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Abstract
The	ongoing	expansion	of	wolf	(Canis lupus)	populations	in	Europe	has	led	to	a	growing	
demand	for	up-	to-	date	abundance	estimates.	Non-	invasive	genetic	sampling	(NGS)	is	
now widely used to monitor wolves, as it allows individual identification and abun-
dance	estimation	without	physically	capturing	individuals.	However,	NGS	is	resource-	
intensive, partly due to the elusive behaviour and wide distribution of wolves, as well 
as	the	cost	of	DNA	analyses.	Optimisation	of	sampling	strategies	is	therefore	a	require-
ment for the long- term sustainability of wolf monitoring programs. Using data from 
the	2020–2021	 Italian	Alpine	wolf	monitoring,	we	 investigate	how	 (i)	 reducing	 the	
number	of	samples	genotyped,	(ii)	reducing	the	number	of	transects,	and	(iii)	reducing	
the number of repetitions of each search transect impacted spatial capture- recapture 
population size estimates. Our study revealed that a 25% reduction in the number of 
transects or, alternatively, a 50% reduction in the maximum number of repetitions 
yielded abundance estimates comparable to those obtained using the entire dataset. 
These	modifications	would	result	in	a	2046 km	reduction	in	total	transect	length	and	
19,628 km	reduction	in	total	distance	searched.	Further	reducing	the	number	of	tran-
sects resulted in up to 15% lower and up to 17% less precise abundance estimates. 
Reducing	only	the	number	of	genotyped	samples	led	to	higher	(5%)	and	less	precise	
(20%)	abundance	estimates.	Randomly	subsampling	genotyped	samples	reduced	the	
number of detections per individual, whereas subsampling search transects resulted 
in a less pronounced decrease in both the total number of detections and individuals 
detected. Our work shows how it is possible to optimise wolf monitoring by reduc-
ing	search	effort	while	maintaining	the	quality	of	abundance	estimates,	by	adopting	
a	modelling	framework	that	uses	a	first	survey	dataset.	We	further	provide	general	
guidelines on how to optimise sampling effort when using spatial capture- recapture 
in large- scale monitoring programmes.
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1  |  INTRODUC TION

Accurate	estimates	of	demographic	parameters	such	as	population	
size and density are critical for wildlife management and conser-
vation	 (Holland	et	 al.,	2012; Lindenmayer et al., 2022).	 Inaccurate	
population size estimates can lead to false interpretations of the im-
pact	of	 conservation	or	management	 interventions	 (e.g.,	 culling	or	
hunting).	 In	addition	to	robust	estimation	methods,	scientists	have	
emphasised the need for long- term monitoring programs to assess 
population	 trends	 over	 time	 and	 not	 just	 point	 estimates	 (Habel	
et al., 2014;	White,	2019).	However,	reliable	and	effective	long-	term	
monitoring of wildlife species is inherently complex and costly. This 
is especially true for expanding or recovering species, given that the 
area and number of individuals to keep track of increases over time 
(Marucco	et	al.,	2023; Milleret et al., 2020).

The	 recent	 recolonization	 of	 Europe	 by	 the	 wolf	 (Canis lupus)	
(Boitani	 et	 al.,	 2022; Chapron et al., 2014)	 has	 led	 to	 a	 pressing	
demand	 from	 stakeholders	 and	managers	 to	 quantify	 their	 abun-
dance	and	distribution.	These	estimates	are	also	 required	 to	meet	
legal	 obligations	 in	 Europe	 (Annex	 XVII	 of	 the	 Habitat	 Directive,	
92/43/2000 CE)	and	are	necessary	given	the	conflictual	relationship	
between	human	activities	and	predators	(Kuijper	et	al.,	2019; López- 
Bao et al., 2015).	 This	 recurrent	 demand	 for	 population	 size	 esti-
mates has sparked methodological advances in both data collection 
(Bohmann	et	al.,	2014; Hodgson et al., 2018;	Stephenson,	2020)	and	
statistical	analysis	(Bischof	et	al.,	2020; Blanc et al., 2014;	Jiménez	
et al., 2016).	Non-	invasive	genetic	 sampling,	which	enables	 identi-
fying	 individuals	 from	DNA	extracted	 from	 samples	 such	 as	 scats	
and hairs, has been successfully used to estimate wolf population 
sizes	in	different	places	(Bischof	et	al.,	2020; López- Bao et al., 2018; 
Marucco et al., 2009;	 Stenglein	 et	 al.,	 2010).	 Spatial	 Capture-	
Recapture	(SCR)	(Borchers	&	Efford,	2008;	Royle	&	Young,	2008)	has	
in	turn	proved	particularly	suitable	to	analyse	such	data	(Kéry,	2011).	
SCR	models	exploit	the	spatial	distribution	of	non-	invasive	genetic	
samples	 (NGS)	 to	estimate	 individual	activity	centres	and	produce	
spatially	explicit	estimates	of	density	for	entire	populations	(Bischof	
et al., 2020).	 Nevertheless,	 SCR	 models	 are	 data-	hungry	 models,	
which	require	large	datasets	and	a	high	sampling	effort	to	obtain	an	
adequate	spatial	representation	(Dupont	et	al.,	2019).	There	is	an	in-
herent trade- off between sampling effort and the precision of popu-
lation size estimates: higher effort leads to larger sample size, which 
in	turn	reduces	uncertainty	in	estimates	(Paterson	et	al.,	2019).	For	
widespread and large populations, this means collecting large num-
bers	of	NGS	over	large	areas	and	thus	high	field	effort	and	labora-
tory	costs	 (e.g.,	genetic	analysis).	This	 level	of	monitoring	effort	 is	
hardly sustainable in the long- term.

In	the	Italian	Alps,	the	wolf	population	was	intensively	sampled	
during the winter of 2020–2021. The sampling scheme consisted 
of numerous search transects systematically distributed over the 

entire	Italian	Alpine	arch,	which	were	repeatedly	searched	over	the	
course	of	6 months.	This	extensive	search	effort	–	40,725 km	walked	
by field staff and volunteers – led to the first landscape- scale pop-
ulation	 density	map	 and	 abundance	 estimate	 using	 SCR	 (Marucco	
et al., 2023).	This	work	was	made	possible	by	the	development	of	a	
network	of	operators	trained	to	collect	wolf	DNA	samples,	with	the	
intent to repeat the sampling over time. However, the costs of this 
sampling scheme make it impossible to repeat every year and thus 
follow the development of the population over time. In this sampling 
scheme, field activities are mainly managed by institutional person-
nel, who in turn are paid by their respective institutions. Therefore, 
the main expenses incurred directly by the monitoring program are 
the laboratory costs for genetic analyses.

Here, we investigated how to optimise the wolf monitoring 
program	 in	 the	 Italian	Alps	both	 from	both	search	effort	and	DNA	
analysis perspectives by subsampling the data collected during 
2020–2021	(Marucco	et	al.,	2023).	Our	work	aimed	to	identify	sam-
pling strategies that reduce the effort associated with wolf surveys 
in	the	Italian	Alps	without	jeopardising	the	reliability	of	the	SCR	esti-
mates.	We	quantified	the	consequences	of	subsampling	on	the	accu-
racy and precision of the population size estimate in two scenarios: 
(i)	a	reduction	of	the	number	of	NGS	successfully	analysed	in	the	ge-
netic	laboratory,	with	no	reduction	in	search	effort;	(ii)	a	reduction	in	
search effort, both in terms of the number of transect searched and 
the number of visits per transect, with a corresponding reduction in 
the number of samples analysed. The first scenario only decreases 
laboratory costs, while the second scenario decreases costs at all 
stages,	from	data	collection	to	DNA	analysis.	We	expected	the	pre-
cision of the population size estimates to decrease with increasing 
levels of subsampling in all scenarios. Data sparsity can lead to bias 
in	SCR	estimates	(Efford	et	al.,	2016),	and	we	expected	this	to	mani-
fest in the most extreme subsampling scenarios, where a substantial 
proportion of samples was lost to the analysis. Our goal with the 
above	line	of	inquiry	was	to	inform	planning	and	facilitate	long-	term	
monitoring for population size estimation for wolves in the Italian 
Alps	and	elsewhere.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling design

Our subsampling study used the dataset from the 2020/21 Italian 
Alpine	 wolf	 survey	 (Marucco	 et	 al.,	 2023).	 The	 sampling	 period	
started	on	1	October	2020	and	ended	on	30	April	 2021	and	was	
mostly	 based	on	 systematic	 transects	 (Figure 1a)	 along	 roads	 and	
trails	used	by	wolves.	We	used	linear	transects	to	detect	and	collect	
scats, aided by the detection of snow tracks of wolf packs. Tracks 
were used to maximise the probability of identifying all members of 
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a	pack	and	develop	a	pedigree	of	 the	overall	population	 (Marucco	
et al., 2009, 2012).

The study area was divided into 10 × 10	km	grid	cells,	classified	
into two categories: cells with pre- existing information on the pres-
ence of wolf packs were intensively sampled with search transects 
that	were	repeated	at	least	six	times	(once	a	month),	while	transects	
in neighbouring cells or areas of the new expansion were repeated at 
least	three	times	(once	every	2	months).	The	variation	in	the	number	
of transects and the different number of repetitions resulted in large 
differences in search effort, with distance searched ranging from 0 
to	658 km	(mean = 10 km)	per	cell,	and	the	number	of	repetitions	per	
transects	ranging	from	1	to	29	(mean = 4.95)	(Figure S5).	In	addition	to	
this	systematic	sampling,	opportunistic	sampling	(unplanned	searches)	
was carried out everywhere within the study area, including in areas 
without confirmed wolf presence. Opportunistic sampling was carried 
out by the same trained operators involved in the systematic collec-
tion,	but	it	could	not	be	quantified	due	to	its	opportunistic	nature.

Pack	pedigrees	were	constructed	from	the	successfully	genotyped	
NGS	as	described	 in	Marucco	et	al.	 (2023).	This	allowed	us	to	cate-
gorise	detected	individuals'	social	status:	‘reproductive	individual’	(RI,	
dominant	individuals	who	reproduce	inside	the	pack),	‘offspring’	(mem-
bers	of	a	pack	with	shared	genetic	heritage	with	RI),	and	‘other’	(mem-
bers	of	a	pack	with	no	genetic	relationship	or	dispersing	individuals).

2.2  |  Spatial capture- recapture model

Spatial	 Capture-	Recapture	 models	 are	 hierarchical	 models	 that	
allow	 for	 the	 estimation	 of	 population	 size	 and	 density	 (Borchers	
&	Efford,	2008;	Royle	&	Young,	2008).	For	this	study,	we	used	the	
same	Bayesian	SCR	model	as	Marucco	et	al.	(2023).	SCR	models	rely	
on multiple recaptures of the same individuals at different locations 
in space to estimate the distribution of the individuals' activity cen-
tre	(AC)	across	the	habitat.	Because	the	size	of	the	total	population	
is	unknown,	both	the	number	of	individuals	and	their	ACs	are	treated	
as	latent	variables.	To	estimate	AC	locations,	including	those	of	un-
detected	individuals,	SCR	models	are	composed	of	two	sub-	models,	
an observation model and a density model.

(i)	The	observation	model	describes	the	probability	of	detecting	
an individual i at detector j as a function of the individual's position 
relative to the detector. This probability is commonly modelled as 
a	half-	normal	function	of	the	distance	between	the	individual's	AC	
and the detector:

with p0 the baseline detection probability, i.e., the probability to detect 
the	 individual	 if	 its	AC	coincides	with	 the	detector's	position,	and	 the	

pij = p0exp

(

− d2
ij

2�2

)

F I G U R E  1 Example	of	subsampling	of	the	wolf	data	collected	from	October	2020	to	April	2021	throughout	the	Italian	Alpine	regions	
(blue	background).	On	the	left	is	the	full	dataset,	with	100%	of	the	search	transects	(black	lines)	and	all	genotyped	samples	(yellow	dots).	
On the right is a subsampled dataset, where 25% of the search transects and associated genotyped samples were retained, the white 
grid- lines indicate the 5 × 5	km	detector	grid	used	in	the	analysis.	Lower	panels	present	a	zoom	in	of	a	specific	area	to	better	visualise	the	
consequences	of	subsampling.	Note	that	opportunistic	samples	(not	associated	with	a	search	transects)	are	kept	when	subsampling,	as	
visible from the isolated yellow dot in the lower right panel.
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scale parameter σ usually considered a measure of home range size 
during	the	sampling	period	(Royle	et	al.,	2014).	We	used	a	5 km-	resolution	
grid	covering	the	entire	Italian	Alpine	region	and	used	grid	centroids	as	
detectors. To account for factors affecting the probability of collecting a 
wolf	DNA	sample,	we	used	multiple	covariates	to	model	detectors	and	
individual-	specific	baseline	detection	probabilities.	We	used	cumulative	
snowfall	(snow),	human	population	density	(humpop),	transect	searcher	
experience	(searcherexp)	and	transect	length	(transect_L):	see	Marucco	
et	al.	(2023)	for	details:

The	encounter	frequency	(yij)	of	individual	i at detector j was mod-
elled	as	a	binomial	process,	following	Milleret	et	al.	(2018),	where	each	
detector grid cell was divided into 25 sub- cells of 1 × 1	km:

and sizej refers to the number of sub- cells associated with detector 
j. This formulation means that all detections were aggregated to the 
closest	sub-	cells.	See	Marucco	et	al.	(2023)	for	more	details.

(ii)	The	density	model	describes	how	individual	ACs	are	distributed	
across the available habitat S.	To	account	for	individual	ACs	that	might	
be	situated	outside	of	the	sampled	area,	we	considered	a	30 km	buffer	
around the sampled region defined by the detector grid to define S. 
Density was then modelled across S as an inhomogeneous Binomial 
Point	Process	(Zhang	et	al.,	2023)	with	intensity:

where Ih, the point- process intensity in habitat grid cell h, is a log- linear 
function	of	the	historical	presence	of	wolves	(wolf_presence),	human	
population	density	(hum_pop),	the	percentage	of	forest	(forest),	bare	
rock	(bare_rock),	and	herbaceous	cover	(herbaceous).

Following	the	data	augmentation	approach	(Royle	et	al.,	2013),	un-
detected individuals are added to the population of detected individ-
uals. Individual state is then modelled using a Bernoulli state variable 
Z, which takes value 1 if the individual is part of the population and 0 
otherwise:

where ψ is the probability for an individual from the augmented pool 
of	individuals	belong	to	the	population.	Population	size	(N)	is	then	ob-
tained by summing over the vector Z:

Using the information provided by the population pedigree, we 
were also able to model individual sex and social status as:

where ρ is the proportion of males in the population, and θsex is a sex- 
specific vector representing the proportion of individuals in each social 
status	category	(Σ�sex = 1).

2.3  |  Data subsampling

To	optimise	the	wolf	monitoring	 in	the	 Italian	Alps,	we	considered	
two subsampling scenarios.

2.3.1  |  NGS	subsampling

This	simulation	scenario	aimed	to	quantify	the	consequences	of	ran-
domly reducing the number of samples genotyped to reduce labora-
tory costs. To do so, we randomly subsampled the dataset, retaining 
25%, 50%, or 75% of the genotyped samples.

2.3.2  |  Search	effort	subsampling

To investigate the effect of reducing search effort and thus reduce 
overall costs, from sample collection to laboratory costs, we artificially 
subsampled recorded search transects and associated samples along 
one	or	both	of	 two	dimensions:	 (i)	 transect subsampling, a reduction 
in the number of transects and altering the spatial coverage of the 
survey,	 and	 (ii)	 repetition subsampling, a reduction in the number of 
repeated visits of each transect retained, thus reducing the intensity 
of	the	search	effort.	Practically,	this	subsampling	procedure	followed	
three steps. First, given the uncertainty regarding whether a sample 
was obtained systematically or opportunistically, and whether the as-
sociated effort was documented or not, a classification method was 
devised.	Samples	positioned	within	500	meters	of	each	transect	were	
designated as systematic, while those positioned beyond this distance 
were	classified	as	opportunistic.	Subsequent	subsampling	was	exclu-
sively	conducted	on	systematic	samples	(Milleret	et	al.,	2020).	Second,	
to subsample transects, we randomly kept 25%, 50%, 75%, or 100% 
of	the	overall	1179	transects.	Transect	subsampling	was	random	but	
applied independently in each provincial administrative unit to provide 
comparable guidelines for institutions coordinating surveys locally. 
Finally,	we	randomly	retained	3,	6,	or	all	repetitions	for	the	retained	
transects.	 We	 filtered	 out	 systematic	 samples	 that	 did	 not	 match	
both the date and location of the retained search transects after each 
subsampling. Note that following this subsampling procedure, all rep-
etitions	were	retained	for	transects	with	less	than	3	or	6	repetitions,	
depending	on	the	scenario	explored.	Also	note	that	all	opportunistic	
samples were retained in all search effort subsampling scenarios.

2.4  |  Model fitting and evaluation

Together,	 the	 NGS	 subsampling	 scenarios	 (25%,	 50%,	 or	 75%	 of	
genotyped	samples	retained)	and	the	search	effort	subsampling	sce-
narios	 (25%,	 50%,	 75%,	 or	 100%	of	 the	 transects	 and	 3,	 6,	 or	 all	
repetitions	retained)	resulted	in	14	different	subsampling	scenarios.	
We	repeated	the	random	subsampling	process	a	hundred	times	for	
each scenario to capture variability among replicates. This led to 
a	total	of	1400	SCR	datasets.	We	fitted	the	SCR	model	presented	

p0 ij = p0sexistatusi
+ �snowj + �humpopj + �searcherexpj + �transect _Lj

yij ∼ Binomial
(

pijzi , sizej
)

Ih = e
�wolf_pres∗wolf_presenceh+�hum_pop∗hum_poph+�forest∗foresth+�br∗bare_rockh+�herb∗herbaceoush

zi ∼ Bernoulli(�)

N =

M
∑

i=1

zi

sexi ∼ Bernoulli(� )

statusi ∼ Categorical
(

�sex

)
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above	to	each	subsampled	dataset	using	nimble	version	0.10.2	(de	
Valpine	et	al.,	2017)	and	nimbleSCR	(Bischof	et	al.,	2022)	in	R	version	
4.1.3	(R	Development	Core	Team,	2022).	We	ran	4	chains	of	20,000	
iterations each, including a 10,000 burn- in, resulting in a total of 
40,000	 posterior	MCMC	 samples	 per	model.	We	 assessed	model	
convergence	using	the	Gelman-	Rubin	diagnostic	(R̂  < 1.1,	Gelman	&	
Rubin, 1992)	and	by	visually	 inspecting	 trace	plots	 from	randomly	
selected models.

We	evaluated	 the	performance	of	 the	SCR	model	 in	each	sce-
nario based on estimates of population size N.	We	 calculated	 the	
relative	difference	(RD)	with	the	SCR	model	fitted	to	the	full	dataset	
(Marucco	et	al.,	2023):

where 
_

N is the posterior mean estimate of the considered simulation 
replicate, and N is the posterior mean estimate from the full dataset. 
We	used	the	relative	difference	as	a	measure	of	accuracy	instead	of	
relative	bias	since	the	true	value	of	the	parameter	is	unknown.	As	a	
measure	of	precision,	we	used	the	coefficient	of	variation	(CV):

where	sd(N)	is	the	standard	deviation	of	the	posterior	distribution,	and	
σ is the posterior mean estimate of the considered simulation replicate.

3  |  RESULTS

3.1  |  Model convergence

In all scenarios, the proportion of models converged after 20,000 
iterations	 decreased	 as	 subsampling	 increased.	 We	 observed	 the	
lowest number of models converged for the scenario retaining 25% 
of	all	genotyped	samples	(Table 1).	We	observed	the	same	pattern	
in the search effort subsampling scenario, although the proportion 
of models converged was much higher, even in the scenario with the 
highest	level	of	subsampling	(25%	of	transects	retained	and	max	3	
repetitions, Table 1).	Models	 that	did	not	 converge	were	 removed	
from further analysis and comparisons.

3.2  |  NGS subsampling

Retaining 25%, 50%, or 75% of the systematically collected geno-
typed samples and all opportunistic samples reduced the mean num-
ber	of	individuals	detected	by	64.8%,	38.3%,	and	7.5%,	respectively	
(Tables 2 and S2).	Similarly,	the	mean	number	of	detections	per	in-
dividual decreased, especially when only 25% of samples were re-
tained. The maximum number of detections per individual was also 
strongly	 affected.	 In	 the	25%	 scenario,	 the	 value	 fell	 to	 2.9,	 com-
pared	to	5	 in	 the	full	dataset	 (Table 2).	This	 resulted,	as	expected,	
in	 a	 large	 variation	 (RDrange = −0.35–0.63)	 in	 the	 population	 size	
estimate	 among	 replicated	 SCR	datasets,	 although	 the	mean	 rela-
tive	difference	was	still	close	(RD = 0.13)	to	the	estimate	of	the	full	
dataset	model	(Figure 2a).	Overall,	SCR	models	fitted	to	subsampled	
genotyped	NGS	produced	slightly	higher	(mean	RD = 0.1,	Figure 2a)	
and	less	precise	population	size	estimates	(Figure 2b)	compared	to	
the	model	fitted	to	the	full	dataset.	When	retaining	only	25%	of	the	
samples	genotyped,	the	CV	reached	approximately	20,	compared	to	
less	than	5%	for	the	full	dataset	(Figure 2b).

3.3  |  Search effort subsampling

3.3.1  |  Transects	subsampling

Retaining 25%, 50%, or 75% of the transects reduced the total num-
ber	of	samples	by	48%,	31%,	and	15%	and	the	number	of	individu-
als	detected	by	42%,	27%,	and	13%,	respectively	(Tables 3 and S1).	
Similar	trends	were	found	for	both	males	and	females,	and	wolves	
of different social status. The maximum number of detections re-
mained above 4 in all scenarios. The numbers of detections and indi-
viduals detected by sex and social status in the 75% scenario showed 
values	close	to	the	full	dataset	(Table 3).

Subsampling	 transects	 led	 to	 a	 decrease	 in	 the	 mean	 posterior	
population	 size	 estimate	 (Figure 3a).	 The	 mean	 relative	 difference	
changed	from	1.3%	when	discarding	25%	of	the	transects	to	−6.9%	
and −13.5%	when	discarding	50%	and	75%	of	the	transects,	respec-
tively. The latter corresponded to a population size estimate that was 
250 individuals lower than the approximately 1000 individuals esti-
mated	with	 the	 full	 dataset	 (Figure 3a).	As	 in	 the	NGS	 subsampling	

RD =

_

N − N

N

CV =

sd(N)
_

N

TA B L E  1 Number	of	SCR	models	(out	of	100	replicate	simulations)	that	converged	for	each	subsampling	scenario	(in	rows)	and	for	
each	percentage	of	samples	or	transects	retained	(in	columns).	NGS	subsampling	consisted	in	a	random	reduction	of	the	proportion	of	
genotyped	samples	available.	For	the	transects	subsampling,	we	randomly	retained	25%,	50%,	75%,	or	100%	of	the	transects	and	3,	6,	or	all	
the	repeated	visits	for	the	transects	retained	and	analysed	the	associated	samples.	We	also	considered	scenarios	where	we	performed	an	
additional	removal	of	transects	to	retain	a	maximum	number	of	3	or	6	transect	repetitions.

Scenarios Maximum number of repetitions retained

% Samples or transects retained

25% 50% 75% 100%

NGS	subsampling – 35 88 96 –

Transects subsampling 3 85 88 96 96

6 85 97 98 99

All 97 99 100 –
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6 of 12  |     BOIANI et al.

scenario, the precision of population size estimates decreased when 
subsampling	 search	 transects	 (25%	 CV = 0.139;	 50%	 CV = 0.109;	
75% = 0.09,	Figure 3b).

3.3.2  |  Repetitions	subsampling

As	expected,	the	total	number	of	detections	and	the	number	of	indi-
viduals detected were negatively affected when reducing the number 

of	repetitions	per	transect	(Table 3, Figure S4).	This	decrease	was	most	
prominent in the scenario with 100% of the transects retained, where 
limiting	the	number	of	repetitions	per	transects	to	6	or	3	generated	
on	average	20%	and	35%	fewer	detections,	and	18%	and	30%	fewer	
individuals detected, respectively. In the scenarios discarding the 75% 
of the transects, differences were less marked, with a 7% and 15% 
reduction	in	the	number	of	detections,	and	a	6%	and	14%	reduction	in	
the number of individuals detected for the scenarios with a maximum 
of	6	and	3	repetitions,	respectively	(Table 3).

TA B L E  2 Summary	of	subsampled	datasets	(mean ± sd)	after	retaining	25%,	50%,	75%,	and	100%	of	the	genotyped	NGS.	NDet:	Number	
of	successfully	genotyped	samples,	AveRec:	Mean	number	of	detections	per	individual	detected,	MaxDet:	Maximum	number	of	detections	
per individual, IDs: Total number of individuals; Females: Number of females; Males: Number of males; RI: Number of reproductive 
individuals;	Offspring:	Number	of	individuals	sharing	part	of	their	DNA	with	the	RI	of	the	same	pack;	Other:	Number	of	individuals	of	a	
pack with no relatedness with RI. Note that not all detected and genotyped individuals could be assigned to one of the sex or social status 
categories considered.

NGS 25% 50% 75% 100%

NDet 173.76	(±3.48) 327.69	(±5.1) 465.89	(±5.57) 593

AveRec 1.09	(±1.24) 1.18	(±1.08) 1.25	(±1.07) 1.32

MaxDet 2.92	(±0.56) 3.76	(±0.6) 4.49	(±0.52) 5

IDs 158.18	(±4.34) 277.01	(±5.54) 370.52	(±5.99) 449

Females 79.75	(±5.26) 138.09	(±5.49) 183.79	(±5.99) 222

Males 75.15	(±5.66) 132.03	(±5.49) 176.47	(±4.95) 213

RI 45.08	(±5.02) 75.73	(±4.27) 95.96	(±3.56) 111

Offspring 51.12	(±4.61) 89.28	(±5.37) 121.86	(±5.05) 149

Other 21.54	(±3.36) 38.61	(±3.83) 52.32	(±3.09) 63

F I G U R E  2 (a)	Relative	difference	(RD)	and	(b)	coefficient	of	variation	(CV)	of	wolf	abundance	estimates	(N)	for	NGS	subsampling	
(retaining	25%,	50%,	and	75%	of	the	full	dataset)	over	100	replicated	datasets,	the	ones	that	converged	are	represented	here	as	a	violin	plot	
with	the	median	as	a	white	dot.	The	pink	line	represents	values	obtained	when	analysing	the	full	dataset	model	(100%	NGS),	i.e.,	a	relative	
difference	of	0	and	a	CV	of	0.07.
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    |  7 of 12BOIANI et al.

Overall, reducing the number of repetitions resulted in decreased 
precision in population estimates across all levels of transects sub-
sampling.	However,	it	maintained	a	CV	close	to	that	of	the	original	
dataset	model	(Figure 3).	For	example,	in	the	scenario	with	50%	of	
the transects retained, limiting the number of repetitions translated 
into	increasing	CV	values,	from	an	average	of	0.11	to	0.13	and	0.15	
in	 the	 scenarios	with	all,	 6,	or	3	 repetitions	per	 transect	 retained,	
respectively	(Figure 3b).

The	 increase	 in	 CV	 was	 not	 accompanied	 by	 a	 noticeable	 in-
crease in RD in N,	with	average	RD	values	of	−0.1	in	the	same	three	
scenarios	with	 50%	of	 the	 transects	 retained	 (Figure 3a).	Overall,	
the RD value tended towards zero as the percentage of transects re-
tained increased with no significant variation between the repetition 
scenarios	(Figure 3a).

Surprisingly,	 retaining	 a	 high	 number	 of	 transects	 and	 a	 high	
number of repetitions resulted in higher estimates of N, compared to 
the model fitted to the full dataset. In fact, for the scenario where all 
and	75%	of	the	transects	are	retained,	and	with	6	or	all	repetitions,	
we obtained positive RDs. The most relevant case is that of 100% 
transects	retained	and	6	repetitions,	for	which	we	observed	an	av-
erage	RD	of	0.08.

For all scenarios, N and σ	estimates,	with	relative,	RD	and	CV,	by	
sex and status can be found in Figures S1–S3.

4  |  DISCUSSION

SCR	is	a	common	approach	for	estimating	wildlife	population	den-
sity	 (Tourani,	2022),	 but	 SCR	models	 are	 not	 immune	 to	 the	 limi-
tations associated with sparse data. To provide reliable estimates 
for	large	populations,	these	methods	usually	require	large	datasets	
and	thus	major	data	collection	effort	(Dupont	et	al.,	2019;	Paterson	
et al., 2019).	Marucco	et	al.	 (2023)	searched	more	than	40,000 km	
of	 transects	over	approximately	100,000 km2 to generate the first 
wolf	population	size	estimate	for	the	entire	Italian	Alps.	Here,	using	
this first survey of the population as a starting point, we explored 
the	consequences	of	reduced	sampling	effort	to	help	increase	cost-	
efficiency and facilitate long- term monitoring.

4.1  |  Subsampling trade- off

The scenarios that offered the best trade- off between effort re-
duction and accurate abundance estimation were the scenarios 
with	75%	of	 the	 transects	 retained	and	6	 repetitions	and	the	sce-
nario with all 100% transects retained and 3 repetitions per tran-
sect	 (Figure 3a).	 Implementing	 the	 first	 scenario	would	 lead	 to	 an	
approximately	36%	decrease	in	search	effort,	from	40,725	to	26,178	
(±371)	km	of	transects	searched.	This	translates	into	the	removal	of	
up	to	295	of	the	1179	transects	and	31%	of	the	detections.	The	sec-
ond scenario would reduce the search effort by approximately 52% 
(−21,097 ± 42 km),	 and	 result	 in	 the	 loss	 of	 35%	of	 the	detections.	
Despite these substantial reductions in search effort and number TA
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of samples analysed, overall abundance estimates were comparable 
with those from the full dataset.

It is worth noting that, the reliability of population size estimates 
might also be affected by population size itself. For instance, if pop-
ulation size decreases, this will also lead to a decrease in sample size. 
Coupling a decrease in the wolf population with reduced sampling 
effort could exacerbate the challenges of critical data situations, 
where	 sparse	 data	 lead	 to	 unreliable	 or	 biased	 estimates	 (Marques	
et al., 2011;	Sollmann	et	al.,	2012).	Sparse	data	tend	to	introduce	posi-
tive bias in population estimates, meaning that population size may be 
overestimated	(Paterson	et	al.,	2019).	As	a	consequence,	this	decreases	
the chances to detect a population decline. Nowadays, identifying the 
decline, rather than the growth of a population, becomes increasingly 
relevant. This is true for species for which precise conservation efforts 
are in place, but even more so for the wolf for which massive man-
agement	plans	are	in	prospect.	However,	since	effort	is	recorded,	SCR	
models should be able to assess whether a lower sample size is due 
to a reduction in search effort or a decrease in diminished population 
size. Nonetheless, decreased sampling leads to higher uncertainty, re-
ducing the ability to identify substantial population changes.

In our study, the reduction in the number of transects and the 
consequent	decrease	 in	 the	number	of	 samples	did	not	affect	 the	
abundance estimates according to social status. Thus, even reduced 
sampling led to accurate abundance estimates for the different so-
cial	classes.	Numbers	of	‘reproductive	individuals’	(RIs)	and	‘others’	
(Figure S1A)	are	used	to	produce	estimates	of	the	number	of	mature	

individuals	(Marucco	et	al.,	2023),	a	critical	parameter	for	IUCN	Red	
List	assessments	(IUCN,	2022).	The	number	of	 ‘RIs’	also	allows	es-
timation of the number of packs, which is critical for assessing the 
conservation status of the species. Reducing search effort while 
still being able to provide these estimates with high accuracy is thus 
highly valuable.

4.2  |  Subsampling NGS

Randomly subsampling the number of genotyped samples without 
considering the associated spatial effort led to fewer individuals de-
tected and fewer spatial recaptures per individual. This resulted in 
slightly higher population size estimates and a significant loss in pre-
cision. This is in line with previous works that found data sparsity can 
cause	biased	estimates	(Milleret	et	al.,	2020;	Paterson	et	al.,	2019; 
Sun	et	al.,	2014).	Schmidt	et	al.	(2022)	suggested	that	a	low	propor-
tion	of	individuals	with	multiple	spatial	recaptures	(<0.3%)	could	be	
a signal for inflated estimates of population size. This risk should be 
avoided, especially for endangered, controversial, or exploited spe-
cies, such as wolves. Furthermore, the precision of estimates tends to 
increase	with	the	number	of	individuals	detected	(Morin	et	al.,	2018; 
Schmidt	et	al.,	2022).	The	scenario	with	only	25%	of	the	genotyped	
samples	 retained	 had	 the	 highest	 CV	 of	 all	 scenarios	 tested,	 ex-
ceeding the 0.2 threshold, which was suggested as the maximum 
CV	 value	 to	 efficiently	 detect	 changes	 in	 a	 population	 (Efford	 &	

F I G U R E  3 (a)	Relative	difference	(RD)	and	(b)	coefficient	of	variation	(CV)	of	wolf	abundance	estimates	(N),	for	different	proportions	of	
search	transects	retained	(25%,	50%,	75%	and	100%	of	transects)	and	repetitions	per	search	transect	(3,	6	or	all	repetitions).	Violin	plots	
represent	the	distribution	of	the	relative	difference	over	converged	subsampling	iterations,	with	the	median	value	as	a	white	dot.	Pink	lines	
represent the estimate from the model fitted to the full dataset.
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    |  9 of 12BOIANI et al.

Boulanger, 2019;	Skalski	et	al.,	2010).	Finally,	a	 large	proportion	of	
the	models	in	this	scenario	did	not	reach	convergence	(65%),	and	we	
thus caution against such drastic sample size reduction.

In	 the	 SCR	 framework,	 density	 is	 estimated	 concurrently	with	
σ	 (individual	space	use)	and	p0	 (the	baseline	detection	probability).	
Unaccounted variation in these parameters has been linked to biased 
abundance	estimates	(Borchers	&	Efford,	2008; Efford et al., 2016).	
For example, negative bias in the scale parameter estimates has 
been	associated	with	positively	biased	densities	(Efford	et	al.,	2016; 
Harmsen et al., 2020).	Similarly,	negatively	biased	p0 estimates result 
in	positively	biased	density	estimates	(Milleret	et	al.,	2020;	Moqanaki	
et al., 2021;	Paterson	et	al.,	2019).	Subsampling	NGS	regardless	of	
their location resulted in a drastic reduction in the number of de-
tections per individual, leading to changes in the estimates of σ and 
p0. In particular, the lower estimates of σ for females of all social 
statuses	(Figure S3.1),	which	make	up	half	of	the	Italian	Alpine	wolf	
population	(Marucco	et	al.,	2023),	might	be	a	reason	for	the	higher	N 
estimates after subsampling. Data sparsity after subsampling most 
likely underlies this underestimation of σ, as well as the higher and 
imprecise population size estimates.

4.3  |  Subsampling search effort

In most search effort subsampling scenarios, reducing the number 
of	 transects	 and	 retaining	 3,	 6,	 or	 all	 the	 transect	 repetitions,	 re-
sulted in comparable estimates of N. Considering their closeness to 
the	reference	value	and	the	fact	that	the	CV	of	the	estimates	were	
always below the recommended threshold, reducing the number 
of transects seems a more appropriate strategy than subsampling 
NGS	alone.	In	the	original	sampling	design,	transects	were	placed	in	
proximity to each other to account for the movements of packs and 
their members throughout the occupied territories and to maximise 
the probability of detecting individuals at multiple detectors. This 
feature is maintained when reducing the number of transects if a 
significant number of transects is retained. In fact, explicitly consid-
ering space, i.e. search transects, when subsampling produced more 
stable and higher values in both the average and maximum number 
of	detections	per	individual	compared	to	the	NGS	subsampling	sce-
narios	(Tables 2 and 3).	Furthermore,	and	although	genetic	analysis	
was	 the	highest	cost	 item,	 reduction	 in	 field	collection	effort	 (dis-
tance	walked)	leads	to	more	comprehensive	cost	savings,	including	
savings in both field and laboratory costs.

The observed underestimation in N in scenarios with less effort 
retained,	may	lie	in	the	nature	of	SCR	models,	where	the	detections	
of a given individual are expected to be spatially autocorrelated. 
The effective removal of one or more transects may mean the total 
loss of an individual and all its detections, but without altering the 
probability of detection of the other individuals, which in turn may 
result in a higher estimate of the apparent probability of detection 
and thus lower population size estimates. However, this poten-
tial issue should in theory be mitigated by using the length of the 
transects as a covariate on the baseline probability of detection, to 

consider	differences	in	effort	between	detection	grid	cells	(Milleret	
et al., 2020),	stressing	the	importance	of	accounting	for	heterogene-
ity	in	search	effort	in	SCR	models	(Moqanaki	et	al.,	2021).

Reducing the number of repeated searches along transects is 
another effective way to reduce monitoring effort. Reducing to 3 
repetitions	per	transect	caused	no	major	deviation	in	the	estimates.	
Interestingly, we observed slightly higher population size estimates 
in the scenario with 100% of the transects retained and a maximum 
of	6	repetitions	per	transect	compared	to	the	full	dataset,	while	we	
obtained lower or comparable population size estimates in all other 
search effort subsampling scenarios. Our model accounted for indi-
vidual	variation	in	detectability	and	home	range	size	(i.e.,	using	the	
sex	and	status	of	the	individual),	and	spatial	variation	in	detectability	
(i.e.,	 linked	with	 search	effort,	 snow	conditions,	 searchers'	 experi-
ence).	However,	 additional	 sources	of	heterogeneity	 in	detectabil-
ity	may	 have	 remained	 unaccounted	 for	 by	 the	model	 (Moqanaki	
et al., 2021),	e.g.,	variability	 in	 the	genotyping	success	of	samples.	
Alternatively,	subsampling	may	have	 introduced	additional	sources	
of	 heterogeneity	 that	we	were	 not	 able	 to	 account	 for.	 Since	 our	
study used empirical data; we were not able to identify with cer-
tainty the causes of this apparent overestimation.

4.4  |  Sampling design recommendations

The	 current	 study	 relied	 heavily	 on	 the	 accurate	 quantification	 of	
search	effort,	through	the	recording	of	search	paths	using	GPS.	This	
information also enabled the implementation of various subsampling 
scenarios. Nevertheless, around 30% of the samples genotyped were 
collected opportunistically and thus lack information on search effort. 
Opportunistic sampling is important to document areas of new recolo-
nization where systematic transects have not yet been implemented 
or	only	occur	at	low	density.	When	the	goal	is	to	estimate	the	size	of	
wide- ranging populations, we thus advocate for a more homogeneous 
distribution of search transects, with the goal to cover as much as pos-
sible of the area of interest, i.e., a reduction of the number of transects 
in areas where they are already present at high density and an increase 
in areas where they are still few or absent. From the model's perspec-
tive, it is also important to obtain information about the absence of the 
species and not only rely on opportunistic sampling for which we often 
struggle	to	quantify	effort	(Moqanaki	et	al.,	2021).

Indeed,	 for	 monitoring	 programs	 relying	 on	 NGS,	 maximising	
spatial coverage rather than sampling the same transect multiple 
times can significantly enhance the effectiveness and efficiency of 
data collection. In this study, we used the number of genotyped sam-
ples as a metric, but when planning sample collection, one has to 
take	into	account	the	expected	genotyping	success	(which	averages	
65%	in	our	case)	to	obtain	the	desired	number	of	exploitable	samples	
for the analysis.

Our subsampling approach of previously collected data of-
fers opportunities for optimising cost efficiency and assessing the 
sensitivity of results to different sampling scenarios. By systemat-
ically subsampling existing datasets and comparing the outcomes, 
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researchers	can	determine	the	minimum	sampling	effort	required	to	
achieve desired levels of accuracy and precision. This information 
can then inform the design of future monitoring programs, helping to 
strike a balance between information gain and resource allocation.

5  |  CONCLUSION

Long- term monitoring programs are needed for efficient wild-
life management and, at the same time, are highly demanding 
(Lindenmayer	et	al.,	2011, 2022;	Lindenmayer	&	Likens,	2009).	Our	
empirical data- based modelling approach helped us in optimising 
wolf	monitoring	in	the	Italian	Alps	by	adjusting	the	sampling	effort,	
both	in	terms	of	spatial	coverage	and	intensity.	We	also	found	that	
randomly	 reducing	 NGS	 a	 posteriori,	 not	 considering	 space,	 was	
not a good practice. In addition, integrating additional information 
(camera	 traps,	 Chandler	 &	 Clark,	 2014; dead recoveries, Dupont 
et al., 2019)	to	SCR	models	are	also	promising	alternatives	to	opti-
mise	the	monitoring	program	of	wolves	in	the	Italian	Alps	and	should	
be explored further.

Adaptive	management	is	a	dynamic	approach	that	involves	test-
ing predictions against observations, enabling iterative recalibra-
tion of management strategies at predetermined decision points 
as	learning	occurs	(Allen	&	Garmestani,	2015;	Williams,	2011).	This	
learning process facilitates the progression of management actions 
as	 uncertainty	 diminishes	 over	 time	 (Williams,	 2011).	We	 believe	
that the adaptive management approach described here can be ad-
vantageously applied to wildlife population monitoring elsewhere.

Wildlife	 monitoring	 programs	 usually	 operate	 with	 limited	 re-
sources. Resources are particularly limiting, when programs are 
implemented long- term and over large spatial scales and involve dif-
ferent administrations with different budgets. To cope with these 
constraints, we propose sampling protocols that allow flexibility in 
data	collection	strategies,	sampling	frequencies,	and	spatial	cover-
age. This, in turn, accommodates variations in target species and 
environmental conditions in different regions, as well as economic 
conditions.

By applying an adaptive management approach to wildlife mon-
itoring activities, as in the wolf monitoring program in the Italian 
Alps,	 researchers	can	 improve	the	scalability,	applicability,	and	 im-
pact of monitoring initiatives in different ecosystems and geograph-
ical contexts.
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