consequently, treated by local states
with opposite aims: it is sometimes encouraged, rather discouraged [207].

Knowledge, ideas, and information are considered to be among the major economic production
factors in today’s economy and are naturally embedded in researchers, scientists, and academics
who, through their migrations, move such precious good from a location to another [177]. On the
long term, the international scientific migration could impact fundamental socio-economic aspects
of the countries, such as scientific, technological, and productive assets [193]. Albeit, most of the
times, this phenomenon lacks the urgency of survival, it is highly competitive in terms of choice of
the destination countries, as pointed out in [68]. Moreover, the international scientific migration is
expected to be develop faster (compared to the general human migration), since the permanence
in a visiting country can be considered a structural part of the majority of the academic careers
and it is often short-term.

In this chapter we show how it is possible to study the international migration of researchers,
scientists, and academics by means of complex-network analysis for identifying measures and pat-
terns that describe the countries having a central role in such phenomenon. The data we employ
in this study were collected from 2.8 millions public profiles of ORCID [43], a growing platform
dedicated to researchers. Given its nature, the (scientific) migration can be modeled by means of
a network that we define to be temporal, weighted, and directed. In particular, nodes represent
world countries and edges account for a migratory flow from a country to another. Edge weights
stand for the size of the migratory flow in terms of migrants, while timestamps represents years
from 2000 to 2016. We name such network scientific migration network (SMN for short).

In our setting, a country is established as central in the scientific migration process if it is
able to provide or attract a large number of outcoming or incoming researchers. Certainly, these
are two antithetical aspects that worth to account separately and from a global perspective. To
purse such objective, we employ the well-known weighted hyperlink-induced topic search (HITS)
algorithm [143] on the scientific migration network to identify hubs and authorities. We compare
the results obtained by HITS to other local and global methods, which fail to unveil the interplay
between exporting and importing researchers on large scale. Further, we investigate the local
patterns and characteristics of successors of hubs and predecessors of authorities to derive the
motivations behind the HITS algorithm. Finally, we showcase how to employ network visualization
to evince the temporal evolutions of such patterns/characteristics of selected hubs and authorities.
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Figure 6.1: Distribution of the number of ORCID members migrating per year, from 1950 to 2020.

Our results show high correlation between hub and authority countries. In particular, we are
able to identify a set of actors that occupies a privileged position in the scientific migration network,
being both important hubs and central authorities, since they are able to attract researchers and,
at the same time, to provide scientist to the most prestigious states. Moreover, the majority of
the central countries in the scientific migration network shares similar characteristics/patterns of
their local neighborhood/cluster, i.e., they provide/receive scientist to/from many different states
instead of having a few well-established migration corridors. Also, we observe various patterns
that lead actors with similar hub or authority score to occupy different positions in the community
structure of the scientific migration network. External factors, e.g., regulations, political alliances,
investments in research, development, and education, are expected to play an important role in
such results and to add an additional layer of complexity that deserves to be further investigated.

By this work, we provide the following contributions:

• using ORCID public profiles as data source, we model the scientific migration phenomenon
by means of a temporal weighted directed network (Section 6.1);

• we employ the weighted hyperlink-induced topic search algorithm to identify hubs and au-
thorities of the scientific migration network and compare it with other local and global
approaches (Section 6.2);

• we characterize the local patterns and characteristics of successors of hubs and predecessors
of authorities to derive the motivations behind the HITS algorithm (Section 6.3);

• by means of network visualization, we show how to evince the temporal evolution of the local
patterns/characteristics of selected hubs and authorities (Section 6.4).

6.1 Scientific migration network

6.1.1 Dataset

The dataset employed in this work has been assembled by Bohannon and Doran [43] through the
gathering of 2.8 millions ORCID public profiles. ORCID is a nonprofit organization that collects
contributions, affiliations, and personal information of the subscribed researchers. Given the affil-
iation history of each member, we are able to identify the location, in terms of country, of his/her
workplace over time and infer his/her migration across different states in time. In the following,
we study the dataset on annual basis due to data limitations, i.e., the temporal information input
by the users often lacks of the month granularity, and to ease of interpretation.

Figure 6.1 shows the distribution of the number of migrations, i.e., the number of ORCID
members that changed the country they worked in, per year, from 1950 to 2020. Most of the data
is concentrated in the 21st century, with a peak in 2014. The decay of recorded migrations after
2014 might be due to temporal bias given by the time when the dataset was gathered, i.e., in
2017. Even if ORCID was founded in 2012, members are allowed to insert information about their
previous occupations and their future ones; then, migrations appear before 2012 and after 2017.

92



CHAPTER 6. MEASURES AND PATTERNS OF THE SCIENTIFIC MIGRATION
NETWORK

2000 2002 2004 2006 2008 2010 2012 2014 2016
t

120

140

160

180

200

# 
no

de
s

active strong connected component

Figure 6.2: Evolution of the number of active nodes and the size of the strong connected component
of the scientific migration network.
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Figure 6.3: Evolution of the number of existing edges of the scientific migration network.

In their work, Bohannon and Doran [43] highlight that ORCID was not born with the specific
aim of tracking researchers’ movement. Therefore, the data we consider has structural limitations
as well as biases. First of all, much of the information input by the members is retroactive since it
is previous to the launch of ORCID in 2012. As a consequence, some of countries that nowadays
have disappeared are present in the dataset, making the set of states considered for each year
vary. Secondly, since its appearance, ORCID has always skewed towards younger researchers. In
fact, members of recent Ph.D. are overrepresented in the dataset, reflecting the fact that younger
researchers sign-up to ORCID more frequently than older ones. Finally, there are countries that
are not fairly represented, namely, the distribution of the number of researchers per country does
not follow the distribution of the overall population. Bohannon and Doran compare ORCID data
in 2013 about scientific migrations to the UNESCO Science Report1 to discover which countries
are misrepresented; e.g., China, Russia, and Japan result to be underrepresented while, e.g, Spain,
and Portugal are overrepresented. All in all, for these reasons, we cannot regard the dataset as a
definitive picture of the scientific migrations. Nevertheless, we can exploit it to detect regularities
and patterns by the construction of a network model, useful in the understanding of the global
perspective of the phenomenon.

6.1.2 Network model

We consider a weighted directed temporal network G = (V, T,$), where V is a set of nodes,
T = [t0, t1, . . . , tmax] ⊆ N is a discrete time domain, and $ : V ×V ×T → N is a function defining
for each pair of nodes i, j ∈ V and each timestamp t ∈ T the weight of edge (i, j) at time t. In
the following, we refer to the weight of edge (i, j) at time t as wij,t, and we consider it missing
if wij,t = 0. Let sini,t =

∑
j∈V wji,t and souti,t =

∑
j∈V wij,t represent the in-strength and the out-

strength of node i ∈ V at time t ∈ T , respectively. We also denote by Et = {(i, j) | $(i, j, t) > 0}
the set of edges existing at time t ∈ T .Finally, let Wt be the weighted adjacency matrix of G at

1https://en.unesco.org/node/252273
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Figure 6.4: Distributions of the in-strength (left) and the out-strength (right) in the scientific
migration network in 2000, 2014, and 2016.

time t ∈ T .
In our case, we identify the nodes of the network as the countries involved in the scientific

migration process (231 in total), and an edge between two counties represents a migration route.
Each edge between two nodes i, j ∈ V is attributed with a time t ∈ T and a weight w: a quartet
(i, j, t, w) represents the migration of w researchers from country i to country j at time t. The time
domain of the scientific migration network is T = [2000, 2001, . . . , 2016], composed of 17 years,
since most of the data are concentrated between 2000 and 2016, and the geopolitical configuration
of the countries is quite stable after 2000.

Figure 6.2 shows the number of active nodes (i.e., nodes i ∈ V having sini,t and/or souti,t greater
than 0) and the size of the strong connected component in the considered time domain T . Note
that most of the nodes is active in 2014, which is also the year for which the dataset records the
largest amount of information. Also the number of edges existing in each year follows a very similar
trend (see Figure 6.3). For this reason, we consider year 2014 pivotal in the following analysis.

We report in Figure 6.4 the distributions of the in-strength and the out-strength in the scientific
migration network in 2000, 2014, and 2016. The shapes of the distributions are very similar among
the shown years, as well as the missing ones. Also, there are not notable differences between
in-strength and out-strength. Such distribution will come in handy in the following, to create
configuration models that preserve in-strength and out-strength sequences.

6.2 Hubs and authorities

6.2.1 A strength-based approach

A strength-based approach can be considered a straightforward attempt to numerically quantify
the role of a country in the scientific migration network. We define the drain index of a country
i ∈ V at time t ∈ T as

β(i, t) =
souti,t − sini,t
souti,t + sini,t

, (6.1)

namely the number of outgoing researchers (i.e., out-strength) minus the number of incoming
researchers (i.e., in-strength) normalized by their sum. It ranges from 1 to −1, where 1 indicates
maximum brain drain (the country is a pure provider) while −1 means maximum brain gain (the
country is a pure attractor). Values close to 0 are adopted by those countries having balanced
values of out-strength and in-strength.

Figure 6.5 graphically shows the drain index for the year 2014, while Table 6.1 reports the
ranking for specific countries: the five countries of highest β, the five countries of lowest β, and
the five countries of highest out-strength. The countries standing out in Figure 6.5 are mainly
located in Africa, southern Asia and in the Caribbean, while Europe and North America have
milder colors. Considering the values in Table 6.1, it is easy to notice that extreme values of β
are assigned when the number of migrations of a country is poor and completely unbalanced. For
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β

Figure 6.5: Drain index β in 2014. Countries without data are depicted in white with diagonal
lines.

Table 6.1: Ranking (partial) of the countries by drain index β in 2014. For each country, out-
strength and in-strength measured during such year are also reported. Countries highlighted in
bold have the highest out-strength in 2014.

ranking country β sout sin

1 Sint Maarten 1.0 2 0
2 Eritrea 1.0 2 0
3 Central African Republic 1.0 1 0
4 Curacao 1.0 1 0
5 Saint Vincent and the Grenadines 1.0 1 0

85 Spain 0.03 80 74
90 United Kingdom 0.01 109 105
111 France 0.0 78 78
114 United States −0.008 114 116
116 Italy −0.01 71 73
202 Guinea −1.0 0 2
203 Guyana −1.0 0 2
204 Belize −1.0 0 2
205 Niger −1.0 0 3
206 Chad −1.0 0 3

example, Sint Maarten has only two outgoing migrations, resulting in β = 1, while Chad has three
incoming migrations and no outgoing researchers, then its β is −1. On the other hand, those
countries playing a central role in the migration network have usually β close to 0 due to the high
number of both outgoing and incoming researchers. This is the case of, e.g., the United Kingdom
and the United States.

In order to favor the identification of the central countries in the migration process, we lift the
network by removing the links having weight lower than a certain threshold tr. This operation has
the aim of discarding weak and not meaningful interactions between countries. We experimentally
verify tr ∈ [1, 2, . . . , 10], and we report part of the 2014 ranking in Table 6.2 for threshold values
of 1 (original network), 2, and 3. Two important aspects have to be considered: (i) the extremes
of the ranking are not robust with respect to the threshold (the rankings shown in Table 6.2
considerably differ for small variations of tr); (ii) even for low values of tr, a large portion of the
network is neglected by the analysis (44% and 61% for tr = 2 and tr = 3, respectively). Therefore,
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Table 6.2: Ranking (partial) of the countries by drain index β in 2014, varying the threshold tr.
The five countries of highest β (ties broken by out-strength) and the five countries of lowest β (ties
broken by in-strength) are reported.

ranking tr = 1 (original) tr = 2 tr = 3

1 Sint Maarten Honduras Syria
2 Eritrea Barbados Rwanda
3 Central African Republic Bosnia and Herzegovina Serbia
4 Curacao South Sudan Croatia
5 Saint Vincent and the

Grenadines
Cambodia Jamaica

202 Guinea Burkina Faso Macedonia (FYROM)
203 Guyana Macedonia (FYROM) Algeria
204 Belize Madagascar Botswana
205 Niger Algeria Mongolia
206 Chad Botswana Lithuania

we cannot consider this approach a reliable and fair analysis of the scientific migration network.
Additionally, we evaluate other strategies for normalizing the drain index by considering ex-

ternal data, such as the size of the overall population and the number of researchers of a country.
Given the biases in the collected dataset, any normalization deriving from external sources would
be inappropriate because it would misrepresent the results. Moreover, external data have to be
temporal, at least of yearly granularity from 2000 to 2016, and available for all the countries in-
cluded in the dataset. This is the case of the general population, but we cannot discover complete
and coherent datasets about the size of the research population of all the studied states.

All in all, by this strength-based approach, we cannot induce strong conclusions nor provide
a fair and robust analysis about the main characters of the scientific migration network. The
main contributors to the network are not caught, and the removal of low-weight edges excessively
limit the analyzed data. In addition, other normalizing strategies result to be unfeasible due to
the nature of our data, or to the lack of complete external datasets. In order to overcome these
limitations, we evaluate, in the following subsection, a method to asses the importance of the
countries that takes into consideration the overall structure of the network and goes beyond the
local strength structure of each node.

6.2.2 A global approach

A classic approach to assess the importance of a node in a network taking into account the global
link structure is the well-known PageRank by L. Page et al. [187]. Let Rt be the PageRank matrix
of G = (V, T,$) at time t ∈ T , defined as

rij,t = d
wij,t∑
j∈V wij,t

+ (1− d)
1

|V |
, (6.2)

where d = 0.85 is the dumpling factor. Note that, in this work, we consider the edge weights in the
definition of Rt. The PageRank vector ~rt = (r1,t, . . . , r|V |,t)

ᵀ is obtained by repeating the iteration

~rt(x+ 1) = Rᵀ
t ~rt(x) (6.3)

until convergence, with initial conditions ri,t(0) = 1
|V | . ~rt is computed for each timestamp, i.e.,

year, t ∈ T . In the following, we often refer to the PageRank vector as ~r neglecting the subscript.
In Figure 6.6 we graphically show the PageRank in 2014, while Table 6.3 reports the rank of the

20 countries having highest PageRank in 2000, 2014, and 2016. As stated above, the drain index
does not privilege nodes having high both in-strength and out-strength, and does not account for
the importance of the origin/destination of the connections. PageRank is instead able to picture
such aspects. For example, all the countries highlighted in bold in Table 6.1 are among the best 10
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Figure 6.6: PageRank r in 2014. Countries without data are depicted in white with diagonal lines.

Table 6.3: Top-20 ranking by PageRank in 2000, 2014, and 2016.

ranking 2000 2014 2016

1 United States United States United States
2 United Kingdom United Kingdom United Kingdom
3 Germany Australia Australia
4 Spain Spain Germany
5 Italy Germany Spain
6 France China China
7 Canada France Canada
8 Australia Canada France
9 Portugal Italy Switzerland
10 Netherlands Sweden Sweden
11 Sweden Portugal Netherlands
12 Japan Brazil Italy
13 Switzerland Switzerland Denmark
14 Brazil Netherlands Portugal
15 China Denmark Japan
16 South Korea India Ireland
17 Malaysia Japan Colombia
18 Mexico South Korea India
19 Denmark Belgium Brazil
20 Indonesia Saudi Arabia New Zealand

countries in terms of PageRank in 2014; in particular, United States and United Kingdom place
at the first and at the second position of the ranking, respectively.

On the whole, PageRank is confirmed to be a powerful method to rank the nodes of a network.
However, it assigns to each node a unique score and it is not desirable in our setting, since we
are instead interested in understand the interplay between importing and exporting researchers.
Therefore, our analysis is required to rely on more refined and specific metrics that highlight such
duality.

6.2.3 A more refined approach: hubs and authorities

We identify the hyperlink-induced topic search algorithm (also known as HITS or hubs and author-

ities) [143] as the ultimate tool to study our network. The HITS hub vector ~ht = (h1,t, . . . , h|V |,t)
ᵀ

and the HITS authority vector ~at = (a1,t, . . . , a|V |,t)
ᵀ in t ∈ T of G = (V, T,$) are defined by the
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Figure 6.7: Geographic layout of the scientific migration network in 2014. The dimension of a node
i ∈ V represents hi, while the color represents ai. Edge thickness stands for edge weight.

limit of the following set of iterations:

~ht(x+ 1) = ct(x)Wt~at(x+ 1) (6.4)

and
~at(x+ 1) = dt(x)W ᵀ

t
~ht(x), (6.5)

where ct(x) and dt(x) are normalization factors to make the sums of all elements become unity, i.e.,∑|V |
i=1 hi,t(x+1) = 1 and

∑|V |
i=1 ai,t(x+1) = 1. The initial HITS values of the scores are hi,t(0) = 1

|V |
and ai,t(0) = 1

|V | for all i ∈ V . Note that, in this work, we employ the weighted version of HITS. The

non-weighted HITS hub scores and non-weighted HITS authority scores are defined in the exactly
the same way, replacing Wt with the unweighted adjacency matrix in Equations 6.5 and 6.4. Also
in this case, ~ht and ~at are computed for each timestamp, i.e., year, t ∈ T . In the following, we
often refer to the HITS hub and authority vectors as ~h and ~a neglecting the subscript.

By definitions, a node i ∈ V has large value of ai if it has many links of large weight towards
those nodes j ∈ V having high hi; similarly, node i has large value of hi if it is reached by
nodes j ∈ V of high ai throughout links of large weight. In our specific scenario, ~a provides an
indication of which are the provider countries, that export many researchers in direction of the
most attractive countries; while ~h indicates which are the attractor countries, able to attract many
researchers from important exporters. Figure 6.7 shows hub and authority scores for the scientific
migration network in 2014. Unites States and United Kingdom stand out from the plot: they place
first and third in the hub ranking, and first and second in the authority ranking, respectively. In
general, North American and European countries are represented by big circles and in dark color,
since they have high values of both hub and authority scores; the same is for Australia. India,
instead, has large dimension but milder color because it results to be among the top exporters but
not as attractive as other countries.

Tables 6.4 and 6.5 show the first twenty countries ordered by hub score and authority score,
respectively, in 2000, 2014, and 2016. China, United States, and United Kingdom are identified
as the leading provider countries during the whole time domain: they never fall below the fifth
position. India and Canada, followed by various of European countries, i.e., Germany, Italy, Spain,
and France, consistently position after the three leading countries with few fluctuations during the
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Table 6.4: Best providers of scientist: top-20 ranking by hub score in 2000, 2014, and 2016.

ranking 2000 2014 2016

1 China China United States
2 United Kingdom United Kingdom China
3 Canada United States United Kingdom
4 United States India Germany
5 South Korea Spain India
6 France Canada Spain
7 Germany Italy Canada
8 India Germany Italy
9 Italy France Australia
10 Spain Brazil France
11 Australia Australia Netherlands
12 Japan Portugal Brazil
13 Brazil South Korea Switzerland
14 Russia Netherlands Portugal
15 Portugal Japan South Korea
16 Mexico Switzerland Sweden
17 Turkey Sweden Japan
18 Switzerland Iran Denmark
19 Colombia Turkey Ireland
20 Taiwan Colombia Belgium

Table 6.5: Best attractors of scientist: top-20 ranking by authority score in 2000, 2014, and 2016.

ranking 2000 2014 2016

1 United States United States United States
2 United Kingdom United Kingdom United Kingdom
3 Germany Australia Australia
4 Italy Germany Germany
5 Spain France Canada
6 Canada Canada Spain
7 Australia Spain China
8 Portugal China France
9 France Italy Switzerland
10 Japan Portugal Netherlands
11 Netherlands Sweden Sweden
12 South Korea Switzerland Japan
13 Sweden South Korea Italy
14 Brazil Netherlands Denmark
15 Malaysia Brazil Portugal
16 Switzerland Denmark Hong Kong
17 China Japan Ireland
18 Ireland Hong Kong Colombia
19 Mexico India Singapore
20 Taiwan Singapore India
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Figure 6.9: Person correlation between ~h and ~a of the scientific migration network and of the null
model, for which we report mean and 95% confidence interval. p-values are smaller than 1.5e−05
in all cases.
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Figure 6.10: Person correlation between ~h and ~a, and ~r of the scientific migration network.

years. South Korea and Russia follow instead negative trends. South Korea is the fifth hub in
the scientific migration network during 2000, then loses ten positions by 2016. Russia’s decay is
even worse: it is among the best twenty hubs in 2000, leaves the top-20 in 2003, and touches the
38th position in 2016. About the authority score, United States have the best performance during
the whole time horizon, while United Kingdom always classifies 2nd. Germany generally occupies
the 3rd position in early 2000, before the growth of Australia. Similarly to the hub score, after
the top-4 positions, there is a series of countries composed by the European Spain, France, and
Italy, together with Canada and China. Interestingly, among the best attractors, there are Asiatic
countries that are not identified as good hubs, e.g., South Korea, Singapore, and Hong Kong.

Figure 6.8 depicts the evolution of hub and authority scores of the nodes of the scientific
migration network in time, by means of scatterplots. Ideally, we can state that a country is more
important as hub than as authority if it places above the diagonal, and viceversa. In all years,
most of the countries clump in the lower-left corner, where both scores are close to 0. A few
countries differentiate from the others instead. United States are always more central with respect
to the authority score than to the hub score, even if they are among the leading hubs overall.
On the other hand, United Kingdom moves from being equally hub and authority in early ’00 to
being more authority by the end of the time domain. It is also easy to notice how China, which is
constantly among the top hubs, slowly increases its authority score.

In light of this, the correlation between ~h and ~a and the evolution of such correlation is an
interesting aspect to take into account. We show, in Figure 6.9, the Pearson correlation between
~h and ~a as a function of the year, and compare it to a null model. As null model we employ
the configuration model [184] that allows to test whether the correlation is a non-trivial feature of
the scientific migration network or it is expected by the strength distribution of the nodes. The
configuration model rewires the edges preserving the strength distribution of the nodes in each
year, namely, an edge can be shuffled only with other edges with the same timestamp. Note that
by this hypothesis, in the resulting null model, the edge weight distribution and the number of
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Figure 6.11: Betweenness centrality (x-axis) against clustering coefficient (y-axes) of the nodes of
the scientific migration network in 2014.

edges in each year might vary with respect to the original network. Here and in the following
results, we consider ten different configurations of the null model. The correlation in the original
network is strong during the whole time domain, constantly greater than 0.85. The null model has
even stronger correlation in all years, with small variation between the different configurations.
This means that we should expect more countries of high (low) hub score having also high (low)
authority score, and viceversa, in the scientific migration network. The observed behavior should
then rely on different factors, e.g., local patterns – which we study in the next section – than the
strength distribution.

In order to compare the HITS and the PageRank results, in Figure 6.10 we also visualize the
Pearson correlation between ~h and ~a, and ~r. Interestingly, both ~h and ~a are highly correlated
to ~r. ~a, in particular, has correlation greater than 0.95 in all years. This validates the results
obtained by the HITS algorithm that has the advantage of depicting two different aspects of the
world countries, providing then more accurate indications.

6.2.4 Betweenness centrality vs clustering coefficient

Besides the role that a country have in the overall scientific migration network, it is of our interest
to understand how the countries position and influence their local neighborhood and community.

We define the betweenness centrality of a node i ∈ V at time t ∈ T as

cb(i, t) =
∑
s,e∈V
i 6=s6=e

σse,t(i)

σse,t
, (6.6)

where σse,t is the total number of shortest paths from node s to node e at time t, and σse,t(i) is the
number of such paths passing through node i. In the computation of the betweenness centrality,
we consider the reciprocal of the edge weights of the scientific migration network, since the more
a path is favorable (i.e., shorter) the more researchers move through such path. Therefore, cb is
an indication of how much a country is central in the crossing of the network by the researchers.
Usually, countries of high betweenness centrality place at the borders of their local clusters and
have direct ties towards other clusters. Therefore, we can suppose that such countries are one
of the two endpoints of a bridge, or more likely of a local bridge [73] (local bridge is a relaxed
definition of bridge, i.e., if we delete a local bridge the two endpoints would lie further away and
not in two different components of the network). The endpoints of a (local) bridge regulate the
access toward different clusters of nodes and are crossroads of the flows within the network. Hence,
countries like the United States and the United Kingdom are important players in the scientific
migration network since the scientific migration moves also ideas and information in addiction to
people: these countries may have early access to knowledge and to new research results, possibly
produced in multiple and non-interacting places of the world.
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Figure 6.12: Betweenness centrality-clustering coefficient trajectories of selected countries (top-20
hubs and top-20 authorities in 2014) from 2000 to 2016.

We also compute the clustering coefficient of a node i ∈ V at time t ∈ T as

cc(i, t) =
|(j, k) | j, k ∈ Ni,t ∧ (j, k) ∈ Et|

|Ni,t|(|Ni,t| − 1)
, (6.7)

where Ni,t identifies the neighbor set of node i at time t. In this case, we neglect the edge weights.
Also note that, this definition, differently than the definition of betweenness centrality, treats the
G as undirected. In our context, we consider the cc of a country i as a measure of how many
possible origins or destinations the researchers residing in neighbor countries have rather than i.

Figure 6.11 reports betweenness centrality (x-axis) against clustering coefficient (y-axes) of
the nodes of the scientific migration network in 2014, highlighting the top-20 hubs and the top-
20 authorities. Most of the countries place in the upper-left corner of the plot, having high
clustering coefficient (i.e., the neighbor countries have many other connections between them) and
low betweenness centrality (i.e., they are internal to their local clusters). Interestingly, none the
highlighted countries (with the exception Hong Kong and Singapore) is in such position. Rather,
the main hubs and authorities of the scientific migration network tend to be central in the migration
paths traversing the network, and influence their local neighborhood centralizing the connections
towards them. In particular, United States, United Kingdom, Spain, and France stand out from
the others. Again, Hong Kong and Singapore are exceptions, having a behavior common to most
of the countries.

As a further step in this direction, in Figure 6.12, we report the trajectories of the twenty
countries of highest hub score and the twenty countries of highest authority score of year 2014
in terms of betweenness centrality and clustering coefficient over the time span under analysis.
Each arrow of the plot is associated to a country: the root represents the country in 2000, while
the head shows the same country in 2016. Despite our previous observations, we cannot observe
a global pattern, common to most of the countries, leading toward the lower-right corner: some
of the nodes move towards the upper-left corner, others to more favored positions. For most of
the European countries, betweenness centrality decreases and clustering coefficient increases. This
behavior, which is frequently observed when a set of nodes tighten its cluster structure, might
reveal the adoption of the new migration polices provided by the rising European Union, during
nineties and noughties. Spain and United Kingdom are the most evident exceptions, probably
because they played a key role in bridging toward the Spanish-speaking countries of Latin America
and the former Commonwealth states, respectively. Moreover, all countries move around their
surroundings. China has the greater improvement combining betweenness centrality and clustering
coefficient, while Turkey has the highest variation in terms of clustering coefficient. Note that, by
considering the reciprocal of the edge weights in the computation of the betweenness centrality,
a country is required to either polarize the distribution of its weights or increase its strength to
augment such centrality. In the next section, we rely on the study of statistical dispersion of
incoming and outgoing edge weights to provide a better understanding of such local patterns.
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Figure 6.13: Lorenz curves and 95% confidence intervals for three classes of hubs in 2014. The
population W is represented by the edge weights of incoming edges.
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Figure 6.14: Lorenz curves and 95% confidence intervals for three classes of authorities in 2014.
The population W is represented by the edge weights of outgoing edges.

6.3 Local patterns

In this section, we dive deeper into the factors that contribute to establish a country as leading
hub or authority in the scientific migration network.

6.3.1 Predecessors and successors

At first, we investigate the homogeneity of the edge weights of the neighborhood of the nodes.
Specifically, we want to understand how the researchers leaving (reaching) a country of high hub
(authority) score distributes with respect to the predecessors (successors) of such country. In
order to do so, we employ the Gini coefficient, which measures the degree of inequality of a
distribution [111]. Given a population W = {wo, w1, . . . , wn} of n values, we define the Gini
coefficient as

G =

∑
wi,wj∈W |wi − wj |
2n
∑
wi∈W wi

. (6.8)

G varies between 1 and 0, where 1 expresses maximal inequality among values while 0 indicates
the case in which all the values in W are equal.

In the following, we graphically show the Gini coefficient by means of Lorenz curves identifying
the population W as the edge weights of outgoing edges or the edge weights of incoming edges
when considering a node as hub or authority, respectively. Therefore, we aim at investigating
how (un)balanced the migration flows from/towards a country are and how such aspect correlates

to ~h and ~a. Figures 6.13 and 6.14 compare the mean Lorenz curves, along with 95% confidence
intervals, of three different classes of hubs and authorities, respectively. It is immediate to notice
that high hub/authority score is associated with high Gini coefficient. The Gini coefficient decreases
progressively as we move down with the hub and authority rankings. Then, to obtain a leading
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Figure 6.15: Average Gini coefficient (and 95% confidence interval) as a function of the hub ranking
of the scientific migration network and of the null model. The population W is represented by the
edge weights of outgoing edges and the average is computed over the time domain T .
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Figure 6.16: Average Gini coefficient (and 95% confidence interval) as a function of the authority
ranking of the scientific migration network and of the null model. The population W is represented
by the edge weights of outgoing edges and the average is computed over the time domain T .

position in the scientific migration network, a country is required to have strongly differentiated
migratory flows from/towards its neighbors.

The behavior of the missing classes is consistent, as shown in Figures 6.15 and 6.16 which report
the average (over the time domain T ) of the Gini coefficient (and the 95% confidence interval) as a
function of the hub/authority ranking. Such curves are compared with the null model considering
the average of the ten different configurations we generate. The Gini coefficient decreases as h
and a drop, both in the scientific migration network and in the null model, and the curves have
very similar functional shapes. The confidence intervals are quite limited in all cases, however
they become larger for the lowest positions of the ranking in the scientific migration network
where data become more sparse and less significant. The Gini coefficient of the scientific migration
network is (slightly) higher than the null model, then a node to be in the first positions of the
hub/authority ranking is required to have high disparity in the weights of the connections from/to
its predecessors/successors by the intrinsic characteristics of the network. Therefore, for a country,
having preferential massive exchanges of researchers with partner states is more profitable than
having a bunch of similar relationships and fundamental to stand out in the scientific migration
phenomenon.

6.3.2 Clustering coefficient

Similarly to the Gini index, we study the behavior of the clustering coefficient (introduced in
Equation 6.7) of the successors of the hubs and of the predecessors of the authorities as a function
of the hub/authority ranking in the scientific migration network compared to the null model. These
results vary from the ones presented in Section 6.2 since, in that case, we calculate the clustering
coefficient over the whole neighborhood of a node, while here we are interested only in the subset
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Figure 6.17: Average clustering coefficient (and 95% confidence interval) as a function of the hub
ranking of the scientific migration network and of the null model. The average is computed over
the time domain T .

0 20 40 60 80
a

0.3

0.4

0.5

0.6

0.7

av
g 

cc

SMN null model

Figure 6.18: Average clustering coefficient (and 95% confidence interval) as a function of the au-
thority ranking of the scientific migration network and of the null model. The average is computed
over the time domain T .

of the neighbors that counts in the computation of the hub/authority score.
In Figures 6.17 and 6.18 we observe that nodes of better ranking have higher clustering

coefficient, both hubs and authorities. This observation reflects the fact that the higher the
hub/authority score is the more the successors/predecessors of a country are cohesive, i.e., they
are in the most active parts of the network. Also in this case, the trend observed in the null
model is similar to the scientific migration network; however, the clustering coefficient of the null
model is constantly greater with respect to the real network, in particular for the top hubs and
authorities. Therefore, the best hubs/authorities of the scientific migration network are able to
significantly influence (with respect to the null model) the local cluster structure, attracting most
of the migratory connections towards them and breaking connections between neighbor countries.

6.4 Case studies

In this section we show how to exploit network visualization to evince temporal evolution of
(partial) ego-networks of select hubs and authorities. In particular, we focus our attention on
the connections between the focal node (i.e., the ego) and its neighbors, omitting edges whose
endpoints do not include the ego. Given the nature of our study, for each select country we define
two different visualizations; the first one depicts incoming migratory flows only, while the other
separately shows outgoing connections. We retain that such visualizations are able to provide clear
indications of the evolution in time of the characteristics and of the connection of a country in the
scientific migration network.

Figures 6.19, 6.20, and 6.21 visualize the ego-networks of the United States, China, and Spain
in 2000, 2008, 2014, and 2016. Colors and thickness of the edges, both normalized according to
each ego-network, refer to edge weights. Moreover, the states are placed on the basis of their
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Figure 1: Ego-network evolution of United States: incoming connections (left, blue) and outgoing connections (right, red).
2Figure 6.19: Ego-network evolution of United States: incoming connections (left, blue) and outgo-

ing connections (right, red).
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Figure 2: Ego-network evolution of China: incoming connections (left, blue) and outgoing connections (right, red).
3Figure 6.20: Ego-network evolution of China: incoming connections (left, blue) and outgoing

connections (right, red).
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Figure 3: Ego-network evolution of Spain: incoming connections (left, blue) and outgoing connections (right, red).
4Figure 6.21: Ego-network evolution of Spain: incoming connections (left, blue) and outgoing

connections (right, red).
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geographical location.
It is easy to see (Figure 6.19) how the United States have many both incoming and outgoing

migration channels. Their ego-networks are dense even in 2000, where the scientific migration
network is sparser than in later years. The United States have constantly the best authority score
but they occupy a very competitive position in the hub ranking too, which justifies the structure
of their connections. In 2016, the United States and China have very close hub score (1st and
2nd in the hub ranking, respectively) but different authority score (1st and 7th in the authority
ranking, respectively). In fact, looking at Figures 6.19(g), 6.19(h), 6.20(g), and 6.20(h), we notice
two different migration models. The United States have many neighbor countries spread across
all the continents. On the other hand, China is the major provider of researcher of the United
States and the majority of outgoing researchers from China move to the US. On the contrary,
China is only one of the many possible destinations for American researchers. Finally, Figure 6.21
highlights that Spain, whose trajectory in Figure 6.12 is common to local bridges, retains favored
relationships with the Spanish-speaking countries of the Latin America.

6.5 Summary

In this chapter we study international migrations of the scientific population from a complex-
network perspective, and we describe measures and patterns to identify the central countries in-
volved in the migration phenomenon. In particular, we employ the HITS algorithm with the intent
of catching the interplay between exporting and importing researchers from a global perspective.
We also investigate the local characteristics of successors of hubs and predecessors of authorities
to dive deeper into the motivations that establish hubs and authorities. Interestingly, our findings
identify a set of countries that occupies a privileged position in the scientific migration network,
being both important hubs and central authorities. The majority of such countries shares similar
local characteristics/patterns, namely they exchange with many different states instead of having
a few well-established migration corridors. At the same time, the migration flows are very unbal-
anced, as testified by the Gini coefficient. China is the most notable exception, having a favorite
relationship with the USA in terms of return rate of researchers. Moreover, we observe different
behaviours that lead actors with similar hub or authority score to occupy different positions in
the community structure of the scientific migration network, preferring, e.g., to cooperate, as most
of the European nations, rather than to act independently, such as China and United Kingdom.
Such network dynamics deserves to be further analyzed for undercovering latent causes and factors
by the inclusion of complementary sources, e.g., local regulations, political alliances, investments
in research, development, and education. It is important to remark that all these findings should
not be considered conclusive results due to the incompleteness and biases affecting the data (as
already pointed out in Section 6.1).

In this work we apply the proposed methodology to data extracted from the ORCID platform.
However, it is important to mention that our model is completely data-agnostic, meaning that it
can be applied to other datasets obtained from different sources with no modifications. Moreover,
it is able to accommodate evolving datasets that grows over time, delivering a more precise picture
as the information increases.
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Chapter 7

Span-cores in face-to-face
interaction networks

Nowadays distributed sensing systems and infrastructures are based on wearable sensors that allow
the gathering of data about proximity relations and close-range interactions of individuals in real-
world large-scale settings [133, 203]. Different works [203, 217, 174, 204] collected data on the
time-resolved face-to-face proximity of students and teachers in schools with the aim of studying
mixing patterns of children in school environments. Such patterns would help to quantify the
transmission opportunities of respiratory infections and to identify situations within schools where
the risk of transmission is higher [176, 113].

In this chapter we use the three face-to-face interaction networks gathered in schools introduced
in Chapter 4, i.e., PrimarySchool, HighSchool, and HongKong (see the beginning of Section 4.5 for
the details), to illustrate applications of (maximal) span-cores and temporal community search in
real-life analyses. The window size of all datasets is 5 minutes and, in the analysis, we discard
span-cores of |∆| = 1, i.e., having span of 5 minutes, since they represent short interactions,
not significant for our purposes. In the remaining of this chapter we describe (i) three types of
interesting temporal patterns (Section 7.1), i.e., social activities of groups of students within a
school day, mixing of gender and class, and length of social interactions in groups; (ii) a procedure
to detect anomalous contacts and intervals that exploits maximal span-cores (Section 7.2); and,
(iii) an approach to graph classification based on temporal community search (Section 7.3).

Notations, definitions, and algorithms employed here are directly borrowed from Chapter 4.

7.1 Temporal patterns

7.1.1 Temporal activity

We first show how span-cores (Definition 4.1) afford a simple temporal analysis of social activities
of groups of people within a school day. The left side of Figure 7.1 reports colormaps of the order
k of the span-cores as a function of their starting time ts (x-axis) and of the size |∆| of their
temporal span ∆ = [ts, te] (y-axis), for a school day of the PrimarySchool and HighSchool datasets.
Darker gray indicates span-cores of high order and slots located in the upper part of the plots
refer to span-cores of long span. It is important to notice that the linear decay in span duration is
naturally due to the definition of span-core and to the shifting of the starting time ts; therefore, it
is not a distinguishing feature of the activity patterns found in the analyzed data. In both datasets,
fluctuations of k and |∆| are observed along the day, which can be related to school events. Around
10 a.m., the size of the span |∆| reaches a local maximum in correspondence to the morning break,
which means that students establish long-lasting interactions that hold beyond the break itself.
Moreover, when classes gather for the lunch break, the order k reaches its maximum value since
students tend to form larger and more cohesive groups.

In order to verify that these results are not trivially derived from the general temporal activity,
as simply given by the number of interactions in each timestamp, we compare our findings to a null
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Figure 7.1: Temporal activity of a school day of the PrimarySchool and HighSchool datasets: the
x-axis reports the hour of the day at which the span of a span-core starts, the y-axis specifies
the size of the span (in minutes), and the color scale shows the order k. At a glance, it can be
observed that the temporal structure of the span-core decomposition detects time-evolving cohesive
structures in the original datasets (left plots) that completely disappear in the reshuffled datasets
(right plots).

model. At each timestamp of the temporal graphs, we reshuffle the edges by the Maslov-Sneppen
algorithm [173] which consists in repeating the following operations up to when all edges have
been processed: select at random two edges with no common vertices, e.g., (u, v) and (w, z), and
transform them into (u, z) and (w, v), if neither (u, z) and (w, v) existed in the original timestamp.
This reshuffling preserves the degree of each vertex in each timestamp and the global activity
(i.e., the number of contacts per timestamp), but destroys correlations between edges of successive
timestamps. In the right side of Figure 7.1 we show the results of the temporal analysis described
above for the reshuffled datasets. In both, the values of |∆| and k reached are much smaller than
in the original datasets. The size of the span |∆| is always shorter than 20 minutes, while in
the original datasets it is much longer, up to 170 minutes, and the order k is always equal to
1, compared to the original maximum of 5. The time-evolving cohesive structures detected by
the temporal core decomposition in the original datasets are completely lost on reshuffling, since
only span-cores of short span and low coreness are observed in the latter case. This shows that
the temporal structure exposed by the span-core decomposition is not simply a consequence of
temporal patterns of global activity but that span-cores represent a concrete method to detect
complex cohesive structures and their temporal evolution.

7.1.2 Mixing patterns

We now show an analysis of mixing patterns of students with respect to gender and class. Such
vertex attributes are indeed available for the individuals of the PrimarySchool dataset. We define
as gender purity of a span-core the fraction of individuals of the most represented gender within
the span-core. Class purity is analogously defined. The left plot of Figure 7.2 reports the temporal
evolution of the average gender and class purity of the maximal span-cores (Definition 4.2) spanning
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Figure 7.2: Temporal evolution (time on the x-axis) of average gender purity and average class
purity (y-axis) of the maximal span-cores of the PrimarySchool dataset. Original data on the left,
reshuffled data on the right.

each timestamp, during the first school day of the PrimarySchool dataset. During lessons, when
students are in their own classes, class purity has naturally very high values, very close to 1. Gender
purity is instead rather low. On the other hand, when students are gathered together, during the
morning break at 10 a.m. and the lunch break between 12 a.m. and 2 p.m., the situation is
overturned: gender purity reaches large values while class purity drastically decreases. This shows
that primary school students group with individuals of the same class, disregarding the gender,
only when they are forced by the schedule of the lessons, but prefer on average to form cohesive
groups with students of the same gender during breaks. This is in agreement and complements a
previous study of the same dataset focusing on single interactions in the static aggregated network
[216].

The right plot of Figure 7.2 shows the temporal evolution of the average gender and class purity
for a null model in which gender and class are randomly reshuffled among individuals. The two
curves are more flat and the anti-correlation between them completely vanishes. This testifies that
the results on the original dataset are not simply due to the relative abundance of individuals
of each type interacting at each time, but reflect genuine mixing patterns and their temporal
evolution.

7.1.3 Interaction length

Finally, we analyze the duration of interactions of social groups in schools by studying the dis-
tribution of the size of the span of the maximal span-cores of the three datasets (Figure 7.3).
All distributions are extremely skewed with broad tails: most maximal span-cores have duration

Figure 7.3: Distribution of the size of the span |∆| of the maximal span-cores. The x-axis reports
the size of the span (in minutes), while the y-axis the percentage of maximal span-cores having a
given size of the span.
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Figure 7.4: HongKong dataset: number of edges per timestamp in the original data (top), after
filtering anomalous edges (middle), and after filtering anomalous edges and intervals (bottom).
Days 6 and 7 are weekend.

less than 1 hour, but durations much larger than the average can also be observed. Interestingly,
the three datasets at hand all exhibit the same functional shape, confirming a robust statistical
behavior. We also note that similar robust broad distributions have been observed for simpler
characteristics of human interactions such as the statistics of contact durations [217, 174]. Out-
liers appear also at very large durations, especially for the HongKong dataset that has maximal
span-cores lasting up to 83 hours. Group interactions of such long span are clearly abnormal and
represent outliers in the distributions. We will show, in the following of this section, how to exploit
such outliers to detect both irregular interactions and anomalous temporal intervals.

7.2 Anomaly detection

The identification of anomalous behaviors in temporal networks has been the focus of several
studies in the last few years [179, 204]. Based on the above findings, we devise a simple procedure
to detect anomalous edges and intervals of the HongKong dataset that exploits maximal span-
cores. The topmost plot of Figure 7.4 reports the number of edges for each timestamp of the
original HongKong dataset. It is easy to notice that there is a lot of constant anomalous activity
between school days and during the weekend, i.e., days six and seven: unexpectedly, the number of
interactions per timestamp does not drop to zero. This happened in fact because proximity sensors
were left in each class and close to each other, at the end of the lessons. In order to automatically
detect these steady activity patterns that do not correspond to any genuine social dynamics, we
apply the following procedure: (i) find a set of anomalously long temporal intervals supporting
maximal span-cores, (ii) identify anomalous vertices, and, (iii) filter out anomalous edges.

The first step of this procedure requires to find the set of temporal intervals I = {∆ v T |
Ck,∆ ∈ CM ∧ |∆| > tr} that are the span of a maximal span-core Ck,∆ with size longer than a
certain threshold tr. Then, for each timestamp t ∈ T , select as anomalous all those vertices that
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appear in the span-cores {C1,∆ | ∆ ∈ I ∧ t ∈ ∆}, i.e., the span-cores of k = 1 whose span is in
I and contains t. Finally, at each timestamp t ∈ T , remove edges that are incident to at least
a vertex that has been marked as anomalous at time t. Consistently with the distribution of the
span durations of the maximal span-cores, we select the threshold tr = 22 (110 minutes). The
results of this filtering procedure are shown in the middle plot of Figure 7.4. The number of edges
during school days remains approximately unchanged, while the activity noticeably decreases in-
between. Identifying as positives the spurious interactions occurring when the school is closed and
as negatives the genuine interactions observed when the school is open, this approach achieves a
precision of 0.91 and a recall of 0.64.

We can refine this anomaly detection process by identifying, in addition to anomalous edges,
also anomalous temporal intervals. We define a timestamp t ∈ T as anomalous if the ratio between
the number of original edges (top plot of Figure 7.4) and the number of filtered edges (middle plot
of Figure 7.4) exceeds a given threshold. We apply this further filtering to the HongKong dataset
with a threshold of 1.5 and report the results in the bottommost plot of Figure 7.4. The number of
edges when the school is closed drops to zero, while the activity during school days is not modified,
except for the last one, which is affected by the proximity to the end of the time domain. The
overall procedure yields a slightly higher value of precision, 0.93, and substantially improves the
recall to 0.99.

7.3 Graph embedding and (supervised) vertex classification

In this section we show how Temporal Community Search (Problem 4.3) can be profitably
exploited for classifying the vertices of a temporal graph. Specifically, the classification framework
we set up is based on the paradigm of graph embedding, which has attracted a great deal of attention
in the last few years, and whose goal is to assign to every vertex of a graph a numerical vector
(i.e., an embedding) such that structurally similar vertices are represented by similar vectors, and
vice versa [118, 77, 115]. Here, our framework simply consists in learning suitable embeddings for
the vertices of the input graph, and then give them as input to some (well-established) classifier to
ultimately accomplish the desired classification task. Thus, the main goal is to learn embeddings
that are well-representative of the relationships among vertices, so as to help the classifier perform
accurately. As our main result here, we show how an embedding strategy based on a simple
exploitation of the output of Temporal Community Search achieves results comparable to
well-established vertex-embedding methods such as DeepWalk [189], LINE [224], and node2vec [118].

Method. For every vertex of the input temporal graph, we build an embedding as an h-dimensional
vector conveying the information provided by a solution to the Temporal Community Search
problem on the same graph. Specifically, consider a vertex u ∈ V and a solution {〈Si,∆i〉}hi=1 to
Temporal Community Search on query-vertex set Q = {u}. We define u’s embedding as

Xu = [v∗Q,∆1
, v∗Q,∆2

, . . . , v∗Q,∆h
], (7.1)

which corresponds to the temporally-ordered sequence of minimum degrees of the h communities
identified by the temporal-community-search solution. Below we show that this simple approach
is sufficient to achieve interesting experimental results. Clearly, more sophisticated methods are
possible, e.g., by simultaneously exploiting information from the Si communities. However, our
main goal here is to give an idea of how the Temporal Community Search problem can be
successfully leveraged in a relevant application scenario, rather than devise the best temporal-
community-search-based graph-embedding method.

Evaluation. We assess the performance of our method on the PrimarySchool and HighSchool
datasets. In these datasets vertices correspond to students, and vertex labels (to be predicted) are
the classes that every student belongs to. We involve in the comparison the following state-of-the-
art vertex-embedding methods:

• DeepWalk [189], a method that preserves the proximity between vertices by running a set of
random walks and maximizing the sum of the log-likelihood of a set of vertices for each walk.
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Figure 7.5: Graph classification: Macro F1-score of the proposed temporal-community-search-
based graph-embedding method TCS and the competing methods, with varying the dimensionality
h of the output embeddings, on the PrimarySchool and HighSchool datasets.

• LINE [224], which optimizes a suitable objective function preserving both first-order (one-
hop) and second-order (two-hop) proximities. Neighborhoods are not explored via random
walk, but in a breadth-first fashion.

• node2vec [118], which is based on the same idea underlying DeepWalk, but allowing more
flexibility on how random walks explore and leave the neighborhood of the current vertex.

These three methods consider non-temporal graphs. Therefore, we feed them with aggregated
graphs in which every edge exists if it exists in at least one timestamp. We tune the parameters
p and q of node2vec as in the original paper [118], i.e., by performing a grid search with p, q ∈
{0.25, 0.50, 1, 2, 4}, while keeping the dimensionality of the embeddings fixed to h = 200 and h =
625, for the PrimarySchool and HighSchool datasets, respectively. The other competing methods,
DeepWalk and LINE, and our method based on temporal community search (which we refer to
as TCS in the following) do not have parameters (apart from the dimensionality h of the output
embeddings). After filtering out those vertices representing the teachers, we partition the remaining
vertices (i.e., the students) into training and test sets with an 80-20 split. A standard scaler
is applied to the features extracted by each embedding method and, then, a penalized logistic-
regression classifier is trained.

In Figure 7.5 we report classification results in terms of Macro F1-score, with varying the
dimensionality h of the embeddings. On the PrimarySchool dataset, for h ≥ 200, our TCS has
performance close to 1 in terms Macro F1-score, similarly to the three baselines. It can be observed
that the TCS results are better as h gets higher; in particular, TCS is even better than node2vec
for h = |T |. This is expected and is motivated as, for higher h, TCS is allowed to rely on more
temporal information about the vertices. On the HighSchool dataset, TCS is outperformed by all
methods for smaller h. However, again, the performance of TCS becomes competitive for larger h,
up to achieving comparable results to the best method(s) for h = |T |.
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7.4 Summary

In this chapter we show the usefulness of notions introduced in Chapter 4, i.e., span-cores, maximal
span-cores, and temporal community search, in multiple analyses and applications to face-to-face
interaction networks gathered in schools. The contributions of this work are the following:

• we derive interesting temporal patterns of groups of students from (maximal) span-cores, i.e.,
daily activity patterns, mixing patterns, and interaction length;

• we devise a simple yet effective procedure to detect anomalous edges and intervals in a
temporal network;

• we show how to build a simple graph-embedding technique that makes use of the temporal
information provided by temporal community search and we apply it to the task of vertex
classification.
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Chapter 8

Visualizing structural balance in
signed networks

As described in Chapter 5, signed networks are network representations in which edges are anno-
tated as positive or negative [121]. They have been applied in a large variety of domains in which
interactions between entities are either friendly or antagonistic, e.g., anthropology [120], political
debates [144, 66], international relations [62, 71], and online social media and social networks [223].
The theory of structural balance has established as the standard for studying, from a theoretical
standpoint in sociology and psychology, the formation of opinions in both individuals and social
groups [4, 124]. Structural balance is widely applied to signed networks, e.g., for the analysis of
social media [158], the understanding of opinion dynamics [192], and the study of opinion separa-
tion [240]. A signed network has been proved to be structurally balanced or balanced if and only
if all cycles are balanced, i.e., include an even number of negative edges [52]. As a consequence,
network’s nodes can be assigned to two different sets such that we find only positive ties between
nodes in the same set and all negative ones between nodes of different sets [73], resembling the
definition of polarized communities introduced in Chapter 5. Figure 8.1 shows two simple examples
of balanced and unbalanced networks. The network on the left is balanced and has the two prop-
erties discussed above, i.e., all cycles are balanced and a clustering can be found in agreement to
all edges’ signs. On the other hand, the network on the right is not balanced: there are unbalanced
cycles (e.g., the one composed by the node sequence [A,B,D,C,A]) and there are edges disagree-
ing with the clustering (e.g., edge (B,E)). Even if a balanced network represents the most natural
configuration, structural balance is not necessarily a “positive” configuration, e.g., it is observed in
the alliance network between European nations just before World War I [194]. Moreover, most of
the large real-world networks are expected to be unbalanced since a single unbalanced cycle makes
the whole network unbalanced. Therefore, it has also been shown the importance of measuring to
what extent an unbalanced signed network is close to be balanced [152]. Structural balance is also
linked with group polarization, i.e., the division of a group of entities (e.g., nodes of a network)
into two subgroups each reaching consensus and having opposite opinions [235, 74, 45].
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Figure 8.1: Examples of balanced (left) and unbalanced (right) networks. Positive edges are
reported in blue, while negative edges in red.
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Network visualization has emerged as a key complement to standard network analysis tech-
niques to fill the gap between computation and interpretation, communicate findings, and deepen
insight [150]. A large variety of network layouts exists in literature [138, 93, 69, 125, 140] and,
also, implemented for visualization application, as, e.g., Gephi [28] and Cytoscape [212]. Surpris-
ingly, little attention has been paid to the visualization of signed networks [48, 152] and, to our
knowledge, none of the existing layouts highlights structural balance properties of signed networks.

In this chapter we tackle the task of identifying, through a visualization, whether a connected
signed network is balanced or unbalanced and, in the latter case, how much the network is un-
balanced. The proposed visualization method, Structural-balance-viz, places nodes in a Cartesian
coordinate system exploiting spectral properties of the signed Laplacian matrix, borrowing theo-
retical intuitions similar to Chapter 5 Edges are colored and bundled to make positive and negative
signs distinguishable and to ease the understanding of the global balance/polarization of the net-
work. At a glance, it is possible to catch if a network is balanced: no positive edges cross the
y-axis and no negative edges have both endpoints in the same quadrant, namely, the y-axis finds
a partition of the nodes as explained in [73]. The visual perception of the portion of edges “dis-
agreeing” with the partitioning, i.e., the fraction of positive edges crossing the y-axis and negative
edges internal to a quadrant, gives an indication of the level of balance of a network. Moreover,
we utilize the x-axis as a scale to show cumulative characteristics of the sets of nodes identified by
the y-axis, and include a textual indication of the level of balance of the network under analysis
in order to improve the comparability between different visualizations.

The layout produced by Structural-balance-viz has the following characteristics that are useful in
a variety of network analysis tasks: (i) it shows whether the input network is balanced or not and,
in the second case, how close the network is to be balanced; (ii) by nodes’ x-coordinate, it provides
an indication of the contribute to the balance structure of the network and, also, of the individual
balance/polarization of each node (such information might be exploited, e.g., for the task of finding
non-polarized representatives [186]); (iii) it identifies two factions of nodes on the basis of their
polarization which finds applications in clustering problems, e.g., 2-correlation-clustering [60, 14];
(iv) the scale represented by the x-axis shows cumulative characteristics of the identified factions,
e.g., size or internal clustering coefficient; and, (v) the resulting visualization are reproducible
(desirable feature but not common to all network layouts, e.g., force based) and easy to compare
in terms of balance structure. We verify such characteristics by running Structural-balance-viz on
synthetic networks and a real-world dataset representing political debates.

8.1 Structural-balance-viz

First, we provide preliminary notations and definitions. We denote a signed undirected network
as G = (V,E+, E−), where V is a set of nodes, E+ is a set of positive edges, and E− is a set of
negative edges. In this work, we require G to be connected. Let A be the signed adjacency matrix
of G, i.e., for each pair of nodes u, v ∈ V , A[u, v] = 1 if (u, v) ∈ E+, A[u, v] = −1 if (u, v) ∈ E−,
A[u, v] = 0 otherwise. Let also D̄ = diag(d̄u1 , . . . , d̄u|V |) be the signed degree matrix of G, where

d̄u =
∑
v∈V |A[u, v]| represents the signed degree, i.e., the number of neighbors disregarding the

sign, of a node u ∈ V . Finally, we define the signed Laplacian matrix of G as:

L̄ = D̄ −A. (8.1)

We now describe our algorithm for visualizing structural balance in signed networks, which is
outlined as Algorithm 8.1. As mentioned beforehand, Structural-balance-viz makes use of the signed
Laplacian of the input network G. In fact, it starts by computing the signed Laplacian together
with its smallest eigenvalue λm and the corresponding eigenvector ~vm (Line 2). At this point,
we already have all the information required for the visualization handy. At first, we identify
the coordinates of the nodes in V and store them in X and Y (cycle starting at Line 4). The
x-coordinate of each node u is directly obtained by the element of ~vm corresponding to u. Since
more than a node might have the same abscissa and we want to avoid nodes to overlap, the y-
coordinates are computed in order to distribute nodes having the same x-coordinate vertically.
Next (Lines 7 - 10), edges are divided into four sets since, on the basis of the coordinates of their
endpoints and of their sign, different layouts are applied:
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Algorithm 8.1: Structural-balance-viz

Input: A signed network G = (V,E+, E−) and a network measure µ (optional).
Output: A visualization of G.
/* Eigenvalue decomposition */

1 compute the signed Laplacian L̄ of G
2 compute the smallest eigenvalue λm of L̄ and its corresponding eigenvector ~vm

/* Nodes coordinates */

3 X← ∅; Y ← ∅
4 forall u ∈ V do
5 X[u] = ~vm[u]
6 Y[u] = |{v ∈ V | ~vm[v] = ~vm[u] ∧ v < u}|
/* Edge partitioning */

7 Ei+ = {e = (u, v) ∈ E+ | X[u] = X[v]}
8 Ei− = {e = (u, v) ∈ E− | X[u] = X[v]}
9 Ee+ = E+ \ Ei+

10 Ee− = E− \ Ei−
/* Drawing */

11 draw the Cartesian axes
12 draw the nodes in V according to X and Y
13 draw the edges in Ei+ in blue with horizontal-external bundling
14 draw the edges in Ei− in red with horizontal-internal bundling
15 draw the edges in Ee+ in blue with vertical-upper bundling
16 draw the edges in Ee− in red with vertical-lower bundling

/* Additional features */

17 if µ 6= null then
18 Cl = {u ∈ V | X[u] < 0}; Cr = {u ∈ V | X[u] ≥ 0}
19 let γ = µ(Cl)− µ(Cr) be the angular coefficient of the x-axis

20 draw the label “y = λm”

• Ei+ contains the positive edges having two endpoint with the same x-coordinate;

• Ei− contains the negative edges having two endpoint with the same x-coordinate;

• Ee+ contains the positive edges having two endpoint with different x-coordinate;

• Ee− contains the negative edges having two endpoint with different x-coordinate.

Structural-balance-viz is then ready to draw the visualization (Lines 11 - 16). At first, the Cartesian
axes and the nodes are positioned. Then, the edges are drawn exploiting coloring and bundling
to highlight their sign. In particular, positive edges are depicted in blue, while negative edges in
red. A positive edge e+ ∈ E+ is bundled towards the top of the visualization, if e+ ∈ Ee+, or
externally, if e+ ∈ Ei+; while a negative edge e− ∈ E− is bundled towards the bottom, if e− ∈ Ee−,
or internally, if e− ∈ Ei−.

In order to improve the informativeness of our layout, we include two additional features in
Structural-balance-viz (from Line 17): one wants to provide information about the two sets of
nodes identified by the y-axis, while the latter has the aim of making different visualizations more
comparable.

Any eigenvector ~v of the signed Laplacian can be used to derive a partition of network’s nodes
into two sets on the basis of the sign of the corresponding elements in ~v. Such partitioning is
at the basis of spectral-clustering methods [61] and it can identify polarized structures, i.e., two
sets of nodes showing high internal consensus and warring between each other [45, 100, 59]. In
the proposed visualization, the two sets are identified by the nodes in the left and in the right
quadrants, i.e., Cl and Cr computed at Line 18 of Structural-balance-viz, respectively. In practical
applications, it is often of interest to know (and visualize) network measures of the two polarized
sets, e.g., size, internal clustering coefficient, internal density of positive edges, ratio of positive
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Figure 8.2: Visualization by Structural-balance-viz of a balanced network: all the cycles are bal-
anced.

edges, etc. We provide a simple visual expedient based on the angular coefficient of the x-axis that
resembles the behavior of a scale. Let µ be the network measure of interest. Note that µ is an
optional input parameter of Structural-balance-viz and the lines corresponding to this additional
feature are executed if µ is actually provided in input. We define the angular coefficient of the
x-axis as

γ = µ(Cl)− µ(Cr). (8.2)

The work enclosed in [128, 129] proves theoretical bounds on the smallest eigenvalue of the
Laplacian of a signed network and investigates its relationship with respect to the level of balance
in the network. It is shown that a connected signed network is structurally balanced if and only if
λm = 0, i.e., the smallest eigenvalue of the Laplacian is zero, and that the higher λm, the lower the
level of balance of the network is. Therefore, λm is the simplest indicator to take into account for
comparing structural balance in different networks (of equal densities). More complex indicators of
balance could also be employed [15]. Ideally, the y-coordinate where the x-axis crosses the y-axis
would be a simple manner to graphically show λm. Unfortunately, we devoted consistent effort to
visualize such information in this way, but all attempts worsened the clarity of the layout (e.g., cut
off edges). To this extent, we include in Structural-balance-viz a label reporting the value of λm on
the top of the y-axis and leave the visualization of λm without the label as future work.

The time complexity of Structural-balance-viz is governed by the time required by the eigen-
value decomposition of L̄, while the space complexity is O(|V |2), again imposed by L̄. Note that
computational-intensive network measures µ might considerably extend the running time when
drawing large networks.

Figures 8.2 and 8.3 show two examples of visualizations generated by Structural-balance-viz for
a balanced and an unbalanced network, respectively. For such visualizations, we remove the label
reporting λm to prove how obvious the difference between the two networks is even without textual
information. Also, as for all other examples in this chapter, edge bundling is not applied. It is
immediate to note that the network represented in Figure 8.2 is balanced: all the nodes are at the
extremes of the x-axis and no blue (red) edge crosses the y-axis (lays in the same quadrant). This
configuration highlights the fact that all the cycles of the represented network are balanced. On
the other hand, Figure 8.3 shows an unbalanced network since there are positive edges in-between
the two factions of nodes and a negative edge within two nodes in the left quadrant; therefore, we
easily find the presence of unbalanced cycles.

Figure 8.4 shows the same network of Figure 8.3 with both the additional features of Structural-
balance-viz; in this case, the x-axis scale compares the size of the two factions of nodes, i.e., µ counts
the number of nodes in the sets. At a glance, it is possible to understand that the left faction is
slightly larger than the right one (six and four nodes, respectively) and that the smallest eigenvalue
of the signed Laplacian is not far from zero; this means that the network is not far from being
balanced (i.e., there are not many unbalanced cycles).
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Figure 8.3: Visualization by Structural-balance-viz of an unbalanced network: not all the cycles are
balanced.

Figure 8.4: Visualization by Structural-balance-viz of an unbalanced network (same as Figure 8.3)
with the the additional features. The x-axis scale compares the size of the two factions of nodes.

8.2 Validation and application

In this section we validate the proposed network layout by visualizing synthetic networks. Also,
we apply Structural-balance-viz to derive concrete insights from the Congress dataset, the same
introduced in Chapter 5, representing political debates.

We develop Structural-balance-viz by using D3.js with a Java back-end. The visualization is
made available by a web interface that allows the selection of the input dataset and of µ (i.e., the
network measure that defines the angular coefficient of the x-axis)1. The current implementation
can consider only the size of the sets of nodes as µ, but the code is easily extendable to consider
other characteristics. The time required by our implementation to produce each visualization has
always been less than a few seconds.

8.2.1 Validation: synthetic networks

We first focus our attention on synthetic-generated networks with the aim of proving that the
visualizations produced by Structural-balance-viz are easily comparable. The generative process for
signed networks we follow requires in input three parameters: n indicates the number of nodes,
δ defines the edge density, while ν is the ratio of unbalanced triangles in the network (which is
another indicator of how much a network is balanced [73]). The procedure works as follows:

1Code available at github.com/egalimberti/balance visualization.
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ν = 0 ν = 0.2

ν = 0.4 ν = 0.6

ν = 0.8 ν = 1

Figure 8.5: Visualization by Structural-balance-viz of synthetic networks for increasing values of ν
(n = 30, δ = 0.3).

• generate a complete balanced network of n nodes (this can be achieved by partitioning the
n nodes into two and then assigning negative sign to the edges connecting nodes in different
sets while positive sign to all others edges);

• randomly remove edges that do not disconnect the network until the edge density is less or
equal than δ;

• randomly change signs of edges appearing in balanced triangles until the ratio of unbalanced
triangles is less or equal than ν.

In Figure 8.5 we report our visualization for six networks generated by the described procedure
by progressively increasing ν (ν ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]) while keeping n and δ fixed (n = 30,
δ = 0.3). Therefore, we have the full range of networks in terms of structural balance: on one
extreme (ν = 0) the network is perfectly balanced, on the other (ν = 1) the network has no
balanced triangles. When ν = 0, as expected, we obtain the perfectly distinguishable configuration
of balanced networks, where all nodes are in either extremes of the x-axis, no positive edge crosses
the y-axis, and no negative edge entirely lies in the same quadrant. Note that, for the balanced
case, we do not provide in input to Structural-balance-viz any network function µ since the number
of nodes in the sets can be inferred by the height of the two stacks. As ν grows, the most of
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Figure 8.6: Visualization by Structural-balance-viz of the United States Congress network.

Figure 8.7: Visualization by Structural-balance-viz of the United States Congress network after sign
reshuffling.

the nodes gradually moves from the extreme ordinates to the center of the plot; nonetheless, even
for ν = 1, we note a few highly-polarized nodes at the margins of the horizontal domain. In
addition, more and more both positive edges cross the y-axis and negative edges are within one of
the two quadrants. The additional features result to be extremely useful in these cases. At first,
the scale gives a precise indication that the right faction is larger than the left one for all values
of ν. Also, the smallest eigenvalue of the signed Laplancian, which grows coherently with ν, eases
the comparison of visualizations that might appear similar (e.g., ν = 0.8 and ν = 1) and provides
a definitive indication about the structural balance of the visualized networks.

8.2.2 A case study: the United States Congress network

Next, we apply Structural-balance-viz to the analysis of the Congress dataset2, a real-world network
modeling political debate in the United States Congress. Nodes (|V | = 219) are politicians speaking
in the Congress, edges (|E+ ∪ E−| = 521) denote that a speaker mentions another speaker, while
signs report whether mentions are in support (positive) or opposition (negative).

Figure 8.6 shows the visualization of the original Congress network. It is easy to notice that
the members are divided into two (almost) equally-sized factions that are close to be balanced;
in fact, there is only one negative edge within the left faction and a relatively few positive edges
crossing the y-axis. The x-axis can be seen as the left-right political spectrum: the most of the

2Dataset available at konect.cc
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politicians are quite moderate, while there are some polarized members especially in the right, and
a few nodes that lay close x = 0 (probably the mediators between the two factions).

To have a better understanding of the structural balance of the the Congress network, we
compare it to a null model. In particular, we maintain the same network structure while reshuffling
the edge signs, leaving the number of positive and negative edges unchanged. The visualization of
the resulting reshuffled network is reported in Figure 8.7. In this case, the balance/polarization
structure of the network is destroyed since the majority of the nodes collapse close to the origin.
All the negative edges (except one) lay between such nodes and are no more visible in the layout.
Only five members maintain their polarization in the right. Moreover, the smallest eigenvalue of
the signed Laplacian is greater than in the original network. All this indications suggests that,
the United States Congress network is more balanced/polarized than what is expected by chance,
according to a reshuffled null model. The Congress is instead quite polarized, very close to being
structurally balanced, due to the political parties and alliances.

8.3 Summary

In this chapter we introduce Structural-balance-viz: a novel algorithm that places nodes in a Carte-
sian coordinate system, that resembles the behavior of a scale, and exploits edge coloring and
bundling for showing whether a connected signed network is balance or unbalanced and, in the
latter case, how far it is from being balanced. Structural-balance-viz is validated by the analysis
of synthetic networks: it is proved to provide an indication of balance/polarization of the whole
network and individually of each node, to identify two factions of nodes on the basis of their polar-
ization and show their cumulative characteristics, and to produce reproducible and easily compa-
rable visualizations. A direct application to a real-world dataset about political debates confirms
that Structural-balance-viz is able to provide meaningful insights about the balance/polarization
structure of the network.
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Conclusions

This thesis expands the bulk of literature about complex networks with two main contributions.
The first part proposes a series of novel definitions and algorithms for finding dense structures in
multilayer, temporal, and signed networks that enrich the standard network representation with
additional features. In particular, we define core decomposition in multilayer networks and we show
how it can be employed in a bunch of theoretical applications; we introduce core decomposition
in temporal networks which provides a set of dense structures associated with a clear temporal
collocation; and, we show how the problem of finding polarized communities in signed networks
can be tackled by algorithms based on spectral theory. In the second part of the thesis, instead, we
focus on the in-depth study of the substructure in temporal and signed networks derived from real-
world data. First, we study the migration of researchers around the globe from a complex network
perspective; then, we confirm that span-cores are a valuable tool for the analysis of face-to-face
interaction networks; and, finally, we show that proper network-drawing methods are powerful for
unveiling insight about the balance/polarized structure of signed networks.

Future work

Each contribution of the current thesis opens enticing avenues for further inquiry:

• Multilayer core decomposition might be employed for the analysis of multilayer brain net-
works in which each layer represents a patient, vertices are brain regions, and edges are
co-activation interactions measured by fMRI scans. In this scenario, multilayer core decom-
position might result to be a powerful tool to identify common substructures to patients
affected by diseases or under the assumption of drugs and, also, to select features in order to
discriminate actual patients from healthy individuals.

• It would be of interest to study the role of maximal span-cores in spreading processes on
temporal networks. Also, span-cores represent features that can be used for network finger-
printing and classification as well as for model validation, and that could provide support for
new ways of visualizing large-scale time-varying graphs.

• The application of the proposed definition of 2-Polarized-Communities to real-world net-
works with positive and negative relationships can have implications in computational social
science problems. For instance, understanding opinion shifts in data streaming from social
media sources can be investigated in terms of polarized communities. Opinions shared within
vertices (individuals) belonging to the same community are likely to be reinforced after dif-
ferent interactions; discussions within individuals with antagonistic perspectives may result
in both opinion shifts and controversy amplification. Thus, it would be interesting to study
extensions of the 2-Polarized-Communities problem in the setting of temporal networks.

• The analysis carried out about the scientific migration network can be expanded by studying
the correlation between hub and authority scores with respect to metrics of research/academic
success and economic indicators, e.g., GDP; also, the analysis might be restricted to a specific
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geographical region (e.g., Europe) to study migrations at smaller granularity (e.g., cities) or
according to specific science fields; moreover, it would be of interest to replicate our analysis
on other datasources to confirm/integrate the obtained results results.

• The implementation of Structural-balance-viz can be deployed to a public web interface and
made available for network visualization tools, e.g., Cytoscape, so that practitioners and
researchers could use it for visualizing the polarized structure of real-world signed networks.
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