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We present a model that incorporates the effect of two-body currents in quasielastic electron-
nucleus scattering within the framework of a consistent superscaling formalism. This is achieved
by defining an averaged single-nucleon hadronic tensor based on the 1p1h matrix element of the
one-body current plus meson-exchange currents (MEC). The consistent treatment of one- and two-
body currents in our model enables the calculation of exchange current effects in the kinematical
region where the Fermi gas response is zero, but not the scaling function. The effect of MEC is
consistently taken into account when extracting the phenomenological scaling function from electron
scattering data. With this model, we investigate the effect of MEC on the response functions taking
into account the effective mass of the nucleon, and examine the consequences it has on the inclusive
(e, e′) cross section. We find that 1p1h MEC deplete the quasielastic transverse response, while they
not alter significantly the scaling behavior of (e,e’) data.
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I. INTRODUCTION

The pursuit of neutrino oscillation experiments repre-
sents a significant scientific endeavor, encompassing both
experimental and theoretical efforts [1–6]. In particular,
theoretical nuclear physics has been propelled to analyze
neutrino-induced nuclear reactions in these experiments
[7–16]. The ultimate goal is to minimize uncertainties
arising from nuclear effects, which are a primary source
of systematic errors when determining the neutrino in-
teractions in detectors. Simultaneously, there has been
a renewed interest in electron scattering studies [17–21],
as theoretical models can be calibrated using (e,e’) data
and subsequently extended to neutrinos by incorporating
the contribution of the axial current.

At typical energies around 1 GeV in many neu-
trino experiments, a significant contribution arises from
quasielastic nucleon emission, which dominates at trans-
ferred energies around ω = |Q2|/2m∗

N , where ω is the
energy transfer, Q2 = ω2 − q2 < 0, and q is the momen-
tum transfer to a nucleon with relativistic effective mass
m∗
N [22–26]. It is crucial to take into account that the

transferred energies involved in neutrino experiments ne-
cessitate a relativistic treatment of the reaction. This re-
quirement introduces significant challenges in construct-
ing appropriate models for these interactions [27–31].

In this article, we focus on the study of one-particle one
hole (1p1h) transverse and longitudinal responses in the
QE peak [32–34], at intermediate and high momentum
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transfer, including the effect of meson exchange currents
(MEC) for electron scattering. The MEC are two-body
currents that involve the exchange of mesons between nu-
cleons and virtual excitation of nuclear resonances. This
can have a significant impact on the scattering cross sec-
tion and on the distribution of energy and momentum
transferred during the interaction. The emission of two
particles (2p2h), stemming from MEC and short-range
correlations, has emerged as a focal point in studies on
lepton-nucleus scattering.

Extensive research has been dedicated to understand-
ing its effects on the cross-section of both electron and
neutrino interactions [35–45]. However, it is often over-
looked that MEC also contribute to the emission of a
single particle (1p1h), thereby introducing interference
effects with the one-body current. Notably, calculations
have shown a reduction in the quasielastic transverse re-
sponse compared to the impulse approximation when em-
ploying nuclear shell or Fermi gas models [17, 33, 41, 46–
49]. This reduction is mainly due to the exchange part
of the 1p1h matrix element of the ∆ current.

In this work, we aim also to incorporate the effect of
Meson Exchange Currents (MEC) consistently into the
quasielastic peak within the framework of the relativis-
tic effective mass Superscaling (SuSAM*) model [50, 51].
This is an extension of SuSA model based on the approx-
imation of factorizing the nuclear response into a single
nucleon response multiplied by a superscaling function
[52]. The phenomenological superscaling function ac-
counts for nuclear structure and reaction effects, as it
is fitted to experimental data. The motivation behind
scaling models arises from the observation that inclusive
data, when divided by an appropriate single nucleon pref-
actor, approximately scale when plotted against a suit-
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able scaling variable, ψ, extracted from the Relativistic
Fermi Gas (RFG) model [52]. The SuSA model [13],
along with its improved version SuSAv2, and SuSAM*,
has been extensively utilized to analyze inclusive electron
and neutrino scattering data [15, 18, 53–55]. These ef-
forts represent important strides in understanding and
predicting neutrino-nucleus interactions. By establishing
a phenomenological scaling function that successfully de-
scribes (e,e’) data, these models provide a valuable foun-
dation for extrapolating to neutrino cross-sections.

The SuSAM* model builds upon the SuSA framework
but incorporates the effective mass dependence from the
Relativistic Mean Field (RMF) theory. A notable feature
of the RMF model of nuclear matter (such as the Walecka
or σ−ω model [23]) is that it reproduces the (e,e’) cross-
section better than the RFG model when an appropriate
value for the effective mass M* is chosen [22, 25, 56].
Motivated by this the SuSAM* model employs the RMF
model’s scaling variable, ψ∗, and single nucleon prefactor
dependent on the effective mass, with the aim to capture
the essential dynamics associated with the interaction
process more accurately. This approach capitalizes on
the reasonable dynamical aspects embedded in the RMF
model and offers an alternative description of the scaling
behavior observed electron scattering cross section. It
provides a comprehensive framework that combines the
strengths of the RMF model and the superscaling formal-
ism, leading to an improved understanding and interpre-
tation of experimental data.

Until now, a unified model that incorporates 1p1h Me-
son Exchange Currents in the superscaling function had
not been proposed. This was primarily due to the vio-
lation of scaling properties by MEC, even at the Fermi
gas level [32]. Additionally, the 1p1h matrix element of
MEC is not easily extrapolated to the |ψ| > 1 region
outside the range where the Fermi gas response is zero,
as nucleons are constrained by the Fermi momentum. In
this work, we address both of these challenges in a unified
manner by modifying the scaling model to account for the
contribution of MEC within the single nucleon prefactor.
Furthermore, we take the opportunity to enhance the re-
cently improved superscaling model by eliminating the
extrapolation of single-nucleon responses averaged over
the Fermi gas to the region |ψ| > 1 [57]. Instead of ex-
trapolation, we introduce a new approach where the sin-
gle nucleon response is averaged with a smeared momen-
tum distribution around the Fermi surface. As a result,
the averaged single nucleon responses are well defined for
all the values of ψ.

In the modified superscaling framework proposed in
this work, the single nucleon response incorporates the
contribution of MEC to the effective one-body current
operator. This modification allows us to define a new
prefactor that already includes the effects of MEC, en-
abling a novel scaling analysis of the data. Importantly,
it should be noted that the Fermi gas now exhibits ex-
act scaling behavior when utilizing the new single nu-
cleon response: scaling violations associated to the MEC

are exactly canceled by the dividing factor used to con-
struct the scaling function. By incorporating these mod-
ifications, we overcome the limitations of previous mod-
els and provide a comprehensive framework that encom-
passes both MEC and modified superscaling effects. By
consistently integrating 1p1h MEC within the SuSAM*
model, we aim at refining our understanding of the un-
derlying nuclear dynamics in the quasielastic peak. This
comprehensive approach allows us to account for both
the scaling behavior observed in inclusive data and the
contributions from meson exchange currents, leading to
a more accurate and comprehensive description of the
reaction.
The article is structured as follows. In Sect. 2, we

introduce the formalism of quasielastic electron scatter-
ing within the framework of the Relativistic Mean Field
(RMF) model of nuclear matter, incorporating Meson
Exchange Currents (MEC). In Sect. 3, we present our
unified scaling model that incorporates MEC effects. We
describe the modifications made to the conventional scal-
ing approach to account for the contribution of MEC
within the single nucleon prefactor. In Sect. 4 we present
the results of our calculations and analyses based on the
unified scaling model with MEC. Finally in Sect. 5 we
present the conclusions drawn from our study.

II. FORMALISM

A. Response functions

We start with the inclusive electron scattering cross
section in plane-wave Born approximation with one
photon-exchange. The exchanged photon transfers an
energy ω and a momentum q to the nucleus. The initial
electron energy is ϵ, the scattering angle is θ, and the fi-
nal electron energy is ϵ′ = ϵ− ω. The double-differential
cross section is written in terms of the longitudinal and
transverse response functions, RL(q, ω) and RT (q, ω),

dσ

dΩdϵ′
= σMott (vLRL(q, ω) + vTRT (q, ω)) , (1)

where σMott is the Mott cross section and vL and vT are
the kinematic coefficients defined as

vL =
Q4

q4
(2)

vT = tan
Q4

q4
− Q2

2q2
(3)

with Q2 = ω2−q2 < 0 the four-momentum transfer. The
nuclear response functions are the following combinations
of the hadronic tensor

RL =W 00, RT =W 11 +W 22. (4)

The inclusive hadronic tensor is constructed from the
matrix elements of the electromagnetic current operator



3

Ĵµ(q) between the initial and final hadronic states:

Wµν =
∑
f

∑
i

⟨f | Ĵµ(q)| i⟩∗ ⟨f | Ĵν(q)| i⟩

× δ(Ef − Ei − ω), (5)

where the sum is performed over the undetected final
nuclear states |f⟩ and the average over the initial ground
state |i⟩ spin components.
In this work, our approach aims at exploting the scal-

ing symmetry of quasielastic data. This scaling symme-
try states that the scaling function, that is, the cross-
section divided by an appropriately averaged single-
nucleon cross-section and multiplied by a kinematic fac-
tor, only depends on a single kinematic variable, ψ,
rather than on the three variables (ϵ, q, ω). The scal-
ing function is approximately the same for all nuclei [51].
The starting point for the scaling analysis is the rela-
tivistic Fermi gas (RFG) model, where this symmetry
holds exactly. In the case of real nuclei, it is only ap-
proximately fulfilled, but it proves to be very useful for
analyzing experimental data and performing calculations
and predictions.

B. 1p1h hadronic tensor

In independent particle models, the main contribution
to the hadronic tensor in the quasielastic peak comes
from the one-particle one-hole (1p1h) final states. As
the transferred energy increases, there are contributions
from two-particle two-hole (2p2h) emission, the inelastic
contribution of pion emission above the pion mass thresh-
old, and the deep inelastic scattering at higher energies.
Therefore, the hadronic tensor can be generally decom-
posed as the sum of the 1p1h contribution and other
contributions:

Wµν =Wµν
1p1h +Wµν

2p2h + . . . (6)

In this work we focus on the 1p1h response which, in the
RFG model, reads

Wµν
1p1h =

∑
ph

〈
ph−1

∣∣ Ĵµ| F ⟩∗ 〈ph−1
∣∣ Ĵν | F ⟩

× δ(Ep − Eh − ω)θ(p− kF )θ(kF − h) (7)

where |p⟩ ≡ |psptp⟩ and |h⟩ ≡ |hshth⟩ are plane wave
states for particles and holes, respectively, and |F ⟩ is the
RFG ground state with all momenta occupied below the
Fermi momentum kF . The novelty compared to previous
works on scaling is that we start from a current operator
that is a sum of one-body and two-body operators. This
approach allows us to consider the contributions of both
the usual electromagnetic current of the nucleon and the
meson-exchange currents (MEC) to the 1p1h response:

Ĵµ = Ĵµ1 + Ĵµ2 , (8)

where Ĵ1 represents the one-body (OB) electromagnetic

current of the nucleon, while Ĵ2 is the two-body MEC.
Both currents can generate non-zero matrix elements for
1p1h excitation. MEC are two-body operators and they
can induce 1p1h excitation due to the interaction of the
hit nucleon with a second nucleon acting as a spectator.
The many-body matrix elements of these operators are
given by 〈

ph−1
∣∣ Ĵµ1 | F ⟩ = ⟨p| Ĵµ1 | h⟩ (9)

for the OB current and〈
ph−1

∣∣ Ĵµ2 | F ⟩ = ∑
k<kF

[
⟨pk| Ĵµ2 | hk⟩ − ⟨pk| Ĵµ2 | kh⟩

]
(10)

for the two-body current, where the sum over specta-
tor states (k) is performed over the occupied states in
the Fermi gas, considering both the direct and exchange
matrix elements. Due to momentum conservation, the
matrix element of the OB current between plane waves
can be written as

⟨p|Ĵµ1 |h⟩ =
(2π)3

V
δ3(q+ h− p)

mN√
EpEh

jµ1 (p,h), (11)

where V is the volume of the system, mN is the nucleon
mass, Ep =

√
p2 +m2

N and Eh =
√
h2 +m2

N are the
on-shell energies of the nucleons involved in the process,
and jµ1 (p,h) is the OB current (spin-isospin) matrix

jµ1 (p,h) = ū(p)

(
F1γ

µ + i
F2

2mN
σµνQν

)
u(h), (12)

being F1 and F2 the Dirac and Pauli form factors of the
nucleon. In the case of the two-body current, the elemen-
tary matrix element can be written in a similar form:

⟨p′1p′2|Ĵµ2 |p1p2⟩ =
(2π)3

V 2
δ3(p1 + p2 + q− p′

1 − p′
2)

× m2
N√

E′
1E

′
2E1E2

jµ2 (p
′
1,p

′
2,p1,p2). (13)

Here jµ2 (p
′
1,p

′
2,p1,p2) is a spin-isospin matrix and it de-

pends on the momenta of the two nucleons in the initial
and final state. The two-body current contains the sum
of the diagrams shown in Figure 1, including the seagull,
pionic, and ∆ isobar currents. The specific form of the
two-body current function will be given later when we
discuss the MEC model. By inserting (13) into Eq. (10)
we obtain an expression similar to (11) that resembles the
matrix element of an effective one-body (OB) current for
the MEC:〈
ph−1

∣∣ Ĵµ2 | F ⟩ = (2π)3

V
δ3(q+ h− p)

mN√
EpEh

jµ2 (p,h).

(14)
Here the effective OB current generated by the MEC in-
volves a sum over the spectator nucleons and is defined
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by

jµ2 (p,h) ≡∑
k<kF

mN

V Ek
[jµ2 (p,k,h,k)− jµ2 (p,k,k,h)] . (15)

Note that in the thermodynamic limit V → ∞ the above
sum will be transformed into an integral over the mo-
menta occupied in the Fermi gas:

1

V

∑
k<kF

→
∑
sktk

∫
d3k

(2π)3
θ(kF − k). (16)

Finally, we can write the transition matrix element of
the total current between the ground state and the 1p1h
state as〈
ph−1

∣∣ Ĵµ| F ⟩ = (2π)3

V
δ3(q+ h− p)

mN√
EpEh

jµ(p,h),

(17)
where the effective total current for the 1p1h excitation
includes contributions from both the one-body current
and MEC:

jµ(p,h) = jµ1 (p,h) + jµ2 (p,h). (18)

By inserting (17) into Eq. (7) and taking the thermody-
namic limit, we obtain the following expression for the
hadronic tensor:

Wµν =
V

(2π)3

∫
d3hδ(Ep − Eh − ω)

m2
N

EpEh
2wµν(p,h)

× θ(p− kF )θ(kF − h), (19)

where p = h + q by momentum conservation after inte-
gration over p. The function wµν is the effective single-
nucleon hadronic tensor in the transition

wµν(p,h) =
1

2

∑
spsh

jµ(p,h)∗jν(p,h). (20)

In this equation, we did not include the sum over isospin
tp = th. Therefore, wµν refers to the tensor of either
proton or neutron emission, and the total tensor would
be the sum of the two contributions. Note that the ef-
fective single-nucleon tensor wµν includes the contribu-
tion of MEC, thus encompassing an interference between
the one-body and two-body currents. Indeed, the rele-
vant diagonal components of the effective single-nucleon
hadronic tensor for the longitudinal and transverse re-
sponses (4) can be expanded as

wµµ(p,h) =
1

2

∑
spsh

|jµ1 + jµ2 |2

=
1

2

∑
|jµ1 |2 +Re

∑
(jµ1 )

∗jµ2 +
1

2

∑
|jµ2 |2

≡ wµµ1 + wµµ12 + wµµ2 (21)

where wµµ1 is the tensor corresponding to the one-body
current, wµµ12 represents the interference between the one-
body and two-body currents, and wµµ2 corresponds to the
contribution of the two-body current alone. The one-
body part is the leading contribution in the quasielastic
peak, while the dominant contribution of the MEC cor-
responds to the interference with the one-body current
[33, 48], being the pure contribution of the two-body cur-
rent generally smaller.

C. Responses in the relativistic mean field
approach

Going beyond the Relativistic Fermi Gas (RFG)
model, the Relativistic Mean Field (RMF) approach for
nuclear matter allows for the inclusion of dynamic rela-
tivistic effects. The simplest approximation in this frame-
work is to introduce constant mean scalar and vector po-
tentials with which the nucleons interact [22, 23, 25, 26].
The scalar potential is attractive, while the vector poten-
tial is repulsive. The single-particle wave functions still
exhibit plane-wave behavior with momentum p in nuclear
matter, but with an on-shell energy given by

E =
√
m∗2
N + p2, (22)

wherem∗
N is the relativistic effective mass of the nucleon,

defined as

m∗
N = mN − gsϕ0 =M∗mN . (23)

Here ϕ0 is the scalar potential energy of the RMF and gs
the corresponding coupling constant [23], and M∗ = 0.8
for 12C, the nucleus considered in this work [44]. To
account for the interaction with the vector potential, a
positive energy term needs to be added to the on-shell
energy. Therefore, the total energy of the nucleon can be
expressed as:

ERMF = E + Ev. (24)

In this work we use the value Ev = 141 MeV, obtained
in Ref. [44] for 12C. Note that in observables that only
depend on the energy differences between initial and final
particles, the vector energy cancels out, and only the
on-shell energy appears. This cancellation happens, as
we will see, in the response associated to the one-body
current. However, in the case of the two-body current,
the vector energy needs to be taken into account in the
∆ current, as we will see in the next section.
In the present RMF approach of nuclear matter, the

evaluation of the hadronic tensor is done similarly to the
RFG, with the difference that the spinors u(p) now cor-
respond to the solutions of the Dirac equation with the
relativistic effective mass m∗

N . From Eq. (19) the 1p1h
nuclear response functions are then given by

RK(q, ω) =
V

(2π)3

∫
d3h

(m∗
N )2

EpEh
2wK(p,h)

×θ(p− kF )θ(kF − h)δ(Ep − Eh − ω), (25)
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where Ep, Eh are the on-shell energies with effective mass
m∗
N , and wK are the single-nucleon responses for the

1p1h excitation

wL = w00, wT = w11 + w22. (26)

The effective single-nucleon tensor wµν is constructed as
in Eq. (20), but the current is obtained from matrix el-
ements using spinors with the relativistic effective mass
m∗
N instead of the normal nucleon mass. This prescrip-

tion is also followed when evaluating the 1p1h matrix
elements of the MEC (as discussed in the next section).

To compute the integral (25), we change to the vari-
ables (Eh, Ep, ϕ), using h

2dhd cos θ = (EhEp/q)dEhdEp.
Then the integral over Ep can be performed using the
Dirac delta. This fixes the angle θh between q and h

cos θh =
2Ehω +Q2

2hq
. (27)

The integration over the angle ϕ gives 2π by symmetry
of the responses when q is on the z-axis [14]. The result
is an integral over the initial nucleon energy

RK(q, ω) =
V

(2π)3
2πm∗3

N

q

∫ ∞

ϵ0

dϵ n(ϵ) 2wK(ϵ, q, ω), (28)

where we have defined the adimensional energies ϵ =
Eh/m

∗
N and ϵF = EF /m

∗
N . Moreover we have introduced

the energy distribution of the Fermi gas n(ϵ) = θ(ϵF −ϵ).
The lower limit of the integral (28), ϵ0, represents the
minimum energy that an on-shell nucleon can have when
it absorbs energy ω and momentum q [14]

ϵ0 = Max

{
κ

√
1 +

1

τ
− λ, ϵF − 2λ

}
, (29)

where we have defined the dimensionless variables

λ =
ω

2m∗
N

, κ =
q

2m∗
N

, τ = κ2 − λ2. (30)

From Eq. (28) the nucleons that contribute to the re-
sponse function RK(q, ω) are those with energy ranging
from ϵ0 to ϵF . For fixed values of ϕ, q, ω, the integral over
energy ϵ in Eq. (28) corresponds to integrating the single
nucleon response over a path in the momentum space of
the hole h, weighted with the momentum distribution.
The angle between h and q for each energy is given by
Eq. (27). The minimum momentum h0 correspond to
the minimum energy ϵ0. Indeed, for a specific value of ω,
the lower limit of the integral becomes h = 0 or ϵ0 = 1,
which corresponds to the center of the quasielastic peak.
Using Eq. (29), it is straightforward to verify that this
point corresponds to λ = τ in the regime without Pauli
blocking.

D. Scaling

Scaling is based on the approximated factorization of
an averaged single-nucleon response from the nuclear

cross section. This factorization is exact in the RMF
model with the OB current. In previous works, analyt-
ical expressions were obtained from the RFG and RMF
models by explicit integration of the one-body responses,
Eq. (28). However in this case, it is not possible to per-
form the integration (28) analytically because now wK
includes also the matrix elements of the two-body oper-
ator. Nevertheless, we can still define averaged single-
nucleon responses as

wK(q, ω) =

∫∞
ϵ0
dϵ n(ϵ)wK(ϵ, q, ω)∫∞

ϵ0
dϵ n(ϵ)

(31)

and we can rewrite Eq. (28) in the form

RK(q, ω) =
V

(2π)3
2πm∗3

N

q
2wK(q, ω)

∫ ∞

ϵ0

dϵ n(ϵ). (32)

The averaged single-nucleon responses, wK(q, ω), include
the combined effect of both the OB current and the MEC
in all the 1p1h excitations compatible with given values
of (q, ω). Eq. (32) shows that in the RMF model (or
the RFG model for effective mass M∗ = 1) the nuclear
responses factorize as the product of the averaged single-
nucleon response (including MEC) and the scaling func-
tion. In fact a superscaling function can be defined as

f∗(ψ∗) =
3

4

1

ϵF − 1

∫ ∞

ϵ0

n(ϵ)dϵ, (33)

where ϵF − 1 is the kinetic Fermi energy in units of m∗
N

and the ψ∗-scaling variable is related to the minimum
nucleon energy, ϵ0, as

ψ∗ =

√
ϵ0 − 1

ϵF − 1
sgn(λ− τ). (34)

The scaling variable, ψ∗, is negative (positive) for λ <
τ (λ > τ). In the RMF the scaling function is easily
evaluated from Eq. (33), giving

f∗(ψ∗) =
3

4
(1− ψ∗2)θ(1− ψ∗2). (35)

Note that the scaling function of nuclear matter is zero
for ϵ0 > ϵF , and this is equivalent to |ψ∗| > 1. This is
a consequence of the maximum momentum kF for the
nucleons in nuclear matter, which implies that ϵ0 < ϵF .
Using V/(2π)3 = N/( 83πk

3
F ) for nuclear matter we can

write the response functions (32) as

RK(q, ω) =
ϵF − 1

m∗
Nη

3
Fκ

(ZwpK(q, ω) +NwnK(q, ω))f∗(ψ∗),

(36)
where we have added the contribution of Z protons and
N neutrons to the response functions, and ηF = kF /m

∗
N .

E. SuSAM*

The expression given by Eq (36) for the response func-
tion is formally the same as the response in the RMF, the
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only difference being that the averaged single-nucleon re-
sponse now includes the contribution of MEC to the 1p1h
excitation. This equation, valid for the RMF, serves as
the starting point for performing the superscaling analy-
sis with relativistic effective mass (SuSAM*) using elec-
tron scattering data, extending the formula to the region
ϵ0 > ϵF or |ψ∗| > 1. We will follow the procedure sug-
gested by Casale et al. [57].

In the Fermi gas, it is not possible to extend the av-
eraging formula for ϵ0 > ϵF because the momentum dis-
tribution is zero and the denominator in (31) vanishes.
Therefore, what we do is slightly modify the Fermi gas
distribution by allowing a smeared Fermi surface, so that
the distribution is not exactly zero above kF , allowing
for the averaging procedure. By substituting the Fermi
distribution with a distribution that is not significantly
different from the original one for h < kF , the average of
the single-nucleon response will not change significantly
in the Fermi gas region |ψ∗| < 1.

By this method, the extension of the single-nucleon
average is done smoothly and continuously to the re-
gion |ψ∗| > 1, with the added meaning that, in this way,
we are taking into account, at least partially, the high-
momentum distribution. This is because it is primarily
the nucleons with momenta greater than kF that con-
tribute to this region. A possible distribution that can
be used to extend the averaging procedure is the Fermi
distribution:

n(h) =
a

1 + e(h−kF )/b
. (37)

Using this distribution, the integrals in the numerator
and denominator of Eq (31) extend to infinity and are
well-defined for ϵ0 > ϵF or |ψ∗| > 1. An appropriate
value for the smearing parameter is b = 50 MeV/c, used
in ref. [57], where the averaged single-nucleon responses
were evaluated for the one-body current, and it was found
to yield practically the same results as the analytically
calculated responses in the strict Fermi gas region. The
averaged responses were also found to be very similar to
the traditionally extrapolated responses outside this re-
gion. This proposed method provides a simple approach
that allows for the definition of generalized scaling, in-
cluding the MEC, consistently, and also takes into ac-
count that the nucleons are not limited by a maximum
Fermi momentum.

Several approaches exist to obtain a phenomenological
scaling function. Different methods are based on different
assumptions for the scaling function or the single-nucleon
response, but all are ultimately adjusted to experimental
data. The original SuSA model, based on the RFG, was
fitted to the scaling data of the longitudinal response, to
obtain a longitudinal scaling function, fL, while in the
extended SuSA-v2 approach, the RMF model for finite
nuclei was used to obtain a transverse scaling function,
fT . The SuSAM* model, based on the nuclear matter
RMF with effective mass, directly fitted the quasielastic
data of the cross section after discarding the non-scaling
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FIG. 1: Feynman diagrams for the 2p2h MEC model used in
this work.

data points, to obtain a single phenomenological scaling
function valid for both the L and T channels [19].
In the generalized SuSAM* model proposed here, we

will follow the same procedure as described in references
[42, 43]. First, we subtract the calculated inclusive cross
section for two-particle emission in the RMF with a rel-
ativistic MEC model from the (e,e’) data. This subtrac-
tion aims to partially remove the contribution of 2p2h
processes present in the data, in order to isolate the
purely quasielastic data as much as possible. Next, we
will scale each residual data point by dividing it by the
contribution of the single nucleon to the cross section, as
given by Eq. (36),

f∗exp =

(
dσ

dΩdω

)
exp

−
(

dσ

dΩdω

)
2p2h

σM (vLrL + vT rT )
, (38)

where the single nucleon cross section includes the aver-
aged single-nucleon responses including MEC

rK =
ϵF − 1

m∗
Nη

3
Fκ

(ZwpK(q, ω) +NwnK(q, ω)). (39)

In the results section, we will proceed with the scaling
analysis for the obtained f∗exp data, by a plot as a func-
tion of ψ∗, calculated using Eq. (34). This analysis in-
cludes a selection process to identify the data points that
are most likely to be quasielastic (which exhibit approxi-
mate scaling behavior) and discarding the remaining data
points (mainly non-scaling inelastic processes). Finally,
we will fit a phenomenological scaling function to the sur-
viving data points, aiming to describe the global scaling
behavior of the quasielastic region.

F. Meson-exchange currents

In this work, we use the relativistic meson exchange
currents (MEC) model described in Ref. [43]. The Feyn-
man diagrams shown in Fig. 1 illustrate the different
components of the MEC model. Diagrams (a) and (b)
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correspond to the seagull current, diagram (c) represents
the pion-in-flight current, and diagrams (d,e) and (f,g)
depict the forward- and backward- ∆(1232) currents, re-
spectively. The specific treatment of the ∆ current is
model-dependent, and various versions exist with possi-
ble corrections to the off-shell relativistic interaction of
the ∆. Other widely used models for MEC include those
described in Refs. [33, 42, 58].

While these different models may exhibit slight varia-
tions and corrections to the ∆ off-shell interaction, they
generally yield similar results for the dominant transverse
response at the quasielastic peak. In particular, in the re-
sults section, we will compare our findings with the model

presented in Refs. [33, 58], which we previously employed
to assess the impact of MEC on the 1p1h response.
In our model the MEC functions defined in Eq. (13)

correspond to the sum of diagrams of Fig. 1

jµ2 (p
′
1,p

′
2,p1,p2) = jµsea + jµπ + jµ∆, (40)

where the ∆ current is the sum of forward and backward
terms

jµ∆ = jµ∆F + jµ∆B . (41)

These functions are defined by

jµsea = [Iz]t′1t′2,t1t2
f2

m2
π

V
s′1s1
πNN (p′1, p1)FπNN (k21)ūs′2(p

′

2)F
V
1 γ

5γµus2(p2) + (1 ↔ 2) (42)

jµπ = [Iz]t′1t′2,t1t2
f2

m2
π

FV1 V
s′1s1
πNN (p′1, p1)V

s′2s2
πNN (p′2, p2)(k

µ
1 − kµ2 ) (43)

jµ∆F = [UFz ]t′1t′2,t1t2
ff∗

m2
π

V
s′2s2
πNN (p′2, p2)FπN∆(k

2
2)ūs′1(p

′
1)k

α
2Gαβ(p1 +Q)Γβµ(Q)us1(p1) + (1 ↔ 2) (44)

jµ∆B = [UBz ]t′1t′2,t1t2
f2f∗

m2
π

V
s′2s2
πNN (p′2, p2)FπN∆(k

2
2)ūs′1(p

′
1)k

β
2 Γ̂

µα(Q)Gαβ(p
′
1 −Q)us1(p1) + (1 ↔ 2) (45)

We will evaluate these matrix elements in the framework
of the RMF model, where the spinors u(p) are the solu-
tions of the Dirac equation with relativistic effective mass
m∗
N . The four-vectors kµi = p′i

µ − pµi with i = 1, 2 are
the momenta transferred to the nucleons 1,2. We have
defined the following function that includes the πNN
vertex, a form factor, and the pion propagator

V
s′1s1
πNN (p′1, p1) = FπNN (k21)

ū(p′1)γ
5/k1u(p1)

k21 −m2
π

. (46)

We apply strong form factors at the pion absorp-
tion/emission vertices given by [35, 59]

FπNN (k) = FπN∆(k) =
Λ2 −m2

π

Λ2 − k2
. (47)

The charge structure of the MEC involves the isospin
matrix element of the operators

Iz = i[τ(1)× τ(2)]z, (48)

UFz =

√
3

2

3∑
i=1

(TiT
†
z )⊗ τi, (49)

UBz =

√
3

2

3∑
i

(TzT
†
i )⊗ τi, (50)

where we denote by T †
i the Cartesian coordinates of the

1
2 → 3

2 transition isospin operator, defined by its matrix

elements [60]

⟨ 32 t∆|T †
µ| 12 t⟩ = ⟨ 12 t1µ| 32 t∆⟩ (51)

T †
µ being the spherical components of the vector T⃗ †.

With the aid of the expression TiT
†
j = (2/3)δij − i

3τiτj
and making the summation, we can rewrite the isospin
operators in the forward and backward ∆ current as

UFz =

√
3

2

(
2

3
τ (2)z − i

3

[
τ (1) × τ (2)

]
z

)
(52)

UBz =

√
3

2

(
2

3
τ (2)z +

i

3

[
τ (1) × τ (2)

]
z

)
. (53)

The γN → ∆ transition vertex in the forward ∆ current
is defined as [61, 62]

Γβµ(Q) =
CV3
mN

(gβµ /Q−Qβγµ)γ5 (54)

while for the backward ∆ current

Γ̂µα(Q) = γ0[Γαµ(−Q)]†γ0. (55)

In this vertex we have neglected contributions of order
O(1/m2

N ). Note that the Γβµ operator is a spin matrix
and depends on the vector form factor CV3 . In this paper,
we use the vector form factor in ∆ current from Refs.
[40, 62]:

CV3 (Q2) =
2.13

(1− Q2

M2
V
)2

1

1− Q2

4M2
V

. (56)
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FIG. 2: Diagrams for the 1p1h MEC matrix elements

Various alternative approximations to the propagator
have been proposed [63]. However, in the case of the
quasielastic peak, the typical kinematics are of the order
of 1 GeV, and these issues are not expected to be rele-
vant. They are overshadowed by other more significant
nuclear effects that dominate in this energy regime. Here
we use the ∆ propagator commonly used for the spin-3/2
field

Gαβ(P ) =
Pαβ(P )

P 2 −M2
∆ + iM∆Γ(P 2) + Γ(P 2)2

4

(57)

where M∆ and Γ are the ∆ mass and width respectively.
The projector Pαβ(P ) over spin-3/2 on-shell particles is
given by

Pαβ(P ) = −(/P +M∆)

×
[
gαβ − γαγβ

3
− 2PαPβ

3M2
∆

+
Pαγβ − Pβγα

3M∆

]
.(58)

Finally, the ∆ width Γ(P 2) is given by

Γ(P 2) = Γ0
m∆√
P 2

(
pπ
presπ

)3

. (59)

In the above equation, pπ is the momentum of the final
pion resulting from the ∆ decay an presπ is its value at
resonance (P 2 = m2

∆), and Γ0 = 120 MeV is the width
at rest. The width (59) corresponds to the ∆ in vacuum,
and it is expected to be slightly different in the medium
depending on the kinematics. One could investigate the
dependence of the results on the choice of the width.
However, in this work, we do not delve into this issue
because, as we will see, the effect of the MEC on the
1p1h response is generally small, and corrections due to
fine-tuning of the model are unlikely to substantially alter
the results.

In the relativistic mean field description used in this
work, we consider that the ∆ is also interacting with
scalar and vector fields, acquiring an effective mass and
vector energy. To treat this case, we make the following
substitutions in the ∆ propagator for the ∆ mass and
momentum [25, 64]:

M∆ →M∗
∆, P ∗µ = Pµ − δµ0E

∆
v . (60)

We use the value M∗
∆ = 1042 MeV, taken from [45], and

the universal vector coupling E∆
v = Ev.

With the MEC current defined in Eqs. (24-27), the
effective one-body current j2(p,h) is generated by sum-
ming over the spin, isospin and momentum of the spec-
tator nucleon, as in Eq. (15). First, it can be observed
that due to the sum over isospin tk, the direct term is zero
(see Ref. [33] for details). Therefore, the many-body dia-
grams that contribute to the 1p1h MEC are those shown
in Figure 2. Furthermore, it can be verified that dia-
grams e and f are also zero. Therefore, only diagrams
a, b, c, and d survive and contribute to the 1p1h MEC
matrix elements.

III. RESULTS

In this section, we present results for the effects of
MEC on the 1p1h response functions using several mod-
els: the relativistic Fermi gas, the relativistic mean field,
and the generalized SuSAM* model. By employing these
different models, we take into account relativistic kine-
matics and we can analyze the impact of including the
relativistic effective mass of the nucleon and the ∆ res-
onance appearing in the MEC. The scaling analysis de-
scribed in the previous Section will allow us to study the
influence of MEC on the generalized scaling function also
in the region |ψ∗| > 1 where the RFG and RMF responses
are zero. Moreover, we can investigate how the inclusion
of MEC affects the scaling function and compare it with
the predictions of the RFG and RMF models.

Unless stated otherwise, we present the results for 12C
with a Fermi momentum of kF = 225 MeV/c. We use
an effective mass of M∗ = 0.8, following the same choice
of parameters as in reference [44, 45]. The calculation
of 1p1h responses involves evaluating the 1p1h matrix
element of the MEC, as given by Eq (15). This requires
performing a numerical three-dimensional integration to
account for the momentum dependence. Subsequently,
a one-dimensional integration is carried out to calculate
the averaged single-nucleon responses, as described in Eq
(31).

First, since this work is an extension of the MEC model
from Ref. [33] to the superscaling formalism, we will com-
pare with the OB-MEC interference responses presented
in [33] within the framework of the RFG. It should be
noted that in [33] a different version of the ∆ current
was used. The ∆ current was obtained from the γN∆
Lagrangian proposed by Pascalutsa [58]

LγN∆ = ie
G1

2mN
ψ
α
Θαµγνγ5T

†
3NF

νµ + h.c., (61)

plus O(1/m2
N ) terms that give negligible contribution in

the quasielastic energy region. The tensor Θαµ may con-
tain an off-shell parameter and another arbitrary param-
eter related to the contact invariance of the Lagrangian.
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FIG. 3: Interference OB-MEC in the transverse response of
40Ca for two values of the momentum transfer, with kF = 237
MeV/c. In the graph, the curve labeled ∆1 corresponds to
using the ∆ current of the present work in RFG. The curve
∆2 corresponds to the calculation from reference [33].

In this work we use the simplest form

Θαµ = gαµ − 1

4
γαγµ. (62)

The coupling constant G1 was determined in [58] by fit-
ting Compton scattering on the nucleon. However, there
is a detail that needs to be clarified: the isospin opera-
tor used by Pascalutsa is normalized differently from the

standard convention. That is, TPascalutsa
i =

√
3
2Ti, where

Ti is the operator used in our calculation. This means
that if we use the standard Ti in the Lagrangian (61), it

should be multiplied by
√

3
2 . This is equivalent to mul-

tiplying Pascalutsa’s coupling constant G1 = 4.2 by the

factor
√

3
2 . In reference [33], this detail went unnoticed,

and the
√

3/2 factor was not included in the calculations.

Using the Lagrangian given by Eq. (61), the following
∆ current is obtained:

jµ∆F = [(TiT
†
3 )⊗ τi]t′1t′2,t1t2

ff∗

m2
π

F∆(Q
2)V

s′2s2
πNN (p′2, p2)FπN∆(k

2
2)

ūs′1(p
′
1)k

α
2

[
ΘαβGβρ(p1 +Q)

G1

2mN
[Θρµγν −Θρνγµ]γ5Qν

]
us1(p1) + (1 ↔ 2) (63)

and a similar expression for the ∆ backward current.
This current was used in Ref. [33] to compute the OB-
MEC interference with the following form factor

F∆(Q
2) = GpE(Q

2)

(
1− Q2

3.5(GeV/c)2

)−1/2

(64)

where GpE is the electric form factor of the proton.
In Figure 3, we present the interference between the

OB and ∆ currents in the transverse response of 40Ca.
We compare our results with the model of reference [33]
in RFG, where the Lagrangian of Pascalutsa was used.
The results of [33] have been corrected with the factor of√

3
2 mentioned earlier. For q = 500 MeV/c, there is little

difference between the two models. However, for q = 1
GeV/c, the difference becomes more noticeable.

The results of Fig. 3 show that the ∆ current model
used in this work does not differ significantly from the
model in reference [33], providing similar results. The
small differences observed can be attributed to the dif-

ferent form factor and coupling constants, and can be un-
derstood as a model dependence in these results. From
here on, all the results refer to the ∆ current model de-
scribed in the equations (44,45).

It is expected that any relativistic model should repro-
duce the results of the well-established non-relativistic
model for small values of energy and momentum in the
non-relativistic limit [65]. As a check in this regard, in
Fig. 4 we compare the present model with the non-
relativistic Fermi gas model from ref. [48]. The non
relativistic ∆ current used is taken from [33]. To per-
form this comparison the same form factors and coupling
constants are used in the relativistic and non relativistic
models. To take this limit in Fig. 4, we follow the pro-
cedure as follows: q is small and kF = q/2. We show the
comparison between the two models for various values of
q ranging from 100 to 500 MeV/c. In the left panels, we
present the contribution of the transverse response stem-
ming from the interference OB-π between the pure pionic
MEC (diagrams a-c in Fig.2) and in the right panels we
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FIG. 4: Comparison between relativistic and non relativis-
tic MEC transverse responses in 12C. Black lines: RFG. Red
lines: non-relativistic Fermi gas. Left panels show the inter-
ference OB-π, and left panels the interference OB-∆. In these
calculations the strong form factors in the pion vertices are
set to one.

show the OB-∆ interference (diagrams d-g in Fig.2) for
the same values of q. As expected, we observe that for
q = 100 MeV/c, the relativistic and non-relativistic mod-
els practically coincide, demonstrating the consistency
between the two models in the non-relativistic limit.

In Fig.4 one can also observe that for low values of q the
dominant contributions to the MEC are from the seag-
ull and pion-in-flight diagrams, with the seagull diagram
playing a particularly important role. These diagrams
contribute positively to the MEC, enhancing the overall
response. On the other hand, the contribution from the
∆ resonance is negative. As q increases, the influence of
the ∆ resonance becomes more significant, and it starts
to dominate the MEC contribution for q values around
400 MeV/c.

Before performing the scaling analysis, we examine the
averaged single-nucleon responses that will be used to
scale the data. In Figure 5, we display the longitudinal
and transverse single-nucleon responses for various values
of q as a function of the scaling variable. The calculated
responses are shown separately for the OB current and
the total responses including the MEC and taking into
account the sum of protons and neutrons. The total re-
sponse, which we have defined in equation (36), comes

from the product of the single nucleon with the phe-
nomenological scaling function obtained from the (e, e′)
data as shown below. We have used a Fermi distribution,
Eq.(37), with a smearing parameter b = 50MeV/c, al-
though the single nucleon responses do not depend much
on this specific value. It is observed that the effect of
the MEC is negligible in the longitudinal response, as
the curves for the OB current and total response over-
lap. However, in the transverse response, the effect of
the MEC becomes appreciable, resulting in a reduction
of the wT response compared to the OB current. This re-
duction can be attributed to the interference between the
one-body and two-body currents, which leads to a mod-
ified transverse response. The comparison between the
OB current and the total response including the MEC
provides insights into the contributions of the MEC to
the single-nucleon responses and sets the stage for the
subsequent scaling analysis.
Note that the center of the quasielastic peak corre-

sponds to ψ∗ = 0, where the energy and momentum can
be transferred to a nucleon at rest. We see that MEC
have a larger impact in the region ψ∗ > 0, that is, the
right-hand side of the peak, corresponding to higher en-
ergy transfers.
In Figure 6, we present the scaling analysis of the 12C

data. In the top panel, the experimental data, f∗exp, are
plotted against ψ∗ in the interval −2 < ψ∗ < 2. Exper-
imental data are from Refs. [68, 69] and cover a wide
electron energy range, from 160 MeV up to 5.8 GeV. We
observe a significant dispersion of many data points, in-
dicating a wide range of inelastic scattering events. How-
ever, we also notice that a portion of the data points clus-
ter together and collapse into a thick band. These data
points can be considered as associated to quasielastic
(1p1h) events. To select these quasielastic data, we apply
a density criterion. For each point, we count the number
of points, n, within a neighborhood of radius r = 0.1, and
eliminate the point if n is less than 25. Points that have
been disregarded are likely to correspond to inelastic ex-
citations and low energy processes that violate scaling
and cannot be considered within quasielastic processes.
We observe that the remaining selected points, about half
of the total, shown in the middle panel of Fig 6, form a
distinct thick band. These points represent the ones that
best describe the quasielastic region and approximately
exhibit scaling behavior. The red curve represents the
phenomenological quasielastic function f∗(ψ∗), that pro-
vides the best fit to the selected data using a sum of two
Gaussian functions:

f∗(ψ∗) = a3e
−(ψ∗−a1)2/(2a22) + b3e

−(ψ∗−b1)2/(2b22). (65)

The parameters found are shown in table I.
In the bottom panel of Fig. 6 we compare the scal-

ing function obtained in our analysis with the scaling
function obtained without including the MEC contribu-
tions. When including the MEC, the scaling function
appears slightly higher since the single-nucleon response
with MEC is slightly smaller than without them. How-
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FIG. 5: Averaged single nucleon responses computed with and without MEC, for several values of the momentum transfer as
a function of the scaling variable ψ∗.

a1 a2 a3 b1 b2 b3
−0.01015 0.46499 0.69118 0.86952 1.16236 0.17921

TABLE I: Table of fitted parameters of the scaling function.

ever, both analyses provide a similarly acceptable de-
scription of the data. This suggests that while the MEC
do have an impact on the scaling behavior, their effect is
relatively small and does not significantly alter the over-
all scaling pattern observed in the data.

Now that we have obtained the phenomenological scal-
ing function through the scaling analysis, we can utilize
this function to calculate the response functions of the
model beyond the RMF. By multiplying the scaling func-
tion by the averaged single nucleon responses, as stated in
Eq (36), we can extend our calculations to different kine-
matic regimes and explore the behavior of the responses
beyond the relativistic mean field description. This al-
lows us to investigate the influence of various factors,
such as the MEC and relativistic effects, on the response
functions and cross sections.

In Figures 7-10, we present the interferences of the
OB-MEC in the response functions for different values

of q (500, 700, 1000, and 1500 MeV/c). We separate
the interferences into OB-seagull, OB-pionic, and OB-
∆ contributions for both the longitudinal and transverse
responses as functions of ω. Each panel displays three
curves corresponding to the free RFG (with effective mass
M∗ = 1), the RMF (with effective mass M∗ = 0.8), and
the present SuSAM* model. These figures allow us to
analyze the relative contributions of the different OB-
MEC interferences in the response functions at various
kinematic regimes. By comparing the results obtained
from the RFG, RMF, and SuSAM* models, we can ob-
serve the effects of including the relativistic interaction
through the effective mass and the scaling function on
the interferences.

First is observed that the introduction of the effective
mass M∗ = 0.8 shifts the responses to the right, towards
higher energy values. The effective mass takes into ac-
count the binding of the nucleon in the nucleus, which
causes the quasielastic peak to approximately coincide
with the maximum of the experimental cross section. In
the RFG, this is traditionally taken into account by sub-
tracting a binding energy of approximately 20 MeV from
ω to account for the average separation energy of the nu-
cleons. In the RMF, this is automatically included by
considering the effective mass of the nucleon, M∗ = 0.8,
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the selected data points, compared to the scaling function ob-
tained in a similar analysis without MEC. Experimental data
are taken from Refs. [68, 69].

which was adjusted for 12C precisely to achieve this ef-
fect.

In the transition from the RMF to the SuSAM* model,
we replace the scaling function of the RFG with the phe-
nomenological scaling function that we have adjusted.
This new scaling function extends beyond the region of
−1 < ψ∗ < 1, where the RFG scaling function is zero.
As a result, we observe in figures 7-11 that the interfer-
ences acquire a tail towards high energies, similar to the

behavior of the scaling function.

The tail effect is more pronounced in the longitudi-
nal responses because the single-nucleon longitudinal re-
sponse, as shown in Figure 5, increases with ω. This am-
plifies the tail when multiplied by the scaling function.
However, it is important to note that the contribution of
the MEC to the longitudinal response is relatively small
compared to the dominant transverse response. There-
fore, while the tail effect is observed in the longitudinal
responses, its impact on the cross section is not as signif-
icant as in the transverse channel, if not negligible.

In the dominant transverse response, the seagull con-
tribution from the MEC is positive, leading to an en-
hancement of the response, while the pionic and ∆ con-
tributions are negative, causing a reduction in the overall
response when including the MEC. This is in line with
pioneering calculations by Kohno and Otsuka [46] and
by Alberico et al. [47] in the non-relativistic Fermi gas.
Also in shell model calculations, similar results have been
obtained [48], showing that the MEC contributions also
lead to a tail and extension of the response functions to
higher values of ω, as in the SuSAM* approach. It is
worth noting that the relative importance of these con-
tributions can depend on the momentum transfer q and
the energy transfer ω. For the values considered in Fig-
ures 7-11, the ∆ current is found to be the dominant
contribution, leading to a net negative effect from the
MEC.

The observation in Fig. 10 of a sign change and a
small bump in the OB-∆ transverse response for high
values of ω is indeed interesting. The change of sign is
already observed for q=1 GeV/c in Fig. 9. This connects
with the findings in reference [17], where a pronounced
bump and sign change were reported in a semi-relativistic
shell model calculation based on the Dirac equation with
a relativistic energy-dependent potential. In the present
calculation the bump is observed but it is very small com-
pared to the results of Ref, [17]. It is important to note
that, in the present work, the fully relativistic SuSAM*
approach is employed, which takes into account the dy-
namical properties of both nucleons and the ∆, as well
as the scaling function. This differs from the approach
in reference [17], where a static propagator for the ∆
was used. To definitively clarify the difference with the
present results, a fully relativistic calculation in finite nu-
clei, considering the dynamical properties of the ∆ would
be necessary.

The comparison of the OB-MEC interference with the
MEC contribution alone (represented by wµν12 and wµν2 ,
respectively in Eq, (21)) in the transverse response is
shown in Figs. 11 and 12. We observe that the MEC
contribution alone represents a small and almost negligi-
ble contribution to the transverse response. This justifies
the previous calculations that focused only on the OB-
MEC interference (e.g., the semi-analytical calculations
in references [48, 70] for the non-relativistic Fermi gas), as
it provides an excellent approximation. This observation
holds true for both the RMF model in Fig. 11 and the
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SuSAM* model in Fig. 12. It highlights the fact that the
dominant contribution to the transverse response arises
from the interference between the OB and MEC, while
the pure MEC contribution is relatively small. It is also
worth stressing that while the pure MEC contribution is,
of course, positive, the interference contribution is nega-
tive.

In Fig. 13, we present the total responses of 12C com-
puted using the generalized SuSAM* model. These re-
sponses are obtained by multiplying the phenomenolog-
ical scaling function by the averaged single-nucleon re-
sponse and summing over protons and neutrons, as given
by Eq. (36). The responses are shown for different val-
ues of q as a function of ω. In the same figure, we also
show the results without including the MEC contribu-
tions, which corresponds to setting the terms w12 + w2

associated with the two-body current (Eq. (21)) to zero.

Comparing the results with and without MEC, we

observe that the impact of MEC is more significant in
the transverse response compared to the longitudinal re-
sponse. This is expected since the corrections due to
MEC in the longitudinal response are higher-order ef-
fects in a non-relativistic expansion in powers of v/c, as
known from previous studies [71]. Therefore, the MEC
contributions to the longitudinal response are minimal
and only start to become noticeable for q >1 GeV in the
high-energy region. However, this high-energy region is
dominated and overshadowed by pion emission and in-
elastic processes, making it difficult to isolate the 1p1h
longitudinal response.

The inclusion of MEC in the single-nucleon leads to
a reduction of the transverse response by around 10%
or even more for all studied values of q. This is con-
sistent with previous calculations in RFG and the shell
model [17, 33, 48, 66, 67]. These calculations have con-
sistently shown that MEC in the 1p1h channel tend to
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FIG. 10: The same as Fig. 7 for q = 1500 MeV/c.

decrease the transverse response compared to the contri-
bution from the one-body current. It is important to note
that this reduction in the transverse response is a direct
consequence of the destructive interference between the
one-body current and MEC. The contribution of MEC
to the transverse response is negative because the direct
two-body matrix element is zero (in symmetric nuclear
matter, N = Z) or almost zero (in asymmetric nuclear
matter, N ̸= Z, or in finite nuclei) after summing over
isospin.

The treatment of the ∆ resonance in the medium is
subject to various ambiguities and uncertainties. In our
generalized SuSAM* model, we have assumed that the
∆ resonance acquires an effective mass M∗

∆ and vector
energy E∆

v due to its interaction with the RMF. This re-
quires modifying the propagator according to the formal-
ism proposed in references [25, 64]. To estimate the effect
of this treatment, in Fig. 14 we compare the transverse
response for the OB-∆ interference calculated assuming

that the ∆ remains unchanged in the medium, i.e., set-
ting M∗

∆ =M∆ and E∆
v = 0. The response with the free

∆ without medium modifications is slightly smaller in ab-
solute value, around 10% depending on the momentum
transfer. This can be seen as an estimation of the uncer-
tainty associated with the ∆ interaction in the medium.

Another related issue is the modification of the ∆
width in the medium, which we have not considered here
assuming the free width (59). This effect can also influ-
ence the results, but it is expected to be of the same order
as the observed effect in Fig. 14. It is important to note
that the treatment of the ∆ resonance in the medium is a
complex topic, and further investigations and refinements
are needed to fully understand its effects and uncertain-
ties.

In Fig. 15, we compare the total transverse response
calculated in the RMF model with an effective mass
of M∗ = 0.8 to the results obtained in the general-
ized SuSAM* approach for various momentum trans-
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FIG. 11: Comparison of OB-MEC interference in the trans-
verse response (black lines) with the pure MEC transverse
response (red lines) for several values of q in the RMF model.

fers, ranging from q = 300 MeV/c to q = 1500 MeV/c.
Both calculations include the effects of MEC. One no-
table difference between the two approaches is the pres-
ence of a pronounced tail at high energy transfer rates
in the SuSAM* results. This tail extends well beyond
the upper limit of the RFG responses, reflecting the ef-
fect of the phenomenological scaling function used in
the SuSAM* approach. Similar effects are found in the
longitudinal response. Additionally, it is worth noting
that the peak height of the transverse response in the
SuSAM* approach is generally higher compared to the
RMF model. Overall, the comparison in Fig. 15 high-
lights the improvements and additional physics captured
by the SuSAM* approach, by extending the scaling func-
tion of the RFG to describe the transverse response in a
wider energy transfer range.

Finally, in Fig. 16, we present the results for the (e,e’)
double differential cross section of 12C calculated with
the generalized SuSAM* model including MEC, com-
pared to experimental data for selected kinematics. We
also compare with the same model but assuming that
only the single-nucleon contribution is present, i.e., set-
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FIG. 12: The same as Fig. 11 in the SuSAM* model.

ting the MEC to zero. We observe that the inclusion of
MEC in this model leads to a small reduction in the cross
section compared to the case without MEC. This reduc-
tion is a consequence of the decrease in the transverse
response due to the presence of MEC. The generalized
scaling approach, including the inclusion of MEC, pro-
vides a global description of the cross section that is com-
parable to other previous analyses, such as the SuSAM*
model with the one-body current only, or the SuSAv2
model, which factorize different definitions of the single
nucleon (without effective mass and with extrapolation of
the Fermi gas single nucleon in the case of SuSAv2). All
of these approaches reasonably describe the quasielastic
cross section because the scaling function has been prop-
erly adjusted to reproduce the global scaling data. The
generalized scaling approach, like any parametrization, is
a phenomenological framework that aims to capture the
essential physics of the reaction. It provides a functional
form for the cross section that incorporates the known in-
gredients and leaves the unknowns to be determined by
the scaling function. The scaling function encapsulates
the effects of various dynamical and correlation effects,
allowing for a global description of the data.
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FIG. 13: Response functions calculated in the generalized SuSAM* model (black curves). The red curves do not include the
MEC.

IV. DISCUSSION AND CONCLUDING
REMARKS

From the results seen in the previous section we have
observed that, in all the models considered, the trans-
verse response decreases when including meson exchange
currents in the 1p1h channel. This result is consistent
with previous independent calculations performed in the
relativistic and non-relativistic Fermi gas models as well
as in the non-relativistic and semi-relativistic shell mod-
els. The result is a consequence of the fact that the main
contribution arises from the interference of the OB and
∆ currents, in particular through the exchange diagram,
carrying a minus sign. The contribution from the direct
part of the MEC matrix element is zero in the Fermi gas,
and this is the reason for the negative contribution.

It is worth mentioning the existence of some calcula-
tions that disagree with this result and suggest a different
effect of MEC on the transverse response. We would like
to comment in particular on two notable model calcula-
tions: the Green Function Monte Carlo (GFMC) model
from reference [72] and the Correlated Basis Function
(CBF) calculation by Fabrocini [66], both including me-
son exchange currents in the 1p1h sector. In both ap-
proaches, the effect of MEC is positive in the quasielas-
tic peak and quite significant, around 20%, in the trans-
verse response. This substantial effect is attributed to
the simultaneous effect of tensor correlations in the wave
function and MEC. In fact, in Fabrocini’s calculation, the

origin of this effect was found to be the tensor-isospin cor-
relation contribution in the direct matrix element of the
∆ current, which is non-zero when summing over isospin
for correlated wave functions. This effect can also be un-
derstood in terms of presence of short-range correlations
in the nuclear wave function. The direct matrix element
of MEC, when a proton is emitted, involves the interac-
tion of the proton with protons as well as with neutrons,
i.e., the MEC matrix element involves PN and PP pairs.
The high-momentum component of these pairs is signif-
icantly different because PN pairs contain the 3S1 and
3D1 deuteron-like waves, while PP pairs do not. There-
fore, when summing over isospin, there is no cancellation
between PP and PN pairs in the high-momentum part of
the wave function, resulting in a non-zero direct matrix
element. This is in agreement with the conclusion of Fab-
rocini, as the tensor-isospin term precisely generates this
significant difference between PP and PN pairs. An al-
ternative way to investigate this hypothesis would be to
perform calculations in the independent particle model
by solving the Bethe-Goldstone equation [73] for PP and
PN pairs and using a correlation current similar to the
one proposed in [74]. Such calculations could provide fur-
ther insights into the effect of short-range correlations on
the MEC contributions to the transverse response.

On the other hand the results of Fabrocini reproduce
the well-known effect that MEC has a negative impact on
the transverse response when the correlations functions
are set to zero, consistent with the results from uncor-
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FIG. 14: Comparison of the transverse interference OB-∆
computed in the generalized SuSAM* model with and without
relativistic effective mass and vector energy for the ∆.

related models. Since in the present work we started
with an uncorrelated model, the relativistic mean field,
the effects of correlations in the transverse current are
expected to be included phenomenologically in the scal-
ing function. This and other mechanisms, such as final
state interactions, contribute to the violation of scaling
observed in the data.

To summarize, this work presents a generalized scaling
analysis of the (e,e’) cross section of 12C, including the
MEC consistently in the formalism. To achieve this, we
have introduced a new definition of the single nucleon
tensor in the factorization of the model. The average
per particle of the hadronic tensor for 1p1h emission has
been defined by considering the sum of the one-body and
two-body currents, without modifying the definition of
the scaling function, which remains the same as in the
one-body current case in the Fermi gas. This averaging
definition has been extended beyond the scaling region
−1 < ψ∗ < 1 of the Fermi gas by slightly modifying the
momentum distribution with a smeared Fermi distribu-
tion that allows the evaluation of MEC for any value of
the scaling variable.

By incorporating the MEC and using the phenomeno-
logical scaling function, we have calculated the 1p1h re-

sponse functions in the RFG, RMF, and SuSAM* mod-
els. The results show the impact of the MEC on the
response functions, particularly in the transverse sector.
The MEC reduce the transverse response while the lon-
gitudinal response is found to be hardly affected by the
MEC. Furthermore, the analysis of the OB-MEC inter-
ference and the comparison between the SuSAM* and
RFG models highlight the role of the effective mass and
the ∆ resonance in the response functions.

Overall, the generalized scaling analysis with the inclu-
sion of MEC provides a consistent framework for study-
ing quasielastic electron scattering in nuclei account-
ing for relativistic dynamical effects through the effec-
tive mass. The approach adopted in this work differs
from other scaling analyses, such as the original SuSAM*
model, in the definition of the single-nucleon dividing fac-
tor, which now incorporated the effect of MEC in the
1p1h channel. However, the ultimate results are compat-
ible between different models because the improvement
in scaling symmetry is not significant when modifying
the single nucleon in this manner. This means that both
formalisms will describe the experimental cross section
data similarly, as they have been adjusted accordingly.
The difference between various approaches lies in how
the scaling function is adapted and rectified based on
the chosen prefactor of the single nucleon. The equiva-
lence between these models and others, such as SuSAv2,
indicates the flexibility of the scaling approach to adapt
to the circumstances of the emphasized model. Scaling
is only an approximate symmetry of quasielastic data,
and the degree of violation of this symmetry should be
attributed to all effects that break the factorization of
the cross section in a many-body system with complex
interactions and correlations between particles.

In conclusion, this work presents the first comprehen-
sive study of quasielastic electron scattering in nuclei that
includes the 1p1h meson exchange currents (MEC) con-
sistently in a generalized scaling approach, extending pre-
vious work where this contribution was evaluated in the
relativistic Fermi gas (RFG) framework. Looking ahead,
this work opens the door to future developments and ap-
plications, including the extension of the model to study
neutrino-nucleus scattering.

V. ACKNOWLEDGMENTS

Work supported by: Grant PID2020-114767GB-
I00 funded by MCIN/AEI/10.13039/501100011033;
FEDER/Junta de Andalucia-Consejeria de Trans-
formacion Economica, Industria, Conocimiento y
Universidades/A-FQM-390-UGR20; Junta de Andalucia
(Grant No. FQM-225); INFN under Project NUCSYS;
and University of Turin under Project BARM-RILO-23-
01.



18

SuSAM*
RFG M*

q = 300 MeV

R
T
[G

eV
−
1
]

1801501209060300

35
30
25
20
15
10
5
0

q = 700 MeV

7006005004003002001000

12
10
8
6
4
2
0

q = 400 MeV

R
T
[G

eV
−
1
]

4003002001000

20

16

12

8

4

0

q = 1000 MeV

1000800600400200

5

4

3

2

1

0

q = 500 MeV

ω [MeV]

R
T
[G

eV
−
1
]

5004003002001000

20

16

12

8

4

0

q = 1500 MeV

ω [MeV]

140012001000800600400

1.6

1.2

0.8

0.4

0

FIG. 15: Total transverse responses for 12C including MEC in the RMF model with M∗ = 0.8 compared to the generalized
SuSAM* model.

EXP
SuSAM*

SuSAM*+MEC

ǫ = 361MeV, θ = 60◦

250200150100500

25

20

15

10

5

0

ǫ = 401MeV, θ = 60◦

300250200150100500

18

16

14

12

10

8

6

4

2

0

ǫ = 440MeV, θ = 60◦

300250200150100500

12

10

8

6

4

2

0

ǫ = 480MeV, θ = 60◦

d
σ
/
d
ω
d
Ω

[n
b
/
M
eV

]

300250200150100500

9

8

7

6

5

4

3

2

1

0

ǫ = 500MeV, θ = 60◦

350300250200150100500

8

7

6

5

4

3

2

1

0

ǫ = 560MeV, θ = 60◦

3002001000

6

5

4

3

2

1

0

ǫ = 961MeV, θ = 37◦

ω [MeV]

8006004002000

7

6

5

4

3

2

1

0

ǫ = 1299MeV, θ = 37◦

ω [MeV]

10008006004002000

2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

ǫ = 3595MeV, θ = 16◦

ω [MeV]

150010005000

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 16: Cross section of 12C for several kinematics com-
puted with the generalized SuSAM* model, including MEC,
compared with the same calculation without MEC. Experi-
mental data are from Refs. [68, 69].
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