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Abstract: The aim of this paper is to present and study nonlinear bivariate C1 quadratic spline
quasi-interpolants on uniform criss-cross triangulations for the approximation of piecewise smooth
functions. Indeed, by using classical spline quasi-interpolants, the Gibbs phenomenon appears when
approximating near discontinuities. Here, we use weighted essentially non-oscillatory techniques to
modify classical quasi-interpolants in order to avoid oscillations near discontinuities and maintain
high-order accuracy in smooth regions. We study the convergence properties of the proposed quasi-
interpolants and we provide some numerical and graphical tests confirming the theoretical results.
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1. Introduction

In the context of function and data approximation (an important problem in many
mathematical and scientific applications), quasi-interpolation is well known to be a pow-
erful and useful tool (as evidenced in [1] and references [2–5] for applications of spline
quasi-interpolation). In particular, a nice property of quasi-interpolation, if compared to
interpolation, is that it does not require the solution of any system of equations. This
property is particularly attractive in the two-dimensional case, where the data volume
can be huge, in practice. Moreover, interpolation requires that the approximant exactly
matches the data at certain points; this requirement could be a problem if we are dealing
with noisy data.

If the function to be approximated is smooth, a spline quasi-interpolant (QI) is able to
well reconstruct it, but if the function has jump discontinuities, the approximating spline
presents oscillations of magnitude proportional to the jump. Therefore, the aim of this
paper is to apply weighted essentially non-oscillatory (WENO) techniques in the definition
of the spline QI to avoid such oscillations. Using such a nonlinear modification, we are able
to avoid the Gibbs phenomenon near discontinuities and, at the same time, maintain high-
order accuracy in smooth regions. This problem has been faced in the univariate case in [6],
applying the technique to quadratic and cubic spline QIs (as evidenced in reference [7]).
Here, we move toward the bivariate setting. In particular, we consider C1 quadratic spline
QIs on uniform criss-cross triangulations of a rectangular domain, which can be expressed
by means of the scaled/translates of the Zwart–Powell quadratic box spline (ZP element)
(see, e.g., [8] (Chapter 1) and [9] (Chapter 2)). We should note that C1 quadratic spline spaces
on criss-cross triangulations have been widely studied in the literature (see, e.g., [10–17]
and references therein, and more recent papers, [18–20]), with reference to the dimension,
local basis, approximation power, etc.; they have been used in many applications. We are
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aware that the use of non-uniform knot partitions and multiple knots in the spline space
definition can sometimes mimic function discontinuities of the approximating function (see,
e.g., [21]), but such a possibility requires knowledge of discontinuity locations. In contrast,
using the technique presented in this paper, we are able to deal with discontinuities without
knowing where they are; it can also be applied to general cases. Moreover, the use of box
splines on uniform partitions represents an advantage—from a computational point of
view—with respect to the use of non-uniform ones.

The paper is organized as follows. In Section 2, we define the spline space, and recall
definitions and properties of spline quasi-interpolant operators. Then, in Section 3, we
recall the WENO techniques. In Section 4, we apply the techniques of the previous section
for constructing nonlinear spline quasi-interpolants and study their properties. In Section 5,
we provide numerical and graphical tests, confirming the theoretical results of Section 4.
Finally, in Section 6, we present some conclusions.

2. The Spline Space

Let Ω = [0, hm]× [0, hn] be a rectangular domain divided into mn equal squares, each
of them being subdivided into four triangles by its diagonals. We denote by S1

2(Ω, T ) the
space of C1 quadratic splines on the triangulation T of Ω obtained in this way. This space
is generated by the (m + 2)(n + 2) spline functions {Bα, α ∈ A}, where A = {α = (i, j),
0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}, obtained by the dilation/translation of the Zwart–Powell
quadratic box spline (ZP element) ([8] (Chapter 1) and [22] (Chapter 3)).

The ZP element is the bivariate C1 quadratic box spline supported on the octagon
with the center at the origin and vertices at ( 3

2 , 1
2 ), (

1
2 , 3

2 ), (−
1
2 , 3

2 ), (−
3
2 , 1

2 ), (−
3
2 ,− 1

2 ),
(− 1

2 ,− 3
2 ), (

1
2 ,− 3

2 ), (
3
2 ,− 1

2 ). It is strictly positive inside its support, which is partitioned
into 28 triangular cells. On every cell, the ZP element is a polynomial of total degree 2,
and in [11], the polynomials are given. The ZP element can also be expressed in BB form,
i.e., specifying the Bernstein–Bézier (abbr. BB) coefficients on every triangular cell [23]
(Chapter 6). We denote by Σα the support of the dilated/translated box spline Bα, and its
center by Cα.

In the space S1
2(Ω, T ), we consider linear quasi-interpolants (QIs) with the follow-

ing form:
Q f := ∑

α∈A
λα( f )Bα,

where {λα, α ∈ A} is a set of continuous linear forms, called coefficient functionals. They
can be of different types, chosen according to the provided information about the function
f to be approximated. Usually, they are point, derivative, or integral linear functionals.
In the first case, λα( f ) is a finite linear combination of values of f at some points in a
neighborhood of Σα. In the second case, λα( f ) is a finite linear combination of values of f
and some of its partial derivatives at some points in a neighborhood of Σα. Finally, in the
third case, λα( f ) is a finite linear combination of weighted mean values of f .

In this paper, we focus on point QIs, that is, given a set of quasi-interpolation nodes
{Pα, α ∈ D}, for a suitable set of indices D, the coefficient functionals have the form

λα( f ) := ∑
β∈Fα

σα(β) f (Pβ),

where the finite set of points
{

Pβ, β ∈ Fα

}
, Fα ⊂ D lies in some neighborhood of Σα ∩Ω.

Here, Q f ≡ f when f belongs to P2, the space of quadratic polynomials.
Points Pα, α ∈ D, used in evaluating f , are as follows (see Figure 1):

- The vertices Ai,j = (xi, yj), i = 0, . . . , m, j = 0, . . . , n of squares;
- The centers Mi,j = (si, tj), i = 1, . . . , m, j = 1, . . . , n of squares;
- The midpoints of boundary segments Mi,0 = (si, y0), Mi,n+1 = (si, yn), i = 1, . . . , m,

M0,j = (x0, tj), Mm+1,j = (xm, tj) j = 1, . . . , n,
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where
xi = ih, i = 0, . . . , m,
yj = jh, j = 0, . . . , n,

s0 = 0, si =
xi−1 + xi

2
=

(
i− 1

2

)
h, i = 1, . . . , m, sm+1 = mh,

t0 = 0, tj =
yj−1 + yj

2
=

(
j− 1

2

)
h, j = 1, . . . , n, tn+1 = nh.

Moreover, we introduce the following notations: fi,j = f (Mi,j) and f̄i,j = f (Ai,j).

x0 x1 xisi xm
y0

y1

tj

yj

yn

Mi,j

Ai,j

Figure 1. Uniform criss-cross triangulation and data points.

Different point QIs that are exact on P2 can be constructed using the QI nodes shown
in Figure 1 (or a subset). For example, considering the following differential QI, exact on
P2 ([23] (Chapter 6)):

Q̂ f := ∑
α∈A

λ̂α( f )Bα with λ̂α( f ) =
(

f (Cα)−
h2

8
∆ f (Cα)

)
(1)

and by using the five-point discretization of the Laplacian ∆, from (1), the following
coefficient functionals λi,j are defined [16] (see Figure 2a)

λ1
i,j( f ) =

3
2

fi,j −
1
8
(

fi−1,j + fi+1,j + fi,j−1 + fi,j+1
)
.

This is not the unique choice for having a point QI that is exact on P2. In Figure 2, other
possibilities are shown; they were obtained considering other kinds of approximations for
λ̂i,j( f ). We note that these coefficient functionals are suitable for box splines having support
inside the domain, “far” from the boundary. For boundary generators, it is necessary to
construct specific functionals using QI nodes inside the domain (for details, see [24], where
this problem is encountered) and impose the reproduction of quadratic polynomials.

Regarding the approximation properties of such operators (see, e.g., [1,8,22]), we note
that a QI has approximation order k, if

‖ f −Q f ‖∞ ≤ Chk, f ∈ Ck(Ω),

i.e., the maximum error is O(hk) for h → 0, with an h-independent constant C. The
maximum value of k that we can obtain, which provides optimal approximation, is related
to the polynomial reproduction properties of Q. Since the above-mentioned QIs reproduce
P2, they have the optimal approximation order 3. Also, the differential operator Q̂ has the
approximation order 3, i.e., ∥∥∥ f − Q̂ f

∥∥∥
∞
= O(h3). (2)
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If the function f has a jump inside Ω, then we expect

‖ f −Q f ‖∞ = O(h0).
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Figure 2. Coefficient functionals λi,j( f ) for different point QIs: (a) λ1
i,j( f ) in (7); (b) λ2

i,j( f ) in (10);

(c) λ3
i,j( f ) in (13) and (d) λ4

i,j( f ) in (16).

3. WENO Techniques

In this section, we recall some definitions and properties of the WENO techniques. For
more details, the reader can refer to references [25–28]. Taking into account the purposes
of the paper, we assume to have different approximations (for example, five) of λ̂i,j( f ) of
this kind:

µ( f ) = λ̂i,j( f ) + O(hp), µ`( f ) = λ̂i,j( f ) + O(hq), ` = 1, 2, 3, 4,

where p > q, p, q ∈ N, and

µ( f ) = γ1µ1( f ) + γ2µ2( f ) + γ3µ3( f ) + γ4µ4( f ), (3)

for suitable values γ`, ` = 1, 2, 3, 4. In general, the requirement is that µ( f ) can be written
as the linear combination of N coefficient functionals µ`( f ) and suitable values γ`, N ∈ N.

In the case of functions f with jump discontinuity, oscillations in the approximation
may occur; here, we want to apply the WENO technique to obtain a modified µ( f ), which
(essentially) does not produce oscillations.

If the values γ` are positive for ` = 1, . . . , N, we define the nonlinear coefficient functional

µω( f ) =
N

∑
`=1

ω`( f )µ`( f ),
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where

ω`( f ) =
α`( f )

∑N
`=1 α`( f )

, α`( f ) =
γ`

(ε + I`( f ))2 , ` = 1, . . . , N, ε = 10−7 (4)

and I`( f ) ≥ 0 is an indicator of the smoothness of the region that contains the values
involved in the calculation of µl( f ), meaning that the smoother the function f , the closer it
is to zero. In particular, if f is smooth, then µω( f ) is as accurate as µ( f ), i.e.,

µω( f ) = λ̂i,j( f ) + O(hp). (5)

Instead, if f has a discontinuity in the region where the data used by µ( f ) lie, but it is
smooth in at least one of the regions used to calculate the µ`( f ), then µω( f ) is as accurate
as µ`( f ), i.e.,

µω( f ) = λ̂i,j( f ) + O(hq). (6)

In the case of negative values γ` in (3), the WENO procedure cannot be applied directly
to obtain stable schemes, and it is necessary to modify the procedure; here, we propose the
technique presented in [28]. So, suppose we have µ( f ) = ∑N

`=1 γ`( f )µ`( f ), where some
γ` < 0. In this case, the nonlinear coefficient functionals are defined as

µω( f ) = σ+
N

∑
`=1

ω+
` ( f )µ`( f )− σ−

N

∑
`=1

ω−` ( f )µ`( f ),

where

α±` ( f ) :=
γ±`

(ε + I`( f ))2 , ω±` ( f ) :=
α±` ( f )

∑N
`=1 α±` ( f )

, ` = 1, . . . , N

and

γ̄+
` :=

1
2
(γ` + 3|γ`|), γ̄−` := γ̄+

` − γ`, σ± :=
N

∑
`=1

γ̄±` , γ±` :=
γ̄±`
σ±

, ` = 1, . . . , N.

Also, in this case, (5) and (6) hold.

4. Nonlinear Spline Quasi-Interpolants

In this section, we construct nonlinear spline quasi-interpolants by applying the
WENO techniques of Section 3 to the linear quasi-interpolants Qk with coefficient function-
als λk

i,j( f ), k =1, 2, 3, and 4, as shown in Figure 2.

Therefore, we consider the differential QI Q̂ with coefficient functional λ̂i,j( f ) given
in (1), and the four linear QIs Qk, k =1, 2, 3, and 4, defined in this way:

Qk f = ∑
α∈A

λk
α( f )Bα,

with the inner functionals, as in Figure 2, and the boundary ones defined in a specific way,
ensuring the reproduction of P2 and the optimal approximation order 3. In [24], several
strategies for the construction of boundary functionals are proposed and the obtained
functionals can be used for defining the QIs (Q1, Q2, and Q4). For the Q3 operators, we
constructed ad hoc boundary functionals satisfying the above requirements.

We apply the WENO technique only to obtain nonlinear inner functionals; for the
boundary ones, we adopt a strategy that is able to avoid the Gibbs phenomenon, as
explained in Section 5.

Moreover, we define the following domains

Ω+
µ,ν := [xµ, xm]× [yν, yn], Ω−µ,ν := [x0, xµ]× [y0, yν],
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used in the subsequent subsections.

4.1. The Nonlinear Quasi-Interpolant Q̃1

We want to apply the WENO technique to the operator Q1 to obtain the nonlinear
analog Q̃1. Thus, we decompose λ1

i,j( f ) (see Figure 2a), as

λ1
i,j( f ) =

3
2

fi,j −
1
8
(

fi−1,j + fi+1,j + fi,j−1 + fi,j+1
)

(7)

= fi,j +
1
8
(
( fi,j − fi−1,j)− ( fi+1,j − fi,j)

)
+

1
8
(
( fi,j − fi,j−1)− ( fi,j+1 − fi,j)

)
,

and we recall that
λ1

i,j( f ) = λ̂i,j( f ) + O(h4). (8)

Since the differential coefficient λ̂i,j( f ) is defined by means of ∆ f (Ci,j) =
∂2 f
∂x2 (Ci,j) +

∂2 f
∂y2 (Ci,j), we apply the WENO strategies separately in both directions x and y. Therefore,
we define γ1 = 1, γ2 = −1,

µ1
i+k,j = fi+k,j − fi+k−1,j, µ̄1

i,j+k = fi,j+k − fi,j+k−1, k = 0, 1

and we have

λ1
i,j( f ) = fi,j +

1
8

(
γ1µ1

i,j + γ2µ1
i+1,j

)
+

1
8

(
γ1µ̄1

i,j + γ2µ̄1
i,j+1

)
.

Taking into account the results reported in Section 3, we compute the quantities γ±1 ,
γ±2 , σ±, we consider the smooth indicators Ii+k,j = (µ1

i+k,j)
2, Īi,j+k = (µ̄1

i,j+k)
2, k = 0, 1, and

we obtain the values α±i+k,j, ᾱ±i,j+k, k = 0, 1 and, consequently, the weights ω±i+k,j, ω̄±i,j+k,
k = 0, 1. Now, we are able to define the nonlinear coefficient functional

λ̃1
i,j( f ) = fi,j +

1
8

(
σ+(ω+

i,jµ
1
i,j + ω+

i+1,jµ
1
i+1,j)− σ−(ω−i,jµ

1
i,j + ω−i+1,jµ

1
i+1,j)

)
+

1
8

(
σ+(ω̄+

i,jµ̄
1
i,j + ω̄+

i,j+1µ̄1
i,j+1)− σ−(ω̄−i,jµ̄

1
i,j + ω̄−i,j+1µ̄1

i,j+1)
)

,

and the corresponding quasi-interpolant Q̃1 f := ∑
α∈A

λ̃1
α( f )Bα.

Theorem 1. The following results hold:

1. Q̃1 is exact on the space P1 ⊕ span{xy};
2. if f is smooth, then

∥∥∥ f − Q̃1 f
∥∥∥

∞
= O(h3);

3. if f has a discontinuity across the square (sµ, sµ+1)× (tν, tν+1), and it is smooth on Ω+
µ+1,ν+1

and Ω−µ−1,ν−1, then∥∥∥ f − Q̃1 f
∥∥∥

Ω+
µ+1,ν+1,∞

= O(h2),
∥∥∥ f − Q̃1 f

∥∥∥
Ω−µ−1,ν−1,∞

= O(h2),∥∥∥ f − Q̃1 f
∥∥∥

Ω+
µ+2,ν+2,∞

= O(h3),
∥∥∥ f − Q̃1 f

∥∥∥
Ω−µ−2,ν−2,∞

= O(h3).

Proof. If f is smooth, statement 2 follows by (2), (5), and (8). However, this fact does not
guarantee the reproduction of P2. Indeed, each of the parts into which λ1

i,j( f ) and λ̃1
i,j( f )

have been subdivided, guarantee Q̃1 p = p, ∀p ∈ P1 ⊕ span{xy}.
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Now, taking into account the definition of λ1
i,j( f ) (see Figure 2a), if f has a discontinuity

across the square (sµ, sµ+1)× (tν, tν+1), then

λ1
µ+i,ν+j( f )− λ̃1

µ+i,ν+j( f ) = O(h2), i, j = −1, 0, 1
λ1

µ+1+i,ν+1+j( f )− λ̃1
µ+1+i,ν+1+j( f ) = O(h3), i + j ≥ 1

λ1
µ−1−i,ν−1−j( f )− λ̃1

µ−1−i,ν−1−j( f ) = O(h3), i + j ≥ 1.
(9)

Within the square, (sµ, sµ+1) × (tν, tν+1), the 16 spanning functions Bi,j, where
i = µ− 1, µ, µ + 1, µ + 2 and j = ν− 1, ν, ν + 1, ν + 2 are involved, i.e., Σi,j ∩ (sµ, sµ+1)×
(tν, tν+1) 6= ∅. To construct the spline Q̃1 f within the square [xµ, xµ+1]× [yν, yν+1], we use
the information on both sides of the discontinuity. However, when constructing Q̃1 f in
[xµ+1, xµ+2]× [yν+1, yν+2] (and similarly in Ω+

µ+1,ν+1), we only use the information on one

side of the discontinuity, obtaining an approximation O(h2) as a consequence of (9). The
same logical scheme can be used to prove the results in Ω−µ−1,ν−1.

Moreover, if the discontinuity is across the square (sµ, sµ+1)× (tν, tν+1), the region
affected by the discontinuity and involved in the construction of Q̃1 f is only [xµ−2, xµ+2]×
[yν−2, yν+2] and, therefore,∥∥∥ f − Q̃1 f

∥∥∥
Ω+

µ+2,ν+2,∞
= O(h3),

∥∥∥ f − Q̃1 f
∥∥∥

Ω−µ−2,ν−2,∞
= O(h3).

Remark 1. If the discontinuity runs across the square (sµ, sµ+1)× (tν, tν+1), the region affected by
the discontinuity in Q1 f spans [xµ−2, xµ+2]× [yν−2, yν+2]. It follows from the definition of λ1

i,j( f ),
as seen in Figure 2a, and because the support of Bi,j is in the square [xi−2, xi+1]× [yj−2, yj+1].
Elsewhere in the domain, the approximation retains an order of 3.

4.2. The Nonlinear Quasi-Interpolant Q̃2

The construction of the nonlinear quasi-interpolant Q̃2 is similar to the construction of
Q̃1, but in this case, we have the following (see Figure 2b):

λ2
i,j( f ) =

13
8

fi,j −
1
6
(

fi−1,j + fi+1,j + fi,j−1 + fi,j+1
)
+

1
96
(

fi−2,j + fi+2,j + fi,j−2 + fi,j+2
)

(10)

= fi,j −
1
8

(
− 1

12
( fi−,j − 2 fi−,j + fi,j) +

14
12

( fi−1,j − 2 fi,j + fi+1,j)

− 1
12

( fi,j − 2 fi+1,j + fi+2,j)

)
− 1

8

(
− 1

12
( fi,j−2 − 2 fi,j−1 + fi,j)

+
14
12

( fi,j−1 − 2 fi,j + fi,j+1)−
1
12

( fi,j − 2 fi,j+1 + fi,j+2)

)
and we recall that

λ2
i,j( f ) = λ̂i,j( f ) + O(h4). (11)

Defining γ1 = γ3 = − 1
12 , γ2 = 7

6 , and

µ2
i+k,j = fi+k−1,j − 2 fi+k,j + fi+k+1,j, µ̄2

i,j+k = fi,j+k−1 − 2 fi,j+k + fi,j+k+1, k = −1, 0, 1

we have

λ2
i,j( f ) = fi,j −

1
8

(
γ1µ2

i−1,j + γ2µ2
i,j + γ3µ2

i+1,j

)
− 1

8

(
γ1µ̄2

i,j−1 + γ2µ̄2
i,j + γ3µ̄2

i,j+1

)
.
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Applying the WENO technique with negative weights, considered as smooth indica-
tors Ii+k,j = (µ2

i+k,j)
2, Īi,j+k = (µ̄2

i,j+k)
2, k = −1, 0, 1, we obtain

λ̃2
i,j( f ) = fi,j −

1
8

(
σ+(ω+

i−1,jµ
2
i−1,j + ω+

i,jµ
2
i,j + ω+

i+1,jµ
2
i+1,j)

−σ−(ω−i−1,jµ
2
i−1,j + ω−i,jµ

2
i,j + ω−i+1,jµ

2
i+1,j)

)
−1

8

(
σ+(ω̄+

i,j−1µ̄2
i,j−1 + ω̄+

i,jµ̄
2
i,j + ω̄+

i,j+1µ̄2
i,j+1)

−σ−(ω̄−i,j−1µ̄2
i,j−1ω̄−i,jµ̄

2
i,j + ω̄−i,j+1µ̄2

i,j+1)
)

and Q̃2 f := ∑
α∈A

λ̃2
α( f )Bα.

Theorem 2. The following results hold:

1. Q̃2 is exact on the space P2;

2. if f is smooth, then
∥∥∥ f − Q̃2 f

∥∥∥
∞
= O(h3);

3. if f has a discontinuity across the square (sµ, sµ+1)× (tν, tν+1), and it is smooth on Ω+
µ+1,ν+1

and Ω−µ−1,ν−1, then
∥∥∥ f − Q̃2 f

∥∥∥
Ω+

µ+1,ν+1,∞
= O(h3),

∥∥∥ f − Q̃2 f
∥∥∥

Ω−µ−1,ν−1,∞
= O(h3).

Proof. If f is smooth, statement 2 follows by (2), (5), and (11). With respect to what happens
for Q̃1, here, the parts into which λ2

i,j( f ) and λ̃2
i,j( f ) have been subdivided guarantee

Q̃2 p = p, ∀p ∈ P2.
Now, taking into account the definition of λ2

i,j( f ) (see Figure 2b), if f has a discontinuity
across the square (sµ, sµ+1)× (tν, tν+1), then

λ2
i,j( f )− λ̃2

i,j( f ) = O(h3), i = µ− 1, µ, µ + 1, µ + 2, j = ν− 1, ν, ν + 1, ν + 2
λ2

i,j( f )− λ̃2
i,j( f ) = O(h4), otherwise.

(12)

The reasoning, as laid out in the proof of Theorem 1, is as follows: within the square
(sµ, sµ+1)× (tν, tν+1), 16 spanning functions Bi,j are involved, with i = µ− 1, µ, µ+ 1, µ+ 2
and j = ν− 1, ν, ν + 1, ν + 2. When constructing Q̃2 f in [xµ+1, xµ+2]× [yν+1, yν+2] (and
similarly in Ω+

µ+1,ν+1), we are able to use the information only on one side of the disconti-

nuity, obtaining an approximation O(h3) as a consequence of (12). The same logical scheme
can be used to prove the results in Ω−µ−1,ν−1.

Remark 2. If the discontinuity is across the square (sµ, sµ+1)× (tν, tν+1), the region affected by
the discontinuity in Q2 f is [xµ−3, xµ+3]× [yν−3, yν+3]. It follows from the definition of λ2

i,j( f ),
as seen in Figure 2b, and because the support of Bi,j is in the square [xi−2, xi+1]× [yj−2, yj+1].
Elsewhere in the domain, the approximation retains an order of 3.

4.3. The Nonlinear Quasi-Interpolant Q̃3

Now we construct the nonlinear quasi-interpolant Q̃3. In this case, we have (see
Figure 2c).
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λ3
i,j( f ) =

99
256

(
f̄i,j + f̄i−1,j + f̄i,j−1 + f̄i−1,j−1

)
+

3
256

(
f̄i−2,j−2 + f̄i−2,j+1 + f̄i+1,j−2 + f̄i+1,j+1

)
− 19

256
(

f̄i−2,j−1 + f̄i−2,j + f̄i−1,j−2 + f̄i−1,j+1 + f̄i,j−2 + f̄i,j+1 + f̄i+1,j−1 + f̄i+1,j
)

(13)

=
1
4

(
60
64

f̄i−1,j −
5

64
( f̄i,j+1 + f̄i−2,j−1)−

14
64

( f̄i−1,j+1 + f̄i−2,j)

+
18
64

( f̄i−1,j−1 + f̄i,j) +
3

64
( f̄i,j−1 + f̄i−2,j+1)

)
+

1
4

(
60
64

f̄i−1,j−1 −
5
64

( f̄i+1,j−1 + f̄i−1,j+1)−
14
64

( f̄i−1,j−2 + f̄i−2,j−1)

+
18
64

( f̄i−1,j + f̄i,j−1) +
3

64
( f̄i,j + f̄i−2,j−2)

)
+

1
4

(
60
64

f̄i,j −
5
64

( f̄i−1,j+1 + f̄i+1,j−1)−
14
64

( f̄i,j+1 + f̄i+1,j)

+
18
64

( f̄i−1,j + f̄i,j−1) +
3

64
( f̄i−1,j−1 + f̄i+1,j+1)

)
+

1
4

(
60
64

f̄i,j−1 −
5
64

( f̄i+1,j + f̄i−1,j−2)−
14
64

( f̄i+1,j−1 + f̄i,j−2)

+
18
64

( f̄i−1,j−1 + f̄i,j) +
3

64
( f̄i−1,j + f̄i+1,j−2)

)
=

1
4

λ3lt
i,j ( f ) +

1
4

λ3lb
i,j ( f ) +

1
4

λ3rt
i,j ( f ) +

1
4

λ3rb
i,j ( f ),

where
λ3

i,j( f ) = λ̂i,j( f ) + O(h4),
λ3lb

i,j ( f ) = λ̂i,j( f ) + O(h3), λ3lt
i,j ( f ) = λ̂i,j( f ) + O(h3)

λ3rb
i,j ( f ) = λ̂i,j( f ) + O(h3), λ3rt

i,j ( f ) = λ̂i,j( f ) + O(h3).
(14)

Defining γ1 = γ2 = γ3 = γ4 = 1
4 , we apply the WENO technique with positive

weights and, from (4), we obtain

λ̃3
i,j( f ) = ω3lt

i,j ( f )λ3lt
i,j ( f ) + ω3lb

i,j ( f )λ3lb
i,j ( f ) + ω3rt

i,j ( f )λ3rt
i,j ( f ) + ω3rb

i,j ( f )λ3rb
i,j ( f )

and Q̃3 f := ∑
α∈A

λ̃3
α( f )Bα.

In this case, as the smooth indicator, we considered the average of the six second-order
forward differences involved in the definitions of λ3lb

i,j ( f ), λ3lt
i,j ( f ), λ3rb

i,j ( f ), λ3rt
i,j ( f ).

Theorem 3. The following results hold:

1. Q̃3 is exact on the space P2;

2. if f is smooth, then
∥∥∥ f − Q̃3 f

∥∥∥
∞
= O(h3);

3. if f has a discontinuity across the square (xµ−1, xµ)× (yν−1, yν), and it is smooth on Ω+
µ,ν

and Ω−µ−1,ν−1, then
∥∥∥ f − Q̃3 f

∥∥∥
Ω+

µ+1,ν+1,∞
= O(h3),

∥∥∥ f − Q̃3 f
∥∥∥

Ω−µ−2,ν−2,∞
= O(h3).

Proof. We can prove the theorem analogously to Theorems 1 and 2. However, in this case,
thanks to (14), if f has a discontinuity across the square (xµ−1, xµ)× (yν−1, yν), then
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λ3
i,j( f )− λ̃3

i,j( f ) = O(h3), i = µ− 1, µ, µ + 1, j = ν− 1, ν, ν + 1, and (i, j) 6= (µ, ν)

λ3
i,j( f )− λ̃3

i,j( f ) = O(h4), i 6= µ− 1, µ, µ + 1, j 6= ν− 1, ν, ν + 1, (15)

λ3
µ,ν( f )− λ̃3

µ,ν( f ) = O(h0).

In the square (xµ−1, xµ)× (yν−1, yν), the 9 spanning functions Bi,j with i = µ− 1, µ, µ+ 1
and j = ν − 1, ν, ν + 1 are involved, i.e., Σi,j ∩ (xµ−1, xµ) × (yν−1, yν) 6= ∅; to construct
the spline Q̃3 f within the square [xµ, xµ+1]× [yν, yν+1], we use the information from both
sides of the discontinuity. However, when constructing Q̃3 f in [xµ+1, xµ+2]× [yν+1, yν+2]

(and similarly in Ω+
µ+1,ν+1), we only use the information on one side of the discontinuity,

obtaining an approximation O(h3) as a consequence of (15). The same logical scheme can
be used to prove the results in Ω−µ−2,ν−2.

Remark 3. If the discontinuity is across the square (xµ−1, xµ)× (yν−1, yν), the region affected by
the discontinuity in Q3 f is [xµ−3, xµ+2]× [yν−3, yν+2]. It follows from the definitions of λ3

i,j( f ),
as seen in Figure 2c, and because the support ofBi,j is in the square [xi−2, xi+1] × [yj−2, yj+1].
Elsewhere in the domain, the approximation retains an order of 3.

4.4. The Nonlinear Quasi-Interpolant Q̃4

Now we construct the nonlinear quasi-interpolant Q̃4. In this case, we have (see
Figure 2d)

λ4
i,j( f ) =

1
96

(96 fi,j − 16( fi+1,j − fi,j+1 − fi,j−1 − fi−1,j) + 18( f̄i,j + f̄i,j−1 + f̄i−1,j + f̄i−1,j−1)

− f̄i−2,j − f̄i−2,j−1 − f̄i+1,j − f̄i+1,j−1 − f̄i,j−2 − f̄i,j+1 − f̄i−1,j−2 − f̄i−1,j+1) (16)

=
1
4
(

1
48

(48 fi,j − 16 fi,j−1 − 16 fi−1,j + 36 f̄i−1,j−1 − 6 f̄i,j + 3 f̄i,j−1 + 3 f̄i−1,j

+ f̄i−2,j − 3 f̄i−2,j−1 + f̄i,j−2 − 3 f̄i−1,j−2))

+
1
4
(

1
48

(48 fi,j − 16 fi,j+1 − 16 fi−1,j + 36 f̄i−1,j + 3 f̄i−1,j−1 + 3 f̄i,j − 6 f̄i,j−1

−3 f̄i−2,j + f̄i−2,j−1 + f̄i,j+1 − 3 f̄i−1,j+1))

+
1
4
(

1
48

(48 fi,j − 16 fi+1,j − 16 fi,j−1 + 3 f̄i,j + 36 f̄i,j−1 − 6 f̄i−1,j + 3 f̄i−1,j−1

+ f̄i+1,j − 3 f̄i+1,j−1 − 3 f̄i,j−2 + f̄i−1,j−2))

+
1
4
(

1
48

(48 fi,j − 16 fi+1,j − 16 fi,j+1 + 3 f̄i−1,j − 6 f̄i−1,j−1 + 36 f̄i,j + 3 f̄i,j−1

−3 f̄i+1,j + f̄i+1,j−1 − 3 f̄i,j+1 + f̄i−1,j+1))

=
1
4

λ4lb
i,j ( f ) +

1
4

λ4lt
i,j ( f ) +

1
4

λ4rb
i,j ( f ) +

1
4

λ4rt
i,j ( f ).

where
λ4

i,j( f ) = λ̂i,j( f ) + O(h4),
λ4lb

i,j ( f ) = λ̂i,j( f ) + O(h3), λ4lt
i,j ( f ) = λ̂i,j( f ) + O(h3)

λ4rb
i,j ( f ) = λ̂i,j( f ) + O(h3), λ4rt

i,j ( f ) = λ̂i,j( f ) + O(h3).
(17)

Defining γ1 = γ2 = γ3 = γ4 = 1
4 , we apply the WENO technique, obtaining

λ̃4
α( f ) = ω4lt

i,j ( f )λ4lt
i,j ( f ) + ω4lb

i,j ( f )λ4lb
i,j ( f ) + ω4rt

i,j ( f )λ4rt
i,j ( f ) + ω4rb

i,j ( f )λ4rb
i,j ( f )

and Q̃4 f := ∑
α∈A

λ̃4
α( f )Bα.
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In this case, as the smooth indicator, we considered the average of the four second-
order forward differences constructed from the Ai,j points involved in the definitions of
λ4lb

i,j ( f ), λ4lt
i,j ( f ), λ4rb

i,j ( f ), λ4rt
i,j ( f ).

Theorem 4. The following results hold:

1. Q̃4 is exact on the space P2;

2. if f is smooth, then
∥∥∥ f − Q̃4 f

∥∥∥
∞
= O(h3);

3. if f has a discontinuity across the square (xµ−1, xµ)× (yν−1, yν), and it is smooth on Ω+
µ,ν

and Ω−µ−1,ν−1, then
∥∥∥ f − Q̃4 f

∥∥∥
Ω+

µ+1,ν+1,∞
= O(h3),

∥∥∥ f − Q̃4 f
∥∥∥

Ω−µ−2,ν−2,∞
= O(h3).

Proof. We can prove the theorem analogously to the previous cases. Thanks to (17), if f
has a discontinuity across the square (xµ−1, xµ)× (yν−1, yν), then

λ4
i,j( f )− λ̃4

i,j( f ) = O(h3), i = µ− 1, µ, µ + 1, j = ν− 1, ν, ν + 1, and (i, j) 6= (µ, ν)

λ4
i,j( f )− λ̃4

i,j( f ) = O(h4), i 6= µ− 1, µ, µ + 1, j 6= ν− 1, ν, ν + 1, (18)

λ4
µ,ν( f )− λ̃4

µ,ν( f ) = O(h0).

In the square (xµ−1, xµ)× (yν−1, yν), the 9 spanning functions Bi,j, with i = µ− 1, µ, µ+ 1
and j = ν − 1, ν, ν + 1 are involved, i.e., Σi,j ∩ (xµ−1, xµ) × (yν−1, yν) 6= ∅; to construct
the spline Q̃4 f within the square [xµ, xµ+1]× [yν, yν+1], we use the information on both
sides of the discontinuity. However, when constructing Q̃4 f in [xµ+1, xµ+2]× [yν+1, yν+2]

(and similarly in Ω+
µ+1,ν+1), we only use the information on one side of the discontinuity,

obtaining an approximation O(h3) as a consequence of (18). The same logical scheme can
be used to prove the results in Ω−µ−2,ν−2.

Remark 4. If the discontinuity is across the square (xµ−1, xµ)× (yν−1, yν), the region affected by
the discontinuity in Q4 f is [xµ−3, xµ+2]× [yν−3, yν+2]. Elsewhere in the domain, the approxima-
tion retains an order of 3. It follows from the same arguments of Remark 3.

5. Numerical Results

In this section, we propose numerical tests confirming the theoretical results of
Section 4. For each test function, we compute the maximum absolute errors

Ek f := max
(u,v)∈G

| f (u, v)−Qk f (u, v)|, Ẽk f := max
(u,v)∈G

| f (u, v)− Q̃k f (u, v)|,

k = 1, 2, 3, 4, for increasing values of m and n, using a 1500× 1500 uniform rectangular
grid G of evaluation points in the domain. We also compute the corresponding numerical

convergence orders (NCOk, ÑCO
k
, k = 1, 2, 3, 4), obtained by applying the base 2 logarithm

to the ratio between the two consecutive errors.
Moreover, in order to only test the nonlinear modification of the quasi-interpolants,

we compute the errors in a subdomain where the boundary functionals are not involved.
Finally, we provide some graphical results to confirm the reduction of the Gibbs

phenomenon using the WENO technique.
Regarding the choice of the boundary functionals:

• In Tests 1 and 2, we consider ad hoc boundary functionals, ensuring the reproduction
of P2. The boundary functionals are the same for Qk and Q̃k, for k = 1, 2, 3, and 4,
respectively;

• In Tests 3 and 4, we consider ad hoc boundary functionals, ensuring the reproduction
of P2 for Qk, k = 1, 2, 3, and 4. For the operators Q̃k, k = 1, 2, 3, and 4, in order to
eliminate the Gibbs phenomenon near the boundary of the domain, the boundary
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functionals are chosen so that the evaluation points used for their definition are located
only in one sub-square of the box spline support, but ensuring an error O(h2) similar
to the well-known Schoenberg operator [29,30].

We tested the reproduction properties of all quasi-interpolants; we can state that all
the quasi-interpolants are exact on P2, except Q̃1, which is exact on bilinear polynomials,
according to statement 1 in Theorems 1–4.

5.1. Test 1: Smooth Functions

We consider the following smooth function (see Figure 3a)

f (x, y) = exp(1 + x2 + y2), (x, y) ∈ [0, 1]× [0, 1]

and we compute the maximum absolute error in [0, 1] × [0, 1] (see Table 1) and in[ 3
8 , 5

8
]
×
[ 3

8 , 5
8
]

(see Table 2), where the boundary functionals have no influence.

(a) (b)

Figure 3. The graphs of (a) f (x, y) and (b) `(x, y).

We noticed that approximation order 3 was achieved by all operators, as expected
from statement 2, in Theorems 1, 2, 3, and 4, respectively.

Table 1. Test 1—maximum absolute errors and numerical convergence order in [0, 1]× [0, 1].

n E1 f NCO1 E2 f NCO2 E3 f NCO3 E4 f NCO4

8 9.65(−02) 9.65(−02) 1.41(−01) 9.65(−02)

16 1.65(−02) 2.6 1.65(−02) 2.6 2.65(−02) 2.4 1.65(−02) 2.6

32 2.44(−03) 2.8 2.44(−03) 2.8 4.25(−03) 2.6 2.44(−03) 2.8

64 3.34(−04) 2.9 3.34(−04) 2.9 6.09(−04) 2.8 3.36(−04) 2.9

128 4.35(−05) 2.9 4.35(−05) 2.9 8.16(−05) 2.9 4.35(−05) 2.9

256 5.55(−06) 3.0 5.55(−06) 3.0 1.06(−05) 2.9 5.55(−06) 3.0

512 6.80(−07) 3.0 6.80(−07) 3.0 1.33(−06) 3.0 6.80(−07) 3.0

1024 8.55(−08) 3.0 8.55(−08) 3.0 1.68(−07) 3.0 8.55(−08) 3.0

n Ẽ1 f ÑCO
1 Ẽ2 f ÑCO

2 Ẽ3 f ÑCO
3 Ẽ4 f ÑCO

4

8 9.65(−02) 9.65(−02) 1.41(−01) 9.65(−02)

16 1.65(−02) 2.6 1.65(−02) 2.6 2.65(−02) 2.4 1.65(−02) 2.6

32 2.44(−03) 2.8 2.44(−03) 2.8 4.25(−03) 2.6 2.44(−03) 2.8

64 3.34(−04) 2.9 3.34(−04) 2.9 6.09(−04) 2.8 3.36(−04) 2.9

128 6.74(−05) 2.3 4.35(−05) 2.9 8.16(−05) 2.9 4.35(−05) 2.9

256 8.49(−06) 3.0 5.55(−06) 3.0 1.06(−05) 2.9 5.55(−06) 3.0

512 6.80(−07) 3.6 6.80(−07) 3.0 1.33(−06) 3.0 6.80(−07) 3.0

1024 8.55(−08) 3.0 8.55(−08) 3.0 1.68(−07) 3.0 8.55(−08) 3.0
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Table 2. Test 1—maximum absolute errors and numerical convergence order in
[

3
8 , 5

8

]
×
[

3
8 , 5

8

]
.

n E1 f NCO1 E2 f NCO2 E3 f NCO3 E4 f NCO4

8 2.60(−03) 1.71(−03) 6.56(−03) 3.66(−03)

16 2.34(−04) 3.5 1.84(−04) 3.2 4.38(−04) 3.9 2.83(−04) 3.7

32 2.50(−05) 3.2 2.15(−05) 3.1 3.79(−05) 3.5 2.84(−05) 3.3

64 2.78(−06) 3.2 2.55(−06) 3.1 3.64(−06) 3.4 3.01(−06) 3.2

128 3.24(−07) 3.1 3.09(−07) 3.0 3.80(−07) 3.3 3.39(−07) 3.2

256 3.89(−08) 3.1 3.80(−08) 3.0 4.25(−08) 3.2 3.99(−08) 3.1

512 4.76(−09) 3.0 4.70(−09) 3.0 4.98(−09) 3.1 4.82(−09) 3.0

1024 5.86(−10) 3.0 5.82(−10) 3.0 6.00(−10) 3.1 5.90(−10) 3.0

n Ẽ1 f ÑCO
1 Ẽ2 f ÑCO

2 Ẽ3 f ÑCO
3 Ẽ4 f ÑCO

4

8 2.76(−02) 7.04(−03) 7.43(−03) 2.22(−03)

16 2.14(−03) 3.7 4.93(−04) 3.8 5.71(−04) 3.7 2.18(−04) 3.9

32 1.51(−04) 3.8 4.18(−05) 3.6 4.62(−05) 3.6 2.33(−05) 3.5

64 1.08(−05) 3.8 3.92(−06) 3.4 4.10(−06) 3.5 2.65(−06) 3.3

128 8.28(−07) 3.7 3.93(−07) 3.3 3.96(−07) 3.4 3.12(−07) 3.2

256 7.02(−08) 3.6 4.08(−08) 3.3 3.77(−08) 3.4 3.77(−08) 3.2

512 6.66(−09) 3.4 4.72(−09) 3.1 4.93(−09) 3.0 4.80(−09) 3.0

1024 7.00(−10) 3.3 5.82(−10) 3.0 6.00(−10) 3.0 5.90(−10) 3.0

5.2. Test 2: Piecewise Smooth Function

We consider the following piecewise smooth function (see Figure 3b)

`(x, y) =
{

exp(x + y) if y < 0.5
exp(x2 + y2) + 10 elsewhere

, (x, y) ∈ [0, 1]× [0, 1]

and we compare the four quasi-interpolants: Q̃1, Q̃2, Q̃3, and Q̃4, according to statement 3
in Theorems 1, 2, 3, and 4, respectively. In Table 3, we report the maximum absolute error
in
[

3
16 , 13

16 ,
]
×
[
( n

2 + 1)h, 13
16

]
. We also considered the linear operators Qk, k = 1, . . . , 4, for

which we expect an error O(h0).
We noticed that the expected behaviour of statement 3 in Theorems 1–4, was achieved.

5.3. Test 3: Graphical Examples

We consider the step function (see Figure 4a)

g(x, y) =
{

0 if y < 1
2

1 elsewhere
, (x, y) ∈ [0, 1]× [0, 1]

and the following piecewise smooth function (see Figure 4b)

h(x, y) =
{

exp(x + y) + 10 if x2 + y2 < 0.025
exp(x2 + y2) elsewhere

, (x, y) ∈ [0, 1]× [0, 1]

and we compare all eight quasi-interpolants proposed in the paper from the graphical point
of view.
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Table 3. Test 2—maximum absolute errors and numerical convergence order in
[

3
16 , 13

16 ,
]
×[

( n
2 + 1)h, 13

16

]
.

n E1` NCO1 E2` NCO2 E3` NCO3 E4` NCO4

16 5.85(−01) 6.82(−01) 5.87(−01) 8.78(−01)

32 5.84(−01) - 6.82(−01) - 5.85(−01) - 8.77(−01) -

64 5.84(−01) - 6.81(−01) - 5.84(−01) - 8.76(−01) -

128 5.84(−01) - 6.81(−01) - 5.84(−01) - 8.76(−01) -

256 5.84(−01) - 6.81(−01) - 5.84(−01) - 8.76(−01) -

512 5.84(−01) - 5.81(−01) - 5.84(−01) - 8.76(−01) -

1024 5.84(−01) - 5.81(−01) - 5.84(−01) - 8.76(−01) -

n Ẽ1` ÑCO
1 Ẽ2` ÑCO

2 Ẽ3` ÑCO
3 Ẽ4` ÑCO

4

16 2.80(−03) 5.13(−04) 6.54(−04) 2.26(−04)

32 5.27(−04) 2.4 5.15(−05) 3.3 5.08(−05) 3.7 2.29(−05) 3.3

64 1.20(−04) 2.1 5.61(−06) 3.2 4.49(−06) 3.5 2.30(−06) 2.9

128 2.90(−05) 2.0 6.45(−07) 3.1 6.25(−07) 2.8 3.90(−07) 2.9

256 7.16(−06) 2.0 7.60(−08) 3.1 8.28(−08) 2.9 4.97(−08) 3.0

512 1.78(−06) 2.0 9.35(−09) 3.0 1.03(−08) 3.0 6.16(−09) 3.0

1024 4.45(−07) 2.0 1.15(−09) 3.0 1.26(−09) 3.0 7.49(−10) 3.0

(a) (b)

Figure 4. The graphs of (a) g(x, y) and (b) h(x, y).

We noticed that when using the nonlinear quasi-interpolants Q̃k, where k = 1, 2, 3,
and 4 (see Figures 5(1(b)–4(b)) and 6(1(b)–4(b))), the Gibbs phenomenon is not present,
with respect to the graphs obtained with the standard quasi-interpolants Qk for k = 1, 2, 3,
and 4 (see Figures 5(1(a)–4(a)) and 6(1(a)–4(a))).

1(a) 1(b)

Figure 5. Cont.
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2(a) 2(b)

3(a) 3(b)

4(a) 4(b)

Figure 5. The graphs of 1(a) Q1g(x, y), 1(b) Q̃1g(x, y), 2(a) Q2g(x, y), 2(b) Q̃2g(x, y), 3(a) Q3g(x, y),
3(b) Q̃3g(x, y) and 4(a) Q4g(x, y), 4(b) Q̃4g(x, y), with m = n = 8.

1(a) 1(b)

2(a) 2(b)

Figure 6. Cont.
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3(a) 3(b)

4(a) 4(b)

Figure 6. The graphs of 1(a) Q1h(x, y), 1(b) Q̃1h(x, y), 2(a) Q2h(x, y), 2(b) Q̃2h(x, y), 3(a) Q3h(x, y),
3(b) Q̃3h(x, y) and 4(a) Q4h(x, y), 4(b) Q̃4h(x, y), with m = n = 128.

6. Conclusions

In the paper, we proposed a method based on bivariate C1 quadratic spline QIs on
criss-cross triangulations for the approximation of piecewise smooth functions, obtained
by modifying the coefficient functionals of the QIs by means of WENO techniques. The
modified approximants are able to avoid oscillations near discontinuity and maintain
high-order accuracy in smooth regions, without knowing where the discontinuity is. We
also studied their convergence properties and provided several numerical and graphical
tests that confirmed the theoretical results.
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