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UNLIKELY INTERSECTIONS AND MULTIPLE ROOTS OF SPARSE
POLYNOMIALS

FRANCESCO AMOROSO, MARTÍN SOMBRA, AND UMBERTO ZANNIER

Abstract. We present a structure theorem for the multiple non-cyclotomic irre-
ducible factors appearing in the family of all univariate polynomials with a given set
of coefficients and varying exponents. Roughly speaking, this result shows that the
multiple non-cyclotomic irreducible factors of a sparse polynomial, are also sparse.

To prove this, we give a variant of a theorem of Bombieri and Zannier on the
intersection of a fixed subvariety of codimension 2 of the multiplicative group with
all the torsion curves, with bounds having an explicit dependence on the height of
the subvariety. We also use this latter result to give some evidence on a conjecture
of Bolognesi and Pirola.

1. Introduction

This text is motivated by the following question: let f ∈ Q[t±1] be a sparse Laurent
polynomial, that is, a polynomial of high degree but relatively few nonzero terms.
When does f have a multiple root in Q×?

In more precise terms, we consider sparse Laurent polynomials given by the restric-
tion of a fixed regular function on GN

m , namely a multivariate Laurent polynomial, to
a varying 1-parameter subgroup. Let N ≥ 1 and γ = (γ0, γ1, . . . , γN ) ∈ QN+1. For
a = (a1, . . . , aN ) ∈ ZN set

fa = γ0 + γ1t
a1 + · · ·+ γN t

aN ∈ Q[t±1].

This Laurent polynomial the restriction of the affine multivariate polynomial

L = γ0 + γ1x1 + · · ·+ γNxN ∈ Q[x1, . . . , xN ]

to the subgroup of the multiplicative group GN
m = (Q×)N parameterized by the mono-

mial map t 7→ (ta1 , . . . , taN ).
The occurrence of many Laurent polynomials of the form fa with a multiple root

certainly happens in the following situation. Let 1 ≤ k ≤ N − 1 be an integer,
b1, . . . , bN ∈ ZN−k and y = (y1, . . . , yN−k) be a group of N − k variables. Consider
the Laurent polynomial

(1.1) F = γ0 + γ1y
b1 + · · ·+ γNy

bN ∈ Q[y±1
1 , . . . , y±1

N−k]
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with ybi = y
bi,1
1 · · · ybi,N−k

N−k . Suppose that F has a multiple nontrivial factor P . Let
θ ∈ ZN−k such that P (tθ1 , . . . , tθN ) is not a monomial. Then, for ai = 〈bi,θ〉, we have

fa = F (tθ1 , . . . , tθN )

and every root of P (tθ1 , . . . , tθN ) is a multiple root of fa.
Indeed, our main result (Theorem 1.1) shows that there is a finite family of multi-

variate Laurent polynomials as in (1.1) such that all multiple non-cyclotomic roots
occurring in the family of polynomials fa, a ∈ ZN , come by restricting the multi-
ple factors in this finite family to a 1-parameter subgroup, as explained above. In
particular, the multiple non-cyclotomic irreducible factors of the fa’s are also sparse,
in the sense that they are the restriction of a fixed Laurent polynomial to a varying
1-parameter subgroup of GN

m .
The following is a precise statement of this result. For a ∈ ZN , we denote by |a|

the maximum of the absolute values of the coordinates of this vector. We also denote
by µ∞ the subgroup of Q× of roots of unity.

Theorem 1.1. Let N ≥ 1 and γ = (γ0, γ1, . . . , γN ) ∈ QN+1. There exists an ef-
fectively computable constant C depending only on N and γ such that the following
holds.

Let a = (a1, . . . , aN ) ∈ ZN such that the Laurent polynomial

fa = γ0 + γ1t
a1 + · · ·+ γN t

aN ∈ Q[t±1]

is nonzero and has a multiple root ξ ∈ Q× \ µ∞. Then there exist 1 ≤ k ≤ N − 1 and
b1, . . . , bN ,θ ∈ ZN−k such that
(1) |bi| ≤ C, i = 1, . . . , N , and |θ| ≤ C|a|;
(2) the matrix B = (bi,j)i,j ∈ ZN×(N−k) is primitive, in the sense that it can be

completed to a matrix in SLN (Z), and a = B · θ;
(3) the Laurent polynomial F = γ0 + γ1y

b1 + · · ·+ γNy
bN ∈ Q[y±1

1 , . . . , y±1
N−k] has a

multiple factor P such that ξ is a root of P (tθ1 , . . . , tθN ).

The situation is different for multiple cyclotomic roots. The following example shows
that the hypothesis that the root ξ is not cyclotomic is necessary for the conclusion of
this result to hold.

Example 1.2. Let a = (a1, a2, a3) ∈ Z3 coprime with 0 < a1 < a2, a3 = a1 + a2 and
a3 � 0. Consider the polynomial

fa = 1− ta1 − ta2 + ta1+a2 ∈ Q[t±1],

which has ξ = 1 as a double root.
In the notation in Theorem 1.1, we have N = 3 and k = 1, 2. The case k = 2

is easily discarded since then, by the conditions in (2), the polynomial F coincides
with f , and so its degree cannot be bounded above independently of a.

Hence we only have to consider the case k = 1. Let b1, b2, b3,θ ∈ Z2 with bi
bounded above and such that

(1.2) 〈b1,θ〉 = a1, 〈b2,θ〉 = a2, 〈b3,θ〉 = a1 + a2.

Write F = 1− yb1 − yb2 + yb3 ∈ Q[y±1
1 , y±1

2 ].
By (1.2), we have that θ1 and θ2 are coprime and b3 − b1 − b2 = λ(θ2,−θ1) with

λ ∈ Z. Since bi’s are bounded above, b3 = b1 + b2 and so

F = 1− yb1 − yb2 + yb1+b2 = (1− yb1)(1− yb2).
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By the conditions in (2), b1 and b2 are linearly independent, and so F has no multiple
factor. Hence, the presence of the double root ξ = 1 cannot be explained in this
example as coming from a multiple factor of a multivariate Laurent polynomial of low
degree restricted to a 1-parameter subgroup.

Theorem 1.1 restricts the possible exponents a ∈ ZN whose associate polynomial
has a multiple non-cyclotomic root, to a finite union of proper linear subspaces of ZN .

Corollary 1.3. Let N ≥ 1 and γ = (γ0, γ1, . . . , γN ) ∈ QN+1. Then the set of vectors
a = (a1, . . . , aN ) ∈ ZN such that the Laurent polynomial

γ0 + γ1t
a1 + · · ·+ γN t

aN ∈ Q[t±1]

is nonzero and has a multiple non-cyclotomic root, is contained in a finite union of
proper linear subspaces of ZN .

To prove Theorem 1.1, we give a version of a theorem of Bombieri and Zannier
on the intersection of a subvariety of codimension 2 of the multiplicative group with
all the torsion curves, with bounds having an explicit dependence on the height of
the subvariety (Theorem 2.3). This allows us to prove a general result concerning
the greatest common divisor of two sparse polynomials with coefficients of low height
(Theorem 2.6). These two theorems are presented in § 2 and proved in § 3 and § 4,
respectively. Theorem 1.1 is an easy consequence of the latter result, as shown in
§ 5. Theorem 2.6 is also used in § 6 to prove Theorem 6.1, giving some evidence on a
conjecture of Bolognesi and Pirola [BP11].

Acknowledgments. Part of this work was done while the authors met at the Scuola
Normale Superiore (Pisa), the Universitat de Barcelona, and the Université de Caen.
We thank these institutions for their hospitality.

2. Intersections of subvarieties with torsion curves and gcd of sparse
polynomials of low height

We first recall some definitions and basic facts. Boldface letters denote finite sets or
sequences of objects, whose the type and number should be clear from the context: for
instance, xmight denote the group of variables (x1, . . . , xn), so that Q[x±1] denotes the
ring of Laurent polynomials Q[x±1

1 , . . . , x±1
n ]. Given a vector a = (a1, . . . , aN ) ∈ ZN

we set
|a| = max

j
|aj |.

Given a group homomorphism ϕ : Gn
m → GN

m , there exist unique vectors b1, . . . , bN ∈
Zn such that ϕ(x) = (xb1 , . . . ,xbN ) for all x ∈ Gn

m. We define the size of ϕ as

size(ϕ) = max
j
|bj |

We also denote by

ϕ# : Q[y±1
1 , . . . , y±1

N ] −→ Q[x±1
1 , . . . , x±1

n ], yi 7−→ xbi

the associated morphism of algebras. If ψ : GN
m → GM

m is a further homomorphism,
then (ψ ◦ ϕ)# = ϕ# ◦ ψ#.

Let D ≥ 1 and f1, f2 ∈ Z[t] polynomials of degree ≤ D with fixed coefficients and
fixed number of nonzero terms. Filaseta, Granville and Schinzel have shown that, if
either f1 or f2 do not vanish at any root of unity, then the greatest common divisor
gcd(f1, f2) can be computed in time polynomial in log(D) [FGS08]. More recently,
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Amoroso, Leroux and Sombra gave an improved version of this result [ALS15]. The
following is its precise statement.

Theorem 2.1 ([ALS15], Theorem 4.3). There is an algorithm that, given a num-
ber field K and polynomials f1, f2 ∈ K[t], computes a polynomial p ∈ K[t] dividing
gcd(f1, f2) and such that gcd(f1, f2)/p is a product of cyclotomic polynomials.

If both f1 and f2 have degree bounded by D, height bounded by h0 and number of
nonzero coefficients bounded by N , this computation is done with OK,N,h0(log(D)) bit
operations.

In more detail, write

fi = γi,0 + γi,1t
a1 + · · ·+ γi,N t

aN ∈ K[t], i = 1, 2,

with aj ∈ Z and γi,j ∈ K. Denote by ϕ : Gm → GN
m the homomorphism given by

ϕ(t) = (ta1 , . . . , taN ) and set

Li = γi,0 + γi,1x1 + · · ·+ γi,NxN , i = 1, 2,

so that fi = ϕ#(Fi). Then, the algorithm underlying Theorem 2.1 computes an integer
0 ≤ k ≤ N − 1 and two homomorphisms ψ : GN−k

m → GN
m and ϕ1 : Gm → GN−k

m with
ψ injective, such that ψ ◦ ϕ1 = ϕ and

p = ϕ#
1 (gcd(ψ#(L1), ψ#(L2))).

Moreover, the size of ψ and ϕ1 is respectively bounded by B and BD, where B is a
constant depending only on K, N and h0.

This algorithm relies heavily on a former conjecture of Schinzel on the intersection
of a subvariety of the multiplicative group with 1-parameter subgroups. This con-
jecture was proved by Bombieri and Zannier in [Sch00, Appendix]. For the reader’s
convenience, we recall an improved version of this result.

Theorem 2.2 ([BMZ07], Theorem 4.1). Let N ≥ 1 and P,Q ∈ Q[x1, . . . , xN ] coprime
polynomials. Then there exists an effectively computable constant B depending only on
P and Q with the following property.

Let aj ∈ Z, j = 1, . . . , N , ζj ∈ µ∞ and ξ ∈ C× with

P (ζ1ξ
a1 , ..., ζNξ

aN ) = Q(ζ1ξ
a1 , ..., ζNξ

aN ) = 0.

Then there exist bj ∈ Z, j = 1, . . . , N , with 0 < maxj |bj | ≤ B and
N∏
j=1

(ζjξ
aj )bj = 1.

In particular, if ξ /∈ µ∞, then
∑N

j=1 ajbj = 0.

We are interested in extension of Theorem 2.1 to polynomials f1, f2 having low, but
unbounded, height. To this end, we need first a version of Theorem 2.2 with explicit
dependence on the height of the input polynomials P and Q.

As already remarked by Schinzel, the constant B in this theorem cannot depend
only on N , on the field of definition and on the degrees of P and Q. For instance, for
the data

N = 2, P (x, y) = x− 2, Q(x, y) = y − 2a and (ζ1ξ
a1 , ζ2ξ

a2) = (2, 2a),

one has B(P,Q) ≥ a.
The following result gives, under some restrictive hypothesis, the dependence of

the constant B on the height of the input polynomials. Recall that a coset of GN
m is
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a translate of a subtorus, and that a torsion coset is a translate of a subtorus by a
torsion point. A torsion curve (respectively, a torsion hypersurface) is a torsion coset of
dimension 1 (respectively, of codimension 1). Following [BZ95]), given a subvariety X
of GN

m , we denote by X o the complement in X of the union of all cosets of positive
dimension contained in X .

We consider the standard compactification of the multiplicative group given by the
inclusion

ι : GN
m ↪−→ PN , (x1, . . . , xN ) 7−→ (1 : x1 : · · · : xN ).

We define the degree of an irreducible subvariety X of GN
m , denoted by deg(X ), as the

degree of the Zariski closure ι(X ) ⊂ PN , and the height of a point ξ ∈ GN
m , denoted

by h(ξ), as the Weil height of the projective point ι(ξ) ∈ PN .

Theorem 2.3. Let X ⊂ GN
m be a subvariety defined over a number field of degree δ by

polynomials of degree bounded by d0 and height bounded by h0. Let 0 < ε < 1. Then
there exists an effectively computable constant B depending only on N , d0, δ and ε,
with the following property.

Let W be an irreducible component of X of codimension at least 2, T a torsion curve
and x ∈ Wo ∩ T a non-torsion point. Then either

deg(T )
1−ε
N−1 ≤ B · (1 + h0)

or there exists a torsion hypersurface T ′ with x ∈ T ′ and deg(T ′) ≤ B.

Remark 2.4. We might restate Theorem 2.3 in a slightly different way in the case
when the torsion curve T is a subtorus. Let ϕ : Gm → GN

m be an injective homomor-
phism and keep X ,W and ε as in the statement of the theorem. Let ξ ∈ Q× \µ∞ such
that ϕ(ξ) ∈ Wo. In this situation, Theorem 2.3 can be reformulated to the statement
that, if

size(ϕ)
1−ε
N−1 > B · (1 + h0),

then x is contained in a subtorus T ′ of codimension 1 and degree bounded by B.
Indeed, Theorem 2.3 applied to the subtorus T = im(ϕ), shows that ϕ(ξ) ∈ T ′ for a

torsion hypersurface T ′ of degree bounded by B. This torsion hypersurface is defined
by the single equation xb = ω for some b ∈ ZN with |b| ≤ B and ω ∈ µ∞. Write
ϕ(t) = (ta1 , . . . , taN ) with ai ∈ Z. Then

ξa1b1+···+aN bN = ω.

Since ξ is not torsion,
∑

j ajbj = 0 and ω = 1. Hence, T ′ is a subtorus and im(ϕ) ⊆ T ′.

The following variant of Schinzel’s example shows that the hypothesis that x ∈ X o

is necessary for the conclusion of Theorem 2.3 to hold.

Example 2.5. Let 1 ≤ a ≤ b and consider the irreducible subvariety

X = {(2, 2a)} ×Gm ⊂ G3
m.

With notation as in Theorem 2.3, we have N = 3, d0 = 1 and h0 ≈ a. Since X is
a coset of positive dimension, X o = ∅. Let T ⊂ G3

m be the subtorus parameterized
by t 7→ (t, ta, tb) and pick the point x = (2, 2a, 2b) ∈ X ∩ T . It is easy to verify that,
for any fixed 0 < ε < 1 and B > 0, if a and b/a are sufficiently large, then neither
deg(T )

1−ε
2 ≤ B · (1 + h0) nor x ∈ T ′ for any torsion hypersurface of degree bounded

by B.

Theorem 2.3 allows us to prove the desired extension of Theorem 2.1 to polynomials
of low height. The following statement gives the quantitative aspects of this result.
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Theorem 2.6. Let K be a number field of degree δ. For a family of elements γi,j ∈ K,
i = 1, . . . , s, j = 1, . . . , N , and a sequence of N ≥ 1 coprime integers a1, . . . , aN , we
consider the system of Laurent polynomials

fi = γi,0 + γi,1t
a1 + · · ·+ γi,N t

aN , i = 1, . . . , s.

We assume f1, . . . , fs not all zeros. Set

Li = γi,0 + γi,1x1 + · · ·+ γi,NxN , i = 1, . . . , s,

and let ϕ : Gm → GN
m be the homomorphism given by ϕ(t) = (ta1 , . . . , taN ). Put

D = |a| and h0 = maxi,j h(γi,j).
Then there exists an effectively computable constant B′ depending only on N and δ,

with the following property. If

(2.1) D
1

2(N−1) > B′ · (1 + h0),

then there exist 0 ≤ k ≤ N − 1 and homomorphisms

ψ : GN−k
m → GN

m and ϕ1 : Gm → GN−k
m

such that

(1) ψ is injective and ψ ◦ ϕ1 = ϕ;

(2) size(ψ) ≤ B′ and size(ϕ1) ≤ B′D;

(3) Set
G = gcd(ψ#(L1), . . . ψ#(Ls)) and g = ϕ#

1 (G).

Then g | gcd(f1, . . . , fs). Moreover, if ξ is a root of gcd(f1, . . . , fs)/g, then
either ξ ∈ µ∞ or there exists a nonempty proper subset Λ ⊂ {1, . . . , N} such
that γi,0 +

∑
j∈Λ γi,jξ

aj = 0, i = 1, . . . , s.

Similarly as for Theorem 2.1, the datum k, ψ and ϕ1 can be effectively computed.
In the present situation, this is done by the procedure described in § 4, and this
computation costs Oδ,N,s(log(D)) bit operations.

3. Proof of Theorem 2.3

All irreducible components of X are defined over a number field of degree bounded
by C by polynomials of degree bounded by C and height bounded by Ch0, for a
constant C depending only on N , d0 and δ. Using this, we reduce without loss of
generality to the case when X is an irreducible subvariety of codimension at least 2.

We follow closely the proof of [BMZ07, Theorem 4.1]. Since we assume that x ∈
X o ∩ T , the first reduction of the proof in loc. cit. is unnecessary in our present
situation. Write

T = {(ζ1t
a1 , . . . , ζN t

aN ) | t ∈ Gm} ⊆ GN
m

with a1, . . . , aN ∈ Z coprime and ζ1, . . . , ζN ∈ µ∞. Thus deg(T ) = |a|. As in loc. cit.
we construct, using geometry of numbers, a 2-dimensional torsion coset T2 containing
T and such that

(3.1) deg(T2) ≤ B1|a|
N−2
N−1

for a constant B1 depending only on N . The proof goes on by distinguishing two cases.
Suppose first that the point x is an isolated component of X ∩T2. Since x ∈ X ∩T ,

we can write x = (ζ1ξ
a1 , . . . , ζNξ

aN ) with Q× \ µ∞. Let K be a field of definition of
X and set E = K(ζ1, . . . , ζN ), which is a field of definition for both X and T . Put
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D = [E(x) : E]. Using Bézout theorem and (3.1), we deduce that this degree satisfies
the bound

(3.2) D ≤ deg(X ∩ T2) ≤ B1|a|
N−2
N−1 deg(X ).

Moreover, since a1, . . . , aN are coprime, [E(ξ) : E] = D.
Let 0 < ε < 1. We have that E(ξ) is an extension of degree ≤ [K : Q]D of

the cyclotomic extension Q(ζ1, . . . , ζN ). By the relative Dobrowolski lower bound
of [AZ00], the height of ξ is bounded from below by

(3.3) h(ξ) ≥ B2D−1−ε,

where B2 is an effective constant that depends only on ε and [K : Q].
By [Sch00, Appendix, Theorem 1], since the point x lies in X o ∩ T , its height is

bounded above by a constant depending only on X . Indeed, a close inspection of the
proof of this result shows that

(3.4) h(x) ≤ B3 · (1 + h0).

for an effectively computable B3 that depends only on δ and N . Alternatively, this can
be obtained by applying Habegger’s effective version of the bounded height theorem
[Hab12, Theorem 11] with the choice of parameters r = 2 and s = n − 1 with re-
spect to the notation therein, together with the arithmetic Bézout theorem in [KPS01,
Corollary 2.11]. Thus

(3.5) |a|h(ξ) ≤
N∑
i=1

h(ζiξ
ai) ≤ Nh(x).

Combining (3.2), (3.3), (3.4) and (3.5), we get

deg(T ) = |a| ≤ B−1
2

(
B1|a|

N−2
N−1 deg(X )

)1+ε
NB3 · (1 + h0).

From here, we deduce that

deg(T )
1−ε′
N−1 ≤ B · (1 + h0).

with ε′ = (N − 2)ε and where B is any constant ≥ B4 = B−1
2 (B1 deg(X ))1+εNB3,

which shows the result in this case.
Now suppose that x lies in an irreducible component of positive dimension of X ∩T2.

Denote by Y this irreducible component, which is thus a X -anomalous subvariety. Let
Ymax be a a maximal X -anomalous subvariety containing Y. From the Bombieri-
Masser-Zannier uniform structure theorem [BMZ07, Theorem 1.4], this subvariety
Ymax is contained in a coset gH whose degree is bounded in terms of X . Indeed,
by the inequality (3.4) in [BMZ07], this degree is bounded by a constant B5 depend-
ing only on δ and deg(X ). As explained in loc. cit., this constant is also effectively
computable.

The intersection T2∩gH is a union of cosets associated to the same subtorus. Denote
by K the unique coset in this intersection that contains Y. Its dimension is either 1
or 2. The case dim(K) = 1 is not possible since, otherwise, Y = K is a coset, which
is forbidden by the hypothesis that x ∈ X o. Hence dim(K) = 2, which means that
some irreducible component of T2 lies in gH. Take a torsion point g0 lying in this
irreducible component. Then g0 ∈ gH and gH = g0H is a torsion coset of degree
bounded by B5. We can find a further constant B6 depending only on δ and deg(X )
such that there exists a torsion hypersurface T ′ with g0H ⊆ T ′ and deg(T ′) ≤ B6. We
then choose B = max(B4, B6), concluding the proof.
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4. Proof of Theorem 2.6

We follow the proof of [ALS15, Theorem 4.3], replacing the use of Theorem 2.2 by
Theorem 2.3. We first need to prove some auxiliary lemmas.

Lemma 4.1. Let ϕ : Gm → GN
m be a homomorphism of size D and T ⊆ GN

m a subtorus
of codimension 1. We can test if im(ϕ) ⊆ T and, if this is the case, we can compute
two homomorphisms ψ̃ : GN−1

m → GN
m and ϕ̃ : Gm → GN−1

m such that

(1) ψ̃ is injective and ψ̃ ◦ ϕ̃ = ϕ;

(2) size(ψ̃) = O(1) and size(ϕ̃) = O(D).
This computation can be done with O(log(D)) bit operations. All the implicit constants
depend only on N and deg(T ).

Proof. Let xb = 1 be an equation for T and write ϕ(x) = (xa1 , . . . ,xaN ) with
a1, . . . , aN ∈ Z coprime. Then im(ϕ) ⊆ T if and only if

∑
j ajbj = 0. Let us as-

sume that this is the case. We choose an automorphism τ of GN
m such that τ(T ) is

defined by the equation xN = 1. Let ι : GN−1
m → GN

m be the standard inclusion identi-
fying GN−1

m with the hyperplane of equation xN = 1, and consider the projection onto
the first N − 1 coordinates

π : GN
m → GN−1

m , π(x1, . . . , xN ) = (x1, . . . , xN−1, 1).

We then set ψ̃ = τ−1 ◦ ι and ϕ̃ = π ◦ τ ◦ ϕ.
We leave to the reader the verification on the correctness and the complexity of this

algorithm, see [ALS15, Lemma 4.1] for further details. �

We now describe the algorithm underlying Theorem 2.6.

Algorithm 4.1

Input: a subvariety X ⊂ GN
m defined over a number field K and a homomorphism

ϕ : Gm → GN
m .

Output: an integer k with 0 ≤ k ≤ N − 1 and two homomorphisms ψ : GN−k
m → GN

m

and ϕ1 : Gm → GN−k
m .

1: Set k ← 0, ψ ← IdGN
m

and ϕ1 ← ϕ;
2: while k < N do
3: let B the constant in Theorem 2.3 for the subvariety ψ−1(X ) ⊂ GN−k

m

and the choice ε = 1
2 ;

4: set Φ← {{xb = 1} | b ∈ ZN primitive such that |b| ≤ B};
5: while Φ 6= ∅ do
6: choose T ′ ∈ Φ;
7: if im(ϕ1) ⊆ T ′ then
8: compute as in Lemma 4.1 homomorphisms ψ̃ : GN−k−1

m → GN−k
m

and ϕ̃ : Gm → GN−k−1
m such that ϕ1 = ψ̃ ◦ ϕ̃;

9: set ψ ← ψ ◦ ψ̃, ϕ1 ← ϕ̃, k ← k + 1, Φ← ∅;
10: else
11: set Φ← Φ \ {T ′};
12: end if
13: end while
14: end while
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Lemma 4.2. Let X ⊂ GN
m be a subvariety defined over a number field of degree δ by

polynomials of degree bounded by d0. Let also ϕ : Gm → GN
m be a homomorphism of size

D. Algorithm 4.1 computes an integer k with 0 ≤ k < N − 1 and two homomorphisms
ψ : GN−k

m → GN
m and ϕ1 : Gm → GN−k

m such that

(1) ψ is injective and ψ ◦ ϕ1 = ϕ;

(2) size(ψ) = O(1) and size(ϕ1) = O(D).

This computation is done with O(logD) bit operations. All the implicit constants in
the O-notation depend only on N , d0 and δ.

Proof. We show by induction on k that the homomorphisms ψ and ϕ1 constructed by
the algorithm at the level k satisfy both (1) and (2).

This is certainly true at the level k = 0. Indeed at this level ψ = IdGN
m

and ϕ1 = ϕ.
Let k be an integer with 1 ≤ k < N and assume that at the level k − 1 the

homomorphisms ψ and ϕ1 satisfy (1) and (2). By Lemma 4.1, the homomorphisms ψ̃
and ϕ̃ at line 8 satisfy ψ̃ ◦ ϕ̃ = ϕ1. Hence the updated values of ψ and ϕ1, that is ψ ◦ ψ̃
and ϕ̃, satisfy

(ψ ◦ ψ̃) ◦ ϕ̃ = ψ ◦ ϕ1 = ϕ.

Moreover, since ψ and ψ̃ are injective, by induction and by Lemma 4.1(1), ψ ◦ ψ̃ is
also injective.

Let B be as in line 3 of the algorithm 4.1, that is, the constant in Theorem 2.3 for
the subvariety ψ−1(X ) and the choice ε = 1

2 . Since size(ψ) = O(1) and X is linear,
ψ−1(X ) is defined over a number field of degree O(1) by polynomials of degree O(1)
and height O(h0), with implicit constants depending only on N and δ. In particular,
B = O(1). The same is therefore true for the degree of the subtorus T ′ at line 6.
By Lemma 4.1(2), the homomorphisms ψ̃ and ϕ̃ at line 8 have size O(1) and O(D)

respectively. Thus ψ ◦ ψ̃ and ϕ̃ have also size O(1) and O(D), respectively.
We left to the reader the verification on the complexity of the algorithm. �

We are now able to conclude the proof of Theorem 2.6. Let K and f1, . . . , fs be as
in that theorem. Thus K is a number field of degree δ and

fi = γi,0 + γi,1t
a1 + · · ·+ γi,N t

aN , i = 1, . . . , s,

are Laurent polynomials, not all zeros, with a1, . . . , aN coprime. Set D = |a| and
assume maxi,j h(γi,j) ≤ h0. We consider the homomorphism ϕ : Gm → GN

m given by
ϕ(t) = (ta1 , . . . , taN ). Since a1, . . . , aN are coprime, deg(im(ϕ)) = D. We let

Li = γi,0 + γi,1x1 + · · ·+ γi,Nxn, i = 1, . . . , s.

Thus fi = ϕ#(Li). We apply Algorithm 4.1 to the linear subvariety X defined in GN
m

by the system of equations L1 = . . . = Ls = 0.
From now on, we denote by k ∈ {0, . . . , N − 1}, ψ : GN−k

m → GN
m and ϕ1 : Gm →

GN−k
m the output of Algorithm 4.1 applied to this subvariety. Put for short Fi =

ψ#(Li). By Lemma 4.2, ϕ#
1 (Fi) = fi. Since f1, . . . , fs are not all zeros, the same

holds for F1, . . . , Fs. Now set

G = gcd(F1, . . . , Fs) and g = ϕ#
1 (G).

Then g| gcd(f1, . . . , fs), as in Theorem 2.6(3).
Let B′ be a constant depending only on N and δ such that

(4.1) D
1

2(N−1) > B′ · (1 + h0),
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as in the statement of Theorem 2.6, to be fixed later on.
Let Ω be the set of points ξ ∈ C× which are either a root of unity or a common root

of the system of polynomials γi,0 +
∑

j∈Λ γi,jt
aj , i = 1, . . . , s, for a nonempty proper

subset Λ ⊂ {1, . . . , N}.
Let ξ 6∈ Ω be a common zero of f1, . . . , fs and W a component of ψ−1(X ) such that

ϕ1(ξ) ∈ W.
We first remark that ϕ1(ξ) ∈ Wo. If it is not, the point y = ϕ1(ξ) is in a coset

gH ⊆ W ⊆ ψ−1(X ) of positive dimension. By Lemma 4.2(2), the point x = ϕ(ξ) =
ψ(y) is contained in the coset ψ(gH) ⊆ X , which is also of positive dimension since ψ
is injective.

The cosets included in a linear variety X have been explicitly classified in [Sch96,
page 161]. By this result, there exists a nonempty proper subset Λ ⊂ {1, . . . , N} such
that γi,0+

∑
j∈Λ γi,jxj = 0, i = 1, . . . , s. Hence ξ is a common root of γi,0+

∑
j∈Λ γi,jt

aj ,
i = 1, . . . , s, but this is not possible because ξ /∈ Ω.

Thus ξ is not a root of unity and ϕ1(ξ) ∈ Wo. We apply Theorem 2.3 in the
simplified form of Remark 2.4, choosing N ← N − k, X ← ψ−1(X ), ε ← 1/2 and
ϕ← ϕ1. Let B be as in line 3 of the algorithm 4.1. As already remarked in the proof
of Lemma 4.2, ψ−1(X ) is defined over a number field of degree O(1) by polynomials
of degree O(1) and height O(h0), with implicit constants depending only on N and δ.
In particular, B = O(1). By the quoted Remark 2.4, one of the following assertions
holds:

(1) there exists a subtorus T ′ of codimension 1 and degree bounded by B such that
im(ϕ1) ⊆ T ′;

(2) deg(im(ϕ1))
1

2(N−k−1) = O(1 + h0);

(3) W has codimension 1.

By construction, (1) is not possible because T ′ ∈ Φ. Let us assume that (2) holds. By
Lemma 4.2, D = deg(im(ϕ)) = deg(im(ψ ◦ ϕ1)) = O(deg(im(ϕ1))). Thus

D
1

2(N−1) ≤ D
1

2(N−k−1) = O(deg(im(ϕ1))
1

2(N−k−1) ) = O(1 + h0).

Choosing the constant B′ sufficiently large, this contradicts the inequality (4.1). Thus
(3) must hold and W has codimension 1.

This discussion implies that the ideal (F1, . . . , Fs) ⊂ K[y±1
1 , . . . , y±1

N−k] becomes prin-
cipal when restricted to a suitable neighborhood U ⊂ GN−k

m of ψ−1(X )\ϕ1(Ω). Hence,
(F1, . . . , Fs) = (G) for some Laurent polynomial G on that neighborhood. We deduce
that ϕ−1

1 (U) is a neighborhood of the set of common zeros ξ 6∈ Ω of f1, . . . , fs and
(f1, . . . , fs) = (g) on ϕ−1

1 (U). This completes the proof of the theorem.

Remark 4.3. For the study of multiple roots of sparse polynomials and, in particular,
to prove Theorem 2.6, it is not enough to dispose of a version of Theorem 2.2 with
an explicit dependence of its constant B on the height of the input polynomials. We
really need the dichotomy that appears in Theorem 2.3, with a bound for the degree
of T ′ independent of the height of the equations defining X , whenever the degree of
the torsion curve T is large enough.

In any case, it is possible to adapt the proof of [BMZ07, Theorem 4.1] to prove such
an effective version of Theorem 2.2.
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5. Proof of Theorem 1.1

Let N ≥ 1 and γ = (γ0, γ1, . . . , γN ) ∈ QN+1. Consider the number field K = Q(γ)
and the affine polynomial

L = γ0 + γ1x1 + · · ·+ γNxN ∈ K[x1, . . . , xN ].

Set δ = [K : Q] and h0 = maxj h(γj).
Let a = (a1, . . . , aN ) ∈ ZN such that the univariate Laurent polynomial

f = L(ta1 , . . . , taN ) = γ0 + γ1t
a1 + · · ·+ γN t

aN

is nonzero and has a multiple root at a point ξ ∈ Q \ µ∞. Set a0 = 0 and assume for
the moment that

(5.1) ξ is not a multiple root of
∑
j∈Λ

γjt
aj for every nonempty Λ ( {0, . . . , N}.

We remark that (a1, . . . , aN ) 6= (0, . . . , 0), since otherwise f is a nonzero constant
and cannot vanish at ξ. Set d = gcd(a1, . . . , aN ) and put a′j = aj/d, j = 1, . . . , N . We
apply Theorem 2.6 to the polynomials

f1 = γ0 + γ1t
a′1 + · · ·+ γN t

a′N and f2 = tf ′1 = γ1a
′
1t
a′1 + · · ·+ γNa

′
N t

a′N ,

and the homomorphism ϕ : Gm → GN
m defined by ϕ(t) = (ta

′
1 , . . . , ta

′
N ).

Thus f = f1(td) and, in the notation of Theorem 2.6, D = |a′|,

L1 = γ0 + γ1x1 + · · ·+ γNxN and L2 = γ1a
′
1x1 + · · ·+ γNa

′
NxN .

We have
h(fi) ≤ h0 + log(D).

LetB′ = B′(N, δ) be the constant which appears in Theorem 2.6. If the inequality (2.1)
is not satisfied, we have

D
1

2(N−1) ≤ B′ · (1 + h0 + log(D)),

which shows that D ≤ C1 for some positive constant C1 = C1(N, δ, h0). In this case,
we choose k = N − 1, bj = a′j , j = 1, . . . , N , θ1 = d and C ≥ C1. Assertions (1), (2)
and (3) of Theorem 1.1 are then clearly verified.

We now assume that the inequality (2.1) is satisfied. Theorem 2.6 then gives a
nonnegative integer k ≤ N and two morphisms ψ : GN−k

m → GN
m and ϕ1 : Gm → GN−k

m

satisfying the conditions (1), (2) and (3) of that theorem. Write ψ(y) = (yb1 , . . . ,ybN )

and ϕ1(t) = (tθ
′
1 , . . . , tθ

′
N−k) with b1, . . . , bN ∈ ZN−k of size ≤ B′ and θ′1, . . . , θ′N−k ∈ Z

of size ≤ B′D. By (1), the N × (N − k) matrix B = (bj,i) is primitive and a′ = B ·θ′.
We set

F1 = ψ#(L1) = γ0 +γ1y
b1 + · · ·+γNy

bN , F2 = ψ#(L2) = γ1a
′
1y

b1 + · · ·+γNa
′
Ny

bN ,

and we consider the differential operator

∆ = θ′1y1
∂

∂y1
+ · · ·+ θ′N−kyN−k

∂

∂yN−k
.

Let b ∈ ZN−k. The monomial yb is an eigenvector of ∆ with eigenvalue the scalar
product 〈b,θ′〉. Hence

∆F1 =
N∑
i=1

γi〈bi,θ′〉ybi = F2.
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Set G = gcd(F1, F2). By hypothesis, ξd is a common non-cyclotomic root of f1 and
f2 and, by the additional assumption (5.1), ξd is not a multiple root of

∑
j∈Λ γjt

a′j

for any nonempty proper subset Λ of {0, . . . , N}. By Theorem 2.6(3), there exists an
irreducible factor P of G such that π = ϕ#

1 (P ) ∈ K[t] vanishes at ξd.
We want to show that P is a multiple factor of G. Since P | F1 and P | F2∆F1, by

standard arguments either P 2 | F1 as we want, or ∆P = λP for a constant λ. Let us
assume that this last assertion holds. Write

P =
∑

b∈ZN−k

cby
b

and set supp(P ) = {b ∈ ZN−k | cb 6= 0} for the support of P . The differential equation
∆P = λP then says that the scalar product 〈b,θ′〉 is constant over supp(P ), which in
turns implies that π is a monomial. But then π cannot vanish at ξd because the latter
is nonzero, which is a contradiction.

Thus P is a multiple factor of F1. Set θi = dθ′i, so that P (tθ1 , . . . , tθN ) is a multiple
factor of f which vanishes at the point ξ, as required. Remark that k ≥ 1. Indeed the
matrix B is primitive and the polynomial L1 does not have multiple factors, since it
is linear. Theorem 1.1 thus follows, under the additional hypothesis (5.1), by choosing
C = max{C1, B

′}.

We now explain how to remove the extra assumption (5.1). Let as assume that (5.1)
does not hold. We decompose {0, . . . , N} as a maximal union of u ≥ 2 nonempty
disjoint subsets Λ1, . . . ,Λu in such a way that ξ is a multiple root of

∑
j∈Λi

γjt
aj for

i = 1, . . . , u. To simplify the notation, we assume u = 2 and Λ1 = {0, . . . ,M} with
0 ≤M ≤ N − 1. Thus ξ is a multiple root of both

(5.2) γ0 +

M∑
j=1

γjt
aj and

N∑
j=M+1

γjt
aj .

Moreover, ξ is not a multiple root of
∑

j∈∆ γjt
aj for any nonempty ∆ which is a proper

subset of {0, . . . ,M} or of {M + 1, . . . , N}.
We write

γ0 + γ1t
a1 + · · ·+ γN t

aN = (γ0 + γ1t
a1 + · · ·+ γM t

aM )

+ taM+1(γM+1 + γM+2t
aM+2−aM+1 + · · ·+ γN t

aN−aM+1).

We remark that a1, . . . , aM , aM+2 − aM+1, . . . , aN − aM+1 are not all zeros, since
otherwise the polynomials (5.2) are monomials vanishing at ξ, and hence they are
both zero, which in turns implies that f is also zero, contrary to the assumption of
Theorem 1.1.

Set d = gcd(a1, . . . , aM , aM+2 − aM+1, . . . , aN − aM+1) and put

a′j =

{
aj/d, for j = 1, . . . ,M,

(aj − aM+1)/d, for j = M + 3, . . . , N.

Thus a′1, . . . , a′M , a
′
M+2, . . . , a

′
N are coprime, pairwise distinct, nonzero integers. We

apply Theorem 2.6 to the homomorphism ϕ : Gm → GN−1
m defined by

ϕ(t) = (ta
′
1 , . . . , ta

′
M , ta

′
M+2 , . . . , ta

′
N ) ,
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and for the four polynomials

f1 = γ0 +
M∑
j=1

γjt
a′j , f2 = γM+1 +

N∑
j=M+2

γjt
a′j , f3 = tf ′1, f4 = tf ′2.

Thus f = f1(td) + taM+1f2(td) and D = |a′|.
We argue as in the first part of the proof. We remark that h(fi) ≤ h0 + log(2D).

Let B′ = B′(N, δ) be the constant that appears in Theorem 2.6.
If the inequality (2.1) is not satisfied, then D ≤ C1 = C1(N, δ, h0). In this case, we

choose k = N − 2, θ1 = d, θ2 = aM+1 and

bj =


(a′j , 0) for j = 1, . . . ,M,

(0, 1) for j = M + 1,

(a′j , 1) for j = M + 2, . . . , N.

Thus, in the notation of Theorem 1.1(3),

F = f1(y1) + y
aM+1

2 f2(y1) ∈ Q[y±1
1 , y±1

2 ].

Since ξ is a multiple root of both f1(td) and f2(td), the polynomials f1(y1) and f2(y1)
have a common multiple factor, say P (y1), which vanishes at ξd. Thus P (y1) is a
multiple factor of F and P (td) vanishes at ξ, as required.

It remains to consider the case when the inequality (2.1) is satisfied. Theorem 2.6
then gives a nonnegative integer k ≤ N − 1, vectors b′1, . . . , b

′
M , b

′
M+2, . . . , b

′
N ∈

ZN−1−k of size ≤ B′ and θ′1, . . . , θ
′
N−1−k ∈ Z of size ≤ B′D such that the (N −

1)× (N − 1− k) matrix (b′j,i)j,i has maximal rank N − 1− k and a′j =
∑N−1−k

i=1 b′j,iθ
′
i

for j = 1, . . . ,M and j = M + 2, . . . , N . We set y = (y1, . . . , yN−1) and

F1 = γ0 +
M∑
j=1

γjy
bj , F2 = γM+1 +

N∑
j=M+2

γjy
bj ,

F3 =
M∑
j=1

γja
′
jy

bj , F4 =
N∑

j=M+2

γja
′
jy

bj ,

and consider the differential operator

∆ = θ′1y1
∂

∂y1
+ · · ·+ θ′N−1kyN−1−k

∂

∂yN−1−k
.

As in the first part of the proof, we have that ∆F1 = F3 and ∆F2 = F4.
Set G = gcd(F1, F2, F3, F4) and write fi =

∑
α∈S fi,αt

α, i = 1, . . . , 4, with

S =

4⋃
i=1

supp(fi) = {0, a′1, . . . , a′M , a′M+2, . . . , a
′
N}.

By hypothesis, ξd is a common non-cyclotomic root of f1, f2, f3 and f4. We want
to deduce from Theorem 2.6(3) that ϕ#

1 (G) vanishes at ξd. This certainly happens
unless there exists a nonempty proper subset Γ of S such that ξd is a common root of∑

α∈Γ fi,αt
α, i = 1, . . . , 4.

Assume by contradiction that this is the case. Then ξd is a multiple root of∑
α∈Γ fi,αt

α, i = 1, 2. We recall that

supp(f1) = {0, a′1, . . . , a′M}, supp(f2) = {0, a′M+2, . . . , a
′
N}.
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Since ξ is not a multiple root of
∑

j∈∆ γjt
aj for any nonempty ∆ which is a proper

subset of {0, . . . ,M} or of {M + 1, . . . , N}, we have

Γ ∩ supp(f1) = ∅ or Γ ∩ supp(f1) = supp(f1)

and
Γ ∩ supp(f2) = ∅ or Γ ∩ supp(f2) = supp(f2).

Since supp(f1) ∩ supp(f2) 6= ∅, we deduce that Γ = supp(f1) ∪ supp(f2), which con-
tradict the previous assumption. Thus, by Theorem 2.6(3), ϕ#

1 (G) vanishes at ξd.
Let P be an irreducible factor of G such that π = ϕ#

1 (P ) ∈ K[t] vanishes at ξd. As
in the first part of the proof, P is a multiple factor of both F1 and F2 and thus of the
polynomial

F = γ0 + γ1ỹ
b1 + · · ·+ γN ỹ

bN = F1(y1, . . . , yN−1) + y
aM+1

N F2(y1, . . . , yN−1)

with ỹ = (y1, . . . , yN ). Set θi = dθ′i for i = 1, . . . , N − 1− k, θN−k = aM+1 and

bj =


(b′j,1, . . . , b

′
j,N−1−k, 0) for j = 1, . . . ,M,

(0, . . . , 0, 1) for j = M + 1,

(b′j,1, . . . , b
′
j,N−1−k, 1) for j = M + 2, . . . , N.

Then the N × (N − k) matrix B = (bj,i)j,i has maximal rank and a = B · θ, so that
P (tθ1 , . . . , tθN−1) is a multiple factor of f which vanishes at the point ξ. Theorem 1.1
then follows by choosing C = max{C1, B

′}.

6. On a conjecture of Bolognesi and Pirola

Let ϕ : Gm → GN
m be a homomorphism given by ϕ(t) = (ta1 , . . . , taN ) for a sequence

of integers a1, . . . , aN such that 0 < a1 < · · · < aN , and consider the curve U = im(ϕ).
It is easy to verify that the linear subspace X ⊂ CN−1 defined by the condition

rank


a1 a2

1 · · · aN−2
1 x1 − 1

a2 a2
2 · · · aN−2

2 x2 − 1

...
... · · ·

...
...

aN a2
N · · · aN−2

N xN − 1

 < N − 1

has codimension 2, and that the restriction of its defining equations to (ta1 , . . . , taN )
vanish to order N − 1 at t = 1. Thus, X is the osculating (N − 2)-linear dimensional
space of U at the point (1, . . . , 1) ∈ GN

m .
It is convenient to homogenize by letting a0 = 0 and considering the (N + 1) ×N

matrix given by

A(a, (x0 : . . . : xN )) =


1 a0 a2

0 · · · aN−2
0 x0

1 a1 a2
1 · · · aN−2

1 x1

...
...

... · · ·
...

...
1 aN a2

N · · · aN−2
N xN

 .

Then we identify X with the linear subspace of PN defined by condition

rank(A(a, (x0 : . . . : xN ))) < N.

For simplicity, we assume that a1, . . . , aN are coprime. Then L intersects U in a
second point different from the osculating one if and only if there exists ξ 6= 1 such
that rank(A(a, (1 : ξa1 : . . . : ξaN ))) < N . In [BP11], Bolognesi and Pirola conjecture
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that this can never happen. It easily seen that, to prove their conjecture, we may
assume that ξ is not torsion.

In the case N = 2 the conjecture is trivial. Bolognesi and Pirola proved the con-
jecture for N = 3. In [CZ11], Corvaja and Zannier proved a weak form of the conjec-
ture for N = 4, namely that the set of exceptional pairs (a, ξ) such that the matrix
A(a, (1 : ξa1 : . . . : ξaN )) has rank < N is finite.

As a second application of Theorem 2.6, we prove the following result.

Theorem 6.1. There is a constant C depending only on N such that the following
holds.

Let a1, . . . , aN be integers such that 0 = a0 < a1 < a2 < · · · < aN =: D and
ξ ∈ Q× \ µ∞. If the matrix A(a, (1 : ξa1 : . . . : ξaN )) has rank < N , then there exist
1 ≤ k ≤ N − 1 and vectors b1, . . . , bN ,θ ∈ ZN−k such that
(1) |bi| ≤ C, i = 1, . . . , N , and |θ| ≤ CD;
(2) the matrix B = (bi,j)i,j ∈ ZN×(N−k) is primitive and a = B · θ;
(3) the subvariety of GN−k

m defined by

V = {y ∈ GN−k
m | rank(A(a, (1 : yb1 : . . . : ybN ))) < N}

has a component of codimension 1 containing the point (ξθ1 , . . . , ξθN−k).

Proof. The proof is very similar to that of Theorem 1.1.
Let 0 = a0 < a1 < a2 < · · · < aN =: D and ξ ∈ Q× \ µ∞ such that the matrix

A(a, (1 : ξa1 : . . . : ξaN )) has rank < N . For each subset Λ ⊂ {0, . . . , N}, we put
vΛ,j = ξaj if j ∈ Λ and vΛ,j = 0 otherwise. Then we assume that

(6.1) for all nonempty Λ ( {0, . . . , N}, rank(A(a, (vΛ,0 : vΛ,1 : . . . : vΛ,N ))) = N.

This extra assumption may be removed, proceeding as in the last part of the proof of
Theorem 1.1.

Let d = gcd(a1, . . . , aN ) and put a′i = ai/d, i = 1, . . . , N . As in the proof of
Theorem 1.1, we may assume, by replacing a by a′, that d = 1.

As already remarked, the linear space X defined by

rank(A(a, (x0 : x1 : . . . : xN ))) < N

is defined by two linear equations, say

Li = γi,0x0 + γi,1x1 + · · ·+ γi,Nxn, i = 1, 2,

with coefficients γi,j bounded by N !DN2 . We apply Theorem 2.6, choosing K0 = Q,
s = 2 and ϕ(t) = (ta1 , . . . , taN ). Thus

fi = γi,0 + γi,1t
a1 + · · ·+ γi,N t

aN , i = 1, 2.

These two polynomials are not both zeros, since otherwise

rank(A(a, (1 : ta1 : . . . : taN ))) < N

identically, which is not possible by the assumption 0 < a1 < a2 < · · · < aN .
Let B′ = B′(N, 1) be the constant which appears in Theorem 2.6. If the inequal-

ity (2.1) of that theorem is not satisfied, we have that

D
1

2(N−1) ≤ B′ · (1 +N2 logD +N logN),

which shows that D ≤ C ′1 for some positive constant C ′1 = C ′1(N). In this case we
simply choose k = N − 1, bi = ai for i = 1, . . . , N and θ1 = 1. Assertions (1), (2)
and (3) of Theorem 6.1 are clearly verified for C ′ ≥ C ′1.
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Thus we may assume that the inequality (2.1) is satisfied. Theorem 2.6 then gives a
nonnegative integer k < N and two homomorphisms ψ : GN−k

m → GN
m and ϕ1 : Gm →

GN−k
m satisfying (1), (2) and (3) of that theorem. Let ψ(y) = (yb1 , . . . ,ybN ) and

ϕ1(t) = (tθ1 , . . . , tθN−k) with b1, . . . , bN ∈ ZN−k of size ≤ B′ and θ1, . . . , θN−k ∈ Z of
size ≤ B′D. By Theorem 2.6(1), the matrix B = (bi,j)i,j is primitive and a = B · θ.

By the assumption (6.1), ξ is not a common root of
∑

j∈Λ γi,jt
aj , i = 1, 2, for any

nonempty Λ ( {0, . . . , N}. Thus, by Theorem 2.6(3), the greatest common divisor
of F1(yb1 , . . . ,ybN ) and F2(yb1 , . . . ,ybN ) must vanish at (ξθ1 , . . . , ξθN−k). This means
that V has a component of codimension 1 through the point (ξθ1 , . . . , ξθN−k), as re-
quired. Since X is a linear space of codimension 2 and B is primitive, we must have
k ≥ 1. Theorem 6.1 follows by choosing C ′ = max{C ′1, B′}. �

Remark 6.2. An immediate consequence of Theorem 6.1(1,2) is that the vectors a
such that the matrix A(a, (1 : ξa1 : . . . : ξaN )) has rank < N for some ξ ∈ Q× \ µ∞,
lie on a finite union of proper vector subspaces of QN , which is effectively computable
for every given N .

Moreover, the condition (3) can be translated in terms of resultants, and can be
checked by the search of integral points θ = (θ1, . . . , θN−k) ∈ ZN−k on a finite family
of varieties, depending only on N . More precisely, fix k ∈ {1, . . . , N − 1} and fix one
of the finitely many N × (N − k) primitive matrix B = (bi,j)i,j with entries of size
bounded by C(N). Let Fi(θ1, . . . , θN−k; y1, . . . , yN−k), i = 1, 2, be any two distinct
(N − 1)× (N − 1) determinants of the matrix

∑
b1jθj (

∑
b1jθj)

2 · · · (
∑
b1jθj)

N−2 yb1 − 1∑
b2jθj (

∑
b2jθj)

2 · · · (
∑
b2jθj)

N−2 yb2 − 1

...
... · · ·

...
...∑

bNjθj (
∑
bNjθj)

2 · · · (
∑
bNjθj)

N−2 ybN − 1

 .

Compute the resultant R ∈ Z[θ][y1, . . . , yN−k−1] of F1 and F2 with respect to, say,
yN−k and let W be the variety defined by the vanishing of the coefficients of R,
viewed as a polynomial in the variables y1, . . . , yN−k−1. Then V has a component of
codimension 1 if and only if θ ∈W and a = B · θ.

References

[ALS15] F. Amoroso, L. Leroux, and M. Sombra, Overdetermined systems of sparse polynomial equa-
tions, Found. Comput. Math. 15 (2015), 53–87.

[AZ00] F. Amoroso and U. Zannier, A relative Dobrowolski lower bound over abelian extensions,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 711–727.

[BMZ07] E. Bombieri, D. Masser, and U. Zannier, Anomalous subvarieties — structure theorems and
applications, Int. Math. Res. Notices 2007 (2007), Art. ID rnm057, 33 pp..

[BP11] M. Bolognesi and G. Pirola, Osculating spaces and Diophantine equations (with an appendix
by Pietro Corvaja and Umberto Zannier), Math. Nachr. 284 (2011), 960–972.

[BZ95] E. Bombieri and U. Zannier, Algebraic points on subvarieties of Gn
m, Internat. Math. Res.

Notices (1995), 333–347.
[CZ11] P. Corvaja and U. Zannier, On the rank of certain matrices, Math. Nachr. 284 (2011),

1652–1657.
[FGS08] M. Filaseta, A. Granville, and A. Schinzel, Irreducibility and greatest common divisor algo-

rithms for sparse polynomials, Number theory and polynomials, London Math. Soc. Lecture
Notes Ser., vol. 352, Cambridge Univ. Press, 2008, pp. 155–176.

[Hab12] P. Habegger, Effective height upper bounds on algebraic tori, e-print arXiv:1201.3255v1,
2012.



UNLIKELY INTERSECTIONS AND MULTIPLE ROOTS 17

[KPS01] T. Krick, L. M. Pardo, and M. Sombra, Sharp estimates for the arithmetic Nullstellensatz,
Duke Math. J. 109 (2001), 521–598.

[Sch96] W. M. Schmidt, Heights of points on subvarieties of Gn
m, Number theory (Paris, 1993–1994),

London Math. Soc. Lecture Notes Ser., vol. 235, Cambridge Univ. Press, 1996, pp. 157–187.
[Sch00] A. Schinzel, Polynomials with special regard to reducibility. With an appendix by Umberto

Zannier, Encyclopedia Math. Appl., vol. 77, Cambridge Univ. Press, 2000.

Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139, Université de
Caen. BP 5186, 14032 Caen Cedex, France

Email address: francesco.amoroso@unicaen.fr
URL: http://www.math.unicaen.fr/~amoroso/

ICREA Passeig Lluís Companys 23, 08010 Barcelona, Spain & Departament d’Àlgebra
i Geometria, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain

Email address: sombra@ub.edu
URL: http://atlas.mat.ub.es/personals/sombra/

Scuola Normale Superiore, Classe di Scienze. Piazza dei Cavalieri 7, 56126 Pisa,
Italy

Email address: u.zannier@sns.it
URL: http://www.sns.it/didattica/scienze/menunews/personale/docenti/zannierumberto/

http://www.math.unicaen.fr/~amoroso/
http://atlas.mat.ub.es/personals/sombra/
http://www.sns.it/didattica/scienze/menunews/personale/docenti/zannierumberto/

	1. Introduction
	2. Intersections of subvarieties with torsion curves and gcd of sparse polynomials of low height
	3. Proof of Theorem 2.3
	4. Proof of Theorem 2.6
	5. Proof of Theorem 1.1
	6. On a conjecture of Bolognesi and Pirola
	References

