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promotor:
copromotor:

prof.dr. P.J.G. Mulders
dr. M. Radici



to Carlotta





CONTENTS

Scientific publications xi

1 Introduction 1
1.1 Particle physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 From quarks to TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Why investigating hadron structure . . . . . . . . . . . . . . 3
1.2.2 3D maps in momentum space . . . . . . . . . . . . . . . . . . 5

1.3 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Unraveling hadron structure 9
2.1 The parton model of hadron structure . . . . . . . . . . . . . . . . . 9
2.2 The hadronic tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 The Operator Product Expansion . . . . . . . . . . . . . . . . . . . . 14
2.4 The diagrammatic approach . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Correlations in spacetime . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Transverse momentum distributions . . . . . . . . . . . . . . . . . . 24

2.6.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Inclusion of hadron spin . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Quark distributions . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.4 Gluon distributions . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Gauge links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Discrete symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Outlook and future developments . . . . . . . . . . . . . . . . . . . . 36

vii



CONTENTS

3 QCD evolution 37
3.1 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Factorization and phenomenology . . . . . . . . . . . . . . . . 40
3.2 SCET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Transverse-momentum resummation . . . . . . . . . . . . . . . . . . 42

3.3.1 Fixed-order calculation . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Resummation of large logarithms . . . . . . . . . . . . . . . . 42
3.3.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 From transverse momentum resummation to TMDs . . . . . 43

3.4 TMDs from the pQCD viewpoint . . . . . . . . . . . . . . . . . . . . 44
3.5 Evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Natural scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 TMD and collinear distributions . . . . . . . . . . . . . . . . . . . . 48
3.7 Implementing TMD evolution . . . . . . . . . . . . . . . . . . . . . . 49

3.7.1 Logarithmic expansion . . . . . . . . . . . . . . . . . . . . . . 49
3.7.2 Perturbative accuracy . . . . . . . . . . . . . . . . . . . . . . 50
3.7.3 Evolution and the Landau pole . . . . . . . . . . . . . . . . . 51
3.7.4 The limit bT → 0 . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7.5 Intrinsic transverse momentum . . . . . . . . . . . . . . . . . 54

3.8 Other factorization and evolution schemes . . . . . . . . . . . . . . . 56

4 Phenomenology 57
4.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The case of QED . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 QCD and spin . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 TMDs of definite rank and azimuthal asymmetries . . . . . . 60

4.3 What do we know? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Unpolarized quark TMDs . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Unpolarized gluon TMDs . . . . . . . . . . . . . . . . . . . . 63

4.4 How to improve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Semi-Inclusive DIS 67
5.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Flavor-dependent Gaussian ansatz . . . . . . . . . . . . . . . 71
5.2.2 Assumptions concerning average transverse momenta . . . . . 73

5.3 Analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 The replica method . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



CONTENTS

5.4.1 Default fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.2 Fit with Q2 > 1.6 GeV2 . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Fit with pions only . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.4 Flavor-independent fit . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Electron-positron annihilation 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Multiplicities for e+e− annihilation into two hadrons . . . . . . . . . 92
6.3 TMD evolution of fragmentation functions . . . . . . . . . . . . . . . 95

6.3.1 Input fragmentation functions at the starting scale . . . . . . 95
6.3.2 The µb prescription . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3 The fixed-scale prescription . . . . . . . . . . . . . . . . . . . 101
6.3.4 Summary of evolution kernels . . . . . . . . . . . . . . . . . . 103

6.4 Flavor dependence of fragmentation functions . . . . . . . . . . . . . 103
6.5 Predictions for multiplicities . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.1 Sensitivity to nonperturbative evolution parameters . . . . . 105
6.5.2 Sensitivity to evolution schemes . . . . . . . . . . . . . . . . . 107
6.5.3 Sensitivity to prescriptions for the transition to nonperturba-

tive transverse momenta . . . . . . . . . . . . . . . . . . . . . 109
6.5.4 Sensitivity to hadron fractional-energy dependence . . . . . . 110
6.5.5 Sensitivity to the hard scale: from Belle to BES III . . . . 112
6.5.6 Sensitivity to partonic flavor . . . . . . . . . . . . . . . . . . 113

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Electroweak boson production 121
7.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Measurements and uncertainties . . . . . . . . . . . . . . . . . . . . 122
7.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Effects on the peak position . . . . . . . . . . . . . . . . . . . . . . . 127

7.4.1 Summary of peak position shifts . . . . . . . . . . . . . . . . 127
7.4.2 Renormalization scale uncertainty . . . . . . . . . . . . . . . 128
7.4.3 PDF uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.4 αs uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.5 Impact of

〈
k2
T

〉
on Z peak . . . . . . . . . . . . . . . . . . . . 132

7.4.6 Impact of
〈
k2
T

〉
on W± peak . . . . . . . . . . . . . . . . . . 135

7.5 Outlook and future developments . . . . . . . . . . . . . . . . . . . . 138

ix



CONTENTS

8 Quarkonium production 141
8.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Effective description . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.1 Parton model structure . . . . . . . . . . . . . . . . . . . . . 145
8.2.2 Effective structure at LO . . . . . . . . . . . . . . . . . . . . 147
8.2.3 NLO structure . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.4 Matching TMD and collinear distributions . . . . . . . . . . . 151

8.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3.1 Low qT unpolarized cross section . . . . . . . . . . . . . . . . 153
8.3.2 Fixed order calculation . . . . . . . . . . . . . . . . . . . . . 155
8.3.3 Matching low and high qT . . . . . . . . . . . . . . . . . . . . 156
8.3.4 Polarized cross sections . . . . . . . . . . . . . . . . . . . . . 159

8.4 Outlook and future developments . . . . . . . . . . . . . . . . . . . . 160

9 Conclusions and outlooks 161

A Notations and conventions 165

B Symmetric traceless tensors 167

C Time reversal 169

D Correlators and Fourier transforms 175

E Conventions for nonperturbative parameters 179

F Links 181

G Summary 183

H Samenvatting 189

Acknowledgments 193

List of figures 195

List of tables 197

Bibliography 199

x



SCIENTIFIC PUBLICATIONS

This thesis is in part based on the following publications:

1. A. Signori, A. Bacchetta, M. Radici, G. Schnell
Investigations into the flavor dependence of partonic transverse momentum
JHEP 1311 (2013) 194 - arXiv:1309.3507 [hep-ph].
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CHAPTER 1

INTRODUCTION

As far as I see,
all a priori statements in physics

have their origin in symmetry.
H. Weyl

The beauty of the world we live in lies also in the description that we can give
of it. Throughout this thesis, we will investigate the proton structure and present
some of its representations. The proton lies at the core of matter, at the boundary
between the microscopic and the macroscopic world: its properties are shaped by el-
ementary particle physics and, in turn, they forge chemistry and molecular physics.
Physics is a phenomenological science: it combines theoretical and experimental
investigations, and hadronic physics is a clear example of it.

1.1 Particle physics

The Standard Model of particle physics is a Yang-Mills theory [1] with internal local
symmetry (called gauge) group SU(3)c⊗SU(2)I⊗U(1)Y , where the subscripts refer
to the involved quantum numbers: color c, isospin I and hypercharge Y.

The two main categories into which elementary particles are divided are bosons
and fermions (see Fig. 1.1). In the Standard Model, the vector bosons mediate the
interactions. The scalar Higgs boson mediates the field required for the particles
to gain mass in a gauge-invariant way. Fermions are divided into two categories:
leptons and quarks. The latter, coming in six different flavors, are, together with
gluons, the elementary degrees of freedom of the strong force, namely Quantum
Chromodynamics (QCD). Due to the confining nature of the strong force, quarks

1



1. Introduction

and gluons live inescapably bound inside hadrons, particles such as the proton and
the neutron. In this thesis we will focus only on QCD.

QCD is a non-abelian gauge theory with gauge group SU(Nc), Nc = 3 [2,
3]. Quarks live in the fundamental representation of this group, C3, and have
three independent color states. Gluons, physically the mediators of the strong
force and mathematically represented by the gauge connection, live in the adjoint
representation of the group. They span the related Lie algebra, whose dimension
is N2

c − 1 = 8. For this reason, gluons carry 8 independent combinations of a color
and an anticolor charge, equivalent to the octet (8) representation in 3⊗3∗ = 1⊕8.
The Lagrangian density for QCD is:

LQCD = −1

4
F aµνF aµν +

Nf∑
q=1

ψ̄rq(iγ
µDrs

µ −mqδ
rs)ψsq , (1.1.1)

where a is the color octet index, r, s are the color triplet indexes and the sum runs
over the Nf flavor species. The covariant derivative in the Lagrangian is defined
as:

Dµ = ∂µ − igsT aAaµ , (1.1.2)

where gs is the coupling constant, Aaµ is the gluon field (gauge connection) and T a

are the generators of the Lie algebra. The field-strength (curvature) tensor is then
introduced as:

F aµν
.

= ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν , (1.1.3)

with [T a, T b] = ifabcT
c , a, b, c = 1, · · · , 8 , (1.1.4)

where fabc are the structure constants of the gauge group. A SU(3) gauge trans-
formation is a local phase transformation of the form:

U(x) = e−iα
a(x)Ta , (1.1.5)

where αa(x) is a function of space and time. Thanks to the covariant deriva-
tive (1.1.2), the QCD Lagrangian density is invariant under gauge transforma-
tions [4,5]. The connection Aaµ(x) is a geometric tool to introduce the mediators of
forces in particle physics. From the mathematical point of view, it is defined in the
context of fiber bundles [2, 3] and parallel transport (Sec. 2.7).

1.2 From quarks to TMDs

The non-abelian character of QCD leads both toward confinement of quarks and
gluons inside hadrons at low energy and to asymptotic freedom at high energies (see
Fig. 2.3). For this reason, quarks and gluons can be observed as free particles when

2



1.2. From quarks to TMDs

(a) (b)

Figure 1.1. An overview of the properties of the force carriers, the Higgs boson (a)
and the matter constituents (b) within the Standard Model, the theory which gives a
mathematical context to particle physics. For more details and extensive summaries see
The Particle Data Group website and [6]. Credit: CPEP 2016.

probing a proton in a high-energy scattering process (Chap. 2). Looking at the
debris of the proton undergoing a scattering experiment we can reconstruct maps
of the proton structure in position and momentum space. What we actually observe
is the manifestation of hadron structure in a chosen experiment. This manifestation
changes, in some cases, according to the process considered and evolves with the
energy at which the proton is probed.

Through high-energy scatterings we can access only certain projections of the
full information available in coordinate and momentum space. For example, the
simplest maps in one-dimensional momentum space that we can reconstruct are
the parton distribution functions (PDFs), which describe the probability of finding
a quark or a gluon inside the proton, with a fraction x of the momentum carried
by the proton (see Fig. 1.2). We know these one-dimensional maps in good detail
(see Sec. 4.3). These pictures are only sensitive to the collinear motion of quarks
and gluons inside the proton and the other momentum components are integrated
over (see Chap. 2). It is possible to enrich the description and access the dynamics
of quarks and gluons in momentum space in three dimensions. In this case, the
maps are named Transverse-Momentum-Dependent Parton Distribution Functions
(TMD PDFs or TMDs). The TMD PDFs enlarge the amount of nonperturbative
information carried by ordinary PDFs, opening the window onto explorations of the
multidimensional structure of hadrons in momentum space.

1.2.1 Why investigating hadron structure

Hadron structure is related to fundamental questions in particle physics and mul-
tidimensional maps can help in answering them. For example, we know that the
proton is a fermion with spin 1/2, but presently we do not know how to precisely

3
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Figure 1.2. Collinear parton distribution functions studied by the NNPDF collaboration,
probing the proton structure at two different energy scales (102 GeV2 and 104 GeV2).
Different colors label different flavors for quarks and the gluons. The differences between
the curve for different flavors are also of nonperturbative origin.

attribute this value to its elementary constituents. We know how to partition the
proton spin among the orbital angular momentum and the spin of quarks and
gluons [7–12], but we do not have very precise numerical determinations of the in-
dividual contributions, in particular for the orbital angular momentum [13]. To this
extent, three-dimensional distributions of quarks and gluons in momentum space
are fundamental tools: they encode all the possible spin-orbit and spin-spin cor-
relations between the proton and its constituents and a detailed understanding of
their structure can provide information on the contributions of quarks and gluons
to the proton spin (see e.g. [14]). For example, the Sivers TMD PDF describes
the correlation between the spin of a transversely polarized proton with the orbital
angular momentum of the parton considered.

The spin structure of the proton is just one among the open problems in QCD,
together with, e.g., a quantitative description of confinement and of the hadronic
mass spectrum and the impact of hadron structure in (very) high-energy physics.
The latter is discussed throughout the thesis, with a particular focus in Chap-
ters 4, 5, 6, 7 and 8. Concerning hadron masses, the Higgs mechanism describes

4
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1.2. From quarks to TMDs

the origin of mass for elementary particles and the three valence quarks together
account only for a tiny fraction of the mass of the proton (938 MeV [6]). The rest
is due to the QCD dynamics, as lattice calculations accurately predict. A detailed
knowledge of multidimensional hadron structure will definitely help in shedding
light on these fundamental issues. Despite many efforts, though, our level of knowl-
edge is still limited compared to the collinear level, but thanks to improvements on
both the theoretical and the experimental sides (Sec. 4.4) we are moving from an
exploratory phase to a precision and consolidation phase.

1.2.2 3D maps in momentum space

Transverse-momentum-dependent parton distribution functions and their fragmen-
tation counterpart (fragmentation functions, FFs) depend on the longitudinal and
transverse components of the momentum of partons with respect to the parent
hadron momentum, as well as on their flavor and polarization state. In the last
years several data for single- and double-spin asymmetries in semi-inclusive deep-
inelastic scattering (SIDIS) have been accumulated and can be interpreted as origi-
nating from the effect of specific combinations of (polarized) TMD PDFs and TMD
FFs (for a review, see, e.g., [15–18]).

In the context of factorization theorems, TMD PDFs and TMD FFs can be
defined via physical observables that are sensitive to processes with two separate
scales. For example, the appropriate factorization theorem for the SIDIS cross
section holds true if the virtuality Q of the hard photon is much larger than the
transverse momentum Ph⊥ of the observed hadron [19, 20], which is accounted for
by partonic transverse momenta.

In order to work with gauge invariant hadronic matrix elements, it is neces-
sary to include the so-called gauge links, related to gluon radiation (Sec. 2.7), in
the operator definition of TMDs. Gauge links provide also the necessary phase
to generate the above mentioned spin asymmetries [21–23]. Because initial-state
and final-state gluon interactions are summed into different gauge links, the TMD
functions may be process-dependent, although parity and time reversal invariance
simplify this non-universality to calculable proportionality factors [24].

To account for scale dependence, the TMD functions obey evolution equations
that generalize the standard Renormalization Group Evolution (RGE) to a multi-
scale regime in hard processes. Despite recent developments, the phenomenological
implementation of these effects is still under active debate [25–28].

From the experimental point of view, only few data sets are available with
enough statistics allowing for a multidimensional analysis and a direct access to
transverse momentum distributions [29,30]; in other cases, the studies were limited
in the multidimensional coverage and by the restricted variety of targets and final-
state hadrons [31–35].

5



1. Introduction

1.3 This thesis

In this thesis we will present strategies and studies to deepen into the phenomenol-
ogy of TMDs.

In Chap. 1 we introduce the Standard Model of particle physics as a gauge the-
ory. The need for multidimensional distributions to investigate the nonperturbative
structure of hadrons is addressed and an overview of the properties of TMDs, 3D
maps in momentum space, is presented.

Chap. 2 will briefly overview the genesis of the parton model for hadron struc-
ture and introduce the Operator Product Expansion technique and the Diagram-
matic Approach. Relying on the latter, we will present the formalism leading to the
definition of TMD PDFs and TMD FFs for quarks and gluons. We will address the
role of discrete symmetries, gauge symmetry and their interplay. The latter gives
rise to time reversal odd (T-odd) effects, a peculiarity of the TMD formalism for
distribution functions. A detailed analysis of some T-odd structures will be given
in App. C.

Chap. 3 will review the role of TMD factorization and evolution in high-energy
scattering processes. We will also look at the definition of TMD structures from the
point of view of perturbation theory, complementing the analysis given in Chap. 2.
We will focus on perturbative accuracy of evolution and address the role of non-
perturbative contributions in different kinematic regions. Other factorization and
evolution schemes will be briefly reviewed.

In Chap. 4 we will compare different experimental observables useful to provide
an insight into the three-dimensional structure of the proton in momentum space.
Moreover, we will briefly overview the status of TMD phenomenology, focusing on
unpolarized distributions and we will present possible strategies to improve the cur-
rent level of knowledge.

Chap. 5 will present an extraction of unpolarized TMD PDFs and TMD FFs
from data of Semi-Inclusive Deep-Inelastic Scattering (SIDIS), taking into account
the flavor and kinematic dependence of the average square intrinsic transverse mo-
mentum of quarks. The analysis is based on the “replica method”, where N replica
of the original experimental data are generated and fitted, producing statistical dis-
tributions for best-fit parameters. The power of the replica method in fitting data
and in predicting observables will be presented in Chap. 5, 6, 7.

Given the results presented in Chap. 5, what is their impact on medium/high-
energy physics? We will address this question first considering e+e− annihilation
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1.3. This thesis

and then electroweak boson production. Chap. 6 will analyze the combined im-
pact of TMD evolution effects and the flavor and kinematic dependence of intrinsic
transverse momentum on electron-positron annihilation into two almost back-to-
back hadrons. We will test the impact of different phenomenological choices on
hadron multiplicities. In particular, we will compute predictions for two different
experimental setups, Belle and BES-III, investigating the impact of the hard en-
ergy scale on the possibility of studying nonperturbative parameters.

Chap. 7 will investigate the impact of the flavor dependence of intrinsic trans-
verse momentum on the transverse momentum spectrum of electroweak boson pro-
duced at the LHC. We will estimate the uncertainties introduced by this yet unex-
plored degree of freedom and compare them to the other sources of error already
presented in literature.

Chap. 8 will consider the role of gluons in hadronic collisions. First of all,
we will investigate TMD factorization for quarkonium production in proton-proton
collisions from an effective field theory point of view, focusing on perturbative and
nonperturbative contributions to gluon TMD PDFs. In particular, the role of lin-
early polarized gluons in unpolarized collisions will be studied. For reference, we will
also overview past investigations (Sec. 8.1). We will present predictions for unpo-
larized proton-proton collisions, looking at the complete spectrum in the transverse
momentum of the produced quarkonium. In particular, we will address the problem
of the matching between TMD and collinear factorization. We will also present a
strategy to extract time reversal odd gluon TMD PDFs from polarized collisions at
A Fixed Target experiment at the LHC (AFTER@LHC [36,37]).

Chap. 9 will summarize the results presented in the previous chapters and out-
line strategies for the future.

The goal of this thesis is two-fold: first of all, the results achieved during the
PhD program will be presented; secondly, I would like to leave an introduction
to TMD phenomenology, which might be useful for researchers interested in the
field. In the following, I will use a first-person plural perspective. This is because
the results presented in this thesis have not been achieved by the author only, but
through a collective effort based on fruitful collaborations. This is a literary form
to acknowledge the people that took part in it.
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CHAPTER 2

UNRAVELING HADRON STRUCTURE

Stat rosa pristina nomine,
nomina nuda tenemus.

U. Eco

2.1 The parton model of hadron structure

The quest to understand what lies in the deep heart of matter reached a milestone
around 1910, when Geiger and Marsden, under Rutherford’s supervision, performed
scattering of α particles off a thin gold foil [38], observing many particles scattered
with an angle bigger than 90 degrees (Fig. 2.1). To explain this phenomenon, they
made the hypothesis that a positive electrically charged nucleus lies at the core of
atoms. This fundamental experiment opened the way to nuclear physics. Almost
50 years later, between 1967 and 1973, scientists at MIT and SLAC repeated the
same experiment but on a smaller scale [39]. Performing scattering of electrons off a
proton target, they investigated the inner structure of protons, relying on the theory
of Quantum Electrodynamics (QED) to control the behavior of the probe (the
photon). This process, called Deep-Inelastic Scattering (DIS) (see Fig. 2.2), is an
“evolution” of Rutherford’s scattering to higher energies of the probe, which enables
a finer resolution of the components of the nuclei and allows to unravel the inner
structure of the proton. In those years, Gell-Mann and Ne’eman proposed [40, 41]
an explanation of the spectrum of the observed baryons and mesons through group
theory. This led also to the concept of quarks, hypothetical elementary constituents
of strongly interacting particles [42,43].

DIS experiments supported this idea, because their outcome was compatible
with elastic scattering off free, pointlike, spin one-half, electrically charged particles:
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2. Unraveling hadron structure

Figure 2.1. In Rutherford’s experiment α particles scatter off a gold foil, bouncing in
different directions. The amount of particles scattered at high angles led to the hypothesis
of an atomic nucleus with positive charge. Credit: Encyclopedia Britannica).

proton remnant

photon

electron

Figure 2.2. The process of Deep-Inelastic Scattering (DIS), where an electron scatters off
a proton, probing its structure through the exchange of a virtual photon. Another electron
is observed in the final state. DIS has been the first fundamental tool to investigate the
structure of the proton.

at high energy, the proton looked like an ensemble of free charged fermions. This
simple model was named parton model after Feynman and Bjorken [44].

The cross section for a scattering process between a lepton and a hadron is
proportional to the contraction between a leptonic tensor L and a hadronic tensor
W :

dσ ∼ LµνWµν , (2.1.1)

where, in general, the form of the two tensors depend on the process. The hadronic
tensor cannot be completely calculated, due to the nonperturbative nature of the
target. Nonetheless, its structure can be parametrized following hermiticity, the

10



2.1. The parton model of hadron structure

discrete symmetries of the theory and Ward identities as guiding principles [4]. In
the case of a QED-mediated process, it can be represented as:

Wµρ = W1(ν, q2)
(
− gµρ +

qµqρ

q2

)
+
W2(ν, q2)

M2

(
pµ− p · q

q2
qµ
)(
pρ− p · q

q2
qρ
)
, (2.1.2)

where p is the four-momentum of the parton, M is the mass of the proton, q is
the four-momentum of the exchanged photon, ν is its energy, q2 = −Q2, Q2 > 0,
is its invariant mass squared1 and W1,2(ν, q2) are two nonperturbative functions
describing the structure of the proton as seen by the probe. Experimentally it
was observed that these two functions do not depend on the invariant mass of the
photon, but only on a Lorentz invariant variable measuring the degree of inelasticity
of the reaction, named Bjorken-x (xB):

νW2(ν,Q2) −→ F2(xB) , (2.1.3)

MW1(ν,Q2) −→ F1(xB) , (2.1.4)

xB
.

=
Q2

2P · q , (2.1.5)

where P is the four momentum of the proton. This property of the structure func-
tions in deep-inelastic regime (ν, Q2 →∞, xB fixed) is called Bjorken scaling [45].
Such a behavior of the structure functions coincides with the one obtained by the
elastic scattering of a lepton off a free pointlike spin 1/2 particle and leads to the
parton model interpretation of the proton structure. In particular, assuming that
the elementary scattering is elastic and mediated by one photon only, we obtain the
Callan-Gross relation [46]:

2xBF1(xB) = F2(xB) = xB
∑
f

e2
fφf (xB) , (2.1.6)

where φf (xB) is a density function describing the probability of finding a parton of
flavor f inside the proton, as a function of xB . The concept of density function (and
its generalizations) is at the core of the phenomenology of the proton structure, as
we will see in the next chapters. (2.1.6) implies that partons carry a well defined
fraction xB of the proton momentum and the probability density φf does not depend
on the energy scale at which the snapshot of the proton by the virtual photon has
been recorded.

Notably, the Callan-Gross relation has been experimentally verified by measur-
ing a vanishing ratio between the structure functions WL, WT (related to W1,2 and
accounting for the two polarization states in which the photon probes the proton)

1In SIDIS the photon is space-like, in hadronic collisions instead it is time-like, q2 = Q2,
Q2 > 0.
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2. Unraveling hadron structure

as a function of xB [47, 48].
After the introduction of Quantum Chromodynamics between 1972 and 1973

as a non-abelian gauge theory (thus asymptotically-free) [49–53]2, the partons were
identified with the quarks, which, together with the gluons, constitute the elemen-
tary degrees of freedom of the theory at high energy. The fact that quarks appear
as free partons when the energy of the probe is high enough is due to the asymptotic
freedom of QCD, namely the fact that the coupling constant αs(µ) is governed by
a negative derivative with respect to the renormalization scale µ [4] (see Fig. 2.3).

10 100 1000
Q [GeV]

0.05

0.10

0.15

0.20

0.25

α
s(

Q
)

αs(MZ ) = 0.1171±0.0075
0.0050 (3-jet mass)

αs(MZ ) = 0.1185± 0.0006 (World average)

CMS R32 ratio

CMS tt prod.
CMS incl. jet
CMS 3-jet mass

HERA
LEP
PETRA
SPS
Tevatron

Figure 2.3. The coupling constant of QCD is governed by a negative derivative with
respect to the renormalization scale µ. This leads to asymptotic freedom [54] of quarks
and gluons and suggests that the theory is confined at low energy scales (e.g. at the scale
of the proton mass). The picture collects part of the available experimental determinations
at different energies and the world average at the Z pole [6, 55].

Despite being successful in describing the DIS experimental results, it was soon
realized that the parton model is a poor approximation of QCD. In particular,
gluons and all the effects induced by them are neglected. Among the others, two
striking violations of the parton model are the violations of Bjorken scaling [4]
and the momentum sum rule. Violations of the Bjorken scaling are induced by
perturbative corrections (see Fig. 2.4) proportional to αs(Q2)lnQ2 (see Chap. 3),
suppressed when the value of the coupling constant is small. These corrections
are accounted by the DGLAP evolution equations [4]. Increasing the energy scale,
these equations allow to resolve finer structures. Investigations of the (longitudinal)
momentum sum rule reveals that, neglecting gluons, quarks can reproduce only
about half of the momentum of the parent proton.

2In [49–51] the asymptotic freedom on non-abelian gauge theories was discussed. In [52,53] the
concept of color symmetry as non-abelian gauge symmetry was proposed.
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Pgg PqgPqq Pgq

Figure 2.4. The diagrams related to the lowest order QCD splitting functions. Each
splitting is described by the probability that a parton p becomes p′ carrying a fraction of
the momentum carried by p. DGLAP equations govern their behavior with the hard scale
Q2 [4].

2.2 The hadronic tensor

The hadron tensor W describes the interaction between the probe and the hadron
target. At the level of operators, the hadronic tensor introduced in (2.1.2) is pro-
portional to a product of matrix elements of currents (whose nature depends on the
interaction):

Wµν ∼ 〈in|jµ(0)|out〉c 〈out|jν(0)|in〉c . (2.2.1)

If the probe is a photon, this feels the electromagnetic current in the target, acting
on the “in” state and generating the “out” state. The subscript c indicates that
only the connected diagrams are considered3. More precisely, the current j acts
on the on-shell |in〉 state producing an on-shell |out〉 state, respecting conservation
of four-momentum. In the final state there is the remnant X of the target and,
depending on the process, also other on-shell particles. Integrating over all possible
on-shell momenta PX of the remnant, the hadronic tensor can be in general written
as:

2MWµν
[proc] =

1

(2π)4

∑
X

∫
d3PX

(2π)32EX
(2π)4δ(4)(Pin − Pout)Hµν

[proc] , (2.2.2)

where the argument of the delta function and the form of the H tensor (contain-
ing the products of currents) depend on the process [proc] under consideration. In
this thesis we will deal mainly with three processes involving hadrons in the ini-
tial and/or final state(s): one-particle inclusive (or semi-inclusive) deep inelastic
scattering (1P DIS or SIDIS), Drell-Yan (DY) and semi-inclusive electron positron
annihilation into two almost back to back hadrons (e+e− → 2h). The H tensors
involving the currents are:

Hµν
[`h] = 〈PS|jµ(0)|PhSh;PX〉 〈PhSh;PX |jν(0)|PS〉 (2.2.3)

Hµν
[DY ] = 〈PASA;PBSB |jµ(0)|PX〉 〈PX |jν(0)|PASA;PBSB〉 (2.2.4)

Hµν
[e+e−] = 〈0|jµ(0)|Ph1

Sh1
;Ph2

Sh2
;PX〉 〈Ph1

Sh1
;Ph2

Sh2
;PX |jν(0)|0〉 . (2.2.5)

3From now on, it will be omitted, but it is understood that we always work with connected
diagrams.
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2. Unraveling hadron structure

In the case of SIDIS (2.2.3), |PS〉 is the in-state representing a proton with four-
momentum P and spin S and the out state |PhSh;PX〉 represents the remnant of
the proton with momentum PX and one hadron h detected in the final state with
momentum Ph and spin Sh. For DY (2.2.4), A and B refer to the two colliding
hadrons (protons) in the initial state. In e+e− annihilation (2.2.5), |0〉 is the vacuum
state of QCD (the reaction is initiated by two leptons) and in the final state we
have two hadrons h1 and h2.

Relying on the previous equations, the cross sections differential with respect
to the three-momentum of the particle(s) in the final state are:

SIDIS : EhE`′
d6σ

d3`′d3P h
=
M

s

α2
s

Q4
L[`h]
µν W

µν
[`h] (1 +O(αs)) (2.2.6)

DY : E`E`′
d6σ

d3`d3`′
=

α2
s

sQ4
L[DY ]
µν Wµν

[DY ] (1 +O(αs)) (2.2.7)

e+e− → 2h : Eh1
Eh2

d6σ

d3P h1
d3P h2

=
α2
s

4Q6
L[e+e−]
µν Wµν

[e+e−] (1 +O(αs)) . (2.2.8)

For SIDIS (2.2.6), `′ is the four-momentum of the lepton in the final state, M is the
mass of the proton target, s the Mandelstram invariant [4]. In DY (2.2.7), ` and `′

represent the detected leptons in the final state. In all processes, Q is the relevant
hard scale and the tensors Lµν represent the leptonic currents [56,57]. Perturbative
corrections to the tree level processes are summarized in the O(αs) terms.

There are two main methods to further resolve (2.2.1), accessing the informa-
tion encoded in the structure of the Hµν

[proc] tensor. The first one is the operator
product expansion (OPE), proposed by Wilson [58] in 1968. The second one is
the diagrammatic approach, proposed by Politzer [59] in 1980. Both establish a
hierarchy of corrections as powers of the inverse hard scale (the twist4 expansion),
complementary to the corrections proportional to αs introduced by the perturba-
tion theory. The OPE is mathematically proven only for fully inclusive DIS and
e+e− annihilation. The diagrammatic approach is a generalized form of the parton
model, which assumes an extension of the OPE to less inclusive cases.

2.3 The Operator Product Expansion

For a detailed treatment of the OPE see [4, 5, 57, 60–62]. Within the hadronic
tensor, it would be ideal to separate in distinct pieces the hadronic (nonpertur-
bative) part from the part describing the interaction with the probe (perturbative
and calculable). The goal is to factorize the perturbative contributions from the

4Different definitions of twist exist, which are not equivalent. Nonetheless, they all introduce
an expansion in powers of the inverse hard scale. For more details see Sec. 2.3.
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2.3. The Operator Product Expansion

nonperturbative ones, for which universality properties hold between different pro-
cesses [24].

Wilson proposed [58] that a product of local operators A(x)B(y) has an expan-
sion, when |x− y| is small, of the form:

A(x)B(y) =
∑
n

Cn(x− y)On(x) . (2.3.1)

This expression is called the Operator Product Expansion (OPE) of the non-local
product A(x)B(y) on the basis of local operators On(x). The OPE has been demon-
strated by Zimmerman in perturbation theory [63] for a time-ordered product of
operators (which, in turn, can be normal-ordered products of field operators, as
for a current). It turns out that the only two processes for which an OPE on W

is allowed are inclusive DIS and e+e− annihilation [5]. This is because in both
cases the hadronic tensor contains a commutator of currents, which is related to
time-ordered products of currents. For DIS, e.g.:

2MWµν
[DIS] =

1

2π

∫
d4x eiq·x〈PS| [jµ(x), jν(0)] |PS〉 , (2.3.2)

sign(x0) [jµ(x), jν(0)] = T [jµ(x)jν(0)]− T [jµ(x)jν(0)]† . (2.3.3)

From (2.3.3), it is possible to show [5] that W in the case of inclusive e+e− is domi-
nated by short distances x ∼ 0 (short distance expansion). In inclusive DIS, instead,
there is a dominance from the light-cone region x2 ∼ 0 (light cone expansion).

Performing an OPE of the hadronic tensor in DIS, we can show that the parton
model is not just an effective way of interpreting experimental results, but it can
be formally derived calculating (2.3.2) and (2.3.3) relying on the expression for
currents of free fermion fields (as the partons are in DIS regime):

jµ(x) = : ψ̄(x)γµψ(x) : . (2.3.4)

In this way, it is possible to isolate four different contributions to the hadronic tensor
(2.3.2), with a diagrammatic interpretation given in Fig. 2.5 [5]. The first one (a)
involves the identity I and, being disconnected, does not contribute to it. Part (b)
represents the extraction of an (anti)quark from the proton and its reinsertion in
the remnant at distance |x| after the interaction with a photon, via a vector or an
axial coupling. We name these contributions OV,A(x, 0), respectively. Only OV is
probed in unpolarized DIS. The last one, named Oµν , (c) is the least singular and
involves the extraction of two partons.

Accordingly, the hadronic tensor of fully unpolarized inclusive DIS is dominated
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2. Unraveling hadron structure

(a) (b) (c)

Figure 2.5. Diagrammatic interpretations of the operators contributing to (2.3.2). (a)
represents the identity operator I, namely there is no interaction between the probe and
the proton. (b) represents the action of OV,A(x, 0), which extract an (anti)quark from the
proton and reinsert it at a distance x. (c) represents Oµν(x, 0), which performs multiple
extractions and insertions of (anti)quarks.

by the bi-local operator OV (x, 0). Inserting its expression [5] in (2.3.2) we get:

2MWµν
[DIS] ∼

∫
d4xeiq·xxλσµλνρ〈PS|OρV (x, 0)|PS〉 (2.3.5)

∼ 〈PS| : ψ̄(x)γρψ(0) : |PS〉|ξ+=0
− 〈PS| : ψ̄(0)γρψ(x) : |PS〉|ξ+=0

.

Consistently with the diagrammatic interpretation given in Fig. 2.5, we can interpret
the first term as the extraction of a quark from the proton at point x and its
reinsertion into the remnant at point 0, restoring a proton in the final state. The
second term has the same interpretation, but in terms of an antiquark. Notably, the
matrix elements are evaluated at fixed light cone time ξ+ = 0, so the time ordering
on the currents eventually does not have a practical effect. Mathematically the last
two terms can be seen as the trace of two Dirac structures, γρ and a quark-quark
correlator, proportional to the expectation value on the proton state of the fermion
bilinear ψ̄(x)ψ(0). This object describes part of the nonperturbative quark content
of the proton (see Sec. 2.6).

The concept of twist

In general, the light-cone expansion for the product of two currents is of the form:

jµ(x)jν(0) =
∑
i,n

C(i)
n (x2)xµ1 · · ·xµnO(i)

µ1···µn(0) , (2.3.6)

where O(i)
µ1···µn is an irreducible symmetric traceless tensor of rank n, referred to as

the spin of the local operator. The singularity structure of the coefficients functions
C

(i)
n is crucial to determine which operators contribute most, but their form depends

on the structure of the currents (it is not a general property of the OPE). In a free
field theory we can perform a power counting of the mass dimensions in (2.3.6) and
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see that the singularity structure of the coefficients is of the form:

C(i)
n (x2) ∼ (x2)−dj−n/2+d

(i)
O (n)/2 , (2.3.7)

where dj is the dimension of the current j and d
(i)
O (n) is the dimension of the

local operator O(i)
µ1···µn . The strength of the singularity for each term in the OPE is

governed by d(i)
O (n)−n, the twist of the local operator O(i)

µ1···µn [64]. The smaller the
twist of the operator, the higher is the singularity of its coefficient and, accordingly,
the more important the local operator will be in physical applications. Performing
the Fourier transform in the definition of the DIS W tensor (2.3.2) in the free field
case, the coefficient functions are proportional to [62,65]:

(
M

Q

)d(i)
O (n)−n−2

(2.3.8)

This suggests that we can evaluate the relevance of local operators in the OPE
looking at the power of M/Q to which they contribute to the coefficient functions5.
To correctly evaluate twist t effects in a OPE, we need to identify all the contribution
of twist t from different local operators i (with increasing spin) and re-sum them
in a “tower” of fixed twist t. This procedure (first expanding the bilocal operators,
Fourier transforming and then summing all the contributions with the same twist),
though, is rather lengthy. It should be possible to introduce a concept of twist
directly on the non-local operators.

A working definition of twist for a matrix element of a bi-local operator is given
in [62], as the order inM/Q at which the element contributes to the cross section of
deep inelastic processes. Twist-t matrix elements contributes as (M/Q)t−2. From
a phenomenological point of view, the working definition is more practical than
looking at the OPE-based twist and allows to label immediately a distribution or
fragmentation function as a leading or sub-leading contribution in powers of M/Q

(for this reason in the following we will adopt this definition). Matrix elements
of definite twist in the working sense should coincide with the tower of resummed
local operators of the same twist and increasing spin, but this is not always the
case [62, 65]. The twist as given by the working definition, though, coincides with
the canonical dimension of the operator in the matrix element [57]. As an example,
given the light-cone vector n− as defined in App. A, the operator6

ψ(0)/n−ψ(x) (2.3.9)

5This argument, based on power counting, holds true when no other mass scales appear in the
theory. In an interacting theory, extra care is needed [4, 5, 60,61].

6See Sec. 2.6 for definitions and details.
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2. Unraveling hadron structure

has canonical dimension 2 (in a frame where dim[n−] = −1) and its matrix ele-
ments on the proton states contribute to cross sections as (M/Q)0. We will see in
Sec. 2.6.3 that the operator in (2.3.9) is related to the unpolarized and Sivers quark
distributions. The same counting holds for the operator

Fn−i(0)Fn−j(x) , (2.3.10)

which represents the gluon content of the proton at twist-2 (see Sec. 2.6.4).
Thanks to the twist decomposition and considering the possibility of introduc-

ing perturbative corrections, it is possible to give a description of QCD-observables
based on a double expansion in αs and M/Q, as illustrated in Fig. 2.6. In Chap. 3

1

1

↵s ↵2
s

M/Q

(M/Q)2

· · ·

· · ·

power
corrections

perturbative
corrections

twist
expansion

coupling
expansion

QCD
observables

Figure 2.6. A physical observable can be expanded in terms of two parameters: the
coupling constant αs, quantifying the zoom in the perturbative structure of the theory,
and the ratio M/Q, quantifying the level of accuracy in the nonperturbative structure of
QCD. For a specific correlator, the twist expansion is limited to a certain order, whereas
the perturbative one is not.

a further expansion will be added, in terms of logarithmic corrections arising from
the renormalization/factorization scale.

Since the hadronic tensor in DIS is dominated by the light-cone region x2 ∼ 0,
we will work with the light-cone expansion for four-vectors, relying on a light-
cone basis (see Sec. 2.6 and A). Accordingly, the theory will be quantized at fixed
light-cone time ξ.n = ξ+ = 0 and not at “standard time” ξ0 = 0. In standard
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Minkowski components, a light-cone expansion corresponds to working in a frame
where the target has very high (infinite in the DIS limit) momentum, called Infinite
Momentum Frame (IMF). Definitions that will be given in the next chapters with
light-cone kinematics shall be transposed to the IMF only. Working with the light
cone kinematics corresponds also to introducing good and bad components for the
fields [57,62]. The good components of Dirac spinors are independent propagating
degrees of freedom; the bad components are fields depending (through the Dirac
equation) on the good quarks components and gluons. Because of their quark-gluon
composite nature, they play a role only beyond twist two. Since the short-distance
condition (x ∼ 0) implies the light-cone condition (x2 ∼ 0), the view point of light
cone coordinates can be extended to the inclusive e+e− too.

The Fourier transform in the definition of the hadronic tensor for semi-inclusive
processes guarantees that for all the processes the light-cone region x2 ∼ 0 is a
dominant one [5] (despite potentially not being the only one because of the absence
of the commutator [62, 65]). This legitimizes us in using light-cone variables to
describe the kinematic of the processes. From (2.2.5) we see that the hadronic
tensor for e+e− → h1h2 cannot be represented by a product of currents, because
the final states do not allow the usage of a completeness relation on the remnant
states in (2.2.2). The same holds for SIDIS, (2.2.3). In the case of Drell-Yan (2.2.4),
the hadronic tensor is in a form of a product of currents, but it is not dominated by
the light-cone region only, so an OPE is not applicable (for the role of time ordering
see the comments after (2.3.5)). Accordingly, we need to find a way of generalizing
this approach to less inclusive processes.

2.4 The diagrammatic approach

One could try to identify the dominant diagrams counting their degree of divergence
in powers of the free fermion propagator [62,65]. This approach introduces the same
ordering of operators rigorously achieved by the OPE where it is applicable [66,67]
and serves as a guideline to perform an expansion in powers of M/Q (working
twist) for bi-local operators in semi-inclusive processes, classifying the contributions
according to the OPE philosophy. This approach, introduced by Politzer in [59], is
called “diagrammatic expansion”. In essence, a factorization of the cross section in
terms of hard partonic parts and soft hadronic parts is assumed in this approach: it
is the starting point of the calculation, which classifies soft hadronic parts according
to the concept of twist. Moreover, at a fixed twist order, it is possible to check if
the factorization holds true introducing αs correction. This topic will be addressed
in Chap. 3.

The diagrammatic approach can be seen as a generalization of the parton model,
which allows to unravel power corrections not accessible from the simple parton
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picture, nor from its improvements via pQCD [68–70].

Outline of the approach

There are a number of assumptions underlying this approach: incoming and out-
going hadron must be well separated in momentum space (Pi · Pj ∼ O(Q2), where
i, j run among in and out states and Q2 is the hard scale of the process), inter-
actions between outgoing jets can be neglected, interactions can be adiabatically
introduced [56]. The procedure to calculate a cross section can be outlined in the
following steps [56]:

1 choose a perturbative accuracy and write all the possible Feynman diagrams
relevant to a process

2 replace external spinors and polarization vectors with appropriate correlators
(see Sec. 2.5); each correlator can contribute to different twist orders

3 impose total momentum conservation via (2π)4δ(4)(Pin − Pout)

4 use standard Feynman rules to calculate any QED, EW or perturbative QCD
(pQCD) part

5 compute the cross section dividing by the flux and multiplying by the phase
space of the produced particles.

The diagrammatic approach allows to express any cross section in a set of corre-
lators, each of which contributes to different twist orders. Then, according to the
accuracy in M/Q, only certain contributions from each correlator are retained. In
Sec. 2.5 we will investigate the correlators mentioned in point 2.

2.5 Correlations in spacetime

In order to grasp the meaning of correlators, let us start from QED. The wave
function of an electron shows up as the spacetime dependent coefficient in the
expansion of the fermionic quantum field7 ψ(x) :

ψ(x) =
∑
s

∫
d3k

(2π)32Ek

(
b̂k,s u(k, s)e−ik·x + d̂†k,sv(k, s)eik·x

)
, (2.5.1)

where k is the four-momentum of the particle, s =1,2 is the polarization index, b̂k,s
and d̂†k,s are creation/annihilation operators satisfying equal-time anticommutation
relations. The wavefunction of a free electron is a plane wave multiplied by a Dirac
spinor:

ψk,s(x) = u(k, s)e−ik·x = 〈0|ψ(x)|k, s〉 . (2.5.2)
7Eq. (2.5.1) is consistent with (2.5.3) and different from the convention used in [4].
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2.5. Correlations in spacetime

The wavefunction can be thought as the probability amplitude of “presence” for
the fermion at spacetime point x and the field operator ψ connects the one-particle
(1P) state |k, s〉 to the vacuum state |0〉. In a scattering process between two
electrons, we need such wavefunctions to account for electrons in the initial and/or
final states [4]. The completeness relation for Dirac spinors is used to compute cross
sections. For a massless fermion it reads:∑

s

ui(k, s)ūj(k, s) = /kij , (2.5.3)

where i,j are Dirac indexes. Inserting (2.5.2) in (2.5.3), we see that the Dirac matrix
/kij is related to the expectation value on 1P states of a local operator:

/kij =
∑
s

〈ks|ψ̄j(x)|0〉〈0|ψi(x)|ks〉 →
∑
s

〈ks|ψ̄j(x)ψi(x)|ks〉 , (2.5.4)

where we recognized in |0〉〈0| the identity in the Fock space with zero particles.
Note that the in (2.5.4) the middle term refers to electrons, whereas the last one
contains both electrons and positrons. In QCD quarks and gluons are not free, but
bound inside hadrons. For this reason, at the operator level the wavefunction of a
quark inside a proton needs to be modified into:

〈0|ψ(x)|ks〉 ←→ 〈X |ψ(x)|P 〉 , (2.5.5)

where |P 〉 is the proton state labeled by the momentum four-vector P and 〈X |
is the final on-shell state for the remnant X (with momentum PX) of the proton,
after the extraction of one quark performed by the operator ψ. We would like to
generalize the completeness relation for an electron to the case of a quark bound
inside a proton. Plugging (2.5.5) in the first part of (2.5.4), integrating over all
the possible values for the on-shell PX four-momentum, summing over all the other
quantum numbers X of X, imposing momentum conservation on the extraction of
the quark, we get:

∑
X

∫
d3PX

(2π)32EX
〈P |ψ̄j(x)|X 〉〈X |ψi(x)|P 〉δ(4)(p+ PX − P )

.
= Φij . (2.5.6)

This is the analogue of (2.5.3) for a quark with four-momentum p bound inside a
proton with momentum P (the sum over the quark polarization has been intended).
Expanding the delta distribution and using the eigenvalue equation for momentum
operators, we can further express this Dirac matrix as:

Φij(p;P ) =
1

(2π)4

∫
d4ξeip·ξ〈P |ψ̄j(x)P3∗ψi(x+ ξ)|P 〉 , (2.5.7)
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2. Unraveling hadron structure

where ξ is the non-locality in spacetime introduced by the delta function. The
extraction of a color triplet (quark) from the proton forces the remnant in anti-
triplet color configuration. For this reason, the completeness relation over the
remnant state produces an identity operator in the Hilbert space of the anti-triplet
configuration, P3∗ . For sake of brevity this projector will be omitted in the following.
(2.5.7) is the analogue for a quark of (2.5.4).

The wavefunction of a quark inside a hadron is determined by QCD in a range
of energies where the coupling constant αs is too high to apply perturbation theory.
As a consequence, we can propose a relation (which will be formally explained in
Sec. 2.6) between the completeness relation for a free fermion with momentum p in
QED (2.5.4) and a fermion with flavor q bound inside a proton by QCD (2.5.7) as:

Φij(p, P ) = fq(p) /pij + · · · , (2.5.8)

where fq is a nonperturbative quantity shaped by the QCD dynamics, describing
the behavior of the quark bound inside the proton8. This is an intuitive example
of the concept of quark distribution function. The dots represent additional terms
which will be introduced and justified in Sec. 2.6.

Φ(p, P ) is called a quark-quark correlator. Diagrammatically, we can interpret
it as in Fig. 2.5 (b), where a quark of momentum p and Dirac index i is extracted
from the proton with state |P 〉 at the spacetime point x + ξ, the remnant crosses
the cut (on-shellness condition) and another quark with momentum p and Dirac
index j is “reinserted” in the remnant to restore the proton state 〈P | at spacetime
point x. Φij collects the effects related to the quark content of the proton entering a
scattering process and coincides with the hadronic object (traced with a γ matrix)
appearing in the leading term of the OPE expansion for the hadronic tensor in
inclusive DIS (2.3.5) (parton model).

In a scattering process involving hadrons, more contractions between field op-
erators and the hadron state are possible. For example:

〈X |Aµ(ξ)|P 〉 , 〈X |Aµ(η)ψ(ξ)|P 〉 , · · · (2.5.9)

Based on (2.5.9) and using arguments similar to the previous one for the quark
completeness relation, we can introduce the following correlators:

Γµν;ρσ(p;P )
.

=
1

(2π)4

∫
d4ξeip·ξ〈P |Fµν(0)F ρσ(ξ)|P 〉 (2.5.10)

ΦµA ij(p, p1;P )
.

=
1

(2π)4

∫
d4ξei(p−p1)·ξeip1·η〈P |ψ̄j(0)Aµ(η)ψi(ξ)|P 〉 . (2.5.11)

Eq. (2.5.10) is the gluon-gluon correlator, in analogy to the quark case, and repre-
8Similarly, Φij is calculated in the free-quark case in [57,71].
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2.5. Correlations in spacetime

sents the extraction of a gluon with momentum p from the proton and its reinsertion
in the remnant in the complex conjugated amplitude. The usage of F fields rather
than A fields is motivated by gauge invariance and is explained in Sec. 4.4 in [56].
(2.5.11) is an example of a quark-gluon-quark correlator, representing the “inter-
ference” between the extraction from the proton state of a quark with momentum
p − p1 and of a gluon with momenetum p1 and the reinsertion of the quark only
in the remnant in the complex conjugate amplitude. In principle, gauge symmetry
requires to resum all the correlators with emission of multiple gluons in one single
gauge-invariant correlator. This will be explained in Sec. 2.7. The leading twist
contribution to the cross section from ΦµA ij is three, so it can be neglected in a
twist-two analyses. The projectors on the Hilbert spaces of the remnants are omit-
ted in (2.5.10) and (2.5.11). As explanied for (2.5.7), after extraction of a gluon,
the remnant is forced in a specific color configuration by P8∗ . After the extrac-
tion of a quark and a gluon, the color configuration of the remnant is specified by
P3∗⊗8∗ [57].

Matrix elements of the form

〈Kh, Sh;X|ψ̄(0)|0〉 , (2.5.12)

are responsible for creating a quark out of the vacuum, which fragments into a
hadron h in the final state. It is possible to introduce a quark fragmentation corre-
lator as:

∆ij(k;Kh)
.

=
∑
X

1

(2π)4

∫
d4ξeik·ξ〈0|ψi(ξ)|Kh, Sh;X〉〈Kh, Sh;X|ψ̄j(0)|0〉

=
1

(2π)4

∫
d4ξeik·ξ〈0|ψi(ξ)a†hahψ̄j(0)|0〉 , (2.5.13)

where the sum is intended over all the quantum numbers of the remnant X. A
completeness relation over the remnant and the produced hadron states does not
generate an identity but a number operator in Hilbert space, which counts the num-
ber of hadrons produced in the final state. Quark fragmentation correlators with an
additional gluon ∆µ

A ij can be defined, as in (2.5.11). A fragmentation correlator
exists also for gluons, see [72]. In distribution correlators a summation over the
color indexes of quarks and gluons is assumed. For fragmentation correlators we
average over color [57].

Correlators “mediates” between the partons when bound inside hadrons and
partons as free on-shell particles outside a bound state. To illustrate how these
correlator enter a cross section, we apply the diagrammatic approach outlined in
Sec. 2.4 to the case of SIDIS. The hadronic tensor in SIDIS (2.2.6) at complete
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2. Unraveling hadron structure

order9 (M/Q)0 reads:

2MWµν = 2z
∑
a

e2
a

∫
d2pTd

2kT δ
(2)(pT+qT−kT )TrD

{
Φa(x,pT )γµ∆a(z,kT )γν

}
,

(2.5.14)
where the sum runs over the quark and antiquark flavors a, and ea denotes the
fractional charge of the struck quark or antiquark. pT is the transverse momentum
(in light-cone components) of the (anti)quark extracted from the target and kT is
the transverse momentum of the (anti)quark fragmenting into the detected hadron.
The complete expression up to M/Q order is available in [15, 73, 74] and involves
ΦA ij and ∆A ij correlators. Notably, the two correlators in (2.5.14) involve only
the light-cone plus and transverse components of partonic momenta (due to the
four dimensional delta distribution to conserve momentum in (2.2.2)). Projections
and parametrizations of correlators will be discussed in Sec. 2.6.

2.6 Transverse momentum distributions

In the following we use two different reference frames to describe the structure of
the proton and introduce distributions. The first one is specified by a generic light-
like basis (see Sec. A). The second one relies on a “Sudakov” basis, which becomes
a light-like basis in the high-energy limit, namely where the mass of the hadron is
negligible with respect to the hard scale of the process. In the quark case, correlators
are Lorentz scalars, so they are not affected by basis transformations. For gluons,
instead, different frame choices lead to different prefactors in the parametrizations
of the correlators.

Frame A

In the first frame we choose a light-like basis {n+, n−} (A) and define:

P = P+n+ +
M2

2P+
n− (2.6.1)

p = xP+n+ + pT + p−n− (2.6.2)

S = SL
P+

M
n+ + ST − SL

M

2P+
n− , (2.6.3)

9As already mentioned, Φij and ∆ij contain all the twist-2 terms and some terms beyond
twist-2.
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2.6. Transverse momentum distributions

where P is the proton momentum, p is the parton momentum, S is a spin vector for
the proton (which will be introduced in Sec. 2.6.2). The previous equations satisfy:

n+ · n− = 1, n2
+ = n2

− = 0 (2.6.4)

P 2 = M2, P · S = 0 . (2.6.5)

In essence, in this frame the basis is light-like (see conventions in App. A) and
the proton momentum is time-like. In the high energy limit, the component of
P along n− becomes irrelevant and the momentum goes on the light-cone (Pµ =

P+nµ+). We choose this frame to describe proton-proton collisions at the LHC,
producing a pseudoscalar quarkonium bound state (see Chap. 8). Examples of
parametrizations and calculations performed in this frame are available, among the
others, in [57,71,72,75].

Frame B

An alternative is to choose two vectors provided by the process and build a light-
cone basis out of them. As a first vector, we consider the momentum P of the
proton. Then the second vector n depends on the type of experiment. We can then
define:

n+ = P − M2

2
n, n− = n . (2.6.6)

Accordingly, we have:

p = xP + pT + (p · P − xM2)︸ ︷︷ ︸
σ

n (2.6.7)

S =
SL
M
P + ST −MSLn , (2.6.8)

which again satisfy P 2 = M2 and P · S = 0. The n vector can, for convenience,
involve the momentum of the exchanged photon in SIDIS and e+e− annihilation or
the momentum of the second hadron in DY [57]. In the high-energy limit n+ ≡ P ,
so the proton momentum fixes the light-cone plus direction (note the different P+

factor with respect to (2.6.1) in the high-energy limit).
If n has dimension mass, then P ·n ≡ P+ has dimension mass2. If, instead, n has

dimension mass−1, then P · n ≡ P+ can be set to be 1. For example, considering q
the momentum of a photon, n .

= q′/(P ·q′), where q′ .
= q+xBP , implies P ·n = 1. It

is also possible [57] to introduce a covariant Cartesian time-like vector t̂ (mimicking
a time direction) and space-like vector ẑ (mimicking a z direction) reproducing the
Sudakov basis (2.6.6) in the high-energy limit, up to negligible corrections.

In the lab frame or in the center of mass frame, the energy scales for the mo-
mentum components in (2.6.7) are P ∼ O(Q), pT ∼ O(M), σn ∼ O(1/Q) [71],
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2. Unraveling hadron structure

where Q is the hard scale and M is the proton mass. xP describes the hadron mo-
mentum fraction that the parton carries in the n+ = P direction, namely collinear
to the proton. σn is less relevant, being suppressed by a Q2 factor with respect to
xP . Moreover, it is integrated over to automatically ensure time ordering of the
operators. pT is the momentum component transverse with respect to P and n.

In the following, when presenting parametrizations of light front correlators, we
always specify the choice of the frame.

2.6.1 Projections

There are no processes probing the full momentum structure of the correlators.
Depending on what is measured in the final state, there is sensitivity only to cer-
tain projections of the correlators. Considering Φij(p), where p is the full four
momentum of the quark, dropping the P -dependence for convenience and assuming
a light-cone decomposition for p (frame A), we have:

Φij(p)

∫
dp−−−−−→ Φij(x, pT )

∫
d2pT−−−−→ Φij(x)

∫
dp+

−−−−→ Φij . (2.6.9)

Φij(p) is referred to as the unintegrated correlator. Correlators sensitive to p+ =

xP+ and pT enter cross sections where a particle is detected in the final state,
together with its momentum transverse with respect to a defined direction (e.g.
the ẑ axis). For example10 (see the case of SIDIS (2.5.14)):

Φij(x,pT )
.

=

∫
dp−Φij(p;P )|p+=xP+

=

∫
dξ−d2ξT

(2π)3
eip·ξ〈P |ψ̄j(0)ψi(ξ)|P 〉|ξ+=0

. (2.6.10)

The minus component is integrated over due to the four dimensional delta distribu-
tion imposing momentum conservation in a scattering process. This is the Trans-
verse Momentum Dependent (TMD) correlator, evaluated on the light-front ξ+ = 0

(condition that renders time ordering trivial). Correlators sensitive to p+ = xP+

only play a role in more inclusive processes, where no hadrons in the final state
are present, or when one or more hadrons are detected with no sensitivity to their
transverse momenta:

Φij(x)
.

=

∫
d2pTΦij(x,pT )

=

∫
dξ−

2π
eip·ξ〈P |ψ̄j(0)ψi(ξ)|P 〉|ξ+=0,ξT=0

. (2.6.11)

10Prefactors in definition of integrations, as in (2.6.10), depend on the definition of the trace
with other Dirac structures. Here we choose the one given in (C.0.1), following the convention
of [57].
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2.6. Transverse momentum distributions

The latter is the collinear correlator, evaluated on the light-cone (ξ2 = 0). Inte-
grating it over p+ we obtain [57] a local matrix element:

Φij
.

=

∫
dp+Φij(x) = 〈P |ψ̄j(0)ψi(ξ)|P 〉|ξ=0

, (2.6.12)

which can be parametrized in terms of “charges” describing the quark content of
the proton [57] and has a relation with form factors and Generalized Parton Dis-
tributions [76,77].

In SIDIS, for a fragmentation correlator the light-cone basis vectors are inter-
changed. From the physics point of view, this corresponds to a target incoming
from the light-cone plus direction and a produced hadron outgoing along the light-
cone minus direction. In defining a TMD fragmentation correlator this translates
into:

∆ij(z,kT )
.

=
1

2z

∫
dk+∆ij(k;K)|

k−= 1
z
K
−
h

=
∑
X

∫
dξ+d2ξT

(2π)3
eik·ξ〈0|ψi(ξ)|Kh;X〉〈Kh;X|ψ̄j(0)|0〉|ξ−=0

. (2.6.13)

Its integrated version is given by:

∆ij(z)
.

=
z

2

∫
d2kTdk

+∆ij(k;K)|ξ−=0
(2.6.14)

= z2

∫
d2kT∆ij(z,kT ) =

∫
d2KT∆ij(z,−zkT ) ,

where KT = −zkT is the transverse momentum of the hadron acquired during the
fragmentation process. This variable is more convenient from a phenomenological
point of view with respect to the transverse momentum of the parton kT (see
Chap. 5). The same scheme of integrations holds for a gluon-gluon correlator [57,
72,78].

2.6.2 Inclusion of hadron spin

In (2.5.7) we did not consider the fact that the target hadron can have a spin.
Considering a proton, we could insert a dependence on two Pauli indexes α, β
describing its spin state being up or down. Accordingly, the definition in (2.5.7)
modifies as:

Φij,αβ(p;P ) =
1

(2π)4

∫
d4ξeip·ξ〈P, β|ψ̄j(0)ψi(ξ)|P, α〉 . (2.6.15)

This correlator, though, is of no practical use because experimentally we can control
only the polarization degree of an ensemble of protons (inside a target or a beam)
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2. Unraveling hadron structure

and not the spin state of a single one. Quantum mechanics helps us, defining a
density matrix for the proton spin as:

ρ
.

=
∑
α

pα|α〉〈α| ≡
1

2
(I2 + σ · S) , (2.6.16)

where |α〉 is a spin state and pα is the associated probability. σ is a vector of the
three Pauli matrices and S is a three dimensional spin vector (Bloch vector), such
that 0 ≤ |S|2 ≤ 1. If |S|2 = 1, the proton is represented by a pure spin state.
Moreover, in the rest frame of the proton we can introduce a covariant form Sµ [57]
of S, which will be considered in the following.

Following the definition of the expectation value of an operator on the mixed
state represented by ρ, we define the spin-averaged quark-quark correlator as:

Φij(p;P, S) = Tr
{

Φij,αβ(p;P )ραβ(S)

}
. (2.6.17)

This definition holds also in the case of gluon and fragmentation correlators.

2.6.3 Quark distributions

Definitions in this section are presented using the decomposition in (2.6.2) for the
parton momentum (frame A). The corresponding definitions given in frame B are
available, e.g., in [24] and are equivalent to ours. E.g. /n+ ≡ γ− in frame A and
/P ≡ γ− in frame B.

Φij(p;P, S) is a Dirac matrix collecting the quark content of the proton in a
nonperturbative energy regime. A strategy to tackle it is to provide a parametriza-
tion on a basis of 16 Dirac matrices [79]11{

I , γµ , σµν , iγ5 , γ5γ
µ
}
, (2.6.18)

contracting the open Lorentz indexes in the basis elements with Lorentz coefficients
built out of the available structures provided by the kinematics: pµ, nµ+ ∼ Pµ,
Sµ if the target is polarized (Tµν for a spin-1 hadron), n−. In [80] it is shown
that n− contributes only to higher twist terms and it can be neglected in a leading
twist analysis. The quark-quark correlator must be hermitean and comply with the
parity (P) and time reversal (T) symmetries of QCD. Hermiticity and P-invariance
of the QCD Lagrangian translate into:

Hermiticity: Φ†(p;P, S) = γ0Φ(p;P, S)γ0 (2.6.19)

Parity: Φ(p;P, S) = γ0Φ(p̄; P̄ ,−S̄)γ0 , (2.6.20)

11Other equivalent choices are available, see e.g. [75].
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2.6. Transverse momentum distributions

where p̄ = (p0,−~p) (or p̄µ ≡ δµνpν). For the moment, we do not consider T because,
as Φij is defined in (2.6.17), it would constrain physical terms in the correlator to
zero. A physically correct treatment of T must be connected to implementation of
the gauge symmetry. This will be discussed in Sec. 2.8.

Relying on the basis in (2.6.18), the available kinematic and basis vectors, the
constraints from hermiticity and parity, it is possible to give a parametrization of
the fully unintegrated correlator Φ(p;P, S). The case of spin 1/2 hadrons is treated
in [71,73,81,82], spin 1 hadrons are discussed in [75,83], antiquarks are treated in [73,
84–86]. A revised notation is presented in this thesis and in [78]. After integration
over the minus component of the parton momentum, the TMD correlator for an
unpolarized (spin-less or spin-averaged) hadron up to twist-2 contributions is:

ΦU (x,pT ;P ) =
1

2

{
f1(x, p2

T )/n+ + h⊥1 (x, p2
T )
σµνp

µ
Tn

ν
+

M

}
, (2.6.21)

where M is the mass of the hadron. For a spin 1/2 hadron like the proton, we can
further introduce other two correlators associated to the longitudinal and transverse
polarization states (SL and ST , respectively). Considering the definition

∆Φ(p;P, S)
.

=
1

2

[
Φ(p;P, S)− Φ(p;P,−S)

]
, (2.6.22)

the parametrizations are:

∆ΦL(x,pT ;P, SL) =
SL
2

{
g1(x, p2

T )γ5/n+ + h⊥1L(x, p2
T )
iσµνγ5n

µ
+p

ν
T

M

}
(2.6.23)

∆ΦT (x,pT ;P, ST ) =
1

2

{
f⊥1T (x, p2

T )
εST pTT

M
/n+ + g1T (x, p2

T )
pT · ST
M

γ5/n+ (2.6.24)

+ h1(x, p2
T ) iσµνγ5n

µ
+S

ν
T − h⊥1T (x, p2

T )
iσµνγ5n

µ
+p

νρ
T STρ

M2

}
.

The eight12 functions presented in (2.6.21), (2.6.23), (2.6.24) are the transverse-
momentum-dependent parton distribution functions (TMD PDFs) for quarks. They
depend on the collinear fraction of momentum x and on the modulus of the trans-
verse momentum p2

T . A summary of names, properties and level of knowledge of
the twist-2 TMD PDFs will be discussed in Sec. 4.3. Here we summarize them in
Tab. 2.1.

In (2.6.21), (2.6.23), (2.6.24) partonic transverse momentum enters through

12A complementary operator analysis shows that the independent TMD PDFs are 10, because
there are three h⊥1T functions [24].
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quark pol.

U L T

nu
cl
eo
n
po

l.

U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h⊥1T

Table 2.1. Twist-2 quark transverse-momentum-dependent distribution functions. U,L,T
correspond to unpolarized, longitudinally polarized and transversely polarized nucleons
(rows) and quarks (columns). Blue and black functions are T-even. Functions in black
survive transverse momentum integration (rank-0 in pT ). Functions in red are T-odd (see
Sec. 2.8).

symmetric traceless tensors (STTs) in pT (see App. B). Namely, only combinations
of

pµT , p
µν
T , pµνρT , · · · (2.6.25)

tensors of definite rank (up to rank-2 for quarks), are used in defining the coefficients
of the correlators. Expansions of the correlators in structures with definite rank are
essential to study the generalized universality properties of the distributions [24,
87]. Moreover, TMDs in a STT form can be easily translated to position space
and thus QCD-evolved, their rank in pT being equal to the order of the Bessel
function involved in the Fourier transformation. This is essential to have a unique
correspondence between the functions parametrizing the correlators in pT and bT
space (see App. D).

Upon integration over transverse momentum, only the rank-0 terms in pT sur-
vive (see Tab. 2.1). Accordingly, the parametrization of the collinear correlator
is:

Φ(x;P, S) =
1

2

{
f1(x) /n+ + g1(x) SLγ5/n+ + h1(x) iσµνγ5n

µ
+S

ν
T

}
, (2.6.26)

where we have defined h1(x) the integrated version of h1(x, p2
T ). These are the three

collinear parton distribution functions (PDFs) for unpolarized quarks in unpolarized
hadrons (f1(x), the unpolarized PDF), longitudinally polarized quarks in longitudi-
nally polarized hadrons (g1(x), the helicity PDF) and transversely polarized quarks
in transversely polarized hadrons (h1(x), transversity PDF).

Following the same philosophy, it is possible to introduce parametrizations for
TMD (2.6.13) and collinear (2.6.14) quark fragmentation correlators, complying
with hermiticity and discrete symmetries of QCD. Again, for the moment we impose
constraints from hermiticity and parity. Time reversal symmetries manifests itself
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quark pol.

U L T

ha
dr
on

po
l.

U D1 H⊥1

L G1L H⊥1L

T D⊥1T G1T H1, H⊥1T

Table 2.2. Twist-2 transverse-momentum-dependent fragmentation functions. U,L,T
correspond to unpolarized, longitudinally polarized and transversely polarized nucleons
(rows) and quarks (columns). Blue and black functions are T-even. Functions in black
survive transverse momentum integration (rank-0 in kT ). Functions in red are T-odd. Note
that the T-oddness has a different physical origin between distribution and fragmentation
correlators (see Sec. 2.8).

in a different way with respect to the distribution correlator (see Sec. 2.8). In
this thesis we will deal only with TMD unpolarized fragmentation functions, so we
present a parametrization of the TMD correlator in the unpolarized case only [57,
75]:

∆U (z,−zkT ;Ph) =
1

2

{
D1(z, |−zkT |2) /n−+H⊥1 (z, |−zkT |2) σµν

kµTn
ν
−

Mh

}
, (2.6.27)

where we used the hadronic transverse momentum KT = −zkT . D1(z, | − zkT |2)

is the fragmentation of an unpolarized quark into an unpolarized hadron, whereas
H⊥1 (z, | − zkT |2) is the fragmentation of a transversely polarized quark into an
unpolarized hadron (the Collins function). For a complete list of the eight TMD
FFs at twist-2 see Tab. 2.2. For the polarized correlators in spin 1/2 and 1 and
beyond the leading twist see, e.g., [57, 75].

2.6.4 Gluon distributions

As for the quarks in the previous section, definitions here are presented using the
decomposition in (2.6.2) for the parton momentum (frame A). The corresponding
definitions given in frame B (where dim[n] = −1 and P · n ≡ P+ = 1) are available
in [78]. Parametrizations in such a frame can be obtained setting P+ = 1 in the
following equations.

It is possible to introduce parametrizations for unintegrated, TMD and collinear
gluon distribution and fragmentation correlators, following the same path outlined
in Sec. 2.6.3. Gluon correlators are Lorentz matrices and we need to replace (2.6.18)
with a suitable set of Lorentz structures provided by the kinematics of the pro-
cess [57,78]. As for the case of quarks, the correlator must comply with hermticity
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2. Unraveling hadron structure

and discrete symmetries of QCD and, for the moment, we only consider constraints
from hermiticity and parity:

Hermiticity: Γρσ;µν∗(p, P, S) = Γµν;ρσ(p, P, S) (2.6.28)

Parity: Γµν;ρσ(p, P, S) = Γµν;ρσ(p̄, P̄ ,−S̄) , (2.6.29)

where, as in (2.6.19) and (2.6.20), p̄µ ≡ δµνpν . The interplay between discrete
and gauge symmetries will be addressed in Sec. 2.8. Since we have not introduced
Wilson lines yet, the dependence on the n− vector is not considered when build-
ing parametrizations. Gluon-gluon correlators are antisymmetric in both pairs of
indices µ, ν and ρ, σ.

Parametrizations for TMD and collinear gluon correlators, for scalar and vector
polarized targets have been investigated in [72, 76]. Ref. [78] introduces the tensor
polarized case. As for the quarks, this thesis and [78] present a revised notation.
We define the leading twist TMD correlator (see also (2.5.10)) as:

Γ+i;+j(x,pT ;P, S)
.

=

∫
dp− n−µn−ρ Γµi;ρj(p;P, S) (2.6.30)

=

∫
dξ−d2ξT

(2π)3
eipξ 〈PS|F+i(0)F+j(ξ)|PS〉|ξ+=0

.

Comparing with (2.5.10), µ and ρ have been contracted with n− to select the leading
twist contributions. ν and σ are then indicated as transverse indexes i, j. From
now on, the two + indexes will be omitted. The parametrization for the twist-2
TMD distribution correlator for gluons in the case of a scalar target is [72,78]:

Γij(x,pT ;P ) =
xP+

2

[
−f1(x, p2

T ) gijT + h⊥1 (x, p2
T )

pijT
M2

]
, (2.6.31)

The prefactors are fixed in order to satisfy the momentum sum rule for gluons [78].
We employed the STT form for the pT structures (see App. B).

For a vector polarized target (spin 1/2 hadron), the polarized correlators are [72,
78]:

∆ΓijL (x,pT ;P, SL) =
xP+

2
SL

[
g1(x, p2

T ) iεijT + h⊥1L(x, p2
T )

ε
{i
T αp

j}α
T

2M2

]
, (2.6.32)

∆ΓijT (x,pT ;P, ST ) =
xP+

2

[
−f⊥1T (x, p2

T )
gijT ε

ST pT
T

M
+ g1T (x, p2

T )
iεijT pT · ST

M
+
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2.6. Transverse momentum distributions

gluon pol.

U circ. lin.

nu
cl
eo
n
po

l.

U fg1 h⊥g1

L gg1 h⊥g1L

T f⊥g1T gg1T hg1, h
⊥g
1T

Table 2.3. Twist-2 gluon transverse-momentum-dependent distribution functions. U,L,T
correspond to unpolarized, longitudinally polarized and transversely polarized nucleons.
U, circ., lin. correspond to unpolarized, circularly polarized and linearly polarized gluons.
Functions in blue are T-even. Functions in black are T-even and survive integration over
pT . Functions in red are T-odd (see Sec. 2.8).

−h1(x, p2
T )

ε
pT {i
T S

j}
T + ε

ST {i
T p

j}
T

4M

−h⊥1T (x, p2
T )

ε
{i
T αp

j}αST
T

2M3

]
. (2.6.33)

The relation between the TMDs and the coefficient functions in the parametrization
of the unintegrated correlator can be found in [78]. The functions h⊥1L, f

⊥
1T , h1, and

h⊥1T are T -odd (see Sec. 2.8). A more traditional form of the parametrization [76,
88] can be recovered expanding the STT forms for the pT tensors (see App. B),
considering the following relation among three h-type functions:

h1(x, p2
T )

.
= h1T (x, p2

T ) +
p2
T

2M2
h⊥1T (x, p2

T ). (2.6.34)

For a comparison between the current and previous notations see [78]. Looking at
(2.6.33), we see that h1 is a rank-1 function and h⊥1T is a rank-3 function. Consid-
ering the more traditional forms in [76, 88], h1T contains both rank-1 and rank-3
pieces, so it is not a function with definite rank. For this reason, its usage within a
rank expansion or cross sections with TMDs in bT -space would be problematic13.

Eventually note that, despite the similarity in name, the function h1 for glu-
ons is different from the quark transversity function h1 (e.g., it does not survive
integration over transverse momentum). The properties of the gluon TMD PDFs
are summarized in Tab. 2.3. It is possible to introduce gluon TMD fragmenta-
tion functions too. See, e.g, [57, 72]. In App. D we give the parametrization of
the Fourier-transformed gluon distribution correlator, Γij(x, bT ), and the relations
between the TMD PDFs in momentum (pT ) space and position (bT ) space.

13E.g., eqs. (2.17, 2.18, 2.20) in [89] are inconsistent from a rank point of view.
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2. Unraveling hadron structure

2.7 Gauge links

In order to deal with gauge invariant correlators, we need to introduce the concept
of gauge link. It arises from the geometrical notion of parallel transport, which
defines a way of comparing elements from different linear spaces via the connection.

The transportation of a vector is defined “parallel” if the scalar products are
conserved while the vector is transported along a path in spacetime. This provides
a specific way of moving fields along a path, defining an isomorphism between the
spaces where the fields live. The parallel transport equation for a fermion field ψ
along the curve c in spacetime parametrized by t ∈ R is:

Dċ ψ(x(t)) = 0 , t ∈ I ⊂ R . (2.7.1)

The solution of (2.7.1) is given in terms of a path-ordered exponential factor in-
volving the gauge connection:

ψ′β(x(t)) = P exp

{
− ig

∫ t

0

ds
dxµ

ds
Aaµ(x(s))T aβα

}
ψα(x(0))

.
= Uβα(x(t), x(0)) ψα(x(0)) . (2.7.2)

Uβα(x(t), x(0)) is a gauge link, or Wilson line. In the case of QCD, it is a matrix in
color space and T a are the Gell-Mann matrices. A gauge link U(x2, x1) connecting
x1 to x2, under local gauge transformations U(x) behaves as [4, 5]:

U ′(x2, x1;A′) = U(x2) U(x2, x1;A) U†(x1) . (2.7.3)

As a result, the operator
ψ̄j(0) U(0, ξ) ψi(ξ) (2.7.4)

is invariant under SU(3) gauge transformations. This shows the interplay between
the geometrical interpretation of the concepts underlying particle physics and the
gauge invariance of the theory. A similar argument holds for matrix elements in-
volved in gluon-gluon correlators (2.5.10), with the difference that we need two links
to ensure gauge invariance:

Fµν(0) U(0, ξ) F ρσ(ξ) U ′(ξ, 0) . (2.7.5)

This is because gluons live in the octet representation of 3⊗3∗ and, accordingly, we
need two color matrices to connect each of the factor representation 3 and 3∗ [24].
One of the two links might be omitted for sake of brevity from (2.7.5) when both
are chosen along the same path in spacetime. Introducing a Sudakov decomposition
for the gauge field Aµ, we see that the component A+ ∼ P+ is dominant, AT ∼M
is sub-leading, whereas A− ∼ 1/P+ is suppressed. Given two light-cone directions
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2.8. Discrete symmetries

n+, n− (see App. A), we denote U [n−] a link running along the light-cone minus
component in spacetime and for which the integrand A is projected along the n−
direction. A notation with similar meaning is introduced for U [T ]. The integral over
the minus component in spacetime can be further decomposed in two consecutive
integrations, one from a− to ±∞ and another from ±∞ to b−. In this way, it is
possible to introduce the so-called staple-like links:

U [±](b, a)
.

= U [n−](±∞, a−) U [T ](bT , aT ) U [n−](b−,±∞) . (2.7.6)

The path chosen in the gauge link depends on the process considered. In particular,
U [−] contributes to DY, whereas U [+] enters the SIDIS cross section. In all the
correlators introduced in Chap. 2, gauge links need to be introduced to bridge the
non-locality in spacetime and guarantee their gauge invariance. The links have
important physical consequences on the study of the proton structure and leave
footprints in scattering experiments (see Sec. 2.8 and 4.2).

2.8 Discrete symmetries

We turn now our attention to discrete symmetries, in particular time reversal (T)
symmetry, in order to understand their impact on the correlators. Despite being
interesting a priori, this is also motivated by some observables that display an odd
behavior under time reversal transformations. Single spin azimuthal asymmetries
(SSAs), linked to T-odd TMDs, are an example discussed in Sec. 4.2. In the fol-
lowing we prove that T-odd effects , in hadronic physics, can be a consequence of
the interplay between the gauge symmetry and the behavior under time reversal
transformation. A time reversal transformation interchanges the staple links U [+]

and U [−], whereas parity and hermiticity do not14. These properties are based on
U†[0,ξ] = U[ξ,0], UP[0,ξ] = U[0̄,ξ̄] and UT[0,ξ] = U[−0̄,−ξ̄]. Accordingly, taking into account
also gauge links and time reversal properties, the conditions imposed on the quark
distribution correlator, (cf. (2.6.19), (2.6.20)), are:

Hermiticity: Φ[±]†(p;P, S) = γ0Φ[±](p;P, S)γ0 (2.8.1)

Parity: Φ[±](p;P, S) = γ0Φ[±](p̄; P̄ ,−S̄)γ0 (2.8.2)

Time reversal: Φ[±]†(p;P, S) = iγ1γ3Φ[∓](p̄; P̄ , S̄)iγ1γ3 , (2.8.3)

where the subscript [±] refers to the staple gauge links (2.7.6) and the bar refers to
quantities transformed according to parity (2.6.20).

We summarize also the behavior of the twist-2 gluon-gluon correlator under
hermiticity, parity and time reversal, considering their interplay with the gauge

14This is essentially due to the fact that the staple links [±] run through light-cone infinity.
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2. Unraveling hadron structure

link structure:

Hermiticity: Γ[U,U ′] ρσ;µν∗(k, P, S, n) = Γ[U,U ′]µν;ρσ(k, P, S, n), (2.8.4)

Parity: Γ[U,U ′]µν;ρσ(k, P, S, n) = Γ[U,U ′]
µν;ρσ (k̄, P̄ ,−S̄, n̄), (2.8.5)

Time reversal: Γ[U,U ′]µν;ρσ∗(k, P, S, n) = Γ[UT ,U ′T ]
µν;ρσ (k̄, P̄ , S̄, n̄). (2.8.6)

By omitting the gauge links from the gluon-gluon correlator, the dependence on n
is no longer present.

As shown by (2.8.2), (2.8.5) (and their counterparts for fragmentations), parity
does not mix with the gauge link structure and does not exchange final and initial
states. For this reason, it always poses constraints on correlators, preventing the
possibility of defining P-odd structures. For time reversal, instead, the interplay
with the gauge link structure generates T-odd effects. A detailed overview of some
cases for distribution and fragmentation functions, both TMD and collinear, is
given in App. C. The role of charge-conjugation for quarks and gluons is discussed
in [78,86] respectively.

2.9 Outlook and future developments

In Chap. 2 we discussed the structure and the symmetry properties of quark-quark
and gluon-gluon correlators with staple-like gauge links. Parametrizations in terms
of transverse momentum dependent distributions which respect parity invariance
and the hermiticity properties have been introduced in Sec. 2.6.3 and Sec. 2.6.4. In
Sec. 2.8 the interplay between the gauge symmetry and the time reversal symmetry
is presented, which accounts for T-odd distributions.

The same arguments based on gauge and discrete symmetries can be applied
to correlators of a single Wilson loop [78,90]:

Γ
[U,U ′]
0 (pT ;P, S, n)

.
=

∫
d2ξT
(2π)2

eip·ξ 〈PS|U(0, ξ) U ′(ξ, 0) |PS〉|ξ·n=0
. (2.9.1)

Parametrizations of the correlator in (2.9.1) for the unpolarized, vector polarized
and tensor polarized case have been presented in [78]. For a [+,−] link configuration,
they provide insight into the behavior of gluons at x = 0. Investigations on their
physical content and on a possible role in the description of diffractive processes is
still required.
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CHAPTER 3

QCD EVOLUTION

In this chapter we investigate how perturbative QCD (pQCD) enters the study
of hadron structure and its footprints in scattering experiments. Through pQCD
it is possible to give a complementary definition of TMDs, which consolidates the
picture introduced in the previous chapters. We also see how to enrich the structure
of the QCD corrections outlined in Fig. 2.6.

The way hadron structure is affected by perturbative corrections and evolves
changing the relevant scales in the process is referred to as QCD evolution. The
equations which govern QCD evolution are a byproduct of factorization theorems.
Understanding how to separate hard and soft scales in a cross section, automatically
teaches how to evolve and match the different contributions. Factorization is a vast
topic by itself and here we only want to provide an overview of some results relevant
for phenomenology. For an overview of factorization, evolution and phenomenology
in the collinear limit we refer to [91, 92] and references therein. Factorization in
terms of TMD distributions is a lively topic. As a comprehensive treatment we
indicate [20], despite not being the only one available. Effective theories are widely
employed to address factorization and evolution issues (see also Chap. 8). Intro-
ductory material is available in [93], via the MIT online lecture series and notes and
the TASI lecture notes 2013, 2014.

3.1 Factorization

A high-energy collision involving hadrons is a multi-scale problem. E.g., when two
protons collide producing a W± boson at the LHC, the initial states of the reaction
need to be described in terms of the proton structure, which is shaped by QCD at
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3. QCD evolution

low energy (∼ 1 GeV), whereas the interaction among the elementary constituents
takes place at higher energy (∼ mW ∼ 80 GeV). Intuitively, one could expect that
the soft (i.e. referred to a low energy scale) process of extracting partons out of the
two protons and the hard (i.e. referred to a high energy scale) partonic interaction
are decoupled, being related to different energy and time scales. As a consequence,
a generic differential cross section for such a process could look like:

d(n)σ ∼
∑
a,b

H fa(xa;µ) fb(xb;µ) +O(ΛQCD/Q) , (3.1.1)

where the functions f are generic parton distribution functions (describing the prob-
ability of extracting a parton from the proton), H represents the hard interaction,
the sum runs over the active partons a, b, xa,b are the partonic momentum fractions,
Q ∼ mW is the hard scale of the process, ΛQCD is a low-energy scale represent-
ing the Landau pole of QCD and µ is the energy scale at which the factorization
between hard and soft contributions takes place. The last factor accounts for cor-
rections to the factorized expression, relevant for low values of the hard scale. In
general, the structure of (3.1.1) depends on the number of separate energy scales
present in the reaction, on the process and on the observable.

Let us assume that the produced W boson has a transverse momentum qT .
When qT is well separated from the hard scale Q, namely

qT � Q , (3.1.2)

the cross section can be factorized in terms of nonperturbative hadronic matrix
elements sensitive to partonic transverse momenta (TMD factorization). Schemat-
ically1

d(n)σ ∼
∑
a,b

H(Q,µ) fa(xa, pTa;µ, ζa)⊗fb(xb, pTb;µ, ζb) δ(2)(pTa+pTb−qT ) +O
(
qT
Q

)
,

(3.1.3)
where TMD PDFs fa,b have been used and the meaning of the additional ζ scales
will be clarified later. The delta function accounts for momentum conservation. The
last term accounts for correction to the factorized formula relevant when qT ∼ Q. In
the limit of very large qT ≥ Q, the transverse momentum of the produced boson is
generated almost entirely by emission of perturbative radiation calculable at a fixed
order in perturbation theory. Soft partonic transverse momenta are not relevant in
the hadronic matrix element any more and collinear factorization applies. In the
intermediate region qT . Q, a matching prescription is needed to bridge the two
factorization schemes (see Sec. 3.3 and Chap. 8). Fig. 3.1 summarizes the regions

1The hard function H for collinear factorization differs from the hard function H in the context
of TMD factorization.
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of applicability for TMD and collinear factorization.

TMD
factorization

collinear
factorization

matching
region

qT
⇤QCD

Q

Figure 3.1. There are three kinematical regions relevant in a process where a particle with
momentum qT is produced out of a proton-proton collision. When qT is much smaller than
the mass of the particle (the relevant hard scale), TMD factorization applies and the cross
section is described in terms of TMDs. When qT ≥M , collinear factorization applies and
the cross section is described by collinear distributions dressed by emission of perturbative
radiation (responsible for the generation of qT ). In the middle, where qT . Q, a matching
prescription is required.

Moreover, within the TMD factorization region qT � Q, each TMD distribution
contributes both at low and high partonic transverse momentum (see Fig. 3.2). The
region of high partonic transverse momentum pT (low bT , where bT is the Fourier-
conjugated variable to pT ) is described by means of an OPE in bT space onto the
collinear distributions (see Sec. 3.6). The involved Wilson coefficients account for
the perturbative splitting of the parton with high transverse momentum. The low
transverse momentum region needs to be described by models. The latter is the
nonperturbative core of the TMD distribution, shaping the structure of the proton
in the transverse plane. Since pTa + pTb = qT , the values of Q and qT control the
relevance of the low and high transverse momentum region.

pT

+ +  ...=

Figure 3.2. The extraction of a quark with transverse momentum pT from the proton,
up to order O(αs) effects. In zeroth order approximation, all the transverse momentum
pT can be accounted for by the intrinsic transverse momentum of the quark, namely the
one coming from the nonperturbative wavefunction of the quark inside the proton. As pT
gets larger, also perturbative contributions play a role, entering the calculation as a power
series in αs. Here we represent only the first order contributions, namely the extraction of
a collinear gluon splitting into a quark with high transverse momentum and the extraction
of a collinear quark splitting into another quark with high transverse momentum. The
dots represent the higher order terms. This illustrates the possibility of perturbatively
expanding a TMD PDF on a set of collinear distributions with coefficients proportional
to the DGLAP splitting kernels [92].
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In Chap. 2 we outlined how the OPE and the diagrammatic approach intro-
duced a decomposition of the hadronic tensor W in powers of M/Q (the twist
expansion, see Fig. 2.6), where each term in the sum is factorized in a singular co-
efficient and a finite local matrix element representing the interaction of the probe
with the hadron. Then, for each contribution of definite twist, one could check that
the separation between “hard” and “soft” physics2 holds adding αs corrections: in
this chapter we refer to this kind of factorization. Proofs of TMD factorization at
leading twist and at all orders in αs exist for DY, SIDIS and e+e− annihilation
into two hadrons [19, 20, 94–96]3. A proof for the case of double parton scattering
for DY in collinear and TMD regime has been recently presented [97]. The SCET
methodology allows to establish factorization theorems looking at the IR structure
of cross sections. Several examples are available in literature for the qT -spectra
in specific processes, e.g. [96] for DY and [89] for Higgs production. In Chap. 8
and [98] the case of pseudoscalar quarkonium production is discussed.

3.1.1 Factorization and phenomenology

Factorization plays a special role for phenomenology, because it assures that the
(non)perturbative effects that physicists measure and fit have indeed a solid theoret-
ical foundation. Factorization theorems and generalized universality of the TMDs
are at the basis of the predictive power of QCD. TMD factorization is expected not
to hold in reactions with color flow between initial and final states, e.g. pp → πX

(with π in a color octet representation). Nonetheless, TMD factorization is often
assumed for these processes, neglecting any kind of factorization breaking effect.
Fitting nonperturbative TMD effects to data sets for processes where factorization
is not proved is possible, but on the interpretations of these results legitimate doubts
are pending [99]. Quantifying phenomenologically factorization breaking effects is
non trivial: in [100] it was shown that they can generate specific spin asymme-
tries. Moreover, fits to data where TMD factorization is valid are important in
quantitatively assessing factorization breaking elsewhere.

From a practical point of view, factorization is essential also because it gen-
erates perturbative corrections for, e.g. the hard part, which are fundamental for
phenomenology.

3.2 SCET

Here we outline some basic concepts about Soft-Collinear-Effective-Theory (SCET)
and its role in establishing factorization theorems.

SCET is an effective theory of QCD based on a systematic expansion of the
QCD Lagrangian in powers of a small parameter characterizing the momentum

2See Sec. 3.2 and Chap. 8 for more details.
3The list of references is not exhaustive.
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modes of the theory. For a definition of these modes relevant to TMD factorization
see, e.g., [96]. For qT spectra, the SCET Lagrangian attempts to reproduce QCD
describing the physics of low and high energy modes through separate Lagrangians
for soft and (anti)collinear modes:

LQCD ←→ Ln + Ln̄ + Lsoft . (3.2.1)

This feature automatically ensures a separation between the momentum modes of
the theory. Upon description of a certain observable, it is always assumed that
SCET reproduces the IR structure predicted by QCD (namely the structure in 1/ε

poles) for that observable. Finite matching coefficients are then calculated in order
to reproduce the result of full QCD. In particular, for a qT -spectrum we have:

QCD −−→
CH

SCETqT −−−→
Ci/j

SCETΛQCD . (3.2.2)

In the first step the hard scale of the process is integrated out and the cross section
is factorized in terms of TMDs, defined through operators sensitive to partonic
transverse momenta (SCETqT [96]). The coefficient matching the two descriptions,
CH , is spin-independent and its modulus squared is the hard part H of the process.
The second step re-factorizes the description in terms of TMDs into a basis of
collinear functions, defined via operators sensitive only to the collinear dynamics of
partons (SCETΛQCD). The Wilson coefficients of this OPE are spin-dependent and
match TMDs onto collinear distributions, describing the physics of high partonic
transverse momentum.

SCET is particularly useful for phenomenology because it allows conceptu-
ally simple checks of the factorization properties for QCD observables. For a qT
spectrum, to establish factorization it is sufficient to check that the IR structure
generated by all the diagrams calculable in the TMD factorized form (SCETqT )
reproduces the one available from the calculation in full QCD. If this is the case,
the matching coefficient CH can be calculated by subtraction of the two descrip-
tions. In this case, CH is finite, since the IR poles are exactly the same in the two
approaches. If the two descriptions produce a different structure in the IR singu-
larities, SCET does not reproduce the physical QCD result, namely the observable
cannot be described in a factorized form. We will give an example of this proce-
dure in Chap. 8 for the qT spectrum of a pseudoscalar quarkonium produced in a
proton-proton collision.

Last but not least, the resummation techniques which are byproducts of fac-
torization theorems allow for fast developments in the perturbative description of
TMDs [101–103].
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3.3 Transverse-momentum resummation

There are different approaches to TMD factorization. The quark parton model
is the simplest one, where factorization is always assumed. The same happens
in model calculations, like the spectator di-quark model (e.g. [21, 104]), in which
perturbative corrections can also be accommodated via model-dependent Feynman
rules. The most widespread approach within pQCD is transverse-momentum (TM)
resummation, e.g. [105–109].

3.3.1 Fixed-order calculation

At Born level, the cross section for a hadronic process producing a particle with mass
M and with high transverse momentum qT is zero, because at least one emission of
a hard particle is needed. Adding a correction of order αs, such a cross section can
be written as:

dσ

dq2
T

∼ 1

q2
T

fa(xa)fb(xb) αs ln
M2

q2
T

, (3.3.1)

where the f functions are generic PDFs for the two partons involved in the process.
(3.3.1) describes correctly the physics at high transverse momentum, but diverges
in the limit qT → 0, where the cross section should instead vanish.

3.3.2 Resummation of large logarithms

A solution was proposed in 1978 in [110], where the double-leading-log approxima-
tion4 (DLLA) was proposed to have a vanishing cross section in the limit qT → 0:

dσ

dq2
T

∼ 1

q2
T

fa(xa)fb(xb) αs ln
M2

q2
T

exp

{
− αsln2M

2

q2
T

}
−−−−→
qT→0

0 . (3.3.2)

In Sec. 3.6 we will show that the exponential factor in (3.3.2) is a resummation to
all orders of logarithms of the type αsL (where L can be a generic large logarithm).

3.3.3 Matching

The DLLA in [110] has been the starting point for extensive studies of the resum-
mation of large logarithms depending on the transverse momentum qT (referred to
as resummation in momentum space) or its Fourier conjugated variable bT (resum-
mation in position space), going well beyond the leading log terms. The resummed
cross section in (3.3.2) has the correct behavior at small qT , but not at high qT
(it vanishes too soon): a prescription to match the two regions of small and high
transverse momentum is thus required. At this purpose, we can use the function
Y (qT ,M) [105,111]:

Y (qT ,M)
.

=
dσ

dq2
T |f.o.

− dσ

dq2
T |ASY

, (3.3.3)

4The adjective double refers to the logarithm, being squared.
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3.3. Transverse-momentum resummation

where the first piece is the calculation at a fixed order (f.o.) n for high qT and the
subtracted piece represents the asymptotic (ASY) limit (qT → 0) of the fixed order
n, which is equal to the expansion at order n of the resummed (Sudakov) cross
section. The Y term should vanish in the low transverse momentum region, grow
in the intermediate qT regime and match to the fixed order calculation at high qT .
Through this matching a cross section can be decomposed in a sum of two pieces,

dσ

dq2
T

∼ resummed part (TMDs) + finite part (Y-term) , (3.3.4)

which realizes the separations outlined in Fig. 3.1. This prescription has been
successfully tested at high invariant mass M [107–109]. There are indications that
it fails at low M , see [112]. Recently, a revised version of the method based on a
nonperturbative transition function has been proposed5 in [113]. We discuss the
calculation of the matching term for a pseudoscalar quarkonium produced in pp

collision in Chap. 8.

3.3.4 From transverse momentum resummation to TMDs

The common point between TM resummation and TMD factorization is that the
resummed part in (3.3.4) is a convolution in momentum space of two TMD dis-
tributions. This recognition is not commonly widespread in the literature of TM
resummation, which focuses mostly on the perturbative effects. Defining the re-
summed cross section at low qT in terms of TMDs has specific advantages, namely
the possibility of studying the full spectrum of polarization effects and the relevance
of nonperturbative effects at low transverse momentum.

In the literature of TM resummation there is the tendency to include as less
nonperturbative (NP) effects as possible. This is correct from a high-energy physics
point of view (e.g. W/Z/Higgs production) because there NP effects are suppressed.
This might lead, though, to underestimate their importance. At the LHC, e.g.,
Fig. 11b in [114] shows that NP contributions improve the description of experi-
mental data. Moreover, in Chap. 7 we will show that flavor dependent NP effects
have a non-trivial impact on the description of qT spectra for Z/W± and poten-
tially also on the determination of the W mass. To which extent NP effects are
important in high-energy physics is a lively debate within the TMD phenomenology
community. Neglecting them is an underestimation, but quantitative statements of
their impact depend on the process, the energy scale and the accuracy of the per-
turbative description. At lower energies, they turn out to be fundamental in order
to describe experimental data. A global description of TMD effects from low to
high energy should be a mix of both. This problem is relevant also for MC gen-

5See also the results presented by T.C. Rogers at the workshop “Parton TMDs at large x”
(ECT?, 2016).
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3. QCD evolution

erators used in high-energy physics simulations (e.g. Pythia, Herwig++, · · · ) and
for automatic tools to compute TM resummation (e.g. ResBos). Their description
of transverse momentum resummation is based on unpolarized collinear distribu-
tions dressed by parton shower algorithms to describe the emission of radiation.
Inclusions of polarization and nonperturbative effects are still in their infancy, even
though it is well recognized within the community that their inclusion in automatic
generators would be important [28]. TMD factorization offers a natural framework
to incorporate both perturbative and NP contributions, setting the ground to ap-
ply transverse-momentum resummation also to other structures, different from the
unpolarized ones and exploring in both perturbative and NP ways all the possible
effects arising from the spin-spin and spin-orbit correlations in the proton.

3.4 TMDs from the pQCD viewpoint

Following the structure of TMD factorization, the hadronic tensor Wµν in the case
of, e.g., DY, can be expressed as [20]:

Wµν =
∑
f

Hµνf (Q,µ)

∫
d2pT1d

2pT2 Ff/P1
(x1, pT1;µ, ζ1) Ff̄/P2

(x2, pT2;µ, ζ2)

× δ(2)(pT1 + pT2 − qT ) + Y (qT ;Q) + O(ΛQCD/Q) .

(3.4.1)

(3.4.1) encodes also the decomposition in qT regions outlined in the previous sec-
tion. The two F functions are the TMD PDFs: their convolution over the partonic
transverse momenta represents the resummed part of the cross section. The TMDs
themselves contain the resummed exponential factors (see Sec. 3.6). H is the hard
function of the process, calculated from on-shell hard scattering amplitudes. Y in-
troduces corrections at medium and high transverse momentum, whereas the last
piece accounts for corrections to the factorized formula suppressed with the hard
scale (e.g. higher twist contributions).

With respect to the TMDs introduced in Chap. 2, there are two additional vari-
ables µ and ζ, whose presence is related to the perturbative structure of the function.
Ultraviolet (UV) divergences are cured by means of renormalization group (RG)
transformations [4]. µ is the renormalization scale through which the RG equation
for F is introduced (Sec. 3.5). Infrared (IR) divergences, instead, cannot be renor-
malized and indicate that the cross section is sensitive to large-distance effects, that
in QCD are ultimately nonperturbative. In QCD, the Kinoshita-Lee-Nauenberg
theorem [5] guarantees that the S-matrix is free from soft and collinear IR diver-
gences upon summation of all the possible degenerate initial and final states6. In-
stead, if one looks at some specific initial and/or final states with partons, collinear

6There is an analogue theorem for QED, the Bloch-Norton theorem [5], which guarantees that
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3.4. TMDs from the pQCD viewpoint

divergences are still present and need to be reabsorbed by the parton distribution
(or fragmentation) functions. This is why we refer to PDFs and FFs as nonpertur-
bative objects, encoding the long-distance physics of hadron structure. In the case
of TMD distributions, there is an additional rapidity divergence7 (RD) associated
with the light-like gauge links [20, 96]. A detailed discussion on the cancellation of
RDs goes beyond the scope of this thesis. The cancellation mechanism depends on
the regulator used to parametrize the divergences. In general, however, the cancel-
lation is performed by means of a soft factor S (defined as the expectation value on
the vacuum states of products of Wilson lines) acting on the “unsubtracted” (with
RDs) hadronic matrix elements, which are the ones introduced in Chap. 2:

F̃ (x, bT ;µ, ζ) ∼ F̃ unsub.(x, bT ;µ, reg.) S̃α(bT ;µ, reg., ζ) . (3.4.2)

The specific form of (3.4.2) (including the value of α) depends on the chosen regula-
tor (reg.). The TMD function in bT space is related to the one in pT space through
a Fourier transform (see App. D). (3.4.2) shows that the ζ dependence enters in the
RD-free (physical) TMDs only through the soft factor S.

There are different types of regulators and definitions of RD-free TMDs in
literature. All respect (3.4.2). For example, [20] and, based on the SCET method-
ology, [96, 115]. Among the differences between the approaches in [20] and [96],
there is the fact that in the first Wilson lines are tilted off the light-cone to regu-
larize the RDs, whereas in the second (SCET based) the cancellation happens with
Wilson lines on the light-cone. Because of this reason, in the latter a number of
diagrams vanish with respect to the first case. In the following we will refer to the
approach in [96].

To summarize, µ enters via RG equations to cure UV divergences, whereas ζ
enters through the cancellation of RDs via the soft factor. The evolution via ζ

is sometimes referred to as “rapidity” evolution, because the value of ζ is related
to a rapidity cutoff yc [20], whose value determines a criterion to “organize” the
gluons from the soft factor. Gluons with y < yc will be reabsorbed in the first
hadron (canceling the RDs in the related unsubtracted matrix element), gluons
with y > yc will cure the second hadron.

observables are free from IR soft divergences, which cancels between real and virtual contributions.
In (massive) QED no IR collinear divergences arises.

7Which cancels in the collinear case.
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3.5 Evolution equations

Three equations govern the QCD evolution of TMD distributions, two from RG
and one rapidity evolution. The latter, named Collins-Soper (CS) equation, reads:

∂lnF̃ (x, bT ;µ, ζ)

∂lnζ
= −K(bT ;µ) , (3.5.1)

where K is the Collins-Soper kernel. As a consequence of the different definition of
the RD cancellation, the definitions of the kernel between [20] and [96] differ for a
−1/2 factor and for a square root in the ζ variable. In both approaches, the kernel
is related to the logarithm of the soft factor, so rapidity evolution is physically
governed by the soft factor. It is important to stress that the same kernel drives
the ζ evolution for all quark or gluon TMDs, since the soft factor entering their
definition does not depend on the spin (it is universal but different from quarks to
gluons). The solution for the CS equation is:

F̃ (x, bT ;µ, ζf ) = F̃ (x, bT ;µ, ζi) exp

{
−K(bT ;µ) ln

ζf
ζi

}
= F̃ (x, bT ;µ, ζi)

(
ζf
ζi

)−K(bT ;µ)

, (3.5.2)

where the subscripts i, f indicate initial and final values in the evolution.

The second equation we deal with is the RG evolution of the CS kernel [20]:

dK(bT ;µ)

dlnµ
= Γcusp[αs(µ)] . (3.5.3)

Since UV renormalization is multiplicative, the anomalous dimension Γcusp [20] is
additive in αs. UV divergences arise from virtual diagrams only: therefore, Γcusp

does not depend on bT (conjugated to qT ). The solution is:

K(bT ;µf ) = K(bT ;µi) +

∫ µf

µi

dµ

µ
Γcusp[αs(µ)] . (3.5.4)

The third equation is the RG evolution of the TMD function (µ-evolution of
the TMD distribution):

dlnF̃ (x, bT ;µ, ζ)

dlnµ
= γF [αs(µ), ζ/µ2] , (3.5.5)

where γF is the anomalous dimension of the TMD function. The same comments
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3.5. Evolution equations

about αs and bT for (3.5.3) apply here. The solution reads:

F̃ (x, bT ;µf , ζ) = F̃ (x, bT ;µi, ζ) exp

{∫ µf

µi

dµ

µ
γF [αs(µ), ζ/µ2]

}
. (3.5.6)

Solving the CS equation and the RG equations, we can write the expression of
a TMD evolved from the scales µi, ζi to µf , ζf :

F̃ (x, bT ;µf , ζf ) = F̃ (x, bT ;µi, ζi) exp

{∫ µf

µi

dµ

µ
γF [αs(µ), ζf/µ

2]

} (
ζf
ζi

)−K(bT ;µi)

.

(3.5.7)
The factor multiplying the TMD at the initial scales is the evolution kernel of
the distribution or the Sudakov form factor for the parton considered and it is
independent from the spin content of the TMD distribution.

3.5.1 Natural scales

In essence, factorization tackles the logarithmic divergence in (3.3.1) splitting the
logarithm via a factorization/renormalization scale:

αs ln
Q

qT
−→ αs(µ) ln

Q

µ
+ αs(µ) ln

µ

qT

(
or ln

µ

µb

)
, (3.5.8)

µb
.

=
2e−γE

bT
∼ qT , (3.5.9)

where the first logarithm will be absorbed by the hard part of the process and
the second one will enter the resummed piece, namely the TMDs. In order to
maximize the convergence of a perturbative expression, all the logarithms should
be minimized. Therefore, the natural value for the renormalization scale in the
hard part is µ = Q and for the TMDs is µ = µb (or qT ). The logarithmic content
of the Wilson coefficients in (3.6.1) implies also ζi = µ2

i ≡ µ2
b . Then, RG and CS

equations for the TMDs are used to match two different values for each scale:

σ ∼ H(Q,µ = Q) F̃ (x1, bT ;µb, µ
2
b)F̃ (x2, bT ;µb, µ

2
b) (3.5.10)

× exp

{
2

∫ Q

µb

dµ

µ
γF [αs(µ), Q2/µ2]

} (
Q2

µ2
b

)−2K(bT ;µb)

,

where in the CS evolution ζf = Q2 has been chosen. Evolution equations are
essential in order to match the energy scales of different terms, each one evaluated
at its natural scale.
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3.6 TMD and collinear distributions

As mentioned in Sec. 3.1 and Fig. 3.2, for each TMD distribution it is possible to
give a perturbative treatment of the extraction of a parton with high transverse
momentum from the proton. A generic TMD function Fi can be matched onto
a basis of collinear distributions fj via Wilson coefficients Ci/j (see the OPE in
Chap. 2), calculable in perturbation theory. These coefficients, together with the
collinear distributions, provide the description of the high-transverse momentum
parton:

F̃i(x, bT ;µ, ζ) =
∑

j=q,q̄,g

Ci/j(x, bT ;µ, ζ)⊗ fj(x;µ) F̃i,NP (x, bT ;Q, {λ}) , (3.6.1)

where i, j are partonic indexes, ⊗ represents a convolution over the collinear mo-
mentum fractions (see Chap. 6). The Ci/j coefficients contain the terms αs(µ)×
log introduced in (3.5.8). Due to the natural choice of the renormalization scale
µ = µb ∼ 1/bT for the TMD distribution, this expansion is valid from the pertur-
bative point of view only at low bT (high pT ). For this reason, a model F̃NP is
introduced to account for the nonperturbative behavior at large bT values. It might
depend on the collinear momentum fraction x and the flavor of the parton i (see
Chap. 5), on the hard scale of the process Q and on a set of parameters {λ} to
be determined experimentally. (3.6.1) can be used to write the TMD at the initial
scales µi, ζi in (3.5.7).

Contrary to the Sudakov form factor, the Wilson coefficients depend on the
spin content and are different for each TMD distribution. These coefficients are
important tools from the phenomenological point of view, since they allow to max-
imize the perturbative content of the analysis. For T-odd TMD PDFs (see Sec. 2.8
and App. C), though, the matching is performed onto higher twist collinear PDFs,
which are poorly known from the phenomenological point of view. For this reason,
e.g., the Boer-Mulders effect is still neglected in pQCD descriptions of DY events
at the LHC.

In Chap. 8 we will use the Wilson coefficients at O(αs) for the unpolarized and
linearly polarized gluon TMD PDFs, fg1 (x, p2

T ) and h⊥g1 (x, p2
T ), available from [89].

From TMDs to PDFs and viceversa

Considering a generic TMD function f(x, p2
T ;µ, ζ) and its collinear counterpart

f(x;µ), how legitimate is to write

f(x;µ) ≡
∫
d2pT f(x, p2

T ;µ, ζ) , (3.6.2)
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3.7. Implementing TMD evolution

assuming that the function survives transverse momentum integration? From the
operator point of view it is fine and it is precisely what lies behind the definition
of collinear functions in Chap. 2. Functions appearing at the operator level are
bare quantities from the point of view of perturbation theory. Renormalization is
then required to cure the UV divergences. Since integration over transverse mo-
mentum and renormalization transformations do not commute, (3.6.2) is valid only
for the bare quantities (the operator level) and not for the physical (renormalized)
functions [20, 96]. Moreover, also the rapidity scale ζ contributes to the mismatch
between the two sides of (3.6.2) [116, 117]. Rather than determining the collinear
distribution from the TMD one as in (3.6.2), from the perturbative point of view it
is more appropriate to determine the TMD distribution from the collinear ones, as
in (3.6.1).

3.7 Implementing TMD evolution

QCD evolution plays an important role in studying the proton structure for at
least two reasons. First of all, it introduces corrections to the normalization and
the shape of the observed distributions. Moreover, it provides a way of estimat-
ing theoretical uncertainties associated to renormalization and rapidity scales (see
Chap. 6, 7 and 8).

3.7.1 Logarithmic expansion

The structure of the anomalous dimension of the TMD reads [20,96]:

γF [αs(µ), ζ/µ2] = −Γcusp[αs(µ)] ln
ζ

µ2
− γnc[αs(µ)] , (3.7.1)

where γnc is the non-cusp term, which contains also the RG evolution of the cou-
pling. Since the anomalous dimensions are additive in powers of α, we decompose
the cusp and non-cusp terms as:

Γcusp[αs(µ)]
.

=

∞∑
k=1

(
αs
4π

)k
Γcusp
k (3.7.2)

γnc[αs(µ)]
.

=

∞∑
k=1

(
αs
4π

)k
γnck , (3.7.3)

where the coefficients Γcusp
k and γnck are calculable and known up to 3 loops (k = 3)

in perturbation theory. In perturbative regime αs is small and L .
= lnζ/µ2 is large,
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so that αsL ∼ 1. Accordingly, we can organize (3.7.1) as:

γF [αs(µ), ζ/µ2] ∼ αsL+ α2
sL+ α3

sL+ · · · [cusp terms] (3.7.4)

+ αs + α2
s + α3

s + · · · [non-cusp terms]

∼ αsL︸︷︷︸
LL

+ (αs + α2
sL)︸ ︷︷ ︸

NLL

+ (α2
s + α3

sL)︸ ︷︷ ︸
NNLL

+ · · ·

∼ 1 + αs + α2
s + · · · .

γF is thus expanded in a series of logarithmic accuracy, equivalent to a power series
in αs. The first terms is the leading log (LL), the second is the next-to-leading
log (NLL), the third the next-to-next-to-leading log (NNLL), and so on. (3.7.4)
shows that the Γcusp is required at one higher-order in αs with respect to the γnc.
Choosing the LL approximation, the RG equation for a TMD distribution can be
solved as:

F̃ (x, bT ;µf , ζ) = F̃ (x, bT ;µi, ζ) exp

{
− αs

4π
ln2

µ2
f

µ2
i

}
. (3.7.5)

Selecting µi = qT and µf = Q, this result reproduces the DLLA outlined in (3.3.2).

3.7.2 Perturbative accuracy

Inserting (3.6.1) in the RG equation for the TMD (3.5.5), we can derive the RG
evolution for the Wilson coefficients (see, e.g., eq. (2.17) in [114]). A consistency
condition for such an equation is that the order in αs for γF should not be lower
than the one for C(µ, ζ). This sets a relation between the accuracy in the Wilson
coefficients and in γF (see Tab. 3.1).

Overall, the perturbative accuracy is driven by the anomalous dimension of the
TMD, γF . Choosing the αs order of the CS kernel K to be the same of γF , the
order of Γcusp will be one order higher than the one for K (see Tab. 3.1). The αs
accuracy for the hard part H of the process is usually chosen equal to the accuracy
for the Wilson coefficients (but other choices are possible, see Chap. 8). Tab. 3.1
summarizes (some of) the available choices to set the αs and logarithmic accuracy in
the Sudakov form factor in (3.5.7). From (3.7.4) and Tab. 3.1, we see that besides
the (nonperturbative) twist and the (perturbative) αs expansion, it is possible to
introduce a set of corrections driven by large logarithms of the form ln (µ/qT ).
Fig. 3.3 summarizes them (cf. with Fig. 2.6). Note that not all combinations in αs
and logarithmic accuracy are available (Tab. 3.1).

50



3.7. Implementing TMD evolution

Ci/j γnc Γcusp K accuracy process chapter

0 0 0 0 QPM `P → `hX [5]

0 0 1 0 LO-LL

0 1 2 1 LO-NLL e+e− → h1h2X [6]

0 2 3 2 LO-NNLL pp↑ → ηX [8]

1 1 2 1 NLO-NLL

1 2 3 2 NLO-NNLL pp→ ηX, pp→ Z/W± [8,7]

2 2 3 2 NNLO-NNLL pp→ Z/W±(→ lept.) [7]

Table 3.1. In this table we summarize the order of accuracy in powers of αs (LO, NLO,
NNLO) and logarithmic accuracy (LL,NLL,NNLL) for some of the ingredients entering
a TMD-evolved cross section. The numbers refer to powers of αs. The driving accuracy
is the one for the anomalous dimension of the TMD, γF , equal to the accuracy of γnc

and K. Γcusp is one order higher. The accuracy for the Wilson coefficients Ci/j cannot
be higher than the one for γF . The first line refers to the quark parton model (QPM)
with intrinsic transverse momentum, where no pQCD corrections at all are present. For
some of the combinations, we indicate a process for which such an accuracy level has been
(or currently is) under consideration. Note that in literature different naming schemes
exist (see also Sec. 7.3). Here we refer to powers of αs in the small qT region, namely the
accuracy in αs is the one of Ci/j (see [107] for a comparison between conventions referred
to small and large qT regions).

3.7.3 Evolution and the Landau pole

The bT and µ dependence in the CS kernel can be expressed as [96]:

K(bT ;µ) =

∞∑
n=1

dn

[
ln
(
µ2

µ2
b

)] (
αs(µ)

4π

)n
, (3.7.6)

where dn are perturbatively calculable coefficients. For this reason, the natural
choice for the renormalization scale in the CS kernel is µ = µb ∼ 1/bT . This implies
that at small bT the kernel can be computed as a perturbative expansion and the
coefficients dn can be obtained from the calculation of the soft function S at the
desired accuracy. At large bT , instead, it has to be modeled and extracted from
experimental data. Because of the universality of the soft function, this nonper-
turbative contribution is universal among all the measurable TMD structures (but
different between quarks and gluons).

Due to a Fourier transformation with respect to bT (see, e.g., Sec. 6.2), in
calculating cross sections we integrate over bT from 0 to +∞. Since perturbative
expansion can be trusted up to a maximum value of bT , say bmax, in practical
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Figure 3.3. Transverse momentum spectra of reactions with hadrons in the initial and/or
in the final state in QCD can be approximated by means of three complementary expan-
sions. The twist expansion represents the nonperturbative direction, accounting for the
effects emerging from the structure of hadrons. Then, a perturbative plane is generated
by expansions in αs and ln(µ/qT ) (see Sec. 3.7). Note that not all the combinations in the
perturbative plane are possible (see Tab. 3.1). The origin, the point (1, 1, 0), represents
the quark parton model.

implementations of TMD evolution it is convenient to correct all the perturbative
quantities integrated over bT by introducing a new variable b̂T (bT ) that freezes at
bmax in the limit of large bT :

lim
bT→+∞

b̂T (bT ) = bmax . (3.7.7)

Different functional forms are available in the literature. In Chap. 6 and 8 we will
test two of them involving a square root and an exponential function. Another
possible choice to avoid the region at high bT is to extend the integral over bT to the
complex plane, avoiding the Landau pole which lies on the real axis. This method,
named complex-b prescription, has been introduced in [118,119], applied to the DY
cross section in [120] and to the SIDIS one in [121]. In the literature it is also referred
to as the minimal prescription, because it does not require the introduction of a
nonperturbative paramter like bmax and introduces the least amount of corrections
to the perturbative expression.

When using a prescription as defined in (3.7.7), the model needed to parametrize
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the behavior of the kernel for bT > bmax is defined as:

gnp(bT ; {λ}) .
= −K(b̂T ;µb̂) +K(bT ;µb) , (3.7.8)

where {λ} is a set of nonperturbative parameters. In (3.7.8) we have explicitly
chosen the natural scale µb and µb̂ is as in (3.5.9) with b̂T replacing bT . Phe-
nomenological implementations of the gnp factor will be presented in Chap. 6 and
8. (3.7.8) implies that the evolution driven by emission of soft gluons is partly
perturbative and partly nonperturbative.

There is a lively debate in the literature about the role and the relevance of
the nonperturbative factor in the CS kernel. First of all, as it is defined in (3.7.8),
it affects the kernel not only at high bT but also at low bT , where the perturbative
calculation should dominate. In particular, the parameters in the model will be
determined so that the model itself induces the perturbative expression (function
of b̂T ) to match the pure perturbative result (3.7.6) at low bT , correcting the con-
vergence of K(b̂T ;µ) to a constant value k due to the freezing of bT towards bmax.
This “spurious” behavior in the low bT region could be avoided through a different
definition [122]:

K(bT ;µ) = Kres(bT ;µ)θ(b− bc) + g′np(bT ; {λ′})θ(bc − b) , (3.7.9)

where “res” indicates the pure perturbative expression from (3.7.6) and bc is a
cut-off value which separates sharply - via a theta function - the regions of low
(perturbative) and high (nonperturbative) transverse momentum. In this case the
model does not interact with the perturbative part. It is important to stress that
it does not make sense from the phenomenological point of view to compare the
parameters {λ} and {λ′}, because the nonperturbative contributions defined in
(3.7.8) and (3.7.9) play very different roles. Besides the definition, also the impact of
different implementations of gnp is a phenomenological hot topic. In [122] it is shown
that, without introducing a freezing prescription b̂T and if the scales ζi,f in (3.5.7)
are separated enough, the K-dependent part of the evolution kernel converges to
zero already before the nonperturbative high bT region. Being already zero in the
perturbative region, the evolution kernel should vanish also in the nonperturbative
regime, so there is no need for a model. This statement applies to production of
particles with high mass, e.g. Z/W± and the Higgs boson. Its verification and
discussion is anyway obfuscated by the introduction of a b̂T prescription, which
modifies the behavior of the CS kernel also at low bT . For those cases and in
presence of a Gaussian model gnp, it is found [122] that a value of bmax ∼ 1.5

GeV−1 is the best to reproduce the correct perturbative result of the CS kernel at
low bT (3.7.6), without any freezing prescription.
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3.7.4 The limit bT → 0

As explained in Sec. 3.1, the qT spectrum in the region of high transverse mo-
mentum should be described by a fixed-order calculation in pQCD. Choosing the
natural scale µb ∼ 1/bT for the Wilson coefficients and choosing ζ = Q2, leads to
a logarithmic behavior ln (QbT ) in (3.7.1) and in the Sudakov form factor. This
means that in the limit of small bT (high transverse momentum qT ) the resummed
part contaminates the fixed order calculation, because the logarithm does not van-
ish. In order to cure this undesired effect, a possibility is to modify the logarithm
in (3.7.1) as [123,124]

ln
(
Q

µb

)
→ ln

(
Q

µb
+ 1

)
. (3.7.10)

In the region of large bT , where resummation is needed, QbT � 1 and the result
for the anomalous dimension in (3.7.1) is unchanged. In the opposite limit bT → 0,
instead, QbT � 1 and the logarithm in (3.7.10) vanishes. As a consequence, the
Sudakov form factor at high transverse momentum reduces to 1, leaving the fixed-
order calculation unchanged. In [124] the impact on the total cross section is also
discussed.

A different way of regulating the small bT region is to choose a different resum-
mation scale, such as [113,125,126]:

µb → µ′b
.

=
Q

Q+ µb
µb . (3.7.11)

Accordingly, the scale in (3.7.11) can be chosen as the natural scale both in the
Sudakov factor and in the TMDs, not only in the argument of the anomalous
dimension as in (3.7.10). In particular, this substitution guarantees that, when
integrating over bT , µ′b < Q for all bT values. In the language of [113], this corre-
sponds to introducing a new cutoff bmin ∼ 1/Q, which quantifies the upper limit of
the small bT region.

It is important to keep in mind that this region mainly shapes the physics at
high qT , but also affects the other qT regions via the Fourier transform in the cross
section. This is evident especially at low Q, where the small bT region is larger.
Comparing the effects of the two methods in (3.7.10) and (3.7.11) gives an idea of
the uncertainty associated to the small bT region [125, 126]. It is proven that the
µ′b prescription leads also to a significant improvement in the description of SIDIS
data at low qT and Q [127].

3.7.5 Intrinsic transverse momentum

The last prescription we deal with is the form of F̃i,NP in (3.6.1), namely the
parametrization of the large bT region (small partonic transverse momentum pT ) in
the expansion of a generic TMD function. F̃i,NP (bT ;Q, {λ}) encodes the nonper-
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turbative wavefunction of the parton inside the proton and its Q-independent part
is related to the intrinsic transverse momentum of the parton.

There are different ways of parametrizing F̃i,NP (or its Fourier transform in
pT space) in the literature. The most common one is a Gaussian function in pT ,
because of, e.g., its mathematical simplicity. We will explore it in Chapters 5, 6, 7, 8.
Despite being particularly “user-friendly”, it should not be used outside its limited
scope. In particular, it does not reproduce the correct behavior at high transverse
momentum. Other parametrizations are available in the literature, e.g. a weighted
exponential functions [114].

The distributions in the intrinsic transverse momentum are the quantities that
should be fitted to experimental data. It is important to keep in mind that non-
perturbative effects are always defined as a subtraction, namely what we observe
experimentally minus the calculable perturbative corrections. Accordingly, the way
QCD evolution is implemented (the accuracy together with the chosen models and
prescriptions), has an impact on what we interpret as nonperturbative structure
that should be investigated and quantified. In literature different approaches to
TMD evolution are present. In [128] a method was proposed to compare different
approaches to factorization and evolution schemes, checking their consistency.

The simple picture of the parton model can be recovered turning off all the
perturbative corrections presented in this chapter (see Fig. 3.3). In that case, the
unpolarized TMD PDF for a quark with flavor i in a proton can be written as:

Fi(x, p
2
T ) = f

i/P
1 (x)

1

π〈p2
T 〉i(x)

e
− p2

T
〈p2
T
〉i(x) , (3.7.12)

where we have chosen a Gaussian model to parametrize the whole pT spectrum
of the quark. The parameter 〈p2

T 〉i(x) represents the average square transverse
momentum of the parton considered (quark or gluon). For an unpolarized parton
in an unpolarized proton, its definition as the first moment of the unpolarized TMD
PDF is divergent, due to the 1/p2

T behavior of f i1 at high pT :

〈p2
T 〉i(x) =

∫
d2pT p

2
T f

i
1(x, p2

T ) ≡ 2M2f
(1)i
1 (x) . (3.7.13)

An alternative definition is provided by the Bessel weighting [116, 129] with the
replacement f (1)i

1 (x) → f̃
(1)i
1 (x, b2T ) in the limit bT → 0 (see App. D). The average

square transverse momentum can be a function of the collinear momentum fraction
and, for quarks, the flavor (Chap. 5) and it needs to be determined by means of
nonperturbative techniques (e.g., lattice QCD or fits). Phenomenology based on
this Gaussian assumption will be presented in Chap. 5 and we will elaborate on its
results in Chap. 6 and 7.
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3.8 Other factorization and evolution schemes

TMD factorization and evolution are not the only frameworks to describe the QCD
evolution of functions dealing with the transverse momentum of partons. A different
scheme called high-energy or small-x factorization [130, 131] provides factorization
of cross sections in the kinematic limit where the Mandelstram variable s [4] is very
large and Q2 = M2 (where M is the mass of the produced particle) is large but
finite:

ΛQCD � Q2 � s→∞ [ideally] . (3.8.1)

This is different from the kinematic regime for TMD factorization:

q2
T � Q2 →∞ [ideally] , (3.8.2)

where qT is the transverse momentum of the produced particle. In both approaches
it is possible to define partonic distributions sensitive to transverse momentum. In
the context of small-x factorization they are sometimes referred to as unintegrated
distributions. There are attempts to define common grounds for discussion and ap-
plications. Recently, these connections have been discussed in a series of workshops
(REF meetings [28]). The following are among the key points to draw a relation
between the two frameworks: an operator definition for unintegrated distributions
has been provided in [132, 133]; the same structures appear in the operator con-
nection between gluon TMDs at x = 0 and TMDs from gauge loop correlators
discussed in [78]. Studies of resummation including small-x (BFKL) and transverse
momentum effects have been performed in [134–136].

Looking ahead, the computational tool TMDlib [137] collects parametrizations
of functions defined in both schemes. A review dealing with both definitions in the
case of gluons is available in [138].
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CHAPTER 4

PHENOMENOLOGY

La sapienza è figliuola della sperienza.
Leonardo da Vinci

TMD phenomenology combines all the concepts that we introduced so far, in
order to quantify the impact of hadron structure in scattering processes. In this
chapter we outline how to obtain information about the TMD structures introduced
in the first part of this thesis, focusing on the available observables and the tools
to analyze them. We introduce the motivation for the studies presented in the
next chapters and we summarize the current level of knowledge for the unpolarized
TMDs. A major goal of phenomenology is also to collect and organize the knowledge
gained so far. For this reason, a repository is introduced as a reference point for
future studies and applications.

4.1 Observables

In order to study the impact of TMDs in specific processes, it is possible to analyze
different kinds of observables, e.g. cross sections, multiplicities and spin asymme-
tries. The first ones have been introduced in Sec. 2.2. Multiplicities are ratios of
cross sections (see Chap. 5 and 6), whereas spin asymmetries involve cross sections
with certain spin configurations (see Sec. 4.2). Each one has specific advantages.

Predictions and fits of cross sections are important because they can be a direct
test of TMD factorization and the formalism generating from it, namely the match-
ing from the TMD to the collinear region via the Y term (Sec. 3.3). Multiplicities,
defined as the ratio of a TMD cross section over the corresponding one integrated
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4. Phenomenology

over the observed transverse momentum (see Chap. 5 and 6), keep the same ad-
vantages of cross sections, reducing systematic experimental errors (like acceptance
effects) through the ratio. Moreover, as explained in Chap. 6, ratios of multiplicities
are less sensitive to theoretical uncertainties arising from the renormalization and
the rapidity scales. Considering ratios, though, some of the TMD effects of interest
might be reduced.

Asymmetries, instead, allow to isolate contributions to cross sections coming
from specific TMD structures: they are useful for investigations targeted to cer-
tain TMD PDFs or FFs. Among all the possible examples, they are a useful tool
to investigate the transversity1 quark TMD PDF h1(x, p2

T ) (see Sec. 2.6.3), and
in general all the structures involving the polarization of the parton and/or the
hadron (see Chap. 8). As for multiplicities, the definition as ratios of TMD cross
sections allows the cancellation of systematic effects but might complicate the de-
termination of nonperturbative effects specific of the TMD formalism (see Chap. 3).

Which observable is best depends on the phenomenological goal. Studies of
certain polarized TMD functions are naturally performed via spin asymmetries.
For example, in Fig. 4.1 the experimental kinematic coverage for the Sivers asym-
metry [15] is presented. Experimental investigations for that asymmetry allow the
determination of the quark Sivers function f⊥1T (x, p2

T ). Tests of the formalism and
determinations of the impact of nonperturbative contributions to QCD evolution
are better provided by cross sections and multiplicities, where there are no unde-
sired cancellations [113, 139]. Nonetheless, also asymmetries are useful in testing
the formalism, namely to address the process dependence of the T-odd (polarized)
TMD PDFs (see the case of the Sivers asymmetry).

4.2 Asymmetries

4.2.1 The case of QED

Between 1949 and 1959, Ehrenberg and Siday [140] and Aharonov and Bohm [141]
showed that the wave function of an electron passing around a long solenoid expe-
riences a phase shift as a result of the enclosed magnetic field, despite the magnetic
field being negligible in the region through which the particle moves. Experimen-
tal investigations were performed using double slits experiments. Relying on a
path-integral formulation, it is possible to show [142] that the amplitude of the
interference pattern on the screen is proportional to a phase involving the integral
of the electromagnetic potential exp{−ie

∮
dx · A(x)}. This phase shift due to a

gauge loop proves that the potential Aµ has a physical role, it is not just a math-
ematical artifact to introduce the electric and magnetic fields ~E, ~B. The direction

1Which, being chiral-odd, needs to be coupled to another chiral-odd distribution.
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Figure 4.1. The kinematic x-Q2 ranges for the Sivers asymmetry covered by different
experimental collaborations. The Electron-Ion-Collider will probe new ranges not experi-
mentally explored yet. Figure from [77].

of the shift for the interference pattern changes sign depending on the direction of
the magnetic field: such an effect can be considered an asymmetry.

4.2.2 QCD and spin

The analogue of this effect in QCD are asymmetries governed by the spin of the
involved hadrons (single or double, depending on the number of spins involved).
Experimentally, they can manifest with specific dependencies on the azimuthal
angles entering a cross section (e.g. the azimuthal angle of the spin vector). For
this reason they classify as azimuthal spin asymmetries.

The interest in the polarization properties of hadrons arose in the late ′80s from
the so-called “Spin-Crisis”2. Later, at Fermilab, single transverse spin asymmetries
of order ∼ 10% were measured in hadronic polarized hyperon production [144,145]
and pion production [146–149]. Since then, the study of spin asymmetries has
rapidly evolved, both from the theoretical and experimental point of view. For a
deeper insight into spin physics and azimuthal asymmetries see the textbooks [150,
151], the theses [56,152] and the reviews [153–159].

2It was found by the EMC collaboration that quarks account only for a small fraction of the
helicity of the proton [143].
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Notably, the observations of spin asymmetries could not be accounted for by
the collinear quark parton model (QPM). This triggered an investigation of hadron
structure beyond the collinear QPM and different mechanism were proposed to
account for spin asymmetries [56,152].

Considering the polarization of only one hadron, the first proposal relied on
a collinear factorization framework [160, 161], involving interactions of soft gluons
from the target remnants with the active partons in the initial and final state. This
is accounted for by collinear twist-3 matrix elements (Qiu-Sterman [QS] matrix
element). Later, Sivers proposed an explanation [162, 163] based on a correlation
between the transverse momentum of the quark and the polarization of the pro-
ton, introducing the Sivers quark TMD PDF f⊥1T (x, p2

T ). The Sivers effect and its
interplay with the time reversal invariance of QCD (see App. C) initiated a theo-
retical endeavor culminated with the introduction of gauge links in the definition
of partonic distributions [21,164,165].

The common feature of these mechanisms is that an imaginary phase required
for the non-vanishing asymmetry is generated by taking into account an additional
soft gluon exchange (from the QS matrix element in the collinear case, from the
gauge-link in the TMD case) between the active parton and the remnant of the
transversely polarized hadron. These two explanations are linked, since the TMD
(quark and gluon) Sivers function is matched onto QS matrix elements.

From the behavior of quark and gluon correlators under time reversal transfor-
mation (see Sec. 2.8), we can deduce that a Feynman amplitude involving an odd
(even) number of spins3 is odd (even) under time reversal. For this reason, single
spin asymmetries (SSAs) are proportional to T-odd kinematic correlations, whereas
double spin asymmetries (DSAs) are described by T-even kinematic correlations.

4.2.3 TMDs of definite rank and azimuthal asymmetries

An advantage of using distribution and fragmentation TMD correlators in a STT
form with definite rank structures is the possibility of linking the rank of the func-
tions to the angular dependence with which they contribute to structure functions
and azimuthal asymmetries. As an example, let us consider SIDIS. The differen-
tial cross section involving the transverse momentum of the observed hadron, the
azimuthal angle of the hadron plane φh (defined according to the Trento conven-
tions [166]) and the azimuthal angle φS of the transverse spin vector is available
in [15] in terms of structure functions and TMDs, including twist-2 and twist-3
terms. For the structure functions built with TMDs of definite rank, we conjecture
that:

F
F(φh,φS)
[pol. `][pol. h] ∼ C[fD] =⇒ F(αφh, βφS) , (4.2.1)

3We refer to a covariant spin vector entering the density matrix, as in Sec. 2.6.2.
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where F[pol. `][pol. h] is a structure function related to certain polarization states of
the lepton ` and the target h. The superscript labels a specific Fourier mode of the
structure function. f and D are, respectively, two generic TMD PDF and TMD
FF and C is the convolution operator as defined in [15]. The coefficient α and β are
related to the ranks of f and D in transverse momentum and spin, respectively.

The φS-dependent term enters (4.2.1) only when the transverse spin ST plays
a role. Eq. (4.2.1) is a way of connecting a specific Fourier mode of a structure
function with the rank of the involved TMDs. Its specific form for SIDIS with
correlators in STT form is under investigation. The dependence of α and β on the
ranks in transverse momentum and spin might depend on the process considered.

As an example of azimuthal asymmetry, let us consider the twist-2 contribution
to the SIDIS cross section coming from the configuration with a longitudinally
polarized lepton beam and a transversely polarized target [15]:

dσLT

dxdydzdφhdφSdP
2
hT

∼ STλl
[ √

1− ε2 cos(φh − φS) F
cos(φh−φS)
LT

]
. (4.2.2)

λl is the polarization of the lepton beam, ST is the transverse spin of the target.4

The Fourier moment of the spin asymmetry [166]

A
cos(φh−φS)
LT ∼ g1T (x, p2

T )⊗D1(z, k2
T ) / f1 ⊗D1 (4.2.3)

allows to access the T-even worm gear TMD PDF g1T , in combination with the
unpolarized TMD FF. g1T and D1 are functions with definite rank, see Sec. 2.6.3.
The denominator of spin asymmetries is built by the unpolarized TMD PDF and
FF, f1(x, p2

T ) and D1(z, k2
T ). A detailed knowledge of the unpolarized TMDs is

thus of utmost importance to get information on the polarized TMDs via spin
asymmetries. Preliminary5 experimental results on different moments of the DSA
ALT as a function of transverse momentum are summarized in the report written
by the author for the Desy Summer School program 2012.

4For the other variables see [15].
5The report is Hermes internal.
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4. Phenomenology

4.3 What do we know?

In this thesis we mostly deal with the properties of the unpolarized TMDs. Here
we outline their phenomenological knowledge. The repository

http://tmd.hepforge.org

has been introduced to collect material interesting for TMD studies. A summary
of fits and parametrizations of TMDs is also available in Sec. 5 in [28].

4.3.1 Unpolarized quark TMDs

In the past years TMDs have been investigated mainly within the generalized6

QPM. This model, as mentioned in Tab. 3.1, neglects corrections from perturbation
theory. If gauge links are absent in the operator definitions, the process dependence
of TMDs must be inserted ad-hoc. Its success relies on the fact that, up to now,
the available experimental data sensitive to partonic transverse momentum do not
extend over large Q2 ranges (see Fig. 4.1). Within the generalized QPM, a Gaussian
behavior in the partonic transverse momentum is the most common assumption,
whose details are described in, e.g., [167, 168]. Nowadays TMD phenomenology is
moving towards a “precision phase”, where perturbative corrections play an increas-
ingly important role. This is important in view of new experimental setups, like
the Electron-Ion-Collider (EIC) [77]. Introducing perturbative corrections at low
Q2 is challenging from the point of view of TMD factorization and may even lead
to correcting the formalism (see the case of the Y-term [113]).

Unpolarized distribution fa1 (x, p2
T ). We know fairly well its x-dependence,

which relies on fits of global data sets. For an overview of the knowledge of the
x-dependence see, e.g., [169–172] and http://hepdata.cedar.ac.uk/pdfs. Moreover,
the LHAPDF project provides a computational interface to many parametrizations.
The knowledge of the transverse momentum dependence, instead, is still more lim-
ited.

From SIDIS: QPM fits of unpolarized data assuming Gaussian behavior in the
transverse momentum [167, 173] or a Gaussian behavior with dependence on the
kinematics and the flavor [174–177]; QPM analyses of the Cahn effect (unpolarized
data with dependence on the azimuthal angle) [167, 178]. A study of the nonper-
turbative component of the evolution via unpolarized TMDs in SIDIS is available
in [179].

From DY: QPM analyses of data with and without azimuthal dependence [167,
180]; analyses with QCD evolution with O(αS) corrections at low transverse mo-
mentum (see Tab. 3.1) [181–183] based on the CSS formalism in its original [105]

6Originally the parton model was introduced to account for the collinear motion of partons.
We refer to a “generalized” parton model because transverse momentum effects are considered.
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and new [20] formulation; [114] within the framework of TMD factorization on
the light cone (see Chap. 3); [184] based on a TMD extension of the DGLAP for-
malism [185–187]. The last analysis includes a theoretical and phenomenological
comparison of the three mentioned evolution schemes. [188] presents a study based
on the minimal (complex-b) prescription (see Chap. 3). A study of the nonpertur-
bative effects in DY and Higgs production has been carried out, e.g., in [189, 190].
The theoretical uncertainty arising from variations of the renormalization and fac-
torization scales is comparable with the one associated to nonperturbative effects.

Combined SIDIS and DY: [191–193] address the issue of the global description
of SIDIS and DY data, obtaining qualitative results (the last two do not provide the
χ2 or the sample of analyzed data). The first also compares different approaches
to TMD evolution.

At small-x: Quark TMDs at small-x have been introduced in [194,195]. In [196]
the SIDIS cross section is described by TMD quark distributions in the framework
of small-x TMD factorization.

Summarizing, it is important to stress that phenomenological extractions de-
pend on the perturbative content and the chosen accuracy. For this reason, it would
be interesting to check if the nonperturbative information that we can extract from
experimental data converges while adding more perturbative information.

Unpolarized fragmentation Da→h
1 (z, p2

T ). A review about parton fragmenta-
tion functions has been recently presented in [197]. An overview of the available
knowledge of collinearDa→h

1 is also available at http://www2.pv.infn.it/∼radici/FF-
database/. An online interface to calculate collinear fragmentation functions in
different kinematic regimes is provided at http://lapth.cnrs.fr/ffgenerator/. The
most up-to-date global fit of collinear D1 is the DSEHS (or new DSS) parametriza-
tion [198] (whose baseline for perturbative accuracy has become NLO in αs). In
essence, the available information concerning the transverse momentum dependence
comes from the SIDIS analyses outlined in the previous paragraph for unpolarized
distribution. Notably, the flavor dependence in the TMD part is more evident with
respect to the case of distributions (see Chap. 5 for more details).

4.3.2 Unpolarized gluon TMDs

We only know with fair precision the x-dependence of fg1 (see the LHAPDF project).
There are no fits of the transverse momentum dependence within the TMD factor-
ization approach. Predictions exist, linked to Higgs production (e.g. [89, 199]),
Higgs plus jet production (e.g. [200]) and quarkonium production (e.g. [98, 201])
from proton-proton collisions. For unpolarized gluon TMD FFs, see the paragraph
for quarks. The most recent parametrization is the one given in the DSEHS release.

Behavior at small-x. There are several studies of unintegrated gluon distribu-
tion functions at small-x. Within the high-energy approach [132] (see Chap. 3),
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it is possible to introduce two operator structures associated to two gluon distri-
butions: the Weizsäcker-Williams (WW) distribution and the dipole distribution.
For a link between these structures and the gluon-gluon correlator introduced in
Sec. 2.6 see [78].

Unintegrated distributions have also been introduced without an operator def-
inition, e.g. in [202–205]. In this context, phenomenological investigations relying
on the CCFM [206,207] evolution framework are discussed, e.g., in [208–210].

4.4 How to improve

As mentioned earlier, a large portion of TMD phenomenology has been performed
in the generalized QPM, namely without considering corrections from perturba-
tion theory. In view of current and future experimental facilities exploring new
kinematic frontiers, such as the LHC, AFTER@LHC, the LHeC and the EIC, it
is important to improve the tools to perform phenomenological investigations of
TMDs (see Fig. 4.2), combining theoretical accuracy and a detailed understanding
of the nonperturbative structure.

The relevance of nonperturbative effects at different energy scales is a hot topic
in TMD phenomenology. Their impact is reduced in the limit Q/ΛQCD → +∞ [123,
211]. For this reason, in order to be sensitive to nonperturbative effects, we should
explore relatively low Q regions. Not too low, though: otherwise TMD factorization
could break and higher-twist effects could contaminate the results. Working at
medium Q (say Q ∼ 10 GeV, as in Chap. 6 and 8) should be optimal to study NP
effects safely, trusting to a good extend TMD factorization and evolution. There
are several strategies to improve our phenomenological knowledge of TMDs and
the analysis framework can be refined on all its sides (see Fig. 4.2): theoretical,
experimental and phenomenological.

Theory

From the theory viewpoint, hot topics are, among the others, the process depen-
dence of TMDs [212], perturbative accuracy (see Chap. 3), connections with small-x
formalism [28], quantifying factorization breaking effects [100,213] and higher twist
effects.

Adding perturbative corrections has a two-fold importance: it introduces cor-
rections to the observables and it allows for an estimate of the theoretical uncertain-
ties associated to the renormalization scale and the rapidity scale (see Chap. 6, 7, 8).
In view of experimental facilities exploring both high Q2 and small x kinematic re-
gions (e.g. potentially the EIC), it would be important to implement frameworks
where both Sudakov and BFKL-like effects are taken into account, e.g. [134–136].
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Figure 4.2. Here we illustrate the major steps required along the road to phenomenology
of TMD distributions. Definitions of the functions and investigations of their universality
properties need to be complemented by models for the low transverse momentum spectrum
and perturbative calculations for the high transverse momentum regime. Experimental
data need to be tackled by means of simulations and fitting techniques.

Experiments

An overview of the current and future experimental programs that will open new
windows on TMD phenomenology is available in App. F. Among the new ones, we
mention the 12 GeV program at Jefferson Lab, the LHeC, the EIC for SIDIS, the
hadronic collisions at RHIC, COMPASS, LHC, AFTER@LHC, the fragmentation
studies at Belle-II, BES-III, the ILC.

Besides extending the Q2 range to appreciate TMD evolution effects, it is im-
portant to achieve multidimensional binning in the data, diminishing the correla-
tions among the kinematic variables. This is of relevance in order to deepen the
knowledge of the nonperturbative part of the TMDs at low partonic transverse
momentum (see Chap. 5).

Concerning SIDIS, nowadays we still benefit of the heritage of the Hermes
experiment and the most recent results of the Compass collaboration. In the near
future, we will benefit of new multidimensional data collected by the JLab 12 GeV
program. Considering DY, the Relativistic Heavy Ion Collider (RHIC) is at the
moment the only machine in the world delivering polarized data. In Europe the
Compass experiment will soon follow. The LHC is the most powerful apparatus to
collide unpolarized protons. Its possible spin-offs are A Fixed Target Experiment at
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the LHC (AFTER@LHC) (with the possibility of polarizing a hadron target, see [36]
and Chap. 8), the Large Hadron-electron Collider (LHeC, to perform SIDIS studies).
Along this line, the Electron-Ion Collider [77] in the United States will be an optimal
setting for TMD studies. Considering e+e− annihilation, besides the knowledge
delivered so far by Belle , BaBar and BES III , the International Linear Collider
(ILC) will contribute to the investigations of fragmentation functions in the future.

Phenomenology

At this stage, a global fit of different experimental data sets has not been achieved
yet. An almost global study will be presented in [127]. Along this road and con-
necting to the previous paragraph, one of the most compelling phenomenological
challenges is to improve the knowledge of the nonperturbative part of (un)polarized
TMDs and of TMD evolution. Among the hot topics there are the flavor and kine-
matic dependence in the transverse momentum part [174–177, 214], how to imple-
ment the separation between intrinsic and perturbative transverse momenta, the
prescription to treat the Landau pole problem in TMD evolution (Sec. 3.7.3).

Improving the statistical tools is also important. For example, fit procedures
based on neural network techniques [215] and the method of replicas [174] help in
achieving a deeper insight into the statistical uncertainties connected to experimen-
tal data and best-fit values (Chap. 5). Moreover, defining standardized frameworks
for data analysis can be helpful for comparing different extractions of phenomeno-
logical parameters. An example for collinear distributions is [216].

Recently TMDlib [137], a library of TMDs, has been created as a framework
to collect parametrization of TMDs via a user-friendly interface. It follows the
philosophy of the successful LHAPDF project [217] for collinear parton distribu-
tion functions. A list of Monte Carlo generators with sensitivity to the transverse
momentum of partons is provided in Sec. 6 in [28], ranging from semi-inclusive to
exclusive generators (see also the discussion in Sec. 3.3.4).

In the next chapters of this thesis we focus on topics and techniques that can
help improving the phenomenological knowledge on the TMDs. In Chap. 2 we
presented notation based on symmetric traceless tensors, that facilitates the trans-
lation into bT space to implement QCD evolution (Chap. 8) and can shed light on
the azimuthal angular behavior of asymmetries. We will focus on the strategies to
improve the understanding of the baseline of all the spin asymmetries, namely the
unpolarized distributions. In particular, we will investigate their flavor and kine-
matic dependence in the TMD part, addressing SIDIS (Chap. 5), e+e− annihilation
(Chap. 6) and W±/Z production at the LHC (Chap. 7), each at different energy
ranges. Eventually, we will investigate the effect of QCD evolution and theoretical
uncertainties on gluon TMDs in (un)polarized proton-proton collisions at LHC and
AFTER@LHC (Chap. 8).
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CHAPTER 5

SEMI-INCLUSIVE DIS

Provando e riprovando.
Accademia del Cimento

In this Chapter we present a phenomenological investigation of the flavor and
kinematic dependence of partonic intrinsic transverse momentum from SIDIS data
released by the Hermes collaboration, in the framework of the generalized quark
parton model (QPM). The replica method (Sec. 5.3.2) plays a fundamental role,
allowing to access physically equivalent configurations for the nonperturbative pa-
rameters and to compute expectation values for observables. This work is the
foundation for the analyses presented in Chap. 6 and 7. An analysis based on
preliminary Compass results is available in the M.Sc. thesis of the author.

Text and results are based on [174–177, 214]. The convention for labeling par-
tonic and hadronic momenta is specified in Fig. 5.1.

5.1 Introduction and motivation

In spite of the recent advancements in TMD phenomenology, we have still little
knowledge about the most simple and most common of all TMD PDFs: the “un-
polarized” distribution, fa1 (x,k2

⊥), i.e., the distribution of partons with flavor a
summed over their polarization and averaged over the polarization of the parent
hadron. The features of the corresponding collinear standard PDF fa1 (x) strongly
depend on the parton flavor a (see, e.g., Refs. [169–172, 218, 219]). It comes natu-
ral, therefore, to question whether or not partons of different flavors have different
transverse-momentum distributions. Several model calculations predict different
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5. Semi-Inclusive DIS

transverse-momentum behaviors for different quarks [104, 220–225], although oth-
ers do not [226–228]. Indications of flavor dependence in TMD PDFs come also
from pioneering studies in lattice QCD [229]. Therefore, at this stage there are
compelling motivations to study the flavor dependence of TMD PDFs.

The measurements recently published by the Hermes collaboration [29] are
ideal to address this issue, since they refer to SIDIS off different targets (pro-
tons and deuterons), with different final-state hadrons (charge-separated pions and
kaons), and with multidimensional binning. This is a landmark achievement in the
knowledge of the internal structure of hadrons. Earlier data already gave some
indications, but were limited in the variety of targets, or final-state hadrons, or
multidimensional coverage (see, e.g., [31–35]).

The Compass collaboration has recently released similar data [30]. The amount
of statistics is in this case impressive and the kinematic coverage is in general wider
than the Hermes one. However, at the moment these data are available only for
deuteron targets and for unidentified final charged hadrons. Therefore, we decided
not to use these data, although they will certainly play an essential role in the near
future.

Dealing with SIDIS, we need to consider also fragmentation functions and their
transverse-momentum dependence. Also in this case, it is possible that differ-
ent quark flavors fragment into different hadrons with characteristic transverse-
momentum distributions [224,230]. This is another fundamental question that has
never been addressed at the phenomenological level.

Since our work represents one of the first explorations on this topic, we adopt
a simplified framework, based on the generalized QPM picture. We neglect any
modification that can be induced by QCD evolution, both in the collinear PDFs
and FFs as well as in the TMD ones (see Chap. 3 and Tab. 3.1). This approxima-
tion is justified by the limited range in Q2 of the experimental data: no difficulty
arises in describing them with this simplified framework. Improvements based on
perturbation theory, though, will be welcome for future analyses. All the assump-
tions, the notation, and the general theoretical framework are outlined in Sec. 5.2.
In Sec. 5.3, we describe the fitting procedure. In Sec. 5.4, we present the results,
and in Sec. 5.5 conclusions and outlooks are drawn.

5.2 Theoretical framework

In one-particle semi-inclusive DIS, a lepton ` with momentum l scatters to a final
state with momentum l′ off a hadron target N with mass M and momentum P ,
producing (at least) one hadron h in the final state with mass Mh and momentum
Ph:

`(l) +N(P )→ `(l′) + h(Ph) +X . (5.2.1)
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The space-like momentum transfer is q = l − l′, with Q2 = −q2. We introduce the
usual invariants

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph
P · q , γ =

2Mx

Q
. (5.2.2)

The available data refer to hadron multiplicities in SIDIS, namely to the dif-
ferential number of hadrons produced per corresponding inclusive DIS event. In
terms of cross sections, we define the multiplicities as

mh
N (x, z,P 2

hT , Q
2) =

dσhN/(dxdzdP
2
hT dQ

2)

dσDIS/(dxdQ2)
, (5.2.3)

where dσhN is the differential cross section for the semi-inclusive DIS process and
dσDIS is the corresponding inclusive one, and where P hT is the component of P h

transverse to q. In the single-photon-exchange approximation, the multiplicities
can be written as ratios of structure functions [15]:

mh
N (x, z,P 2

hT , Q
2) =

π FUU,T (x, z,P 2
hT , Q

2) + π εFUU,L(x, z,P 2
hT , Q

2)

FT (x,Q2) + εFL(x,Q2)
, (5.2.4)

where

ε =
1− y − 1

4γ
2y2

1− y + 1
2y

2 + 1
4γ

2y2
. (5.2.5)

We recall that the notation FXY,Z indicates the response of the hadron target with
polarization Y to a lepton beam with polarization X and for the virtual photon
exchanged in the polarization state Z. Therefore, the numerator of Eq. (5.2.4)
involves SIDIS processes with only unpolarized beam and target. We remark that
the above expressions assume a complete integration over the azimuthal angle of
the detected hadron. Acceptance effects may modify these formulae, due to the
presence of azimuthal modulations in the cross section, though for the data used
here such effects were included in the systematic uncertainties.

We consider the limits M2/Q2 � 1 and P 2
hT /Q

2 � 1. Within them, the longi-
tudinal structure function FUU,L in the numerator of (5.2.4) can be neglected [231].
In the denominator, the standard inclusive longitudinal structure function FL is
non negligible and contains contributions of order αS . However, in our analysis
we assume a parton-model picture and we neglect such contributions; hence, con-
sistently, we neglect the contribution of FL in the denominator of (5.2.4). It may
also be noted that in the transverse-momentum analysis of the data, FL induces a
change in normalization that depends on x, but is independent of z and P 2

hT , the
kinematic variables most relevant in the fitting procedure. Hence, we do not expect
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large effects on the resulting parameters.

To express the structure functions in terms of TMD PDFs and FFs, we rely on
the factorized formula for SIDIS at low transverse momenta [19,20,22,96,105,122,
183,232,233]:

FUU,T (x, z,P 2
hT , Q

2) =
∑
a

HaUU,T (Q2;µ2) (5.2.6)

×
∫
dk⊥ dP⊥ f

a
1

(
x,k2

⊥;µ2, ζ2
)
Da~h1

(
z,P 2

⊥;µ2, ζ2
)

× δ
(
zk⊥ − P hT + P⊥

)
+ YUU,T

(
Q2,P 2

hT

)
+O

(
M2/Q2

)
.

Here, HUU,T is the hard scattering part; fa1 (x,k2
⊥;µ2, ζ2) is the TMD PDF for

an unpolarized parton of flavor a in an unpolarized proton, carrying longitudinal
momentum fraction x and transverse momentum k⊥ at the factorization scale µ
and rapidity scale ζ (see Chap. 3) which in the following we both choose to be equal
to Q2. Da~h1 (z,P 2

⊥;µ2, ζ2) is the TMD FF for an unpolarized parton of flavor a
fragmenting into an unpolarized hadron h carrying longitudinal momentum fraction
z and transverse momentum P⊥; the term YUU,T is introduced to ensure a matching
to the perturbative calculations at high transverse momentum. The expression for
FUU,T is known up to at least O(α2

S), including the resummation of at least next-
to-next-to-leading logarithms of the type log(P 2

hT /Q
2). However, we are going to

use here only the lowest-order expression (QPM), which should still provide a good
description at low P 2

hT and in a limited range of Q2. Eventually, (5.2.6) simplifies
to (see, e.g., [15, 180,234])

FUU,T (x, z,P 2
hT , Q

2) =
∑
a

e2
a

[
fa1 ⊗Da~h1

]
(x, z,P 2

hT , Q
2) , (5.2.7)

where the convolution upon transverse momenta is defined as

[
f⊗D

]
(x, z,P 2

hT , Q
2)

.
= x

∫
dk⊥ dP⊥ δ

(
zk⊥+P⊥−P hT

)
f(x,k2

⊥;Q2)D(z,P 2
⊥;Q2) .

(5.2.8)

In Fig. 5.1, we describe the notation for the transverse momenta used in this
Chapter, in agreement with the one suggested in [17], which is also reproduced
below for convenience:
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hadron

photon

proton

quarkq

P

Ph

p

kk⊥

k⊥

PhT

P⊥

∼zk⊥

Figure 5.1. Diagram describing the relevant momenta involved in a SIDIS event (see
also [224, 235]): a virtual photon (defining the reference axis) strikes a parton inside a
proton. The parton has a transverse momentum k⊥ (not measured). The struck par-
ton fragments into a hadron, which acquires a further transverse momentum P⊥ (not
measured). The total measured transverse-momentum of the final hadron is P hT . When
Q2 is very large, the longitudinal components are all much larger than the transverse
components. In this regime, P hT ≈ zk⊥ + P⊥.

Momentum Physical description

k 4-momentum of parton in distribution function

p 4-momentum of fragmenting parton

k⊥ transverse momentum of parton in distribution function

P⊥ transverse momentum of final hadron w.r.t. fragmenting parton

P hT transverse momentum of final hadron w.r.t. virtual photon

5.2.1 Flavor-dependent Gaussian ansatz

The Gaussian ansatz consists in assuming the following functional form for the
transverse-momentum dependence of both the TMD PDF fa1 and the TMD FF
Da~h1 in (5.2.7):

fa1 (x,k2
⊥;Q2) =

fa1 (x;Q2)

π〈k2
⊥,a〉

e−k
2

⊥/〈k
2

⊥,a〉 , (5.2.9)

Da~h1 (z,P 2
⊥;Q2) =

Da~h1 (z;Q2)

π〈P 2
⊥,a~h

〉
e−P

2

⊥/〈P
2

⊥,a~h
〉 . (5.2.10)
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Due to its simplicity, this ansatz has been widely used in phenomenological studies
but with constant widths 〈k2

⊥〉 and 〈P 2
⊥〉. Here, for the first time, we introduce an

explicit dependence on flavor a for both average transverse momenta 〈k2
⊥,a〉 and

〈P 2
⊥,a~h

〉. In principle, there are no reasons to prefer the Gaussian ansatz over
other functional forms, and indeed more flexible forms should be investigated in
the future. Model calculations typically lead to a non-Gaussian behavior [104,221,
226–228,236]. The ansatz is also not compatible with the proper QCD evolution of
TMD PDFs: it could be at most applicable at one specific starting scale, but would
soon be spoiled by QCD corrections. In our analysis, we completely neglect Q2

evolution, even in the collinear part of the functions, which we evaluate at Q2 = 2.4

GeV2. From now on, we drop the Q2 dependence of the involved functions.

The convolution on transverse momenta in (5.2.8) can be solved analytically:

[
fa1 ⊗Da~h1

]
(x, z,P 2

hT ) = fa1 (x)Da~h1 (z)

[
e−k

2

⊥/〈k
2

⊥,a〉

π〈k2
⊥,a〉

⊗ e−P
2

⊥/〈P
2

⊥,a~h
〉

π〈P 2
⊥,a~h

〉

]
= x fa1 (x)Da~h1 (z)

1

π〈P 2
hT,a〉

e−P
2

hT /〈P
2

hT,a〉 ,

(5.2.11)

where the relation between the three variances is

〈P 2
hT,a〉 = z2〈k2

⊥,a〉+ 〈P 2
⊥,a~h

〉 . (5.2.12)

In this way, for each involved flavor a, the average square value of the transverse
momentum P hT of the detected hadron h can be related to the average square
values of the intrinsic transverse momenta k⊥ and P⊥, not directly accessible by
experiments. Inserting (5.2.11) in (5.2.7), we simplify the multiplicities as

mh
N (x, z,P 2

hT ) =
π∑

a e
2
a f

a
1 (x)

×
∑
a

e2
a f

a
1 (x)Da~h1 (z)

e−P
2

hT /
(
z2〈k2

⊥,a〉+〈P
2

⊥,a~h
〉
)

π
(
z2〈k2

⊥,a〉+ 〈P 2
⊥,a~h

〉
) .

(5.2.13)

If the distribution functions describe a parton a in a proton target, obviously the
above expression is valid for N = p, i.e., for a proton target. We can deduce the
corresponding result for a neutron target by assuming isospin symmetry. For a
deuteron target, we can assume an incoherent sum of proton and neutron contri-
butions. Under these assumptions the necessary label for the parent hadron on
PDFs is omitted and PDFs refer to the ones of the proton. We remark also that
each quark flavor is described by a single Gaussian with a specific width: the mul-
tiplicity is then a sum of Gaussians and thus no longer a simple Gaussian. The
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above expression can be used with minor modifications also if we assume that the
distribution and fragmentation functions for some flavor are themselves sums of
Gaussians. We will in fact adopt such an assumption for the up and down quarks,
where we distinguish a valence and a sea contribution, each one having a different
Gaussian width. For example, the up contribution to the multiplicities is[
fu1 ⊗Du~h1

]
(x, z,P 2

hT ) =
[
(fuv1 + f ū1 )⊗Du~h1

]
(x, z,P 2

hT ) =

= x fuv1 (x)Du~h1 (z)
e−P

2

hT /
(
z2〈k2

⊥,uv 〉+〈P
2

⊥,u~h
〉
)

π
(
z2〈k2

⊥,uv 〉+ 〈P 2
⊥,u~h

〉
)

+ x f ū1 (x)Du~h1 (z)
e−P

2

hT /
(
z2〈k2

⊥,ū〉+〈P
2

⊥,u~h
〉
)

π
(
z2〈k2

⊥,ū〉+ 〈P 2
⊥,u~h

〉
) ,

(5.2.14)

where fuv1 = fu1 − f ū1 , and similarly for the down quark.

Previous data obtained in unpolarized Drell-Yan (DY) and SIDIS processes
were compatible with calculations based on a Gaussian ansatz for unpolarized TMD
PDFs and TMD FFs with flavor-independent constant widths. In this case, (5.2.13)
would display a simple Gaussian behavior in P hT with the same width in every
target-hadron combination. However, the Hermes multiplicities display significant
differences between proton and deuteron targets, and between pion and kaon final-
state hadrons. Hence, they strongly motivate our choice in (5.2.10) for a flavor-
dependent Gaussian ansatz.

5.2.2 Assumptions concerning average transverse momenta

As mentioned in the previous section, we introduce different widths for the Gaussian
forms of the valence and sea components of up and down TMD PDFs. However,
we assume that the Gaussian widths of all sea quarks (ū, d̄, s and s̄) are the same
(i.e., they have the same average square transverse momenta). State-of-the-art
parametrizations of collinear PDFs have a more complex structure and introduce
differences between sea quarks of different flavors; we leave this flexibility to future
studies.

We include the possibility that the average square transverse momentum de-
pends on the longitudinal fractional momentum x. This connection can certainly be
useful in fitting the data, but above all it is dictated by theoretical considerations,
in particular by Lorentz invariance. Many models predict such a connection (see,
e.g., [104,220–228]), and similarly do parametrizations of light-front wave functions
(see, e.g., [237–239]).

We choose the following functional form for the average square transverse mo-
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mentum of flavor a: 〈
k2
⊥,a
〉
(x) =

〈
k̂

2

⊥,a
〉 (1− x)αxσ

(1− x̂)αx̂σ
, (5.2.15)

where
〈
k̂

2

⊥,a
〉
≡
〈
k2
⊥,a
〉
(x̂), and x̂ = 0.1. (5.2.16)

〈k̂2

⊥,a〉, α, σ, are free parameters. For sake of simplicity, we keep the same exponents
α and σ for all flavors. According to the above assumptions, we have three more
parameters: 〈k̂2

⊥,a〉 for a = uv, dv, sea. In total, we use five different parameters to
describe all TMD PDFs. Since the present data have a limited coverage in x, we
found no need of more sophisticated choices.

As for TMD FFs, fragmentation processes in which the fragmenting parton is in
the valence content of the detected hadron are usually defined favored. Otherwise
the process is classified as unfavored. The biggest difference between the two classes
is the number of qq̄ pairs excited from the vacuum in order to produce the detected
hadron: favored processes involve the creation of at most one qq̄ pair. If the final
hadron is a kaon, we further distinguish a favored process initiated by a strange
quark/antiquark from a favored process initiated by an up quark/antiquark.

For simplicity, we assume charge conjugation and isospin symmetries. The
latter is often imposed also in the parametrization of collinear FFs [240], but not
always [241]. In practice, we consider four different Gaussian shapes:〈

P 2
⊥,u~π

+

〉
=
〈
P 2
⊥,d̄~π

+

〉
=
〈
P 2
⊥,ū~π

−

〉
=
〈
P 2
⊥,d~π

−

〉
≡
〈
P 2
⊥,fav

〉
, (5.2.17)〈

P 2
⊥,u~K

+

〉
=
〈
P 2
⊥,ū~K

−

〉
≡
〈
P 2
⊥,uK

〉
, (5.2.18)〈

P 2
⊥,s̄~K

+

〉
=
〈
P 2
⊥,s~K

−

〉
≡
〈
P 2
⊥,sK

〉
, (5.2.19)〈

P 2
⊥,all others

〉
≡
〈
P 2
⊥,unf

〉
. (5.2.20)

The last assumption is made mainly to keep the number of parameters under con-
trol, though it could be argued that unfavored fragmentation into kaons is different
from unfavored fragmentation into pions.

As for TMD PDFs, also for TMD FFs we introduce a dependence of the average
square transverse momentum on the longitudinal momentum fraction z, as done in
several models or phenomenological extractions (see, e.g., [180, 224, 230, 242–244]).
We choose the functional form

〈
P 2
⊥,a~h

〉
(z) =

〈
P̂

2

⊥,a~h
〉 (zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ (5.2.21)

where
〈
P̂

2

⊥,a~h
〉
≡
〈
P 2
⊥,a~h

〉
(ẑ), and ẑ = 0.5. (5.2.22)

The free parameters β, γ, and δ are equal for all kinds of fragmentation functions.
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In conclusion, we use seven different parameters to describe all the TMD FFs.

5.3 Analysis procedure

5.3.1 Data selection

The Hermes collaboration collected a total of 2688 data points (336 points for
each of the 8 combination of target and final-state hadrons), with the average
values of (x,Q2) ranging from about (0.04, 1.25 GeV2) to about (0.4, 9.2 GeV2),
0.1 ≤ z ≤ 0.9, and 0.1 GeV ≤ |P hT | ≤ 1 GeV. The collaboration presented two
distinct data sets, including or neglecting vector meson contributions. Here, we
use the data set where the vector meson contributions have been subtracted. In
all cases, we sum in quadrature statistical and systematic errors and we ignore
correlations. We always use the average values of the kinematic variables in each
bin.

Our analysis relies on the assumption that the transverse-momentum-integrated
multiplicities, mh

N (x, z,Q2), are well described by currently available parametriza-
tions of collinear PDFs and FFs. However, this is not always true. In order to
identify the range of applicability of the collinear results, we compared the multi-
plicities as functions of x and z with the leading-order (LO) theoretical predictions
obtained using the MSTW08LO PDF set [218] and the DSS LO FF set [241]. In
the comparison, we neglected the uncertainties affecting the PDFs but we included
the ones affecting the FFs, obtaining the latter from the plots in [245]. They are of
the order of 5-10% for light quarks fragmenting into pions, of 10-15% for favored
kaon FFs, of 50% for all the other cases, and they are larger at higher z.

In Tab. 5.1, we quote the χ2 per degree of freedom (χ2/d.o.f.) obtained in our
comparison. Our results are different from the ones quoted in Tabs. IV and VIII
of [241] for a few reasons: i) we used the final Hermes data, in particular the
set with x and z binning; ii) we included also the lowest z bin (z < 0.2); iii) we
did not include any overall normalization constant; iv) we included the theoretical
errors on the extracted fragmentation functions. The comparison shows that in
general the theoretical predictions do not describe the Hermes data very well.
The agreement is particularly bad for π− and K−. However, this is not surprising
because: i) the MSTW set of PDFs does not take into account semi-inclusive DIS
data, ii) as mentioned above, the DSS set of FFs [241] was deduced using only a
preliminary version of the Hermes multiplicities, iii) the Hermes data give very
large contributions to the χ2 of the global DSS analysis. Nevertheless, in our
analysis we decided to restrict the ranges to Q2 > 1.4 GeV2 and 0.1 < z < 0.8, i.e.,
excluding the first bin in Q2 (equivalent also to the lowest x) and the last bin in
z. Inclusion of decays from exclusive vector-mesons markedly degrades the χ2 of
the pion channels and increases the global χ2 (cf. the first and second columns of
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χ2/d.o.f.

Q2 > 1.4 GeV2 Q2 > 1.4 GeV2

(no VM subtr.)
Q2 > 1.4 GeV2

(with evolution)
Q2 > 1.6 GeV2

global 2.86 3.90 3.55 2.29

p→ K− 2.25 2.27 1.38 2.38

p→ π− 3.39 6.58 5.03 2.70

p→ π+ 1.87 2.45 2.74 1.16

p→ K+ 0.89 0.85 1.13 0.59

D → K− 4.26 4.22 2.81 4.45

D → π− 5.05 8.66 7.96 3.42

D → π+ 3.33 4.61 5.19 2.29

D → K+ 1.80 1.57 2.17 1.31

Table 5.1. Values of χ2/d.o.f. obtained from the comparison of the Hermes multiplicities
mh
N (x, z,Q2) with the theoretical prediction using the MSTW08LO collinear PDFs [218]

and the DSS LO collinear FFs [241]. In all cases, the range 0.1 ≤ z ≤ 0.8 was included.

Tab. 5.1). Hence we will present results for only the fits to vector-meson subtracted
multiplicities. We checked that our basic conclusions do not change when using
data without vector-meson subtraction.

We also noted that a description of data of comparable quality could be achieved
by turning off the Q2 dependence of both collinear PDFs and FFs, and by computing
them at the fixed value ofQ2 = 2.4 GeV2 (cf. the first and third columns of Tab. 5.1).
Therefore, we decided to systematically neglect any contribution of QCD evolution
and to compute all theoretical quantities at the average value of Q2 = 2.4 GeV2.

When considering also the transverse-momentum dependence, the TMD for-
malism is valid only when P 2

hT � Q2. In order not to exclude too many data
points, we apply the loose requirement P 2

hT < Q2/3. This leads to the exclusion of
at most two bins at high P 2

hT and low Q2.
Finally, we exclude also the data points with the lowest |P hT | (|P hT | < 0.15

GeV). A priori, there is no reason to exclude them, but in our attempts we found
them particularly difficult to fit, mainly because they often do not follow the trend
of the other data points and at the same time they have small errors. In order to
be able to fit them, we need to increase the flexibility of our functional forms. We
leave this task to future studies.

In summary, we use a total of 1538 data points, approximately 190 for each
of the 8 combinations of target and final-state hadrons, which correspond to about
60% of the total 2688 points measured by the Hermes collaboration.
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5.3. Analysis procedure

5.3.2 The replica method

The fit and the error analysis were carried out using a similar Monte Carlo approach
as in [246], and taking inspiration from the work of the NNPDF collaboration (see,
e.g., [247–249]). The approach consists in creatingM replicas of the data points. In
each replica (denoted by the index r), each data point i is shifted by a Gaussian noise
with the same variance as the measurement. Each replica, therefore, represents a
possible outcome of an independent experimental measurement, which we denote
by mh

N,r(x, z,P
2
hT , Q

2). The number of replicas is chosen so that the mean and
standard deviation of the set of replicas accurately reproduces the original data
points. In our case, we have found that 200 replicas are more than sufficient.

The standard minimization procedure is applied to each replica separately, by
minimizing the following error function 1

E2
r ({p}) =

∑
i

[
mh
N,r(xi, zi,P

2
hTi, Q

2
i )−mh

N,theo(xi, zi,P
2
hTi; {p})

]2[
∆mh 2

N,stat + ∆mh 2
N,sys

]
(xi, zi,P

2
hTi, Q

2
i ) +

[
∆mh

N,theo(xi, zi,P
2
hTi)

]2 .
(5.3.1)

The sum runs over the i experimental points, including all species of targets N
and final-state hadrons h. The theoretical multiplicities mh

N,theo and their error
∆mh

N,theo do not depend on Q2, as explained in the previous section. They are
computed at the fixed value Q2 = 2.4 GeV2 using the formula in (5.2.13). However,
in each z bin for each replica the value of Da~h1 is independently modified with
a Gaussian noise with standard deviation equal to the theoretical error ∆Da~h1 .
The latter is estimated from the plots in [245] and it represents the main source
of uncertainty in ∆mh

N,theo. Finally, the symbol {p} denotes the vector of fitting
parameters.

The minimization was carried out using the Minuit code. The final outcome
is a set of M different vectors of best-fit parameters, {p0r}, r = 1, . . .M, with
which we can calculate any observable, its mean, and its standard deviation. The
distribution of these values needs not to be necessarily Gaussian. In this case, the 1σ

confidence interval is different from the 68% interval. The 68% confidence interval
can simply be computed for each experimental point by rejecting the largest and
the lowest 16% of theM values.

Although the minimization is performed on the function defined in (5.3.1), the
agreement of theM replicas with the original data is better expressed in terms of
a χ2 function defined as in (5.3.1) but with the replacement mh

N,r → mh
N , i.e., with

respect to the original data set. If the model is able to give a good description of
the data, the distribution of theM values of χ2/d.o.f. should be peaked around 1.

1Note that the error for each replica is taken to be equal to the error on the original data
points. This is consistent with the fact that the variance of theM replicas should reproduce the
variance of the original data points.
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5. Semi-Inclusive DIS

In practice, the rigidity of our functional form leads to higher χ2 values.

5.4 Results

In this section, we describe the results obtained by fitting the Hermes multiplicities
with the theoretical formula of (5.2.13) and using the Monte Carlo method outlined
in the previous section. We performed different kinds of fits with different assump-
tions. The first one, conventionally named “default fit”, includes all the 1538 data
points selected according to the criteria described in Sec. 5.3.1. In the second one,
we excluded data also for the second lowest Q2 bin, i.e., by selecting Q2 > 1.6 GeV2.
This cut reduces the number of data points to 1274. The third scenario corresponds
to neglecting kaons in the final state and taking only multiplicities for pions. The
last scenario is a fit of the default selection using a flavor-independent (but kine-
matic dependent) Gaussian ansatz. Before discussing each different scenario, here
below we list their common features.

As repeatedly mentioned above, in our analysis we neglected completely the
effect of Q2 evolution, even in the collinear PDFs and FFs, and we evaluated all
observables at the fixed value Q2 = 2.4 GeV2.

As for the dependence of the TMD average transverse momentum on x, we
noticed that the fit is weakly sensitive to the exponents in (5.2.15). We tried fits
with α = σ = 0 and obtained good results. However, in order to stress the fact
that present data do not constrain these parameters very well, we decided to assign
random values extracted from uniform distributions to both the exponents: we
consider α as a random number between 0 and 2 and σ as a random number between
−0.3 and 0.1. Better determinations of these parameters require an extended range
in x, together with uncorrelated x and Q2 binnings. The dependence of the TMD
FF average transverse momentum on z is governed by (5.2.21); in this case, we
decided to keep all three parameters free. The

〈
P̂

2

⊥,a~h
〉
parameters are free, apart

from
〈
P̂

2

⊥,sK
〉
, whose values are extracted from a uniform distribution between

0.125 GeV2 and 0.25 GeV2.
For each scenario, we performed 200 replicas of the fit. In this section, we

present the 68% confidence intervals of the parameters over the replicas, computed
by rejecting the largest and the lowest 16% of the replicated parameter values. We
quote the values as A ± B, where A is the average of the upper and lower limits
of the 68% confidence interval and B is their semi-difference. It is understood that
much more information is available by scrutinizing the full set of 200 values for
each of them.2 In Tab. 5.2, we list the 68% confidence intervals of the χ2/d.o.f. for
the different scenarios, including the global result and the outcome for each target-
hadron combination, separately. In Tabs. 5.3 and 5.4, we list the 68% confidence

2The results are available via the TMD project and TMDlib or upon request.
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5.4. Results

χ2/d.o.f.

Default Q2 > 1.6 GeV2 Pions only Flavor-indep.

global 1.63± 0.12 1.37± 0.12 2.04± 0.16 1.72± 0.11

p→ K− 0.78± 0.15 0.77± 0.14 - 0.87± 0.16

p→ π− 1.80± 0.27 1.50± 0.24 1.68± 0.24 1.83± 0.25

p→ π+ 2.64± 0.21 1.91± 0.30 2.70± 0.22 2.89± 0.23

p→ K+ 0.46± 0.07 0.49± 0.07 - 0.43± 0.07

D → K− 2.77± 0.56 2.78± 0.52 - 3.15± 0.62

D → π− 1.65± 0.20 1.28± 0.19 1.50± 0.18 1.66± 0.20

D → π+ 2.16± 0.21 1.64± 0.25 2.22± 0.22 2.21± 0.22

D → K+ 0.71± 0.15 0.58± 0.12 - 0.71± 0.15

Table 5.2. 68% confidence intervals of χ2/d.o.f. values (global result and for every
available target-hadron combination N → h) for each of the considered four scenarios.

Parameters for TMD PDFs

Default Q2 > 1.6 GeV2 Pions only Flavor-indep.〈
k̂
2

⊥,dv
〉
[GeV2] 0.30± 0.17 0.33± 0.19 0.34± 0.12 0.30± 0.10〈

k̂
2

⊥,uv
〉
[GeV2] 0.36± 0.14 0.37± 0.17 0.35± 0.12 0.30± 0.10〈

k̂
2

⊥,sea
〉
[GeV2] 0.41± 0.16 0.31± 0.18 0.29± 0.13 0.30± 0.10

α (random) 0.95± 0.72 0.93± 0.70 0.95± 0.68 1.03± 0.64

σ (random) −0.10± 0.13 −0.10± 0.13 −0.09± 0.14 −0.12± 0.12

Table 5.3. 68% confidence intervals of best-fit parameters for TMD PDFs in the different
scenarios.

intervals for the five fitting parameters for TMD PDFs and for the seven fitting
parameters for TMD FFs3, respectively.

In all fits, we observe a strong anticorrelation between the distribution and
fragmentation transverse momenta. This is not surprising, since the width of the
observed P hT distribution is given by (5.2.12). To better pin down the values
of 〈k2

⊥,a〉 and 〈P 2
⊥,a~h

〉 separately for the various flavors a, it will be essential to
include also data from electron-positron annihilation and DY processes. A common
feature of all scenarios is that the 〈k̂2

⊥,a〉 (namely, the average squared transverse
momenta of TMD PDFs at x = 0.1) have average values around 0.3 GeV2, while the

3In Tab. 4 in [174] γ and δ have been accidentally exchanged.
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5. Semi-Inclusive DIS

Parameters for TMD FFs

Default Q2 > 1.6 GeV2 Pions only Flavor-indep.〈
P̂

2

⊥,fav
〉
[GeV2] 0.15± 0.04 0.15± 0.04 0.16± 0.03 0.18± 0.03〈

P̂
2

⊥,unf
〉
[GeV2] 0.19± 0.04 0.19± 0.05 0.19± 0.04 0.18± 0.03〈

P̂
2

⊥,sK
〉
[GeV2] 0.19± 0.04 0.19± 0.04 - 0.18± 0.03〈

P̂
2

⊥,uK
〉
[GeV2] 0.18± 0.05 0.18± 0.05 - 0.18± 0.03

β 1.43± 0.43 1.59± 0.45 1.55± 0.27 1.30± 0.30

γ 1.29± 0.95 1.41± 1.06 1.20± 0.63 0.76± 0.40

δ 0.17± 0.09 0.16± 0.10 0.15± 0.05 0.22± 0.06

Table 5.4. 68% confidence intervals of best-fit parameters for TMD FFs in the different
scenarios.

〈P̂ 2

⊥,a~h
〉 (namely the average square transverse momenta of TMD FFs at z = 0.5)

have average values around 0.18 GeV2. Moreover, the fits prefer large values of the
exponents β and γ for TMD FFs, but with large uncertainties; the parameter δ is
usually small. Below, we discuss in detail the results for the four different scenarios.

5.4.1 Default fit

In this scenario, we consider all 1538 data points selected according to the criteria
explained in Sec. 5.3.1. The quality of the fit is fairly good. The global χ2/d.o.f.

is 1.63 ± 0.13. In Fig. 5.2, the distribution of the χ2/d.o.f. over the 200 replicas
is shown. Many replicas have χ2/d.o.f. > 1.5. This indicates some difficulty to
reproduce the data correctly. It is not surprising if we take into account that the
description of the collinear multiplicities was already difficult (see Tab. 5.1). It
may actually seem contradicting that our fit is able to describe the transverse-
momentum-dependent multiplicities relatively well. This is probably simply due to
the fact that the multidimensional binning has many more data points but with
much larger statistical errors.

In Tab. 5.2, we list the 68% confidence intervals of the χ2/d.o.f. also for each
target-hadron combination N → h, separately. The worst result is for D → K−.
This may be a bit surprising, also because p→ K− is described very well. However,
this may be due to the fact that the collinear description of this channel is poor (see
Tab. 5.1). We point out also that the systematic errors in D → K− are significantly
smaller than p→ K− [29]. The second worst agreement is for p→ π+, which is not
unexpected since statistical errors are smallest in this channel. The π− channels
are described decently, which is at odds with the poor description of their collinear
multiplicities (see Tab. 5.1). We do not have a reasonable explanation for this
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Figure 5.2. Distribution of the values of χ2/d.o.f. for the default fit. On the vertical
axis, the number of replicas with χ2/d.o.f. inside the bin. The bin width is 0.1.

feature yet. Maybe, it could be ascribed to the cuts in P hT that we implemented
in our fit.

Figs. 5.3 and 5.4 illustrate the agreement between our fit and the Hermes data.
For each figure, the upper panels display the results for pions (π− on the left and
π+ on the right), the lower panels for kaons. The results show the multiplicities
mh
N (x, z,P 2

hT , Q
2) for N = p proton and N = D deuteron targets, respectively,

as functions of P 2
hT for one selected bin 〈x〉 ∼ 0.15 and 〈Q2〉 ∼ 2.9 GeV2 (out of

the total five x bins we used), and for four different z bins (out of the total seven
z bins we used). The lowest P 2

hT bin was excluded from the fit, as explained in
Sec. 5.3.1. The theoretical band is obtained by rejecting the largest and lowest
16% of the replicas for each P 2

hT bin. The theoretical uncertainty is dominated by
the error on the collinear fragmentation functions D1(z), which induces an overall
normalization uncertainty in each z bin. The different values of the fit parameters
in each replica are responsible for the slight differences in the slopes of the upper
and lower borders of the bands.

In Tab. 5.3, the values of the fit parameters for TMD PDFs are listed. We note
that the average square transverse momenta can range between 0.13 and 0.57 GeV2

within the 68% confidence interval.
In the left panel of Fig. 5.5, the ratios 〈k2

⊥,dv 〉/〈k
2
⊥,uv 〉 vs. 〈k

2
⊥,sea〉/〈k2

⊥,uv 〉
for 200 replicas are compared. The white box represents the point at the center
of each one-dimensional 68% confidence interval of the two ratios. The shaded
area represents the two-dimensional 68% confidence region, it contains 68% of the
points with the shortest distance from the white box. Since for each flavor the x
dependence of the average square transverse momenta is the same (see (5.2.15)),
these ratios are x-independent. The dashed lines correspond to the ratios being
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Figure 5.3. Data points: Hermes multiplicitiesmh
p(x, z,P 2

hT ;Q2) for pions and kaons off
a proton target as functions of P 2

hT for one selected x and Q2 bin and few selected z bins.
Shaded bands: 68% confidence intervals obtained from fitting 200 replicas of the original
data points in the scenario of the default fit. The bands include also the uncertainty on
the collinear fragmentation functions. The lowest P 2

hT bin has not been included in the
fit.

unity and divide the plane into four quadrants. Most of the replicas are in the
upper left quadrant, i.e., we have 〈k2

⊥,dv 〉 < 〈k
2
⊥,uv 〉 < 〈k

2
⊥,sea〉. The white box

shows that dv is on average about 20% narrower than uv, which is in turn about
10% narrower than the sea. The crossing of the dashed lines corresponds to a
flavor-independent distribution of transverse momenta. This crossing point lies at
the limit of the 68% confidence region. In a relevant number of replicas dv can be
more than 40% narrower than the uv, and the sea can be more than 30% wider than
uv. From this fit, it seems possible that the sea is narrower than uv, but unlikely
that dv is wider than uv.

In the right panel of Fig. 5.5, we compare the ratio 〈P 2
⊥,unf〉/〈P 2

⊥,fav〉 vs.
〈P 2
⊥,uK〉/〈P 2

⊥,fav〉 in the same conditions as before. All points are clustered in
the upper right quadrant and close to its bisectrix, i.e., we have the stable out-
come that 〈P 2

⊥,fav〉 < 〈P 2
⊥,unf〉 ∼ 〈P 2

⊥,uK〉. The width of unfavored and u → K+

fragmentations are about 20% larger than the widht of favored ones.
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Figure 5.4. Same content and notation as in the previous figure, but for a deuteron
target.

5.4.2 Fit with Q2 > 1.6 GeV2

In this scenario, we restrict the Q2 range compared to the default fit by imposing
the cut Q2 > 1.6 GeV2. The set of data is reduced to 1274 points. The mean value
of the χ2/d.o.f is smaller, since we are fitting less data. Moreover, the disregarded
Q2 bin contains high statistics. As for the default fit, the behavior of transverse
momenta over the 200 replicas is summarized in Fig. 5.6. The exclusion of low-Q2

data leads to partial differences in the features of the extracted TMD PDFs: the
average width of valence quarks slightly increases, while the distribution for sea
quarks becomes narrower.

In the left panel, most of the replicas are in the lower left quadrant, i.e., we
have 〈k2

⊥,sea〉 . 〈k2
⊥,dv 〉 < 〈k

2
⊥,uv 〉. On average, dv quarks are 15% narrower than

uv quarks, which are in turn more than 20% wider than sea quarks. In a relevant
number of replicas dv can be more than 40% narrower than the uv, and the sea can
be even 50% narrower than uv. In this scenario, it is unlikely that the sea is wider
than uv, but it is possible that dv is wider than uv.

In the right panel, the behavior of transverse momenta in fragmentation pro-
cesses is qualitatively unchanged with respect to the default fit, apart from the fact
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Figure 5.5. (a) Distribution of the values of the ratios 〈k2
⊥,dv 〉/〈k2

⊥,uv 〉 vs.
〈k2
⊥,sea〉/〈k2

⊥,uv 〉 obtained from fitting 200 replicas of the original data points in the sce-
nario of the default fit. The white squared box indicates the center of the 68% confidence
interval for each ratio. The shaded area represents the two-dimensional 68% confidence
region around the white box. The dashed lines correspond to the ratios being unity;
their crossing point corresponds to the result with no flavor dependence. For most of the
points, 〈k2

⊥,dv 〉 < 〈k2
⊥,uv 〉 < 〈k2

⊥,sea〉. (b) Same as previous panel, but for the distribu-
tion of the values of the ratios 〈P 2

⊥,unf〉/〈P 2
⊥,fav〉 vs. 〈P 2

⊥,uK〉/〈P 2
⊥,fav〉. For all points,

〈P 2
⊥,fav〉 < 〈P 2

⊥,unf〉 ∼ 〈P 2
⊥,uK〉.
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Figure 5.6. Same content and notation as in the previous figure, but for the scenario
with the cut Q2 > 1.6.
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Figure 5.7. (a) Same content and notation as in Fig. 5.5a) but for the scenario with
only pions in the final state. For most of the points, 〈k2

⊥,sea〉 < 〈k2
⊥,dv 〉 . 〈k2

⊥,uv 〉. (b)
Distribution of the values of the ratios 〈P 2

⊥,unf〉/〈P 2
⊥,fav〉 vs. 〈k2

⊥,dv 〉/〈k2
⊥,uv 〉 obtained in

the same conditions as in the previous case. For all points 〈P 2
⊥,fav〉 < 〈P 2

⊥,unf〉.

that the unfavored Gaussian function becomes now more than 25% larger than the
favored one.

The crossing point again indicates no flavor dependence and lies just outside
the 68% confidence region for TMD PDFs and completely outside the same region
for TMD FFs.

We conclude that the low-Q2 data, being also characterized by low x, can have a
significant impact on the analysis of TMD PDFs, in particular the sea components.
More data at low x (but possibly at high Q2) are necessary to better constrain the
sea quarks TMD PDFs [17,30,250].

5.4.3 Fit with pions only

We also choose to fit data related only to pions in the final state, in order to explore
the importance of the kaons data set. In this framework, we are left with two
independent fragmentation processes: favored and unfavored ones. Accordingly,
the number of fit parameters for TMD FFs reduces from 7 to 5 (〈P̂ 2

⊥,fav〉, 〈P̂
2

⊥,unf〉,
β, δ, γ; see (5.2.17)-(5.2.21)).

The agreement between data and the model is the worst (see Tab. 5.1). This is
due to at least two reasons. First of all, the fit of collinear multiplicities was poor
in all the target-hadron combinations involving pions in the final state. Moreover,
the high statistics collected for pions (mostly in the low-Q2 region) leads to higher
values of χ2.
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Fig. 5.7 shows the behavior of transverse momenta over the 200 replicas. As for
TMD PDFs, in the left panel most of the replicas are in the lower part, i.e., we have
〈k2
⊥,sea〉 < 〈k2

⊥,dv 〉 . 〈k
2
⊥,uv 〉. On average, dv quarks are equally distributed as uv

quarks, which are in turn more than 20% wider than sea quarks. In the default
fit sea quarks were wider than valence ones and there was a remarkable difference
between uv and dv, not evident in this scenario. In any case, in a relevant number
of replicas dv can be more than 15% narrower than the uv, but also more than 10%
wider than uv. The sea can be even 50% narrower than uv, but it is also not unlikely
that the sea is wider than uv. Once again, the crossing point for flavor independence
lies at the boundary of the 68% confidence region, due to the difference between
the distributions of sea quarks and valence quarks.

As in the other scenarios, TMD FFs for unfavored processes are wider than fa-
vored ones. The difference is comparable to the default fit, with unfavored functions
about 20% larger than favored ones.

Similar fits have been performed in [33, 35], but using data averaged over z,
which renders it particularly difficult to disentangle the distribution and fragmen-
tation contributions. To overcome this problem, both fits included also indirect
information from the azimuthal cosφh dependence. The fit of [35] obtained a
small value for the distribution mean square transverse momenta of up quarks,
〈k2
⊥,u〉 = 0.07± 0.03 GeV2, while the down quark mean transverse momentum was

compatible with zero, 〈k2
⊥,d〉 = −0.01±0.05 GeV2 (sea quarks were neglected). The

previous fit [33] obtained a somewhat different behavior, with a mean transverse
momentum of the up quark compatible with zero and 〈k2

⊥,d〉 = 0.11 ± 0.13 GeV2.
In both fits, the average values of the width of the TMD FFs are compatible with
our results, but, contrary to our findings, a slight tendency for the favored FF to be
larger than unfavored was found. In any case, we remark that the average kinemat-
ics of the experiment taken into consideration in [33,35] are different from Hermes
(see also the discussion in [167]).

Overall, we conclude that kaon data have an important impact in a flavor-
dependent analysis, due to the large role played by strange quarks and antiquarks
in kaon multiplicities.

5.4.4 Flavor-independent fit

In this scenario, we assume a Gaussian ansatz for unpolarized TMD PDFs and
TMD FFs with flavor-independent widths, i.e., we neglect any flavor dependence in
(5.2.10): 〈

k̂
2

⊥,uv
〉

=
〈
k̂

2

⊥,dv
〉

=
〈
k̂

2

⊥,sea

〉
≡
〈
k̂

2

⊥
〉
, (5.4.1)〈

P̂
2

⊥,fav

〉
=
〈
P̂

2

⊥,unf

〉
=
〈
P̂

2

⊥,uK
〉

=
〈
P̂

2

⊥,sK
〉
≡
〈
P̂

2

⊥
〉
. (5.4.2)
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Figure 5.8. Distribution of the values of 〈k2
⊥〉 (at x = 0.1) and 〈P 2

⊥〉 (at z = 0.5)
obtained from fitting 200 replicas of the original data points in the scenario of the flavor-
independent fit. The white squared box indicates the center of the one-dimensional 68%
confidence interval for each parameter. The shaded area represents the two-dimensional
68% confidence region around the white box. The transverse momenta are manifestly
anti-correlated.

Accordingly, the number of fit parameters reduces to 3 for TMD PDFs (〈k̂2

⊥〉, α,
σ) and 4 for TMD FFs (〈P̂ 2

⊥〉, β, δ, γ). Their values are summarized in Tab. 5.3
and 5.4. The expression (5.2.13) for the multiplicities considerably simplifies and
the P hT width is the same for every target-hadron combination:〈

P 2
hT

〉
= z2

〈
k2
⊥
〉

+
〈
P 2
⊥
〉
. (5.4.3)

The agreement between data and the flavor-independent model is poorer than
in the (flavor-dependent) default fit: the central value of the χ2/d.o.f. is 1.73 (see
Tab. 5.2). This is not surprising, since we are fitting with the same function data
for all the available target-hadron combinations, which display sensibly different
behaviors. However, these results do not rule out the flavor-independent ansatz.

Fig. 5.8 clearly shows the anti-correlation between 〈k̂2

⊥〉 and 〈P̂
2

⊥〉 induced by
Eq. (5.4.3).

Similar fits have been performed in the past for SIDIS and DY processes [167,
180], also including the effect of transverse momentum resummation. The values
of our mean square transverse momenta at x = 0.1 and z = 0.5 are consistent
with the values obtained without considering x and z dependence in [167] (〈k2

⊥
〉

=

0.38±0.06 GeV2 and 〈P 2
⊥
〉

= 0.16±0.01 GeV2) and in [178] (〈k2
⊥
〉

= 0.25 GeV2 and
〈P 2
⊥
〉

= 0.20 GeV2) using a different approach based on the Cahn effect [251]. In
the Hermes Monte Carlo generator GMCTRANS, the following flavor-independent
parametrization of the mean square transverse momenta, which were tuned to Her-
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mes pion-multiplicity data, has been implemented:

〈k2
⊥〉 = 0.14 GeV2, 〈P 2

⊥〉 = 0.42 z0.54(1− z)0.37 GeV2. (5.4.4)

The latter functional form is not much different from the one we obtained. The value
of the distribution transverse momentum is slightly smaller than our average value,
which is compensated by the fact that the fragmentation transverse momentum is
slightly higher. Other fits that explored the z dependence in the Gaussian width of
TMD FFs can be found in [180,242]. A combined analysis of Hermes and Compass
data has been presented in [252]. It relies on a flavor and kinematic independent
Gaussian ansatz and a standard fit procedure. Results can be compatible with the
ones presented here considering the anticorrelation of momenta in distributions and
fragmentations. Additional comments are presented in Sec. 5.5.

Comparison with extractions from DY experiments (see, e.g., [167, 180–182,
253]) is not straightforward, due to the different kinematic conditions and the dif-
ficulty to extrapolate the results obtained in the CSS formalism (see also the dis-
cussion in [191]). The mean square transverse momentum obtained from Gaussian
fits without TMD evolution [167,180] is larger than in our case, 〈k2

⊥
〉
& 0.7 GeV2.

5.5 Summary

Using the recently published Hermes data on semi-inclusive DIS multiplicities [29],
we explored for the first time the flavor dependence of the transverse momenta of
both the unpolarized parton distributions (TMD PDFs) and fragmentation func-
tions (TMD FFs). We adopted a simplified framework based on the parton model
and neglecting the effects of QCD evolution. Using a flavor-dependent Gaussian
ansatz, we obtained different results for multiplicities in eight different target–
hadron combinations. We performed several fits of the data in different scenarios:
including all bins as described in Sec. 5.3.1 (the “default fit”), excluding data with
Q2 ≤ 1.6 GeV2 (equivalent to excluding partons at low x), selecting only pions in
the final state, or neglecting any flavor dependence.

Comparing the default fit and the flavor-independent one, we conclude that
the flavor-dependent Gaussian ansatz performs better. The difference between the
average χ2/d.o.f. in the two cases is not striking but, nonetheless, appreciable. We
find convincing indications that the unfavored fragmentation functions have larger
average transverse momenta with respect to pion favored fragmentation functions.
We get weaker indications of flavor dependence for the TMD PDFs. It is very likely
to find fits of the available data with differences of the order of 20% in the mean
square transverse momenta of different flavors. In particular, our default fit shows
a tendency for valence down quarks to have a narrower distribution than the one
of valence up quarks, which in turn is narrower than the one for sea quarks. These
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5.5. Summary

features have a potentially large impact on the extraction of polarized TMDs, where
usual flavor-independent transverse momentum parametrizations are assumed in
the fragmentation, as even the normalizations extracted for those TMDs depend,
directly or indirectly, on the widths of the polarization-averaged TMD FFs.

Apart from the ratios among different flavors, the absolute values of the mean
square transverse momenta are compatible with results quoted in the literature.
However, it should be kept in mind that there exist strong anti-correlations between
mean squared transverse momenta of distribution and fragmentation functions.

This work is a first step in the exploration of the flavor structure in the trans-
verse momentum dependence of partons inside hadrons. First of all, it needs to be
updated by implementing evolution equations in the TMD framework. Secondly,
the data set needs to be enlarged to include the recently released Compass data
in a wider kinematical domain [30], and, in the following step, to include also data
from e+e− annihilations and Drell-Yan processes. Finally, other functional forms
different from the Gaussian ansatz should be explored.

Phenomenological impact

Despite the χ2 being compatible with other less flexible parametrization, the phe-
nomenological relevance of this study is two-fold. Considering SIDIS, the flavor-
dependent Gaussian ansatz is, in a sense, less biased than the flavor-independent
one. We saw that the 200 replicas have qualitatively similar χ2 values, compatible
also with a flavor independent fit. For this reason, from the physical point, there
is no reason to prefer a flavor independent approach, apart from its simplicity. A
more general approach is to consider an ensemble of flavor-dependent parameters
describing data equally well; this is well represented by the philosophy of the replica
method.

Moreover, choosing a flavor-independent model automatically excludes poten-
tially interesting physical effects on other processes, such as e+e− annihilation and
Z/W± production in hadronic collisions, that will be presented in the next two
chapters.
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CHAPTER 6

ELECTRON-POSITRON ANNIHILATION

In this Chapter we present a study of the combined effect of TMD evolution and
flavor dependence of partonic transverse momentum on e+e− annihilation into two
almost back-to-back hadrons. Text and results are based on [139, 214, 254]. The
convention for labeling partonic and hadronic momenta is specified in Fig. 6.1.

6.1 Introduction

In Chap. 5 the dependence of the intrinsic transverse-momentum distribution of
both unpolarized TMD PDFs and TMD FFs upon the flavor and the longitudinal
momentum of the parton involved was discussed using the data published by the
Hermes collaboration [29] on multiplicities for pions and kaons produced in SIDIS
off proton and deuteron targets. Although the flavor-independent fit of the data
was not statistically excluded, a clear indication was found that different quark
flavors produce different transverse-momentum distributions of final hadrons, espe-
cially when comparing different species of final hadrons. This feature corresponds
quite naturally to the well known strong flavor dependence of integrated PDFs
(see Sec. 4.3.1), and to indications from some models [104, 220, 221, 223–225] and
lattice calculations of TMD objects [229]. The SIDIS process is useful because it
gives simultaneous access to TMD PDFs and TMD FFs. But the factorized cross
section always involves a convolution of transverse momenta of the initial and the
fragmenting partons: anticorrelation hinders a separate investigation of the two
intrinsic distributions. Moreover, the Hermes data were collected at such a lim-
ited range in the hard scale that the statistical analysis in Chap. 5 was reasonably
performed without involving modifications due to evolution effects.
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6. Electron-positron annihilation

In this Chapter, we consider the production of two back-to-back hadrons in
electron-positron annihilation. In analogy with the SIDIS process, we define the
multiplicities in e+e− annihilation as the differential number of back-to-back pairs
of hadrons produced per corresponding single-hadron production. Then, we study
their transverse momentum distribution at large values of the center-of-mass (cm)
energy, starting from an input expression for TMD FFs taken from the analysis
of Hermes SIDIS multiplicities at low energy performed in Chap. 5. Within this
framework, we extract uncontaminated details on the transverse-momentum depen-
dence of the unpolarized TMD FF, which is a fundamental ingredient of any spin
asymmetry in SIDIS and, therefore, it affects the extraction also of polarized TMD
distributions (see [255] for a recent analysis of the Collins asymmetry when includ-
ing TMD evolution effects). Moreover, we make realistic tests on the sensitivity to
various implementations of TMD evolution available in the literature, due to the
fact that the hard scales involved in e+e− annihilation are much larger than the
average values explored in SIDIS by the Hermes experiment, which are assumed
as the starting reference scale.

This Chapter is organized as follows. In Sec. 6.2, we outline the theoretical tools
needed to work out the cross sections for annihilation in two hadrons and define the
e+e− multiplicities. In Sec. 6.3, relying on the concepts introduced in Chap. 3, we
specify the QCD evolution for TMD FFs at LO-NLL and describe some procedures
to separate perturbative from nonperturbative domains of transverse momenta. We
also provide some prescriptions to parametrize the nonperturbative contributions
to the evolution kernel and the resummation of soft gluon radiation. In Sec. 6.4,
we introduce the flavor decomposition of fragmentation processes. In Sec. 6.5, we
make predictions for the spectrum in transverse momentum of e+e− multiplicities
for production of two back-to-back hadrons, focusing on the sensitivity of results to
the flavor of the fragmenting parton and to the different prescriptions for describing
TMD evolution. Comments, remarks and an outlook of possible future analyses are
summarized in Sec. 6.6.

6.2 Multiplicities for e+e− annihilation into two hadrons

We consider the process e+e− → h1h2X depicted in Fig. 6.1. An electron e− and a
positron e+ annihilate producing a vector boson with time-like momentum transfer
q2 ≡ Q2 ≥ 0. A quark and an antiquark are then emitted, each one fragmenting
into a residual jet containing a leading hadron that for simplicity we will consider
unpolarized: the hadron h1 with momentum and mass P1,M1, and the hadron h2

with momentum and mass P2,M2. The two hadrons belong to two back-to-back
jets, i.e. we have P1 · P2 ≈ Q2. In the following, we will limit Q2 values to a
range where the vector boson can be safely identified with a virtual photon. Using
the standard notations for the light-cone components of a 4-vector, we define the

92



6.2. Multiplicities for e+e− annihilation into two hadrons

e�

e+

q

P1

P1? f

P2

Figure 6.1. Kinematics for the e+e− annihilation leading to two back-to-back hadrons
with momenta P1 and P2.

following invariants

z1 =
2P1 · q
Q2

≈ P−1
q−
≈ P1 · P2

q · P2
, (6.2.1)

z2 =
2P2 · q
Q2

≈ P+
2

q+
≈ P2 · P1

q · P1
, y =

P2 · `
P2 · q

,

where ` is the electron momentum. The z1 is the fraction of parton momentum
carried by the hadron h1, and similarly for z2 referred to the hadron h2. Covariantly,
we can define the normalized time-like and space-like directions

t̂µ =
qµ

Q
and ẑµ =

Q

P2 · q
Pµ2 − t̂µ =

2

z2Q
Pµ2 − t̂µ . (6.2.2)

Correspondingly, we can define the projector into the space orthogonal to ẑ and t̂:

gµν⊥ = gµν − t̂µt̂ν + ẑµẑν = gµν − Pµ2 q
ν + qµP ν2
P2 · q

+O

(
M2

Q2

)
. (6.2.3)

The lepton momentum is then given by

`µ = 1
2q
µ +

(
y − 1

2

)
Qẑµ +Q

√
y(1− y) ˆ̀µ

⊥ , (6.2.4)

where ˆ̀µ
⊥ = `µ⊥/|`⊥| and `

µ
⊥ = gµν⊥ `ν .

The gµν⊥ projects onto the space orthogonal to q and P2. The projector onto
the space orthogonal to P1 and P2, namely in the hadron cm frame where P1 and
P2 have no transverse components, is given by

gµνT = gµν − Pµ1 P
ν
2 +Pµ2 P

ν
1

P1·P2
+O

(
M2

Q2

)
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= gµν⊥ +
Pµ2 q

ν
T+qµ

T
P ν2

P2·q +O
(
M2

Q2

)
, (6.2.5)

where the non-collinearity is defined as

qµT = qµ − Pµ1
z1
− Pµ2

z2
= gµνT qν

= −P
µ
1⊥
z1

+O

(
M2

Q2

)
= −gµν⊥

P1ν

z1
+O

(
M2

Q2

)
. (6.2.6)

In the electron-positron cm frame of Fig. 6.1, we define the angle θ = arccos(` ·
ẑ/|`|) where ẑ = −P 2. It is related to the invariant y ≈ (1 + cos θ)/2. In analogy
to the Trento conventions [166], we define the azimuthal angle

cosφ =
P 2 × `
|P 2 × `|

· P 1⊥ × P 2

|P 1⊥ × P 2|
, (6.2.7)

so that Pµ1 = (0, |P 1⊥| cosφ, |P 1⊥| sinφ, 0) in this frame, and in any frame ob-
tained from this one by a boost along ẑ. In general, the covariant definition is
cosφ = −qT · ˆ̀⊥/|qT |.

The cross section for the e+e− annihilation into back-to-back pairs of un-
polarized hadrons can be written in a factorized formula at low transverse mo-
menta [20,26,96,256]:

dσh1h2

dz1 dz2 dq2
T dy

=
6πα2

Q2
A(y)H(Q2, µ)

×
∑
q

e2
q

∫ ∞
0

dbT bT J0

[
z2

1 D
q~h1

1 (z1, bT ; ζ1, µ) z2
2 D

q̄~h2

1 (z2, bT ; ζ2, µ) + (q ↔ q̄)
]

+ Y (q2
T /Q

2) +O(M2/Q2) , (6.2.8)

where J0 ≡ J0(qT bT ), qT ≡ |qT | and A(y) = 1
2 − y + y2. The H is the hard

annihilation part. The Dq~h1 (z, bT ; ζ, µ) is the TMD FF in impact parameter space
for an unpolarized quark with flavor q fragmenting into an unpolarized hadron h and
carrying light-cone momentum fraction z and transverse momentum conjugated to
bT [129]. BothH and Dq~h1 depend on the renormalization/factorization scale µ and
evolve with it through renormalization group equations. The Dq~h1 depends also on
the scale ζ (with ζ1ζ2 = Q4) and evolves with it via a process-independent soft
factor. The term Y (q2

T /Q
2) ensures the matching with perturbative calculations at

large transverse momenta.

In this chapter, we will consider a kinematics where q2
T � Q2 and M2 � Q2.

Hence, in Eq. (6.2.8) the Y (q2
T /Q

2) term and corrections from higher twists of
orderM2/Q2 or higher will be neglected. Moreover, the soft gluon radiation is here
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6.3. TMD evolution of fragmentation functions

resummed into the TMD FF at the Next-to-Leading-Log level (NLL). It implies
that the hard annihilation part is consistently calculated at leading order (LO) in
αs, namely H(Q2, µ) ≈ 1. Equation (6.2.8) then simplifies to

dσh1h2

dz1 dz2 dq2
T dy

≈ 6πα2

Q2
A(y) (6.2.9)

×
∑
q

e2
q

∫ ∞
0

dbT bT J0

[
z2

1 D
q~h1

1 (z1, bT ; ζ1, µ) z2
2 D

q̄~h2

1 (z2, bT ; ζ2, µ) + (q ↔ q̄)
]
.

In Sec. 6.5, we present our results for the qT spectrum of hadron pair multi-
plicities in e+e− annihilation. In strict analogy with the SIDIS definition [29], we
construct the e+e− multiplicities as the differential number of back-to-back pairs
of hadrons produced per corresponding single-hadron production after the e+e−

annihilation. In terms of cross sections, we have

Mh1h2(z1, z2, q
2
T , y) =

dσh1h2

dz1 dz2 dq2
T dy

/
dσh1

dz1 dy
, (6.2.10)

where dσh1h2 is the differential cross section of Eq. (6.2.9). The dσh1 describes
the production of a single hadron h1 from the e+e− annihilation and it is obtained
from the previous cross section by summing over all hadrons produced in one hemi-
sphere [256]:

dσh1

dz1dy
=

12πα2

Q2
A(y)

∑
q

e2
q D

q~h1

1 (z1) . (6.2.11)

6.3 TMD evolution of fragmentation functions

In the following, we describe in more detail the dependence of the fragmentation
functions Dq~h1 of (6.2.9) upon the renormalization/factorization scale µ and the
scale ζ (see also Chap. 3). As outlined in Chap. 3, different scenarios are possible
according to the choice of the initial starting value for the factorization scale, and of
the low-energy model describing the nonperturbative part of the evolution kernel.
We first describe the structure of the input Dq~h1 at the starting scale.

6.3.1 Input fragmentation functions at the starting scale

We consider the unpolarized TMD FF extracted by fitting the hadron multiplici-
ties in SIDIS data at low energy from Hermes [29]. The assumed functional form
displays a transverse-momentum dependent part which is described in impact pa-
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rameter space by the following fixed-scale flavor-dependent Gaussian ansatz1:

Da~h1 (z, bT ; Q2) = da~h1 (z; Q2)
1

z2
exp

[
− 1

4z2

〈
P 2
⊥
〉a~h(z) b2T

]
, (6.3.1)

where
〈
P 2
⊥
〉a~h(z) with a = q, q̄, is the flavor- and z-dependent Gaussian width at

some starting scale Q2
0 [174–176]. The choice of having separate Gaussian functions

for different flavors is motivated by the significant differences displayed by the Her-
mes data between pion and kaon final-state hadrons [29]. The factorized collinear
dependent part da~h1 (z; Q2) is described by using the DSS parametrization [241].

Following [181,253], a possible energy dependence of the Gaussian distribution
was taken into account introducing the logarithmic term

exp

{
− g2

b2T
4

ln
Q2

Q2
0

}
, (6.3.2)

with g2 a free parameter. Choosing Q2
0 = 1 GeV2, it was soon realized that the

best-fit value for g2 was compatible with zero. As a matter of fact, the Q2 range
spanned by Hermes is small and the obtained experimental data for multiplicities
are not sensitive to evolution effects. For this reason, the fit was performed by using
(6.3.1) at a scale fixed to the experimental average value, namely Q2 = Q2

0 = 2.4

GeV2. With this choice, the possible energy dependence of (6.3.2) is automatically
eliminated.

In summary, the input to our studies on the evolution of Da~h1 with the scales
µ and ζ is referred to the expression in (6.3.1) to be considered at the starting
scale Q2

0 = 2.4 GeV2. However, depending on the choice of the initial value of
the factorization scale this identification is not always straightforward, as will be
explained in the following sections.

6.3.2 The µb prescription

As shown in (6.2.9), the TMD FFs generally depend on the factorization scale µ
and on the rapidity scale ζ. The TMD FFs satisfy evolution equations with respect
to both of them (see Chap. 3).

The functional form of TMD FFs at small bT can be calculated in perturbative
QCD. Conversely, the nonperturbative part at large bT must be constrained by
fitting experimental data. At the medium/large energies of the BES III and Belle
experiments, the perturbative tail of TMD FFs needs to be taken into account. As
explained in Sec. 3.6, using the technique of Operator Product Expansion (OPE), it

1The 1/z2 factors appearing in (6.3.1) are due to bT being conjugated to the partonic trans-
verse momentum kT , whereas the TMD FFs in [174] and Chap. 5 are defined and normalized in
momentum space with respect to the hadronic transverse momentum KT = −zkT .
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can be represented as a convolution of (perturbatively calculable) Wilson coefficients
C with the (nonperturbative) collinear fragmentation functions d1 (see (3.6.1)).

For a TMD FFs, the convolution in (3.6.1) is defined as

[C ⊗ da~h1 ](z, bT ; ζ, µ) =
∑

j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ; ζ, µ

)
dj~h1 (s;µ) . (6.3.3)

Via the CS evolution kernel (3.5.1), (3.5.2), the dependence of the coefficients upon
both factorization and rapidity scales can be represented in a factorized form:

Cj~a
(z, bT ; ζ, µ) =

(
ζ

µ2
b

)−K(bT ;µ)

Cj~a
(z, bT ;µ2

b , µ) , (6.3.4)

where we made the natural choice ζi = µb (see Chap. 3), the latter being defined in
(3.5.9) as

µb =
2e−γE

bT
, (6.3.5)

and γE is the Euler constant. The K function in Eq. (6.3.4) 2 arises from the
process-independent soft factor that is necessary to proof the factorization theorem
leading to the definition of the TMD FFs; it drives the evolution of TMD FFs in
the ζ variable. The convolution in Eq. (6.3.3) is only valid for small bT , namely
bT � 1/ΛQCD. Moreover, the expression of the C coefficients consists in a power
series in αs ln (µ2/µ2

b) (including also double logarithms of the same argument).
This motivates us to choose the natural value µ = µb to maximize the convergence
of the perturbative series. Accordingly, we can write the TMD FF as

Da~h(z, bT ; ζ, µb) =

(
ζ

µ2
b

)−K(bT ;µb) ∑
j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ;µ2

b , µb

)
dj~h1 (s;µb)

×O(bTΛQCD) . (6.3.6)

The evolution of this fragmentation function from µb to another value of µ (e.g.,
µ = Q) is driven by RGE equations. Instead, the evolution from an initial rapidity
scale ζi to ζ is controlled by the K function. The final expression of the TMD FF
at the scales µ = Q and ζ is

Da~h(z, bT ; ζ,Q) = exp

{∫ µ=Q

µb

dµ̄

µ̄
γFF

}(
ζ

ζi

)−K(bT ;µb)

2Our K function corresponds to the D function in [122], and to the K̃ function in [20] but for
a factor −1/2.
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×
(
ζi
µ2
b

)−K(bT ;µb) ∑
j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, bT ;µ2

b , µb

)
dj~h1 (s;µb)

×+O(bTΛQCD) , (6.3.7)

where the anomalous dimension γFF reads (for more details see Chap. 3)

γFF = −
(

Γcusp ln
ζ

µ2
+ γV

)
, (6.3.8)

and Γcusp and γV are also power series in αs (see Chap. 3).

As explained in Sec. 3.7.3, the above procedure is valid up to a maximum value
of bT , named bmax, beyond which we do not trust the perturbative calculation.
Hence, it is convenient to reconsider the OPE by introducing the variable b̂T defined
in (3.7.7) that freezes at bmax when bT becomes large.

By adding the decomposition in (3.7.8) and the intrinsic transverse distribution
at the starting scale (6.3.1), (6.3.7) becomes

Da~h(z, bT ; ζ,Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

}(
ζ

ζi

)−K(b̂T ;µb̂)−gnp(bT )

×
(
ζi
µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT ) ∑
j=q,q̄,g

∫ 1

x

ds

s
Cj~a

(z
s
, b̂T ;µ2

b̂
, µb̂

)
da~h1 (s;µb̂)

× 1

z2
e−
〈P 2

⊥〉
a~h(z)

4z2
b2T

(
ζi
Q2

0

)−gnp(bT )

. (6.3.9)

If we insert ζi = µ2
b̂
and ζ = µ2 = Q2, the above equation reduces to

Da~h(z, bT ;Q2, Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

}(
Q2

µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT )

×
∑

j=q,q̄,g

∫ 1

z

ds

s
Cj~a

(z
s
, b̂T ;µ2

b̂
, µb̂

)
dj~h1 (s;µb̂)

× 1

z2
e−
〈P 2

⊥〉
a~h(z)

4z2
b2T

(
µ2
b̂

Q2
0

)−gnp(bT )

≡ R(bT ;Q2, Q, µ2
b̂
, µb̂) D

a~h(z, bT ;µ2
b̂
, µb̂) . (6.3.10)

Hence, the net effect of evolution can be represented as the action of the evolution
operator R (3.5.7) on the input TMD FF evaluated at the scale µb̂, which is running
with b̂T . This peculiar feature grants that there is a smooth matching between the
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6.3. TMD evolution of fragmentation functions

perturbative domain at small bT and the nonperturbative domain at large bT . As
mentioned in Sec. 3.7.3, from (6.3.9) and (6.3.10) we deduce that modeling the
nonperturbative part affects the whole bT spectrum, not only the large bT region.

In this analysis, we resum the soft gluon radiation up to NLL contributions
in ln(µ/µb), which corresponds to include terms linear in αs in the perturbative
expansion of K and γV , and quadratic in the expansion of Γcusp (see Sec. 3.7.2):

K(bT ;µ) =
CF
2π

αs ln
µ2

µ2
b

,

γV = −3CF
2π

αs ,

Γcusp =
CF
π
αs

{
1 +

αs
4π

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]}
, (6.3.11)

where CA = Nc, CF = (N2
c − 1)/2Nc, are the usual Casimir operators for the

gluon and fermion representations of the color group SU(Nc) with Nc colors, and
TF = nf/2 with nf the number of active quark flavors. The coefficients C are
computed at LO in αs (see Tab. 3.1), namely they reduce to δ functions such that
(6.3.10) simplifies to

Da~h(z, bT ;Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γ
FF
∣∣
NLL

}(
Q2

µ2
b̂

)−KNLL(b̂T ;µb̂)−gnp(bT )

× da~h1 (z;µb̂)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}(
µ2
b̂

Q2
0

)−gnp(bT )

.

(6.3.12)

The definition of gnp(bT ) in (3.7.8) obviously implies that this function depends
on bmax, i.e. on the value of the impact parameter that sets the separation between
the perturbative and nonperturbative regimes. Indeed, by perturbatively expanding
K(bT ;µb) at lowest order we have [128]

gnp(bT ) ≈ αs(µb̂)CF

π
ln
(

1 +
b2T
b2max

)
. (6.3.13)

For bT � bmax, this expression recovers the quadratic parametrization 1
2g2b

2
T

adopted in the fits of [181] and [182], and it suggests that the parameter g2 is
not free but anticorrelated to bmax, and proportional to b2max through a pertur-
batively calculable coefficient. The gnp function accounts for the radiation of soft
gluons emitted from a parton at high bT . A small (large) value of bmax implies that
the QCD perturbative description is valid up to relatively small (large) bT values.
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6. Electron-positron annihilation

Consequently, the amount of soft gluons emission is larger (smaller) and we expect
a large (small) value for g2. More generally, this anticorrelation is motivated by the
fact that both the exact functionK(bT ;µb) and the TMD FF itself must not depend
on the arbitrary choice of bmax. So, bmax should not be regarded as a free parameter
to be fitted to data, but it should be considered as an arbitrary scale that separates
perturbative from nonperturbative regimes: changing bmax implies a rearrangement
of all terms in Eq. (6.3.9) such that the TMD FF does not change [128].

For the purpose of this work, we will consider anticorrelated pairs of values for
{bmax, g2}, inspired to the values adopted in [181] and [182]. We will also explore
different expressions for each one of the b̂T and gnp functions. For b̂T , our first
choice is the socalled “b-star” prescription [20,181]

b̂T ≡ b∗T =
bT√

1 +
b2T
b2max

. (6.3.14)

The second choice is based on the exponential function

b̂T ≡ b†T = bmax

{
1− exp

[
− b4T
b4max

]} 1
4

, (6.3.15)

that is steeper and it approaches the asymptotic constant bmax more quickly. For
gnp, we choose a linear function of b2T similarly to [181,182,253] (see also (6.3.2)):

glinnp(bT ) =
g2

4
b2T . (6.3.16)

The second choice is suggested by (6.3.13):

glognp (bT ) = g2 b̄
2
T ln

(
1 +

b2T
4b̄2T

)
, b̄T = 1 GeV−1 . (6.3.17)

This expression was considered also in [179], and it reduces to (6.3.16) for small bT .

In principle, we have four different combinations of prescriptions: {b∗T , glinnp},
{b∗T , glognp }, {b†T , glinnp}, and {b†T , glognp }. However, after some preliminary exploration
we realized that some of them were producing redundant results. Therefore, they
have been neglected. In summary, the transverse-momentum spectrum of the mul-
tiplicities in Eq. (6.2.10) will be analyzed by varying the anticorrelated pair of
parameters {bmax, g2}, and by considering only the two combinations {b∗T , glinnp} and
{b†T , glognp }.

Finally, we remark that if we choose Q = µb̂ in Eq. (6.3.12), i.e. if we switch
off evolution effects, we should recover the Gaussian model expression of Eq. (6.3.1)
for the TMD FF at the initial scale Q0. Formally, this is not the case because in the
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6.3. TMD evolution of fragmentation functions

second line the collinear d1 is evaluated at µb̂ and the term (µ2
b̂
/Q2

0)−gnp(bT ) survives.
However, the Gaussian model of (6.3.1)) is deduced by fitting the Hermes SIDIS
data, whose kinematics overlaps the domain of very large bT � bmax, namely where
b̂T ≈ bmax. If we use the prescription b̂T ≡ b∗T of (6.3.14)), it is easy to check that
for bmax = 0.7 GeV−1 we have µ2

b̂
≈ Q2

0 = 2.4 GeV2. Hence, the Da~h(z, bT ;µb̂) of
(6.3.12) at Q = µb̂ actually behaves like the Da~h(z, bT ;Q0) of (6.3.1) at the scale
Q0 and at very large bT values, or equivalently for very small parton transverse
momenta.

6.3.3 The fixed-scale prescription

Alternatively, we can fix the initial scales ζi and µ2
b at the value Q2

i = Q2
0 = 2.4

GeV2 for the whole bT distribution:

Da~h(z, bT ;Q) = R(bT ;Q,Qi) D
a~h(z, bT ;Qi) . (6.3.18)

With this choice, it is not possible to apply the OPE for calculating a perturbative
tail to which the TMD FF should match at low bT , because the logarithms in the
perturbative expression are not minimized by the natural choices. For this reason,
we need a model input over the whole bT spectrum. In our case, it is now very
easy to identify the input TMD FF at the starting scale Qi with the Gaussian
parametrization of (6.3.1) at Q0. Then, for µ2

i = ζi = Q2
i = Q2

0 = 2.4 GeV2 the
TMD FF evolved at NLL up to a final scale µ2 = ζ ≡ Q2 becomes

Da~h(z, bT ;Q) = exp

{∫ Q

Qi

dµ̄

µ̄
γFF

∣∣
NLL

} (
Q2

Q2
i

)−KNLL(bT ;Qi)

× da~h1 (z;Qi)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}
. (6.3.19)

The contribution from the gnp term in the input distribution does not appear be-
cause of the choice of the starting scale ζi = Q2

i = Q2
0.

The choice µi = Qi of identifying the starting factorization scale with a fixed
scale for the whole bT spectrum has important consequences also on the function K.
From Eq. (6.3.11), we can expand K in powers of ln (µ/µb): if µi 6= µb, the series
may not converge. One possible workaround is to apply the resummation tech-
nique to the K function itself [122]. Here, we will discuss two different approaches:
computing K from [20] at a fixed order in αs; or dressing K by resumming large
logarithms of the kind ln (µ/µb) [122]. In the first case, K is expanded in powers
of αs; in the second case, the expansion is in αs ln (µ/µb). If µi = µb, the two
expansions are the same.

We will refer to the first choice as the "fixed-scale" prescription. The function
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6. Electron-positron annihilation

K is evolved from µb̂ to Qi through its anomalous dimension:

K(bT ;Qi) = K(b̂T ;µb̂) +

∫ Qi

µb̂

dµ̄

µ̄
Γcusp + gnp(bT )

≈
NLL

∫ Qi

µb̂

dµ̄

µ̄
Γcusp + gnp(bT ) , (6.3.20)

where gnp(bT ) can get either the expression in (6.3.16) or in (6.3.17). The pertur-
bative contributions are calculated at NLL as in Eq. (6.3.11), according to which
we have KNLL(b̂T ;µb̂) = 0.

The second choice is connected to the results of [122] and has already been
outlined in Sec. 3.7.3. There large logarithms of the kind ln (µ/µb) are resummed
in the perturbative part:

K(bT ;Qi) = DR(bT ;Qi) θ(bT,c − bT ) + ḡnp(bT ) θ(bT − bT,c) , (6.3.21)

where DR is the resummed contribution (computed, e.g., in [122]), and bT,c is the
convergence radius of the perturbative expression. Apart from the resummation of
logarithms, the main difference with (6.3.20) is the presence of the θ functions: no b̂T
prescription is used to connect the perturbative and nonperturbative domains. As
explained in Sec. 3.7.3, the nonperturbative contribution acts differently: while gnp
in (6.3.20) applies to the whole bT spectrum, in (6.3.21) it does only for bT > bT,c.
Here we use the notation ḡnp to account for this difference. For example, the K
function must be at least continuous at bT = bT,c. We can match this constraint
by defining the nonperturbative contribution at bT > bT,c as

ḡnp(bT ) = DR(bT,c)

[
1 + gnp(bT − bT,c)

]
, (6.3.22)

where gnp can be again either the glinnp prescription of (6.3.16) or the glognp prescription
of (6.3.17).

For Qi � Q, the perturbative component DR in (6.3.21) diverges for bT < bT,c.
Hence, its contribution to the evolution of the fragmentation function becomes
negligible, being of the kind (Q/Qi)

−DR . Since K is a smooth function in bT , also
the contribution of the nonperturbative part ḡnp for bT > bT,c becomes numerically
negligible [122]. However, this result cannot be generalized to any value of Q. Since
we will make explorative calculations also at the BES III scale Q =

√
14.6 GeV

which cannot be considered to be much larger than the initial scale Q0 =
√

2.4

GeV of our input TMD FF, we will consider only the "fixed-scale" prescription of
(6.3.20).
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6.4. Flavor dependence of fragmentation functions

6.3.4 Summary of evolution kernels

In summary, we consider two possible ways of evolving the TMD FF, according to
the choice of the initial factorization scale µi. It is understood that all formulae are
computed at the NLL level of accuracy, according to (6.3.11) and Sec. 3.7.2.

A The "µb" prescription: then µ2
i = µ2

b̂
= ζi, ζ = µ2 = Q2, and we have

Da~h(z, bT ;Q) = exp

{∫ Q

µb̂

dµ̄

µ̄
γFF

} (
Q2

µ2
b̂

)−K(b̂T ;µb̂)−gnp(bT )

(6.3.23)

× da~h1 (z;µb̂)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

} (
µ2
b̂

Q2
0

)−gnp(bT )

,

where γFF and K are described by (6.3.8) and (6.3.11), µb̂ is given by (3.5.9)
with (6.3.14) and (6.3.15), and gnp is described in (6.3.16) and (6.3.17).

B The "fixed-scale" prescription: then µ2
i = Q2

i = ζi, ζ = µ2 = Q2, and we have

Da~h(z, bT ;Q) = exp

{∫ Q

Qi

dµ̄

µ̄
γFF

} (
Q2

Q2
i

)−K(b̂T ;µb̂)−
∫Qi
µ
b̂

dµ̄
µ̄ Γcusp−gnp(bT )

× da~h1 (z;Qi)
1

z2
exp

{
−
〈
P 2
⊥
〉a~h(z)

4z2
b2T

}
, (6.3.24)

where γFF , µb̂, gnp are defined in the same equations as above, while K is
given in (6.3.20).

6.4 Flavor dependence of fragmentation functions

The flavor sum in (6.2.9) can be made explicit and further simplified using the
symmetry upon charge-conjugation transformations:

Dq~h1 (z, bT ; Q2) = Dq̄~ h̄1 (z, bT ; Q2) . (6.4.1)

At the starting scale Q0, we distinguish the favored fragmentation where the frag-
menting parton is in the valence content of the final hadron h. All the other channels
are classified as unfavored fragmentation and are characterized by the fact that the
detected hadron is produced by exciting more than one qq̄ pair from the vacuum. If
the final hadron is a kaon, we further distinguish a favored fragmentation initiated
by an up quark/antiquark from the one initiated by a strange quark/antiquark. See
also Sec. 5.2.2. We limit the sum to three flavors u, d, s, and the corresponding
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6. Electron-positron annihilation

antiquark partners. For an analysis of the impact of this decomposition on the
production of {π±,K±} combinations, see Sec. 4 in [139].

Flavor dependent TMD Gaussian ansatz

The starting input to our analysis are the TMD FFs extracted by fitting the hadron
multiplicities in SIDIS data from Hermes at Q2

0 = 2.4 GeV2 [174]. The assumed
functional form displays a transverse-momentum dependent part which is described
in impact parameter space by the following flavor-dependent Gaussian ansatz:

Dq~h1 (z, bT ; Q2
0) = dq~h1 (z; Q2

0)
1

z2
exp

[
− 1

4z2

〈
P 2
⊥
〉q~h(z) b2T

]
≡ dq~h1 (z; Q2

0)Ghq (z, b2T ) . (6.4.2)

The cross section of (6.2.9) (and, in turn, the multiplicity in (6.2.10)) is then a sum
of Gaussians, and thus no longer a simple Gaussian. The width of the Gaussian
depends also on the fractional momentum z as in (5.2.21).

Isospin and charge-conjugation symmetries suggest four different Gaussian shapes,
as in (5.2.17), (5.2.18), (5.2.19), (5.2.20).Correspondingly, we have four different
Gaussian functions in (6.4.2):

Gπ
+

u = Gπ
+

d̄ = Gπ
−

ū = Gπ
−

d ≡ Gfav(z, b2T ) , (6.4.3)

GK
+

u = GK
−

ū ≡ GuK(z, b2T ) , (6.4.4)

GK
+

s̄ = GK
−

s ≡ GsK(z, b2T ) , (6.4.5)

Gπ
−

u = GK
−

u = Gπ
+

d = GK
±

d = Gπ
±

s = GK
+

s = Gπ
+

ū = GK
+

ū

= Gπ
−

d̄ = GK
±

d̄ = Gπ
±

s̄ = GK
−

s̄ ≡ Gunf(z, b
2
T ) . (6.4.6)

Each one of these four functions depends on the same fitting parameters β, δ, γ, of
(5.2.21) (see Sec. 5.2.2).

Collinear fragmentation functions

For the collinear functions dq~h1 (z; Q2
0), we adopt the same assumptions of [241]:

- isospin symmetry of the sea quarks

- for h = π+, a direct proportionality between the (d + d̄) and (u + ū) combi-
nations, i.e. (d+ d̄) = N(u+ ū).

For more details concerning their implementation, together with the flavor depen-
dent Gaussian ansatz, we refer to Sec. 4 in [139].
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6.5 Predictions for multiplicities

In this section, we present our results as normalized multiplicities

Mh1h2(z1, z2, q
2
T , y)/Mh1h2(z1, z2, 0, y) (6.5.1)

for the hadron pair (h1, h2), whereMh1h2(z1, z2, q
2
T , y) is defined in Eq. (6.2.10). In

such way, we are able to directly compare the genuine trend in q2
T for each different

case. If not explicitly specified, we choose y = 0.2. For selected values of {z1, z2},
the results are displayed as a function of P 2

1⊥ = z2
1q

2
T . Hence, the useful range in

P 2
1⊥ depends on z1 in order to fulfill the condition q2

T � Q2. The range obviously
depends also on the choice of the hard scale; we consider Q2 = 100 GeV2, as in
the Belle experiment, and Q2 = 14.6 GeV2, as in the BES III one. For each
specific case, the results are displayed as uncertainty bands: they represent the
68% of the envelope of 200 different values for the intrinsic parameters in (5.2.21)
for the D1(z, bT ;Q2

0) at the starting scale Q2
0, obtained by rejecting the largest and

lowest 16% of them. The 200 values are obtained by fitting 200 replicas of SIDIS
multiplicities measured by the Hermes collaboration [29]. If the 200 values for
each parameter were distributed as a Gaussian, the 68% band would correspond to
the usual 1σ confidence interval (for more details, see Ref. [174]).

The results are organized as follows. In Sec. 6.5.1, we show the sensitivity of the
normalized multiplicity to different values of the evolution parameters {bmax, g2}
described in Sec. 6.3.2 for a final hadron pair (h1h2) = (π+π−). In Sec. 6.5.2, we
compare normalized multiplicities for the two different evolution schemes described
in Secs. 6.3.2 and 6.3.3. In Sec. 6.5.3, we discuss the capability of discriminating
among the various prescriptions illustrated in Sec. 6.3.2 for the nonperturbative
evolution effects. In Sec. 6.5.4, we concentrate on the sensitivity of the normalized
multiplicities upon varying the fractional energy z of final hadrons. In Sec. 6.5.5,
we show how the results get modified when lowering Q2 from the Belle scale
to the BES III scale. Finally, in Sec. 6.5.6 we discuss the sensitivity of ratios
of normalized multiplicities for different final states to the flavor structure of the
intrinsic transverse-momentum-dependent part of the input TMD FF at the starting
scale of evolution.

6.5.1 Sensitivity to nonperturbative evolution parameters

As already remarked in Sec. 6.3.2, for a specific evolution scheme the nonper-
turbative part of the TMD evolution depends on the choice of a prescription for
describing the transition from perturbative to nonperturbative regimes, which in
turn depends on the two parameters bmax and g2. In this section, we explore the
sensitivity of our predictions to different values of the pair {bmax, g2}. Units of
measure {GeV−1, GeV2} will be intended. We adopt as limiting cases the choices
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6. Electron-positron annihilation

{bmax = 1.5, g2 = 0.18} and {bmax = 0.5, g2 = 0.68}, that were deduced in [182]
and [181], respectively, by fitting the transverse-momentum distribution of lepton
pairs produced in Drell-Yan processes. If not explicitly specified, the first choice
is described by uncertainty bands with dot-dashed borders while the second choice
is linked to bands with solid borders. As explained in Sec. 6.3.2, the two parame-
ters are anticorrelated. In the following, we show results also for the interpolating
choice {bmax = 1, g2 = 0.43}. The corresponding results are displayed as uncer-
tainty bands with dashed borders.
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Figure 6.2. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡

(0.5)2q2
T at the Belle scale Q2 = 100 GeV2 for the "µb scale" evolution scheme and with

the {b∗T , glin
np} prescription for the transition to the nonperturbative regime (see text).

The uncertainty bands correspond to various choices of the nonperturbative parameters of
evolution: {bmax = 1.5, g2 = 0.18} for the band with dot-dashed borders, {bmax = 1, g2 =
0.43} for the one with dashed borders, {bmax = 0.5, g2 = 0.68} for the one with solid
borders. The latter is accompanied by a light-gray band with dot-dashed borders, that
represents the result with the same parameters but with the choice µb/2 for the arbitrary
matching scale, and by an overlapping light-gray band with dashed borders for the choice
2µb. An experimental error of 7% is also indicated.

In Fig. 6.2, the normalized multiplicity

Mπ+π−(z1 = 0.5, z2 = 0.5, q2
T , y = 0.2)/Mπ+π−(z1 = 0.5, z2 = 0.5, 0, y = 0.2)

(6.5.2)
is shown as a function of P 2

1⊥ = z2
1q

2
T ≡ (0.5)2q2

T at the Belle scale Q2 = 100

GeV2 for the "µb scale" evolution scheme and with the {b∗T , glinnp} prescription for the
transition to the nonperturbative regime, as explained in Sec. 6.3.2. The explored
range in P 2

1⊥ is such that for z1 = 0.5 the maximum q2
T satisfies the condition

q2
T � Q2. The three uncertainty bands, corresponding to the three different choices
{bmax = 1.5, g2 = 0.18} (dot-dashed borders), {bmax = 1, g2 = 0.43} (dashed
borders), and {bmax = 0.5, g2 = 0.68} (solid borders), are well separated. The
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squared box with error bar indicates an experimental error of 7%. We fix it by
propagating to the normalized multiplicity the typical experimental error of 3% for
single-hadron production data in e+e− annihilation at Q2 = 100 GeV2 and z = 0.5,
from which the collinear dq1(z; Q2) are extracted [241]. This expected experimental
error of 7% seems small enough to discriminate among predictions produced with
different choices of {bmax, g2}.

Two additional light-gray bands are shown, which are partially overlapped (dot-
dashed borders) or completely overlapped (dashed borders) to the band with solid
borders corresponding to the choice {bmax = 0.5, g2 = 0.68}. These bands repro-
duce the outcome of calculations performed in the same conditions but for different
(arbitrary) choices of the scale µb. If the band with solid borders corresponds to
calculations with the choice of Eq. (6.3.5) for µb, then the light-gray band with dot-
dashed borders corresponds to the choice µb/2, and the one with dashed borders
to 2µb. The almost complete overlap of these results shows that for the selected
observable, the normalized multiplicity, the theoretical uncertainty in determining
the matching scale µb (that describes the transition from perturbative to nonper-
turbative regimes) is negligible with respect to the sensitivity to the parameters
describing the nonperturbative effects in the evolution.

6.5.2 Sensitivity to evolution schemes

In this section, we explore the sensitivity of our normalized multiplicity to the choice
of the evolution scheme. In Sec. 6.3, we described two different schemes, the "µb
scale" and the "fixed scale". They differ mainly in the fact that in the latter the
whole distribution in impact parameter space bT of the TMD FF Dq

1 at beginning
of evolution is computed at a fixed scale Q0, namely there is no impact parameter
that describes the transition from low (perturbative) bT to high (nonperturbative)
bT . Actually, one would expect that for small values of g2 and corresponding not
too large values of bmax (i.e., where the perturbative description of the evolution of
the bT distribution is still applicable and gives the predominant contribution) the
predictions from the different schemes should tend to a common result, determined
mainly by a fully perturbative calculation. However, the complexity of the evolu-
tion kernels, described in Secs. 6.3.2 and 6.3.3, indicates that this is too a näive
expectation.

In fact, in Fig. 6.3 the normalized multiplicity of Eq. (6.5.2) is shown as a
function of P 2

1⊥ = z2
1q

2
T ≡ (0.5)2q2

T at the Belle scale Q2 = 100 GeV2 with the
{b∗T , glinnp} prescription. There are two groups of uncertainty bands. The former
one displays the results for the "fixed scale" evolution scheme in the standard
notation, i.e. for {bmax = 1.5, g2 = 0.18} (dot-dashed borders), {bmax = 1, g2 =

0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68} (solid borders). Then, two
additional light-gray bands are shown that correspond to the results with the "µb
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Figure 6.3. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡

(0.5)2q2
T in the same conditions and with the same notation as in Fig. 6.2, but for the

"fixed scale" evolution scheme. The additional light-gray bands with dot-dashed and solid
borders are the result related to the "µb scale" evolution scheme for {bmax = 1.5, g2 = 0.18}
and {bmax = 0.5, g2 = 0.68}, respectively.

scale" evolution scheme for {bmax = 1.5, g2 = 0.18} (dot-dashed borders) and
{bmax = 0.5, g2 = 0.68} (solid borders).

It is evident that for the maximum (minimum) bmax (g2) the band with dot-
dashed borders in the "fixed scale" scheme is not similar to the light-gray band
with dot-dashed borders in the "µb scale" scheme. Actually, all the results in the
"fixed scale" scheme show a much larger distribution in P 2

1⊥, somewhat pointing
to stronger evolution effects of perturbative origin that seem to be absent in the
"µb scale" scheme (where the scale choice minimizes the effect of large logarithms
in the perturbative coefficients). It is important to notice that there is a significant
overlap between the band with dot-dashed borders in the "fixed scale" scheme and
the light-gray band with solid borders in the "µb scale" scheme. Apparently, the
normalized multiplicity seems not to be enough sensitive to discriminate among
different evolution schemes, since two different choices of them can produce sim-
ilar results with different evolution parameters {bmax, g2}. However, this result
is observed at a specific value of fractional energies of the final hadrons, namely
z1 = z2 = 0.5.

In Fig. 6.4, we show the P 2
1⊥ distribution of normalized multiplicities calculated

in the same conditions, notation and conventions as in the previous figure, but at
z1 = 0.3 and z2 = 0.5. The band with dot-dashed borders in the "fixed scale"
scheme can now be easily separated from the light-gray band with solid borders in
the "µb scale" scheme if the estimated experimental error is around 7%. Therefore,
only when combining the study of the z and P 2

1⊥ dependencies in the normalized
multiplicity we may be able to discriminate among different evolution schemes.
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Figure 6.4. The same as in the previous figure, but at z1 = 0.3.

6.5.3 Sensitivity to prescriptions for the transition to nonperturbative
transverse momenta

We now focus on exploring the possibility of discriminating among different pre-
scriptions that describe the functional dependence in bT of the nonperturbative
Sudakov evolution factor (see Eqs. (6.3.16) and (6.3.17)) or the transition from the
perturbative low−bT domain to the nonperturbative high−bT one (see Eqs. (6.3.14)
and (6.3.15)).
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Figure 6.5. The normalized multiplicity at z1 = z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T ≡

(0.5)2q2
T at the Belle scale Q2 = 100 GeV2 for the "fixed scale" evolution scheme and

with the {b†T , glog
np } prescription for the transition to the nonperturbative regime (see text).

Notation and conventions for the uncertainty bands as in Fig. 6.3.

In Fig. 6.5, the normalized multiplicity of Eq. (6.5.2) is shown as a function of
P 2

1⊥ = z2
1q

2
T ≡ (0.5)2q2

T at the Belle scale Q2 = 100 GeV2 with the {b†T , glognp }
prescription. Again, as in Fig. 6.3 there are two groups of uncertainty bands. The
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former one displays the results for the "fixed scale" evolution scheme in the standard
notation, i.e. for {bmax = 1.5, g2 = 0.18} (dot-dashed borders), {bmax = 1, g2 =

0.43} (dashed borders), and {bmax = 0.5, g2 = 0.68} (solid borders). The two
additional light-gray bands correspond to the results with the "µb scale" evolution
scheme for {bmax = 1.5, g2 = 0.18} (dot-dashed borders) and {bmax = 0.5, g2 =

0.68} (solid borders). So, also for the {b†T , glognp } prescription we find the same
ambiguity as for the {b∗T , glinnp} one in Fig. 6.3: the overlap of the light-gray band
with solid borders and of the band with dot-dashed borders indicates that two
different evolution schemes give similar results with different evolution parameters
{bmax, g2}. Hence, we wonder if this similar trend suggests that it might not be
possible to distinguish between the two schemes. Again, the possible way out is
to look at the dependence of the results upon the fractional energy of the final
hadrons.

In Fig. 6.6, the normalized multiplicity of Eq. (6.5.1) is shown as a function
of P 2

1⊥ = z2
1q

2
T at the Belle scale Q2 = 100 GeV2 for the "µb scale" evolu-

tion scheme. Also in this plot, there are two groups of uncertainty bands. A
group displays the results for the {b†T , glognp } prescription in the standard notation,
i.e. for {bmax = 1.5, g2 = 0.18} (dot-dashed borders), {bmax = 1, g2 = 0.43}
(dashed borders), and {bmax = 0.5, g2 = 0.68} (solid borders). The group of
two light-gray bands correspond to the results with the {b∗T , glinnp} prescription
for {bmax = 1.5, g2 = 0.18} (dot-dashed borders) and {bmax = 0.5, g2 = 0.68}
(solid borders). If we focus on the left panel where calculations are performed at
z1 = z2 = 0.5, the two bands with dot-dashed borders are substantially overlapped,
thus reinforcing the suspect that it might not be possible to discriminate between
the {b∗T , glinnp} and {b†T , glognp } prescriptions. But if we now turn to the right panel,
where the same calculation is performed at z1 = 0.3, z2 = 0.5, we may hope to have
a sufficiently small experimental error that discriminates between the two bands
with dot-dashed borders. Unfortunately, the plot suggests also that this option
seems possible only for the {bmax = 1.5, g2 = 0.18} case. And further explorations
show that the same calculation, when performed in the "fixed scale" evolution
scheme, produces more confusing results. In summary, a combined study of the z
and P 2

1⊥ dependencies in the normalized multiplicity might be able to discriminate
among different prescriptions for the nonperturbative effects in the evolution only
for a selected set of evolution parameters and schemes.

6.5.4 Sensitivity to hadron fractional-energy dependence

In the previous sections, we found that in several occasions only the combined study
of the z and P 2

1⊥ dependencies of the normalized multiplicity allows for discerning
results obtained from different parametrizations and prescriptions in the description
of nonperturbative effects in the TMD evolution. This is not accidental. With the
approximations adopted in this work, the main difference between the two consid-
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Figure 6.6. The normalized multiplicity at z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T at the

Belle scale Q2 = 100 GeV2 for the "µb scale" evolution scheme and with the {b†T , glog
np }

prescription for the transition to the nonperturbative regime (see text). Notation for the
uncertainty bands as in previous figure. The additional light-gray bands with dot-dashed
and solid borders are the result with the {b∗T , glin

np} matching prescription for {bmax =
1.5, g2 = 0.18} and {bmax = 0.5, g2 = 0.68}, respectively. Left panel for z1 = 0.5, right
panel for z1 = 0.3.

ered evolution schemes lies in fact in the z dependence of the collinear fragmentation
function d1, as it can be deduced by comparing Eqs. (6.3.23) and (6.3.24).

The plots in Fig. 6.7 seem to confirm this finding. In the left panel, the nor-
malized multiplicity of Eq. (6.5.1) is shown as a function of P 2

1⊥ = z2
1q

2
T at the

Belle scale Q2 = 100 GeV2 for the "µb scale" evolution scheme, the {b∗T , glinnp}
prescription, and the choice {bmax = 1.5, g2 = 0.18}. The bands display results
for the values z1 = 0.3, z2 = 0.5 (band with dot-dashed borders), z1 = z2 = 0.5

(dashed borders), and z1 = 0.7, z2 = 0.5 (solid borders). In the right panel, we
show the results of the calculations performed in the same conditions but for the
"fixed scale" evolution scheme. It is quite evident that the latter scheme produces
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Figure 6.7. The normalized multiplicity at z2 = 0.5 as a function of P 2
1⊥ = z21q

2
T at

the Belle scale Q2 = 100 GeV2 for the evolution parameters {bmax = 1.5, g2 = 0.18}
and with the {b∗T , glin

np} prescription for the transition to the nonperturbative regime (see
text). Uncertainty band with dot-dashed borders for z1 = 0.3, with dashed borders for
z1 = 0.5, with solid borders for z1 = 0.7. The squared box with error bar corresponds to
an experimental error of 7%. Left panel for the "µb scale" evolution scheme, right panel
for the "fixed scale" one.

P 2
1⊥ distributions that are systematically larger for any combination of {z1, z2}.

This finding holds true also for other choices of the evolution parameters {bmax, g2}
and for the {b†T , glognp } prescription.

6.5.5 Sensitivity to the hard scale: from Belle to BES III

All previous results have been obtained at the Belle scale of Q2 = 100 GeV2. We
may wonder what happens when reducing the "evolution path" to lower scales, like,
e.g., the BES III scale Q2 = 14.6 GeV2.

In Fig. 6.8, the normalized multiplicity of Eq. (6.5.2) is shown as a function
of P 2

1⊥ = z2
1q

2
T ≡ (0.5)2q2

T in the same conditions and notation as in Fig. 6.2
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Figure 6.8. The normalized multiplicity of Eq. (6.5.2) as a function of P 2
1⊥ = z21q

2
T ≡

(0.5)2q2
T at the BES III scale Q2 = 14.6 GeV2 for the "µb scale" evolution scheme and

with the {b∗T , glin
np} prescription for the transition to the nonperturbative regime (see text).

Notation and conventions for the uncertainty bands as in Fig. 6.2.

but at the BES III scale Q2 = 14.6 GeV2. By comparing these results with the
ones in Fig. 6.2, we deduce that the net effect is a systematic enlargement of the
uncertainty bands. This finding occurs also for other combinations of evolutions
schemes and nonperturbative prescriptions. Hence, we deduce that working at the
BES III scale is not useful if we want to discriminate among different evolution
parameters {bmax, g2}, or between the {b∗T , glinnp} and {b†T , glognp } prescriptions, or
between the "fixed scale" and "µb scale" evolution schemes.

However, we recall that each uncertainty band is the envelope of the 68% of 200
different curves, each one corresponding to a specific replica of the intrinsic param-
eters entering the Gaussian widths 〈P 2

⊥〉a~h(z) of Eq. (6.3.1) for the bT distribution
of the Da

1 at the starting scale in the evolution. Then, we might envisage that the
experimental error is sufficiently smaller than the band width such that it is able to
discriminate some of the replicas, in order to narrow the uncertainty on the intrinsic
parameters. In any case, this goal will be achieved only by performing additional
more precise measurements of SIDIS multiplicities for different final hadron species
and on different targets.

6.5.6 Sensitivity to partonic flavor

The sensitivity to the nonperturbative intrinsic parameters, that describe the bT
distribution of the TMD FF at the initial scale of evolution, is an important is-
sue. The analysis of SIDIS multiplicities at low Q2 suggests that some of these
parameters are different for different flavors [174]. Hence, we expect that also the
distribution in transverse momentum space of the evolved TMD FF will depend
on the flavor of the fragmenting partons. However, the cross section in Eq. (6.2.9)
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6. Electron-positron annihilation

mixes all flavors in the sum. Therefore, it is useful to define an observable that is
well suited to explore the effect of flavor in the TMD evolution.

In the following, we will show results for the P 2
1⊥ distribution of ratios of

normalized multiplicities corresponding to different final states:

Mh1h2(z1, z2, q
2
T , y)/Mh1h2(z1, z2, 0, y)×

[
Mh′1h

′
2(z1, z2, q

2
T , y)/Mh′1h

′
2(z1, z2, 0, y)

]−1

.

(6.5.3)
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Figure 6.9. Tha ratio of normalized multiplicities in Eq. (6.5.3) between the {π+π−} final
state and the {K+K−} final state at z2 = 0.5 and y = 0.2 as a function of P 2

1⊥ = z21q
2
T at

the Belle scale Q2 = 100 GeV2 for the "fixed scale" evolution scheme, for the evolution
parameters {bmax = 1.5, g2 = 0.18}, and with the {b∗T , glin

np} prescription for the transition
to the nonperturbative regime (see text). Uncertainty bands with dot-dashed, dashed, and
solid borders for z1 = 0.3, 0.5, 0.7, respectively. Left panel for flavor independent intrinsic
parameters of input TMD FF, right panel for flavor dependent ones (see text).

In Fig. 6.9, we show the ratio of Eq. (6.5.3) between the normalized multiplicity
for {π+π−} and the one for {K+K−} at z2 = 0.5 and y = 0.2 as a function of P 2

1⊥ =
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z2
1q

2
T at the Belle scale Q2 = 100 GeV2 for the "fixed scale" evolution scheme,

for the evolution parameters {bmax = 1.5, g2 = 0.18}, and with the {b∗T , glinnp}
prescription for the transition to the nonperturbative regime.

If we suppose to switch off the flavor dependence of the intrinsic parameters,
the bT distribution of the TMD FF in Eq. (6.3.24) is controlled by the same Gaus-
sian width 〈P 2

⊥〉(z) for all channels. This feature remains valid when performing
the Bessel transform to momentum space, such that the q2

T distribution of the cross
section can be factorized out of the flavor sum. Therefore, if we take the ratio of
normalized multiplicities at the same z1 we expect the latter to be independent of
P 2

1⊥ = z2
1q

2
T . This is indeed the result displayed in the left panel of Fig. 6.9. It is a

systematic feature of the "fixed scale" evolution scheme: it holds true for other val-
ues of z1, as shown in the panel, but also for other combinations of nonperturbative
evolution parameters and nonperturbative prescriptions.

If we account for the flavor dependence of the Gaussian widths 〈P 2
⊥〉q→h(z),

then the bT distribution is different for the {π+π−} final state from the one for
{K+K−}. Consequently, the ratio of normalized multiplicities has a specific P 2

1⊥ =

z2
1q

2
T distribution that, of course, changes with z1. This is indeed the content of the

right panel in Fig. 6.9: the uncertainty band of the 68% of 200 replicas of Gaussian
widths with dot-dashed borders corresponds to z1 = 0.3, the band with dashed
borders to z1 = 0.5, the band with solid borders to z1 = 0.7.

Almost all the ratios are smaller than unity because in our approximations the
fragmentation into kaons has two favoured channels while the fragmentation into
pions only one and the P 2

1⊥ distribution of the fragmentation into kaons seems to
be larger than the corresponding one for pions (see the analysis in [174]). In any
case, we believe that the inspection of the P 2

1⊥ distribution of ratios of normalized
multiplicities for different final hadrons produced in future e+e− annihilation exper-
iments is a useful tool to discriminate among different scenarios in TMD evolution.
For example, if future data for this observable will lie well above unity, the "fixed
scale" evolution scheme would be ruled out, independently of the flavor dependence
of the intrinsic parameters in the TMD FF at the initial scale of evolution.

In Fig. 6.10, in the two panels of the upper row we show the same ratio of nor-
malized multiplicities in the same conditions and notation as in the previous figure
but for the "µb scale" evolution scheme. The left panel still corresponds to the case
when the flavor dependence of the intrinsic parameters is neglected. However, in
the "µb scale" scheme the bT distribution of the TMD FF is influenced also by the
collinear part of the fragmentation function: the dq→h1 in (6.3.23) is evaluated at
the running scale µb̂ which is related to bT via (3.7.7), (6.3.14), (6.3.15). Hence,
when performing the Bessel transform of Dq

1 in the cross section, the resulting q2
T

distribution depends on the flavor of the fragmenting parton even if the intrinsic
parameters do not. This "perturbative" flavor dependence, induced by RGE acting
on the evolved collinear part of the TMD FF, mixes with the possible flavor depen-
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dence of the intrinsic parameters, making it rather difficult to disentangle the two
effects. The left panel in the upper row shows the ratio of normalized multiplicities
as a function of P 2

1⊥ = z2
1q

2
T for three different values of z1. As in the previous

figure, the band with dot-dashed borders corresponds to z1 = 0.3, the band with
dashed borders to z1 = 0.5, and the band with solid borders to z1 = 0.7. Supris-
ingly, all the ratios are larger than unity. When including also the flavor dependence
in the intrinsic parameters, the uncertainty bands become larger because there is
a marked sensitivity to all possible replica values of the intrinsic parameters them-
selves. Again, as in the previous section we can argue that experimental data will
have a sufficiently small error to discriminate among the various replicas.

A further constraint can be achieved by considering a different combination of
final state hadrons in the ratio of normalized multiplicities in Eq. (6.5.3). The lower
panel in Fig. 6.10 shows the results for the ratio between a {π+π−} final state and
a {π+K−} final state when neglecting the flavor dependence of intrinsic parameters
of the TMD FF at the initial scale. The notation and conventions are the same
as in the other panels. All the ratios are now lower than unity. Hence, combining
this result with the content of the upper left panel could represent a very selective
test of the "µb scale" evolution scheme. In fact, when neglecting the flavor de-
pendence of intrinsic parameters the P 2

1⊥ distribution of normalized multiplicities
for the {π+π−} final state should be larger than the one for {K+K−} at any z1,
while at the same time it should turn out narrower than the one for {π+K−} at
any z1. Moreover, if future data for the {π+π−} back-to-back production in e+e−

annihilation will display a much narrower P 2
1⊥ distribution than for the {K+K−}

production, at least by 20%, this will represent a further selective test for calcula-
tions performed in this evolution scheme, as it can be deduced by combining the
results in the panels of the upper row.

Finally, we notice that because of charge conjugation symmetry (see (6.4.1)) we
predict that the ratio between normalized multiplicities leading to (π+, K−) and
(π−, K+) final states should be equal to unity, irrespective of the choice of evolu-
tion schemes, nonperturbative evolution parameters and prescriptions. It would be
interesting to cross-check this prediction by measuring this ratio as a function of
P 2

1⊥.

6.6 Summary

In this chapter, we consider the semi-inclusive production of two back-to-back
hadrons in electron-positron annihilation. We study the transverse momentum
distribution of such pairs of hadrons by observing the mismatch between their
collinear momenta, and we focus on charge-separated combinations of pions and
kaons. We conveniently define the multiplicities in electron-positron annihilation
as the differential number of back-to-back pairs of hadrons produced per corre-
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sponding single-hadron production, in analogy to the definition of multiplicity in
SIDIS process. In particular, we analyze the multiplicities normalized to the point
of vanishing transverse momentum in order to extract clean and uncontaminated
details on the transverse momentum dependence of the functions describing the
fragmentation process (transverse-momentum dependent fragmentation functions -
TMD FFs). The normalized multiplicities are advantageous also because they turn
out to be almost insensitive to the theoretical uncertainty related to the arbitrary
choice of the renormalization scale.

We consider electron-positron annihilation at large values of the center-of-mass
(cm) energy, namely in the experimental conditions of the Belle and BES III
experiments. We study how TMD FFs evolve with the hard scale. The input
expression for TMD FFs is taken from a previous analysis of SIDIS multiplicities
measured by Hermes at low energy, which is assumed as the starting scale. Since
the hard scale in annihilation processes is much larger, we perform realistic tests
on the sensitivity to various implementations of TMD evolution available in the
literature.

We find that within a specific evolution scheme the transverse momentum dis-
tribution of normalized multiplicities at the Belle scale can be very sensitive to the
choice of the parameters describing the nonperturbative part of the evolution kernel.
An estimated 7% error in such data (compatible with the observed experimental
error in collinear back-to-back emissions in electron-positron annihilation) could
discriminate among different choices of parameters that are justified and adopted
in the literature.

But we observe also that at the same Belle scale different evolution schemes
with different nonperturbative parameters can give overlapping transverse momen-
tum distributions. Our global results indicate that different evolution schemes can
be discriminated only by considering the combined dependence of normalized mul-
tiplicities on both the transverse momentum and the fractional energy carried by
the final hadrons. And this finding holds true (with some limitations) also for the
purpose of discriminating among different prescriptions for describing the transition
from nonperturbative to perturbative regimes in transverse momentum.

The dependence on the fractional energy of the final hadrons is contained in the
collinear part of the TMD FFs. Different evolution schemes produce different evo-
lution effects also in the collinear fragmentation functions, which in turn emphasize
the differences in the final transverse momentum distribution of evolved TMD FFs.
The dependence on the fractional energy is contained also in the average squared
transverse momenta that describe the width of the input distribution of the TMD
FFs at the starting scale. Therefore, by studying this dependence it may be possi-
ble to reduce the uncertainty on the intrinsic parameters that describe these input
distributions.

To this purpose, focusing on the normalized multiplicities at the BES III scale
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looks more promising. In fact, we observe that in stepping down from Belle to
BES III scale the transverse momentum distributions of normalized multiplicities
become much more sensitive to the details of the input distribution at the starting
scale. The uncertainty in the determination of the intrinsic parameters needed
to fit the Hermes SIDIS multiplicities reflects in a larger spread of normalized
multiplicities as functions of transverse momentum. At the BES III scale, an
expected experimental error of 7% does not discriminate among results coming from
different nonperturbative evolution parameters or from different evolution schemes.
But within a specific choice of evolution scheme it can discriminate among results
that come from different values of the intrinsic parameters.

The Hermes results allow energy show significant differences between SIDIS
multiplicities for final-state pions and kaons. Hence, these data were fitted using
transverse momentum distributions for the input TMD FFs that contain flavor
dependent parameters. Here, we explore also how the final results for normalized
multiplicities at Belle and BES III scales are sensitive to the details of this flavor
dependence at the starting scale. In doing so, we find that the most convenient
observable is represented by the ratio of normalized multiplicities for different final
hadron species, particularly at the Belle scale.

The most striking evidence is for evolution schemes where the flavor depen-
dence is strictly localized only in the intrinsic parameters of the input TMD FFs at
the starting scale. If we switch off such flavor dependence, the transverse momen-
tum distribution of normalized multiplicities is always the same, irrespective of the
species of final hadrons. So, if we select for example pions and kaons, the ratio of
the corresponding normalized multiplicities is constant and equal to unity. If the
flavor dependence of the intrinsic parameters is switched on, then the ratio deviates
to values (mostly) lower than unity, in agreement with general expectations that
kaons have a larger distribution in transverse momentum.

The situation is more confused for evolution schemes where the flavor depen-
dence is indirectly contained also in the initial conditions of the evolution equations
through the (flavor dependent) collinear part of the fragmentation functions. In
this case, this effect mixes up with the flavor dependence contained in the intrinsic
transverse momentum distribution, and it is difficult to disentangle one from the
other. At variance with the previous class of evolution schemes, in this case the ratio
of normalized multiplicities for pions with respect to kaons turns out to be (mostly)
larger than unity. Fortunately, more selective criteria are offered by considering a
variety of species of final hadrons. If we consider ratios of normalized multiplicities
for pions with respect to mixed pion-kaon pairs, the results are (mostly) lower than
unity. By combining the results for various final states all together, one would hope
to constrain the arbitrary ingredients of TMD FFs as much as possible.

We conclude by stressing that all the results and remarks above refer to the
unpolarized TMD FFs that describe the fragmentation of an unpolarized parton
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6.6. Summary

into an unpolarized hadron. However, this function is an essential ingredient in all
the (spin) azimuthal asymmetries extracted in hard processes like electron-positron
annihilation, hadronic collision, and SIDIS. Hence, a better control on the transverse
momentum dependence of unpolarized TMD FFs implies also a better knowledge of
polarized TMD FFs as well as of (un)polarized TMD parton distributions. For this
reason, we are looking forward to a multidimensional analysis of data accumulated
by the Belle and BES III collaborations, possibly including a study of normalized
multiplicities for various hadron species as suggested in this work.

Phenomenological impact

Finally, we summarize some of the results relevant for phenomenology, emerging
from the analysis presented in this Chapter. First of all, the way QCD evolution is
implemented (both via the perturbative accuracy and the nonperturbative models)
affects the extraction of nonperturbative information. This needs to be carefully
considered when comparing different extractions. Ideally, one should act in such
a way to minimize the need for nonperturbative information, where possible. On
the other hand, models at low energy need to be as flexible and physically rich as
possible.

The evolution of cross sections and multiplicities can help in studying nonper-
turbative parameters. At higher energies (e.g. the Belle scale Q2 = 100 GeV2)
it is useful to discriminate among different evolution schemes (Sec. 6.5.2) and pin
down parameters related to the evolution itself (here bmax and g2, see Sec. 6.5.1).
At lower energy (e.g. the BES III scale Q2 = 14.6 GeV2) it is useful to constrain
the parameters involved in the intrinsic part of TMD FFs (Sec. 6.5.4). Moreover,
considering multiplicities normalized at qT = 0 (Sec. 6.5), we can reduce the sen-
sitivity of the predictions to variations of the renormalization scale (see Fig. 6.2).
This is a way of reducing the theoretical error alternative to adding O(αns ) correc-
tions, of relevance in the region of low transverse momentum. At the experimental
level, though, this might produce larger systematic errors, which should be kept
under control.

Annihilation to final states including pions and kaons simultaneously can be
useful to constrain the flavor dependence of the TMD part of FFs (Sec. 6.5.6). Extra
care is needed due to the potential mixing of flavor dependence of nonperturbative
and perturbative origin, the first related to intrinsic transverse momentum of quarks
and the second to different initial conditions for RG evolution equations.

In general, deepening the knowledge of unpolarized FFs is very useful to improve
potential extractions of polarized TMDs too via spin asymmetries (see Chap. 4).
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Figure 6.10. Upper panels: same as in previous figure but for the "µb scale" evolution
scheme. Lower panel: the ratio between the normalized multiplicities Mπ+π−(z1, z2 =

0.5, q2T , y = 0.2)/Mπ+π−(z1, z2 = 0.5, 0, y = 0.2) and Mπ+K−(z1, z2 = 0.5, q2T , y =

0.2)/Mπ+K−(z1, z2 = 0.5, 0, y = 0.2) as a function of P 2
1⊥ = z21q

2
T at the Belle scale

Q2 = 100 GeV2 in the same conditions and with the same notation as in the upper panels,
but for flavor independent intrinsic parameters of input TMD FF (see text).
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CHAPTER 7

ELECTROWEAK BOSON PRODUCTION

The aim of science is not open
the door to infinite wisdom,

but to set a limit on infinite error.
B. Brecht

In this Chapter we present a study of the impact of the flavor dependence of
partonic transverse momentum extracted from SIDIS data and presented in Chap. 5
on the qT spectrum of electroweak gauge bosons produced in proton-proton colli-
sions at the LHC. In Sec. 7.1 we outline some motivations for such a study. In
Sec. 7.2 we review some determinations of the mass of the W boson and the associ-
ated uncertainties. In Sec. 7.3 we review the flavor-dependent Gaussian formalism
to account for the intrinsic transverse motion of quarks. In Sec. 7.4 we estimate the
impact of different physical effects on the position of the peak for the qT spectrum
of electroweak bosons. In Sec. 7.5 we summarize the results and outline possible
future directions. Text and results are partly based on [257].

7.1 Introduction and motivation

Electroweak precision observables are highly sensitive to loop contributions, also
from potential new physics. For this reason, these observables are interesting bench-
marks to test the limits of the Standard Model and to discriminate between different
possible scenarios of new physics (see, e.g. [258]). The mass of theW boson, mW , is
an example of such an observable. Its value and the associated uncertainties can po-
tentially help in discriminating among scenarios for new physics. The most precise
determination of mW has been performed by Tevatron (see Sec. 7.2) and further
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7. Electroweak boson production

improvements are expected from LHC measurements. In order to maximally benefit
of its precise determination, we need to control all the sources of uncertainties. The
qT spectrum (and in particular the bulk of the cross section, concentrated around
the peak) of W± and Z is among the observables relevant for the determination of
the W mass.

In this chapter, we focus on the error components coming from the qT distri-
bution of W±, on estimating the uncertainties associated to a flavor dependent
treatment of the intrinsic transverse momentum of quarks and on comparing it to
other sources. In Sec. 7.4 we look at the impact of the flavor dependence on the
position of the peak for the qT spectra of W± and Z and we find that it is non
negligible.

Following the same philosophy, the impact of uncertainties associated to collinear
PDFs on the determination of mW was presented in [259]. Detailed studies of non-
perturbative effects in Drell-Yan processes and Higgs production have also been
presented in [189,190].

7.2 Measurements and uncertainties

The most precise determination of mW has been performed at Tevatron from pp̄

collisions. The CDF collaboration [260] measured mW = 80.387± 0.019 GeV. The
D0 collaboration [261] obtainedmW = 80.375±0.023 GeV. An extraction from e+e−

annihilation has been performed by the DELPHI collaboration at LEP, obtaining
mW = 80.336 ± 0.055 ± 0.039 GeV [6, 262]. An overview of other determinations
is available on the Particle Data Group (PDG) website. The LEP and Tevatron
average is mW = 80.385± 0.015 GeV, as reported by the PDG 2014 [6].

Let us focus on the hadronic channels. Both analyses at Tevatron did not
include the flavor structure in the transverse momentum dependence. In the anal-
ysis of CDF, the impact of the g2 and g3 parameters1 of the BLNY model [181]
and of the coupling constant αs have been considered. Fitting Z data, they found
that the uncertainty on mW due to the modeling of the qWT distribution via the
aforementioned variables are:

δmW = 3 MeV, via mT , (7.2.1)

δmW = 9 MeV, via p`T , (7.2.2)

δmW = 4 MeV, via pνT , (7.2.3)

where mT is the transverse mass of the W , p`T is the transverse momentum of the
lepton in the final state and pνT is the transverse momentum of the (anti)neutrino.
For convenience, we report Tab. 7.1 from [260], which summarizes the uncertainties

1Similar to the ones in (7.3.2).
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7.2. Measurements and uncertainties

onmW via p`T . The same overview formT and pνT is available in [260]. From Tab. 7.1

Uncertainties on mW [MeV] from p`T fit

Source W → µν W → eν Common

Lepton energy scale 7 10 5

Lepton energy resolution 1 4 0

Lepton efficiency 1 2 0

Lepton tower removal 0 0 0

Recoil scale 6 6 6

Recoil resolution 5 5 5

Backgrounds 5 3 0

PDFs 9 9 9

W boson qT 9 9 9

Photon radiation 4 4 4

Statistical 18 21 0

Total 25 28 16

Table 7.1. Uncertainties on mW (in MeV) as resulting from charged-lepton transverse-
momentum fits in the W → µν and W → eν samples. “W boson qT ” refers to sources
discussed before (7.2.1). The last column reports the portion of the uncertainty that is
common in the µν and eν results. Original version and definitions in [260].

we see that the uncertainty propagating from the qT spectrum of the W to its mass
via p`T is among the largest sources of error, together with the one coming from the
collinear distribution functions. In essence, the proton structure and its evolution
largely contribute to the uncertainties on mW . Similar results hold for the analysis
of the D0 collaboration [261]. With this work, we want to emphasize the sensitivity
of the peak of the qT spectrum of the W± bosons to the flavor dependence of the
intrinsic transverse momentum, which could potentially result in an increase of the
uncertainty mentioned in (7.2.1), (7.2.2), (7.2.3).

This could be important in view of a possible study ofmW at the LHC. The AT-
LAS collaboration published measurement of transverse momentum distributions
for W and Z/γ∗ bosons from pp collisions [263, 264]. Also CMS published results
on the qT -differential cross section of the Z boson in [265,266]. For an overview of
the measurements available from the Tevatron and the LHC see App. F.
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7. Electroweak boson production

7.3 Formalism

At the LHC, the transverse momentum spectrum of the EW gauge bosons at qT ∼ m
(where m is the mass of the produced boson) is described by collinear factorization,
by means of unpolarized collinear PDFs dressed with parton showers. In order to
describe the low-qT spectrum and the peak, transverse momentum resummation
is included and the intrinsic transverse momentum of partons is modelled with a
Gaussian distribution (see e.g. [107]). We stress that a treatment based on TMD
factorization describing the full qT spectrum (Chap. 3) is potentially richer and can
introduce also other terms, as the h⊥1 Boer-Mulders TMD PDF, whose effects at
the LHC are yet unconstrained.

The goal of this work is to show that the uncertainties arising from the present
level of ignorance about the structure of the proton in momentum space should not
be excluded from precision physics programs at hadron colliders like the LHC. Here
we focus on the impact of the simplest 3D structure, the unpolarized TMD PDF. A
complete study, though, should include all the spin-spin and spin-orbit correlations
encoded in TMDs, both for quarks and gluons (Chap. 2).

The Sudakov form factor needs to be dressed with a model to describe the high
bT part of the evolution. The same holds for the TMD PDF, to account for the
low intrinsic transverse momentum spectrum. A flavor and kinematic dependent
Gaussian model has been recently presented and discussed in [174–177, 214]. As
explained in Sec. 5.5, this model is statistically richer than other analyses (e.g. [252])
and we investigate how this additional uncertainties arising from the flavor structure
propagate to physical observables.

The tools available on the market, which have been used to compute and analyze
the qT spectra of W±/Z (e.g. ResBos), rely on fits of nonperturbative parameters
for the low bT behavior tuned on world data for Z production. The partonic chan-
nels involved in Z production are of the type qiq̄i. The same information is then
used to analyze cross sections for W± production, despite the partonic content is
different from the one in Z production, namely qiq̄j , i 6= j. This is equivalent to ne-
glecting the flavor dependence of partonic transverse momentum. The cross section
is proportional to the convolution of two TMD PDFs. Assuming Gaussian behavior
in the intrinsic transverse momentum and for the high bT part of the evolution, it
reads:

dσ

dqT
(Z/W±) ∼

∑
i,j

exp
{
− gijb2T

}
, (7.3.1)

gij
.

=
〈k2
T 〉qi
4

+
〈k2
T 〉q̄j
4

+ 2g2 ln Q2 , with i ≡ j for Z and i 6= j for W± , (7.3.2)

where 〈k2
T 〉qi is the average square transverse momentum of the quark with flavor i
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7.3. Formalism

and g2 is a nonperturbative parameter governing the strength of evolution at high
bT . In our analysis we take the flavor dependence of 〈k2

T 〉qi into account, building
replicas of 〈k2

T 〉qi , whose values are compatible with the ratios fitted in Chap. 52.
The goal is to combine flavor dependent parameters in such a way to respect the
values gii fitted on the Z data, generating at the same time different values gij to
be employed in calculating the transverse momentum distribution for W±:

[GeV]2 gii(Z)
fit
= 0.7 = u+ ū = 0.2 + 0.5 (7.3.3)

= d+ d̄ = 0.3 + 0.4

= · · · = 0.6 + 0.1 = · · · ,
[GeV]2 gud̄(W

+) ≡ u+ d̄ = 0.2 + 0.4 = 0.6 , (7.3.4)

and similarly for different flavor configurations3. In essence, we study flavor de-
pendent configurations that respect the experimental constraint on Z, producing
different distributions forW±. The impact of gij on the qT spectrum of the Z boson
has already been addressed in [267], see also Fig. 7.1. The gij control the position
of the peak and affect the low qT part of the distribution.

0 5 10 15 20
q T, GeV

0

25

50

75

100

125

150

175

dΣ
��
��
��
��
��
��
��
����
��
��

dy
dq

T
,

pb
��
��
��
���
��
��
���

G
eV LY-G

BLNY

WpertHbLe-0.8 b2

WpertHbL

 pp   Z X (ECM = 1.8 TeV)
_

 y = 0 

Figure 7.1. Impact of nonperturbative parameters on the Z qT spectrum at Tevatron.
The black line represents the perturbative result, without any nonperturbative smearing.
The dashed black line includes a Gaussian factor in momentum space with gij = 0.8
GeV2. The dot-dashed blue line is generated by means of the BLNY model [181]. The
dashed-green line implements the LY model [268]. This plot is from [267].

2We neglect the kinematic dependence in this analysis.
3The values in (7.3.3) and (7.3.4) are only for illustrative purpose.
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7. Electroweak boson production

From (7.3.2) we see that gij receives contribution both from the intrinsic trans-
verse momentum of quarks and from soft gluon emissions. In the following we will
neglect the latter contribution and decompose the whole gij by means of flavor
dependent ratios. This is both because there are no experimental determinations
of g2 compatible with the perturbative accuracy of the computational tools, and
also because the flavor dependence has been investigated in an energy range where
the soft gluon radiation is almost negligible. A more complete treatment is left for
future works.

Perturbative accuracy

The impact of nonperturbative effects diminishes with increasing the invariant mass
of the final states Q. Nonetheless, here we will show that at the Z/W± pole they
are not negligible: flavor effects introduce an uncertainty on the qT spectrum com-
parable to the one originating from the imperfect knowledge of the collinear PDFs.
As already explained in Chap. 3, the impact of nonperturbative models changes
depending on the perturbative accuracy. Studying precision observable, it is im-
portant to use high perturbative accuracy in order to precisely evaluate theoretical
uncertainties and avoid misinterpretations of perturbative effects by means of non-
perturbative models.

We use three different computational tools to calculate the full qT spectra:
CuTe [108], DyqT [106] and DYRes [107]. CuTe is based on the SCET formalism
and produces the transverse momentum spectrum of on-shell electroweak bosons
at NLO accuracy in αs at small-qT (in the Wilson coefficients) and NNLL4 in
the resummed part (Chap. 3). Resummation is performed in momentum space,
namely µ = qT + q?, where q? is a cutoff to avoid the Landau pole. DyqT and
DYRes are based on the QCD calculation of [106, 107]. The first can describe the
production of on-shell electroweak gauge bosons, the second computes the decay
products including off-shell effects. Their accuracy is NNLO at small qT (in the
Wilson coefficients) and NNLL in the resummed part. Here transverse momentum
resummation is performed in position space, namely µ = µb̂ (see Chap. 3). Note
that DyqT implements the minimal (complex-b) prescription to distinguish between
hard and soft transverse momenta, so its dependence on nonperturbative effects has
been minimized. DyRes, instead, relies on the b? prescription (see Chap. 3), mainly
for computational reasons.

4Strictly speaking, CuTe is labelled NNLL in the SCET language and NNLL′ in standard
pQCD language. This is because the Wilson coefficients are chosen at NLO, despite the accuracy
of the anomalous dimension being the same. In pQCD literature, NNLL′ is considered lower than
the NNLL accuracy, which combines with NNLO Wilson coefficients.
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7.4. Effects on the peak position

7.4 Effects on the peak position

In this section we compare the impact of different effects on the position of the qT
spectrum for Z and W± bosons. We consider: changes in the renormalization scale
(Sec. 7.4.2), uncertainties from the PDFs (Sec. 7.4.3), changes of αs (Sec. 7.4.4) and
flavor (in)dependent variations of the intrinsic average square transverse momenta
on Z and W± (Sec. 7.4.5 and 7.4.6). We begin with Tab. 7.2, summarizing all the
uncertainties. For more details, see the relevant sections. We choose the tool CuTe
to be able to compare with [269]. The relation between different notations for the
nonperturbative parameters (e.g. ΛNP and

〈
k2
T

〉
) is outlined in App. E.

7.4.1 Summary of peak position shifts

In Tab. 7.2 we collect the uncertainties on the position of the peak for dσ/dqT in
GeV. “F.i.” and “f.d.” stand for flavor independent and dependent, respectively.
For other definitions and abbreviations see the relevant subsections.

The conclusion we can safely draw is that the uncertainty from scale variation,
choice of αs and the nonperturbative parameter ΛNP (see App. E and [108] for its
definition) are all comparable.

The shift in the peak position from f.d.
〈
k2
T

〉
is smaller than each of scale

variation, αs and f.i.
〈
k2
T

〉
, but not by much. It is also bigger than the uncertainty

from the pdf set which is the only other uncertainty where the shifts are not almost
perfectly correlated between the three vector bosons. The f.i variation

〈
k2
T

〉
=

W+ W− Z

µR = µc/2, 2µc +0.30 −0.09 +0.29 −0.06 +0.23 −0.05

pdf (90% cl) +0.03 −0.05 +0.06 −0.02 +0.05 −0.02

αS = 0.121, 0.115 +0.14 −0.12 +0.14 −0.14 +0.15 −0.15

f.i.
〈
k2
T

〉
= 1.0, 1.96 +0.16 −0.16 +0.16 −0.14 +0.16 −0.15

f.d.
〈
k2
T

〉
(max W+ effect) +0.09 −0.06 ±0

f.d.
〈
k2
T

〉
(max W− effect) −0.03 +0.05 ±0

Table 7.2. Summary of the shifts in GeV for the peak position for qT spectra of W±/Z
arising from different sources. The colors for the flavor dependent (f.d.) and independent
(f.i.) variations match the ones in Sec. 7.4.6.

1.0, 1.96 corresponds to a f.i. variation ΛNP = 0.5, 0.7 of the parameter relevant for
CuTe (see App. E).

127



7. Electroweak boson production

7.4.2 Renormalization scale uncertainty

Here we look at how the qT distribution changes when we vary the renormalization
scale between 1/2(qT + q?) and 2(qT + q?). We are in particular interested in how
much the peak of dσ/dqT shifts. The scale for the hard part (with the default at
mW/Z) has not been varied.

The shifts of the peak positions (denoted as qp in all the figures) are given in
Tab. 7.3 in GeV. Shifts of the peak positions are also displayed in Fig. 7.2, 7.3, 7.4.

Z W+ W−

µ = 1/2µc +0.23 +0.30 +0.29

µ = 2µc −0.05 −0.09 −0.06

Table 7.3. Shifts of the peak positions in GeV induced by µr variations.
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µ= 0. 5 ·µc, qp = 3. 77

µ= 1. 0 ·µc, qp = 3. 47

µ= 2. 0 ·µc, qp = 3. 38

Figure 7.2. Impact of variations of the renormalization scale µR by a factor 2 on the
peak position in the qT spectrum of W+. Calculated by means of CuTe with

√
s = 8 TeV,

ΛNP = 0.6 GeV2.

7.4.3 PDF uncertainty

Here we look at how the qT distributions change from one pdf member to the next,
using Neural-Network PDFs (NNPDF) 3.0 with αS = 0.118. NNPDF are based
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Figure 7.3. Impact of variations of the renormalization scale µR by a factor 2 on the
peak position in the qT spectrum of W−. Calculated by means of CuTe with

√
s = 8 TeV,

ΛNP = 0.6 GeV2.

on a replica methodology and we will use this feature to test the uncertainty. We
determine the position of the peak for every pdf member, then we determine the
smallest interval which contains 68% or 90% of the peak positions. The boundaries
of the interval determine the lower and upper shifts of the peak position in GeV.
In GeV, results are summarized in Tab. 7.4. Impact on the peak positions are also

90% (lower) 68% (lower) 68% (upper) 90% (upper)

Z −0.02 −0.02 +0.03 +0.05

W+ −0.05 +0.03 +0.03 +0.03

W− −0.02 +0.00 +0.04 +0.06

Table 7.4. Shifts of the peak positions in GeV induced by the PDFs.

presented in Fig. 7.5, 7.6, 7.7.

7.4.4 αs uncertainty

Here we use the NNPDF 3.0 set with αs = 0.115, αs = 0.121, corresponding to
variations of 0.03 of the world average value αs(mZ) = 0.118± 0.0007 [6,270]. The
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Figure 7.4. Impact of variations of the renormalization scale µR by a factor 2 on the
peak position in the qT spectrum of Z. Calculated by means of CuTe with

√
s = 8 TeV,

ΛNP = 0.6 GeV2.
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Figure 7.5. Impact of variations of the equally likely PDF members on the peak position
in the qT spectrum of W+. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6

GeV2. Tab. 7.4 indicates the ranges (in GeV) in which the peak shifts.
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Figure 7.6. Impact of variations of the equally likely PDF members on the peak position
in the qT spectrum of W−. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6

GeV2. Numbers in the legenda indicate the ranges (in GeV) in which the peak shifts.
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Figure 7.7. Impact of variations of the equally likely PDF members on the peak position
in the qT spectrum of Z. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6

GeV2. Numbers in the legenda indicate the ranges (in GeV) in which the peak shifts.

shifts of the peaks of the vector boson transverse momentum spectra in GeV are
collected in Tab. 7.5. Results for peak positions are also presented in Fig. 7.8, 7.9,
7.10.
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Z W+ W−

αs = 0.115 −0.15 −0.12 −0.14

αs = 0.121 +0.15 +0.14 +0.14

Table 7.5. Shifts of the peak positions in GeV induced by αs.
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pdf set NNPDF30_nnlo_as_0115, qp = 3. 35
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Figure 7.8. Impact of variations of αs(mZ) on the peak position in the qT spectrum of
W+. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6 GeV2.

7.4.5 Impact of
〈
k2
T

〉
on Z peak

Here we are interested in which changes to
〈
k2
T

〉
leave the qT spectrum of Z mostly

unchanged. First we look at the ranges for peak positions, using flavor independent
variations. The default value is

〈
k2
T

〉
= 1.44 GeV2 (corresponding to ΛNP = 0.6

GeV). In the plot legends we use the abbreviated form uv = 1.44 for
〈
k2
T

〉
uv

= 1.44

GeV2. Allowing for a shift in the peak position of about 0.05 GeV, we have

∆peak ≈ 0.05 GeV ⇒ ∆
(〈
k2
T

〉)
≈ 0.14 GeV2 , (7.4.1)

namely the nonperturbative parameter can change up to 10% of its value. The effect
is presented in Fig. 7.11. Furthermore, we determine flavor dependent variations
of
〈
k2
T

〉
such that the Z is slightly affected, maximizing the impact on the peak

position for both W+ and W−. The results are presented in Fig. 7.12. In Fig. 7.13,
we present the same analysis for variations of

〈
k2
T

〉
that leave the Z peak completely
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Figure 7.9. Impact of variations of αs(mZ) on the peak position in the qT spectrum of
W−. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6 GeV2.
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Figure 7.10. Impact of variations of αs(mZ) on the peak position in the qT spectrum of
Z. Calculated by means of CuTe with

√
s = 8 TeV, ΛNP = 0.6 GeV2.
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Figure 7.11. Impact of flavor independent variations of the intrinsic momentum of the
quarks on the Z peak. Allowing for a shift of the peak around ± 0.05 GeV, the

〈
k2
T

〉
can

shift of ±0.14 GeV2. The blue (first from top in legenda) line is the reference curve. The
light-blue and purple ones (fourth and fifth from top in legenda) correspond to variations
of the peak of ± 0.05 GeV.

unchanged. Among the possible configurations for the flavor dependent
〈
k2
T

〉
values,

we choose the ones respecting the features of the fit in [174], together with an
additional arbitrary constraint on sea quarks. In particular:

0.6uv ≤ dv ≤ uv
0.8uv ≤ 1/2 (us + ds)

0.5us ≤ ds ≤ 2us

us ≤ 2uv

ds ≤ 2uv .

(7.4.2)

The first two conditions reproduces the 68% c.l. intervals in the mentioned fit. The
last two ones are compatible with the fit, considering 100% c.l. intervals for the
values of the parameters. The third one is an arbitrary condition imposed on the
ratio between down and up quarks in the sea, which turns out to be important in
the analysis.
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Figure 7.12. Impact of flavor dependent variations of the intrinsic momentum of the
quarks on the Z peak. The red (third from top in legenda) and purple (fifth from top in
legenda) curves leave the Z peak almost unchanged (with respect to the blue curve, first
in legenda) and respect the conditions on the parameter in (7.4.2), which resemble the
fit [174] results.

7.4.6 Impact of
〈
k2
T

〉
on W± peak

Here we use the flavor dependent parameters which have resulted in a small shift
of the Z qT and apply them to the W±. Results are presented in Tab. 7.7 (plots
are available via http://tmd.hepforge.org). Then we study the impact on W± for
the flavor dependent parameters that leave the Z peak unchanged. Results are
collected in Fig. 7.14 and 7.15 and in Tab. 7.8.

Summarizing, using a flavor independent shift in
〈
k2
T

〉
, the peak positions of Z,

W+ and W− change in the same way (plots for the impact of flavor independent
changes are available via http://tmd.hepforge.org/): see Tab. 7.6.

Allowing for flavor dependent parameters, the correlation among the shifts is
lost: see Tab. 7.7. Moreover, we can further tune the parameters by hand such
that the Z peak is left perfectly unchanged. We can still have an effect on the W±

though: see Tab. 7.8. It is not accidental that the peaks of the W+ and W− shift
in different directions. Since we select the

〈
k2
T

〉
parameters under the constraint

that the Z should not be affected, the channels for W+ and W− move in different
directions necessarily.
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Figure 7.13. Impact of flavor dependent variations of the intrinsic momentum of the
quarks on the Z peak. The green (second from top in legenda) and red (third from top in
legenda) curves leave the Z peak completely unchanged (with respect to the blue curve,
first in legenda) and respect the conditions on the parameter in (7.4.2), which resemble
the fit [174] results. Green and red colors correspond to the ones used in Tab. 7.2.

∆(
〈
k2
T

〉
) = −0.14 GeV2 ∆(

〈
k2
T

〉
) = +0.14 GeV2

∆(qpeak)W+ -0.05 +0.05

∆(qpeak)W− -0.04 +0.05

∆(qpeak)Z -0.05 +0.04

Table 7.6. Peak shifts in GeV from flavor independent variations of
〈
k2
T

〉
.

maximise W+ maximise W−

∆(qpeak)W+ +0.10 -0.02

∆(qpeak)W− -0.01 +0.07

∆(qpeak)Z +0.03 +0.03

Table 7.7. Peak shifts in GeV for W± from flavor dependent variations of
〈
k2
T

〉
.
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Figure 7.14. Maximal shift for W+ peak as a result of flavor dependent changes of
〈
k2
T

〉
parameters leaving the Z peak unchanged. The green (second from top in the legenda)
maximizes the shift for W+, the red (third from top in the legenda) maximizes the shift
for W−.

maximise W+ maximise W−

∆(qpeak)W+ +0.09 -0.06

∆(qpeak)W− -0.03 +0.05

Table 7.8. Maximal peak shifts in GeV for W± from flavor independent variations of〈
k2
T

〉
which leave the Z peak unchanged.

The anticorrelation of the shifts between W+ and W− is one of the most in-
teresting features of this analysis, a peculiarity of this source of uncertainty. With
this study, as anticipated by Tab. 7.2, we proved that the uncertainty on the peak
position for W± bosons arising from the flavor dependence in the intrinsic trans-
verse momentum is not negligible with respect to the other sources of uncertainties
and comparable in magnitude with the errors arising from the collinear PDFs. A
similar study has been performed using DyqT at NNLL order of accuracy, obtaining
qualitatively similar results.
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Figure 7.15. Maximal shift for W− peak as a result of flavor dependent changes of
〈
k2
T

〉
parameters leaving the Z peak unchanged. The green (second from top in the legenda)
maximizes the shift for W+, the red (third from top in the legenda) maximizes the shift
for W−.

7.5 Outlook and future developments

Within the framework of transverse-momentum-dependent (TMD) factorization we
estimated the impact of flavor-dependent intrinsic transverse momentum on the pro-
duction of electroweak gauge bosons W±/Z at the Large Hadron Collider (LHC)
with

√
s = 8 TeV. We evaluate the uncertainty on the position of the peak in the

cross section differential with respect to the transverse momentum qT of the pro-
duced boson arising from the intrinsic transverse momentum of quarks, in particular
from its flavor dependence. We compare it with other sources of uncertainty and we
observe that its magnitude is comparable with the others, thus being not negligible
(contrary to the approaches available in literature).

The next step is to investigate a potential impact of the flavor dependence of
the quark intrinsic transverse momentum on the value and the uncertainty of mW .
Effort in this direction is currently in progress. In particular, we are comparing the
magnitude of the smearing induced on the cross section by the Gaussian intrinsic
kT with the smearing produced by a Breit-Wigner distribution peaked on mW =

mPDG
W .
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The determination via hadronic collisions of the properties of theW boson, such
as the mass mW , is sensitive to the qWT spectrum, in particular the position and
the height of its peak. This proves that a detailed knowledge of TMD distributions
is important not only for nucleon tomography, but also to constrain fundamental
parameters of the Standard Model. In light of the result presented in this chapter,
we call for improved investigations of the impact of nonperturbative effects linked
to the proton structure at hadron colliders. Following the same philosophy and
approach, it would be interesting to perform a study focused on the flavor depen-
dence in the intrinsic transverse momentum of the unpolarized TMD FFs, in order
to address production of W+W− pairs from e+e− annihilation. Such a study could
be potentially interesting for the physics program of the future International Linear
Collider (ILC).

139



7. Electroweak boson production

140



CHAPTER 8

QUARKONIUM PRODUCTION

The goal of this chapter is to investigate the impact of (un)polarized gluon TMD
PDFs in hadronic collisions, for example at the LHC and at A Fixed Target Experi-
ment at the LHC (AFTER@LHC [36]). In the context of high energy proton-proton
collisions, we look at final states with low mass (e.g. ηb quarkonium) in order to be
able to investigate the nonperturbative part of TMD PDFs. We study the factoriza-
tion theorem for the qT spectrum of ηb produced in proton-proton collisions relying
on the effective field theory approach, defining the tools to perform phenomeno-
logical investigations at next-to-next-to-leading log (NNLL1) and next-to-leading
order (NLO) accuracy in perturbation theory (see Chap. 3). We provide predic-
tions for the unpolarized cross section and comment on the possibility of extracting
nonperturbative information about the gluon content of the proton once data at
low transverse momentum are available. For the unpolarized case, we investigate
the matching with the high qT region. Text and results are partly based on [271]
and on ongoing research [98].

8.1 Introduction and motivation

In order to have a good sensitivity on nonperturbative effects from the proton
structure, we study final states with low invariant mass, such as quarkonium bound
states. According to non-relativistic QCD (NRQCD), the latter can be produced in
a color-singlet or in a color-octet configuration, which eventually evolves into a phys-
ical color-singlet state radiating gluons. For C = + states, NRQCD predicts [272]

1From the standard pQCD point of view, this accuracy level is named NNLL′. See the remark
in Sec. 7.3.
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that color-octet contributions are suppressed with respect to the singlet contribu-
tions at least by factors v2, where v is the relative velocity of the quark-antiquark
pair in the bound state. In particular, color-octet contributions can be neglected
for C = + bottomonium states [36,273,274]. For the PC = −+ charmonium state
ηc, instead, complications may arise at high transverse momentum [275, 276]. A
recent analysis [277], though, shows that LHCb data for ηc production at high qT
are well described by the color-singlet configuration only.

Assuming that the initial gluons are on shell, the Landau-Yang theorem [278,
279] forbids the production of spin 1 states. Since the impact of linearly polarized
gluons is heavily suppressed in production of J = 2 states [201], we focus on the
J = 0 case. In the TMD formalism, JPC = 0++ (scalar) states have been treated
in [125,201] and 0−+ (pseudoscalars) in [201] in a parton model approach.

Here we investigate production of the 0−+ state ηb(1S) including TMD evolu-
tion effects. The value of its mass (9.39 GeV [6]) is low enough in order for the
nonperturbative effects to be appreciable (see Fig. 8.1). At the same time, it is
high enough, compared to the one of ηc(1S) (2.98 GeV), in order to avoid potential
pollution from power corrections to the factorization formula. Moreover, the impact
of the very small bT region (bT < 1/Mh, see Sec. 3.7.4) is reduced in the case of ηb.

Phenomenology of qT spectra for quarkonium production has already been ad-
dressed in the literature. For example, in [280] the authors factorize the qT spectrum
of quarkonium production at the LHC in terms of TMD PDFs defined off-the-light-
cone. They do not consider the non-relativistic wave function of the bound state,
usually calculated by means of NRQCD. In [281] the authors elaborate on the re-
sults in [280] and show the breakdown of TMD factorization for P -wave quarkonium
states. The authors in [282] suggest that the associated production of a quarkonium
state and a photon is a powerful processes to access gluon TMDs at the LHC. The
presence of the photon allows for the variation of the invariant mass of the final
states and the applicability of TMD evolution over a potentially wide energy range.
Within the effective field theory methodology, [283–287] address quarkonium pro-
duction from the combined SCET+NRQCD point of view, but do not treat the
small qT region. Factorization theorem has been addressed also in [288, 289]. The
large qT region has been studied in [290,291]. Transverse momentum resummation
for heavy-quark hadroproduction in full QCD has been presented in [292]. A review
on NRQCD is available in [293].

The novelties of this work rely in studying the factorization theorem for the qT
spectrum of a pseudoscalar quarkonium bound state from an effective field theory
point of view, on the possibility of extracting nonperturbative information at low
transverse momentum for (un)polarized gluon TMDs and on the calculation of the
matching to the high qT part (Y term, see Sec. 3.3.3).
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8.1. Introduction and motivation

Linearly polarized gluons at the LHC

At the LHC with unpolarized proton beams, two gluon TMD PDFs play a role: the
unpolarized distribution fg1 (x,k2

T ) and the distribution of linearly polarized gluons
h⊥g1 (x,k2

T ) (see Tab. 2.3). The situation is simpler than in the quark case, because
h⊥g1 is matched onto twist-2 unpolarized collinear distributions fg,q1 (contrary to
the Boer-Mulders TMD PDF h⊥1 (x,k2

T ), which is matched onto twist-3 collinear
matrix elements).

So far no experimental extractions of h⊥g1 (x,k2
T ) have been performed. It

would be possible to access it from investigations of spin asymmetries at EIC and
LHeC [294,295] and at RHIC and LHC [296]. Model calculations suggest that this
distributions reaches its maximal size in the small-x regime [76,297,298]. This has
been recently confirmed via the operator analysis in [78]. The impact of linearly po-
larized gluons in Higgs production has been addressed, e.g., in [89,125,199,299,300].
Their impact has been predicted for gluon fusion to two photons in [296, 301], for
quarkonium production in [125, 201], for Higgs plus jet production in [200]. Asso-
ciated production of quarkonium and Z boson has been investigated in [302].

In order to understand how relevant linearly polarized gluons in unpolarized
proton-proton collisions are, it is useful to look at the ratio2 [89, 125]:

R(xA, xB , qT ;Q)
.

=

∫
d2bTe

−iqT ·bT h̃⊥(2)g/A
1 (xA, b

2
T ;Q)h̃

⊥(2)g/B
1 (xB , b

2
T ;Q)∫

d2bTe
−iqT ·bT f̃g/A1 (xA, b2T ;Q)f̃

g/B
1 (xB , b2T ;Q)

.

(8.1.1)
The involved TMD distributions are defined in App. D, A,B label the two in-
teracting protons and the renormalization and rapidity scales have been fixed to
µ2 = ζ = Q2. The ratio in (8.1.1) is presented in Fig. 8.1 at Q = mH = 125 GeV
and Q = mηb = 9.39 GeV, for different values of the nonperturbative parameters
discussed in [89]. For a definition of the nonperturbative parameters λQ and λf,h
see Sec. 8.3. From Fig. 8.1 we can draw interesting observations. Depending on the
value of the nonperturbative parameters chosen in [89], the impact of h⊥g1 ranges
between 10% and 70% at low-medium energy of quarkonium production. Their
impact at the scale of the Higgs mass, instead, does not exceed 10%. At low and
medium energy there is more sensitivity to the values of the nonperturbative pa-
rameters as compared to the high-energy case. In agreement with the discussion in
Chap. 3 and 4, we conclude that quarkonium production at medium energy is an
ideal process to quantify the nonperturbative effects associated to linearly polarized
gluons. The latter could then be used to refine predictions also at higher energies,
e.g. for the qT spectrum of the Higgs boson. This holds true also for the nonper-
turbative effects in the unpolarized gluon TMD PDF f1. An analogous study for
quarks has been presented in Chap. 7, in which the flavor dependence of intrinsic

2Considering a pseudoscalar final state, (8.1.1) needs an overall minus sign [201].
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Figure 8.1. The ratio of linearly polarized to unpolarized gluons at LHC, for different
invariant mass in the final state Q and values of nonperturbative parameters. The red line
corresponds to cross section for ηb production. The red band arises from variations by a
factor of 2 of the renormalization and rapidity scales. The blue line corresponds to cross
section for Higgs production. The blue is conceptually identical to the red one. bc is a cut-
off parameter similar to bmax (see Sec. 3.7.3) defined in [89]. λQ is the nonperturbative
parameter introduced to avoid the Landau pole upon evolution and λf,h represent the
intrinsic transverse momenta of unpolarized and linearly polarized gluons (see Sec. 8.3).
Figure from [89].

transverse momentum of quarks extracted at low energy reveals to have an impact
on Z/W± boson production at the LHC.

8.2 Effective description

Let us consider the process

p(PA, SA) + p(PB , SB)→ {QQ̄}[2S+1L
(1)
J ](q) + X , (8.2.1)

where the colliding protons have mass M , four-momenta PA and PB , spin vectors
SA and SB , with S2

A,B = −1 and SA ·PA = SB ·PB = 0. We assume that a colorless
heavy quark-antiquark pair QQ̄[2S+1L

(1)
J ] with four-momentum q is produced and

forms a bound state described by a nonrelativistic wave function with spin S, orbital
angular momentum L and total angular momentum J . The S, L, J quantum
numbers are indicated in the spectroscopic notation, while the color assignment of
the pair is specified by the singlet or octet superscript, (1) or (8). Following the
color-singlet model, we assume that the two quarks are produced in a color-singlet
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8.2. Effective description

state. The squared invariant mass of the resonance is M2
h = q2 and Mh is twice the

heavy quark mass, up to relativistic corrections (which are usually neglected).
To lowest order in perturbative QCD (pQCD), we have only3 the gluon fusion

process
g(pa) + g(pb) → {QQ̄}[2S+1L

(1)
J ](q) , (8.2.2)

described by the Feynman diagrams in Fig. 8.2.

Figure 8.2. Feynman diagrams for the process gg → QQ̄ at leading order (LO) in pQCD.

8.2.1 Parton model structure

Following the diagrammatic approach (Sec. 2.4), we assume that at sufficiently high
energies TMD factorization holds. Using the point of view of frame “A” in Sec. 2.6,
the cross section for the process in (8.2.2) can be written as

dσ =
1

2s

d3q

(2π)3 2q0

∫
dxa dxb d

2pTa d
2pTb (2π)4δ(4)(pa + pb − q)×∑

colors
Γµνg (xa,pTa) Γρσg (xb,pTb)Aµρ (Aνσ)∗ , (8.2.3)

where A is the Feynman amplitude for the partonic subprocess [201, 303–305] and
Γg is a TMD correlator for gluons introduced in Sec. 2.6. In particular, the form
in (D.0.12) is used. s = (PA + PB)2 is the total energy squared in the hadronic
center of mass frame. In the following we consider p−a = p+

b = 0. In the rest frame
of the bound state, the relative momentum 2k of the two quarks is small compared
to their mass Mq, which justifies a nonrelativistic approach.

We consider the production of the quarkonium state ηQ = QQ̄, where Q =

b, c in particular the spin-color configuration 2S+1L
(1)
J = 1S

(1)
0 . Expanding the

expression for A, the cross section depends on NRQCD matrix elements describing
the wavefunction of the bound state. The most relevant matrix element for the ηQ
is related to the ηQ radial wave function at the origin [272]:

〈0|OηQ1 (1S0)|0〉 =
Nc
2π
|R0(0)|2[1 +O(v4)] , (8.2.4)

3We neglect t-channel interactions initiated by a cc̄ or bb̄ pair.
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8. Quarkonium production

with Nc = 3 and valid for production of J = 0 states4. R0 is the radial wavefunction
of the quarkonium with quantum numbers n = l = 0, v is the relative velocity of
Q and Q̄. The subscript 1 in OηQ1 represents the color-singlet configuration and
v is the velocity of the heavy quarks inside the QQ̄ bound state. The color-octet
contribution 1S

(8)
0 is, according to the NRQCD counting rules, suppressed by v4

[272, 307] with respect to the leading color-singlet term and will not be included.
Considering (8.2.3) with correlators for unpolarized protons (D.0.12), evaluating A
for ηQ(1S

(1)
0 ) [201,303–305], the leading-order cross section at low qT reads:

dσUU (ηQ)

dy d2qT
=

2

9

π3α2
s

M3
h s
〈0|OηQ1 (1S0)|0〉

{
C [fg1 f

g
1 ] − C

[
wUU h

⊥ g
1 h⊥ g1

]}
, (8.2.5)

Corrections of order O(qT/Mh) and O(v2) are neglected. The convolutions of TMD
PDFs are defined as:

C[w f f ] ≡
∫
d2pTa

∫
d2pTb δ

2(pTa + pTb − qT )w(pTa,pTb) f(xa,p
2
Ta) f(xb,p

2
Tb) ,

(8.2.6)

In (8.2.5), the transverse momentum weight is [201]:

wUU =
pµνTa pTb µν

2M4
. (8.2.7)

y is the rapidity of the produced bound state along the direction of the incom-
ing hadrons and, neglecting corrections related to small transverse momenta, the
collinear momentum fractions are

xa =
Mh√
s
ey , xb =

Mh√
s
e−y . (8.2.8)

Outline of the effective description

Eq. (8.2.3) represents the standard approach to the process in (8.2.1) via the di-
agrams in Fig. 8.2. In this context, we can introduce an effective description,
through an effective operator representing the coupling of the gluons to the quarko-
nium bound state. In particular, the gluons in the initial states will be described by
SCET, while the description of the quark-antiquark pair as a color-singlet quarko-
nium will be described by NRQCD.

TMD factorization (Sec. 3.1 and 3.2) can be viewed as a multi-step matching
procedure. For this process:

QCD→ NRQCD⊕ SCETqT → NRQCD⊕ SCETΛQCD . (8.2.9)

4For J 6= 0 an additional (2J + 1)−1 factor is needed in (8.2.4) [306].
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8.2. Effective description

In the first step, the hard scaleMh associated with the process is integrated out and
we perform the matching of full QCD onto a combination of SCETqT and NRQCD
operators. This step, valid when Mh is bigger than any other scale, already factor-
izes the cross section in terms of TMDs (describing the initial state), a NRQCD ma-
trix element (describing the transition into the quarkonium) and a spin-independent
matching coefficient. In the second step, valid when ΛQCD � qT �Mh, the TMDs
are further factorized in terms of the collinear PDFs. This matching is performed
by means of spin-dependent Wilson coefficients.

The first step has already been investigated at NLO in [280], but with TMDs
defined off the light-cone and with rapidity divergences. Here we investigate TMD
factorization on the light-cone [96]. Another recent study can be found in [308]. In
order to check if TMD factorization holds (or, following the SCET terminology, in
order to “establish” TMD factorization) at NLO, we need to check that the cross
section expressed in terms of TMDs has the same infrared behavior as the cross
section evaluated with O(αs) corrections in pQCD.

8.2.2 Effective structure at LO

For the convention regarding light-cone expansions in SCET see App. A (the ⊥
symbol indicates the transverse components in such a basis). As mentioned in
Sec. 3.2, the advantage of SCETqT is the separation of (anti)collinear and soft
modes at the level of the Lagrangian. Subscripts n, n̄, s indicate the relevant
modes [89].

We define an effective operator for the partonic process as:

O(ξ) = CH(−q2;µ2) {χ† Γ(η)
µν ψ Bµ,an⊥ (ξ) (S†nSn̄)ab(ξ) Bν,bn̄⊥(ξ)} , (8.2.10)

where CH is the spin-independent matching coefficient used to integrate out the
hard scale of the process (and to match the effective description to the QCD one
beyond LO), a, b are the gauge group indexes, Γ(η) is a Lorentz matrix which in-
corporates the Lorentz structure of the NRQCD amplitude. It also matches the
effective description to the QCD one at leading-order (see (8.2.22)). Concerning
the fields, χ and ψ are the spinors describing the QQ̄ state, Bn⊥ is the gluon field
in SCET (including collinear Wilson lines Wn), Sn is the SCET soft Wilson line.
The latter quantities are defined as [89,98]:

Wn(x) = P exp

[
ig

∫ 0

−∞
ds n̄ ·Aan(x+ n̄s)ta

]
, (8.2.11)

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·Aas(x+ ns)ta

]
, (8.2.12)

Bµn⊥(y) =
i

pn · n̄
n̄α g

µ
⊥β W

†
n(y) Fαβ,an (y) Wn(y) , (8.2.13)
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pa

pb

q

Figure 8.3. Effective vertex for the process gg → QQ̄ at leading order in pQCD. The
two gluons couple directly to the quarkonium, see also (8.2.10). The matching of the
effective vertex to the diagrams in Fig. 8.2 is performed via Γ

(η)
µν and the spin-independent

coefficient CH .

where pn is the partonic four-momentum.
The operator in (8.2.10) describes a vertex where the two gluons directly in-

teract with the quarkonium, as in Fig. 8.3. The amplitude for the process can be
described via the matrix element of the effective operator

〈X, η| O(ξ) |PASA, PBSB〉 . (8.2.14)

In SCET the Lagrangians for (anti)collinear and soft modes are decoupled. The
final hadron is generated by a NRQCD interaction. Accordingly, we can decompose
the final state as a product of states

|X,h〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |Xs〉 ⊗ |η〉 . (8.2.15)

A similar decomposition applies to the initial state, considering proton A collinear
and proton B anticollinear. Combining (8.2.14) with its complex conjugate, we can
write the cross section for the process in (8.2.1) in terms of the following correla-
tors [89,98]:

J (0)µν
n (xA,kn⊥, SA;µ) .

=
xAP

+
A

2

∫
dy−d2y⊥

(2π)3
e
−i( 1

2
xAy
−P+

A
−y⊥·kn⊥) (8.2.16)

×
∑
Xn

〈PASA|Bµ,an⊥ (y−,y⊥)|Xn〉〈Xn|Bν,an⊥(0)|PASA〉 .

A similar definition5 holds for the proton B, replacing n→ n̄, A→ B and +→ −.
Soft modes are combined in

S(ks⊥;µ) .
=

1

N2
c − 1

∑
Xs

∫
d2y⊥
(2π)2

e
iy⊥·kn⊥ (8.2.17)

× 〈0|(S†nSn̄)ab(y⊥)|Xs〉〈Xs|(S†n̄Sn)ba(0)|0〉 .

5For the meaning of the superscript (0) we refer to [89].
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8.2. Effective description

Combining the Fourier transformed matrix elements in (8.2.16) and (8.2.17), it is
possible to define a TMD correlator for gluons which is free of rapidity divergences.
Following to the general procedure outlined in Sec. 3.4, we can introduce the gluon-
gluon correlator (for the details we refer to [89]):

GµνU g/A(xA,kn⊥;µ, ζA) ≡ 1

2

[
−gµν⊥ fg1 (xA,kn⊥;µ, ζA)+2

kµνn⊥
k2
n⊥

h⊥g1 (xA,kn⊥;µ, ζA)

]
.

(8.2.18)
Note that the TMD PDFs depend also on the renormalization scale and the rapidity
scale, introduced upon cancellations of the RDs (see Sec. 3.4). Comparing with
(2.6.31) and with (D.0.12), we see that

f
g {G}
1 ≡ −fg {Γ}1 , h

⊥g {G}
1 ≡ − p2

T

2M2
h
⊥g {Γ}
1 , (8.2.19)

where the superscripts refer to the type of correlator6. For a version of (8.2.18) in
bT space see [89] and eq.(2.20) therein.

Relying on (8.2.18) and its Fourier transform, we can write the cross section
for the process in (8.2.1) with unpolarized protons as

dσUU
dyd2qT

=
(2π)7(N2

c − 1)

sM2
h

〈O(η)〉 |CH(−q2;µ2)|2 Γ∗αµΓνβ (8.2.20)

×
∫

d2bT
(2π)2

eibT ·qT
[
G̃
µν [U ]
g/A (xa, bT ;µ, ζa) G̃

αβ [U ]
g/B (xb, bT , SB ;µ, ζb)

]
+ Y (qT ;Mh) +O(ΛQCD/Mh) ,

where η is the produced resonance, |CH |2 is the hard function and 〈O(η)〉 refers to
the NRQCD matrix element:

〈O(η)〉 .
= |〈0|χ†ψ(y)|h〉|2 =

Nc
2π
|Rnl(0)|2[1 +O(v4)] , (8.2.21)

which coincides with (8.2.4). In (8.2.20), Y represents corrections for large qT (see
Sec. 3.3.3 and 8.3.3). In order for this effective description to be valid, we enforce it
to reproduce the leading order QCD result for production of pseudoscalar ηb,c(1S

(1)
0 )

quarkonium [201] by fixing Γ. Its expression is:

Γµν =
iαsε⊥µν

12π2
√

2Mh(N2
c − 1)

, (8.2.22)

where Mh is the mass of the produced hadron and εµν⊥ = 1
2ε
nn̄µν .

6The minus sign is due to the sign difference between the operator definitions of Γ and G.
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µ ν

(a) (b)

Figure 8.4. One-loop virtual diagrams that introduce O(αs) corrections to the collinear
Jn (8.2.16) (a) and soft S (8.2.17) (b) matrix elements, entering the definition of the
gluon TMD PDFs. Hermitean conjugates diagrams are not shown. The cross represents
a collinear Wilson lines, double lines are soft Wilson lines. The black blob is the gluon
self-energy.

8.2.3 NLO structure

Now we investigate how legitimate (8.2.20) is beyond the leading order of QCD,
namely if it reproduces the structure of infrared poles of the QCD calculation at
NLO, that is adding O(αs) corrections. Diagrams in Fig. 8.2 plus the emission of a
real gluon do not suffer of infrared divergences because the transverse momentum
of the emitted gluon is fixed and finite. For this reason, we focus only on virtual
diagrams:

σ
(1)
virt

IR←→
[
f̃
g/A
1 f̃

g/B
1

](1)

virt . (8.2.23)

If the IR poles of the NLO calculation for the virtual part of the cross section (LHS
of (8.2.23)) are the same as the ones generated by the two TMD PDFs (RHS of
(8.2.23)), TMD factorization is established at NLO. This means that the factorized
form based on SCET and NRQCD reproduces the physical (QCD) result, up to
a finite matching coefficient that can be calculated subtracting the RHS from the
LHS of (8.2.23). The result for the cross section in (8.2.23) is [309,310]:

σvirt(1)

σBorn
=
αs
2π

[
−2

CA
ε2IR
− 2

εIR

(
β0

2
+ CAln

µ2

M2
h

)
+ 2CF

π2

2v

− CAln2 µ
2

M2
h

+ 2CA

(
1 +

π2

3

)
+ 2CF

(
− 5 +

π2

4

)]
, (8.2.24)

where in red we highlighted the infrared (IR) singularities, in blue the Coulomb
singularity absorbed by the NRQCD long-distance matrix element and in black the
finite contributions. Ultraviolet (UV) divergences have been cured by means of the
on-shell renormalization scheme [309,310].

For the TMD PDFs, we need to consider O(αs) corrections to both the collinear
Jn (8.2.16) and the soft S (8.2.17) matrix elements (see Fig. 8.4). According to [89],
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combining Jn and S, the pole structure for an unpolarized TMD PDF is:

f̃
g(1)
1 =

αs
2π

[
CA
ε2UV

+
1

εUV

(
β0

2
+ CAln

µ2

ζA

)
−CA
ε2IR
− 1

εIR

(
β0

2
+ CAln

µ2

ζA

)]
, (8.2.25)

where in red we have the IR singularities, in black the UV poles. Considering
two TMD PDFs, we can see that the structure of the IR poles match, thus TMD
factorization holds at this perturbative order, namely SCET reproduced the IR
physics in QCD at NLO. The finite matching coefficient (hard part) can then be
calculated by subtraction:

H = |CH |2 = σ
(1)
virt −

[
f̃
g/A
1 f̃

g/B
1

](1)

virt = (8.2.26)

= 1 +
αS
2π

[
− CAln2 µ

2

M2
h

+ 2CA

(
1 +

π2

3

)
+ 2CF

(
− 5 +

π2

4

)]
.

This is a byproduct of the factorization theorem and it is fundamental for phe-
nomenology.

8.2.4 Matching TMD and collinear distributions

The second matching step in (8.2.9) consists in expanding the TMD PDFs onto a
basis of collinear PDFs by means of perturbatively calculable coefficients:

T̃g(x, bT ;µ, ζ) =

{ ∑
j=q,q̄,g

C̃Tg/j(x, bT ;µ, ζ)⊗ tj(x;µ)

}
T̃NP
g (x, bT , Q; {λ}) , (8.2.27)

where the summation runs over quarks, antiquarks and gluons, T̃g is a generic gluon
TMD PDF in bT -space, tj is the collinear distribution for parton j and C̃Tg/j are
the calculable Wilson coefficients which match the TMD T̃g onto the PDFs tj . The
expansion is only valid at low values of bT , corresponding to high values of partonic
transverse momentum (see Sec. 3.6). At low transverse momentum (high bT ), due
to the divergence of the coupling constant, a nonperturbative factor T̃NP

g is needed.
As explained in Sec. 3.7.3 and 3.7.5, it can depend on the kinematic variables and
on a set of parameters {λ} to be fixed from the experimental data.

For completeness, we report the Wilson coefficients for the leading-twist gluon
TMD PDFs in an unpolarized proton, fg1 and h⊥g1 [89]. The coefficient for the
gluon-gluon channel for fg1 is:

C̃f1

g/g = δ(1− x) +
αs
2π

[
CAδ(1− x)

(
− 1

2
L2
T + LT ln

µ2

Q2
− π2

12

)
(8.2.28)

− LT
(
Pg/g − δ(1− x)

β0

2

)]
,
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where CA = Nc is the Casimir factor for gluons, LT
.

= ln (µ2/µ2
b) (see also (3.5.9)),

Pg/g is the DGLAP kernel for a gluon splitting into a gluon [4] and β0 is a con-
stant related to the running coupling αs(µ) [4]. The coefficient for the quark-gluon
channel for fg1 is:

C̃f1

g/q =
αs
2π

[
− LTPg/q + CFx

]
, (8.2.29)

where CF = (N2
c −1)/2Nc is the Casimir factor for quarks and Pg/q is the DGLAP

kernel for a quark splitting into a gluon [4]. The coefficient for the gluon-gluon
channel for h⊥g1 is:

C̃
h⊥1
g/g =

αs
π
CA

1− x
x

(8.2.30)

and the coefficient for the quark-gluon channel for h⊥g1 is:

C̃
h⊥1
g/q =

αs
π
CF

1− x
x

, (8.2.31)

where x is the collinear momentum fraction of the parton extracted from the proton.
As explained in Chap. 3, these coefficients account for perturbative components

of the partonic transverse momentum and are phenomenologically relevant in the
regime ΛQCD � qT �Mh, where Mh is the hard scale.
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8.3 Phenomenology

Knowing the hard part of the process (8.2.26) and the Wilson coefficients (8.2.28),
(8.2.29), (8.2.30), (8.2.31) for the gluon TMD PDFs in unpolarized protons, we can
predict the qT -spectrum of the unpolarized cross section σUU (8.2.20) for η (1S(1)

0 )
production with NLO and NNLL accuracy (see Sec. 3.7.2).

We focus on ηb production at the kinematics of AFTER@LHC [36]. In Sec. 8.3.1
we focus on the low qT part of the spectrum7. In Sec. 8.3.2 and 8.3.3 we address
the problem of the matching between the low and the high qT regions (see also
Chap. 3).

8.3.1 Low qT unpolarized cross section

Substituting (8.2.18) in (8.2.20), we get:

dσUU
dyd2qT

=
2π3α2

s

9sM3
h

H(µ,Mh) 〈O(ηb)〉
∫

d2bT
(2π)2

eiqT ·bT (8.3.1)[
f̃
{G}
1 g/A(xa, bT ;µ, ζa) f̃

{G}
1 g/B(xb, bT ;µ, ζb) −

h̃
⊥(2) {G}
1 g/A (xa, bT ;µ, ζa) h

⊥(2) {G}
1 g/B (xb, bT ;µ, ζb)

]
.

For the TMDs in bT space for the correlator G, see App. D. (8.3.1) coincides with
(8.2.5) but it contains NLO corrections in the hard part H and in the Wilson
coefficients for the TMD PDFs. Sudakov form factors are also considered.

We implement (8.2.27) for fg1 and h⊥g1 at NNLL+NLO, consistently with the
accuracy for (8.2.26), and we fix the value of the radial wavefunction from [274] to:

|R0|2 = 7.33 GeV3 . (8.3.2)

As explained in Sec. 3.7.3, we need a prescription to separate low and high bT values.
We define b̂T in (3.7.7) as:

b̂T (bT )
.

= bc

(
1− e−(bT /bc)

2

)1/2

, with bc ≡ bmax
.

= 1.5 GeV−1 . (8.3.3)

We choose a Gaussian model in transverse momentum to describe the high bT
behavior of f̃g1 :

f̃g NP
1 (bT , Q;λf ) = exp[−b2T λf ] . (8.3.4)

We use the same model for h̃⊥g NP
1 , with λf replaced by λh, where 4λf/h represent

the average square intrinsic transverse momenta of gluons. To parametrize the high
7All the plots have been labeled as “preliminary” since they do not appear in the final publica-

tion(s) yet.
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bT behavior of the Collins-Soper kernel we choose (cf. (3.7.8) and (6.3.16)):

gnp(bT ;λQ)
.

= λQ b2T , (8.3.5)

where λQ is the nonperturbative parameter encoding the soft gluon emissions at
high bT . The values of λf/h and λQ are not well known yet. Experimental data at
low qT are needed to better constrain them. We set initial values of rapidity and
renormalization scales to µ2

b̂
, combining (3.5.9) with (8.3.3), whereas final values

for both scales are set equal to the hard scale:

ζi = µ2
i = µ2

b̂
(8.3.6)

ζf = µ2
f = M2

h , (8.3.7)

which hold for both proton A and B. Note that the final values of rapidity scales
satisfy the constraint ζAζB = M4

h . Comparing with (6.3.23) for a distribution
function, numerically the action of gnp is combined in a single term with Q2

0 = 1

GeV2 and Q2 = M2
h .

Because of the medium value of its mass (9.39 GeV), ηb production is an ideal
process to extract information about the nonperturbative part of gluon TMD PDFs
(see the discussion in Sec. 8.1). The cross section in (8.3.1) (without Y term) is
displayed in Figs. 8.5, 8.6 for different choices of the nonperturbative parameters
and the energy in the center of mass.

Fig. 8.5 and 8.6 show the sensitivity of the cross section to nonperturbative
parameters at the kinematics of AFTER@LHC. We choose qT < Mh/2,

√
s = 115

GeV and the rapidity of the quarkonium is integrated over the range ymin = −ln 1/τ ,
ymax = +ln 1/τ , where τ .

= Mh/
√
s. From Fig. 8.5 we notice a marked sensitivity

of the unpolarized cross section at low qT to the parameter λQ, which controls
TMD evolution at high bT . Comparing plots (a) in Fig. 8.5 and 8.6, we see that the
sensitivity to the intrinsic transverse momenta λf,h is still evident but less marked
with respect to λQ. From Fig. 8.6 and Fig. 8.5 (a), we can see that the effect of the
intrinsic transverse momentum of linearly polarized gluons in unpolarized protons
on the cross section at low qT with fixed λQ is small with respect to variations of
λQ (cf. Fig. 8.5) and with respect to combined variations of λf and λh (cf. Fig. 8.5
(a) and Fig. 8.6 (a)). In order to appreciate the effect of h⊥g1 , we need to reduce the
theoretical error (increasing the perturbative accuracy and/or looking at variables
which are less sensitive to the variations of the scales - see, e.g., the normalized
multiplicities in Chap. 6) and to have multidifferential data sets at low qT (see the
discussion in Chap. 5 and 4). Constrain first λf and λQ would help in quantifying
λh.

Repeating the analyses presented in Fig. 8.5 and 8.6 at the kinematics of LHCb
(
√
s = 8 TeV and rapidity of the quarkonium integrated over the range ymin =
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Figure 8.5. Here we present the sensitivity of the cross section for production of ηb at
AFTER@LHC with unpolarized protons (8.3.1) to the parameter λQ controlling TMD
evolution at high bT . We compare cross sections with fixed intrinsic transverse momenta
λf = λh = 0.5 GeV2 and λQ = 0.5 GeV2 (a), λQ = 0.1 GeV2 (b). We notice a marked
sensitivity on λQ with respect to the impact of intrinsic transverse momenta (cf. Fig. 8.6).
The blue line represents the choices in (8.3.6) and (8.3.7). The band comes from variations
of µf and ζf A/B by a factor of 2.

2, ymax = 5 determined by the detector), we obtain qualitatively similar results
with respect to the case of AFTER@LHC for what concerns the sensitivity to the
nonperturbative parameters. Notably, the peak of the cross section governed by
transverse momentum resummation does not lie in the low qT region (qT < Mh/2

in our case), a feature that deserves further investigations. We notice the same
behavior for ηc(1S

(1)
0 ) production at AFTER@LHC kinematics.

8.3.2 Fixed order calculation

At large transverse momentum (qT ≥Mh) the cross section is described by collinear
factorization (see Sec. 3.1 and Fig. 3.1). For the unpolarized case, consistently with
the αs accuracy at low qT , we describe the cross section at fixed O(α3

s) order
(see also Sec. 3.3.1). At qT ≥ Mh the hard scale is given by the transverse mass
mT

.
=
√
M2
h + q2

T and the cross section is given by [92]8

dσ

dyd2qT
=
∑
a,b

∫
dxadxb f

a/A
1 (xa;µ)f

b/B
1 (xb;µ) δ(ŝ+ t̂+ û−M2

h)
ŝ

π

dσ

dt̂
(ab→ hd) ,

(8.3.8)
8Note that we generalize the result in [92] to the massive case.
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Figure 8.6. Here we present the sensitivity of the cross section for production of ηb
at AFTER@LHC with unpolarized protons (8.3.1) to the parameter λh controlling the
intrinsic transverse momentum in h⊥g1 . We compare cross sections with fixed λQ, fixed
λf and λh = 0.1 GeV2 (a), λh = 5 GeV2 (b). We notice a poor sensitivity on λh with
respect to the sensitivity to λQ (cf. Fig. 8.5) and the combined sensitivity to λf and λh
(cf. Fig. 8.5 (a) and Fig. 8.6 (a)).

where a, b are partons in the initial state, h is the produced hadron and d a parton
radiated in the final state. ŝ, t̂, û are the partonic Mandelstram variables [4] and
the partonic cross section dσ/dt̂ is given at O(α3

s) in [305, 309] for different chan-
nels. Considering only the contributions initiated by two gluons, we can reasonably
reproduce the data for ηc production collected by the LHCb collaboration [311] at
high qT [98].

8.3.3 Matching low and high qT

In this section we comment on the prescription presented in Sec. 3.3.3 to match
the low qT and high qT regimes. The simplest way to match the two regions is to
introduce a term which, in principle, should

• be negligible at low qT , where the cross section should be described by the
resummed term (W -term)

• approach the fixed-order calculation for qT ≥Mh

• bridge the two descriptions in the intermediate region qT .Mh.

As explained in (3.3.3), a possibility is to introduce the so-called Y -term, defined
as the difference between the fixed-order calculation and the expansion of the re-
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summed term at the same perturbative order:

Y (qT ,Mh)
.

=
dσ

dqT |f.o.
− dσ

dqT |ASY
. (8.3.9)

If the Y -term behaves as described above, the cross section over the complete qT
spectrum should be given by:

dσ

dqT
(qT ,Mh) = W ( small qT ) + Y (qT ,Mh) . (8.3.10)

We implement the Y as given in (8.3.9) with the fixed order calculation at NLO
(neglecting the very small contribution from the channels initiated by quarks) and
NLO corrections for the unpolarized cross section at low qT [98], as described in
Sec. 8.3.1. We operate at Tevatron energy,

√
s = 1.96 TeV. We compute the cross

section in (8.3.10) for production of a fake quarkonium with mass m = 100 GeV
and for ηb production (Mh = 9.39 GeV). We verify that in both cases this method
does not work as expected and different prescriptions to perform the matching need
to be explored.
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Figure 8.7. Different contributions to the qT spectrum for the production of a quarkonium
with mass m = 100 GeV. The black curve represents the sum of the resummed and the
Y -term, as in (8.3.10). At low qT the Y -term behaves as expected, at high qT it does not
converge to the fixed order.
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Figure 8.8. Different contributions to the qT spectrum for the production of ηb(1S
(1)
0 ),

with Mh = 9.39 GeV. The black curve represents the sum of the resummed and the Y -
term, as in (8.3.10). At low qT the Y -term is not negligible with respect to the resummed
part and at high qT it does not converge to the fixed order.

At low qT , in the high energy (m = 100 GeV) case (see Fig. 8.7), the total
(namely W + Y ) cross section is well described by the resummed term and the
Y -term is negligible with respect to the resummed (as it should). At low energy (ηb
production, Fig. 8.8), the Y -term is not negligible with respect to the resummed
and contributes significantly to the cross section: at qT = 1 GeV it is more than
10% of the resummed, at qT = 2 GeV it is ∼ 60% of the resummed9. This problem
persists lowering the scale, as pointed out for the SIDIS case in [112,113].

At high qT there are problems in both cases. At low energy the expansion
of the resummed becomes negative for qT < Mh and, as a result, the Y -term gets
larger than the fixed order. At higher qT we see no convergence of the Y to the
fixed order. At high energy the same happens. In this case, also W + Y becomes
negative around qT ∼ m/2. This feature is not evident from the results presented,
e.g., in [108, 109], but there the fixed order calculation is not explicitly shown and
it is not possible to understand if the Y -term, despite being a smooth decreasing
function as in Fig. 8.7 and 8.8, converges to the fixed order or not.

9The sensitivity of these percentages to the numerical accuracy of the computation needs to
be further tested.
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In the intermediate region we do not know yet how the prescription per-
forms. Modifications are needed in order to reproduce the correct behaviors at small
and large qT and a proposal has been recently presented in [113]. It might be that
also the intermediate region is affected by those corrections: further investigations
are necessary.

Looking at Fig. 8.8, we see that the resummed part (TMDs) extends till qT >
Mh. The applicability of TMD factorization, though, is limited to qT � Mh and
one should be careful in trusting the resummed description outside such a limit.
The fact that the cross-section is driven by the resummed piece might be an artifact
of the low value for the hard scale Mh.

The treatment of the bT → 0 limit of the Sudakov form factor (described in
Sec. 3.7.4) is left to future investigations.

8.3.4 Polarized cross sections

Let us briefly comment on the case when the target proton is polarized, a peculiar
setting of the AFTER@LHC which allows investigations of polarized TMDs.

If the spin of the target proton is longitudinally oriented, contracting the gluon-
gluon twist-2 correlators with the Feynman amplitudes A as in (8.2.3), the cross
section vanishes:

dσUL
dyd2qT

= 0 . (8.3.11)

This result can be understood also via the following argument: in this configuration,
the only correlation involving the spin of the target, the momentum of the beam and
the transverse momentum of the final state hadron which respects parity invariance
of the theory is:10

(qT × S) · P , (8.3.12)

where P and S are, respectively, the three-momentum of the proton in the beam
and the spin vector of the proton in the target. qT is the transverse momentum
of the quarkonium in the final state. Checks of (8.3.11) at sub-leading twist are
required.

If the target proton is transversely polarized with polarization vector STB and
the colliding proton beam is unpolarized, the cross section involves convolutions of
different TMD PDFs. At parton model level, it reads:

dσUT (ηb)

dyd2qT
=

2

9

π3α2
s

M3
h s
〈0|Oηb1 (1S0)|0〉 |STB | sinφS × (8.3.13){

C
[
w

(A)
UT fg1 f⊥g1T

]
− C

[
w

(B)
UT h⊥g1 hg1

]
− C

[
w

(C)
UT h⊥g1 h⊥g1T

]}
,

10This argument holds true with a single spin and one hadron only in the final state.
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where φS is the azimuthal angle of the transverse spin vector STB with respect to
qT and the expression of the w(i)

UT coefficients is given in [98]. This equation has
already been presented in [308] with a different notation. For a comparison with the
unpolarized case, see (8.2.5). In (8.3.13), the TMD PDFs of the unpolarized pro-
ton beam couple to the definite-rank T-odd functions f⊥g1T , hg1, h

⊥g
1T (see Tab. 2.3).

Experimental investigations could shed light on the size of these functions11. The
Wilson coefficients for the three T-odd gluon TMDs are not known yet. These func-
tions are matched onto collinear twist-3 matrix elements, a feature that complicates
NLO investigations according to (3.6.1) and (8.2.27). At the moment, a possible
accuracy level is LO in the Wilson coefficients and NNLL in the resummation (see
Tab. 3.1).

8.4 Outlook and future developments

In this Chapter we discussed TMD factorization at NLO for the qT -spectrum of
color-singlet quarkonium production in terms of gluon TMDs, using an effective
field theory (SCET and NRQCD) approach. With the tools available from the fac-
torization theorem, we presented accurate predictions for unpolarized cross sections
at AFTER@LHC. Polarization studies are in progress. Concerning nonperturba-
tive parameters, we noticed a marked sensitivity to the parameter governing the
emission of soft gluons in the high bT region. We also investigated the matching
between the low and the high qT regions, pointing out the behavior of the Y -term
prescription as presented in Sec. 3.3.3.

Once experimental data will be available at low qT , this formalism will allow
the extraction of the nonperturbative part of (un)polarized gluon TMD PDFs. Es-
pecially the distribution of linearly polarized gluons in unpolarized protons (h⊥g1 )
will be addressed in forthcoming studies at hadron colliders [28].

11Note that the TMD PDFs in (8.3.13) are the ones in the Γij correlator.
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CHAPTER 9

CONCLUSIONS AND OUTLOOKS

A poem, a symphony, a painting,
a mathematical truth, a new scientific fact,

all bear in themselves all the justification that universities,
colleges and institutes of research need or require.

A. Flexner

Transverse-momentum-dependent parton distribution functions (TMD PDFs)
and fragmentation functions (TMD FFs) give a multidimensional description of
partonic structure in momentum space. They are functions of the longitudinal and
transverse momentum of partons, with respect to the reference hadron momentum.
As such, they offer richer information compared to standard collinear PDFs and
FFs, which depend only on the longitudinal momentum.

In the last decade, TMD PDFs and TMD FFs have gained increasing atten-
tion especially because of emerging data from experiments on semi-inclusive pro-
cesses [16–18]. The knowledge of the unpolarized distribution and fragmentation
functions is a fundamental ingredient for TMD phenomenology: a detailed under-
standing of their structure can improve the description of unpolarized processes and
provide a reliable baseline to address effects arising from the polarization of partons
and/or hadrons. Despite many efforts, though, our level of knowledge is still limited
compared to the one available for collinear distributions. Nonetheless, thanks to
improvements on both the theoretical and the experimental side (Sec. 4.4), we are
moving from an exploratory phase to a precision and consolidation phase.

In this thesis we explored strategies to improve this basic but fundamental
knowledge, focusing, in particular, on the flavor structure of the TMD part in un-
polarized distribution and fragmentation functions and on its interplay with TMD
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9. Conclusions and outlooks

evolution. To test the impact on LHC physics, in Chap. 7 we investigated the role
of the flavor dependence of the intrinsic transverse momentum on the qT spectra
of the Z and W± bosons. These observables are directly related to one of the fun-
damental parameters in the Standard Model, namely the mass of W bosons. This
is just an example of the potential role of quark TMDs in high-energy hadronic
collisions. Considering gluons, instead, the distribution of linearly polarized gluons
in unpolarized protons h⊥g1 (Sec. 2.6) plays a role at the LHC. Along this line, in
Chap. 8 we presented a strategy to extract its nonperturbative content at medium
energy, in order to be be able to test its impact on processes at higher energy (see
Sec. 8.1).

For extended descriptions of the research results, we refer to Sec. 5.5, 6.6, 7.5, 8.4.
Here we summarize the most important points addressed in the various analyses.

Results

In this thesis, we first presented the framework in which TMD distributions are
defined. Then, we outlined the role of factorization theorems and the emergence of
QCD evolution equations. In the second part of the thesis, we put the given defi-
nitions at work, aiming at improving the knowledge of unpolarized structures and
at giving a quantitative estimate of their impact on medium/high-energy physics.

Considering the operator definition, in Chap. 2 we presented a notation for
TMD correlators based on symmetric traceless tensors (STTs) built with trans-
verse momentum vectors (see also App. B). Among the main advantages: a clean
correspondence with Fourier transformed functions (useful for TMD evolution pur-
poses) and a potential insight into the angular dependence in structure functions
and spin asymmetries (see also Chap. 4).

QCD evolution is needed in order to match descriptions at different energy
scales: in Chap. 3 we described it both from a theoretical and phenomenological
point of view. Different prescriptions have been introduced and some of them have
been implemented in the subsequent Chapters.

The phenomenological part of the thesis begins in Chap. 4 with an overview of
the advantages presented by different observables (namely cross sections and asym-
metries). Moreover, a summary of the current knowledge for unpolarized quark and
gluon TMDs has been presented, outlining also possible strategies for improvement.

In Chap. 5 we investigated the flavor and kinematic dependence of the average
square intrinsic transverse momentum of quarks from SIDIS data collected by the
Hermes collaboration. We presented a fit based on the replica method, which
generates distributions of equally probable best-fit values. This allows to estimate
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physical observables computing expectation values and uncertainties based on the
distributions of best-fit values. Summarizing, we found that the TMD PDF for
sea quarks is wider (in transverse momentum) than the distribution for up valence
quarks, which in turn is wider than the distribution for down valence quarks. Con-
sidering TMD FFs, the width in transverse momentum associated to unfavored
fragmentation processes is wider than the width for favored fragmentation into pi-
ons. The latter is also narrower than the TMD FF of up quarks into kaons (for more
details see Chap. 5). Considering the kinematic dependence, the z-dependence of
the average intrinsic transverse momentum in fragmentation functions is crucial
to fit Hermes data. The x-dependence in distributions, instead, is not well con-
strained by the fit. These results are quite sensitive to the kinematic cuts considered
and to the combination of target and final state hadrons. For this reason, further
investigations on larger data sets are needed. Moreover, to shed more light on these
open questions, it will be crucial to include TMD evolution and to allow for more
flexible functional forms describing the nonperturbative contributions.

In order to test the impact of the flavor and kinematic dependence of partonic
transverse momentum, we started in Chap. 6 from the case of TMD FFs, for which
the flavor dependence is more evident. In particular, we investigated the impact
of the flavor dependent replicas on multiplicities for e+e− annihilation into two
hadrons. We combined this with the impact of TMD evolution, exploring differ-
ent phenomenological implementations of the nonperturbative part of the kernel.
We illustrated how measurements of TMD observables at higher energies can be
useful in order to constrain parameters encoded in the evolution schemes, while
measurements at lower energies are essential to investigate the parameters related
to the nonperturbative hadron structure. Measurements with different hadrons in
the final state (e.g. kaons and pions) can help in zooming on the flavor dependence
of the intrinsic transverse momentum of quarks.

In Chap. 7 we tested the impact of flavor-dependent TMD PDFs in proton-
proton collisions. In this way, we also investigated the phenomenological relevance
of quark TMDs at the LHC. We found that the flavor structure extracted in Chap. 5
introduces an additional uncertainty on the position of the peak in qT spectra of
W± bosons, comparable to the error associated to the choice of the collinear distri-
bution functions. This is the first study which quantitatively addresses the role of
nonperturbative contributions in qT spectra at the LHC. Moreover, further investi-
gations are needed to directly estimate the impact of this effect on the uncertainties
associated to the W boson mass.

In Chap. 8, using an effective theory point of view, we established TMD factor-
ization for production of 1S

(1)
0 quarkonium in hadronic collisions at NLO accuracy.
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9. Conclusions and outlooks

As a byproduct, we obtained the hard part of the process, in agreement with other
derivations presented in literature. The perturbative ingredients (the hard part, the
Sudakov form factor and the Wilson coefficients), allowed to compute predictions
for the qT spectrum, for which we reached a NLO-NNLL order of accuracy. This is
important in order to assess the theoretical errors arising from variations of renor-
malization and rapidity scales in the process. For unpolarized cross sections, we
presented predictions for the low qT spectrum at the kinematics of AFTER@LHC,
testing the impact of nonperturbative parameters on the predictions. We found
that the cross section is quite sensitive to the parameter encoding evolution at high
bT . The effect of intrinsic transverse momenta is still relevant but not crucial. At
Tevatron energies, we investigated the matching between low and high qT , revealing
critical points in the Y -term prescription introduced to bridge TMD and collinear
factorization. Eventually, we presented the gluon TMD PDFs involved in collisions
of an unpolarized proton beam with a transversely polarized fixed target.

A path along the road of TMD phenomenology to reconstruct the TMDs for
the proton constituents involves several challenges, ranging from the applicability of
factorization theorems, to the implementation of QCD evolution and the validation
of phenomenological models. As explained in Chap. 4, improvements from the
theoretical, experimental and phenomenological points of view will all be crucial
for such a program.

The analyses presented in this thesis (and the strategies to improve them) help
in quantifying the impact of our ignorance about hadron structure on the descrip-
tion of high-energy physics observables. Keeping under control and progressively
reducing these uncertainties is a major goal in order to draw maps of hadron struc-
ture which could be, step by step, more accurate and less out of focus. The ultimate
goal is the possibility of benefiting from reliable and precise maps, a task that needs
collective efforts and shared long-range plans from both the theoretical and the ex-
perimental communities.
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APPENDIX A

NOTATIONS AND CONVENTIONS

You must be very careful.
P.J. Mulders

Metric

We use the metric tensor given in [4]:

gµν
.

= diag(1,−1,−1,−1) .

Greek letters will indicate Lorentz indexes, running from 0 to 3. Roman indexes
will refer to Euclidean vectors. Bold-face vectors live in Euclidean space.

Light-cone coordinates

An introduction to light-cone coordinates is given in [312]. Given a Cartesian basis
{ê0, ê1, ê2, ê3} we can introduce a light-cone basis as:

n+
.

=
1√
2

(ê0 + ê3), n−
.

=
1√
2

(ê0 − ê3), êT
.

= (ê1, ê2)

such that
n+ · n− = 1, n2

+ = n2
− = 0 .
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A. Notations and conventions

Light-cone coordinates for a generic vector V are:

V + =
1√
2

(V 0 + V 3) ≡ V · n−

V − =
1√
2

(V 0 − V 3) ≡ V · n+

VT = (V 1, V 2) ,

where {0, 1, 2, 3} are the standard Cartesian coordinates. In particular

V 2
T = −V 2

T .

The symmetric projector onto the transverse plane is defined as:

gµνT
.

= gµν − n{µ+ n
ν}
− .

In components g11
T = g22

T = −1. The antisymmetric projector onto the transverse
plane is:

εµνT
.

= ερσµνn+ρn−σ = ε−+µν ≡ εn+n−µν ,

We choose ε0123 = 1 so that ε12
T = −ε21

T = 1. We also use the following notation:

abν
.

= aµνbµ .

An example of convention for light-cone coordinates in SCET is given in [93].

Dirac matrices

Dirac matrices [4] satisfy the anticommutation relation:

{γµ, γν} = 2gµνI ,

where I is the identity in Dirac space. A fifth matrix is defined as:

γ5
.

= iγ0γ1γ2γ3 .

We define an antisymmetric structure:

σµν
.

=
i

2
[γµ, γν ] .
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APPENDIX B

SYMMETRIC TRACELESS TENSORS

Here we point out some reasons in support of using a symmetric traceless ten-
sor (STT) form for the pT structures involved in distribution and fragmentation
correlators:

1 functions with definite rank in pT are naturally used in rank expansions of
the correlator;

2 there exists a 1-1 correspondence between TMDs in bT and pT space. This
is useful especially when translating a cross section to bT space in order to
implement transverse momentum resummation (TMD evolution). In a non-
STT form, the functions with no definite rank are not mapped in a 1-1 way
via the Fourier transform;

3 using a STT form in pT , it is easy to check that only the rank-0 structures in
pT in the TMD correlator survive integration over transverse momentum;

4 a potential advantage of using distribution and fragmentation TMD corre-
lators of definite rank is the possibility of linking the rank of the functions
to the angular dependence with which they contribute to structure functions
and azimuthal asymmetries (see Sec. 4.2.3).

Here we list the symmetric traceless tensors pi1...inT that are built from the par-
tonic four-momentum pT . For a spin-1/2 target, a quark-quark correlator involves
terms up to rank-2. For gluons up to rank-3. In a spin-1 target also terms with
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B. Symmetric traceless tensors

rank-4 are considered [78]:

pijT ≡ piTpjT −
1

2
p2
Tg

ij
T , (B.0.1)

pijkT ≡ piTpjTpkT −
1

4
p2
T

(
gijT p

k
T + gikT p

j
T + gjkT p

i
T

)
, (B.0.2)

pijklT ≡ piTpjTpkTplT −
1

6
p2
T

(
gijT p

kl
T + gikT p

jl
T + gilT p

jk
T + gjkT p

il
T + gjlT p

ik
T + gklT p

ij
T

)
− 1

8
p4
T

(
gijT g

kl
T + gikT g

jl
T + gilT g

jk
T

)
, (B.0.3)

satisfying
gT ijp

ij
T = gT ijp

ijk
T = gT ijp

ijkl
T = 0 (B.0.4)

for every pair of indexes. Products of pT vectors can be decomposed into symmetric
traceless tensors as follows:

piTp
α
T = piαT +

1

2
p2
Tg

iα
T , (B.0.5)

piTp
αβ
T = piαβT +

1

4
p2
T

(
giαT p

β
T + giβT p

α
T − gαβT piT

)
, (B.0.6)

pijT p
αβ
T = pijαβT +

1

6
p2
T

(
giαT p

jβ
T + giβT p

jα
T + gjαT piβT + gjβT piαT − 2gijT p

αβ
T − 2gαβT pijT

)
+

1

8
p4
T

(
giαT g

jβ
T + giβT g

jα
T − gijT gαβT

)
. (B.0.7)

Every symmetric traceless tensor pi1...inT of rank n (for n ≥ 1) only has two inde-
pendent components, which allows for the identification:

pi1...inT ≡ pnT
2n−1

e±inϕ, (B.0.8)

in terms of the two numbers pT ≡ |pT | and ϕ, the azimuthal angle of pT .
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APPENDIX C

TIME REVERSAL

The quark Sivers function

Let us investigate the interplay between gauge symmetry and time reversal for the
specific case of the quark Sivers function f⊥1T (Tab. 2.1). The density of unpolarized
quarks in a proton is defined through a trace of the quark distribution correlator
with the γ+ matrix:

Φ
[U ]
[γ+]

.
=

1

2
TrD

{
Φ[U ]γ+

}
= f

[U ]
1 (x, p2

T )− (P̂ × pT ) · ST
M

f
⊥[U ]
1T (x, p2

T ) . (C.0.1)

Applying the definitions of P and T in (2.8.3) to the specific case of Φ
[+]
[γ+], we can

see that it transforms as:

P : Φ
[+]
[γ+](p, P, S;n±) = Φ

[+]

[γ+]
(p̄, P̄ ,−S̄; n̄±) (C.0.2)

T : Φ
[+]
[γ+](p, P, S;n±) = Φ

[−]

[γ+]
(p̄, P̄ , S̄; n̄±)∗ , (C.0.3)

where n± vectors are the light-cone basis vectors. The P , T behavior of the Dirac
fields, the matrices and the states is determined in order for the transformations to
be symmetry of QCD [4, 79]. Accordingly, both (C.0.2) and (C.0.3) encode parity
invariance and time reversal invariance, but display a crucial difference: under
time reversal the gauge link [+] is exchanged into [−] (and viceversa). Considering
(C.0.3), we can decompose Φ

[±]
[γ+] in T-even and T-odd parts in the following way
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C. Time reversal

(omitting the basis):

ΦT-even
[γ+] (p, P, S) =

1

2

[
Φ

[+]
[γ+](p, P, S) + Φ

[−]
[γ+](p, P, S)

]
(C.0.4)

ΦT-odd
[γ+] (p, P, S) =

1

2

[
Φ

[+]
[γ+](p, P, S)− Φ

[−]
[γ+](p, P, S)

]
. (C.0.5)

The previous equations imply the possibility to decompose Φ
[±]
[γ+] in a sum of T-even

and T-odd parts:

Φ
[+]
[γ+](p, P, S) = ΦT-even

[γ+] (p, P, S) + ΦT-odd
[γ+] (p, P, S) (C.0.6)

Φ
[−]
[γ+](p, P, S) = ΦT-even

[γ+] (p, P, S)− ΦT-odd
[γ+] (p, P, S) . (C.0.7)

Combining (C.0.1), (C.0.3) and (C.0.7) we see that f [±]
1 is the T-even part of Φ

[±]
[γ+],

whereas the term proportional to f⊥[±]
1T is the T-odd one; in particular, from (C.0.3)

we get:

f
[+]
1 (x, p2

T ) = f
[−]
1 (x, p2

T ) (C.0.8)

f
⊥[+]
1T (x, p2

T ) = −f⊥[−]
1T (x, p2

T ) , (C.0.9)

which represents the process dependence of the quark Sivers function between SIDIS
and DY. This sign change is considered one of the striking predictions of the TMD
formalism and is among the key experimental measurements to be (hopefully) com-
pleted in the near future by means of polarized DY and SIDIS programs by the
COMPASS collaboration at CERN and the STAR collaboration at RHIC in BNL
(see App. F). T-odd effects coming from the proton structure in the TMD formal-
ism are essentially due to the transverse separation in the gauge links: if we had no
transverse separation, the staple links would reduce to a straight line and the two
collinear integration to and from infinity would cancel, eliminating the possibility
of interchanging the paths and defining T-odd correlators.

Since in (C.0.2) there is no interchange betwenn the staple links, there is no
way to define P-odd terms. For this reason, arguments considering T-oddness are
equivalent to ones dealing with PT-oddness, as in [20].

The quark Boer-Mulders function

The case of the T-odd quark TMD PDF h⊥1 (Boer-Mulders) (Tab. 2.1) is similar
to the Sivers one, but related to a different Dirac projection of the correlator. The
projection of the correlator related to transversely polarized quarks is Φ[iσk+γ5].
Tracing the TMD quark distribution correlator with iσk+γ5 and introducing time
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reversal transformations we get:

T : Φ
[+]

[iσk+γ5]
(p, P, S;n±) = −Φ

[−]

[iσk+γ5]
(p̄, P̄ , S̄; n̄±)∗ . (C.0.10)

As in (C.0.3), the interchange of the staple links allows the decomposition of
Φ[iσk+γ5] into T-even and T-odd pieces:

ΦT-even
[iσk+γ5](p, P, S) =

1

2

[
Φ

[+]

[iσk+γ5]
(p, P, S)− Φ

[−]

[iσk+γ5]
(p, P, S)

]
(C.0.11)

ΦT-odd
[iσk+γ5](p, P, S) =

1

2

[
Φ

[+]

[iσk+γ5]
(p, P, S) + Φ

[−]

[iσk+γ5]
(p, P, S)

]
, (C.0.12)

Note the different signs with respect to the Sivers case. h1, h⊥1L, h
⊥
1T are the func-

tions entering the T-even part of Φ[iσk+γ5] (Tab. 2.1). The Boer-Mulder function
h⊥1 enters the T-odd part and, as the Sivers, is subject to a sign change between
SIDIS and DY:

h
⊥[+]
1 (x, p2

T ) = −h⊥[−]
1 (x, p2

T ) . (C.0.13)

This is another peculiarity of the TMD formalism that will be experimentally in-
vestigated.

T-odd TMD PDFs and gluonic poles

Leading twist T-odd TMD PDFs are very interesting objects from the phenomeno-
logical point of view, but difficult to be accessed since they are matched onto higher
twist collinear functions. In [74] it has been shown that the first moment of the
quark Sivers function is linked to a twist-3 collinear Qiu-Sterman matrix element
TF [161]:

2Mf
⊥(1)
1T (x) = −gsTF (x) , (C.0.14)

where the first moment of a generic TMD PDF f is defined as:

f (1)(x)
.

=

∫
d2pT

p2
T

2M2
f(x, p2

T ) . (C.0.15)

The first transverse moment of the quark-quark correlator is defined as:

Φ
[U ]α
∂ (x)

.
=

∫
d2pTp

α
T Φ[U ](x,pT ) . (C.0.16)

Because of the explicit gauge link dependence, in the case of staple-like links
Φ

[U ]α
∂ (x) can be decomposed in T-even and T-odd parts as:

Φ
[±]α
∂ (x) = Φ̃α∂ (x)± πΦαG(x, x) , (C.0.17)
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C. Time reversal

where Φ̃α∂ is T-even and ΦαG is T-odd. In Φ
[±]α
∂ (x) the process dependence is not

washed out, as for the integrated (collinear) correlator Φ(x), but survives only in
the ± sign in front of ΦαG in (C.0.17). The latter is called gluonic pole1 matrix
element and is proportional to a Qiu-Sterman matrix element [74,152].

A similar treatment holds for T-odd gluon TMD PDFs, but with two gluonic
poles matrix elements, due to the presence of two links in the definition of the
correlator [88]:

Γ
α[U ]
∂ (x)

.
=

∫
d2pTp

α
T Γ[U ](x, pT ) (C.0.18)

= Γ̃α∂ (x) + C
[U ]
G,1ΓαG,1(x) + C

[U ]
G,2ΓαG,2(x) ,

where the calculable process dependence is encoded in the gluonic pole factors C [U ]
G,i

(the analogue of ± in (C.0.17)). The first term in the RHS is T-even, the last two
are T-odd. (C.0.18) implies that the T-odd gluon Sivers function is built out of two
universal TMD PDFs (cf. eq.(46) in [88]).

The collinear case

T-odd effects coming from the interplay with the gauge link structure are only due to
the transverse separation in the links at infinity (AT (∞)). Without this separation,
the staple links would reduce to a straight line along the light cone direction n−
and the two collinear integration to and from infinity would cancel, eliminating
the possibility of interchanging the paths and defining T-odd correlators. As a
consequence, the twist-2 integrated correlator consists only of a T-even part:

Φ(x) = Φ[T-even](x) . (C.0.19)

This is true for both quarks and gluons. For a spin 1/2 hadron, this coincides with
the fact that all the T-odd TMDs are not rank-0 structures, so they do not survive
integration over transverse momentum. For a spin-1 hadron, instead, there is one T-
odd TMD structure, namely the one related to the Bacchetta function h1LT (x, p2

T )

describing a transversely polarized quark in a LT-polarized hadron, which is rank-
0 in pT . Despite surviving transverse momentum integration, h1LT (x) is zero2

because of the combined effect of hermiticity and time reversal. The generalization
of (C.0.10) to the spin 1 case, with no links, is:

Φ[iσk+γ5](p, P, S, T ;n±) = −Φ
[iσk+γ5]

(p̄, P̄ , S̄, T̄ ; n̄±)∗ , (C.0.20)

1Since it is a quark matrix element that contains an additional zero momentum gluon.
2In contrast with what claimed in [75,83].

172



where T is the tensor representing the tensor polarizations in spin 1 [75,78], trans-
forming under parity as T̄µν ≡ δµρδνσTρσ. Specifying (C.0.20) to a proton with
T-polarization and to a deuteron with LT-polarization we have [75]:

T : [SkTh1(x)]∗ = SkTh1(x) (C.0.21)

LT : [εkjT SLTjh1LT (x)]∗ = −εkjT SLTjh1LT (x) . (C.0.22)

Hermiticity requires functions to be real. Thus, being the components of S and T
real, h1LT (x) must vanish.

TMD fragmentation functions

As for distribution correlators, in the case of fragmentation correlators, the interplay
between gauge symmetry and time reversal properties does not impose constraints
but defines relations between different correlators with [±] links [79]. The situation
for fragmentation, though, is more involved due to the difference between initial
and final states in the correlator:

Time reversal: ∆
[±]†
out (p;P, S) = iγ1γ3∆

[∓]
in (p̄; P̄ , S̄)iγ1γ3 , (C.0.23)

where we took into account that T also interchanges initial and final states. Keeping
the same notation as in [74], we can distinguish two different sources of behavior
under T: the interchange in←→ out (denoted by the label FSI) and the interchange
of link structure (denoted by O). Thus, fixing a configuration of initial and final
states, from (C.0.23) we can decompose a TMD fragmentation correlator in T-even
and T-odd parts as [74]:

∆
[±]
out(z, kT ) =

[
∆

[T-even]
O (z, kT )+∆

[T-odd]
FSI (z, kT )

]
±
[
∆

[T-odd]
O (z, kT )+∆

[T-even]
FSI (z, kT )

]
.

(C.0.24)
Looking at the kT -weighted correlator, (C.0.24) can be translated to:

∆
[±]α
∂ out(z) =

[
∆
α[T-even]
∂ O (z) + ∆

α[T-odd]
∂ FSI (z)

]
± π

[
∆
α[T-odd]
G O (z, z) + ∆

α[T-even]
G FSI (z, z)

]
,

(C.0.25)
where the last two terms are two gluonic pole matrix elements for quark fragmenta-
tions. In [313–315] it has been shown, in model-(in)dependent ways, that partonic
poles vanish, for fragmentation of both quarks and gluons. Thus, (C.0.24) and
(C.0.25), respectively, reduces to

∆
[±]
out(z, kT ) =

[
∆

[T-even]
O (z, kT ) + ∆

[T-odd]
FSI (z, kT )

]
(C.0.26)
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C. Time reversal

∆
[±]α
∂ out(z) =

[
∆
α[T-even]
∂ O (z) + ∆

α[T-odd]
∂ FSI (z)

]
. (C.0.27)

This means that, in general, T-odd fragmentation functions exist and are due to the
interchange of initial and final states, but not to the interplay with the link struc-
ture. For this reason, quark/gluon TMD FFs are strictly universal, namely T-odd
TMD FFs (like the Collins function H⊥1 (z, k2

T )) are the same in all processes [316].
T-oddness has a different physical origin in distribution and fragmentation cor-

relators: this is a crucial difference with respect to T-odd quark/gluon TMD PDFs.
This reflects also onto the collinear fragmentation correlator, where we can have
also T-odd terms with FSI source:

∆out(z) =

[
∆

[T-even]
O (z) + ∆

[T-odd]
FSI (z)

]
. (C.0.28)

Collinear T-odd terms appear at twist-3 in spin 1/2 hadrons, for quark [56] and
gluon [57] fragmentations. In spin-1 hadrons, T-odd terms appear at twist-2 for
quark fragmentation. This is the fragmentation analogue of the collinear Bacchetta
function, which does not vanish beacuse T does not impose constraints on the
correlator, due to the interchange of initial and final states.
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APPENDIX D

CORRELATORS AND FOURIER TRANSFORMS

Factorization and TMD evolution are implemented in bT space, so it is useful to
write the correlator on the light-front as a function of bT . Here we present results for
the gluon-gluon distribution correlator for the proton, but the procedure is general.
We assume that the correlator in bT space can be derived from the TMD one in pT
space via a Fourier transform. Moreover, we define TMD functions in bT space as
Fourier transform of the functions in pT space:

Γij(x, bT ) ≡
∫
d2kT e

ipT ·bT Γij(x,pT ) (D.0.1)

f̃(x, b2T ) ≡
∫
d2pT e

ipT ·bT f̃(x, p2
T ) . (D.0.2)

These two equations set the relations between the dimensions of the correlator and
the functions in pT and bT space.

Computing (D.0.1), we can see that the functions entering the parametrizations
of Γ(x, bT ) are not the ones in (D.0.2), but their nth-derivatives with respect to b2

T ,
n being the rank of the function in pT space:

f̃ (n)(x, b2T ) ≡ n!

(
− 2

M2

∂

∂b2
T

)n
f̃(x, b2T ) (D.0.3)

=
2πn!

M2n

∫ +∞

0

d|pT ||pT |
( |pT |
|bT |

)n
Jn(|pT ||bT |)f(x, p2

T ) , (D.0.4)
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D. Correlators and Fourier transforms

where we have used the property:∫ 2π

0

dφpe
inφpeixcos(φb−φp) = 2π inJn(x) einφb . (D.0.5)

Jn(z) is the Bessel function of the first kind of order n, defined as:

Jn(z) =
1

2πin

∫ 2π

0

dϕ einϕ eizcosϕ . (D.0.6)

The coefficient M−2n renders the derivative operator adimensional. The n! is to
match with the conventions set in [129]. (D.0.3) can be derived from the property:(

1

z

d

dz

)k(
z−νJν(z)

)
= (−)kz−ν−kJν+k(z) , (D.0.7)

considering ν = 0, k = n and z = |pT ||bT | with |pT | fixed.
Since we have expanded the light-front correlators in terms of symmetric trace-

less tensors built from pT , it follows from (D.0.3) that there is a one-to-one corre-
spondence between the TMDs in bT - and in pT -space. Below we give an overview of
correlators in bT space obtained with this method. Expression for the gluon-gluon
and the Wilson loop correlators including spin-1 terms can be found in [78].

Gluon-gluon correlator

ΓijU (x, bT ) =
xP+

2

[
− gijT f̃1(x, b2

T )− M2

2
bijT h̃

⊥(2)
1 (x, b2

T )

]
, (D.0.8)

ΓijL (x, bT ) =
xP+

2

[
iεijT SL g̃1(x, b2

T )− SL
M2

4
ε
{i
Tαb

j}α
T h̃

⊥(2)
1L (x, b2

T )

]
, (D.0.9)

ΓijT (x, bT ) =
xP+

2

[
−iMgijT ε

ST bT
T f̃

⊥(1)
1T (x, b2

T )−MεijT (bT · ST ) g̃
(1)
1T (x, b2

T )

− iM

4

(
ε
bT {i
T S

j}
T + ε

ST {i
T b

j}
T

)
h̃

(1)
1 (x, b2

T )

+
iM3

12
ε
{i
T αb

j}αST
T h̃

⊥(3)
1T (x, b2

T )

]
. (D.0.10)

Alternative form for the gluon correlator

The following definition and parametrization of the gluon-gluon correlator are equiv-
alent to the ones given in Chap. 2 in frame A (see Sec. 2.6). They will be used in

176



Chap. 8:

Γµνg (x,pT ) =
nρ nσ
(p·n)2

∫
d(ξ·P ) d2ξT

(2π)3
eip·ξ 〈P | Tr

[
Fµρ(0)U[0,ξ]F

νσ(ξ)U ′[ξ,o]
]
|P 〉

⌋
LF ,

(D.0.11)

ΓµνU (x,pT ) =
1

2x

{
− gµνT fg1 (x,p2

T ) +

(
pµTp

ν
T

M2
h

+ gµνT
p2
T

2M2
h

)
h⊥ g1 (x,p2

T )

}
,

ΓµνL (x,pT ) =
1

2x
SL

{
iεµνT gg1L(x,p2

T ) +
ε
pT {µ
T p

ν}
T

M2
h

h⊥ g1L (x,p2
T )

}
,

ΓµνT (x,pT ) =
1

2x

{
gµνT

εpTSTT

Mh
f⊥ g1T (x,p2

T ) + iεµνT
pT · ST
Mh

g⊥ g1T (x,p2
T ) (D.0.12)

− ε
pT {µ
T S

ν}
T + ε

ST {µ
T p

ν}
T

4Mh
hg1(x,p2

T )

− 1

2M3
h

ε
{µ
Tαp

ν}αβ
T STβ h

⊥ g
1T (x,p2

T )

}
.

Note that despite integrating over ξ · P in (D.0.11), P+ 6= 1.
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D. Correlators and Fourier transforms
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APPENDIX E

CONVENTIONS FOR NONPERTURBATIVE
PARAMETERS

For convenience, we collect the naive translation of the nonperturbative parameters
here. In the conventions of [139,174], the nonperturbative parameters appear as:

dσ ∝ exp

(
−1

4

(
〈k2
T 〉q1 + 〈k2

T 〉q2
)
b2T

)
. (E.0.1)

In CuTe [108] only nonperturbative parameter enters the cross section:

dσ ∝ exp
(
−2Λ2

NP b
2
T

)
. (E.0.2)

The same happens in DyqT [106] and DYRes [107], in terms of the nonperturbative
parameter gNP :

dσ ∝ exp
(
−gNP b2T

)
. (E.0.3)

We obtain the parameter employed in CuTe as:

ΛNP =

√
1

8
(〈k2

T 〉q1 + 〈k2
T 〉q2) ,

ΛNP =
√
gNP /2 .

(E.0.4)

The same applies to the DYqT parameter:

gNP =
1

4

(
〈k2
T 〉q1 + 〈k2

T 〉q2
)
,

gNP = 2Λ2
NP .

(E.0.5)
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E. Conventions for nonperturbative parameters

The scaling between the parameters related to a single quark is:

ΛDyRes =
ΛCuTe

4

1.2

0.72
. (E.0.6)

Here we report the most important values:

〈k2
T 〉(q1 = q2) ΛNP CuTe gNP DYqT

CuTe default 1.44 0.60 0.72

DYqT conservative estimate 2.40 0.77 1.2
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APPENDIX F

LINKS

Here we collect links to websites and projects dealing with particle physics in general
and phenomenology of TMDs in particular, ranging from low-energy to high-energy
physics.

Experimental collaborations

• HERA: http://www.desy.de/research/facilities__projects/hera/index_
eng.html

• HERMES: http://www-hermes.desy.de/

• COMPASS: https://wwwcompass.cern.ch/

• JLab 12 GeV: https://www.jlab.org/12-gev-upgrade

• LHeC: http://lhec.web.cern.ch/

• EIC - eRHIC: https://wiki.bnl.gov/eic/index.php/Main_Page

• EIC - MEIC/JLEIC: https://eic.jlab.org/wiki/index.php/Main_Page

• BaBar: http://www.slac.stanford.edu/BFROOT/

• BES-III: http://bes3.ihep.ac.cn/index.htm

• Belle: http://belle.kek.jp/

• Belle II: https://www.belle2.org/

• ILC: https://www.linearcollider.org/
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F. Links

• LHC: http://home.cern/topics/large-hadron-collider

• RHIC: https://www.bnl.gov/rhic/eic.asp

• STAR: https://www.star.bnl.gov/

• AFTER@LHC: http://after.in2p3.fr/after/index.php/Main_Page

• JPARC: http://j-parc.jp/index-e.html

Data repositories

• The Particle Data Group : http://pdg.lbl.gov/

• The Durham HepData Project : http://hepdata.cedar.ac.uk/

• Hermes multiplicities: http://hermesmults.appspot.com/

• Tevatron electroweak working group: http://tevewwg.fnal.gov/wz/

• CERN Open Data Portal: http://opendata.cern.ch/

• ATLAS experiment, Standard Model results: https://twiki.cern.ch/twiki/
bin/view/AtlasPublic/StandardModelPublicResults

Software

• LHAPDF: http://lhapdf.hepforge.org/

• database of collinear fragmentation functions: http://www2.pv.infn.it/
~radici/FFdatabase/

• The TMD project: http://tmd.hepforge.org/

• TMDlib: https://tmdlib.hepforge.org/

• TMDplotter: http://tmdplotter.desy.de/

• gmctrans : https://wiki.bnl.gov/eic/index.php/Gmc_trans

• ResBos : http://hep.pa.msu.edu/resum/

• Cascade: https://cascade.hepforge.org/

• HeraFitter: https://www.herafitter.org
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APPENDIX G

SUMMARY

If you want to build a ship,
don’t drum up people to collect wood

and don’t assign them tasks and work,
but rather teach them to long

for the endless immensity of the sea.
Antoine de Saint-Exupéry

A beautiful landscape

Protons and neutrons are among the building blocks of matter and they account for
almost all the mass of our world. Even if many efforts have been made to deepen
our knowledge about them, we are still far from a complete understanding of their
inner structure. Over the past few years, thanks to a fruitful synergy of theoreti-
cal and experimental progress, we have opened the study of new multidimensional
images of the structure of the proton, investigating the behavior of its fundamen-
tal constituents, the quarks and gluons (collectively called partons). The internal
structure of the proton is shaped by Quantum Chromodynamics (QCD) and it is
one of the most fascinating and yet unexplored natural landscapes. Despite not
being directly accessible by our eyes, we can still appreciate its beauty by means of
particle accelerators, which are the most powerful microscopes in the world. The
procedure described in Chap. 5 of this thesis works, in essence, as if we are taking
a photograph of the proton structure in momentum space. The energy transferred
by the flash is so high that the proton breaks and we can reconstruct pictures of
the proton structure by looking at the fragments.
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G. Summary

Confinement

When we shoot pictures with extremely high resolution, the constituents of the pro-
ton appear almost free. Instead, due to the nature of the strong force in QCD, when
we look at the proton with lower resolutions, quarks and gluons are inescapably con-
fined inside the proton. At present we are not able yet to fully understand math-
ematically the transition to this confined phase. Confinement is the most crucial
characteristic of QCD and represents one of the hardest physics problems of today,
listed as one of the Millenium Prize Problems by the Clay Mathematics Institute.
It also prevents us from calculating maps of the proton structure (and of hadron
structure more in general) from the first principles of the theory. One of the options
we are left with in order to study the proton is shooting “subatomic photographs”
employing the exchange of photons, which we can fully control.

Multidimensional maps of the proton

Studying the internal landscape of the proton and drawing maps of its structure is
one of the hot topics in particle physics. It is complementary to the searches of new
physics at the Large Hadron Collider (LHC) and it is not less important. Not only
it responds to our desire of knowledge and understanding the world, but it will also
have crucial impacts on some of the open problems in particle physics, such as to
unravel the various contributions to the proton spin [13,77,317].

The knowledge of the multidimensional structure of protons allows for the anal-
ysis of properties otherwise inaccessible. Diagnostic studies provide an effective
analogy: electrocardiography, for example, gives us one-dimensional information
about the heart activity. It is of great importance, but it does not give detailed
information about the multidimensional inner structure. Instead, more refined to-
mographies can open windows on the multidimensional structure and provide fun-
damental additional information.

Concerning the proton tomography, we know with good accuracy one-dimen-
sional maps in momentum space (see Fig. 1.2 and Chap. 4), the collinear parton
distribution functions (PDFs). They are the prime ingredient for studying any
process involving hadrons (such as the proton-proton collisions taking place at the
LHC), but from the point of view of nucleon tomography they are rather limited.
They describe the distribution of partons in a single dimension in momentum space,
namely assuming that the constituents move collinear with the parent hadron.
More informative objects are the so-called transverse-momentum-dependent distri-
butions (TMDs), which represent three-dimensional pictures in momentum space
(see Chap. 2).

The coordinates used to parametrize these maps are the momentum components
(usually divided in collinear and transverse) of the constituents and the energy
at which the picture of the proton has been shot. Fortunately, we can (almost
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completely) calculate the energy dependence of the map by means of QCD evolution
equations (see Chap. 3) and this allows us, for example, to use at the LHC the
pictures of the proton structure measured at the Hadron-Electron Ring Accelerator
(HERA). To this extent, one should be careful about the transverse momentum
dependence, which introduces a calculable process dependence for the maps [24].

Open questions

To first approximation, we can introduce eight different types of three-dimensional
maps for quarks and gluons in momentum space (see Chap. 2). This richness
emerges from all the possible correlations between the momenta and the spins of
the constituents and the proton itself. From a theoretical point of view, we know
how to define these maps by means of operators in QCD. Nonetheless, there are
many nontrivial questions concerning the TMDs that do not have a complete answer
yet. For example: “What does the transverse momentum dependence look like?”.

This thesis is focused on this question, in particular for the simplest three-
dimensional map for quarks, the unpolarized distribution. At present, we know that
experimental data from proton-proton and lepton-proton collisions point towards
Gaussian functional forms at low transverse momentum. Until recently, we did not
have any information on their flavor dependence, though (see Fig. G.1). Namely, are
up quarks moving in the nucleon with greater velocity than the down ones, or vice
versa? What about sea quarks? Are they faster than the other ones? The study
presented in Chap. 5 addresses these questions. From analyses of lepton-proton
and lepton-deuteron scattering data, we now know that sea quarks are likely to
be faster than up quarks, which are in turn faster than down ones. This result
is interesting also in order to describe other reactions where hadrons play a role,
for example electron-positron annihilation into pions and kaons (see Chap. 6) and
proton-proton collisions at the LHC (see Chap. 7). New effects have been observed
in both cases.

Concerning gluons instead, in Chap. 8 we investigate the interplay between
two of the three-dimensional distributions, namely the ones for unpolarized and for
linearly polarized gluons in unpolarized protons. For both, we study their definition
and the impact of evolution equations, selecting a process useful to better constrain
their properties.

Impact and outlook

In general, the interpretation of the huge amount of data collected at hadron col-
liders like the LHC relies on the knowledge of parton distribution functions, both
in one dimension (the PDFs) and in three dimensions (the TMDs). Until now, data
analysis of high-energy particle reactions has been performed assuming that all the
quarks move with the same average transverse momentum. Now that we know that
more general flavor-dependent scenarios are also likely, it will be important to test
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G. Summary

Figure G.1. Quarks and gluons are like fishes confined inside a fishbowl (the proton).
Each parton has its own collinear and transverse velocity, indicated by black and colored
arrows respectively. Different colors indicate different flavors for quarks and external
excitations (like photons) can extract partons from inside the proton.

their impact, as done in Chapters 6 and 7. Refining the knowledge of the pro-
ton structure will also improve the accuracy of searches for new physics at hadron
colliders.

Unpolarized TMDs for quarks and gluons are also interesting in order to study
all the other polarized distributions, because they affect their phenomenological
investigation. The possibility of accessing the orbital angular momentum of the
partons makes the tomography of hadron structure in momentum space a valuable
starting point to solve the spin puzzle of the proton.

New experimental programs, among which A Fixed Target Experiment at the
LHC (AFTER@LHC) in Europe and the Electron-Ion Collider (EIC) in the United
States, will provide us with the possibility of taking more powerful and precise
pictures of the proton inner landscape, helping in completing our knowledge of its
structure. Exciting times for physicists dealing with hadron physics are just ahead.
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For further introductory discussions on the open puzzles in hadronic physics
see, e.g., [13, 318], “The proton in 3D” (A. Bacchetta, M. Contalbrigo) and “Fem-
tostrutture: e pluribus unum” (A. Bacchetta, A. Signori; Italian only). Outreach
contributions about particle physics are available on Quantum Diaries, the blog of
the Interactions collaboration.
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APPENDIX H

SAMENVATTING

Een prachtig landschap

Protonen en neutronen zijn bouwstenen van materie en verantwoordelijk voor bijna
alle massa in onze wereld. Ondanks vele inspanningen om onze kennis over deze
deeltjes te vergroten, is een volledig begrip van hun interne structuur nog ver weg.
Vrij recentelijk worden er dankzij een synergie van theoretisch en experimenteel on-
derzoek pogingen gedaan om een multidimensionaal beeld van de interne structuur
van het proton te krijgen en het dynamische gedrag van de fundamentele quarks en
gluonen (collectief partonen genoemd) te bestuderen. De interne structuur van het
proton wordt theoretisch beschreven met de kwantumchromodynamica (QCD), een
fascinerend terrein in de natuurkunde met nog veel onbekende stukken. Ondanks
dat de wereld van QCD niet direct met onze ogen waarneembaar is, kunnen we
haar schoonheid waarderen gebruikmakend van deeltjesversnellers, de krachtigste
microscopen ter wereld. De procedure die in H. 5 van dit proefschrift wordt be-
schreven, kan in essentie worden opgevat als het nemen van een foto van het proton
in impulsruimte. De energie-overdracht bij een dergelijke lichtflits is dermate hoog
dat het proton uiteenvalt. De brokstukken kunnen vervolgens worden gebruikt om
de protonstructuur te reconstrueren.

Confinement

Wanneer we foto’s maken met een extreem hoge resolutie, lijken de bouwstenen
van het proton zich nagenoeg als vrije deeltjes te gedragen. Als we daarentegen
naar het proton kijken met lagere resoluties, dan blijken de quarks en gluonen op-
gesloten te zitten in het proton als gevolg van de sterke kernkracht in QCD. Dit
wordt confinement genoemd. Vandaag de dag bestaat er nog geen volledige wis-
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H. Samenvatting

kundige beschrijving voor de overgang naar confinement. Het is een van de meest
kenmerkende eigenschappen van QCD en tevens een openstaand natuurkundepro-
blemen. Een wiskundige beschrijving van confinement in QCD is daarom ook niet
voor niets een van de Millenium Prize Problems van het Clay Mathematics Insti-
tute. Ons beperkte begrip van confinement heeft als gevolg dat de protonstructuur
(of de structuur van hadronen meer in het algemeen) niet berekend kan worden
met de QCD theorie. Een andere optie, echter, is het maken van “subatomaire
foto’s” van het proton gebruikmakende van de uitwisseling van fotonen waarmee
experimentatoren gemakkelijk kunnen werken.

Multidimensionale afbeeldingen van het proton

De studie van de interne structuur van het proton is een van de “hot topics” in
de deeltjesfysica. Het is een aanvulling op de zoektochten naar nieuwe fysica in
de Large Hadron Collider (LHC) en zeker niet minder belangrijk. Het draagt niet
alleen bij aan onze kennis en ons begrip van de wereld om ons heen, maar het zal
ook invloed hebben op openstaande vragen in de deeltjesfysica zoals het ontrafelen
van de verschillende bijdragen aan de spin van het proton [13,77,317].

Kennis van de multidimensionale protonstructuur maakt de analyse mogelijk
van eigenschappen die anders ontoegankelijk zouden zijn. Een goede analogie is het
volgende voorbeeld: elektrocardiografie geeft eendimensionale informatie over de
hartactiviteit, maar geeft geen gedetailleerde informatie over de multidimensionale
interne structuur van het hart. Meer verfijnde tomografie opent deuren naar die
multidimensionale structuur en levert nieuwe fundamentele informatie op.

Wat betreft protontomografie beschikken we over goede kennis van eendimen-
sionale afbeeldingen in impulsruimte (zie Fig. 1.2 en H. 4), de collineaire partondis-
tributiefuncties (PDFs). Hoewel deze functies zeer nuttig zijn voor het bestuderen
van processen waar hadronen bij betrokken zijn (zoals de proton-proton botsingen
die plaatsvinden in de LHC), zijn ze beperkt in gebruik vanuit het oogpunt van
nucleontomografie, omdat ze de verdeling van partonen beschrijven in één enkele
dimensie in impulsruimte vanwege de aanname dat de partonen collineair bewe-
gen, parallel aan de impuls van het proton. Meer informatief zijn de zogenaamde
transversale-impulsafhankelijke distributies (TMDs), driedimensionale afbeeldingen
in impulsruimte (zie H. 2).

De coördinaten die worden gebruikt om deze afbeeldingen te parametriseren
zijn de impulscomponenten (deze worden gebruikelijk opgesplitst in collineair en
transversaal) van de partonen, maar ook de energie van het overgedragen foton
waarmee een foto van het proton is gemaakt. De energie-afhankelijkheid van de
distributies kan nagenoeg volledig worden berekend met behulp van de QCD evo-
lutievergelijkingen (zie H. 3), waardoor we bijvoorbeeld de afbeeldingen van het
proton verkregen met de Hadron-Electron Ring Accelerator (HERA) bij DESY ook
kunnen gebruiken voor LHC experimenten bij CERN. Voorzichtigheid is echter ge-
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boden betreffende de afhankelijkheid van transversale impuls. Dit geeft aanleiding
tot een berekenbare procesafhankelijkheid van de distributies [24].

Open vragen

In eerste benadering zijn er acht verschillende types van driedimensionale afbeel-
dingen van quarks en gluonen in impulsruimte (zie H. 2). Dit volgt uit de mogelijke
correlaties tussen impulsen en spins van de partonen. Vanuit een theoretisch oog-
punt weten we hoe we dit soort afbeeldingen kunnen definiëren door middel van
operatoren in QCD. Niettemin zijn er nog steeds veel belangrijke vragen met be-
trekking tot TMDs waarbij een volledig antwoord ontbreekt, bijvoorbeeld: “Hoe
ziet de afhankelijkheid van de transversale impuls er nou precies uit?”.

Deze vraag staat centraal in dit proefschrift en wel in het bijzonder voor het
geval van de simpelste driedimensionale afbeelding voor quarks, de ongepolariseerde
distributie. Experimentele data afkomstig van proton-proton en lepton-proton bot-
singen lijkt de wijzen op een Gauss-achtige afhankelijkheid voor kleine transversale
impulsen. Het ontbreekt ons echter nog aan informatie over de precieze afhanke-
lijkheid van de quarksmaken (zie Fig. G.1). Bewegen de up-quarks bijvoorbeeld
sneller in het nucleon dan de down-quarks, of juist andersom? En hoe zit het met
de ‘zee’-quarks behorend bij de zee van quark-antiquark paren? Bewegen deze snel-
ler dan de anderen? De laatste vraag wordt besproken in H. 5. Uit analyses van
lepton-proton en lepton-deuteron data volgt dat zee-quarks waarschijnlijk sneller
bewegen dan up-quarks, welke weer sneller bewegen dan down-quarks. Dit resul-
taat is tevens interessant voor de beschrijving van andere reacties waarbij hadronen
een rol spelen, zoals bij elektron-positron annihilatie waarbij pionen en kaonen ge-
maakt worden (zie H. 6), alsook bij proton-proton botsingen in de LHC (zie H. 7).
In beide gevallen zijn er nieuwe effecten waargenomen.

In H. 8 onderzoeken we de wisselwerking tussen twee driedimensionale dis-
tributies, namelijk die voor ongepolariseerde en lineair gepolariseerde gluonen in
ongepolariseerde protonen. Voor beide distributies bestuderen we hun precieze de-
finities en de invloed van evolutievergelijkingen, waarbij we een proces selecteren
om hun eigenschappen beter te kunnen onderzoeken.

Invloed en vooruitzichten

De interpretatie van de enorme hoeveelheid data afkomstig van hadronversnellers
zoals de LHC hangt over het algemeen af van onze kennis van partondistributie-
functies, zowel in één dimensie (de PDFs) als in drie dimensies (de TMDs). Tot
nu toe is er voor de data-analyse van hoogenergetische processen aangenomen dat
alle quarks bewegen met dezelfde gemiddelde transversale impuls. Nu we weten
dat meer algemene, quarksmaakafhankelijke scenario’s ook mogelijk zijn, is het be-
langrijk om de impact hiervan te testen, zoals wordt beschreven in H. 6 en 7. Het
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verfijnen van onze kennis van de protonstructuur zal ook de nauwkeurigheid van
het zoeken naar nieuwe fysica in hadronversnellers vergroten.

Goede kennis van de ongepolariseerde TMDs voor quarks en gluonen is be-
langrijk om de andere gepolariseerde distributies nauwkeurig te kunnen bestude-
ren, vanwege hun invloed op het fenomenologische onderzoek. De mogelijkheid
om het baanimpulsmoment van partonen te meten, maakt de hadrontomografie in
impulsruimte een waardevol startpunt om de spinopbouw van het proton beter te
begrijpen.

Nieuwe experimentele programma’s zoals in Europa het ‘A Fixed Target Ex-
periment’ in de LHC (AFTER@LHC) en in de Verenigde Staten de Electron-Ion
Collider (EIC) zullen ons in staat stellen om nog krachtigere en preciezere foto’s
te maken van de interne structuur van het proton. Voor fysici werkzaam op het
gebied van de hadronfysica worden het spannende tijden.

Voor meer inleidende informatie over de openstaande problemen in de hadron-
fysica, zie bijvoorbeeld [13,318], “The proton in 3D” (A. Bacchetta, M. Contalbrigo)
en “Femtostrutture: e pluribus unum” (A. Bacchetta, A. Signori; alleen in het Ita-
liaans). Bijdrages aan outreachprogramma’s over deeltjesfysica zijn beschikbaar op
Quantum Diaries, het blog van de Interactions collaboratie.

192

http://prometeo.sif.it/papers/online/sag/028/01-02/pdf/04-scienzainprimopiano.pdf
http://www.interlinea.com/schedenovita/Quaderniborromaici2.htm
http://www.quantumdiaries.org/


ACKNOWLEDGMENTS

The first words of gratitude are for Piet Mulders, my supervisor and promotor.
Thank you for your patient guidance, for being always available and eager to
broaden my horizons. I enjoyed the atmosphere in our group, it has been friendly,
lively and stimulating. I strongly believe that your effort in educating and inspiring
young researchers is invaluable.

I also wish to thank the members of the reading committee (Alessandro Bac-
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