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Abstract
The ongoing expansion of wolf (Canis lupus) populations in Europe has led to a growing 
demand for up-to-date abundance estimates. Non-invasive genetic sampling (NGS) is 
now widely used to monitor wolves, as it allows individual identification and abun-
dance estimation without physically capturing individuals. However, NGS is resource-
intensive, partly due to the elusive behaviour and wide distribution of wolves, as well 
as the cost of DNA analyses. Optimisation of sampling strategies is therefore a require-
ment for the long-term sustainability of wolf monitoring programs. Using data from 
the 2020–2021 Italian Alpine wolf monitoring, we investigate how (i) reducing the 
number of samples genotyped, (ii) reducing the number of transects, and (iii) reducing 
the number of repetitions of each search transect impacted spatial capture-recapture 
population size estimates. Our study revealed that a 25% reduction in the number of 
transects or, alternatively, a 50% reduction in the maximum number of repetitions 
yielded abundance estimates comparable to those obtained using the entire dataset. 
These modifications would result in a 2046 km reduction in total transect length and 
19,628 km reduction in total distance searched. Further reducing the number of tran-
sects resulted in up to 15% lower and up to 17% less precise abundance estimates. 
Reducing only the number of genotyped samples led to higher (5%) and less precise 
(20%) abundance estimates. Randomly subsampling genotyped samples reduced the 
number of detections per individual, whereas subsampling search transects resulted 
in a less pronounced decrease in both the total number of detections and individuals 
detected. Our work shows how it is possible to optimise wolf monitoring by reduc-
ing search effort while maintaining the quality of abundance estimates, by adopting 
a modelling framework that uses a first survey dataset. We further provide general 
guidelines on how to optimise sampling effort when using spatial capture-recapture 
in large-scale monitoring programmes.
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1  |  INTRODUC TION

Accurate estimates of demographic parameters such as population 
size and density are critical for wildlife management and conser-
vation (Holland et  al.,  2012; Lindenmayer et  al.,  2022). Inaccurate 
population size estimates can lead to false interpretations of the im-
pact of conservation or management interventions (e.g., culling or 
hunting). In addition to robust estimation methods, scientists have 
emphasised the need for long-term monitoring programs to assess 
population trends over time and not just point estimates (Habel 
et al., 2014; White, 2019). However, reliable and effective long-term 
monitoring of wildlife species is inherently complex and costly. This 
is especially true for expanding or recovering species, given that the 
area and number of individuals to keep track of increases over time 
(Marucco et al., 2023; Milleret et al., 2020).

The recent recolonization of Europe by the wolf (Canis lupus) 
(Boitani et  al.,  2022; Chapron et  al.,  2014) has led to a pressing 
demand from stakeholders and managers to quantify their abun-
dance and distribution. These estimates are also required to meet 
legal obligations in Europe (Annex XVII of the Habitat Directive, 
92/43/2000 CE) and are necessary given the conflictual relationship 
between human activities and predators (Kuijper et al., 2019; López-
Bao et  al.,  2015). This recurrent demand for population size esti-
mates has sparked methodological advances in both data collection 
(Bohmann et al., 2014; Hodgson et al., 2018; Stephenson, 2020) and 
statistical analysis (Bischof et al., 2020; Blanc et al., 2014; Jiménez 
et al., 2016). Non-invasive genetic sampling, which enables identi-
fying individuals from DNA extracted from samples such as scats 
and hairs, has been successfully used to estimate wolf population 
sizes in different places (Bischof et al., 2020; López-Bao et al., 2018; 
Marucco et  al.,  2009; Stenglein et  al.,  2010). Spatial Capture-
Recapture (SCR) (Borchers & Efford, 2008; Royle & Young, 2008) has 
in turn proved particularly suitable to analyse such data (Kéry, 2011). 
SCR models exploit the spatial distribution of non-invasive genetic 
samples (NGS) to estimate individual activity centres and produce 
spatially explicit estimates of density for entire populations (Bischof 
et  al.,  2020). Nevertheless, SCR models are data-hungry models, 
which require large datasets and a high sampling effort to obtain an 
adequate spatial representation (Dupont et al., 2019). There is an in-
herent trade-off between sampling effort and the precision of popu-
lation size estimates: higher effort leads to larger sample size, which 
in turn reduces uncertainty in estimates (Paterson et al., 2019). For 
widespread and large populations, this means collecting large num-
bers of NGS over large areas and thus high field effort and labora-
tory costs (e.g., genetic analysis). This level of monitoring effort is 
hardly sustainable in the long-term.

In the Italian Alps, the wolf population was intensively sampled 
during the winter of 2020–2021. The sampling scheme consisted 
of numerous search transects systematically distributed over the 

entire Italian Alpine arch, which were repeatedly searched over the 
course of 6 months. This extensive search effort – 40,725 km walked 
by field staff and volunteers – led to the first landscape-scale pop-
ulation density map and abundance estimate using SCR (Marucco 
et al., 2023). This work was made possible by the development of a 
network of operators trained to collect wolf DNA samples, with the 
intent to repeat the sampling over time. However, the costs of this 
sampling scheme make it impossible to repeat every year and thus 
follow the development of the population over time. In this sampling 
scheme, field activities are mainly managed by institutional person-
nel, who in turn are paid by their respective institutions. Therefore, 
the main expenses incurred directly by the monitoring program are 
the laboratory costs for genetic analyses.

Here, we investigated how to optimise the wolf monitoring 
program in the Italian Alps both from both search effort and DNA 
analysis perspectives by subsampling the data collected during 
2020–2021 (Marucco et al., 2023). Our work aimed to identify sam-
pling strategies that reduce the effort associated with wolf surveys 
in the Italian Alps without jeopardising the reliability of the SCR esti-
mates. We quantified the consequences of subsampling on the accu-
racy and precision of the population size estimate in two scenarios: 
(i) a reduction of the number of NGS successfully analysed in the ge-
netic laboratory, with no reduction in search effort; (ii) a reduction in 
search effort, both in terms of the number of transect searched and 
the number of visits per transect, with a corresponding reduction in 
the number of samples analysed. The first scenario only decreases 
laboratory costs, while the second scenario decreases costs at all 
stages, from data collection to DNA analysis. We expected the pre-
cision of the population size estimates to decrease with increasing 
levels of subsampling in all scenarios. Data sparsity can lead to bias 
in SCR estimates (Efford et al., 2016), and we expected this to mani-
fest in the most extreme subsampling scenarios, where a substantial 
proportion of samples was lost to the analysis. Our goal with the 
above line of inquiry was to inform planning and facilitate long-term 
monitoring for population size estimation for wolves in the Italian 
Alps and elsewhere.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling design

Our subsampling study used the dataset from the 2020/21 Italian 
Alpine wolf survey (Marucco et  al.,  2023). The sampling period 
started on 1 October 2020 and ended on 30 April 2021 and was 
mostly based on systematic transects (Figure  1a) along roads and 
trails used by wolves. We used linear transects to detect and collect 
scats, aided by the detection of snow tracks of wolf packs. Tracks 
were used to maximise the probability of identifying all members of 

T A X O N O M Y  C L A S S I F I C A T I O N
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a pack and develop a pedigree of the overall population (Marucco 
et al., 2009, 2012).

The study area was divided into 10 × 10 km grid cells, classified 
into two categories: cells with pre-existing information on the pres-
ence of wolf packs were intensively sampled with search transects 
that were repeated at least six times (once a month), while transects 
in neighbouring cells or areas of the new expansion were repeated at 
least three times (once every 2 months). The variation in the number 
of transects and the different number of repetitions resulted in large 
differences in search effort, with distance searched ranging from 0 
to 658 km (mean = 10 km) per cell, and the number of repetitions per 
transects ranging from 1 to 29 (mean = 4.95) (Figure S5). In addition to 
this systematic sampling, opportunistic sampling (unplanned searches) 
was carried out everywhere within the study area, including in areas 
without confirmed wolf presence. Opportunistic sampling was carried 
out by the same trained operators involved in the systematic collec-
tion, but it could not be quantified due to its opportunistic nature.

Pack pedigrees were constructed from the successfully genotyped 
NGS as described in Marucco et al.  (2023). This allowed us to cate-
gorise detected individuals' social status: ‘reproductive individual’ (RI, 
dominant individuals who reproduce inside the pack), ‘offspring’ (mem-
bers of a pack with shared genetic heritage with RI), and ‘other’ (mem-
bers of a pack with no genetic relationship or dispersing individuals).

2.2  |  Spatial capture-recapture model

Spatial Capture-Recapture models are hierarchical models that 
allow for the estimation of population size and density (Borchers 
& Efford, 2008; Royle & Young, 2008). For this study, we used the 
same Bayesian SCR model as Marucco et al. (2023). SCR models rely 
on multiple recaptures of the same individuals at different locations 
in space to estimate the distribution of the individuals' activity cen-
tre (AC) across the habitat. Because the size of the total population 
is unknown, both the number of individuals and their ACs are treated 
as latent variables. To estimate AC locations, including those of un-
detected individuals, SCR models are composed of two sub-models, 
an observation model and a density model.

(i) The observation model describes the probability of detecting 
an individual i at detector j as a function of the individual's position 
relative to the detector. This probability is commonly modelled as 
a half-normal function of the distance between the individual's AC 
and the detector:

with p0 the baseline detection probability, i.e., the probability to detect 
the individual if its AC coincides with the detector's position, and the 

pij = p0exp

(

− d2
ij

2�2

)

F I G U R E  1 Example of subsampling of the wolf data collected from October 2020 to April 2021 throughout the Italian Alpine regions 
(blue background). On the left is the full dataset, with 100% of the search transects (black lines) and all genotyped samples (yellow dots). 
On the right is a subsampled dataset, where 25% of the search transects and associated genotyped samples were retained, the white 
grid-lines indicate the 5 × 5 km detector grid used in the analysis. Lower panels present a zoom in of a specific area to better visualise the 
consequences of subsampling. Note that opportunistic samples (not associated with a search transects) are kept when subsampling, as 
visible from the isolated yellow dot in the lower right panel.
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scale parameter σ usually considered a measure of home range size 
during the sampling period (Royle et al., 2014). We used a 5 km-resolution 
grid covering the entire Italian Alpine region and used grid centroids as 
detectors. To account for factors affecting the probability of collecting a 
wolf DNA sample, we used multiple covariates to model detectors and 
individual-specific baseline detection probabilities. We used cumulative 
snowfall (snow), human population density (humpop), transect searcher 
experience (searcherexp) and transect length (transect_L): see Marucco 
et al. (2023) for details:

The encounter frequency (yij) of individual i at detector j was mod-
elled as a binomial process, following Milleret et al. (2018), where each 
detector grid cell was divided into 25 sub-cells of 1 × 1 km:

and sizej refers to the number of sub-cells associated with detector 
j. This formulation means that all detections were aggregated to the 
closest sub-cells. See Marucco et al. (2023) for more details.

(ii) The density model describes how individual ACs are distributed 
across the available habitat S. To account for individual ACs that might 
be situated outside of the sampled area, we considered a 30 km buffer 
around the sampled region defined by the detector grid to define S. 
Density was then modelled across S as an inhomogeneous Binomial 
Point Process (Zhang et al., 2023) with intensity:

where Ih, the point-process intensity in habitat grid cell h, is a log-linear 
function of the historical presence of wolves (wolf_presence), human 
population density (hum_pop), the percentage of forest (forest), bare 
rock (bare_rock), and herbaceous cover (herbaceous).

Following the data augmentation approach (Royle et al., 2013), un-
detected individuals are added to the population of detected individ-
uals. Individual state is then modelled using a Bernoulli state variable 
Z, which takes value 1 if the individual is part of the population and 0 
otherwise:

where ψ is the probability for an individual from the augmented pool 
of individuals belong to the population. Population size (N) is then ob-
tained by summing over the vector Z:

Using the information provided by the population pedigree, we 
were also able to model individual sex and social status as:

where ρ is the proportion of males in the population, and θsex is a sex-
specific vector representing the proportion of individuals in each social 
status category (Σ�sex = 1).

2.3  |  Data subsampling

To optimise the wolf monitoring in the Italian Alps, we considered 
two subsampling scenarios.

2.3.1  |  NGS subsampling

This simulation scenario aimed to quantify the consequences of ran-
domly reducing the number of samples genotyped to reduce labora-
tory costs. To do so, we randomly subsampled the dataset, retaining 
25%, 50%, or 75% of the genotyped samples.

2.3.2  |  Search effort subsampling

To investigate the effect of reducing search effort and thus reduce 
overall costs, from sample collection to laboratory costs, we artificially 
subsampled recorded search transects and associated samples along 
one or both of two dimensions: (i) transect subsampling, a reduction 
in the number of transects and altering the spatial coverage of the 
survey, and (ii) repetition subsampling, a reduction in the number of 
repeated visits of each transect retained, thus reducing the intensity 
of the search effort. Practically, this subsampling procedure followed 
three steps. First, given the uncertainty regarding whether a sample 
was obtained systematically or opportunistically, and whether the as-
sociated effort was documented or not, a classification method was 
devised. Samples positioned within 500 meters of each transect were 
designated as systematic, while those positioned beyond this distance 
were classified as opportunistic. Subsequent subsampling was exclu-
sively conducted on systematic samples (Milleret et al., 2020). Second, 
to subsample transects, we randomly kept 25%, 50%, 75%, or 100% 
of the overall 1179 transects. Transect subsampling was random but 
applied independently in each provincial administrative unit to provide 
comparable guidelines for institutions coordinating surveys locally. 
Finally, we randomly retained 3, 6, or all repetitions for the retained 
transects. We filtered out systematic samples that did not match 
both the date and location of the retained search transects after each 
subsampling. Note that following this subsampling procedure, all rep-
etitions were retained for transects with less than 3 or 6 repetitions, 
depending on the scenario explored. Also note that all opportunistic 
samples were retained in all search effort subsampling scenarios.

2.4  |  Model fitting and evaluation

Together, the NGS subsampling scenarios (25%, 50%, or 75% of 
genotyped samples retained) and the search effort subsampling sce-
narios (25%, 50%, 75%, or 100% of the transects and 3, 6, or all 
repetitions retained) resulted in 14 different subsampling scenarios. 
We repeated the random subsampling process a hundred times for 
each scenario to capture variability among replicates. This led to 
a total of 1400 SCR datasets. We fitted the SCR model presented 

p0 ij = p0sexistatusi
+ �snowj + �humpopj + �searcherexpj + �transect _Lj

yij ∼ Binomial
(

pijzi , sizej
)

Ih = e
�wolf_pres∗wolf_presenceh+�hum_pop∗hum_poph+�forest∗foresth+�br∗bare_rockh+�herb∗herbaceoush

zi ∼ Bernoulli(�)

N =

M
∑

i=1

zi

sexi ∼ Bernoulli(� )

statusi ∼ Categorical
(

�sex

)
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above to each subsampled dataset using nimble version 0.10.2 (de 
Valpine et al., 2017) and nimbleSCR (Bischof et al., 2022) in R version 
4.1.3 (R Development Core Team, 2022). We ran 4 chains of 20,000 
iterations each, including a 10,000 burn-in, resulting in a total of 
40,000 posterior MCMC samples per model. We assessed model 
convergence using the Gelman-Rubin diagnostic (R̂  < 1.1, Gelman & 
Rubin, 1992) and by visually inspecting trace plots from randomly 
selected models.

We evaluated the performance of the SCR model in each sce-
nario based on estimates of population size N. We calculated the 
relative difference (RD) with the SCR model fitted to the full dataset 
(Marucco et al., 2023):

where 
_

N is the posterior mean estimate of the considered simulation 
replicate, and N is the posterior mean estimate from the full dataset. 
We used the relative difference as a measure of accuracy instead of 
relative bias since the true value of the parameter is unknown. As a 
measure of precision, we used the coefficient of variation (CV):

where sd(N) is the standard deviation of the posterior distribution, and 
σ is the posterior mean estimate of the considered simulation replicate.

3  |  RESULTS

3.1  |  Model convergence

In all scenarios, the proportion of models converged after 20,000 
iterations decreased as subsampling increased. We observed the 
lowest number of models converged for the scenario retaining 25% 
of all genotyped samples (Table 1). We observed the same pattern 
in the search effort subsampling scenario, although the proportion 
of models converged was much higher, even in the scenario with the 
highest level of subsampling (25% of transects retained and max 3 
repetitions, Table 1). Models that did not converge were removed 
from further analysis and comparisons.

3.2  |  NGS subsampling

Retaining 25%, 50%, or 75% of the systematically collected geno-
typed samples and all opportunistic samples reduced the mean num-
ber of individuals detected by 64.8%, 38.3%, and 7.5%, respectively 
(Tables 2 and S2). Similarly, the mean number of detections per in-
dividual decreased, especially when only 25% of samples were re-
tained. The maximum number of detections per individual was also 
strongly affected. In the 25% scenario, the value fell to 2.9, com-
pared to 5 in the full dataset (Table 2). This resulted, as expected, 
in a large variation (RDrange = −0.35–0.63) in the population size 
estimate among replicated SCR datasets, although the mean rela-
tive difference was still close (RD = 0.13) to the estimate of the full 
dataset model (Figure 2a). Overall, SCR models fitted to subsampled 
genotyped NGS produced slightly higher (mean RD = 0.1, Figure 2a) 
and less precise population size estimates (Figure 2b) compared to 
the model fitted to the full dataset. When retaining only 25% of the 
samples genotyped, the CV reached approximately 20, compared to 
less than 5% for the full dataset (Figure 2b).

3.3  |  Search effort subsampling

3.3.1  |  Transects subsampling

Retaining 25%, 50%, or 75% of the transects reduced the total num-
ber of samples by 48%, 31%, and 15% and the number of individu-
als detected by 42%, 27%, and 13%, respectively (Tables 3 and S1). 
Similar trends were found for both males and females, and wolves 
of different social status. The maximum number of detections re-
mained above 4 in all scenarios. The numbers of detections and indi-
viduals detected by sex and social status in the 75% scenario showed 
values close to the full dataset (Table 3).

Subsampling transects led to a decrease in the mean posterior 
population size estimate (Figure  3a). The mean relative difference 
changed from 1.3% when discarding 25% of the transects to −6.9% 
and −13.5% when discarding 50% and 75% of the transects, respec-
tively. The latter corresponded to a population size estimate that was 
250 individuals lower than the approximately 1000 individuals esti-
mated with the full dataset (Figure  3a). As in the NGS subsampling 

RD =

_

N − N

N

CV =

sd(N)
_

N

TA B L E  1 Number of SCR models (out of 100 replicate simulations) that converged for each subsampling scenario (in rows) and for 
each percentage of samples or transects retained (in columns). NGS subsampling consisted in a random reduction of the proportion of 
genotyped samples available. For the transects subsampling, we randomly retained 25%, 50%, 75%, or 100% of the transects and 3, 6, or all 
the repeated visits for the transects retained and analysed the associated samples. We also considered scenarios where we performed an 
additional removal of transects to retain a maximum number of 3 or 6 transect repetitions.

Scenarios Maximum number of repetitions retained

% Samples or transects retained

25% 50% 75% 100%

NGS subsampling – 35 88 96 –

Transects subsampling 3 85 88 96 96

6 85 97 98 99

All 97 99 100 –
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scenario, the precision of population size estimates decreased when 
subsampling search transects (25% CV = 0.139; 50% CV = 0.109; 
75% = 0.09, Figure 3b).

3.3.2  |  Repetitions subsampling

As expected, the total number of detections and the number of indi-
viduals detected were negatively affected when reducing the number 

of repetitions per transect (Table 3, Figure S4). This decrease was most 
prominent in the scenario with 100% of the transects retained, where 
limiting the number of repetitions per transects to 6 or 3 generated 
on average 20% and 35% fewer detections, and 18% and 30% fewer 
individuals detected, respectively. In the scenarios discarding the 75% 
of the transects, differences were less marked, with a 7% and 15% 
reduction in the number of detections, and a 6% and 14% reduction in 
the number of individuals detected for the scenarios with a maximum 
of 6 and 3 repetitions, respectively (Table 3).

TA B L E  2 Summary of subsampled datasets (mean ± sd) after retaining 25%, 50%, 75%, and 100% of the genotyped NGS. NDet: Number 
of successfully genotyped samples, AveRec: Mean number of detections per individual detected, MaxDet: Maximum number of detections 
per individual, IDs: Total number of individuals; Females: Number of females; Males: Number of males; RI: Number of reproductive 
individuals; Offspring: Number of individuals sharing part of their DNA with the RI of the same pack; Other: Number of individuals of a 
pack with no relatedness with RI. Note that not all detected and genotyped individuals could be assigned to one of the sex or social status 
categories considered.

NGS 25% 50% 75% 100%

NDet 173.76 (±3.48) 327.69 (±5.1) 465.89 (±5.57) 593

AveRec 1.09 (±1.24) 1.18 (±1.08) 1.25 (±1.07) 1.32

MaxDet 2.92 (±0.56) 3.76 (±0.6) 4.49 (±0.52) 5

IDs 158.18 (±4.34) 277.01 (±5.54) 370.52 (±5.99) 449

Females 79.75 (±5.26) 138.09 (±5.49) 183.79 (±5.99) 222

Males 75.15 (±5.66) 132.03 (±5.49) 176.47 (±4.95) 213

RI 45.08 (±5.02) 75.73 (±4.27) 95.96 (±3.56) 111

Offspring 51.12 (±4.61) 89.28 (±5.37) 121.86 (±5.05) 149

Other 21.54 (±3.36) 38.61 (±3.83) 52.32 (±3.09) 63

F I G U R E  2 (a) Relative difference (RD) and (b) coefficient of variation (CV) of wolf abundance estimates (N) for NGS subsampling 
(retaining 25%, 50%, and 75% of the full dataset) over 100 replicated datasets, the ones that converged are represented here as a violin plot 
with the median as a white dot. The pink line represents values obtained when analysing the full dataset model (100% NGS), i.e., a relative 
difference of 0 and a CV of 0.07.
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Overall, reducing the number of repetitions resulted in decreased 
precision in population estimates across all levels of transects sub-
sampling. However, it maintained a CV close to that of the original 
dataset model (Figure 3). For example, in the scenario with 50% of 
the transects retained, limiting the number of repetitions translated 
into increasing CV values, from an average of 0.11 to 0.13 and 0.15 
in the scenarios with all, 6, or 3 repetitions per transect retained, 
respectively (Figure 3b).

The increase in CV was not accompanied by a noticeable in-
crease in RD in N, with average RD values of −0.1 in the same three 
scenarios with 50% of the transects retained (Figure  3a). Overall, 
the RD value tended towards zero as the percentage of transects re-
tained increased with no significant variation between the repetition 
scenarios (Figure 3a).

Surprisingly, retaining a high number of transects and a high 
number of repetitions resulted in higher estimates of N, compared to 
the model fitted to the full dataset. In fact, for the scenario where all 
and 75% of the transects are retained, and with 6 or all repetitions, 
we obtained positive RDs. The most relevant case is that of 100% 
transects retained and 6 repetitions, for which we observed an av-
erage RD of 0.08.

For all scenarios, N and σ estimates, with relative, RD and CV, by 
sex and status can be found in Figures S1–S3.

4  |  DISCUSSION

SCR is a common approach for estimating wildlife population den-
sity (Tourani,  2022), but SCR models are not immune to the limi-
tations associated with sparse data. To provide reliable estimates 
for large populations, these methods usually require large datasets 
and thus major data collection effort (Dupont et al., 2019; Paterson 
et al., 2019). Marucco et al.  (2023) searched more than 40,000 km 
of transects over approximately 100,000 km2 to generate the first 
wolf population size estimate for the entire Italian Alps. Here, using 
this first survey of the population as a starting point, we explored 
the consequences of reduced sampling effort to help increase cost-
efficiency and facilitate long-term monitoring.

4.1  |  Subsampling trade-off

The scenarios that offered the best trade-off between effort re-
duction and accurate abundance estimation were the scenarios 
with 75% of the transects retained and 6 repetitions and the sce-
nario with all 100% transects retained and 3 repetitions per tran-
sect (Figure  3a). Implementing the first scenario would lead to an 
approximately 36% decrease in search effort, from 40,725 to 26,178 
(±371) km of transects searched. This translates into the removal of 
up to 295 of the 1179 transects and 31% of the detections. The sec-
ond scenario would reduce the search effort by approximately 52% 
(−21,097 ± 42 km), and result in the loss of 35% of the detections. 
Despite these substantial reductions in search effort and number TA
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of samples analysed, overall abundance estimates were comparable 
with those from the full dataset.

It is worth noting that, the reliability of population size estimates 
might also be affected by population size itself. For instance, if pop-
ulation size decreases, this will also lead to a decrease in sample size. 
Coupling a decrease in the wolf population with reduced sampling 
effort could exacerbate the challenges of critical data situations, 
where sparse data lead to unreliable or biased estimates (Marques 
et al., 2011; Sollmann et al., 2012). Sparse data tend to introduce posi-
tive bias in population estimates, meaning that population size may be 
overestimated (Paterson et al., 2019). As a consequence, this decreases 
the chances to detect a population decline. Nowadays, identifying the 
decline, rather than the growth of a population, becomes increasingly 
relevant. This is true for species for which precise conservation efforts 
are in place, but even more so for the wolf for which massive man-
agement plans are in prospect. However, since effort is recorded, SCR 
models should be able to assess whether a lower sample size is due 
to a reduction in search effort or a decrease in diminished population 
size. Nonetheless, decreased sampling leads to higher uncertainty, re-
ducing the ability to identify substantial population changes.

In our study, the reduction in the number of transects and the 
consequent decrease in the number of samples did not affect the 
abundance estimates according to social status. Thus, even reduced 
sampling led to accurate abundance estimates for the different so-
cial classes. Numbers of ‘reproductive individuals’ (RIs) and ‘others’ 
(Figure S1A) are used to produce estimates of the number of mature 

individuals (Marucco et al., 2023), a critical parameter for IUCN Red 
List assessments (IUCN, 2022). The number of ‘RIs’ also allows es-
timation of the number of packs, which is critical for assessing the 
conservation status of the species. Reducing search effort while 
still being able to provide these estimates with high accuracy is thus 
highly valuable.

4.2  |  Subsampling NGS

Randomly subsampling the number of genotyped samples without 
considering the associated spatial effort led to fewer individuals de-
tected and fewer spatial recaptures per individual. This resulted in 
slightly higher population size estimates and a significant loss in pre-
cision. This is in line with previous works that found data sparsity can 
cause biased estimates (Milleret et al., 2020; Paterson et al., 2019; 
Sun et al., 2014). Schmidt et al. (2022) suggested that a low propor-
tion of individuals with multiple spatial recaptures (<0.3%) could be 
a signal for inflated estimates of population size. This risk should be 
avoided, especially for endangered, controversial, or exploited spe-
cies, such as wolves. Furthermore, the precision of estimates tends to 
increase with the number of individuals detected (Morin et al., 2018; 
Schmidt et al., 2022). The scenario with only 25% of the genotyped 
samples retained had the highest CV of all scenarios tested, ex-
ceeding the 0.2 threshold, which was suggested as the maximum 
CV value to efficiently detect changes in a population (Efford & 

F I G U R E  3 (a) Relative difference (RD) and (b) coefficient of variation (CV) of wolf abundance estimates (N), for different proportions of 
search transects retained (25%, 50%, 75% and 100% of transects) and repetitions per search transect (3, 6 or all repetitions). Violin plots 
represent the distribution of the relative difference over converged subsampling iterations, with the median value as a white dot. Pink lines 
represent the estimate from the model fitted to the full dataset.
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Boulanger, 2019; Skalski et al., 2010). Finally, a large proportion of 
the models in this scenario did not reach convergence (65%), and we 
thus caution against such drastic sample size reduction.

In the SCR framework, density is estimated concurrently with 
σ (individual space use) and p0 (the baseline detection probability). 
Unaccounted variation in these parameters has been linked to biased 
abundance estimates (Borchers & Efford, 2008; Efford et al., 2016). 
For example, negative bias in the scale parameter estimates has 
been associated with positively biased densities (Efford et al., 2016; 
Harmsen et al., 2020). Similarly, negatively biased p0 estimates result 
in positively biased density estimates (Milleret et al., 2020; Moqanaki 
et al., 2021; Paterson et al., 2019). Subsampling NGS regardless of 
their location resulted in a drastic reduction in the number of de-
tections per individual, leading to changes in the estimates of σ and 
p0. In particular, the lower estimates of σ for females of all social 
statuses (Figure S3.1), which make up half of the Italian Alpine wolf 
population (Marucco et al., 2023), might be a reason for the higher N 
estimates after subsampling. Data sparsity after subsampling most 
likely underlies this underestimation of σ, as well as the higher and 
imprecise population size estimates.

4.3  |  Subsampling search effort

In most search effort subsampling scenarios, reducing the number 
of transects and retaining 3, 6, or all the transect repetitions, re-
sulted in comparable estimates of N. Considering their closeness to 
the reference value and the fact that the CV of the estimates were 
always below the recommended threshold, reducing the number 
of transects seems a more appropriate strategy than subsampling 
NGS alone. In the original sampling design, transects were placed in 
proximity to each other to account for the movements of packs and 
their members throughout the occupied territories and to maximise 
the probability of detecting individuals at multiple detectors. This 
feature is maintained when reducing the number of transects if a 
significant number of transects is retained. In fact, explicitly consid-
ering space, i.e. search transects, when subsampling produced more 
stable and higher values in both the average and maximum number 
of detections per individual compared to the NGS subsampling sce-
narios (Tables 2 and 3). Furthermore, and although genetic analysis 
was the highest cost item, reduction in field collection effort (dis-
tance walked) leads to more comprehensive cost savings, including 
savings in both field and laboratory costs.

The observed underestimation in N in scenarios with less effort 
retained, may lie in the nature of SCR models, where the detections 
of a given individual are expected to be spatially autocorrelated. 
The effective removal of one or more transects may mean the total 
loss of an individual and all its detections, but without altering the 
probability of detection of the other individuals, which in turn may 
result in a higher estimate of the apparent probability of detection 
and thus lower population size estimates. However, this poten-
tial issue should in theory be mitigated by using the length of the 
transects as a covariate on the baseline probability of detection, to 

consider differences in effort between detection grid cells (Milleret 
et al., 2020), stressing the importance of accounting for heterogene-
ity in search effort in SCR models (Moqanaki et al., 2021).

Reducing the number of repeated searches along transects is 
another effective way to reduce monitoring effort. Reducing to 3 
repetitions per transect caused no major deviation in the estimates. 
Interestingly, we observed slightly higher population size estimates 
in the scenario with 100% of the transects retained and a maximum 
of 6 repetitions per transect compared to the full dataset, while we 
obtained lower or comparable population size estimates in all other 
search effort subsampling scenarios. Our model accounted for indi-
vidual variation in detectability and home range size (i.e., using the 
sex and status of the individual), and spatial variation in detectability 
(i.e., linked with search effort, snow conditions, searchers' experi-
ence). However, additional sources of heterogeneity in detectabil-
ity may have remained unaccounted for by the model (Moqanaki 
et al., 2021), e.g., variability in the genotyping success of samples. 
Alternatively, subsampling may have introduced additional sources 
of heterogeneity that we were not able to account for. Since our 
study used empirical data; we were not able to identify with cer-
tainty the causes of this apparent overestimation.

4.4  |  Sampling design recommendations

The current study relied heavily on the accurate quantification of 
search effort, through the recording of search paths using GPS. This 
information also enabled the implementation of various subsampling 
scenarios. Nevertheless, around 30% of the samples genotyped were 
collected opportunistically and thus lack information on search effort. 
Opportunistic sampling is important to document areas of new recolo-
nization where systematic transects have not yet been implemented 
or only occur at low density. When the goal is to estimate the size of 
wide-ranging populations, we thus advocate for a more homogeneous 
distribution of search transects, with the goal to cover as much as pos-
sible of the area of interest, i.e., a reduction of the number of transects 
in areas where they are already present at high density and an increase 
in areas where they are still few or absent. From the model's perspec-
tive, it is also important to obtain information about the absence of the 
species and not only rely on opportunistic sampling for which we often 
struggle to quantify effort (Moqanaki et al., 2021).

Indeed, for monitoring programs relying on NGS, maximising 
spatial coverage rather than sampling the same transect multiple 
times can significantly enhance the effectiveness and efficiency of 
data collection. In this study, we used the number of genotyped sam-
ples as a metric, but when planning sample collection, one has to 
take into account the expected genotyping success (which averages 
65% in our case) to obtain the desired number of exploitable samples 
for the analysis.

Our subsampling approach of previously collected data of-
fers opportunities for optimising cost efficiency and assessing the 
sensitivity of results to different sampling scenarios. By systemat-
ically subsampling existing datasets and comparing the outcomes, 
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10 of 12  |     BOIANI et al.

researchers can determine the minimum sampling effort required to 
achieve desired levels of accuracy and precision. This information 
can then inform the design of future monitoring programs, helping to 
strike a balance between information gain and resource allocation.

5  |  CONCLUSION

Long-term monitoring programs are needed for efficient wild-
life management and, at the same time, are highly demanding 
(Lindenmayer et al., 2011, 2022; Lindenmayer & Likens, 2009). Our 
empirical data-based modelling approach helped us in optimising 
wolf monitoring in the Italian Alps by adjusting the sampling effort, 
both in terms of spatial coverage and intensity. We also found that 
randomly reducing NGS a posteriori, not considering space, was 
not a good practice. In addition, integrating additional information 
(camera traps, Chandler & Clark,  2014; dead recoveries, Dupont 
et al., 2019) to SCR models are also promising alternatives to opti-
mise the monitoring program of wolves in the Italian Alps and should 
be explored further.

Adaptive management is a dynamic approach that involves test-
ing predictions against observations, enabling iterative recalibra-
tion of management strategies at predetermined decision points 
as learning occurs (Allen & Garmestani, 2015; Williams, 2011). This 
learning process facilitates the progression of management actions 
as uncertainty diminishes over time (Williams, 2011). We believe 
that the adaptive management approach described here can be ad-
vantageously applied to wildlife population monitoring elsewhere.

Wildlife monitoring programs usually operate with limited re-
sources. Resources are particularly limiting, when programs are 
implemented long-term and over large spatial scales and involve dif-
ferent administrations with different budgets. To cope with these 
constraints, we propose sampling protocols that allow flexibility in 
data collection strategies, sampling frequencies, and spatial cover-
age. This, in turn, accommodates variations in target species and 
environmental conditions in different regions, as well as economic 
conditions.

By applying an adaptive management approach to wildlife mon-
itoring activities, as in the wolf monitoring program in the Italian 
Alps, researchers can improve the scalability, applicability, and im-
pact of monitoring initiatives in different ecosystems and geograph-
ical contexts.
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