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Abstract 

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have 
been present for a long time in several fast-moving consumer products, several of which imply exposure of the gas-
trointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimen-
tal evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow 
absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal 
permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral 
administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted 
increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although 
evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal 
activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications 
of these effects are recounted in this contribution, along with a discussion of the more important open issues and rec-
ommendations for future research.
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Introduction
Exploitation as food additives represents a major use 
for engineered nanomaterials (ENM) in terms of pos-
sible impact on human health. While sizable acute 
toxicity of nanostructured food additives has been 
repeatedly excluded, their long-term effects are much 
less characterized. One of the reasons for this incom-
plete understanding is that nanomaterials undergo a 
variety of transformations from their ingestion to their 
elimination or absorption (Fig. 1). This evolving identity 
is due to the exposure to complex matrices composed 
of mixtures of organic compounds at different pH and 
ionic strengths, as well as to the microbial populations 
specific for the different sections of the gastrointestinal 
tract.

Silicon dioxide (SiO2) nanoparticles are one of the 
nanomaterials synthesized in large quantities, with a 
worldwide production of thousands of tons. Synthetic 
amorphous silica (SAS), used as food additive E551, 
is exploited for defoaming, chill-proofing, emulsifica-
tion, viscosity control, anti-settling, and anti-caking 
[1]. Recently, sugar-bound SAS has also been used as an 
artificial sweetener to activate tongue taste receptors, 

providing sufficient sweetening activity with fewer mol-
ecules of sugar [2].

Although SAS has been used for several decades as 
a food additive, the presence of a nanosized fraction 
(Amorphous Silica NanoParticles, ASNP) has been rec-
ognized only in relatively recent years. Food products 
containing SAS have been shown to contain ASNP up 
to 43% of the total silica content [3]. Digestion experi-
ments have suggested that dietary ASNP maintain their 
nanofeatures in the intestine [4]. Previous studies had 
pointed to no-observed-adverse-effect-level (NOAEL) 
larger than 1000  mg silica/kg body weight per day [5]. 
Owing to the lack of obvious acute toxicity, the presence 
of silica in food is generally considered safe. However, 
more recent studies have led to a reconsideration of these 
values [6], and EFSA has concluded that additional data 
are needed before a definite conclusion is reached about 
ASNP toxicity [7].

Food-grade ASNP are produced either at high (e.g., 
fumed or pyrogenic ASNP) or low temperatures (e.g., 
precipitated ASNP), although the different production 
processes are not highlighted by a different denomina-
tion (both are indicated as E551) or a distinct regulatory 
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discipline. Another form of nanostructured silica, intro-
duced through ingestion, is represented by mesoporous 
nanoparticles (MSN), usually exploited as drug carriers 
[8]. For the limited quantities involved they will not be 
specifically considered in this review unless the mecha-
nism presented is considered of general significance.

However, for widely produced and exploited nanoma-
terials, such as ASNP, “intentional” ingestion, as food 
additives or drug carriers, represents only one of the 
ways of exposure. Unintentional exposure may also occur 
through water and other environmental contamination 
[9]. Moreover, exposure to ASNP through routes other 
than oral administration may lead to contact between 
the intestine and the nanomaterial, for example if inhaled 
silica is then ingested or the disposal of introduced nano-
particles involves biliary excretion [10].

Although several reviews concern the impact of ENM 
on microbial communities, no attempt has been made so 
far to critically review the literature available on the rela-
tionship among ASNP, gut microbiota and the possible 

consequences of this interaction on human health. This 
contribution has the purpose to fill this gap, resuming 
the most relevant data available on the topic and trying 
to highlight the limitations that have prevented until now 
the definition of a clear relationship between nanomate-
rial-dependent dysbiosis and pathological outcomes.

ASNP fate in the gastrointestinal tract: 
physico‑chemical modifications, bio‑corona 
formation, and the acquisition of diverse biological 
identities
High specific surface ratio, one of the most characteris-
tic features of nanostructured materials, promotes the 
adsorption of several substances on the surface of ENM 
such as ASNP. Therefore, the food matrix in which the 
particles are mixed is a variable that modulates the fate of 
ingested ENM [11].

Once ingested, ASNP undergo further changes during 
passage through the human gastrointestinal tract [10], 
and their surface characteristics are markedly affected by 

Fig. 1  ASNP fate after oral intake. A schematic sketch showing the evolution of ASNP from synthetic (as present in the food matrix) to biological 
identities (the entities that interact with the gut wall). After ingestion, ASNP are modified by the biological fluids of various gastrointestinal sections, 
and their surface adsorbs a variety of endogenous, exogenous, and microbial bioactive molecules (e.g. PAMPs (Pathogen-Associated Molecular 
Patterns acting as macrophage activators), metabolites, nutrients….), forming a dynamic biocorona and providing an array of biological identities 
that are responsible for the effects. See the text for further explanation
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the changing features of different sections of the diges-
tive system (Fig. 1). For instance, pH undergoes dramatic 
changes, being around neutrality in the mouth, dropping 
to 2 in the gastric lumen, rising to 5 in the small intestine, 
to reach values higher than 7 in the colon. These changes 
are of paramount importance, influencing both the sur-
face charge and the aggregation state of ASNP. Peters 
et  al. [12] used various food matrices containing E551 
or ASNP with an in  vitro model mimicking the human 
digestive tract. The results indicated that NP formed 
large agglomerates in the stomach but were solubilized 
again into dispersed NP under intestinal conditions.

In another study, ASNP with a primary particle size 
below 50 nm were found dispersed in culture media (pH 
7.4), where they have a negatively charged surface and 
moderately aggregate [13]; when dispersed in a gastric-
mimetic medium, surface becomes quasi-neutral and 
ASNP extensively aggregate to re-assume a strongly neg-
ative charge and a better dispersed state in a simulated 
intestinal digestive solution. Changes in surface features, 
together with the specific composition of the medium, 
modify the quantity and quality of adsorbed solutes, such 
as bile salts, microbial metabolites and proteins. The 
formation of a dynamic biocorona (see Fig. 1) is a char-
acteristic of ENM present in biological fluids and can 
influence the toxicological properties of the nanoparti-
cles, as extensively shown and reviewed in literature [14–
20]. For instance, macrophages and other innate immune 
cells respond to the biocorona-dependent biological 
identity of nanomaterials rather than to their synthetic 
identity [18].

Through modifications of the surface characteristics 
of ASNP, also the manufacturing process can influence 
their interaction with gastrointestinal fluids and absorp-
tive processes [21]. Although the sizes of precipitated and 
fumed ASNP are comparable, their aggregation state and 
dissolution properties differ. Precipitated ASNP were sig-
nificantly more absorbed and accumulated in intestinal 
cells than pyrogenic ASNP. Once penetrated the intesti-
nal cells, ASNP slowly decomposed so that they were no 
longer identifiable in the bloodstream and kidneys. Pyro-
genic ASNP have been extensively characterized during 
passage through the rat digestive tract [22], demonstrat-
ing that, depending on the dose, the physical state of the 
nanomaterial changes. At medium/high doses, gel-like 
properties were evident; at low doses, comparable to 
realistic consumer exposure levels, low gelation occurred, 
increasing the bioavailability of ASNP.

Different surface characteristics also influence bioco-
rona formation [23]. This different biological behavior has 
been attributed to the exposure of silanol surface groups 
which increase the electrostatic interactions of pyrogenic 
ASNP with the plasma membrane of exposed cells or 

macromolecules present in the extracellular or intracel-
lular environment. The enhanced chemical reactivity not 
only perturbs the integrity of the plasma membrane, but 
it could also involve the generation of hydroxyl radicals, a 
feature that is largely absent in precipitated ASNP. These 
features may underlie significant biological effects, such 
as inflammasome activation [23]. Although specific stud-
ies addressing this issue are still lacking, it is possible to 
speculate that, in the gut context, surface characteristics 
derived by distinct production processes may lead to dif-
ferential interactions with fluid macromolecules and the 
acquisition of novel biological identities.

Exposure issues: from realistic doses in vivo 
to in vitro experiments
The contribution by van der Zande et  al. [22] indicates 
that dosimetry, aggregation state, and bioavailability are 
related. Moreover, based on the scientific literature dis-
cussed above, it is highly likely that the effective expo-
sure to ASNP also depends on the dose of E551 ingested. 
Thus, it is important that the ASNP doses exploited in 
the experimental models do not markedly exceed the 
realistic exposure levels expected in real life. From data 
reported by Dekkers et  al. [3], the western consumer 
intake of silica from food was estimated at 9.4 mg/kg bw/
day, of which 1.8  mg/kg bw/day was estimated to be in 
the nano-size range.

The estimation of realistic exposure levels is impor-
tant for the correct implementation and interpreta-
tion of both in  vivo and in  vitro experiments. In other 
words, only experiments performed with realistic dose 
ranges can yield biologically significant results. Realistic 
oral exposures are essential to define the level of silicon 
reached in internal organs after ASNP ingestion in real 
life and, hence, the possible correlation with pathologi-
cal changes. Actually, one of the reasons justifying the 
attribution of low toxicity to ASNP is the low concentra-
tion of Si in internal organs upon oral administration of 
ASNP. For instance, van der Zande et al. [22] did not find 
any marked increase in Si content in any organ except the 
spleen upon prolonged oral administration to rats. How-
ever, in 2015, a report estimated Si content in human 
liver at a level comparable to that measured or estimated 
in animal studies in which adverse effects (e.g., liver 
fibrosis) were found [24].

The slow absorption of ASNP in vivo is likely attribut-
able to the low permeability of well-differentiated intesti-
nal cell monolayers documented in  vitro [25]. However, 
other, more recent studies, performed with highly sensi-
tive methods, have detected sizable, although modest Si 
deposition in both the liver and spleen, with a possible 
pathogenetic role [6, 26]. The extent of the absorption 
and accumulation is variable. Lee et al. [27] evaluated the 
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absorption of nanostructured and bulk SiO2 either in the 
rat, following single-dose oral administration, or in vitro, 
using a 3D culture system, consisting of human intes-
tinal follicle-associated epithelium. The absorption of 
nanoparticles (3.94 ± 0.38%) was greater than that of bulk 
materials (2.95 ± 0.37%) without significant effects of par-
ticle size on in vivo dissolution, biodistribution, or excre-
tion kinetics. Glucose increases oral absorption, possibly 
due to surface interactions with nanoparticles [27].

Realistic in  vivo exposure also provides the rationale 
for identifying reasonable doses for in vitro experiments. 
Guo et al. [28], starting from the estimated average expo-
sure of Dekkers et  al. [3], considering a total intestinal 
surface area of 2 × 106 cm2 [29], and the wide variation of 
intake between different subjects [3, 30], selected a range 
of ASNP doses from high (2 × 10−3 mg/ml, 100 × the 
“physiological” dose), medium (2 × 10−5 mg/ml, the 
“physiological dose”), and low (2 × 10−7 mg/ml, 1/100 
“physiological” dose) for their in vitro experiments. These 
doses were lower (in some cases, much lower) than those 
used in most studies.

The understanding of the consequences of the low 
absorption of ASNP on distant organs has led to over-
look the possible pathogenetic role of the non-absorbed, 
major aliquot of ingested ASNP that persists in contact 
with the gut wall. This role may be justified by the inter-
action of ASNP with intestinal mucosal components or 
with microbial communities that colonize the gut, two 
not mutually exclusive alternatives.

Thus, a realistic experimental model of the interaction 
between ASNP and gut microbiota should consider all 
these variables, mimicking the conditions in a specific 
gastrointestinal tract, using realistic doses of ASNP, pos-
sibly endowed with the expected biological, rather than 
synthetic, identity. On the other hand, studies aimed 
at evaluating the effects of ASNP on gut homeostasis 
should be performed with models including both host 
and bacterial cells. However, most of the in vitro studies 
performed to date have been performed in the absence 
of bacteria. Therefore, we will first recount the data avail-
able on ASNP effects on host intestinal cells or tissues, 
distinguishing epithelial and immune cells, and then the 
available evidence on the interaction between ASNP and 
microbiota.

Local intestinal effects: genotoxicity, cytotoxicity, 
inflammation, functional perturbation
ASNP have been reported to induce genotoxicity both 
in  vivo and in  vitro [31]. In this systematic review the 
authors collected the most relevant investigations 
describing different mechanisms of genotoxicity of ASNP, 
distinguishing primary effects from secondary effects, 
due, for example, to reactive oxygen species (ROS) 

production or inflammation. However, the collected evi-
dence for gastrointestinal effects is limited and, as far as 
in  vitro studies are concerned, the doses exploited are 
very high. Moreover, even in studies exploiting oral gav-
age as the administration route, effects on distant organs 
rather than intestine have been investigated [32–34].

The simplest, yet largely used, in vitro intestinal models 
for the investigation of adverse effects of ASNP are mon-
olayers of polarized colon-derived epithelial cell lines. 
Sergent et al. [35] studied the cytotoxicity and genotox-
icity of ASNP in the HT29 human intestinal cell line, a 
mucus-producing model, demonstrating that the nano-
material produced only slight cytotoxic and genotoxic 
effects after a sub-chronic exposure of 24 h.

Compared to bidimensional cultures, organoids repre-
sent a more physiological model, increasingly adopted in 
toxicological studies. Exploiting this approach, Park et al. 
[40], while confirming a very low acute toxicity in  vivo, 
reported sizable toxicity in two-dimensional CCD-18Co 
cells (described as normal human colon fibroblasts), 
three-dimensional CCD-18Co spheroids, and human 
colon organoids, with IC50 values of 0.6, 0.8 and 0.3 mM 
for SiO2, corresponding to the high doses of 36, 48, and 
18  mg/ml, respectively. Interestingly, the study reached 
quite peculiar conclusions, with ASNP exerting more 
powerful toxic effects than TiO2 NP (IC50 values of 2.5, 
1.1 and 12.5 mM in the same models).

Cytotoxicity and genotoxicity can, of course, be linked 
to a possible role in carcinogenicity. The role of ASNP 
in chemical carcinogenesis may also be indirect. Indeed, 
ASNP can adsorb genotoxic agents, increasing their 
DNA-damaging potential, as proposed in macrophages 
[36]. In this context, another process of paramount 
importance is Epithelial-Mesenchymal Transition (EMT), 
which is linked to malignant characteristics such as inva-
siveness and metastasis. Setyawati et al. [37] studied the 
effect of nanoparticles used as food additives on this pro-
cess exploiting SW480 colorectal cancer cells as in vitro 
model. Nano-TiO2 exposure was clearly linked to EMT 
through the transforming growth factor-β (TGF-β)/mito-
gen-activated protein kinase (MAPK) and wingless (Wnt) 
pathways, but induction of EMT-related changes was also 
observed with ASNP and hydroxyapatite nanoparticles.

In contrast to HT29 cells, Caco-2 cells, another widely 
used intestinal model, do not produce mucus and form 
high-resistance monolayers. A Caco-2 clone, C2BBe1 
cells, internalizes ASNP, previously incubated in a simu-
lated intestinal solution, but does not exhibit marked 
cytotoxicity at the high, but reasonable dose of 10  µg/
cm² [13]. Contado et al. and Setyawati et al. also reported 
a substantial lack of acute toxicity of food-grade ASNP 
[38, 39]. However, another study [40] indicated that the 
cytotoxic effects of ASNP depend on the differentiation 
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status of the cells, with undifferentiated cells being more 
sensitive. This effect may explain the results obtained by 
Tarantini et  al. [41], who described the size- and con-
centration-dependent cytotoxic and genotoxic effects of 
ASNP in Caco-2 cells, linked to cell uptake of the nano-
material and the consequent oxidative stress. Smaller 
ASNP also induced increased IL-8 secretion, although 
at a relatively high dose (32  µg/ml). However, the same 
group only partially confirmed these results in rats 
exposed through oral gavage to 5, 10, or 20 mg/kg b.w./
day of pyrogenic or precipitated ASNP for three days. 
Comet assay analysis showed neither significant DNA 
strand breaks nor oxidative damage in any of the tissues 
tested, including gut. However, the authors reported a 
weak increase in the percentage of micronucleated cells 
observed in the colon of rats exposed to the lowest doses 
of pyrogenic, but not precipitated ASNP [42]. The weak 
acute toxicity on differentiated Caco-2 cells was con-
firmed in a systematic study by Hempt et  al. [43], who 
found no evidence of acute cytotoxicity in monolayers 
of differentiated Caco-2 cells with ten well-defined “real 
food-grade SAS,” either precipitated or pyrogenic.

Lack of sizable cytotoxicity suggests that a direct 
inflammogenic effect of ASNP is unlikely. However, an 
indirect mechanism for inflammation was suggested by 
the results reported by Setyawaty et  al. [38], who dem-
onstrated that, in contrast to ZnO NP, ASNP do not elicit 
NF-kB activation or cytokine gene induction. However, 
the same authors also showed an increase in ROS pro-
duction in ASNP-treated intestinal cells, but the effect 
was only observed at very high ASNP doses and was not 
associated with overt cytotoxicity.

The intestinal mucosal barrier regulates the relation-
ships between the body and the outside world through 
mechanical, chemical, immune and microbial-dependent 
mechanisms [44]. The mechanical components of the 
intestinal barrier are the mucus and the epithelial layer, 
composed of different cell populations and endowed with 
properties of selective permeability due to tight junctions 
(TJs) between cells and a wide array of transporters. The 
chemical mechanisms are due to the complex mixture of 
gastric acid, bile, digestive enzymes, and antimicrobial 
proteins produced by the various sections of the gas-
trointestinal tract. Immune barrier includes innate and 
acquired immunity, the former based on macrophages 
and dendritic cells and the latter consisting in the gut-
associated lymphoid tissue (GALT), the largest lym-
phoid tissue in the body. Through a dynamic relationship 
with host tissues, microbiota cooperates with the other 
mechanisms to ensure full functionality to the intestinal 
barrier.

Most of the available data concern ASNP-induced 
changes in the mechanical mechanisms of the barrier. In 

a study aimed to assess changes in rat immune system 
after ASNP oral administration (daily, in doses rang-
ing from 0.1 to 100  mg/kg of body weight for 92 days), 
Gmoshinski et al. found no modification of intestinal per-
meability to protein macromolecules (ovalbumin) [45], 
suggesting a relative insensitivity of the intestinal barrier 
to ASNP. This study was consistent with the assumption 
of low toxicity of ASNP on intestinal structure and func-
tion, although the ASNP characterization was incom-
plete, thus preventing a proper comparison with other 
studies.

A more complex in vitro model consisted of the co-cul-
tures of Caco-2 and HT29 cells. The Caco-2/HT29 model 
can be further implemented with a lymphoid cell popu-
lation (Raji lymphocytes) that differentiates into M cells 
[46]. Using a Caco-2/HT29 co-culture upon acute (4  h) 
or chronic (5d) exposure, Guo et al. found that the barrier 
function was not acutely decreased, although it was com-
promised upon chronic exposure, in association with the 
generation of ROS and the initiation of pro-inflammatory 
signaling [47]. Further studies [48] proposed a mecha-
nism involving the disorganization of ZO-1-dependent 
tight junctional complexes and actin cytoskeleton dis-
ruption, in the absence of changes in the expression of 
tight junctional proteins, with the mucus layer exhibiting 
a protective effect. In the same model, the shape of the 
ASNP was also important, with virus-like NP causing a 
larger permeation-enhancing effect than spherical silica 
NP of the same size (∼ 60 nm) [49].

The effects of exposure to ASNP on the intestinal bar-
rier, considered as an interactive structure of epithelial 
and subepithelial tissues, have been studied by Kasper 
et  al. [50] with an in  vitro co-culture model consisting 
of the intestinal cell line Caco-2 and the microvascu-
lar endothelial cell line ISO-HAS-1 on opposite sides of 
a transwell filter membrane. Mimicking Inflammatory 
Bowel Disease (IBD), the authors obtained a significant 
barrier disruption, demonstrated by an increase of the 
damage-related secreted form of the adhesion mole-
cules ICAM and E-selectin and of the pro-inflammatory 
cytokine IL-8. Under these conditions, ASNP caused 
a decrease in exosomes bearing sICAM/sE-selectin, a 
change that authors interpret as an interference with exo-
somal trafficking, but that may also indicate a mitigation 
of inflammatory changes.

Organoids can also be used to produce more complete 
models of the intestinal epithelium than two-dimen-
sional, traditional cultures [51, 52]. The latter contri-
bution highlights the different behavior of intestinal 
monolayers with or without M cells when the perme-
ability and biological effects of nano- and microplastics 
are investigated, suggesting that the presence of this spe-
cialized population could be important for evaluating the 
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effects of other nanomaterials. It should also be noted 
that the increase in permeability caused by exposure 
to ASNP has been proposed as a device to enhance the 
absorption of proteins of pharmacological interest [53] 
(see below).

Other functions of the intestine, such as its absorptive 
activities, seem to be influenced by ASNP. Kolba et  al. 
[54] adopted the model of Gallus gallus (broiler chicken) 
eggs (intra-amniotic administration) to study the effects 
of TiO2, SiO2, and ZnO NP on gut health and function. 
NP type, dose, and the presence or absence of minerals 
resulted in altered functions and abundance of intestinal 
bacterial populations (see below). It has been reported 
that ASNP, while increased the activity of brush border 
intestinal alkaline phosphatase, significantly affected Fe, 
Zn, glucose, and lipid absorption, lowering the expres-
sion of nutrient transport proteins, damaging the brush 
border membrane, and reducing the absorptive surface 
area [47]. Among the transporters of nutrients affected 
by ASNP, a defect in the peptide transporter OPT-2/
PEP-2 has been described, leading to a defective absorp-
tion of di- and tri-peptides in the model organism Caeno-
rhabditis elegans [55]. After absorption, the peptides are 
trapped in intracellular vesicles, causing severe growth 
defects in the exposed worm.

Effects on immune cells in the intestine: activation 
and modulation of response
In addition to epithelial cells, the gastrointestinal mucosa 
contains an important and complex population of innate 
and adaptive immune cells, which must survey the 200 
m2-mucosal surface and establish homeostatic relation-
ships with the normal microbiota, while preventing and 
counteracting tissue invasion from pathogens or toxic 
substances. The population of innate immune cells com-
prises macrophages, dendritic cells, and innate lymphoid 
cells (ILCs), with a predominance of ILC3 cells, whereas 
adaptive cells include various subsets of T and B cells [56, 
57].

Although mostly performed on cells derived from tis-
sues other than the intestine, available experiments 
indicate that ASNP are not markedly cytotoxic towards 
innate immune cells, although, when directly com-
pared, cells of the macrophage lineage are more sensitive 
than intestinal epithelial cells [36]. Most contributions 
obtained in murine models indicate that ASNP can exert 
an activating effect on macrophages [58–61], with pyro-
genic ASNP apparently more effective than their precipi-
tated counterparts upon acute exposure [59]. However, in 
human macrophages, when used at low, non-toxic doses, 
ASNP, rather than activate macrophages, can rather 
modulate their response to natural PAMPs, such as LPS, 
leading to the intracellular sequestration of membrane 

receptors and, thus, interfering with cytokine secretion 
and activation-associated metabolic changes [62, 63].

In vitro exposure to ASNP, similarly to fine crystalline 
silica and TiO2 nanoparticles, induce MHC-II, CD80, 
CD86 in murine dendritic cells (DC) and activate the 
inflammasome, causing a sizable IL-1β-secretion [64]. 
Winkler et  al. [65] generated immature dendritic cells 
(DCs) and demonstrated that, while they internalize 
ASNP without exhibiting cytotoxicity or release of inter-
leukin (IL)-1α or tumor necrosis factor-α, they display 
maturation markers, induce pro-IL-1β and, subsequently, 
secrete the mature cytokine. In contrast, no IL-1β secre-
tion occurs upon internalization of TiO2 or FePO4 
nanoparticles. The same authors demonstrate that that 
endosomal pattern recognition and MyD88 are involved 
in the effect [4]. The activating effect of ASNP on DCs 
may involve ATP secretion and the purinergic receptor 
P2 × 7 [66].

Interestingly, the ability to promote activation of imma-
ture DC may imply the breakdown of oral tolerance, the 
process that avoids excessive immune response to anti-
gens, included those contained in food, and autoanti-
gens [67]. These authors have demonstrated that ASNP 
(39 nm) increased the levels of ovalbumin (OVA)-specific 
IgG in OVA-tolerized mice, induced the proliferation of 
OVA-immunized splenocytes, and increased the expres-
sion of OVA-specific IgG1, IgE, and IgG2a, indicating 
stimulation of both the TH1 and TH2 lymphocytes. The 
expression of interferon (IFN)-γ (TH1), interleukin (IL)-4 
and IL-5 (TH2), and IL-17 (TH17) was also stimulated in 
a dose-related manner in splenocytes treated ex vivo with 
OVA. These results are substantially consistent with what 
was observed by Feray et  al. [68], who exposed human 
monocyte-derived dendritic cells to pyrogenic ASNP and 
demonstrated that treated cells upregulated the surface 
expression of CD86 and CD83 (DC activation markers) 
and the secretion of CXCL-8 and CXCL-12.

As far as adaptive immunity cells are concerned, a 
decrease of CD4+ T cells and an increase in Treg cells 
was observed after 28 and 92 days of silica administration 
in rats with an evident dose dependence [45]. Counter-
intuitively, these changes were associated with a marked 
increase of serum TNFα and a decrease of IL-10, of which 
intestine is a major source. Interestingly, the NOAEL for 
this “immunotoxicity” (100  mg/kg/d) was much lower 
than that calculated for systemic toxic effects (see above). 
These authors wonder what is the mechanism underlying 
these effects, given the very low systemic bioavailability 
of ASNP, and attribute an important role to alteration of 
the marked local immune response observed in a previ-
ous study [69]. In co-cultures of dendritic cells and lym-
phocytes, pyrogenic ASNP increased the proliferation of 
T-lymphocytes and the production of IL-9, IL-17 A and 
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F by these cells [68]. The influence of bacteria on these 
effects has been investigated by Malachin et al. [70], who 
combined the treatment with ASNP with the incubation 
in conditioned media of cultures of commensal or patho-
genic bacteria. Dose-dependence and arrays of cytokines 
secreted changed according to the bacteria used to pro-
duce the conditioned media, and the effects were medi-
ated by both proteinaceous and non-proteinaceous 
compounds.

Possible microbiota-mediated effects of NP on immune 
function have been reviewed by Lamas et  al. [71]. 
Authors conclude that NP may simultaneously influence 
immune cells and intestinal microbiota composition, 
although their contribution was particularly focused on 
NP endowed with clear cut antibacterial properties and 
only marginally concern ASNP. The issue is discussed 
more thoroughly below.

Interaction with microbiota: evidence from studies 
on microbial communities in the environment 
and model organisms
One of the first data on the possibility that “inert”, silica-
based nanomaterials can affect microbial populations 
was obtained in 2008 [72], with the demonstration that 
nanometric glasses with different sodium content modi-
fied bacterial growth on bovine dentine disks with adher-
ent Enterococcus faecalis cells. Silica NP were instead 
found relatively ineffective, compared with highly toxic 
silver NP, on arctic soil microbial community [73].

Evaluating the antibacterial activity of medicinal 
earths, dating to 16th–18th century, natural clays of the 
same composition (reference clays) and synthetic clays 
(natural clays spiked with elements such as B, Al, Ti and 
Fe), Christidis et  al. [74] demonstrated that the activity 
was likely attributable to a fungal exometabolite (bioxan-
thracene B), produced by Talaromyces sp, a fungus of the 
family of Trichocomaceae (order Eurotiales), historically 
associated with Penicillium.

Beneficial effects on microbial communities were also 
recorded. Nanosilica (20–40  nm), originated by green 
synthesis, significantly enhanced microbial populations 
by influencing the total biomass content, in terms of both 
C and N, with larger effects than those observed with 
microsilica, sodium silicate and silicic acid [75]. More 
recently, growth promoting effects of ASNP on rhizobac-
teria, mediated by the induced capacity to sustain envi-
ronmental stress, have been also reported [76].

Lastly, ASNP are able to modulate the metabolic char-
acteristics of microbial communities [77]. The rhizos-
phere metabolite profile of Brassica chinensis L. plants, 
sprayed with SiO2-NPs every 3 days for 15 days, was 
altered with significant increases or decreases in the 

relative abundance of several metabolites in various bac-
terial and fungal genera.

Model organisms offer unique experimental possibili-
ties and have been used in nanotoxicological studies on 
ASNP. Pandey et  al. [78], studying ASNP uptake in the 
midgut of Drosophila melanogaster, found increased 
expression of hsp70 and hsp22 along with caspase acti-
vation, membrane destabilization and mitochondrial 
membrane potential loss, associated with endocytosis-
mediated uptake in the midgut cells, documented with 
TEM.

Caenorhabditis elegans has been used to evaluate the 
relationship between exposure to ASNP and lifespan [79, 
80]. Results indicate that ASNP enter intestinal cells and, 
through the intestine, reach the reproductive tract, caus-
ing premature reproductive aging associated with the 
increased amounts of ubiquitinylated proteins, a finding 
that suggests an accumulation of misfolded proteins and, 
hence, an alteration of proteostasis. Since developmen-
tal defects were excluded, Pluskota et  al. proposed that 
silica-nanoparticles induce an age-related degeneration 
of reproductive organs. The possible role of microbiota 
in the pro-aging effect of ASNP have been investigated 
more recently [81]. Through a combination of phenotype 
screening, omics profiling and functional validation, 16 
members of C. elegans microbiota were screened. Worms 
grown with Chryseobacterium sp. CHNTR56 MYb120 or 
Comamonas sp. 12022 MYb131, were the most resistant 
to oxidative chemical stress caused by ASNP. RNAseq 
analysis of young adult worms, grown with each isolate, 
revealed the enrichment of cellular detoxification mecha-
nisms, vitamin B6 synthesis, TGF-beta and Wnt signal-
ing pathways. Specifically, vitamin B6, determined both 
in  vitro and in  vivo, contributes to the improvement of 
host fitness and was abundant in the isolates and within 
worms grown with their combination. High levels of glu-
tamine were also found in combination of isolates, sug-
gesting that several bacterial species are grouped in a 
crosstalk that promotes the growth of Comamonas sp. 
12022 MYb131 in vivo and the synthesis of vitamin B6 in 
the worm gut. All together these observations provide a 
proof-of-principle demonstration that a complex pheno-
typic effect of ASNP, mediated by microbiota in the host, 
can be due to a metabolic signal derived from a mutualis-
tic interaction among different bacterial species.

Interaction with microbiota: evidence from studies 
on mammalian models
Recently, some investigative efforts have been placed on 
the possible microbiota-mediated effects on immune 
function of nanomaterials, with a specific attention paid 
on ENM endowed with biocidal activities, which favor 
intestinal dysbiosis [71]. Such studies highlighted that 
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NPs may influence immune cells and cause a moderate to 
extensive impact on intestinal microbiota composition, 
with a recurrent signature that favors pathobiont coloni-
zation. As far as ASNP are concerned, as an example of 
nanomaterial not endowed with marked biocidal prop-
erties, it has been proposed that effects on microbiota 
should be taken into account [71]. These considerations 
suggest the need to investigate possible pathogenetic 
mechanisms associated with ASNP intake but not nec-
essarily linked to absorption or to direct toxic effects of 
the ENM on microbiota. For instance, ASNP may adsorb 
a variety of microbiota-derived macromolecules, which 
are potential activators of immune cells (PAMPs), thus 
providing a rationale for the association between ASNP 
intake and increasingly observed chronic inflammatory 
conditions. PAMPs adsorbed on ASNP bio-corona may 
obtain an enhanced access to the bloodstream promot-
ing the activation of systemic inflammatory responses. 
Another potential pathogenetic mechanism may depend 
on ASNP-induced changes in the microbiota metabo-
lism with increase or depletion of absorbable bioactive 
metabolites.

The possibility that biological effects of nanomateri-
als may be mediated by alterations in microbiota com-
position has been proposed several years ago [82] and 
recently reviewed [83]. The first studies on the possible 
interaction of ASNP with intestinal microbiota were per-
formed in 2015 in rats [84], where no significant changes 
in the qualitative and quantitative composition of the 
intestinal microbiota populations were described. Con-
sistently, no change in α- and β-diversity of gut micro-
biota after an extensive (12 weeks) treatment with a 
low dose (3  mg/kg/d) of ASNP has been reported [85]. 
Overall, relative ineffectiveness of ASNP, compared to 
other engineered nanomaterials (carbon nanotubes, tita-
nium dioxide, cerium dioxide, zinc oxide, nanosilver), 
was also indicated in one of the first attempts to review 
the evidence on the effects of nanomaterials on the gut 
microbiota [86]. In contrast, enhancement of microbial 
species richness and diversity has been described in mice 
exposed to ASNP through oral administration, with an 
increase of genera Alistipes, Lactobacillus, Oscillibacter 
and Prevotella, and a decrease of Bacteroides [87]. More 
recently, several studies [54, 88–90] have presented clear-
cut evidence of microbiota changes associated with the 
toxic effects (e.g. altered transport and barrier functions, 
inflammatory changes, decrease in mucus, increase of 
LPS absorption, hepatotoxicity) observed after ASNP 
exposure.

In a recent investigation, aimed to compare ASNP with 
micro and nano TiO2 through the assessment of several 
endpoints, ASNP at high doses increased systemic (IL-
1α and C-reactive Protein) and local (TNFα and IL-6) 

inflammatory markers, without modifying the histology 
of the intestinal tissue [89]. Overall, the pro-inflammatory 
markers were lower than those observed with titania. At 
phylum level, ASNP drastically lowered Verrucomicrobia 
and Bacteroidetes, while increased Firmicutes. Similar 
changes were observed with titania, at both family and 
genus levels. All the materials significantly decreased 
Akkermansia, Barnesiella and Bacteroides genera. Inter-
estingly, these changes were associated with an increase 
in intestinal LPS content and seem of pathogenetic rel-
evance. In particular, the reduction of Barnesiella could 
hinder intestinal resistance to pathogenic bacteria [91], 
while the fall in Bacteroides may have negative nutri-
tional effects, hindering polysaccharide metabolism and 
butyrate production [92]. The finding of Akkermansia 
depletion is somehow counterintuitive, since A. mucin-
iphila overgrowth is positively correlated with IBD [93], 
but it is consistent with the observed decrease in mucus 
layer thickness (see below, Potential roles in pathology 
and consequences of exposure of susceptible subjects) 
and with other reports that attribute beneficial effects to 
this species (see, for instance [94]).

On the same line of evidence, Diao et  al. [95] treated 
young mice with vehicle or ASNP for 28 days and stud-
ied microbiota changes, through 16S ribosomal RNA 
(rRNA) gene sequencing, and the neurobehavioral func-
tions. ASNP exposure was significantly associated with 
spatial learning defects, memory impairments and loco-
motor inhibition but did not trigger evident intestinal 
or neuronal inflammation. Gut microbial diversity was 
enhanced in treated mice, with increased Firmicutes and 
Patescibacteria. Authors claim that the disruption of gut–
brain axis may be attributed to specific substances, yet 
to be identified, able to decrease the expression of both 
Vipr1 and Sstr2 in the gut and in the brain. Vipr1 encodes 
for the receptor of vasointestinal peptide 1 while Sstr2 for 
a receptor for somatostatin.

No adverse health effects have been instead described 
by Landsiedel et al. [96] after a 28-day treatment of male 
Wistar rats with high doses of ASNP (1000 mg/kg body 
weight/day). However, substantial modifications of the 
gut microbiota were detected, with an increased abun-
dance of Prevotellaceae and the reduction of several gen-
era. Interestingly, authors associated microbiota studies 
with plasma metabolomics, finding several metabolites 
significantly altered in treated animals and, in particular, 
a decrease (0.78-fold of control levels) in indole-3-acetic 
acid, a ligand of the arylhydrocarbon receptor (AHR) 
critical for regulating immunity, xenobiotic metabolism 
and other important functions.

Administration of mesoporous silica nanoparti-
cles (MSN) in mice is also associated with changes in 
the gut microbiota composition [97]. After 2 weeks 



Page 10 of 19Bianchi et al. Journal of Nanobiotechnology           (2024) 22:45 

of exposure, serum ALP, ALT, AST and TNF-α lev-
els increased, infiltration of inflammatory cells in the 
spleen and intestines was detected, and colon epithe-
lial apoptosis was observed. At cell level, mitochondrial 
membrane potential decreased and NLRP3 inflam-
masome expression was stimulated, along with that 
of TLR4 and p-NFκB, while the autophagy-related 
proteins LC3-II and Beclin1 were repressed. MSN sig-
nificantly changed the intestinal microbiota diversity: 
the relative abundances of Firmicutes, Actinobacteria 
and Proteobacteria significantly increased, while Ver-
rucomicrobia markedly decreased. The Firmicutes/
Bacteroidetes (F/B) ratio, a marker of the overall state 
of intestinal microbiota [98, 99], increased in a dose-
dependent way. Moreover, these authors presented a 
metabolomic analysis of intestinal content, which indi-
cated a deviation from normal pattern in NP-treated 
animals. In animals treated with the highest dose of 
ASNP, the levels of 36 metabolites were increased and 
the levels of 5 metabolites were significantly decreased. 
The biosynthesis of phenylalanine, tyrosine and trypto-
phan, together with protein digestion and absorption, 
were the major pathways involved. These changes were 
significantly correlated to modifications in the abun-
dance of specific bacterial genera.

Changes in the gut microbiota composition were 
detected also by Bredeck et  al. [100] with two distinct 
protocols. In mice receiving food containing 1% SiO2 
NP for three weeks the relative abundance of Actino-
bacteria was increased in the absence of changes in α- or 
β-diversity. On the other hand, a contribution aimed at 
evaluating the effect of different preparations of MSN for 
drug delivery indicated that short term exposure of rats 
to the ENM caused a decrease in Verrucomicrobia and 
an increase in Candidatus saccharibacteria. Interestingly, 
only the single type of MSN that perturbed microbiota 
(MCM-41) was associated to inflammatory changes in 
the colon mucosa [90]. Perturbation of the gut micro-
biota composition by ASNP was also observed in male 
C57BL/6JRj mice exposed to dietary NPs mixed at doses 
relevant for human exposure (0.8, 8 and 80 mg/kg pellet). 
After 24 weeks, no evident toxicity was recorded but the 
β-diversity was dose-dependently disrupted, along with a 
decrease of the bacterial derived short chain fatty acids. 
These effects were substantially reversible [101].

The mechanisms underlying the reported effects of 
ASNP on microbiota diversity are still obscure. The 
alteration of the microbiota composition described after 
ASNP intake could be partially promoted by a modified 
biodistribution of nutrients essential to microbiota main-
tenance and adsorbable in the ASNP bio-corona. This 
hypothesis, although not yet validated, may represent a 
suggestive field of investigation aimed to clarify a possible 

correlation between ASNP-associated nutritional avail-
ability and gut dysbiosis.

In turn, changes in microbiota diversity can be associ-
ated with possible alterations of inflammatory signaling 
and immune response in the host. Although not directly 
related to intestinal microbiota, other recent studies 
provide a proof-of-principle experimental evidence that 
ASNP can modulate the functional outcomes of the met-
abolic interaction of bacteria with innate immune cells 
[70]. Interestingly, these studies were based on human 
dendritic cells treated with ASNP in the presence of 
conditioned media (CM) from cultures of commensal 
or pathogenic bacteria. ASNP dose-dependently modi-
fied the array of cytokines produced, which also varied 
according to the bacteria used to produce CM. A prelimi-
nary analysis revealed that both proteinaceous and non-
proteinaceous CM components were involved.

Microbial products can be sensed and recognized non 
only by innate immune cells but also by other cell popu-
lations of the intestinal mucosa. Intestinal epithelial cells 
are indeed endowed with a large array of PRR receptor 
[102], each of which characterized by specific distribu-
tion and regulation. For instance, TLR4 expression is 
time dependent, with higher levels in fetal intestine, 
and mainly localized in the crypts [103]. Moreover, the 
expression was greatly increased in neoplastic compared 
with normal colonocytes [104, 105]. On the other hand, 
TLR2 was more expressed in colonocytes from obese 
than from lean subjects [106].

The metabolic interaction between host cells and 
microbiota components can be complex and biunivo-
cal. Xu et  al. [107] studied the metabolic relationship 
between colon carcinogenesis and Gram-negative bac-
teria. Through the TLR4/MYD88 pathway, Gram nega-
tive bacteria promote the induction of Delta-5 desaturase 
(FADS1), a rate-limiting enzyme for arachidonic acid 
synthesis from linoleic acid, which is upregulated in 
colorectal cancer. The increased availability of this poly-
unsaturated acid promotes cancer growth enhancing 
PGE2 synthesis. Depletion of Gram-negative bacteria 
through specific or broad-spectrum antibiotics abolishes 
the effect. Therefore, any marked changes of microbiota 
composition, potentially due to ASNP intake, may have 
heavy effects on colon homeostasis through the estab-
lishment of metabolic cross talks involving the activation 
of inflammatory, TLR-dependent pathways.

Potential roles in pathology and consequences 
of exposure of susceptible subjects
The pathogenetic implications of oral exposure to ASNP 
should be investigated considering not only the effects 
of the nanomaterial on the intestinal tissue and the vari-
ous cell populations involved, but also the effects on the 
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microbiota, keeping in mind that, in turn, intestinal tis-
sues and microbiota are also able to influence each other.

The complex trilateral interactions that can be envis-
aged (Fig.  2) are not yet validated by experimental evi-
dence but open the pathway to potential research lines 
on several conditions. Among the various possibilities, 
two are worthy of peculiar consideration.

In the case of IBD (Fig.  3), the literature about the 
pathogenetic role of microbiota alterations is rich and 
consolidated, and therapeutic approaches based on this 
relationship have been already proposed (see the recent 
reviews [108–111]). Much less is known on the pos-
sible influence of ASNP on the development of IBD. 
However, Ogawa et  al. [85] have demonstrated that the 
daily intake of 10-nm (but not of 30-nm) ASNP for 12d 
exacerbates dextran sulfate-induced experimental colitis 
in wild-type C57BL/6J mice. The exacerbation was not 
observed in mice deficient of the ASC inflammasome, 
pointing to this complex as the ASNP target. The expo-
sure period seems of paramount importance in deter-
mining the toxicological outcome. Indeed, Cabellos et al. 
[112] found no significant toxic effects either locally 

(intestine) or in distant organs after a 5d administration 
of high doses of non-porous or mesoporous ASNP. On 
the contrary, after a 28d-treatment, the cited contribu-
tion by Yan et al. [89] documented inflammatory damage 
to the intestine, although ASNP had weaker effects than 
nano-TiO2. Changes in the microbiota composition were 
recorded (see above) in mucus-associated bacteria, such 
as Barnesiella, Bacteroides and Akkermansia, which were 
found markedly decreased. This observation is important 
since the same contribution demonstrated a decrease 
of MUC2 expression, and a significantly reduced thick-
ness of intestinal mucus in ASNP treated mice. Thin-
ning of mucus layer can contribute to intestinal damage 
since it favors the direct contact of bacteria with intes-
tinal epithelial cells, lipopolysaccharide absorption and 
TLR4-dependent inflammatory activation. Mucus pro-
duction is an example of intestinal cell function subjected 
to the integrated control by host and microbiota com-
ponents. Indeed, co-cultures of human intestinal cells 
and microbiota components promote the expression of 
mucin genes in the host cells and of mucus-metabolizing 
enzymes in bacterial populations [113].

Fig. 2  Pathogenetic relevance of the trilateral relationship among ASNP, intestinal mucosa and microbiota. Adverse outcomes (here focused 
on the intestine but potentially involving other organs) derive from a relatively limited number of main pathogenetic mechanisms activated 
by the interactions among ASNP, microbiota and intestinal mucosa. Each of these can influence the other two. Depending on their biological 
identities, ASNP can modify microbiota and damage intestinal mucosa (see text). In turn, through the secretion of products and metabolites, 
gut cells and microbiota can modify the biological identity of ASNP and, hence, their biological effects. The bidirectional interaction 
between microbiota and the intestinal mucosa is documented by a rich literature
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Quite paradoxically, alterations in intestinal barrier 
associated to ENM ingestion (see above) have been also 
exploited as a convenient device to increase oral drug 
absorption (reviewed in [114]). In this context, ASNP 
have been used as drug carriers for intestinal inflamma-
tory diseases in experimental models since several years 
(see, for instance, [115–121]). Compared to free drugs, 
compounds carried by ASNP exhibit lowered toxicity 
and a tendency to accumulate in inflamed tissues, which 
renders them particularly interesting in IBD [115]. How-
ever, the possibility that, in susceptible subjects like IBD 
patients, even the low doses of mesoporous silica used 
may have adverse effects on microbiota has not been 
investigated yet.

Some studies have explicitly targeted or detected 
microbiota alterations as therapeutic mechanisms 
or outcomes. Cheng et  al. [122] have synthesized 

multilayer-coated mesoporous silica to release drugs (e.g. 
hydrocortisone) specifically in the colon. These nanoma-
terials are stable in acidic (e.g. stomach) and neutral (e.g. 
intestine) environments but release their cargo in the 
presence of azoreductase produced by the colon microbi-
ota (mimicked in vitro by dithionite). In vivo efficacy was 
confirmed in the dextran-sulfate induced colitic mouse, 
where the preparation favored epithelial barrier integrity 
and elevated the levels of AHR agonists, derived from the 
restored metabolism of tryptophan. Moreover, lowered 
levels of inflammatory cytokines and a partial restoration 
of colitis-induced dysbiosis was observed, pointing again 
to a strict relationship between microbiota alterations 
and mucosal inflammation.

Yin et  al. [123] developed a mesoporous silica nano-
particle conjugated with long-chain fatty acids and cov-
ered with enteric coating. The NP were absorbed and 

Fig. 3  Putative mechanisms involved in microbiota-mediated ASNP contribution to IBD. Once reached intestinal mucosa, biologically 
modified ASNP may persist into the mucus layer interacting with the gut microbiota. ASNP-microbial interaction may shift microbial diversity 
through possible different mechanisms (see text), such as nutritional advantages for selected bacteria due to the delivery of adsorbed metabolites. 
The resulting dysbiosis is associated with a reduction of mucus secretion, increased amounts of selective LPS variants, alteration of epithelial 
barrier function, and penetration of inflammatory agents (such as LPS-doped-ASNP). Mucosal innate immune cells (dendritic cells, neutrophils 
and macrophages) engulf components of the altered microbiota with activation of the inflammatory response and the consequent recruitment 
of selected T-lymphocyte subsets
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transported via the mesenteric lymphatic system, which 
is known to be altered in IBD. The in  vivo efficacy was 
evaluated in the IL-10 KO experimental colitis mouse, 
where laquinimod-loaded nanoparticles were compared 
to the free drug and found more effective. Lymphangitis 
was suppressed and lymphatic drainage restored, with 
lymphangiogenesis inhibition. As in the study of Chen 
et  al., also the alterations of gut microbiota associated 
with experimental colitis were reversed.

The other condition is represented by Non-Alcoholic 
Fatty Liver disease (NAFLD, now defined as Metabolic 
Associated Fatty Liver Disease, MAFLD), one of the most 
common liver disorders in Western world. MAFLD is 
characterized by hepatic steatosis, which can proceed, 
not necessarily, to hepatocyte death, inflammation, fibro-
sis and, eventually, liver cirrhosis and hepatocellular car-
cinoma. This condition has a multifactorial nature, and 
no specific pharmacological treatment is available yet.

Recent contributions demonstrate that food-grade 
silica nanoparticles may cause steatogenic changes in 
liver through a wide alteration of gene expression even at 
doses compatible with human exposure [124]. Evidence 
for hepatotoxicity of nanosilica was also reported in the 
past, although not directly linked to MAFLD. Prolonged 
oral administration of high doses of pyrogenic ASNP was 
associated with an increased incidence of liver fibrosis, 
accompanied by a moderate, but significant increase in 
the expression of fibrosis-related genes in liver samples 
[22]. Hepatotoxicity was also observed by Medina-Reyes 
et al. [88], together with gastrotoxicity and, more impor-
tantly, alterations in gut microbiota, changes attributed 
to oxidative stress as the main mechanism. Interestingly, 
ASNP hepatotoxicity is greatly increased in the mouse 
model of metabolic syndrome induced by fructose [33]. 
In this model, ASNP exposure, while improving insu-
lin resistance, greatly enhanced liver inflammation and 
fibrosis in metabolic syndrome mice.

On the other hand, the relationship of microbiota 
alterations with metabolic syndrome, MAFLD and 
liver fibrosis are well known [125–127] and, most 
recently, mechanistic data have been produced in vitro, 
which link fibrotic changes to trimethylamine N-oxide 
(TMAO), a bacterial metabolite [128] associated with 
diabetes and obesity through epigenetic mechanisms 
[129, 130]. Interestingly, a recent contribution proposes 
that some of the hepatic alterations due to exposure to 
an exogenous, poorly adsorbed material, like micro-
plastics, can be attributed to changes of the microbiota, 
rather than to direct effects of the material itself on the 
liver [131], suggesting that this can be possible for other 
substances. Thus, ASNP may favor MAFLD (a) directly, 
(b) through changes in intestinal barrier permeability, 
promoting the increased exposure of innate immune 

cells and stellate cells in the liver to bacteria or bac-
terial products, or (c) causing a dysbiosis that may in 
turn contribute to the changes reported in (b) or exert a 
steatogenic activity through the increase or decrease of 
specific metabolites (Fig. 4).

In addition, alterations in intestinal barrier associ-
ated with exposure to ASNP (see above) have been 
exploited as a convenient device to increase oral drug 
absorption and efficacy for MAFLD. Jin et  al. [132] 
used hollow MSN with encapsulated ammonia borane 
that produced a sustained H2 release in the gut. Upon 
several weeks of treatment, the nanomaterials coun-
teracted diet-induced (in C57BL/6 N mice) and genetic 
mutation-induced (in db/db mice) early-stage MAFLD, 
along with obesity and diabetes, without apparent tox-
icity. Authors report microbiota changes with, among 
others, increased abundance of A. muciniphila. How-
ever, while extensive antibiotic treatment prevented 
MSN protective effects on glycemic control, it did not 
suppress the effects on lipid accumulation in the liver, 
casting doubts on the microbiota role in this particular 
model.

Although MAFLD and IBD certainly represent the 
most promising fields of investigation, the trilateral 
interaction described in Fig.  2 may account for other 
potentially pathogenetic effects of ASNP. In the contri-
bution by Perez et al. cited above [101], the sub-chronic 
administration of ASNP, altering the microbiota diver-
sity and the production of short-chain fatty acids, was 
associated with a decrease in the liver expression of 
IL-6, circulating triglycerides and urea nitrogen, lead-
ing to possible implications for the well-known rela-
tionships between microbiota, increased inflammatory 
tone and metabolic disease (see the recent review by 
Klag et al. [133]).

The potential involvement of ASNP in common 
diseases elicit the possibility that their effects may 
be more important in specific categories of suscepti-
ble subjects. Preliminary evidence may support this 
hypothesis. In mice, rendered immunodeficient with 
the antitumor alkylating agent cyclophosphamide, 
a subchronic (12d) exposure to ASNP significantly 
increased the abundance of Lactobacillus, Sphyngo-
monas, Sutterella, Akkermansia, and Prevotella, and 
lowered Ruminococcus and Allobaculum [134]. No 
evident difference was detected in immune functions 
after this relatively short treatment and, unfortunately, 
it was not assessed if the treatment was able to pro-
duce microbiota changes also in control, immuno-
competent animals (where other studies have instead 
documented a decreased abundance of Akkermansia, 
see above). However, it has been known since sev-
eral years that microbiota changes are involved in the 
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adverse effects of chemotherapy [135], and the rela-
tively short period of treatment may have prevented 
the possibility of detecting more evident effects of the 
reported dysbiosis.

Conclusions: open issues and future research lines
The evidence recounted in this contribution already 
allows to reach some conclusions, although the field 
is rapidly evolving. Available data suggest that, after 

Fig. 4  Putative mechanisms for a role of microbiota-mediated ASNP effect on MAFLD. The adsorption of exogenous and endogenous bioactive 
molecules to ASNP may change the microbial gut signature leading to dysbiosis and rewiring of microbiota metabolism [e.g. reduction of butyrate). 
The alteration of homeostasis may impair epithelial barrier function causing increased portal blood levels of endotoxin and other PAMPS. 
Resident liver Kupffer and stellate cells, activated through TLR4-dependent signaling, secrete both pro-inflammatory and fibrogenic cytokines. 
The establishment of a chronic inflammatory condition may account for the alteration of glucose metabolism in hepatocytes (insulin resistance) 
and the accumulation of lipids (metabolic-associated fatty liver (MAFL)] and favors the evolution toward metabolic-associated steatohepatitis 
(MASH)
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oral ingestion of ASNP, intestinal mucosa, in its major 
components of epithelial and immune cells, is indeed 
exposed to a significant portion of nanoparticles. Thus, 
since the fraction of the ASNP absorbed is limited, the 
majority of ASNP tend to persist in contact with the 
intestinal wall, potentially causing local effects.

Moreover, although devoid of a significant bacteri-
cidal activity, as well as of a clear-cut acute cytotoxicity 
for human cells, ASNP can effectively modify mamma-
lian gut microbiota. Some of the changes observed have 
been repeatedly involved in increased risk for several 
conditions such as IBD. Other changes, affect A. mucin-
iphila, a known modifier of the mucus layer that covers 
intestinal epithelium associated with beneficial effect 
on host health.

As a consequence, ingested ASNP can affect extra-
intestinal tissues through at least three ways: (i) 
through direct effects of the small fraction of absorbed 
ASNP; (ii) through indirect effects, mediated by the 
local activity of ASNP on epithelial and immune cells 
of the intestinal wall; (iii) through indirect effects medi-
ated by changes of microbiota composition and/or 
changes mediated by microbiota metabolism.

These considerations raise several issues. First, given 
the evolving biological identity that ASNP assume dur-
ing their passage through the gastrointestinal tract, 
effects on microbiota, as well as those on the intestinal 
and other tissues, may be attributed to either ASNP or 
components of the bio-corona. Adsorption to nanopar-
ticles may modulate (usually enhancing) the biologi-
cal activities of bioactive molecules, such as bacterial 
lipopolysaccharide, as known for ASNP and other nan-
oparticles [59, 136]. Thus, the presence of nanoparti-
cles, even of nanoparticles devoid of intrinsic activity, 
may have biological effects enhancing or modulating 
those of substances present in the intestinal lumen.

Second, information about microbiota variability in 
normal subjects is still incomplete. Moreover, most of 
the scientific literature available, and recounted above, 
has been obtained in rodent models. Thus, the possibil-
ity that ASNP effects may be different depending on the 
individual microbiota characteristics is likely.

Third, on the same line of reasoning, also reduced 
microbial biodiversity associated to human conditions 
may be more susceptible to changes induced by expo-
sure to ASNP.

Fourth, changes in microbiota composition are 
obviously associated to changes in the production 
of metabolites and bio-active compounds present in 
the intestinal content and potentially absorbable. It is 
likely that metabolomic changes underlie most of the 
effects attributed to microbiota in human pathology. 
Thus, the characterization of these changes, and the 

identification of the responsible compounds is of para-
mount importance.

These issues will need intense research activity, both 
in  vivo and in  vitro, to achieve mechanistic informa-
tion beyond epidemiological evidence and genetic char-
acterization of microbial diversity and abundance. To 
this purpose, the reproduction of normal or pathologic 
microbiota in bio-reactors and advanced culture models 
will constitute important devices to assess the effect of 
exposure to ASNP under experimentally controlled con-
ditions mimicking real life exposure.
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