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Abstract In many applications, researchers are interested in models that can be
defined by interpretable statistics, such as mean and variance. Kullback-Leibler cri-
terion is one of the best known optimum criteria to select designs to discriminate
between two competing models. We provide a simple closed form formula to ob-
tain the optimal KL-design to discriminate between regression models with dif-
ferent variance structures and common response mean and we conduct numerical
experiments to compare its performance with other benchmark designs in terms of
statistical power.
Abstract In molte applicazioni, i ricercatori sono interessati a modelli che possono
essere definiti tramite statistiche interpretabili, come media e varianza. Il criterio di
Kullback-Leibler e uno dei migliori criteri di ottimalità per selezionere disegni atti
a discriminare tra due modelli alternativi. In questo lavoro, forniamo l’espressione
in forma chiusa del disegno KL-ottimo per discriminare tra modelli di regressione
con diversa struttura di varianza e stessa funzione media. Inoltre, attraverso uno
studio di simulazione, abbiamo confrontato il disegno KL-ottimo con altri disegni
di riferimento in termini di potenza statistica.
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1 Introduction

In many modern sciences, despite the development of new technologies, to gather
information and empirical evidence about specific hypotheses can be very expen-
sive, not only from a strictly economical standpoint. The time cost of the data-
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123Università degli studi di Milano, DEMM.

1

633

mailto:alessandro.lanteri@unimi.it
mailto:samantha.leorato@unimi.it
mailto:chiara.tommasi@unimi.it


2 Alessandro Lanteri, Samantha Leorato and Chiara Tommasi

collection process could render the information gathered obsolete while ethical costs
could overwhelm the scientific benefits of an experiment. For these and many other
reasons, optimal or efficient experimental design is important in the scientific re-
search. The T-criterion [1] is one of the most widely used methods to obtain optimal
design when the goal is to discriminate between two rival regression models with
homoschedastic Gaussian errors. T-criterion has been generalized with weaker as-
sumptions in subsequent works [2, 5, 8]. A general criterion for discriminating be-
tween models, based on the Kullback-Leibler (KL) divergence, has been introduced
in [3] and extended in [6]. The problem of discriminating between homoschedas-
tic and heteroschedastic regression models with the same regression function has
not been less considered in the literature. To handle this problem we consider the
KL-criterion that generalizes the T-criterion (as it discriminates between any two
rival statistical models). A KL-optimum design, as well as T-designs, depends on
the nominal values of the parameters of the true model, that in the case of nested
models is the larger model. When the values of the parameters are unknown, but
it is available a prior information about such parameters, it has been proposed a
Bayesian approach, for the T-criterion [4] and for the KL-criterion [7]. Therefore,
beside the KL-optimal design, we compute the Bayesian KL-optimal design to han-
dle the problem of dependence on unknown parameters. In particular, in Section 2
we state a theorem which provides a closed form for a KL-optimal design for dis-
criminating between homoschedastic and non-homoschedastic Gaussian models. In
Section 3 we conduct a numerical experiment to analyze how good are different
designs in terms of statistical power when we use the log-likelihood ratio test to
discriminate between the two nested models.

2 Discriminating between different variance functions

One way to discriminate between two models is with the use of the KL-optimality
criterion [3] which is based on the well known Kullback Leibler divergence. In real
data applications, practitioners are often interested in models where the distribution
of the response y ∈ Y can be defined by some interpretable statistics somehow
linked with the covariates x ∈ χ ⊆Rp. Let us recall that a continuous design with K
design points is denoted as

ξ =

{
x1, . . . , xK
ω1, . . . , ωK

}
; 0 ≤ ωk ≤ 1;

K

∑
k=1

ωk = 1

where the domain χ of any experimental point x is assumed to be compact. A pro-
portion of ωk of responses are observed at the experimental point xk, k = 1, . . . ,K.
Let f1

[
y,µ1(x,β1),σ2

1 (x,θ1)
]

and f2
[
y,µ2(x,β2),σ2

2 (x,θ2)
]

be two competing sta-
tistical models, where µ j and σ2

j , j = 1,2, are the mean and the variance functions,
respectively. Let the two models be nested and let the first be the “true” and com-
pletely known largest model. The KL-optimality criterion function is
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I21(ξ ) = I21(ξ ;θ1,β1) = min(θ2,β2)∈Ω2

∫
χ
∫
Y f1

[
y,µ1(x,β1),σ2

1 (x,θ1)
]

log
{

f1[y,µ1(x,β1),σ2
1 (x,θ1)]

f2[y,µ2(x,β2),σ2
2 (x,θ2)]

}
dyξ (dx)

and thus, a design ξ KL
θ1,β1

which maximize I21(ξ ) is called KL-optimal. The sub-
scripts θ1,β1 underline that in general a KL-optimum design depends on the as-
sumed value for the parameters of the true model.

Let us assume that we are interested in discriminating between two rival Gaus-
sian models with the same regression function and different variance structures so
that yi = µ(xi;β j)+ εi with εi ∼ N(0,σ2

j (xi)) for i = 1, . . . ,n and j = 1,2. Consider
the specific case where σ2

1 (xi) = ς1h(xi;θ1) and σ2
2 (xi) = ς2, where h : R→ R+ is

a continuous positive function in χ . Let also θ̃ be a specific value for θ1 such that
h(x; θ̃) = 1, this implies that model 2 is nested in model 1. Then the following the-
orem, which allows to compute analytically the KL-optimal design, can be proved.

Theorem 1. Let h = infx h(x) > 0 and h̄ = supx h(x) < ∞. Let χl = {x : h(x) = h}
and χu =

{
x : h(x) = h̄

}
. Then

ξ ∗ =

{
xl , xu
ω , 1−ω

}
, with ω =

(
h̄

h̄−h
− 1

log h̄− logh

)

is a KL-optimal design, where xl ∈ χl and xu ∈ χu.

Theorem 1 is quite interesting because it is uncommon to find KL-optimum de-
sign in a closed form. Note that if χl or χu contain more than one point, then
any design with more support points in χl or χu is KL-optimal, provided that the
sum of the weights corresponding to the points in χl or χu is ω and 1−ω , respec-
tively. From this theorem we can deduce that since the design points are the ones
which provide the most extreme values of h(x), then, when the variance function
is strictly monotone in the compact χ ⊆ R, the design points are necessarily the
edge points of χ . This implies that, in this setting, KL-optimal designs will have
the same design points, independently on the values of the true parameters, and
only the design weights will vary. On the other hand, when h(x) is non-monotone,
KL-optimal designs might differ greatly also with regards to the design points for
different values of the parameters. To discriminate between the homoschedastic and
the heteroschedastic model, and thus when the hypotheses are

{
H0 : σ2 = ς2

H1 : σ2 = ς1h(x;θ1)
or equivalently

{
H0 : θ1 = θ̃
H1 : θ1 ̸= θ̃

,

we use the log-likelihood ratio test.
So far we assumed that all the parameters of the true model are known, but in

real applications they might be unknown. It is less stringent to assume that an ap-
proximate range of possible values of the parameters is available and it is possi-
ble to build a prior probability distribution π on the unknown parameters. Taking
the expected value of KL-optimality criterion over the prior distribution of the pa-
rameters we can define the partially Bayesian KL-optimality (PBKL-optimality)
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[7] as IPB
21 (ξ ,π) = Eπ [I21(ξ )] and, consequently, the design ξ PB

π which minimizes
IPB
21 (ξ ,π) is called PBKL-optimum design under the distribution π .

3 Numerical Experiment

In this section we conduce some numerical experiments in order to compare the per-
formance of the proposed optimal design criterion with other designs. Consider two
normal models, f1

[
µ1(x),σ2

1 (x)
]

and f2
[
µ2(x),σ2

2 (x)
]
, with σ2

1 (x) = ς1h(x;θ1),
σ2

2 = ς2 and the same mean structure µ1(x) = α1 +β1x and µ2(x) = α2 +β2x. In
each scenario we vary the sample size n and the variance function parameter θ1.
In the study we consider two different variance functions against homoschedasticity
h1(x;θ1) =

1
1+θ1x and h2(x;θ1) = 1+sin(9θ1x)+θ1x. Note that the first is monotone

while the second is not. From Figure 3 we can appreciate how, for different values of
θ1, h1 reaches its minimum and maximum value always at the extremes of χ while
h2 reaches its extreme values in scattered locations. Note that, with both choices

Fig. 1: Variance functions
in χ = [0,1]. h1(x;θ1), left
plot, and h2(x;θ1), right plot,
for θ1 = 0.1,0.5,1,2, repre-
sented by black, red, green
and blue curves, respectively.
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of variance functions, the two rival models (homoschedastic and heteroschedastic)
become more and more similar as θ1 goes to θ̃ = 0. We let χ = [0,1] and set the
nominal parameter α1 = β1 = ς1 = 1. Table 1 displays the estimated power of the
likelihood ratio test for different designs, in different experimental scenarios and
using the variance function h1(x;θ1). Each table entry is the average over 10000
repetition of the experiment in the same setting. The notation ξ KL

θ1
represents the

KL-optimal design for a specific value of θ1, such designs can be easily obtained
using Theorem 1. For θ1 = 0.5,1,2 we obtain:

ξ KL
0.5 =

(
0 1

0.44 0.56

)
; ξ KL

1 =
(

0 1
0.47 0.53

)
; ξ KL

2 =
(

0 1
0.41 0.59

)
.

We compare the performance of KL-optimal designs with two uniform designs,
which consist of a fixed number of equidistant and equally weighted design points
that cover all the domain χ . We denote U3 and U4 the uniform designs with three
and four points, respectively.
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Table 1: Estimated power
obtained in different designs
for different scenarios us-
ing the variance function
h1(x;θ1)

θ1 n ξ KL
0.5 ξ KL

1 ξ KL
2 U3 U4

0.5
30 0.1309 0.1175 0.1203 0.1013 0.0511
50 0.1721 0.1757 0.1682 0.1117 0.1173
100 0.2962 0.2895 0.2863 0.2175 0.1824

1
30 0.2676 0.2579 0.2581 0.1889 0.0735
50 0.4062 0.4030 0.3989 0.2014 0.2573

100 0.6814 0.6756 0.6563 0.5177 0.4342

2
30 0.5460 0.5266 0.5232 0.4032 0.1362
50 0.7560 0.7613 0.7481 0.4512 0.5431

100 0.9698 0.9631 0.9598 0.8838 0.8195

From Table 1 we can appreciate, as expected, how the power increases with the
sample size n and decreases as θ1 gets smaller, that is because for smaller values
of θ1 the two models become more and more similar an thus it is more difficult
to discriminate between the two. From this numerical experiment, we can see how
the KL-optimal designs outperform the uniform designs in all settings, even when
they are assuming a wrong θ1. We also notice that the design obtained from U3
provides better results than U4, this is because U3 is incidentally more similar to
the KL-optimal designs than U4.

We perform a similar experiment using the non-monotone variance function
h2(x;θ1). The KL-optimal designs, obtained with the application of Theorem 1 for
θ1 = 0.5,1,2, are:

ξ KL
0.5 =

(
0.37 1.00
0.38 0.62

)
; ξ KL

1 =
(

0.51 0.88
0.64 0.36

)
; ξ KL

2 =
(

0.26 0.79
0.65 0.35

)
.

Differently from the case with monotone variance, here the designs are very differ-
ent from each other.

In Table 2 we show, for each value of θ1 = 0.5,1,2, the KL-efficiency of a de-
sign ξ , EffKL(ξ ) = I21(ξ )/I21(ξ KL

θ1
), which is a measure of the goodness of ξ with

respect to ξ KL
θ1

for discrimination purposes. From Table 2 we can appreciate how the
difference between KL-optimum designs determines a poor KL-efficiency when a
KL-optimum design with a wrong value of θ1 is used. Uniform designs are more
robust but far from been efficient.

Table 2: KL-Efficiency of
different designs with respect
to ξ KL

θ1
for different values

of θ1 and variance function
h2(x;θ1)

EffKL(ξ KL
0.5 ) EffKL(ξ KL

1 ) EffKL(ξ KL
2 ) EffKL(U3) EffKL(U4)

ξ KL
0.5 1.0000 0.4550 0.2201 0.6009 0.5118

ξ KL
1 0.1689 1.0000 0.0184 0.5482 0.1442

ξ KL
2 0.0003 0.0043 1.0000 0.1604 0.0994

In order to obtain more efficient and robust designs we rely on the PBKL-
optimality criterion. We use two different prior distribution describing two different
type of prior knowledge. The first prior distribution, π1, assigns uniform weights to
the values of θ1 that we might consider to be true, in our experiment θ1 = 0.5,1,2.
To represent the case where the candidate values of θ1 are not known, but it is
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available a range of possible values, say θ1 ∈ [0.5,2], we use a second prior distri-
bution, π2, which is a discrete uniform distribution with several equidistant points
with maximum distance between each other. The PBKL-optimal designs, that we
have obtained computationally using a first order algorithm, are:

ξ PB
π1

=
(

0.000 0.255 0.486 0.828 1.000
0.0002 0.3848 0.3118 0.0586 0.2446

)
; ξ PB

π2
=
(

0.000 0.293 0.571 0.842 1.000
0.0001 0.4839 0.2182 0.2125 0.0853

)
.

From Table 3 we can appreciate that the KL-optimal designs provide the best results
in terms of statistical power when they are used for the correct value of θ1, although
they can be very inefficient when they are improperly adopted. As we commented
before, uniform designs seem to be more robust than KL-optimal designs but gen-
erally provide a low power. On the other hand, PBKL-designs seem to combine the
qualities of the other two kinds of designs, providing a high power in most settings.

Table 3: Estimated power
obtained in different designs
for different scenarios us-
ing the variance function
h2(x;θ1)

θ1 n ξ KL
0.5 ξ KL

1 ξ KL
2 U3 U4 ξ PBKL

π1
ξ PBKL

π2

0.5
30 0.7349 0.5014 0.2753 0.6013 0.4612 0.5984 0.4237
50 0.9117 0.7029 0.4066 0.7340 0.7715 0.8285 0.7122
100 0.9975 0.9517 0.6850 0.9662 0.9451 0.9732 0.9376

1
30 0.2402 0.8461 0.0373 0.6587 0.2896 0.7034 0.5478
50 0.4268 0.9721 0.0615 0.8603 0.4382 0.9052 0.7424
100 0.7164 0.9999 0.1173 0.9893 0.6690 0.9932 0.9242

2
30 0.0275 0.0232 0.9038 0.4084 0.3111 0.8524 0.6356
50 0.0324 0.0187 0.9878 0.5861 0.4012 0.9561 0.8280
100 0.0345 0.0246 1.0000 0.8010 0.5993 0.9969 0.9620
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3. J López-Fidalgo, C Tommasi, and PC Trandafir. An optimal experimental design criterion for
discriminating between non-normal models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 69(2):231–242, 2007.

4. AC Ponce de Leon and AC Atkinson. Optimum experimental design for discriminating between
two rival models in the presence of prior information. Biometrika, 78(3):601–608, 1991.

5. AC Ponce de Leon and AC Atkinson. The design of experiments to discriminate between two
rival generalized linear models. In Advances in GLIM and Statistical Modelling, pages 159–
164. Springer, 1992.

6. C Tommasi. Optimal designs for discriminating among several non-normal models. In mODa
8-Advances in Model-Oriented Design and Analysis, pages 213–220. Springer, 2007.
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