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Abstract

Faithful, robust and fast waveform models are of critical importance to gravitational wave astronomy

to allow for accurate and precise detection and analysis of the source. The dominant source of

Gravitational Wave (GW) events observed to date is compact binary coalescence. Waveform models

based on the E�ective-One-Body (EOB) approach have been proven to be very powerful in their

ability to combine analytical information from post-Newtonian theory, gravitational-self-force theory

and more, in order to capture the full picture of merging binary systems. Purely analytical EOB

models are however still of insu�cient quality to be used in the detection and analysis of GW

events. This thesis presents an introduction to the solution of this problem: The completion of

EOB waveform models through Numerical Relativity (NR), on the example of non-precessing, non-

eccentric Binary Black Hole (BBH) systems, utilizing the framework of the TEOB model. Once

completed NR is further used to validate the model to ensure it meets the qualitative needs of GW

data analysis.

The infrastructure of the TEOBmodel is introduced and discussed with a strong focus onto analyt-

ical �exibilities that can be used to capture missing information from NR waveforms. The analytical

�exibilities of the TEOB model are made up of e�ective parameters that enter the Hamiltonian so

as to modify both the orbital part (i.e. non-spinning) and the spin-orbit interaction between the

orbital angular momentum and the black hole spins. The approximation of a quasi-circular inspiral

is corrected e�ectively in the radiation reaction of the system by imposing NR �tted waveform

characteristics. The model is completed with a phenomenological template �tted directly to NR

to capture the merger and ringdown of the BBH system. In total 154 BBH-NR waveforms are

combined to inform the TEOB. An additional 420 waveforms are used to validate the model. These

waveforms span over a large part of the parameter space reaching mass-ratios m1/m2 ≤ 18 and

black hole spins of up to |~S1,2|/m2
1,2 ≤ 0.998.

This calibration process is presented for three, successively improving avatars of the TEOB model.

All models include improved analytical information, presenting an excellent opportunity to discuss

the impact of analytical information onto the subsequent calibration to NR. Many important phe-

nomenological features of the multipolar waveform is explored and discussed, in particular this

includes several quasi-universal spin dependencies, simplifying direct �ts of NR parameters greatly.

The TEOB avatars discussed in this thesis are: Firstly, TEOBResumS is a model for the dominant,

quadrupolar mode; Secondly, TEOBiResumMultipoles models BBH systems of non-rotating black

holes, extending the calibration of the quadrupolar mode to a large set of 9 further subdominant

modes; Finally, TEOBiResumS_SM extends the calibration of all but one subdominant mode to the

full spin-range available of available NR waveforms. The fully calibrated models are all evaluated

against the NR catalog. In many instances the model does not just meet but exceeds the quality

demands for application in GW astronomy. However, this is not always possible to achieve with

mere improvement of the NR calibration. For these cases the limits are investigated and discussed

thoroughly.

Keywords: E�ective-One-Body, Waveform models, Numerical Relativity, Binary Black Holes,

Compact Binary Coalescence, Gravitational Waves.
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Italian Abstract

Modelli di forme d'onda accurati, robusti e veloci sono di fondamentale importanza per l'astronomia

delle onde gravitazionali. Essi consentono di ricavare informazioni precise sulla sorgente dei seg-

nali rilevati. La fonte più importante degli eventi di onde gravitazionali osservati �no a oggi è la

coalescenza di sistemi binari di oggetti compatti. I modelli di forme d'onda basati sull'approccio

E�ective-One-Body (EOB) si sono dimostrati molto importanti nella loro capacità di combinare in-

formazioni analitiche della teoria post-newtoniana, della gravitational self-force e di altri approcci, al

�ne di riprodurre il quadro completo di sistemi binari coalescenti. I modelli EOB puramente analitici

non sono tuttavia su�cientemente accurati per essere utilizzati nella rilevazione e nell'analisi di

eventi di onde gravitazionali. Questa tesi presenta un'introduzione alla soluzione di questo prob-

lema: il completamento di modelli di forme d'onda EOB attraverso la Relatività Numerica (NR),

con l'esempio di sistemi binari di buchi neri (BBH) quasi-circolari e senza precessione, utilizzando la

struttura del modello TEOB. Una volta completato il modello, la relatività numerica viene utilizzata

anche per convalidarlo in modo da garantire che esso soddis� i requisiti necessari all'analisi dati dei

segnali.

L'infrastruttura del modello TEOB viene introdotta e discussa con particolare attenzione alla

�essibilità analitica, che può essere usata per incorporare le informazioni mancanti utilizzando forme

d'onda numeriche. Le �essibilità analitiche del modello TEOB sono costituite da parametri e�caci

che entrano nell'Hamiltoniana in modo da modi�care sia la parte orbitale (i.e. non spinning)

sia l'interazione spin-orbita tra il momento angolare orbitale e gli spin dei buchi neri. L'inspiral

quasi-circolare viene corretto e�cacemente nella reazione di radiazione del sistema imponendo delle

caratteristiche �ttate alle onde NR. L'onda è quindi completata da un modello fenomenologico

�ttato direttamente alla NR per riprodurre la coalescenza e il ringdown del sistema binario di buchi

neri. In totale 154 forme d'onda BBH-NR vengono combinate per calibrare il modello TEOB. Ulteriori

420 forme d'onda vengono utilizzate per convalidarlo. Queste si estendono su gran parte dello spazio

dei parametri raggiungendo rapporti di massa m1/m2 ≤ 18 e spin del buco nero |~S1,2|/m2
1,2 ≤ 0.998.

Questo processo di calibrazione viene presentato per tre successive iterazioni del modello TEOB.

Ogni iterazione include maggiori informazioni analitiche, o�rendo un'eccellente opportunità per

discutere l'impatto di queste ultime sulla successiva calibrazione a NR. Molte importanti caratter-

istiche fenomenologiche della forma d'onda multipolare vengono esplorate e discusse: in particolare

queste includono dipendenze quasi-universali dagli spin, che sempli�cano notevolmente i �t dei

parametri NR. Le diverse formulazioni del modello TEOB discusse in questa tesi sono: in primo

luogo TEOBResumS, un modello che include solamente il quadrupolo dominante; in secondo luogo,

TEOBiResumMultipoles, che modellizza sistemi di buchi neri non rotanti, estendendo la calibrazione

del modo quadrupolare ad altri 9 modi sottodominanti; in�ne, TEOBiResumS_SM, che estende la

calibrazione di tutti i modi sottodominanti tranne uno all'intervallo di spin disponibile nelle forme

d'onda NR. I modelli calibrati vengono dunque confrontati con l'intero catalogo di NR. In molti casi

il modello non solo soddisfa, ma supera i requisiti di accuratezza per l'applicazione nell'astronomia

delle onde gravitazionali. Tuttavia, questo non è sempre possibile, anche con il miglioramento della

calibrazione alla NR. In questi casi, i limiti vengono studiati e discussi a fondo.
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Glossary

Acronyms

GW Gravitational Wave

GWA Gravitational Wave Astronomy

EOB E�ective-One-Body

NR Numerical Relativity

BBH Binary Black Hole

BH Black Hole

GR General Relativity

CBC Compact Binary Coalescence

NS Neutron star

BNS Binary Neutron Star

BHNS Black Hole Neutron Star

PM Post-Minkowskian

PN Post-Newtonian

GSF Gravitational-Self-Force

QNM Quasi-Normal-Mode

IMR Inspiral-Merger-Ringdown

Frequently used symbols

G Newtons gravitational constant

c the speed of light

M total mass of the system, set to M = 1 commonly

mi mass of the i-th BH with the convention m1 ≥ m2

Xi mass-fraction of the i-th BH Xi = mi/M

q mass ratio q = m1/m2 > 1

ν symmetric mass-ratio ν = m1m2/M
2

X12 mass-fraction-di�erence X12 = X1 −X − 2

Si spins of the i-th BH projected onto the orbital angular momentum

ãi Kerr-spin parameters of the i-th BH ãi = Si/mi

χi dimensionless spin of the i-th BH χi = Si/m
2
i

â0 sum of the e�ective Kerr-spin parameters â0 = ã1 + ã2

ã12 di�erence of the e�ective Kerr-spin parameters ã12 = ã1 − ã2

Ŝ e�ective spin parameter Ŝ = (S1 + S2) /M2

h+, h× gravitational wave polarizations

h the complex gravitational wave strain h = h+ − ih×

h`m multipolar waveform modes of h with ` ≥ 2 and |m| ≤ `, see eq. (2.4)
A`m, φ`m multipolar amplitude and phase h`m = A`me

−iφ`m

ω`m multipolar frequency ω`m = φ̇`m

Ψ`m Regge-Wheeler-Zerilli normalized waveform Ψ`m = h`m/
√

(`+ 2) (`+ 1) ` (`− 1)

ĥNQC
`m NQC correction factor to the waveform, see Sec. 2.3.2



R the distance from the GW source to the observer

ι, φ angular position of the observer relative to the source frame

t, u time coordinate in the source frame (and inverse radius)

F, F̄ faithfulness and unfaithfulness, see Sec. 2.1.1 and Appendix A

tpeak
`m the peak time of (`,m) mode, max [A`m] = A`m

(
tpeak
`m

)

tmrg the merger time is given by the peak of the (2, 2) mode tmrg = tpeak
22

∆t`m peak time shift of the (`,m) mode relative to the (2, 2) mode, ∆t`m ≡ tpeak
`m − tmrg

ωpeak
`m (`,m) frequency at the peak of the mode, ωpeak

`m = ω`m

(
tpeak
`m

)

Apeak
`m (`,m) amplitude at the peak of the mode, Apeak

`m = A`m

(
tpeak
`m

)

ωmrg (2, 2) frequency at the peak of the mode, ωmrg = ω22 (tmrg)

Amrg (2, 2) amplitude at the peak of the mode, Amrg = A22 (tmrg)

(GS , GS∗) gyro-gravitomagnetic ratios, see Sec. 2.3 and 4.1.1

cA`m3 e�ective evolution parameter of the postpeak (`,m) amplitude

(cφ`m3 , cφ`m4 ) e�ective evolution parameter of the postpeak (`,m) phase

(α`mn , ω`mn ) inverse damping time and frequency of the n-th QNM

α`m21 di�erence of the inverse damping times of the �rst and second QNM

Notation and Nomenclature

(q, χ1, χ2) the triplet notation is often used to refer to a speci�c waveform

(`,m) the pair of integers is often used to refer to the multipole h`m

merger the merger, referred to as a concrete point in time, is the peak of the (2, 2) mode,

as a physical phase it is sometimes referred to as the physical merging of the BBH

postmerger the waveform past the merger is referred to as postmerger

postpeak the waveform past the peak of a mode is also referred to as the postpeak waveform

inspiral the inspiral phase is marked by a clear separation of the binary

while they move along semi stable orbits

plunge the radial, unstable plunge of the binary system preceding the merger

ringdown the end-state of the evolution, during which the remnant BH is relaxing to a Kerr BH

NQC iteration de�ned in Sec. 2.3.2, to ensure consistency between waveform and �ux





Contents

List of Figures viii

List of Tables xvi

1 Introduction 1

2 Gravitational Wave Astronomy and the E�ective-One-Body approach 5

2.1 Gravitational Wave Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Comparing waveforms: The Match and the Unfaithfulness . . . . . . . . . . . 9
2.1.2 Quality demands and estimation of waveforms . . . . . . . . . . . . . . . . . . 12

2.2 The two-body problem and the EOB approach . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 The two-body problem of GR: Binary Black Holes . . . . . . . . . . . . . . . 13
2.2.2 Analytical methods and the E�ective-One-Body approach . . . . . . . . . . . 17
2.2.3 Numerical Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 TEOB infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 TEOB Hamiltonian and Equations of motion . . . . . . . . . . . . . . . . . . . 19
2.3.2 The TEOB waveform and Next-to-Quasi-Circular corrections . . . . . . . . . . 22
2.3.3 The full TEOB Hamiltonian waveform . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Phenomenological Merger-Ringdown waveform templates . . . . . . . . . . . . 27

2.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Numerical Relativity Catalog 32

3.1 NR waveforms and data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Catalog overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Estimating NR uncertainties: SXS catalog . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 SXS catalog: NR-NR mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 SXS waveform extraction of subdominant modes . . . . . . . . . . . . . . . . . . . . . 40
3.5 Pathological behavior of subdominant modes . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Extracting derivatives of subdominant modes from NR . . . . . . . . . . . . . 43

4 The dominant (2, 2) mode: TEOBResumS 44

4.1 TEOBResumS Hamiltonian and waveform . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.1 EOB potentials and gyro-gravitomagnetic functions . . . . . . . . . . . . . . . 45

4.2 Numerical Relativity �ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Analytical �exibility of TEOBResumS . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Implementation errors and waveform calibration . . . . . . . . . . . . . . . . 47
4.2.3 E�ective Post-Newtonian coe�cients . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Merger amplitude and frequency . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Next-to-Quasi-Circular corrections . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.6 Ringdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.7 Postmerger evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.8 Merger-ringdown-ringdown template performance . . . . . . . . . . . . . . . . 57

vi



4.3 EOB/NR comparison and the unfaithfulness . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 An extreme BBH con�guration: (8,−0.90, 0) . . . . . . . . . . . . . . . . . . 63

4.4 Waveform robustness outside the domain of calibration . . . . . . . . . . . . . . . . . 64

5 Subdominant modes: The non-spinning case 69

5.1 Motivation: Subdominant modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Hamiltonian and waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Hamiltonian and the A-potential . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Resummed waveform and radiation reaction:

two di�erent multipolar EOB models . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Newtonian prefactors in the waveform . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Calibration of the analytical �exibility . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 The calibration of ac6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Fits: waveform peak frequency and amplitude. . . . . . . . . . . . . . . . . . 74
5.3.3 Fits: postpeak waveform evolution . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.4 Fits: QNM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.5 Fits: Peak-time-shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.6 Fits: NQC extraction point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Comparing TEOBiResumMultipoles and NR . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.1 Unfaithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Time-domain phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Subdominant modes: The spinning case 86

6.1 TEOBiResumS_SM Hamiltonian and waveform . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Improved NR calibration of the multipolar ringdown waveform . . . . . . . . . . . . 86

6.2.1 NR-informed EOB functions: ac6 and c3 . . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Modeling the peak of each multipole . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.3 NR-�tting of the postpeak parameters . . . . . . . . . . . . . . . . . . . . . . 99
6.2.4 Modeling the NQC extraction points . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 The ` = m = 2 mode: EOB/NR unfaithfulness . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Long-inspiral Numerical Relativity waveforms . . . . . . . . . . . . . . . . . . 107
6.3.2 Nonspinning limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Higher multipolar modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1 Multipoles (2, 2), (3, 3) and (4, 4) . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.2 Other subdominant multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.3 Peculiar behavior of m = 1 waveform amplitudes for 1 ≤ q ≤ 2. . . . . . . . 110

6.5 Fitting the NQC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Peak-frequency 114

8 Discussion and Conclusion 119

A Unfaithfulness and FFT computation

B TEOBResumS ` = m = 2 mode, additional �t information

B.1 NQC hybrid �t of the ` = m = 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . .

C TEOBiResumMultipoles, additional �t information

D TEOBiResumS_SM, additional �t information



E Fits of (a1, a2) for TEOBiResumS_SM

E.1 Non-spinning sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E.2 1 < q < 4 sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E.3 q ≥ 4 sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F Numerical Relativity waveform tables

Bibliography



List of Figures

2.1 The schematic layout of the advanced Virgo detector at the beginning of the third
observing run O3. For a more detailed discussion of interferometric GW detectors
see e.g. Ref. [9, 10] or chapter 9 of Ref. [119]. [Picture source: [10]] . . . . . . . . . . 7

2.2 Strain noise spectral density estimated by the design sensitivity [146] given for the
advanced LIGO, advanced Virgo and KAGRA design as a function of the physical
frequency. [Picture source: [146]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The three phases of BBH coalescence: inspiral, merger and ringdown. Matched with
the ranges of validity for the three sources of information about the BBH coalescence.
Post-Newtonian Theory, Numerical Relativity and Black Hole perturbation theory.
[Picture credits: Kip Thorne] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 NR/NR unfaithfulness uncertainty computed from Eq. (A.12) between the highest
and next to highest resolution for each SXS waveform for which the second highest
resolution is available. (Top left) The spinning-sector of the calibration set. The 110
spinning waveforms used to inform TEOBResumS and TEOBiResumS_SM. (Top right)
The spinning-sector of the validation set. 336 spinning datasets released and dis-
cussed in Ref. [55] and used in Paper III. (Bottom left) The combined non-spinning
sector of both the calibration and validation set. 64 waveforms for which a second
resolution is available. (Bottom right) The global summary of F̄max

NR/NR for all 510
SXS BBH-NR simulations for which a secondary resolution is available. The fraction
(expressed in %) n/Nset compared for each value of F̄ , where n gives the number
of waveforms for which F̄max

NR/NR ≥ F̄ holds, divided by the total number of wave-
forms given with a second resolution Nset. The PSD used in this computation was
presented in Ref. [11]. The unfaithfulness was always computed over the maximum
frequency range for which the individual NR waveforms are free of systematic features
and have a reasonably large amplitude (typically once the amplitude falls 3 orders of
magnitude with respect to the peak the waveform is cut.). . . . . . . . . . . . . . . 39

3.2 The fully calibrated TEOBiResumMultipoles can be used to understand phenomeno-
logical issues in the SXS-NR waveforms. Following the discussion in the main text it is
useful to demonstrate the pathological features introduced into the waveform for near-
equal-mass waveforms. The top panel shows a comparison on the level of the real part
of Ψ44/νc4(ν), the RWZ-normalized waveform, between TEOBiResumMultipoles(solid
blue) and SXS:BBH:0194, a q = 1.518 waveform, where c4(ν) = 1−3ν. SXS:BBH:0194
is given extrapolated with N = 3 (dashed orange) and N = 2 (solid green). While
N = 2 and TEOBiResumMultipoles show a good agreement, the N = 3 extrapolation
shows a systematic o�set relative to TEOBiResumMultipoles and N = 2. The bottom
panel shows F̄EOB/NR between TEOBiResumMultipoles and several SXS waveforms
extrapolated with N = 2 (solid) and N = 3 (dashed). While for near-equal-mass
waveforms the choice of N clearly shows an impact, this e�ect decreases as q increases
and for the largest values of q = 10 is almost imperceptive. . . . . . . . . . . . . . . 41

ix



3.3 A comparison of SXS:BBH:0039(solid black), (3,−0.5, 0), compared to TEOBiResumS_SM
(dashed purple). The waveform was extracted with N = 2. From top to bottom the
rows show the strain h`m, the strain amplitude A`m and the frequency Mω`m (where
the scale given by the total mass is left explicit). From left to right the columns
show the (2, 2), (3, 3) and (4, 4) modes. As can be seen both the (2, 2) and (3, 3)
mode show a reasonable agreement between NR and TEOBiResumS_SM. The (4, 4)
mode shows clear unphysical behavior for both A44 and Mω44 around the peak of
the mode. A44 shows strong unphysical oscillations around it's peak, coinciding with
similarly pathological features in Mω44. Thus, it can be assumed that any unfaith-
fulness computation that would involve h44 would likely not lead to any insight that
could be useful in improving or validating a waveform model. . . . . . . . . . . . . . 42

4.1 The quasi-universal structures exploited to obtain �ts of {Âmrg, ωmrg} are plotted
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q = 2 (blue), q = 3 (purple), q = 4 (brown), q = 5 (yellow), q = 7 (dark green) ,
q = 8 (magenta), q = 18 (light green) and the test-particle limit (black). The �t
coe�cients are given in Tab. B.2 and are evaluated along eq. (4.15) � (4.24). . . . . 52

4.3 The performance of the (2, 2) mode postmerger-ringdown template waveforms. The
top row shows the phase error ∆φNRFit

22 ≡ φNR
22 −φfit

22, while the bottom row shows the
fractional error of the amplitude ∆ANRFit

22 ≡ (ANR
22 − Afit

22)/ANR
22 . The panels show:

(top-left) The non-spinning SXS waveforms. (top-right) The spinning SXS waveforms.
And (bottom) the spinning BAM waveforms. The time is shifted to the peak such

tpeak
22 = 0 and normalized to the damping time of the fundamental QNM given as
τ1 ≡MBH/α1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



4.4 The unfaithfulness F̄EOB/NR, eq. (A.12), TEOBResumS vs the calibration set of SXS

and BAM waveforms. The unfaithfulness was computed with PSD [8]. (Top-left)
TEOBResumS, implemented using the c3 modeled after eq. (4.11), compared to the
calibration set of SXS data, both spinning and non-spinning waveforms. The un-
faithfulness never reaches the 1% limit. With the exception of a single waveform
max (F̄ ) . 2.5×10−3 is achieved all over the SXS calibration set. For SXS:BBH:0293,
(q, χ1, χ2) = (3,+0.85,+0.85), max (F̄ ) ' 7.1 × 10−3 is found. (Top-right) F̄
computed over the same set of SXS waveforms against TEOBResumS. The represen-
tation of c3 has however been modi�ed with an additional term proportional to
νâ2

0

√
1− 4ν in the functional form added to Eq. (4.11). One �nds max (F̄ ) <

2.5 × 10−3 all over. (Bottom-left) F̄EOB/NR computed of TEOBResumS and BAM pre-
sented in Refs. [101, 108, 109]. c3 is modeled by the �tting template eq. (4.11).
(Bottom-right) Global picture of the maximum value of the EOB/NR faithfulness F ,
Eq. (A.12) over SXS and BAM NR data, corresponding to the plots in the top-left and
bottom-left. The only outlier above 1% or 3%, (8,+0.85,+0.85), is omitted from the
�gure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 The BAM catalog gave an excellent opportunity to test the modelization in the large-
mass-ratio and large spin region. In particular the extrapolation of c3 can be tested
and improved greatly through the addition of the BAM catalog. At the time of Paper I,
with an insu�ciently accurate version of BAM (8,+0.85,+0.85), it was shown that an
improvement of c3 = 28.7 down corrected to c3 = 23 indeed lowers the unfaithfulness
from going up to 5.2% down to F̄ ' 1.3 × 10−3. This �gure shows explicitly the
time domain comparison between the TEOBResumS and BAM (8,+0.85,+0.85), with
TEOBResumS evaluated for both c3 = 28.7 and c3 = 23, aligned with the BAM waveform
in the frequency interval [0.2, 0.35]. This frequency interval is very close to merger and
in principle it would be necessary to determine c3 accurately it would be necessary
to align in a much lower frequency interval. However, c3 = 23 is actually very close
to the limit at which the NQC corrections can still be applied consistently, as any
smaller values of c3 would lead to the iterative determination of the NQC (introduced
in Sec. 2.3.2) to diverge. Thus, to keep in line with the conservative mindset employed
in the calibration of TEOB models an improvement of the analytical baseline will be
necessary before improving the model. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 During a more thorough comparison of TEOBResumS and the BAM catalog a peculiar
feature appears. For BAM (18,−0.80, 0), the TEOBResumS waveform shows a peculiar
unphysical feature. As the full EOB waveform shows a dip and sudden rise around
the peak of the amplitude appears, even though the waveform prior to inclusion of
the NQC does not repeat this feature. As the frequency is not impacted by this it
is not surprising that this does not show up as an e�ect in the unfaithfulness, y is
not impacted Frequency and amplitude comparison between TEOBResumS and BAM for
(18,−0.80, 0). The full waveform amplitude develops a slightly unphysical feature
due to the action of the NQC parameters. The frequency (as well as F̄ ) is una�ected
by this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



4.7 The waveform SXS:BBH:1375, (8,−0.9, 0), is a remarkably accurate waveform and
thus it is worth taking a closer look at the performance compared between TEOBResumS
and SXS for this waveform. The waveforms are compared on the level of phasing with
vertical lines marking the alignment in the inspiral (top-left), amplitude and fre-
quency around merger, aligned in the frequency interval [0.2, 0.3] close to merger
(top-right) and the unfaithfulness (bottom). The alignment of the waveforms in
the early inspiral leads to an accumulated dephasing of −1.3 rad at the NR (2, 2)
mode waveform peak. The unfaithfulness reaches max (F̄ ) = 1.027× 10−3. All over
TEOBResumS and SXS:BBH:1375 show an excellent agreement. It stands out however
that the postmerger is not perfectly captured, as can be observed in the middle panel.
This is due to the fact that currently, model does not account for the beating between
positive and negative frequency QNMs. An example of how to implement this feature
can be found for the test-particle limit in Ref. [45]. . . . . . . . . . . . . . . . . . . . 63

4.8 (q, χ1, χ2) = (11,−0.95,−0.50) lies well within the region for which ∆tNQC = 4
(blue) is used instead of ∆tNQC = 1 (red), given by eq. (4.39)-(4.40). As can be
seen the choice of ∆tNQC = 4 allows for a smooth transition between the inspiral-
plunge waveform and the postmerger template, avoiding the unphysical feature in
the amplitude, present if ∆tNQC = 1 is used. . . . . . . . . . . . . . . . . . . . . . . 65

4.9 The transition, de�ned in eq. (4.39)-(4.40), introduces a jump between ∆tNQC = 1
and ∆tNQC = 4. This jump has potentially the e�ect that a small change in the
parameters could potentially create a disproportionate jump in the waveform. Thus,
it is necessary to access the error introduced by this transition. To this end the
unfaithfulness between waveforms along the border is computed. One waveform each
is generated with ∆tNQC = 1 and ∆tNQC = 4 and their unfaithfulness is plotted
against the typical mass-spectrum from 10M� to 200M�. . . . . . . . . . . . . . . . 66

4.10 Due to the modi�ed ∆tNQC given by eq. (4.39)-(4.40), it is important explore the con-
sistency at peak between the �tted postmerger template and the analytical inspiral
waveform. As can be seen largely the unphysical amplitude is gone for most wave-
forms. Only two quite extreme waveforms (10,−0.9,−0.99) and (14,−0.8,−0.99)
show a small dip in the amplitude at merger. As these e�ects only occur in these
very extreme cases and only mildly there, these are acceptable limits onto the model.
And in fact it can be checked that these waveforms become stable and free of patho-
logical features for TEOBiResumS_SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.11 Tab. I of Bohé et al. [53] listed several waveforms used in the calibration of SEOBNRv4
not available in the preparation of Paper I. As a potential sanity check outside the
domain of calibration the parameter combinations are evaluated with TEOBResumS

and the waveform is plotted on the level of both the amplitude (left) and frequency
(right) focused in around merger. Demonstrating that that these waveforms indeed
seem to behave qualitatively and quantitatively robust as the parameters are varied
even outside the domain of calibration of both NQC and postmerger template. . . . 68

4.12 The �ts of both NQC and postmerger, the peak in particular, have been done in
similar fashion with the same variables for both amplitude and frequency quantities.
Here several waveforms with high-spins and large range of mass-ratios are shown.
Both the amplitude (left) and the frequency (right) are plotted focusing in around
merger. The consistency enforced by the �t structure extrapolates exceptionally well
leading to a highly consistent waveform throughout the parameter space. . . . . . . 68



5.1 TEOBiResumMultipoles is compared to SXS:BBH:0303, a non-spinning binary of mass
ratio q = 10, on the level of the pure (2, 2) mode (dashed orange), and the full multi-
polar waveform (dashed blue). This comparison is done for three di�erent inclination
angles θ = 0, π/3 and 2π/3 (corresponding to ι as used in other places of this thesis).
As for the former two it shows almost no e�ect which is used, even though the full
multipolar waveform shows a better agreement with the NR all over. For the last
inclination this is however not the case. The contribution of the (2, 2) mode as good
as vanishes and while multipolar waveform remains in good agreement with NR. . . 70

5.2 A comparison of the �ts of (Âpeak
`m , ωpeak

`m ) versus SXS and BAM data for the multipoles
` ≤ 4, 1 ≤ m ≤ 4, and (`,m) = (5, 5). The reader should note that for the multipoles

(3, 3) and (5, 5) the ωpeak
`m at q = 1 was e�ectively determined by extrapolating q = 1

data with χ1 6= χ2 down to ã12 = 0, giving an e�ective estimate of the frequency at
peak of the equal-mass limit. The addition of these points was needed ensure the
proper limit of the frequency when equal-mass case is approached. The reader should
further note that the amplitude plots contain an error in the description of the y-axis
as they are normalized to Â0

`mc`+ε(ν). . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 The performance of the primary and global postpeak �t over the multipoles (`,m) =

(2, 2), (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1) and (5, 5) of SXS:BBH:0299,
a mass ratio q = 7.5 waveform with high accuracy. For each mode the panel is
divided into two subpanels, showing the direct waveform comparison (top) and the
performance of both primary and global �t on the levels of phase and amplitude
(bottom). In the top panel, the tick-red lines represent the �tted waveform template
(amplitude is solid, while the real part is dashed) obtained from the primary �t of
the eq. (2.46)-(2.47) to the NR data. This is contrasted by the real part of the NR
waveform (thin, orange, dashed line) and the NR amplitude (dashed, blue). The

black, vertical line marks t`mpeak, while the blue one corresponds to t
peak
22 . Each mode

has a di�erent time normalization given by the damping time of the fundamental
QNM as units of τ `m1 ≡ 1/α`m1 for the shifted time scale t − tpeak

`m . The bottom
subpanel shows the �t error for both primary and global �t on the level of phase and
fractional amplitude. Comparing the two gives a general very good picture for this
waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 The NR data for q ≤ 4 shows a peculiar double peak structure in the post-peak
amplitude of the (4, 2) mode. With a particularly large secondary peak. . . . . . . . 77

5.5 Amplitude |Ψ21|/ν and frequency ω21 plotted in the test-particle limit around the
peak of the mode. The waveform was generated by the code presented in Ref. [90].
As can be see zoomed in around the peak of the waveform, tNQC

21 lies beyond the
onset of the beating between negative and positive QNMs [45, 74, 130] and thus is
unsuited to be imposed onto the NQC �ts due to the presence of unmodeled physical
e�ects present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 The full-sky unfaithfulness computed between TEOBiResumMultipoles and SXS:BBH:0303.
The NR simulation represents a q = 10 waveform. The NR waveform is constructed
from the multipoles {22, 21, 33, 44, 55} and compared to TEOBiResumMultipoles over
the same multipoles (left) and exclusively the (2,±2) mode (right). The system mass
M = 100M� is held �xed throughout this computation. The reader should note
that the color scales change by a factor of 100 from the left to the right plot. This
signi�es the much worse performance of the pure (2,±2) mode when the edge-on
case is approached, yet for the face-on and face-o� case it performs reasonably well.
Again as expected from general knowledge. Further it is remarkable how well the
full multipolar model performs when compared to NR, staying below 7× 10−3 in the
worst case even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



5.7 The minimum and maximum unfaithfulness region is computed between TEOBiResumMultipoles
and the BAM q = 18 waveform [101] (left) and the SXS:BBH:0166, q = 6 waveform
(right). The vertical dot-dashed line in the left panel shows the minimum mass for
which the entire NR waveform is in band. The TEOB/NR performance for q = 6 is
comparable to (though slightly better than) SEOBNRv4HM, for the same SXS dataset,
as can be seen through direct comparison with Fig. 16 of Ref. [70]. . . . . . . . . . . 80

5.8 The minimum and maximum unfaithfulness varied over a grid of the angles (θ, ϕ)
is shown, demonstrating clearly that the worst case performance is always below
3% for binaries with a total mass M . 200M�. The neglecting of mode-mixing in
TEOBiResumMultipoles does not show a signi�cant increase in the unfaithfulness as
it seems. The analysis in the top-panel is restricted to q ≥ 2 as the (4, 4) mode
shows several pathological features in the NR for q < 2. The best performance
can be found when constraining the F̄ computation to the modes {22, 21, 33, 44, 55}
(blue). A slight degrading occurs when the (3, 2) mode (green) or all calibrated
modes (orange) are added, yet it remains below 3% for all masses up to 200M�.
The bottom panel, constrains the mode selection to {22, 21, 33}, neglecting the (4, 4)
mode. This yields an excellent agreement between TEOBiResumMultipoles and NR
for all mass-ratios down to q = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 The time-domain comparison for the q = 6 SXS waveform (given by SXS:BBH:0166)
compared TEOBiResumMultipoles. The upper left panel shows the full waveform
comparison on the level of phase and relative amplitude di�erence, showing an ex-
cellent agreement and only a small dephasing accumulated at merger despite the
alignment in the inspiral. The lower left panel shows the direct comparison for
the real part of the waveform. The left hand side of this �gure is complemented
by the direct comparison of the (2, 2) and (2, 1) amplitude and frequency between
TEOBiResumMultipoles and the NR. The four panels on the right hand side show:
The NR waveform (black), the bare TEOB waveform prior to NQC and postmerger at-
tachment (orange-dashed), the the TEOB with NQC corrections imposed (blue-dashed)
and the full TEOBiResumMultipoles waveform, combined with the postpeak wave-
form (red-dashed). It is noteworthy that the waveform prior to the addition of the
NQC is already in quite good agreement with NR up until merger. It is also possible
to note that the (2, 1) frequency exhibit oscillations in the late ringdown waveform.
This is likely an e�ect of mode-mixing or potentially due to the excitation of negative
frequency QNMs. In either case it is not captured at the moment by the postpeak-
ringdown template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 The continuation of Fig. 5.9, extending the comparison between TEOBiResumMultipoles
and SXS:BBH:0166, q = 6 to the multipoles {33, 32, 31, 44, 43, 42}mode, all calibrated
to NR. Note that even though clear e�ects of mode-mixing are visible, and while not
incorporated in the analytical ringdown description, still did not a�ect the overall
unfaithfulness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11 The continuation of Fig. 5.9 � 5.10, extending the comparison between TEOBiResumMultipoles
and SXS:BBH:0166, q = 6 to the multipoles {41, 55} mode, thus concluding all NR
calibrated multipoles. Note that even though clear e�ects of mode-mixing are visible,
and while not incorporated in the analytical ringdown description, still did not a�ect
the overall unfaithfulness. Even though the (4, 1) mode shows heavy numerical noise
in the frequency, it shows qualitative an agreement the three steps of evolution of
NR calibration. The (5, 5) frequencies are in remarkably good agreement all over.
For both modes, the NQC-corrected amplitude, close to merger tends to be larger
compared to the NR one. While in the case of the (5, 5) mode it seems that NR is suf-
�ciently resolved such that this disagreement is a potentially physically relevant one,
this cannot be said for the (4, 1) mode as it is clearly dominated by noise preventing
any statement, on the quality of the waveform comparison here, to be conclusive. . 84



5.12 The conclusion of Fig. 5.9 � 5.11 comparing the mass ratio q = 6 waveform, SXS:BBH:0166,
to TEOBiResumMultipoles. The multipoles {54, 53, 52, 66} are added, uncalibrated
and thus only the bare analytical waveform is given on the TEOBiResumMultipoles

side. The vertical line in each panel marks the location of the ` = m = 2 waveform
peak, i.e. the merger. It is indeed remarkable that the bare frequency reproduces the
NR one with a reasonably good agreement up until merger across al multipoles. . . 84

5.13 The full picture around merger for the mass-ratio q = 6, SXS:BBH:0166 data set (black
lines). TEOBiResumMultipoles is compared on the level of amplitudes |h`m(t)|/ [νc`+ε(ν)]
(top panel) and frequencies ω`m(t) (bottom panel) to the NR waveform. . . . . . . . 85

6.1 In this �gure we compare the frequency Mω44 for the two NR waveforms (black)
SXS:BBH:1124 (1, 0.998, 0.998) (left panel) and SXS:BBH:1146 (1.5, 0.95, 0.95) (right)
with the corresponding EOB waveforms, once obtained using the �ts of Ref. [133]
(right panel) and once with the spin-dependent �ts (green). . . . . . . . . . . . . . . 101

6.2 EOB/NR unfaithfulness for the ` = m = 2 mode obtained from Eq. (A.12). Left
panel: computation using SXS waveforms publicly released before February 3, 2019.
Right panel: same computation done with BAM waveform data. As explained in
Sec. 6.2.1, a subset of all this data (see Table 4.1) is used to inform the c3 EOB
function. Comparison with Figs. 1 and 3 of Ref. [135] allows one to appreciate the
improvement with respect to the original implementation The reader should actually
note that we changed from the, outdated, zero-detuned, high-power noise spectral
density of Ref. [145] used in Ref. [135], to its most recent realization, Ref. [11]. of
TEOBResumS. Comparison with Fig. 3.1 highlights that the F̄EOB/NR is either of the
order of, or larger than the NR/NR uncertainties. . . . . . . . . . . . . . . . . . . . . 104

6.3 EOB/NR ` = m = 2 unfaithfulness computation with SXS waveform data publicly
released after February 3, 2019. None of these datasets was used to inform the
model in the dynamical EOB functions (ac6, c3), although several were used for the
postmerger waveform part. It is remarkable that F̄max

EOB/NR is always below 0.4%

except for a single outlier, red online, that however never exceeds 0.85%. The plot
includes �ve exceptionally long waveforms, each one developing more than 139 GW
cycles before merger, SXS:BBH:1412, 1413, 1414, 1415 and 1416 (blue online). . . . . 105

6.4 EOB/NR unfaithfulness for all available non-spinning datasets. The analytical wave-
forms are evaluated with (χ1, χ2) = (0, 10−4), so as to probe the stability of the model
and its robustness in this regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Global representation of F̄max
EOB/NR all over the SXS (555) and BAM (19) NR simula-

tions. The various SXS subsets, nonspinning (black online, 83 waveforms), merger-
ringdown calibration (blue online, 116 spin-aligned waveforms) and validation (red
online, 359 spin-aligned waveform) discussed in the text are represented separately.
The plot shows the fraction (expressed in %) n/Nset, where Nset is the total number
of waveforms in a given NR-waveform set and n is the number of waveforms, in the
same set, that, given a value F̄ , have F̄max

EOB/NR ≥ F̄ . The colored marker highlight
the largest values in each NR dataset. Note that this plot incorporates 420 new SXS
waveforms that were not included in Fig. 6 of Paper I. . . . . . . . . . . . . . . . . . 106

6.6 Improved EOB/NR phasing comparison for SXS:BBH:1146 when the value of cfit
3 =

15.96 used in Fig. 6.3 is lowered to c3 = 11.1. Top panel: (relative) amplitude and
phase di�erences. Middle panel: real part of the waveform. Bottom panel: gravita-
tional frequencies. For convenience, also twice the EOB orbital frequency 2Ω is shown
on the plot. The dash-dotted vertical lines indicate the alignment frequency region,
while the dashed one the merger time. This comparison illustrates that SXS:BBH:1146
is an outlier in Fig. 6.3 only because of the rather limited amount of NR waveforms
used to inform cfit

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



6.7 EOB/NR phasing comparison for SXS:BBH:1415, (1.5,+0.50,+0.50). Note that it
does not seem possible to �atten the phase di�erence up to t/M ' 1 × 105. The
vertical lines indicate the alignment frequency region [MωL,MωR] = [0.038, 0.042]. 107

6.8 EOB/NR unfaithfulness computation putting together all ` = m modes up to ` = 4.
Plotted is the worst-case performance maximizing the unfaithfulness over the sky,
Eq.(A.12). The worst-case mismatches arise from near edge-on con�gurations, when
the power emitted in the (2, 2) mode is minimized. . . . . . . . . . . . . . . . . . . . 107

6.9 Behavior of (2, 2), (3, 3) and (4, 4) modes for a few, illustrative, spin-aligned con�g-
urations with q = 3: comparing NR (black) with EOB (red) waveform around the
peak of the EOB (2, 2) mode (dashed blue vertical line). Each panel plots the real
part (left columns) and the instantaneous frequency (right columns). . . . . . . . . . 108

6.10 EOB/NR unfaithfulness, maximized over the direction from the sky, when including
(2, 2), (2, 1) and (3, 3) modes. Here we only consider a subset of the SXS waveforms
with χi > −0.4, where the (2, 1) EOB waveform mode does not present pathologies.
The worst case con�guration is SXS:BBH:0239, a binary of mass ratio and spins
(2.0,−0.37,+0.85). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.11 Mode (2, 1): comparison between the EOB amplitude (orange) and the corresponding
NR one from dataset SXS:BBH:1466. The purely analytical EOB waveform multipole
can accurately predict the location of the minimum (that analytically is a zero of the
modulus) consistently with the one found in the NR data. The excellent agreement
shown is obtained naturally, without the need of calibrating any additional parameter
entering the waveform amplitude. The dashed vertical line corresponds to merger
time, i.e. the peak of the ` = m = 2 waveform. The cusp in the analytical amplitude
occurs because of a zero in f̂S

21 as illustrated in Fig. 6.12. . . . . . . . . . . . . . . . . 111
6.12 Complementing Fig. 6.11: the behavior of the resummed versus non-resummed am-

plitude versus x = Ω2/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.13 The minimum and maximum EOB/NR unfaithfulness for SXS:BBH:1466 over the

whole sky. The blue curve uses the (2, 2), (3, 3) and (4, 4) modes. The purple curve
uses the (2, 2), (2, 1) and (3, 3) modes. Worst case mismatches occur near edge on
con�gurations with the unfaithfulness being below 3% up to 200M�. . . . . . . . . 112

6.14 EOB/NR unfaithfulness for the ` = m = 2 mode obtained by comparing the full
catalog of NR waveforms presented in Paper I with TEOBResumS. Two di�erences
exist between this work and Paper I. (i) TEOBResumS was evaluated with the Post-
Adiabatic approximation. (ii) TEOBResumS was not iterated until convergence but
instead used the �ts presented above and a single iteration. This was much faster
relative to the lengthy computation of waveforms with the MATLAB version. Top-
left shows the calibration set, Top-right shows the BAM data. Center-left shows the
full, spin-dependent Validation set and Center-right shows the non-spinning set. The
bottom �gure shows the accumulation plot n/N(F̄ ). Where n/N(F̄ ) de�ned for any
value of F̄ as the fraction of waveforms with a larger value of max

(
F̄
)
. . . . . . . . . 113

7.1 direct comparison of the peak frequency prediction of GR (red) and by the unmodelled
BayesWave reconstruction (blue) using Hanford data. . . . . . . . . . . . . . . . . . 116

7.2 The cumulative distribution G(∆f) is plotted as function of ∆f , using the Hanford
data (red), is plotted above the di�erence distribution (blue). The di�erence distribu-
tion is obtained from the distributions shown in Fig. 7.1 between the GR prediction
and the unmodeled reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1 A direct comparison of the noise spectrum and the �t shown in equations (A.5) � (A.11).



List of Tables

3.1 This table lists the sub-catalogs of NR data from both SXS and BAM catalog. From left
to right, the columns report: origin; interval of parameters covered for the mass ratio
q and the spins χ1,2; total number of waveforms in the particular sub-catalog; the
number of SXS data with a second resolution LevM available; the average waveform
length expressed in number of orbits, 〈Norb〉, counted here between the relaxation
time (i.e., after the initial-state radiation) and the waveform amplitude peak; the
absolute maximum F̄max

NR/NR and the average of the individual maxima 〈F̄max
NR/NR〉 of

the unfaithfulness F̄NR/NR computed between the highest, LevH, and second highest,
LevM, resolutions. See section 3.3.1 for further discussion of the unfaithfulness. . . 37

4.1 cfirst guess
3 is chosen by hand to obtain a good agreement between TEOB and NR during
the late inspiral. As can be seen from the functional form of (GS , GS?), c3 enters the
denominator and thus is inversely proportional to it's e�ect onto the magnitude of
(GS , GS?). A larger value of c3, thus, makes the spin-orbit-coupling more attractive
while a smaller value makes it more repulsive. These are then compared to the value
cfit
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`m /ν, ωNQC
`m , ω̇NQC

`m }. The �ts are
given explicitly. The �ts are done after the factorization de�ned in eq. (5.37). For
all multipoles the factorization of the test-particle limit Y 0

`m is highlighted explicitly
in the third and �fth column of the table. The exception to this is the (2, 1) mode

for which the test-particle behavior has not been factorized (see Sec. 5.3.6).
ˆ̂
Y NQC
`m is

�tted for all multipoles with at most quadratic polynomials or rational functions in ν.

D.1 Explicit coe�cients and their errors for the merger frequency and amplitude �ts of
the (2, 2) mode. The analytic template of the �t is de�ned in Eqs. (6.19) � (6.22). . .

D.2 Explicit coe�cients of the �ts of Âpeak
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Chapter 1

Introduction

Gravitational Waves (GWs) were �rst proposed by Albert Einstein in 1916 when he had discovered

wave solutions to the linearized, weak-�eld equations of General Relativity (GR)[85]. Despite this

early insight, the question of the physical relevance of GWs was to remain unclear for decades to

come. Only in 1960, 44 years later, the �rst, direct GW detector was proposed by Joseph Weber

[153]. Yet GWs proved too elusive and the �rst detection of the e�ects of GWs was only in 1981.

Taylor and Weisberg showed that the energy loss of the binary pulsar system PSR B 1913+16 was

consistent with the radiating o� of GWs as predicted by GR[154].

The �rst direct detection of a GW event however did not succeed until fall of 2015, when on

the 14th of September GW150914, a binary black hole (BBH) merger was detected in the �rst

observational run of the two advanced LIGO detectors in Hanford and Livingston, USA [15], with

the detector technology proposed by Rainer Weiss [155] in 1989. Thus, the era of gravitational

wave astronomy had begun. In the following months two additional Compact Binary Coalescence

(CBC) signals have been detected in the �rst observation run, ending on January 19th, 2017 [22].

During the second and �rst half of the third observing runs from November 30, 2016 to August 25,

2017 and April 1st, 2019, to October 1st, 2019, the advanced LIGO detectors were joined by the

Virgo observatory in Cascina by Pisa in Italy and a total of 47 additional CBC events have been

observed [22, 28].

GWs are unique among the di�erent windows into the universe that can be observed. GWs are

predominantly generated in cataclysmic events with the most extreme curvatures and the largest

accelerations and are then carried o� unperturbed through almost any medium. Therefore, direct

observation of GWs allowed to test GR in the strong �eld regime directly. For a number of tests

this has already been done for the observed CBC GW events (see e.g. Ref. [16, 24, 26, 27]).

GWs originating in CBC events have a further characteristic principle. The GW signal is

dominated by the Chirp massM [119]. Due to this special characteristic Bernard Schutz suggested

that it was possible to extract both the redshift and the luminosity distance independently from a

single observation [144]. Using CBC events as so called standard siren would then allow to directly

measure Hubble constant from a single observation already. The constraints possibly arising from

such an observation would be event stronger if the GW event could be observed together with an

electromagnetic counterpart. Such an analysis has been indeed done using GW170817 the GW

event which was also observed with an electromagnetic counterpart [21].

Observing BBH merger events allows to infer possible distributions of BHs through out spacetime
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Chapter 1. Introduction

in terms of mass and individual BH spins [25]. Through this it is possible to study formation

mechanisms of BHs and alternative processes that cannot be observed directly but their e�ects

might lead to the accumulation or transformation of BHs with speci�c spins and masses. E.g. the

existence of axion-like particles was linked to a mechanism that would limit the maximum spin for

a given mass of BH [35, 36].

These have been just some examples of the possible insights that can be gained by in the study

of CBC events through GWs. A key ingredient in the works that have been cited so far is the use

of a CBC waveform model. This model has to reliably reproduce the GW signature observed on

earth for a given source con�guration. Many factors impact a GW signal. They can generally be

separated into extrinsic and intrinsic factors. The former relates the GW signal as generated in the

source frame to the detector frame. These include the relative orientation of the source frame to the

detector, distances, redshift and other details that are needed to project the emitted GW signature

onto the detector response that can be observed1. These parameters are de�ned independent of the

source.

The intrinsic parameters characterize the GW source through a model. In the de�nition of these

parameters and all following equations, unless otherwise speci�ed, geometric units G = c = 1 will

be used. In the ideal case this model reconstructs the GW signal for a given set of parameters

based on GR. While it is often useful to build a model that additionally reconstructs the underlying

dynamics accurately, it is most important that the model output reproduces the GW signal on a

phenomenological level to a high degree of accuracy. In the case of CBC systems a set of parameters

is commonly used that is de�ned uniformly across models. These parameters are the total mass of

a the binary system M , the individual masses of the BHs m1, m2 and their mass-ratio q = m1/m2

with the convention m1 ≥ m2 (therefore q ≥ 1 is true for all systems). Each BH can have a total

spin |~Si| of up to m2
i , with the index i = 1, 2 referring to the individual BHs unless otherwise stated.

This limit to the spin is based on the cosmic censorship conjecture (see e.g. [152]). Further the

binary motion in the most general case is not necessarily con�ned to a single plane and the orbits of

a system can show non-zero eccentricity. If the two bodies are su�ciently close it is also necessary

to account for their mass distributions. The case of a BH is however special. Israel et al. proved the

no-hair theorem [62, 103, 104] for both Schwarzschild and Kerr metrics, showing that in these two

cases no further parameters then mass and spin of the BH were necessary to fully characterize the

metric fully2. Neutron Stars (NS) however are di�erent and the momenta of their mass-distribution

have to be considered.

Constructing such a model is however by no means an easy feat. Several sources of information

are possible. The analytical approach has produced methods based on perturbation theory such

as Post-Minkowskian (PM) and Post-Newtonian (PN) theory, expanding in powers of Newtons

Gravitational constant G and the velocity of a body v relative to the speed of light c in powers

of (v/c)2 [119]. Gravitational Self-Force (GSF) approach computes perturbations in the mass-ratio

q to the motion of a test-particle moving through an external Kerr metric [125, 141]. Finally BH

perturbation theory can be used to identify dominant modes in the waveform. While each of these

methods has a range in which it is very reliable they are not stable all over. Equations of motion

1See e.g. Chapter 7 of Ref. [119] for a discussion and derivation.
2A general mathematical proof of the no-hair theorem is still missing though, thus it would be more accurate to

speak of the no-hair conjecture.
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derived from PN theory are commonly unstable and accumulate too large errors. Even at small

orders of PN theory a large amount of terms arise. But currently PN theory is even in the best of

circumstances not able to fully predict the waveform of a CBC event through the inspiral, merger

and ringdown. Thus analytical methods are powerful tools to construct models for the inspiral and

potentially the ringdown of the system if the �nal state is known, but during the merger a di�erent

set of tolls is necessary to construct an adequate waveform model.

Numerical Relativity o�ers a potential solution to study the merging of two compact objects,

but numerical solutions to the Einstein Equations prove to be very di�cult even in the simplest

of cases. The metric which de�ning the distance between two points is necessary to construct the

grid and simultaneously the main goal of the computation. Thus, the general formalism is naturally

quite involved and requires a large amount of study before it can be used [34, 43]. It is therefore

not surprising that the �rst successful simulation of two BHs for the duration of a full orbit was

indeed only achieved in 2003 [58]. Nowadays many large catalogs of NR waveforms exists and a

variety of codes are capable of reliably generating waveforms for several orbits up until the merger

and through the full ringdown. However, even the longest among them are not longer then a few

hundred cycles and these simulations take several million CPU hours each (see e.g. [55]).

This leads to the current situation at hand. Both on the numerical and analytical side many

useful sources of information exist that can be used to solve the problem of building a waveform

model that robustly reproduces the GW signal as predicted by GR. On the analytical side the meth-

ods are not su�ciently stable and require a large amount of computational e�ort to be improved.

On the numerical side it would be too costly to generate waveforms for arbitrary parameter com-

binations and length due to the excessive computational cost. A solution is necessary to combine

the analytical sources of information in a reliable and robust manner, that can further include the

necessary missing information that has not yet become available through analytical computations

by extracting the di�erence from NR simulations. One such solution was introduced by Thibault

Damour et al. in 1998: the E�ective-One-Body (EOB) approach [60, 61, 71, 78]. In this setup

the action describing the motion of two bodies is mapped onto the motion of a single body in an

external metric. The large number of terms common in PN calculations are reduced to merely a

handful. Over the years since then it was shown that the EOB approach was a robust and reliable

resummation of the analytical information and currently the EOB approach is the foundation of

most modern waveform models.

The focus of this thesis is set on the NR completion of EOB models. In particular the example

of three EOB models of the TEOB-series. These models will be introduced with a strong focus on

analytical parameters build into the models that are left free to be informed by NR simulations

through �tting of several waveforms. Further once the calibration of the individual models is

presented, the discussion is turned to the evaluation of the model on the basis of waveforms generated

with NR. This will be done as follows. Chapter 2 introduces the EOB formalism from a conceptual

framework and discusses the main theoretical context of this work. Chapter 3 focuses on introducing

the reader to Numerical Relativity focusing primarily on the example of the SXS catalog [55].

Chapters 4 � 6 will discuss the di�erent EOB models from the point of view of calibration as well as

performance. Chapter 7 will discuss the potential application of the model discussed in chapter 6

in a non-standard context allowing for an interesting test of GR. This thesis is then concluded in

chapter 8 through a general discussion of the results presented here.
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During the preparation of this work several aspects of this work have been published already

as short-author list articles and within the LIGO scienti�c, Virgo and KAGRA collaboration. The

main results discussed in this thesis can be found in:

• A. Nagar, S. Bernuzzi, W. del Pozzo, G. Riemenschneider et al. "Time-domain e�ective-

one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins,

tides and self-spin e�ects", published as Phys.Rev.D 98 (2018) 10, 104052. Hereafter referred

to as Paper I.

• A. Nagar, , G. Pratten, G. Riemenschneider and R. Gamba "Multipolar e�ective one body

model for nonspinning black hole binaries", published as Phys.Rev.D 101 (2020) 2, 024041.

Hereafter referred to as Paper II.

• A. Nagar, G. Riemenschneider et al. "Multipolar e�ective one body waveform model for

spin-aligned black hole binaries", published as Phys.Rev.D 102 (2020) 2, 024077. Hereafter

referred to as Paper III.

• G. Carullo, G. Riemenschneider, Ka Wa Tsang et al. "GW150914 peak frequency: a novel

consistency test of strong-�eld General Relativity", published as Class.Quant.Grav. 36 (2019)

10, 105009. Hereafter referred to as Paper IV.
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Chapter 2

Gravitational Wave Astronomy and the

E�ective-One-Body approach

This chapter is devoted to an introductory waveform modeling for GW astronomy (GWA). The

general framework of GWA is de�ned with respect to all necessary parameters important to consider

for building waveform models from a general perspective and afterwards focused on CBC events,

BBH in particular. The quality requirements for GWA are de�ned and the validation process is

outlined. BBH systems are discussed and the choice to prioritize spin-aligned, non-eccentric BBH

systems is motivated and their parameter space and general evolution are discussed.

The two-body problem of GR gives the starting point for a brief review of both analytical

approximations and numerical solutions to the Einstein Equations given for coalescing BBH systems.

The EOB approach is introduced to resum analytical information in a robust and reliable way. NR

codes are used to generate BBH waveforms that can be used to complete and validate EOB waveform

models.

This is discussed in detail by introducing the general framework of the TEOB Hamiltonian and

how analytical and numerical information can be captured within this approach. The generation

of the full EOBNR waveform is outlined �rst in detail, followed by a summary and including the

completion of the waveform with phenomenological templates capturing the NR waveform of the

merger-ringdown phase. The discussion of this chapter is concluded by an outline of this thesis.

2.1 Gravitational Wave Astronomy

The �rst thing to de�ne in the context of GW astronomy is the GW strain h itself, following the

de�nition given in Ref. [119]. The GW strain h contains two independent polarizations h+ and h×
1.

Assuming a four-dimensional spacetime with the Cartesian coordinate system {t, x, y, z}, endowed
with the �at Minkowski metric and mostly plus convention. A GW traveling along the z axis with

the polarizations h+,× would then impact the line element as follows:

ds2 = −dt2 + [1 + h+] dx2 + [1− h+] dy2 + 2h×dxdy + dz2 (2.1)

1For a full introduction to the theory of GWs and the basic concepts of GW detectors the interested reader is
referred to the excellent book by Michelle Maggiore [119].
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2.1. Gravitational Wave Astronomy

The complex strain h is de�ned from these polarizations as

h ≡ h+ − ih× . (2.2)

The astute reader may have already noticed that the above de�nition of the GW polarization is done

in the transverse-traceless gauge which will be used throughout this work [119]. Therefore, to detect

a GW it is necessary to measure the e�ect of h+,× on ds. This can be done with interferometric

detectors based on the principles of a Michelson interferometer. The reader should note that this

represents an essential di�erence to observations of electromagnetic radiation which is commonly

detected through absorption of energy. The energy radiated o� goes proportional to 1/R2, with

the distance R. The GW strain however falls o� proportional to 1/R [119]. At the moment of

preparation of this thesis four operational GW observatories exist that are su�ciently powerful

to observe GWs originating in astrophysical CBC events. The two advanced LIGO detectors are

located in Hanford, Washington, and Livingston, Louisiana, in the United States of America and

have observed the �rst GW event GW150914 [15]. On August 14th, 2017, the Virgo detector in

Cascina near Pisa, Italy, detected GW170814 jointly with the two LIGO detectors in the second

observing run, making it the �rst three detector observation of a merging BBH system [10, 19].

On February 25th, 2020, the KAGRA detector, located in the Kamioka Observatory near the city

of Hida, Japan, went online as well as the fourth GW detector capable of observing CBC events

through GWs [4].

It is useful to consider how the e�ects of GWs traveling through a detector are measured and

observed. Fig. 2.1 shows the systematic layout of advanced Virgo2 at the beginning of the third

observing run O3 [10]. The schematic setup is based on the principles of a Michelson interferometer

as follows: A 25W laser with a wavelength of 1064nm is setup and send through a input mode

cleaner and sent into an equal 50% beam splitter which separates the beam into two orthogonal

arms. Each arm consists of an optical Fabry-Perot cavity between two mirrors acting as test-masses,

three kilometers apart. After passing through the arms several times the beam is then recombined at

the beam splitter and sent to a photo-diode detector. The signal reaching the photo diode is tuned

to be as close as possible to total destructive interference. A gravitational wave passing through the

plane of the detector would then oscillate between elongating one arm while shortening the other

and the reverse. As a result the photo diode would detect a change in the signal observed which

is directly correlated to the GW polarizations h+,×. The detector response function, relating the

physical GW event to the observed interference pattern, depends primarily on the geometry of the

detector and the relative position of the source in the detector frame3.

While it is possible to detect the presence of GWs with a singular detector it is very di�cult to

obtain any form of sky localization without the addition of at least one further detector. Which is

in turn greatly improved through the addition of a third detector as can be seen on the example of

GW170814 [19]. Commonly an increased number of detectors additionally increases the statistical

signi�cance of any GW event. Especially in the case of faint GW signals additional detectors would

be very useful to improve the total Signal-to Noise-Ratio (SNR) ρ of the signal, which as a function

of the individual detector SNR ρk goes as ρ =
√∑

k ρ
2
k with k being summed over all detectors.

2While there are many noteworthy di�erences between the LIGO and KAGRA detectors compared to the Virgo
detector the operational principle is identical for all and thus the Virgo detector will su�ce as an example.

3A derivation of an example detector response function can be found in chapter 9 of Ref. [119].
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2.1. Gravitational Wave Astronomy

Figure 2.1: The schematic layout of the advanced Virgo detector at the beginning of the third observing
run O3. For a more detailed discussion of interferometric GW detectors see e.g. Ref. [9, 10] or chapter 9 of
Ref. [119]. [Picture source: [10]]

In the context of GW astronomy there are a list of variables that strongly in�uence the signal

which are however independent of the source observed. These parameters are commonly referred

to as extrinsic opposed to the intrinsic ones describing the system within the framework given by

a speci�c model. The extrinsic parameters are mainly related to the three dimensional orientation

of the source relative to the detector frames. The distance can be measured in both redshift and

luminosity distance simultaneously4. The GW strain goes as

h ∝ R−1, (2.3)

see e.g. [119]. To fully capture the relative orientation of the source to the detector four angles

are necessary. Two pairs of azimuthal and longitudinal angles (ι, φ). The �rst pair describing the

position of the source relative to the detector frame and the second describing the direction of the

detector relative to the source frame5. Within this thesis, unless stated explicitly otherwise, (ι, φ)

will refer to the position of the detector relative to the source frame.

In principle, the parameters (ι, φ) can be de�ned independent of any knowledge of the source

4As mentioned in the previous chapter, this speci�c property allows GW signals to be used as standard sirens,
especially systems as clean and well controlled as CBC events [144].

5the second pair of angles will always be necessary since spherically symmetric sources are excluded by Birkho�'s
Theorem [151].
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2.1. Gravitational Wave Astronomy

and are technically extrinsic. While they naturally do not impact the waveform that is generated

at the source, they do have a great impact on the signal observed. To account for the dependence

on (ι, φ) the complex waveform h is decomposed into multipoles following Ref. [56] as

h (M, t,R, ι, φ) =
M

R
∞∑

`=2

m=∑̀

m=−`
h`m (t−R) −2Y`m (ι, φ) . (2.4)

The expansion coe�cients are the complex functions h`m, which depend on the retarded time t−R
at the separation R from the source while of course also depending the intrinsic parameters of

the underlying waveform model. The dependency on M and the remaining dependency on R are

factored out6. The expansion basis is given by the s = −2 spin-weighted spherical harmonics
−2Y`m (ι, φ) given in terms of the Wigner d-functions is

sY`m (ι, φ) = (−1)s
√

2`+ 1

4π
d`m,s(ι)e

imφ (2.5)

with d`m,s(ι) =

k2∑

k=k1

(−1)k [(`+m)!(`−m)!(`+ s)!(`− s)!]1/2
(`+m− k)!(`− s− k)!k!(k + s−m)!

×
(

cos
( ι

2

))2`+m−s−2k (
sin
( ι

2

))2k+s−m
, (2.6)

with k1 = max(0,m − s) and k2 = min(` + m, ` − s) [56]. The monopole and dipole radiation,

corresponding to ` = 0, 1 are 0 for all possible sources (see e.g. [119]). As can be seen from eq. (2.4)

there are 2`+ 1 multipoles for each value of ` ≥ 2. This number of multipoles h`m can however be

reduced due to the identity

h`m = (−1)` h∗`−m, (2.7)

where ∗ denotes the complex conjugation, reducing the number of independent multipoles to `+ 1

for each value of ` ≥ 2. In the case of concrete waveform models this assumption is often build into

the model and only h`m with m ≥ 0 are generated while the remaining ones are obtained with the

above identity. Unless speci�ed otherwise the discussion in this thesis will always restrict itself to

m ≥ 0. In the case of waveforms generated with NR codes all multipoles are typically given. To

simplify the modeling of each multipole h`m a further separation into amplitude A`m, phase φ`m

and frequency ω`m is done as

h`m = A`m · e−iφ`m , (2.8)

ω`m ≡ φ̇`m , (2.9)

where the notation ˙(..) ≡ ∂t(..) was used. While in principle an in�nite number of multipoles

contribute to the GW signal, in the case of CBC events, a general hierarchy exists between the

magnitude of the di�erent multipoles. For any given value of ` the largest multipole is given by

m = ` and the magnitude of the A`m decreases with m until m = 0. Comparing two di�erent

` = m multipoles shows that magnitude of A`m increases as ` decreases7. Therefor, the most

6The fact that the total mass of the system can be factored out is a consequence of the scale free nature of the
Einstein Equations in vacuum without a cosmological constant and will be discussed later in this chapter.

7This can be seen in Paper II and III, where the individual amplitudes are compared for the di�erent multipoles
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2.1. Gravitational Wave Astronomy

dominant mode generated during a CBC event is the (`,m) = (2, 2) mode8 combined with the

(2,−2) mode. Further, the reader should note that for example the relative magnitude of A`m

between (`,m) = (2, 1) and the (3, 3) depends on the binary in question. In some cases one will

�nd A21 > A33, or possibly the reverse. In some cases the two amplitudes will be of comparable

magnitude. In fact in some cases the relative contribution to h of these two amplitudes can change

with the position of the observer relative to the observed binary system.

2.1.1 Comparing waveforms: The Match and the Unfaithfulness

Thus, the main outputs of the waveform models needed for GW astronomy are the h`m coe�cient

functions that then allow a reconstruction of h. Once h is reconstructed it can be projected onto

the detector frame and the detector response function can be computed that allows to compare the

generated waveform h with the data observed by a given detector. The natural follow up question

is how to compare the waveform generated by a given model to a realistic data set containing a

speci�c realization of noise in addition to the physical signal. To answer this question the match

M is introduced. M is the normalized inner product of two waveforms in the frequency domain

weighted against the noise of the detector under consideration. The characterization of the detector

noise in the frequency domain is given by the Power Spectral Density (PSD) commonly denoted by

Sn given as a function of the physical frequency f (See App. A for further discussion on the PSD).

The inner product of two waveforms hI and hJ is then given as

〈hI , hJ〉 ≡ 4<
[∫ ∞

fmin

h̃I(f)h̃∗J(f)

Sn(f)
df

]
, (2.10)

where < [. . . ] denotes the real part, h̃ denotes the Fourier transform of h and fmin denotes the

minimal frequency for which both waveform are de�ned or a minimum cut-o� frequency de�ned by

a speci�c experimental context. The norm of a waveform and the matchM can then be de�ned as

||h|| ≡
√
〈h, h〉, (2.11)

M(hI , hJ) ≡ max
t0,φ0

〈hI , hJ〉
||hI || · ||hJ ||

, (2.12)

where maxt0,φ0 denotes the maximization with respect to an initial time shift t0 and phase shift φ0.

A few observations can be made from eq. (2.10) � (2.12). (i) The match is normalized and therefor

can be 1 at most. (ii) The norm ||h|| is often referred to as the Signal-to-Noise Ratio (SNR)

in the experimental context. (iii) A match close to 1 between two waveforms would then imply

hI ≈ hJ with respect to the detector while a smaller match would indicate measurable di�erences.

Eq. (2.10) indicates that the PSD Sn is compared to quantities that are quadratic in the GW strain.

It is therefor useful to consider the strain noise spectrum which is given by
√
Sn(f). The design

sensitivities for advanced LIGO [5], advanced Virgo [10] and KAGRA [3] are shown in Fig. 2.2.

at their respective peak. As an explicit example it is additionally useful to consider the test-particle data presented
in [90].

8For many GW events of the �rst two observing runs, O1 and O2, an accurate model representing the h22 was
su�cient to obtain a thorough analysis of the data [22].
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2.1. Gravitational Wave Astronomy

Figure 2.2: Strain noise spectral density estimated by the design sensitivity [146] given for the advanced
LIGO, advanced Virgo and KAGRA design as a function of the physical frequency. [Picture source: [146]]

Each GW event that accumulates su�cient SNR can then be detected and analyzed9.

Equipped with the de�nition of the inner product and the matchM it is now possible to turn to

the Parameter Estimation (PE) process. But �rst it is necessary to de�ne the relative probability:

Given a set of assumptions B, the probability of the statements A to be true is de�ned as p(A|B).

The aim of the PE process is then to perform a Bayesian Inference Analysis to obtain the posterior

density distribution p(ϑ|data), with ϑ being an element of the space of all possible combinations

of extrinsic and intrinsic parameters Θ [44, 106]. Examples of such an analysis can be found with

each detected and analyzed GW event, see e.g. [22, 28]. The posterior can then be estimated from

Bayes theorem as

p(ϑ|data) =
L(data|ϑ) · p(ϑ)

p(data)
, (2.13)

where L(data|ϑ) is the likelihood function and p(ϑ) is the prior distribution. The probability of

the data p(data) is a general normalizing constant and as only the shape of the integral has a

physical meaning, it is possible to normalize it to 1, �xing p(data). The main constraint of p(ϑ)

are the domains of validation and de�nition of the waveform model used to perform the analysis.

Additionally, it is possible to chose p(ϑ) such that this impacts the resulting posterior (see e.g.

Ref. [106] for a discussion). The likelihood function is commonly obtained as follows. Given an

observed signal dk with the index k denoting each detector that has recorded a signal. Given a

waveform model, the waveform for the k-th detector generated is then denoted by h (ϑk). Then it

9The reader should note however that these are strongly idealized curves and a number or additional small and
large noise spikes complicate the analysis. Further it is not always possible to reach level of performance. For a more
detailed information on observed GW data and the detector performance one should see e.g. Ref. [2].
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2.1. Gravitational Wave Astronomy

is possible to estimate the likelihood function as

L(data|ϑ) ∝ exp

{
− 1

kmax

∑

k

〈h (ϑk)− dk, h (ϑk)− dk〉
}

, (2.14)

where kmax denotes the total number of detectors. To evaluate the right-hand side of this expression

several methods can be used. In practice most common ones are nested sampling or Markov-Chain-

Monte-Carlo integration [22, 28]. For a waveform model to be usable in such an analysis two

conditions must be met: (i) It needs to be possible to evaluate to model very quickly on time

scales of about ∼ 0.1s. The analysis of most GW events observed in practice demands models to

be evaluated around 106 to 107 times [13, 22]. (ii) the model needs to be robust and smooth. In

practice this means that small changes in ϑ correspond to small changes in h`m.

It is useful to compare the maxima of L(data|ϑ) and Mk (dk, h(ϑk))
10. Following from their

respective de�nitions above it stands to reason that if a GW event is present in the data dk that the

combination of parameters ϑ that maximizes L(data|ϑ) will correspond to the ϑk that maximize

M (dk, h(ϑk)). This observation can now be used to de�ne the currently most used quality estimate

for waveform models: The faithfulness F and the unfaithfulness F̄ . The faithfulness F is computed

in the same way as the match11. Within this work the following distinction will be made. The match

M will always compare a waveform model with observed data. This obviously necessitates that all

extrinsic and intrinsic parameters are set to precise values on the side of the waveform model and

the projection of the generated waveform into the detector frame. The faithfulness on the other

hand will be used to compare two di�erent waveforms that both aim to model GR. Therefor, as the

projection of the waveform strain polarizations h+,× is known exactly, it is not necessary to test

for various combinations of the extrinsic parameters. Thus faithfulness and it's complement the

unfaithfulness are given as

F (hI , hJ) ≡M(hI , hJ), (2.15)

F̄ (hI , hJ) ≡ 1− F (hI , hJ) . (2.16)

Alternatively, the notation F̄IJ ≡ F̄ (hI , hJ) or FIJ ≡ F (hI , hJ) will be used. While both the un-

faithfulness and the faithfulness will be used in this thesis the primary focus is on the unfaithfulness

since it is more e�cient in most cases to compare numbers close to 0 as opposed to 1. Generally,

in this thesis two computations of the unfaithfulness are distinguished. First, mode-by-mode com-

parisons for which h`m is compared directly for two di�erent models, in particular h22 as the most

dominant mode is often the �rst focus of such an analysis. Alternatively, if the aim is to compute

the performance of the full waveform h it is necessary to vary the computation of F̄ with respect to

(ι, φ). F̄ can either be minimized (corresponding to F being maximized) with respect to the (ι, φ) or

it can be evaluated over a grid. Both approaches are useful to study the performance of a waveform

model and will be used and discussed in a practical context in chapter 5 and 6. The computation

10The reader should note that while L(data|ϑ) contains information of all detectors, this is not true for
Mk (dk, h(ϑk)) which is given for each detector k individually due to the dependence on the detector speci�c PSD.
Further note a slight abuse of notation since ϑk in principle contains the initial relative time and phase shifts (t0, φ0)
which are maximized in the computation of the match.

11In fact it is common in the literature that match (mismatch) and faithfulness (unfaithfulness) are used inter-
changeably.
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2.1. Gravitational Wave Astronomy

of the unfaithfulness together with some technical aspects is summarized in Appendix A.

2.1.2 Quality demands and estimation of waveforms

Assuming a catalog of perfect waveforms that exactly represent GR is given. With this perfect

catalog it would then be possible to compute F̄ between the catalog and a waveform model. The

generated distribution F̄ (ϑintrinsic) would therefor represent the error of the waveform model. As

in any realistic case this error will not be zero it is important to estimate what level of accuracy

and precision are necessary for the model to produce reliable results in application to real data. A

thorough discussion of this question can be found in Refs. [88, 112]. A good heuristic that can be

derived from their discussion is this: Assume a GW event detected with an SNR ρ. Then to ensure

that the analysis of the signal is reliable and the detection loss is reasonable the error should be

capped as

max
[
F̄ (ϑintrinsic)

]
/

1

ρ
. (2.17)

Common practice for second generation GW detectors such as advanced LIGO, advanced Virgo

and KAGRA, these bounds are set to < 0.03 at minimum, but ideally < 0.01 (see e.g. [53] or

Paper I � III). In summary, the goal of waveform modeling is ultimately, given a catalog that

accurately and precisely represents GR over the parameter space of GW-CBC events, to build a

model such that one can reach max
[
F̄ (ϑintrinsic)

]
< 0.03 or even better max

[
F̄ (ϑintrinsic)

]
< 0.01

over the entire catalog. This discussion of F̄ is amended by several practical details in Appendix A.

Within this thesis one of the main points of focus will be on using NR waveforms generated with

di�erent codes to estimate the quality of such waveform models and on how those waveform models

can be improved utilizing the information contained in a catalog of NR waveforms. The catalog of

NR waveforms will be discussed in chapter 3, while the discussion of the improvement and quality

analysis of three waveform models will be presented in chapters 4 � 6. Further two additional notes

should be made here:(i) the reader should note that the unfaithfulness is very useful to compare two

waveforms within a given experimental context and probe them for relevant di�erences. To �nd the

cause of said di�erences it is however more e�cient to compare two waveforms directly in the time

domain, after aligning them to minimize the phase di�erence in a reasonable frequency interval.

In practice this method will be used heavily throughout chapters 3 � 6 to demonstrate agreement

or disagreement between waveforms. The frequency intervals chosen are always given to allow the

reproduction of the results.

(ii) While these methods can be used to access the quality of a given waveform model it is still

important to point out that these methods of estimating the quality of a waveform model are not

the best possible way to ensure that no pathological e�ects are present in the model even though

they might not be exhibited in this waveform model. Some additional simple methods to explore the

stability and reliability of a waveform model will be explored in practice in the later chapters 3 � 6.

In principle the best test to determine if a model adequately represents the prediction of GR is to

perform an injection study [31, 37, 99, 143]. During an injection study a waveform, assumed to

reliably represent GR for a given set of parameters ϑ is projected into a combination of detectors

and to each signal a single realization of the detector noise is added. Thus one obtains the set

dinjectionk (ϑ). This data can then be treated as a possible real event and a PE algorithm can be
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2.2. The two-body problem and the EOB approach

applied. If the model can accurately recover several combinations of ϑ it can be considered ready

and reliable. In principle it would be possible to use real GW event data that has been analyzed

already by trusted models, however such a setup would be less controlled and also would limit the

parameter space to the parameter combinations that have been observed so far. Especially models

that aim to increase the range of the parameter space covered it is advisable to validate the model

through injection studies to estimate possible biases that would be exhibited in the application to

observed GW events.

2.2 The two-body problem and the EOB approach

The discussion so far aimed to outline the two major aspects that set the context for waveform

model development. First, the model needs to produce h or the individual h`m for a set of intrinsic

parameters ϑintrinsic. Secondly, given a catalog of waveforms representing the prediction of GR it

is then necessary to test and develop the waveform model until it meets the �rst quality demand:

Namely, that the maximum of F̄ computed over the parameter space covered by the catalog of GR

waveforms.

So far the focus was set most generally on the case of building a waveform model and only

partially focused in on relevant only to CBC systems. In the following, the discussion will turn

exclusively to the problem of a BBH systems emitting GW. First, an introduction to the two-body

problem will be given. The discussion will then focus on the analytical methods capable of studying

BBH systems. In particular, PM, PN and Gravitational-Self-Force (GSF) theory. These theories

however will prove insu�cient to form the basis of a robust waveform model. The introduction of the

EOB approach allowed to combine the analytical information into a robust and reliable framework.

Many choices are involved in constructing an EOB model and it is not self-evident which is superior

to the others. Further, even given the wealth of information that can be found in PM, PN and

GSF theory, it is not su�ciently to model a BBH system to the above stated quality demands all

the way through merger to the �nal state. Therefor more information is needed. Additionally,

purely from the analytical framework it is not possible to construct a reliable target catalog of

waveforms that accurately represent GR. To solve these two problems the discussion will then turn

to NR. NR waveforms will be discussed both as a source of missing information and as a catalog of

waveforms representing GR. NR is however not perfect and the uncertainty of the NR catalog has

been estimated and accounted for when NR waveform catalogs are utilized for the building of GR

waveform models.

2.2.1 The two-body problem of GR: Binary Black Holes

Once a BBH system has formed four stages of evolution will follow. First, the inspiral during which

the two BHs are bound gravitationally. The two BHs orbit each other while slowly emitting GWs

and steadily increasing the frequency at which they orbit each other getting slightly closer to each

other with every orbit. This process is extremely slow. Typically time spans of the order of 109 to

1010 years or even longer can be expected for astrophysical, relevant sources observable with second

generation GW detectors such as advanced LIGO, advanced Virgo and KAGRA [64, 119, 120].

The second step of the evolution of a BBH system is the plunge (see e.g. [61]). The plunge

marks the end of the inspiral of a BBH systems. After a su�ciently long inspiral the two BHs
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2.2. The two-body problem and the EOB approach

Figure 2.3: The three phases of BBH coalescence: inspiral, merger and ringdown. Matched with the
ranges of validity for the three sources of information about the BBH coalescence. Post-Newtonian Theory,
Numerical Relativity and Black Hole perturbation theory. [Picture credits: Kip Thorne]

will have gotten close enough to each other that any further emission of GWs will push them so

close together that the semi-stable inspiral will transition into an unstable radial plunge and a

successive head-on collision of the two BHs: The merger, the third step of the BBH evolution. In

the context of a test-particle orbiting a BH12 the transition from the inspiral to the plunge occurs

at the Innermost-Stable-Circular Orbit [64].

The plunge and the merger are the most extreme stages of the BBH evolution and consequently

also the peak of the GW luminosity lies within this stage. The end of the merger is marked by the

formation of a �nal BH in a perturbed state. This exited BH will then enter the ringdown phase

and emit GWs through Quasi-Normal-Modes (QNM) [47] until it has reached the state of a relaxed

Kerr BH. Once the BBH system has reached this state the evolution will be considered over.

The reader should note that while from a modeling point of view the addition of the plunge

phase can be useful as it is dynamically di�erent from both the inspiral and merger, it is not

always treated as a di�erent phase. This can be seen e.g. in the fact that a waveform model

that covers the full range of the BBH evolution is commonly referred to as an Inspiral-Merger-

Ringdown (IMR) waveform model. A schematic example of an IMR waveform is shown in Fig. 2.3.

Additionally, it shows schematically the di�erent theories that allow the study of BBH systems

and their approximate range of validity throughout the evolution of the system. In chapter 1 a

brief introduction to the intrinsic parameters describing a BBH system was given. The discussion

will now return to this list of parameters, extend them and expand on some general considerations.

Additionally, the motivation to focus on waveform models with following constraints will be reviewed

and discussed: (i) The motion of the BBH system be constrained to a singular plane of motion with

constant BH spins perpendicular to the plane of motion. (ii) The BBH system should have vanishing

eccentricity.

The �rst thing to note when considering to build BBH systems is that the spacetime describing

12A test-particle orbiting a BH can be interpreted as a BBH system with one BH being several hundred to a
thousand times larger than the smaller one.
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their full IMR evolution will solve the Einstein Equations in vacuum given as

Gab = 0 (2.18)

where Gab is the Einstein Tensor and a, b are spacetime indices de�ned with respect to a suitable four

dimensional coordinate system [152]. While it might not be obvious at �rst sight, but the Einstein

Equations in vacuum are special due to the absence of any physical scale. This scale free nature

thus would imply that the scale would have to be set by the BBH system and one can �nd that

indeed the total mass M of the BBH system can be scaled out without loss of generality [34, 43]13.

In practice this allows to set M = 1 while preparing any computing any waveform. M can then be

reintroduced through dimensional analysis together with Newtons gravitational constant G and the

speed of light c, which are set to 1 as well.

While M sets the overall scale of the system, just as important are the individual masses of

the BHs m1, m2 and their mass-ratio q = m1/m2 with the convention m1 ≥ m2 (therefore q ≥ 1

is true for all systems). As a matter of fact it can be seen that the GW emission of a BBH

system is dominated by the mass-ratio at leading order. More precisely the GW strain h is directly

proportional to the symmetric mass-ratio ν given as

ν =
m1m2

(m1 +m2)2 . (2.19)

It can easily be seen that the case of m1 = m2 implies ν = 1/4. While the case of m1 � m2 is

equivalent to ν ≈ 0. Each BH has additionally a spin given by the 3-vector ~Si, with the index

i = 1, 2 referring to the individual BHs unless otherwise stated. The cosmic censorship conjecture

implies then that |~Si| ≤ m2
i [152]. The properties of the BH spins ~Si and masses mi are de�ned

for each BH individually. To fully classify the trajectory of both BHs their initial positions and

3-momenta are given by the 3-vectors ~xi and ~pi at an initial time t0. Based on the no-hair theorem,

proven by Israel et al. [62, 103, 104]14, both BHs are thus fully characterized. The reader should

note that the determination of the BH mass, BH spins and the linear momentum are by no means

trivial in a general setup. One way to reliably determine these quantities is the ADM formalism

(see e.g. [43]) 15.

Earlier it was pointed out that within this thesis the focus is on BBH waveform models with

two constraints. The �rst constraint is relatively easy to justify: In a BBH system only the total

13The reader should note that this scale invariance will not be a true in the general case. For any GW source for
which e�ects of a non-zero Cosmological Constant or matter play a role the invariance would be explicitly broken.

14For completion the reader should note two things: (i) The no-hair theorem generally allows for the BH to carry
electrical charge. As most BHs are assumed to neutralize on very fast time scales relative to the length of an inspiral
of the order of 109 years or even more, it is reasonable to neglect the electric charge (see e.g. Ref. [64] for a discussion
of charges BHs). (ii) Israel et al. have proven the no-hair theorem in the context of static BHs while for the full
dynamical case the proof of the no-hair theorem is still undiscovered. However, no violation of the no-hair theorem
has been observed experimentally or numerically.

15Within the ADM formalism masses and angular momenta are given locally as integrals over the three dimen-
sional volume segments

∑
. Through Stokes Theorem these integrals can alternatively be expressed as integrals of

the boundary of
∑
. Especially in a NR setup can this formulation be useful. The moving puncture method for

example "removes" the interior of the BH and therefor an integration over the full volume would not be possible (see
e.g. Ref. [43]).
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angular momentum ~J is conserved and given by

~J = ~L+ ~S1 + ~S2 + ~JGW (2.20)

where ~L is the orbital angular momentum and ~JGW the total angular momentum carried by GWs

emitted by the system. It can be shown in EOB models with general spin vectors that this will lead

to a precessing dynamics of ~L, ~S1 and ~S2 (see e.g. Refs. [33, 71]). When observing the concrete

equations of motions directly it is noticeable that the time derivatives of ~S1, ~S2 and L̂ ≡ ~L/||~L||,
where ||~L|| denotes the norm of ~L, are all linear combination of cross-products between each other.

Consequently, if the 3-vectors L̂, ~S1 and ~S2 will be parallel, they will also be constants of motion

during the inspiral phase. This alone would not necessarily justify the restriction to this special

case, but it has been pointed out in Ref. [71] that the GW signals of BBH systems with both BH

spins aligned with L̂ (i.e. L̂ · ~Si > 0) will produce a larger GW strain h and therefor will be easier

to detect. Thus, it is a reasonable strategy to �rst focus on waveform models with spins parallel to

L̂.

Turning now to the initial position and momentum vectors. Within the framework of this all

work will be done in the Center-of-Mass frame. In the discussion it was established that L̂ is a

constant of motion and therefor ~xi and ~pi have to be in the plane perpendicular to L̂. The most

general orbit in a two dimensional plane would be given by the semi-major axis a and an eccentricity

ε. Due to the emission of GWs both a and ε will be time-dependent. Applying the quadrupole

formula to the motion of a BBH system the time derivative of ε is given as

ε̇ = −304

15

G3m1m2M

c5a4

ε

(1− ε2)5/2

(
1 +

121

304
ε2

)
(2.21)

with M , G and c left explicit (see e.g. chapter 4 of Ref. [119] for a derivation). As can be seen

ε̇ is negative and becomes proportional to ε in the limit of ε � 1. This phenomena is generally

referred to as circularization of compact binary systems. As most observed BBH systems have

evolved for thousands of cycles and more it is likely that by the time they get close to merger and

become detectable with GW observatories they will have been fully circularized. As the inclusion

of eccentricity would further complicate any GW model it is reasonable to �rst construct a working

model without it.

It is useful to now summarize and conclude the discussion of the BBH parameter space relevant

for this thesis. Each individual BH is given through it's mass mi and the spin ~Si, which is parallel

to the orbital angular momentum ~L. The direction of ~L is given by L̂ and is constant throughout

the evolution of the BBH system. The source frame is de�ned as the coordinate system t, x, y, z.

The origin is x = y = z = 0 is chosen to coincide with the Center of Mass (CoM). The coordinate t

is chosen to be time-like. L̂ is chosen to coincide with the positive z-axis16 and thus the motion of

the BBH system is constrained to the z = 0 plane. As the eccentricity ε = 0 is imposed, the motion

of the BBH system will ba succession of circularized orbits driven to smaller and smaller radii by

the emission of GWs until the two BHs merge to a �nal BH. It is easy to see that in this setup the

radial separation of the two BHs will monotonically together with the orbital angular momentum

16This can be assumed without loss of generality as the transformation L̂ → −L̂ would change the waveform as
h`m → h`,−m as can be seen from explicitly evaluating eq. (2.5).
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2.2. The two-body problem and the EOB approach

while the orbital frequency does increase.

As the total mass m1 +m2 = M = 1 can be scaled out only the ratio of the masses q = m1/m2

(with the conventionm1 ≥ m2 follows that q ≥ 1) and the spins Si = ~Si ·L̂ of the two BHs determine

the evolution of the BBH system uniquely. The parameter q is commonly used to denote the mass-

ratio. For example the overwhelming majority of the waveforms used in Paper I were generated for

integer values of q and the interpretation is intuitively accessible. With the exception of the extreme

mass-ratio limit (e.g. q � 1) it however has no large dynamical impact. More commonly used is the

symmetric mass-ratio ν de�ned in eq. (2.19) as ν = m1m2/M
2, going from 0 (test-particle limit) to

1/4 (equal-mass case). As will be seen later many important aspects of the dynamics scale directly

with ν, e.g. the GW strain generated by a BBH system h ∝ ν. Often it will be useful to work

with the fractions of the individual BH masses Xi ≡ mi/M . Their di�erence X12 ≡ X1 −X2 can

be obtained from the symmetric mass-ratio as X12 =
√

1− 4ν. The BH spins Si are on the other

hand some of the most meaningful variables if combined. As will be shown in chapters 4 and 6 the

spin-dependence of many important waveform parameters can e�ectively modeled as a function of

a single linear combination of S1 and S2. However, their maximal range depends on q as each of

them is limited to be at most m2
i . Thus it is useful to express them in terms of the dimensionless

spin variables χi ≡ Si/m2
i which go from −1 to 1 for all values of q. The spins Si are related to the

Kerr spins of the BHs as ai ≡ Si/mi. Within this thesis the notation (q, χ1, χ2) will often be used

to refer to a speci�c BBH system.

2.2.2 Analytical methods and the E�ective-One-Body approach

So far the discussion derived the context in which the problem of waveform model building is

de�ned: To construct a model that can generate a set of h`m for a reasonable range of combinations

of (q, χ1, χ2) (q ≥ 1 and |χi| < 1) usable in the computation of L(data|ϑ) as discussed above.

Especially, keeping in mind that the waveform model has to be smooth and robust as well as fast

to evaluate.

Starting with these goals in mind the natural place to start is with the analytical methods

provided. In the context of this work three major analytical approximation methods have been

used to inform the inspiral-plunge sector of the TEOB-series of waveform models: (i) PN theory

expands the metric dynamics as a series of the inverse speed of light 1/c, often relative to a typical

velocity v of the system as v/c, it is thus a low velocity approximation. The leading order is given

in the case of a BBH system by Newtons law of Gravity and the Einstein Quadrupole Formula (see

e.g. Refs. [51, 119, 138] for a review). (ii) The PM approach represents an expansion in powers of

Newtons gravitational constant G around �at Minkowskian space time and can be seen as a low

curvature approximation (a review of PM theory can be found in Refs. [51, 119, 138]). (iii) GSF

theory computes the corrections of the motion of a small mass around a BH in powers of the inverse

mass-ratio (1/q) and thus is a large-mass-ratio approximation (see e.g. Refs. [40, 139, 148] for a

review).

All three are important sources in building BBH waveform models. However already on the level

of leading order computations for a Binary system it can be seen that a the BHs during the plunge

and merger move with velocities comparable to the speed of light, the the curvature of the metric

will be a signi�cant deviation from the Minkowski metric and that the most important signals will

be of comparable mass BBH systems (recall that h ∝ ν). Therefor, it is no surprise that neither of
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2.2. The two-body problem and the EOB approach

the methods have produced stable and reliable results for BBH dynamics in the late inspiral-plunge

regime. In the late 1990s this problem was still unsolved and debated. The solution to this problem

was presented in the EOB approach developed, after an example in quantum electro dynamics, by

Thibault Damour et al. [60, 61, 71, 78] in 1998. Through direct comparison of the PN Hamiltonian

describing a BBH system onto that of a point-mass moving in an external metric it was possible

to resummate many hundreds of terms into a small number of exact coe�cients that captured the

information of the PN expansion in a stable and accurate manner. Since then the EOB formalism

has become the commonly used standard and most modern waveform models are based on the EOB

approach17. The interested reader is referred to the above named reviews and books for more details

and discussion of PN, PM and GSF theory and their subsequent mapping into the EOB picture. As

neither computation and mapping are subject to this thesis no further discussion will be given and

the results of the mapping will merely be presented when it is meaningful but this thesis does not

aim to give a full overview of these topics. The focus of this thesis starts at the end of the mapping

into the EOB picture. While there is a great wealth of analytical information available already

it is still not enough to satisfy the general quality demands for GW astronomy discussed above.

Further even if the models would reliably predict the waveform it would still be only accurate for the

inspiral-plunge phase as most models are conceptually not necessarily to capture the merger of the

BBH system. This missing information can be captured through the �tting of e�ective parameters

to NR.

2.2.3 Numerical Relativity

In 2003 the �rst evolution of a BBH system over a full orbit succeeded [58, 140]. Since then NR

has developed greatly. Since then many catalogs18 of NR simulation describing the evolution of a

BBH system over several orbits through inspiral, plunge, merger and ringdown have been achieved

(see Refs. [34, 43] for an introductory review of the topic of NR).

NR catalogs serve a dual role within waveform model building. On the one hand they are

currently the best option to obtain exact solutions of the Einstein Equations for merging BHs

starting in the late inspiral, through the plunge and merger to the ringdown. Therefor they are

the natural choice to be used as a "target" catalog. On the other hand they are a useful source of

information that can complete a waveform model through the incorporation of e�ective degrees of

freedom that are calibrated to reduce the unfaithfulness F̄ between the NR catalog and the waveform

model. Still NR has a �nite error. This error in some cases can be managed and estimated to an

accurate degree. One example of this are the waveforms generated by the BAM code [101, 108, 109].

BAM is a �nite di�erence code. As the error scales with the grid size it is possible to obtain a

reasonable measure of the uncertainty by comparing di�erent resolutions. With a su�cient number

of successive waveforms generated for di�erent grid size parameters in the domain of convergence

allow one to extrapolate the error to in�nite resolution, though this is computationally extremely

costly. The SXS code however is based on spectral methods [7, 55]. While in a �nite di�erence

code a given di�erence between grid size parameters corresponds linearly to the local resolution of

17This can be seen e.g. by the list of waveform models used in the analyses presented with the �rst and second
GWTC [22, 28]

18Some examples of such Catalogs based on individual codes are NINJA [31, 37], NRAR [99], Georgia Tech [105]
and RIT [96, 97]. In this thesis however only two catalogs of NR waveforms are used BAM [101, 108, 109] and SXS [7, 55].
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the spacetime, this is not the case for codes generated with the spectral approximations. In the

later case it can be that a signi�cant increase in the grid size parameter has almost no e�ect on the

actual grid size and vice versa. Therefor it is not necessarily as useful to compare di�erent grid size

parameters for �nite-di�erence methods.

Estimating the error of NR waveforms is therefor no simple task in itself. To ensure that the

waveforms faithfully represent GR a general threefold strategy is commonly employed. First, a

given waveform is evaluated on an individual basis. The waveform can be inspected visually for

indicators of nonphysical or pathological behavior and if a second resolution is available the two are

compared. Secondly, the waveform is compared to other waveforms with similar but slightly di�erent

parameters (q, χ1, χ2) expecting that similar parameters will lead to similar waveforms. Finally, the

results of di�erent codes can be compared, based on the assumption that it is unlikely that di�erent

codes would diverge from GR in a similar manner on both a qualitative and quantitative level.

Largely, along all strategies a good agreement and stable behavior is found it is highly unlikely to

expect that the NR waveforms do not represent GR with reasonable faithfulness.

Within this thesis two waveform catalogs, SXS and BAM, are used as the main sources of NR

information used in this thesis and will be reviewed and discussed in chapter 3. Once their uncer-

tainties are under control they will be used to complete several incarnations of the TEOB model in

chapters 4 � 6.

2.3 TEOB infrastructure

The discussion will now turn to the basic structure of the TEOB model and how both analytical and

numerical information can be incorporated in the model. This infrastructure is common among all

three incarnations of the TEOB model discussed in this thesis. These are TEOBResumS a model for

h22 for the entire parameter space (q, χ1, χ2) (Paper I), TEOBiResumMultipoles a model for several

multipoles h`m over the non-spinning sector exploring the application of the modeling techniques

employed for TEOBResumS for subdominant modes (Paper II), and TEOBiResumS_SM an extension of

TEOBiResumMultipoles to the spinning sector for a subset of the h`m, combined with a signi�cant

performance upgrade with respect to the h22 of TEOBResumS (Paper III).

2.3.1 TEOB Hamiltonian and Equations of motion

The �rst point of discussion is the TEOB Hamiltonian and the corresponding equations of motions,

laying the basis for the model with respect to the inspiral and plunge until the �rst peak of the

multipole h`m. The TEOB Hamiltonian can be best understood as a deformation of a test-particle

moving on the background of a spinning Kerr BH, with the deformation parameter given by the

symmetric mass-ratio ν. The Kerr-limit (i.e. the evolution of a test-particle falling into a spinning

BH) is reached as ν goes to 0 and the deformation of the Kerr-Hamiltonian is maximized in the

equal-mass case when ν = 1/4.

Generally in the PN context it is possible to separate the conservative dynamics from the

dissipative radiation reaction by PN order. Even powers of v/c are referred to as integer PN orders

while half integer PN orders refer to odd powers of v/c. In summary the the term (v/c)n correction

with respect to the leading order is commonly referred to as the n/2 PN order. As can be seen

by explicit PN computations integer PN expansion terms contribute to the conservative dynamics,
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while half-integer PN expansion terms contribute to the dissipative radiation reaction [119]19. This

allows the separation of the Hamiltonian into HEOB capturing the conservative dynamics of the

system and the radiation reaction force F (entering the equations of motion directly), which can

both are obtained from the mapping of the two-body dynamics onto the EOB picture.

The relative dynamics are evolved using dimensionless, phase-space variables (r, pr, ϕ, pϕ)20,

corresponding to polar coordinates in the equatorial plane θ = π/2. r is given as the relative

separation with its conjugate momentum, pr is replaced by pr∗ = (A/B)1/2 pr, with respect to

the �tortoise" (dimensionless) radial coordinate r∗ =
∫
dr(A/B)−1/2, where A and B are the EOB

potentials. The A and B potentials are the �rst vessels to account for analytical information.

Commonly the A potential is de�ned explicitly, obtained from PN theory, and the B potential is

then obtained from the product AB, �xed in the TEOB framework. Within the TEOB framework the

A potential is closest associated with the orbital dynamics21. The concrete forms of the A and B

potentials are introduced in Sec. 4.1.1 for TEOBResumS and in Sec. 5.2.1 for TEOBiResumMultipoles

and TEOBiResumS_SM.

The dimensionless phase-space variables are related to the dimensionful ones (R,PR, ϕ, Pϕ) as

r =
R

GM
, pr∗ =

PR∗
µ
, pϕ =

Pϕ
µGM

, t =
T

GM
. (2.22)

The spin variables (S1, S2) de�ned within the two-body BBH picture are mapped onto the EOB

spin variables as

S = S1 + S2, S∗ =
M2

M1
S1 +

M1

M2
S2. (2.23)

The EOB Hamiltonian HEOB is rescaled by µ = Mν and expressed as

ĤEOB =
HEOB

µ
=

1

ν

√
1 + 2ν

(
Ĥeff − 1

)
, (2.24)

with

Ĥeff =Ĥorb
eff + pϕ

(
GSŜ +GS∗Ŝ∗

)
, (2.25)

Ĥorb
eff =

√
p2
r∗ +A

(
1 +

p2
ϕ

r2
c

+ z3
p4
r∗

r2
c

)
. (2.26)

First, the reader should note the reappearance of the A potential in the Hamiltonian, one of the main

vessels of analytical and NR information. Further, the coe�cient z3 is given as z3 = 2ν(4 − 3ν).

The variables Ŝ ≡ S/M2 and Ŝ∗ ≡ S∗/M
2 are rescaled dimensionless expressions of the above

19While for lower order terms this separation has a valid physical interpretation this is no longer true for higher
PN orders [51].

20To simplify the discussion in the previous section pϕ was not de�ned explicitly. The relationship to ~L is given
as ~L = pϕL̂.

21The reader should note two things: (i) "Orbital" is a general reference to the orbital angular momentum ~L.
"Orbital dynamics" therefor refers to the aspect of the underlying dynamics driven by ~L. In practice this is sector of
the model is informed based with the non-spinning (χ1,2 = 0) sector and is therefor a function of ν (or q). (ii) While
the A potential of TEOBResumS does not depend explicitly on the spins it depends implicitly on the spins variables
as can be seen in Sec. 4.1.1. For TEOBiResumMultipoles and TEOBiResumS_SM this dependence on the spin has been
removed to improve the performance.
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mentioned EOB spin variables. The centrifugal radius rc was introduced into the TEOB framework

in Ref. [76] including next-to-leading (NLO) spin-spin terms [91] and is given as

r2
c = r2 + â2

0

(
1 +

2

r

)
+ δâ2, (2.27)

here â0 refers to the dimensionless e�ective Kerr parameter given as

â0 ≡ Ŝ + Ŝ∗ = X1χ1 +X2χ2 = ã1 + ã2 . (2.28)

The NLO spin-spin contribution is given by δâ2 presented in Refs. [39, 76] as

δâ2 =
1

r

{
5

4
(ã1 − ã2)â0X12 −

(
5

4
+
ν

2

)
â2

0 +

(
1

2
+ 2ν

)
ã1ã2

}
. (2.29)

The gyro-gravitomagnetic ratiosGS andGS∗ are formally coe�cient functions of the EOB spins onto

the orbital angular momentum and capture the strength of the spin-orbit coupling. These are the

second major vessel for analytical and numerical information. The are given explicitly in Sec. 4.1.1

and are used consistently for all three TEOB incarnations. Based on Refs. [76, 127] the models

presented here are incorporating next-to-next-to-leading order (NNLO) spin orbit coupling [92].

The Damour-Jaranowski-Schäfer gauge is �xed and as a result (GS , GS∗) depend exclusively on

(r, p2
r∗) and not on the angular momentum pϕ [80, 127]. The Hamilton's equations for the TEOB

Hamiltonian are thus simpli�ed and given in compact form as

dϕ

dt
= Ω =

∂ĤEOB

∂pϕ
, (2.30a)

dr

dt
=
(A
B

)1/2 ∂ĤEOB

∂pr∗
, (2.30b)

dpϕ
dt

= F̂ϕ, (2.30c)

dpr∗
dt

=−
(
A

B

)1/2 ∂ĤEOB

∂r
, (2.30d)

which in turn can be expanded to

dϕ

dt
=Ω =

1

νĤEOBĤorb
eff

[
A
pϕ
r2
c

+ Ĥorb
eff

(
GSŜ +GS∗Ŝ∗

)]
, (2.31a)

dr

dt
=

(
A

B

)1/2 1

νĤEOBĤorb
eff

[
pr∗

(
1 + 2z3

A

r2
c

p2
r∗

)
+ Ĥorb

eff pϕ

(∂GS
∂pr∗

Ŝ +
∂GS∗
∂pr∗

Ŝ∗

)]
, (2.31b)

dpϕ
dt

= F̂ϕ, (2.31c)

dpr∗
dt

=−
(
A

B

)1/2 1

2νĤEOBĤorb
eff

[
A′ + p2

ϕ

(A
r2
c

)′
+ z3 p

4
r∗

(A
r2
c

)′
+ 2Ĥorb

eff pϕ

(
G′SŜ +G′S∗Ŝ∗

)]
,

(2.31d)

where the notation (· · · )′ ≡ ∂r(· · · ) implies the spatial derivative with respect to r. Similar to

HEOB, F is similarly rescaled by µ as F̂ϕ ≡ Fϕ/µ. Note that µ is constant for a given waveform
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and thus the rescaling has no impact on the equations of motion. The radiation reaction force F
in the general case is made up of two components F̂ϕ and F̂r∗ . However, following previous works

the choice F̂r∗ = 0 is made or all models discussed in this thesis [76]22. Further note that the

horizon absorption is included to leading order in the radiation reaction (see Eqs. (97)-(98) of [76]).

The initial data for the TEOB equations of motion are generated with the post-post-adiabatic (2PA)

initial data [75, 82] for all waveform computations presented in this thesis. The reader should note

that Ref. [128] greatly improved upon the post-adiabatic concept and these methods can be included

into all models presented here without any negative impact23.

2.3.2 The TEOB waveform and Next-to-Quasi-Circular corrections

The radiation reaction force F̂ϕ incorporates the back reaction of the emission of GWs onto the

the system. F̂ϕ is obtained from the summation over all available multipoles h`m. These h`m are

expressed through a special factorization and resummation presented originally in Ref. [81]. The

explicit form of Fϕ is given in Ref. [76] as

F̂ϕ = − 1

8π

8∑

l=2

l∑

m=1

m2Ω |(R/M)hlm|2 , (2.32)

where Ω is the frequency of h and (R/M) reintroduces the dependence on distance and total system

mass scaled out in the de�nition of h`m. The factorized and resummed h`m are introduced in the

form presented in Refs. [76, 81, 137]. In the notation of [76], this factorization is given as

h`m = h
(N,ε)
`m Ŝ

(ε)
eff ĥ

tail
`m f`mĥ

NQC
`m , (2.33)

with ε denoting the parity of `+m, h
(N,ε)
`m is the Newtonian (or leading-order) contribution, Ŝ

(ε)
eff the

e�ective source factor, ĥtail
`m the tail factor, f`m the residual amplitude correction and ĥNQC

`m the next-

to-quasi-circular (NQC) correction factor. The explicit expressions of the individual factors of h`m

form the third vessel for analytical and numerical information to be included into the TEOB model.

The waveform is however di�erent from both the A potential and the gyro-gravitomagnetic ratios.

In both of the latter, as can be seen in Sec. 4.1.1, the function is taken to the highest available order

from analytical computations (the A-potential from PN theory, while (GS , GS∗) are informed by

GSF theory) and the next-to-highest-available-order term is taken to be an e�ective parameter that

is �tted against (q, χ1, χ2). The factors up to ĥNQC
`m are computed within PN theory. The factor ĥNQC

`m

accounts for possibly missing information of the remaining factors while simultaneously accounting

for the radial radiation reaction F̂r∗ = 0. While F̂r∗ = 0 is a good approximation in the circularized

inspiral, this breaks down once the binary transitions into the near-radial plunge. Therefor ĥNQC
`m

explicitly depends on the radial momentum and it's derivatives [74]. This allows the generation of

waveforms up till the peak of the individual multipole. Each ĥNQC
`m depends on 4 parameters that

are extracted by comparison between the generated waveform and the NR waveform. While ĥNQC
`m

22This choice can be easily justi�ed by the observation that the radial motion will be very slow while the angular
motion will dominate in the case of BBH system with zero eccentricity. For a model with eccentricity this needs to
be then included.

23The post-adiabatic approach presented in Ref. [128] actually solves also another problem as it greatly reduces
the evaluation time of the TEOB equations of motion and thus allow a full waveform to be of the order of 0.1ms and
thus meeting the computation time requirement of GW astronomy.
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is de�ned and can be calculated for each (`,m), only ĥNQC
22 contributes to F̂ϕ for all three model

incarnations. Thus the accuracy and precision demands for the (2, 2) mode are much higher. While

in principle also the NQC of any of the subdominant modes can be included into the NQC at the

stage of consideration within this thesis, this has not yet been done. See Chap. 5 and references

listed there for a further discussion on this topic.

The NQC factor is modeled as

ĥNQC
`m = (1 + a`m1 n`m1 + a`m2 n`m2 )ei(b`m1 n`m3 +b`m2 n`m4 ) . (2.34)

The coe�cients (a`m1 , a`m2 , b`m1 , b`m2 ) are determined by imposing the waveform amplitude, frequency

and their derivatives around the peak of the waveform. The coe�cient basis (n`m1 , n`m2 , n`m3 , n`m4 ) is

given in terms of the radial momentum and its derivatives. The NQC for the (2, 2) mode are intro-

duced in Ref. [76]. Paper II expands the NQC basis (n`m1 , n`m2 , n`m3 , n`m4 ) for TEOBiResumMultipoles

and TEOBiResumS_SM to include the subdominant modes as well.

The NQC basis (n22
1 , n

22
2 , n

22
3 , n

22
4 ) of TEOBResumS is given as

n22
1 =

(pr∗
rΩ

)2
(2.35a)

n22
2 =

(r̈)(0)

rΩ2
, (2.35b)

n22
3 =

pr∗
rΩ

, (2.35c)

n22
4 = pr∗rΩ = n′1(rΩ)2. (2.35d)

The superscript (0) in the de�nition of n2 refers to the evaluation of the second time derivative of

r along the conservative dynamics, i.e. this implies that the equations of motion are used with

F = 0 imposed (see the Appendix of [82] for a discussion and motivation of this choice).

The NQC bases of the subdominant modes beyond the (`,m) = (2, 2) are modi�cations of the

n22
i . These are chosen by experience as they provided more stable and accurate results over the

parameter space. The NQC basis of the (2, 1) mode has been chosen separately from the remaining

modes as

n21
1 = n22

1 , (2.36a)

n21
2 = n22

1 Ω2/3, (2.36b)

n21
3 = n22

3 , (2.36c)

n21
4 = n22

3 Ω2/3, (2.36d)

while for all modes with ` ≥ 3 the basis was uniformly chosen to be

n`m1 = n22
1 , (2.37a)

n`m2 = n22
2 , (2.37b)

n`m3 = n22
3 , (2.37c)

n`m4 = n22
3 Ω2/3. (2.37d)

As the modelization of the NQC is now given it remains to describe the determination process of
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the NQC parameters (a`m1 , a`m2 , b`m1 , b`m2 ). This is done by imposing
{
ÂNQC
`m ,

˙̂
ANQC
`m , ωNQC

`m , ω̇NQC
`m

}

extracted from NR onto the EOB waveforms. This generates a system of four coupled linear

equations that can be solved for the NQC parameters. The superscript NQC refers to the NQC

extraction time de�ned below for both NR and EOB24. It is now necessary to point out the notation.

Commonly A`m refers to the amplitude of the strain multipole h`m, with ĥ`m ≡ h`m/ν being the

ν rescaled waveform strain corresponding to the amplitude Â`m
25. This is di�erent in the case

of ÂNQC
`m and

˙̂
ANQC
`m (with a slight abuse of notation), which refer to the amplitude of the Regge-

Wheeler normalized strain waveform Ψ̂`m ≡ ĥ`m/
√

(`+ 2) (`+ 1) ` (`− 1) and thus (ÂNQC
`m ,

˙̂
ANQC
`m )

are obtained from ÂNQC
`m ≡

∣∣∣Ψ̂`m(tNQC)
∣∣∣.

As the NQC are meant to correct the waveform during the plunge-merger phase and allow to

capture the neglected e�ect of the radial contribution to the radiation reaction. Therefor the NQC

are extracted at the peak of the merger. However, as the derivative of the amplitude is 0 at peak

it is advisable to extract them slightly after the peak. On the NR side the NQC extraction point is

therefor chose to be

tNR
NQC`m

= t
peakNR
`m + 2M , (2.38)

where t
peakNR
`m refers to the time at which A`m reaches its maximum, the peak. While for h22 this is

a unique de�nition as the waveform has only a singular peak this is not necessarily the case for the

subdominant modes. As can be shown from the study of perturbations around a BH, the appropriate

basis for the multipole expansion around a BH is the spheroidal harmonic base (see e.g. Ref. [47]).

This will necessarily lead to a complicated multi-peak structure in the merger-ringdown phase for

the subdominant multipoles as will be discussed explicitly in chapter 5 and 6.

Moving to the TEOB side one �nds that the determination of the time coordinate to impose the

NQC is by far not as simple as for NR, as the waveform without the NQC corrections is incomplete,

which is especially signi�cant in the late inspiral-plunge phase where the NQC are meant to be

imposed. To solve this problem the following approach was developed in Ref. [76] which is given as

tEOB
NQC`m

= tpeak
Ωorb
−∆tNQC + ∆t`m , (2.39)

where ∆t`m refers to the time shift between the peak of h`m and h22 given as

∆t`m ≡ tpeak
`m − tmrg , (2.40)

where tmrg is the time of merger, the peak of h22, and is �tted directly to NR. Ωorb refers to the

pure orbital frequency (see Eq. (100) of Ref. [76]) and is derived from Eq. (2.31a) above, as

Ωorb ≡
1

HEOB

∂Ĥeff
orb

∂pϕ
=

pϕu
2
cA

HEOBĤeff
orb

, (2.41)

where uc = 1/rc is the inverse centrifugal radius. ∆tNQC = 1 is set by hand. In the case of large

24Within this thesis it is common practice to denote a variable with a given superscript to refer to the variable
taken at a speci�c time.

25Within discussions of the TEOB model this is the most common de�nition. Within the discussion of
TEOBiResumMultipoles and TEOBiResumS_SM this notation will however be adapted to simplify the notation and
will be pointed out directly.
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mass-ratios and a large spins of the heavier BH χ1, however, ∆tNQC = 4 was needed to ensure a

stable determination of the NQC which will be discussed for TEOBResumS explicitly (see Sec. 4.4).

With the de�nition of the NQC extraction time on both the NR and TEOB side it is now possible

to set the system of four equations that allow the determination of (a1, a2, b1, b2) as

ÂEOB
`m

(
tEOB
NQC`m

)
= ÂNR

`m

(
tNR
NQC`m

)
, (2.42a)

˙̂
AEOB
`m

(
tEOB
NQC`m

)
=

˙̂
ANR
`m

(
tNR
NQC`m

)
, (2.42b)

ωEOB
`m

(
tEOB
NQC`m

)
= ωNR

`m

(
tNR
NQC`m

)
, (2.42c)

ω̇EOB
`m

(
tEOB
NQC`m

)
= ω̇NR

`m

(
tNR
NQC`m

)
. (2.42d)

As the extraction of the NQC parameters is now de�ned formally, it is now necessary to elaborate

the practical approach to their determination:

(i) The equations of motion are integrated while the NQC parameters are set to (a`m1 , a`m2 , b`m1 , b`m2 )

= (0, 0, 0, 0). Once the full waveform is integrated and once tEOB
NQC`m

has been passed, (a`m1 , a`m2 ,

b`m1 , b`m2 ) are computed.

(ii) The equations of motion are reintegrated with (a22
1 , a

22
2 ) taken from the previous step and the

remaining ones set to zero as they have no impact on the radiation reaction. Once tEOB
NQC`m

has

been passed again, (a`m1 , a`m2 , b`m1 , b`m2 ) are computed and compared to the parameters with

which the waveform has been integrated.

(iii) Step (ii) is repeated until the NQC parameters (a22
1 , a

22
2 ) converged. Typically, this occurs

after four to �ve iterations at the latest. However, several very large positive spins will demand

seven or more iterations.

This concludes the introduction to the TEOB infrastructure used for the generation of the h`m

multipoles until their respective peaks. In brief summary, the TEOB Hamiltonian was introduced

together with a list of parameters and functions that can be used to account for information from

analytical approximations and numerical solutions to the Einstein Equations.

2.3.3 The full TEOB Hamiltonian waveform

As the full infrastructure is de�ned it is now useful to summarize and brie�y re�ect on the Hamil-

tonian driven model with respect to the individual building blocks, how they impact the waveform

generated and how they are informed:

(i) The A-potential in the TEOB picture represents the dependence of the dynamics on the orbital

angular momentum and depends explicitly only on ν and not directly on the spins χ1,2
26. It

is primarily informed by PN theory and completed through the addition of a single e�ective

parameter. This parameter is �tted, as a function of ν, to NR and thus represents e�ectively

the di�erence between the PN prediction and GR as captured within the NR framework.

26This is not fully correct in fact. A residual dependency on the spins can be introduced through a rede�nition of
the function in terms of the centrifugal radius. This is however only done in TEOBResumS and dropped later on.
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The calibration of the dynamics of the orbital angular momentum is generally done in the

non-spinning sector χ1,2 = 0. The A-potential will be discussed in Sec. 4.1.1 and Sec. 5.2.1.

(ii) The gyro-gravitomagnetic ratios (GS , GS∗) are similarly given as an expansion in PN powers

of v/c but obtained from GSF theory. An e�ective parameter is introduced to capture the

missing information going beyond the GSF computation. However, there is a major di�erence

with respect to the calibration of the A-potential to NR. The calibration of the A potential in

the TEOB-picture si �xed by the waveforms in the non-spinning sector and thus independent of

any particular form or coe�cient incorporated into (GS , GS∗). This is not true for the later as

the calibration of (GS , GS∗) does depend on the A potential. This will explicitly be discussed

in Sec. 4.1.1.

(iii) The analytical waveform h`m is obtained from PN theory, factorized and resummed. While

the factorization is strongly motivated by general physical considerations, the resummation is

chosen to solely to improve the performance of the waveform model. This is generally done

through comparing di�erent resummations to NR and optimizing for the most robust agree-

ment. The impact of the resummation can be seen for example when comparing the perfor-

mance of h22 between TEOBResumS and TEOBiResumS_SM, where the latter utilizes an updated

and improved resummation. The waveform will be discussed at several points throughout

chapters 4 � 6. The discussion will however in manner aim at completeness with respect to

the analytical waveform and be limited to the aspects directly impacting the work discussed

in this thesis.

(iv) The NQC correction factor ĥNQC
`m is introduced to account for the constraint Fr∗ = 0 and

limitations in the analytical waveform. The NQC parameters (a`m1 , a`m2 , b`m1 , b`m2 ) are com-

bined with a functional basis depending on the radial momentum and it's derivatives. The

equality between TEOB and NR is imposed at the NQC extraction point around the peak

of the multipole. This allows to obtain the NQC parameters if the NQC extraction point{
ÂNQC
`m ,

˙̂
ANQC
`m , ωNQC

`m , ω̇NQC
`m

}
is given. The NQC parameters are then iterated upon until

(a22
1 , a

22
2 ) converge to ensure the consistency between radiation reaction and the waveform

h22. In principle it is also possible to �t (a22
1 , a

22
2 ) so that one could use them as a suit-

able �rst-guess values giving an acceptable waveform with a single iteration. While this is in

principle always possible to obtain a �t, it is quite challenging to do so over the full three

dimensional parameter space (q, χ1, χ2). For TEOBResumS it was not possible to obtain such a

�t as the NQC had to account for relatively large e�ects that have not been accounted for by

the analytical waveform. Through the improved resummation it was possible to obtain such

�ts over the full three dimensional parameter space for TEOBiResumS_SM.

(v) The peak-time shift ∆t`m is one of the necessary ingredients to determine tEOB
NQC`m

for the sub-

dominant modes. Further, tEOB
NQC`m

marks the transition point from the Hamiltonian driven

waveform to the phenomenological template waveforms. Thus, ∆t`m gains additional impor-

tance for the subdominant modes. As it generally can be extracted from NR directly, it is

�tted as such.

The discussion will now turn to the extension of the waveform beyond the peak by the introduc-

tion of a phenomenological postpeak-ringdown templates that can be �tted to NR and be attached
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to the TEOB inspiral-plunge-merger waveform obtained form integrating the equations of motion.

2.3.4 Phenomenological Merger-Ringdown waveform templates

Ref. [77] introduced an approach to �t an NR waveform from the peak onward against NR after

factoring out leading order behavior of the remnant BH. This model was expanded �rst to a larger

section of the parameter space in Refs. [83] and Paper I, while Paper II and Paper III expanded it

to subdominant modes. Modi�ed versions of this model have been adopted in Ref. [53, 70] as well.

The basic setup of the model is as follows: First, the leading order QNM [47] behavior is factored

out and the next-to-leading-order QNM decay time are imposed. Secondly, the factored waveform is

separated into phase and amplitude which are �tted independent of each other. The reader should

note that Ref. [77] is dealing exclusively with the h22 mode. The template about to be discussed

represents the straight forward generalization to generic multipoles.

As the �t is done from the peak onward exploiting the QNM behavior of the remnant BH it is

useful to de�ne a new time coordinate τ with τ ≥ 0 given as a function of the time t as

τ ≡ t− tpeak
`m

MBH
, (2.43)

where MBH refers to the mass-fraction of the remnant BH with respect to the total mass M . Note

that τ di�ers for each multipole, despite this dependency not being acknowledged explicitly through

a set of indices `m. As all parameters used in this section need to carry these indices they are omitted.

Once the �tted parameters are introduced they will be given explicitly with indices `m.

Starting with the complex frequency of the fundamental QNM as σ1 ≡ α1 + iω1, made up of the

inverse damping time α1 and the frequency ω1
27, the QNM-factorized waveform h̄(τ) is given as

h̄ (τ) ≡ eσ1τ+iφ0 ĥ (τ) . (2.44)

The amplitude and phase are then obtained through

h̄(τ) = Ah̄(τ)eiφh̄(τ), (2.45)

�tted to the templates

Ah̄(τ) =cA1 tanh
(
cA2 τ + cA3

)
+ cA4 , (2.46)

φh̄(τ) =− cφ1 ln

(
1 + cφ3e

−cφ2 τ + cφ4e
−2cφ2 τ

1 + cφ3 + cφ4

)
. (2.47)

Prior to the �t �ve conditions are imposed. The peak ν normalized amplitude Âpeak and frequency

ωpeak, together with a vanishing derivative of the amplitude, are imposed at τ = 0. The decay

behavior of the next-to-leading-order inverse damping time are imposed on both the phase and

27This notation deviates from the more standard notation where the QNM parameters are commonly denoted
as e.g. ω`mn. When dealing only with the (2, 2) mode the multipolar index is omitted. And to be consistent with
prior notation with the EOB literature the fundamental QNM is denoted by 1 instead of 0. Consequently, the �rst
overtone is denoted with 2.
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amplitude. These conditions are then explicitly given as

cA2 =
1

2
α21, (2.48)

cA4 =Âpeak − cA1 tanh
(
cA3
)
, (2.49)

cA1 =Âpeakα1
cosh2

(
cA3
)

cA2
, (2.50)

cφ1 =∆ω
1 + cφ3 + cφ4

cφ2

(
cφ3 + 2cφ4

) , (2.51)

cφ2 =α21, (2.52)

with ∆ω = ω1−MBHω
peak, and α21 ≡ α2−α1, the di�erence between the inverse damping times of

the �rst overtone (α2) and the fundamental mode (α1). This leaves the three parameters
(
cA3 , c

φ
3 , c

φ
4

)

free and thus can be �tted to NR. First, in a primary �t these parameters are extracted from NR

while in a secondary global �t the individual primary �ts are interpolated across (q, χ1, χ2). It is

useful to highlight a few points:

(i) The dominant indicator of the �t performance is the accuracy of the �ts capturing the peak

amplitude Âpeak and frequency ωpeak. These parameters capture the peak behavior and

the overall scale of the waveform. Inaccuracies of these �ts will lead, if large enough, to

pathological waveforms.

(ii) The QNM parameters can be �tted with high precision and accuracy against the dimensionless

spin χf of the �nal BH. In practice, χf is obtained through the �t presented in Ref. [107], given

as a function of (q, χ1, χ2). Thus reducing the �t-dimensionality from three to one combined

with a gain in both accuracy and precision.

(iii) The e�ective parameters (cA3 , c
φ
3 , c

φ
4 ) capture the transition from the peak to the ringdown

regime. Their behavior is generally very sensitive to noise in NR waveforms used in their

determination. Further, it is in many cases possible to capture the waveform accurately even

with di�erences between global and primary �t that are similar in magnitude to the primary,

which is not necessarily surprising as they enter the waveform non-linearly. This is however

not generally true. The proper measure of their performance is accuracy and precision of the

reconstructed waveform amplitude and frequency.

(iv) In some cases it will become evident that the amplitude template Eq. (2.46) is not su�ciently

�exible to account for the NR behavior accurately. In particular for the extreme-mass-ratio

limit and for multipoles this limitation will become evident. An improvement of the template

represents a possible avenue for future work.

2.4 Thesis outline

This chapter introduced the reader to the basic concepts of GW astronomy in a strongly simpli�ed

manner to allow a de�nition of the quality goals of waveform model building. Starting with the

two-body problem the TEOB framework was introduced and the focus on spin-aligned, non-eccentric
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BBH systems was motivated. This chapter will now be concluded by brie�y discussing Papers I � IV

and outlining their results in the context of this thesis. The discussion will be focused around two

major aspects important when building waveform models for GW astronomy: Firstly, completing

analytically de�ned waveform models using NR waveform catalogs. Secondly, the validation of

waveform models such that they can be used within the practical framework of GW astronomy.

This discussion will then be concluded by a brief review of a non-standard application of waveform

models in GW astronomy.

Paper I In Ref. [135] TEOBResumS is introduced. TEOBResumS is a full CBC waveform model for BBH,

Black Hole-Neutron Star (BHNS) and Binary Neutron Star (BNS) systems. For BHNS and

BNS systems the waveform is constrained to the inspiral. In the BBH sector the model

generates the full h22, inspiral-plunge-merger-ringdown waveform for spin-aligned binaries

without eccentricity. The model is fully calibrated to NR, in all aspects of the TEOB setup

discussed above relevant for (`,m) = (2, 2). The NR waveform catalog used contains 135 SXS

waveforms generated with SpEC, 19 waveforms obtained with BAM and a list of waveforms of a

test-particle falling into Kerr BHs with various spins covering the interval (−0.99, 0.999). The

calibration of the model exploits analytically motivated spin variables to allow the e�ective and

accurate �tting over the full (q, χ1, χ2) parameter space with a two-dimensional �t. Exploring

the model performance with respect to the NR catalog Paper I showed that, with the exception

of a single BAM waveform (8,+0.85,+0.85)28, the model shows an excellent agreement with

NR. Outside the parameter space covered by NR the robustness of the model is explored and

improved to grantee a stable, non-pathological waveform all over. Several technical aspects

of the model are discussed explicitly. A C++ implementation of the code is introduced. This

code is then used in an analysis of GW150914, proving the readiness of TEOBResumS for GW

astronomy by example.

Paper II In Ref. [133] TEOBiResumMultipoles introduced which, similarly to TEOBResumS, is based on

the TEOB infrastructure introduced above. The changes with respect to TEOBResumS can be

seen in an updated A-potential and an improved resummation of the waveform and represents

an extension of TEOBResumS to include all modes withm ≥ 1 for ` = 2, 3, 4 and the (5, 5) mode.

However, TEOBiResumMultipoles models the non-spinning sector exclusively. Therefor the

NR catalog used in Paper I is limited to the non-spinning waveforms. These are the waveform

of a test-particle falling along circularized orbits into a Schwarzschild BH together with 16 SXS

and 3 BAM waveforms. Several aspects of incorporating subdominant modes are discussed and

applied. This in particular includes the computation of the unfaithfulness F̄ for the full strain

h, for which the position of the detector relative to the source frame needs to be included.

Paper III In Ref. [134] TEOBiResumS_SM is introduced, extending a selective number of the multipoles

covered by TEOBiResumMultipoles to the spinning sector. The SXS catalog is extended to

include 555 waveforms of aligned-spin, non-eccentric BBH systems. The uncertainty of these

waveforms is discussed and analyzed. This additionally includes an improved version of the

28The reader should note that with waveform was not used in the calibration of TEOBResumS as the waveform
was not su�ciently stable and did not allow an accurate determination of the NQC. In Paper III with an improved
resummation of the waveform and a newly generated waveform at higher resolution, one �nds excellent agreement
between TEOBiResumS_SM and this waveform.
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h22 showing that with an improved resummation of the analytical waveform it is possible

to resolve the issues that have been present in TEOBResumS. The subdominant modes are

compared in detail to NR. A peculiar dip in the NR waveform amplitude of the m = 1 modes,

pointed out in Ref. [70], was discussed and it was shown that the TEOBiResumS_SM waveform

predicts and models this e�ect accurately.

Paper IV In Ref. [63] an alternative application of TEOBiResumS_SM is discussed. The article proposes a

test of GR as follows: Given a GW event of a BBH, it is possible to locally reconstruct the peak

of the GW waveform strain using the BayesWave method. A model, such as TEOBiResumS_SM,

can then be used to �t the signal and give an alternative prediction of the peak waveform

strain. The BBH signal can be �tted over the entire IMR waveform or merely over the inspiral

by imposing a frequency cut-o�. As TEOBiResumS_SM represents the waveform as predicted by

GR any signi�cant disagreement between the reconstructed peaks, given by TEOBiResumS_SM

and the BayesWave method would thus be a direct violation of General Relativity. This test

of GR was then applied to GW150914, showing no deviation from GR.

The foundation of using NR information to complete or validate a waveform model is an under-

standing of the di�erent formats of NR waveforms and an estimate of their uncertainty. This will

be the focus of Chapter 3. The SXS and BAM waveform catalogs are reviewed and summarized. The

error of the SXS waveform catalog is explored in more detail. Several pathological aspects of NR

waveforms are discussed and explored. Additionally, several aspects of waveform extraction and

post-processing are discussed. This discussion covers the NR catalogs used in Papers I � III.

In Chapter 4, the discussion will turn to introducing TEOBResumS and its BBH sector as presented

in Paper I. The discussion will focus on the NR completion of the model and performance evaluation.

The robustness of the model outside the domain of calibration is estimated and methods aimed to

improve that stability are presented.

Following the results and discussion of Paper II, Chapter 5 will discuss TEOBiResumMultipoles.

The di�erences between the general multipolar case and the exclusive dominant mode analysis are

discussed in both model calibration and validation. The comparison of TEOBiResumMultipoles the

non-spinning waveforms used in Paper II is thus used as a case study to demonstrate the increased

complexities.

Chapter 6, based on Paper III, is devoted to TEOBiResumS_SM and the calibration of subdominant

modes in the spinning case. The discussion will cover several quantities that have been �tted to

inform the waveform and compare the full NR catalog available with TEOBiResumS_SM. As only part

of the catalog was used to inform TEOBiResumS_SM it is useful to explore the model outside the

domain of calibration yet still covered by NR. A peculiar feature of the m = 1 modes, that has

been observed for the (2, 1) in Ref. [70] from the perspective of NR, is discussed and shown to be

accurately reproduced by TEOBiResumS_SM. Additionally a �t of the NQC parameters (a22
1 , a

22
2 ) is

reviewed, allowing a fast and accurate implementation of TEOBiResumS_SM.

Chapter 7 will focus on the test of GR presented in Paper IV and brie�y review the possible

prospects and future applications of it. This thesis is concluded, in Chapter 8, with a summary and

discussion of the individual topics and results presented in this thesis, especially from the context

of the two major topics of this thesis: (i) The completion of waveform models with NR and (ii) the

validation of waveform models with NR, all focused on the aim set to use the models in the context
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of GW astronomy.
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Chapter 3

Numerical Relativity Catalog

This chapter is devoted to the Binary Black Hole (BBH), Numerical Relativity (NR) catalog used

in the following chapters and in the major publications associated with this thesis. The focus will

be set on the basics needed to use NR waveforms to inform the TEOB infrastructure presented in

the previous chapter. The waveforms have been generated with three codes. First, a set of high

precision waveforms of a test particles falling into Kerr BHs along circularized orbits, generated with

the code presented in Ref. [90]. Second, 555 waveforms taken from the SXS catalog [7], generated

with SpEC [49, 59, 67, 68, 98, 111, 115�117, 126, 142]. The most recent version of the SXS catalog,

as considered for this work, was presented in Ref. [55], covering massratios 1 ≤ q ≤ 10. Third,

19 waveforms generated with the BAM code [101, 108, 109], with massratios 2 ≤ q ≤ 18 with spin

parameters ‖χ1,2| ≤ 0.85.

Several important aspects of NR waveforms are discussed in this chapter. First the format is

set into context with respect to the two-body problem. Important aspects of meta-data �les are

reviewed. The numerical waveform extraction is discussed. Characteristic waveform parameters,

already mentioned in chapter 2, are de�ned explicitly and put into the context of their impact on

the calibration and validation of the TEOB waveform models.

The overall catalog of waveforms is discussed with respect to their parameter space coverage.

The uncertainties of the SXS waveform catalog is assessed on an individual basis. Several aspects

when considering subdominant modes are reviewed and discussed.

3.1 NR waveforms and data formats

Generally speaking NR1 is based on the 3 + 1 decomposition of the Einstein Equations (following a

similar argument presented in Ref. [43]): Given the Einstein Tensor Gab, the Christo�el Connection

Γabc, the partial derivatives over time ∂t and with respect to space ∂i. One �nds that the Bianchi

Identity ∇bGab = 0, with the covariant derivative operator ∇b, implies

∂tG
a0 = −∂iGai −GbcΓabc −GabΓcbc , (3.1)

1Here only a brief introduction will be given to illustrate the most important aspect needed for the use of NR in
calibrating and validating waveform models. The reader interested in a thorough introduction to the �eld of NR is
referred to Refs. [34, 43].
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where the indices a, b, c run over the full four dimensional spacetime indices 0, 1, 2, 3, while the

indices i, j only run over the three spatial indices 1, 2, 3. The right-hand side of eq. (3.1) has at

most second order derivatives with respect to the time. Thus, it can be seen that Ga0 has at most

�rst order derivatives with respect to the time. This observation allows to separate the full Einstein

Equations into four constraint equations as

Ga0 = 8πT a0 (3.2)

with the energy momentum tensor T ab, and into six evolution equations as

Gij = 8πT ij . (3.3)

The initial data for the NR simulation is obtained by solving eq. (3.2), for the metric tensor gab

projected onto a three-dimensional, space-like hypersurface Ξ0 and thus separated into the induced

metric on Ξ0 and a set of parameters extrinsic with respect to Ξ0. This 3 + 1 decomposition of the

metric is then evolved with eq. (3.3) to generate a one-parameter family Ξt along the time-like 0

coordinate t. For each value of t the hypersurface Ξt is endowed with 3 + 1 decomposition of the

metric with respect to that hypersurface2. In the idealized case eq. (3.2) would be solved exactly

and evolved without any numerical truncation error or other limitations along eq. (3.3). In such

a case all parameters would be set explicitly within the initial data. However, in practice this

approach is not recommendable. Commonly when a code starts evolving a set of initial data will

the simulated system will undergo a transition during which it will emit a large burst of seemingly

chaotic GWs leading the system to relax into a stable GR orbit. This burst of radiation is called

the initial state radiation. While largely it is reasonable to assume that GWs emitted by the system

are not signi�cantly impacting the masses mi and spins ~Si of the BHs, this is not strictly true for

the initial state radiation. Thus, all binary parameters that are assumed to be constant during the

evolution should be extracted only once the initial state radiation has left the system.

The astute reader might have noticed a large di�erence between NR and analytical approxima-

tion methods. In the analytical setup it is trivial to chose the desired combination of parameters

(q, χ1, χ2) as they are explicit variables. These are how ever not naturally de�ned in the context

of NR which is most naturally described in terms of the family of Ξt and the induced 3 + 1 de-

composition of the metric onto each hypersurface. This comes with the obvious advantage that the

NR waveform, if the resolutions lies in the domain of convergence, represents full GR without any

need to individually model a phenomena to ensure that it is captured accurately. The downside is

however that it is di�cult to extract the quantities which can be de�ned in a very precise manner

in the analytical context. One side to this are the masses and spins of the BHs. Another side is

the extraction of GWs and their extrapolation to the observer. Thus the question is when and how

are the relevant parameters de�ned. One option is the ADM formalism, reviewed in Ref. [43], can

be used to compute masses and angular momenta. Several other methods are possible 3. GWs

are however more di�cult as they are part of the metric, but they can be distinguished from the

comparably static background through a frequency �lter (see e.g. Ref. [119]).

2Naturally, this is a tremendously oversimpli�ed picture of NR. As it took until 2003 for the �rst BBH system to
be evolved for a single cycle [58]. Today, waveforms with hundreds of cycles before the merger can be evolved until
the �nal state is reached (see e.g. Ref. [7]).

3See Ref. [7] for what is practically used in the SXS catalog.
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Metadata While it is useful to understand these details, it is not necessary to be in a position to

apply them before using NR data. Commonly all important parameters needed to use NR waveform

are given in metadata �les. In publicly available catalogs they are released with the waveform data

directly (see e.g. the public release of the SXS catalog [7]). It is now useful to go over a list of

parameters given in the metadata for SXS waveforms and a brief review of how they relate to the

TEOB parameters discussed in Sec. 2.2:

(i) The identi�cation code of BBH-NR waveforms within the SXS catalog commonly reads SXS:BBH:xxxx

with the four-digit integer number xxxx uniquely identifying the simulation. This is in par-

ticular important as there are waveforms that have similar parameters (q, χ1, χ2) which di�er

on a more subtle level. Possible di�erences include the waveform length, resolutions available,

version of the code used or the generation of the initial data.

(ii) The relaxation time t0 is the time at which the initial state radiation has left the system (See

e.g. Sec. 2.2.2 of [55].).

(iii) Xi = mi/M : the masses of the i-th BH as fractions of the total mass M . As already pointed

out the individual masses are not directly relevant as all necessary information is captured

by their ratio. However, within this thesis the convention m1 ≥ m2 is chosen, which is not

universally used by all NR waveform catalogs. The transformation BH1 ↔ BH2 does not

a�ect any of the physical processes involved but it is only an exact symmetry of the system if

both BHs are equal in mass and spin. Thus it does create a number of sign changes for variables

de�ned in the previous chapter (e.g. X12 → −X12) and for the waveform multipoles h`m
4.

Typically, the metadata �le contains several masses for each BH which do not necessarily

agree. In line with previous discussion in this chapter it is recommended to use quantities

that are de�ned at or around t0.

(iv) ~χi or ~Si/M
2: the dimensionless or dimensionful (normalized to the total mass of the BBH

system M) spin vector of the i-th BH5. Their relation is given as m2
i ~χi/M

2 = ~Si/M
2. Recall

that within this thesis the focus is exclusively onto BBH systems with spins parallel to the

orbital angular momentum6. Within this thesis the spins extracted at the relaxation time

t = t0 are used. In the previous chapter the spin variable χi was introduced, which can also

be expressed as χi = |~χi|.

(v) The eccentricity ε. Following the discussion in Sec. 2.2 it is reasonable to assume that all

astrophysical binaries have been circularized through the emission of GWs, thus motivating

to primarily focus on the case of ε = 0. This is however rarely achieved exactly in NR

simulations. Therefor an upper bound on the eccentricity has to be chosen. Within this thesis

the exclusion bound for a waveform was set around ε ∼ 5× 10−3.

4Both BHs are con�ned to the z = 0 plane and therefor the rotation φ→ φ+π would be equivalent to BH1 ↔ BH2

in their e�ect on the h`m. Following from eq. (2.4) � (2.5) the multipoles would transform as h`m → (−1)mh`m.
5The reader should note that the coordinate system chosen in this work naturally agrees with the SXS catalog [7],

this convention is however not uniform among all NR catalogs by default. Therefor care must be taken when
extracting information of the spin from a given metadata �le. Further, if the BH masses have been interchanged to
ensure m1 ≥ m2 then this must be done for the spins as well.

6See the discussion in Sec. 2.2 for the motivation.
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3.1. NR waveforms and data formats

(vi) (MBH, ~χf ): The mass and spin of the remnant BH, the �nal state of the BBH evolution as

described in Sec. 2.2, normalized to the total mass M . These parameters are particularly

impactful in the description of the phenomenological merger-ringdown waveform as they de-

termine the time-scale and dominant frequency and damping time of the ringdown part of the

signal.

Waveform extraction From the perspective of BBH waveform model building the most impor-

tant output of NR simulations are the GW strain polarizations h+,×, which de�ned through their

e�ect on the metric as introduced in chapter 2. From them it is possible to construct the complex

GW strain h = h+ − ih× which can be split into h`m following eq. (2.4). In practice it is quite

complicated to separate h from the background metric. Most methods rely on the fact that it is

possible to e.g. separate the slowly changing background from the rapidly moving GW strain7. For

test-particle waveforms h is computed directly, either through high level analytical approximations

or through the fact that the background Kerr metric is known exactly. BAM waveforms are extracted

at several radii [101, 108, 109]. When comparing di�erent extractions of waveforms it is important

that if the waveform is extracted too close to the center of mass the waveform will show large

systematic error since it could not be accurately separated from the background. If the extraction

radius is too large the waveform will show �nite-size e�ects from re�ections o� the boundary. The

SXS catalog provides the waveform extracted at the outer-most-extraction-radius as well, but also

waveforms that have been extracted at �nite radius and extrapolated with polynomials of di�erent

order to future null in�nity8. The extracted GW signal is �tted over several radii as a polynomial of

the inverse radial distance to the source 1/R. The polynomial order is designated by N = 1, 2, 3, 4.

As the extraction of the GW signal already has factored out the leading order radial dependence

1/R it is easy to see that only the constant polynomial term survives at future null in�nity [7, 55].

The (2, 2) mode is taken with N = 3 extrapolation if no other modes are included in the particular

computation. Otherwise all modes are extrapolated with N = 2. This choice and the motivation

for it will be discussed below in Sec. 3.4.

Characteristic parameters Before turning to the catalog itself it is useful to de�ne on the NR

side explicitly several parameters that are used in the calibration and validation of TEOB models.

(i) Â`m ≡ A`m/ν: The amplitude of the (`,m) mode, scaled with the symmetric mass-ratio.

(ii) tpeak
`m : The time of the peak of Â`m given as Â`m

(
t = tpeak

`m

)
= max

[
Â`m

]
. In this thesis the

notation (..)peak
`m ≡ (..)`m

(
t = tpeak

`m

)
will be used frequently. Especially, the amplitude and

frequency at the peaks of the individual multipoles are important in �tting the phenomeno-

logical merger-ringdown templates.

(iii) tmrg ≡ tpeak
22 : Within TEOB literature the merger is often given a slightly dual meaning. On

the one hand it refers generally to the phase in which the two BHs merge to form the �nal

BH. On the other hand if it is used to refer to a concrete time it refers to the peak of the

7see chapter 1 of Ref. [119] for a general discussion, while a more technical introduction for applications in NR can
be found in Section 9.4 of Ref. [43]. For details of the GW extraction used for a speci�c code it is always necessary
to refer to the code documentation or the article introducing the catalog, which for the SXS catalog can be found in
Refs. [7, 55].

8See e.g. chapter 11 of Ref. [151] for a de�nition.
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3.2. Catalog overview

dominant (2, 2) mode, tmrg. Similar to the peak-time a superscript is used to simplify notation

as (..)mrg ≡ (..) (t = tmrg).

(iv) ∆t`m ≡ tpeak
`m − tmrg: The relative time shift of the peak of the (`,m) mode with respect to the

merger. As was discussed in Sec.2.3.2, ∆t`m is used in imposing the NQC and thus indirectly

ensures that the relative position of the amplitude peaks agree with NR.

(v) Norb: The number of orbits the system goes through between t = t0 and tmrg. Even though

Norb, with slightly di�erent de�nition, is given in most cases as the part of the metadata, it is

useful to have a universal de�nition that can ba applied to an arbitrary waveform. Formally,

Norb = |φmrg
22 − φ22(t = t0)|/(4π), with φ`m de�ned in Sec. 2.1, is used in this thesis.

(vi) δφNR
mrg`m

≡ (φmrg
`m − φ`m(t = t0))LevH − (φmrg

`m − φ`m(t = t0))LevM: The accumulated phase

di�erence at merger between the highest resolution LevH and the second highest resolution

LevM, computed for (`,m) = (2, 2) for all SXS waveforms for which a second resolution is

publicly available.

(vii) F̄LevH/LevM: The (`,m) = (2, 2) NR/NR unfaithfulness, de�ned in eq. (A.12). Computed for

all SXS waveforms for which a second resolution is publicly available. A thorough discussion

of F̄LevH/LevM over the SXS catalog is given in below in Sec. 3.3.1.

In case of possible confusion the superscript NR or EOB will be added to clarify the notation. In

cases in which it is assumed to be clear the superscript will be dropped to simplify the notation.

3.2 Catalog overview

The discussion will now turn to the catalog of NR waveforms used in this work and the parameter

space covered by the di�erent sub catalogs. Within this work 555 SXS [55]9 and 19 BAM [101, 108, 109]

waveforms merging BBH systems of comparable masses, aligned spins and with small eccentricity

are used. Additionally, a set of test-particle waveforms is used, which describe a test-particle falling

into a Kerr BH along circularized orbits [90]. These have been generated with dimensionless spin

parameters of the central Kerr BH χ1 going from −0.99 up to 0.999. The reader should note

that the sign of χ1 represents the relative alignment with the orbital angular momentum. The full

catalog of SXS and BAM waveforms is summarized in Tab. 3.1. The NR waveform catalog has been

separated into two sets. The Calibration and Validation set primarily used as their name implies

in the building of TEOB waveform models10.

Calibration set The Calibration set consists of 135 SXS and all 19 BAM waveforms. These

waveforms have been used to inform all three models: TEOBResumS, TEOBiResumMultipoles and

TEOBiResumS_SM. The 135 SXS waveforms consist of (i) 19 non-spinning (Tab. F.14), (ii) 38 spin-

ning, equal-mass (Tab. F.1) and (iii) 78 spinning, unequal mass BBH waveforms (Tab. F.2 � F.3).

9The reader should note that the publicly available SXS catalog contains many more waveforms. However, the
ones presented here are all the waveforms with BH spins parallel to the orbital angular momentum and su�ciently
small eccentricity.

10The reader should note that the TP waveforms are excluded from these considerations as they have been used
solely to inform the model and stabilize the extrapolation to large mass-ratios. Nonetheless, the waveforms lie outside
the domain of validity of all waveform models discussed in this work.
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3.2. Catalog overview

Parameter interval ranges Waveform count # 〈Norb〉 F̄LevH/LevM

q ≡ m1/m2 χ1,2 total with LevM F̄max
NR/NR 〈F̄max

NR/NR〉
Calibration set

SXS [1.0, 10.0] 0 19 18 21.98 0.075% 0.0092%
[1.0, 1.0] [−0.95, 0.9942] 38 37 22.77 0.22% 0.020%
[1.3, 8.0] [−0.9, 0.96] 78 73 25.09 0.11% 0.0088%

BAM [4.0, 18.0] 0 3 − 8.11 < 0.1% < 0.1%
[2.0, 18.0] [−0.85, 0.85] 16 − 11.13 < 0.1% < 0.1%

Validation set

SXS [1.0, 10.0] 0 61 46 24.99 0.066% 0.0051%
[1.0, 1.16] [−0.97, 0.998] 79 77 20.29 0.0093% 0.0029%
[1.17, 8.0] [−0.9, 0.95] 275 254 20.07 0.056% 0.0052%

long SXS [1.41, 1.83] [−0.5, 0.5] 5 5 144.05 1.52% 0.98%

Table 3.1: This table lists the sub-catalogs of NR data from both SXS and BAM catalog. From left to right,
the columns report: origin; interval of parameters covered for the mass ratio q and the spins χ1,2; total number
of waveforms in the particular sub-catalog; the number of SXS data with a second resolution LevM available;
the average waveform length expressed in number of orbits, 〈Norb〉, counted here between the relaxation time
(i.e., after the initial-state radiation) and the waveform amplitude peak; the absolute maximum F̄max

NR/NR and

the average of the individual maxima 〈F̄max
NR/NR〉 of the unfaithfulness F̄NR/NR computed between the highest,

LevH, and second highest, LevM, resolutions. See section 3.3.1 for further discussion of the unfaithfulness.

For all three sets su�ciently many waveforms have been published with at least one additional reso-

lution. Thus, it is possible to infer the accuracy of the waveforms that have been published without

a second resolution. See Sec. 3.3 for the presentation and discussion of the uncertainty estima-

tion. The 19 non-spinning waveforms cover mass-ratios 1 ≤ q ≤ 10. The 38 equal-mass BBH have

spins −0.95 ≤ χ1,2 ≤ +0.9942. The 78 spinning, unequal-mass BBH waveforms contain in particu-

lar three waveforms with highly relativistic spins: SXS:BBH:0306 (1.3,+0.96,−0.9); SXS:BBH:0208

(5,−0.9, 0); and SXS:BBH:1375 (8,−0.9, 0). The spin range for q = 2 and q = 3 is very well

covered with spins −0.87 ≤ χ1,2 ≤ 0.87. For mass-ratios 3 < q ≤ 8 the spins remain in the range

−0.6 ≤ χ1,2 ≤ 0.6. The BAM waveforms consist of three non-spinning BBH systems, with mass-ratios

q = 4, 10 and 18, and 16 spinning BBH systems. The latter contain �ve waveforms with large mass-

ratios and highly relativistic spins: (8,+0.85,+0.85), (8,+0.8, 0),(8,−0.85,−0.85),(18,+0.8, 0) and

(18,−0.8, 0), thus extending the parameter space, complementing the SXS sub-catalogs above.

Validation set The Validation set consists of 420 SXS waveforms that have been made publicly

available with Ref. [55]. These include 61 non-spinning waveforms with mass-ratios 1 ≤ q ≤ 10

(Tab. F.14 � F.15), re�ning the coverage of this region given in the Calibration set. Of the remaining

359 waveforms �ve have a very long inspiral with an average of 144.05 cycles. While the waveforms

in the Calibration set have been almost exclusively waveforms with integer or half-integer mass-

ratios, this is no longer the case for these waveforms. The waveforms have been separated into two

groups as ν > 0.2485 and ν ≤ 0.2485 which corresponds approximately to q < 1.17 and q ≥ 1.17.

This split is motivated by the fact that while the q = 1 can be modeled very well, in practice

however it is used very rarely or almost never. On the other hand waveforms with a mass-ratio

approximately equal one are used very often, thus it is useful to treat waveforms with ν > 0.2485

from a modeling perspective as equal mass. The set of approximately, equal-mass BBH waveforms

37



3.3. Estimating NR uncertainties: SXS catalog

contains 79 waveforms and extends the the range of spins covered to −0.97 ≤ χ1,2 ≤ +0.998

(Tab. F.5 � F.6). The remaining waveforms cover the spin range −0.9 ≤ χ1,2 ≤ +0.95 and go up to

mass-ratios q = 8 ⇔ ν = 8/81 (Tab. F.7 � F.12)11.

3.3 Estimating NR uncertainties: SXS catalog

When comparing waveform models to NR it is important to have an estimate of NR uncertainties.

Several possible sources of uncertainty for NR waveforms can be relevant. (i) Finite-Resolution;

(ii) Waveform extraction; And (iii) systematic errors. As there exist several methods of waveform

extraction these can be compared to limit any uncertainty due to the extraction method. Systematic

errors can be limited by comparing waveforms generated by di�erent codes. For NR-codes build

upon �nite di�erence methods it is possible to do a convergence study and extrapolate observable

quantities to in�nite resolution. However, even for the simplest of NR simulations a full convergence

study would be too ine�cient with respect to computing resources. Two possible routes to minimize

the uncertainty exist under such circumstances. First, conservative estimates can be made from

studying di�erences between two waveforms with su�ciently high resolution. Second, if comparing

NR waveforms, generated with di�erent codes, gives a good agreement it is reasonable to assume

that the waveform is physical as it is unlikely that di�erent errors would be similar in e�ect to

each other and produce such an agreement. Within this work the discussion will focus on the

former solution and consider the di�erences between the highest, available resolutions, while the

using partially the latter option as well through the inclusion of a second catalog with slightly

overlapping parameter space coverage.

BAM waveform uncertainties have been studied and analyzed in the publishing article [109]. Based

upon the analysis presented there a conservative estimate on the uncertainty is that an unfaithfulness

larger then 0.5% is a meaningful disagreement to the NR waveform. Similarly, uncertainties of the

Test-Particle waveforms are discussed in Ref. [90]. As uncertainties of the Test-Particle waveforms

are orders of magnitude smaller then those of SXS and BAM waveform they can be neglected within

this work.

With the most recent update to the SXS catalog Ref. [55] an updated discussion of the un-

faithfulness between the two highest levels of resolution has been presented. As SXS waveforms are

generated with SpEC, a spectral code, it is not possible to directly determine a convergence order

between two di�erent levels of resolution. Further, due to the adaptive re�nement used in SpEC it

might be the case that the two highest levels of resolution for a given waveform are very close, while

others might be very far apart. Nonetheless, di�erences between the two highest levels of resolution

can be used as a conservative estimate on the uncertainty.

3.3.1 SXS catalog: NR-NR mismatch

We will now review the computation of the (2, 2) mode F̄max
NR/NR for the 510 SXS waveforms for which

a second resolution exists. The unfaithfulness was introduced in Sec. 2.1 and further technical

11The reader should note that the validation set as presented and discussed in Paper III contained additional
40 waveforms, for which the spin of the secondary BH had a non-zero component transverse to the orbital angular
momentum. All a�ected �gures and numbers have been redone. The results and discussion presented in this thesis
remain una�ected by this error.
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Figure 3.1: NR/NR unfaithfulness uncertainty computed from Eq. (A.12) between the highest and next
to highest resolution for each SXS waveform for which the second highest resolution is available. (Top left)
The spinning-sector of the calibration set. The 110 spinning waveforms used to inform TEOBResumS and
TEOBiResumS_SM. (Top right) The spinning-sector of the validation set. 336 spinning datasets released and
discussed in Ref. [55] and used in Paper III. (Bottom left) The combined non-spinning sector of both the
calibration and validation set. 64 waveforms for which a second resolution is available. (Bottom right) The
global summary of F̄max

NR/NR for all 510 SXS BBH-NR simulations for which a secondary resolution is available.

The fraction (expressed in %) n/Nset compared for each value of F̄ , where n gives the number of waveforms
for which F̄max

NR/NR ≥ F̄ holds, divided by the total number of waveforms given with a second resolution Nset.

The PSD used in this computation was presented in Ref. [11]. The unfaithfulness was always computed over
the maximum frequency range for which the individual NR waveforms are free of systematic features and
have a reasonably large amplitude (typically once the amplitude falls 3 orders of magnitude with respect to
the peak the waveform is cut.).

details are given in Appendix A. The computation results are shown in Fig. 3.1. The top-left

panel shows the Calibration sets spinning sector. In black are highlighted the waveforms which

reach an unfaithfulness of at least 10−3. The waveforms marked in color represent four particularly

interesting cases from the perspective of waveform model building. All four show highly relativistic

spins and probe two important aspects of waveform phenomenology. Large spins both aligned with

the angular momentum or anti-aligned relative to each other. This convention has already been

adopted in Paper I. The top-right shows the Validations sets spinning waveforms. For all waveforms

F̄max
NR/NR never exceeds 10−3 with the exception of 5 waveforms an average length of 144.05 orbits

before merger. For system masses of approximately 50M� and below they show a very large F̄max
NR/NR
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3.4. SXS waveform extraction of subdominant modes

up to and above the 1% mark12. The bottom-left panel shows the non-spinning waveforms of both

Calibration and Validation set. Only two waveforms ever reach values of F̄max
NR/NR ∼ 10−3 and are

marked in black. The bottom-right panel shows as summary the cumulative curves corresponding

to the three previous plots. The plot shows the fraction (expressed in %) n/Nset, where Nset is

the total number of waveforms in a given NR-waveform set and n is the number of waveforms, in

the same set, that, given a value F̄ , have F̄max
NR/NR ≥ F̄ . As can be seen the majority of waveforms

reach F̄max
NR/NR < 10−4. Only a few waveforms reach F̄max

NR/NR > 10−3. Summarizing these results

one can make an estimate of the uncertainty for the SXS catalog. To remain very conservative the

uncertainty of F̄ is estimated to be globally at the 0.5% level. This choice is made to prevent

over �tting of the NR-informed parameters, although it will be seen that very often a much better

EOB/NR agreement arises naturally.

All SXS waveforms have been given with all multipoles up to and including ` = 8. The analysis

of the NR-NR unfaithfulness of subdominant modes was however omitted within this work. The

SXS collaboration recommends as a general rule of thumb that any mode with an amplitude of less

then 10−5 of the dominant ` = m = 2 mode should not be trusted [7].

Alternatively, there are some ways to gain a non-quantitative impression of the uncertainty.

As mentioned above the comparison with waveforms obtained from di�erent codes is an option

as it is unlikely that their respective errors produce quantitatively comparable e�ects. Once a

waveform model is su�ciently calibrated, and in some cases such as the very early inspiral even

without explicit calibration to NR, can be used to indicate errors on a qualitative level as will be

demonstrated below. Lastly, a comparison of waveforms with similar spins and mass-ratios can be

used based on the principle that small changes in (q, χ1, χ2) should correspond to small changes in

h`m.

3.4 SXS waveform extraction of subdominant modes

The SXS h22 multipolar waveforms have been extrapolated with N = 3 for all applications within

this thesis. In Paper I and Paper III no issues arose and no unphysical phenomena have shown

up during any analysis of the SXS data. In Paper II, however a peculiar e�ect was discovered. As

the bottom panel of Fig. 3.2 shows13, the unfaithfulness (maximized with respect to the observer

position (ι, φ)) between TEOBiResumMultipoles and the SXS waveforms consistently increased for

larger masses if the waveforms were nearly-equal-mass. Fig. 3.2 illustrates these issues further. In

the top-panel N = 2 and N = 3 extrapolation are compared for SXS:BBH:0194, q = 1.518 waveform,

demonstrating that the N = 3 extrapolation of Ψ44 indeed shows a noticeable o�set relative to the

N = 2 extrapolation and TEOBiResumMultipoles. Additionally, noticeable is that the bottom panel

shows that the e�ect of the extrapolation is almost negligible once the mass-ratio is su�ciently large.

This e�ect was pointed out already in previous works. Ref. [70] noted that the N = 3 ex-

trapolation does indeed introduce pathological features into the waveform. When the waveform

extrapolation method was introduced in Ref. [54] it was pointed out that an ill-chosen polynomial

order N can introduce pathological features into the waveform. Lower orders N are advisable in

12The interested reader is referred to Sec. III C and Sec. IV A of Paper III where a brief discussion is given
individually and in reference to TEOBiResumS_SM.

13This analysis was carried out by Geraint Pratten.
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Figure 3.2: The fully calibrated TEOBiResumMultipoles can be used to understand phenomenological
issues in the SXS-NR waveforms. Following the discussion in the main text it is useful to demonstrate
the pathological features introduced into the waveform for near-equal-mass waveforms. The top panel
shows a comparison on the level of the real part of Ψ44/νc4(ν), the RWZ-normalized waveform, between
TEOBiResumMultipoles(solid blue) and SXS:BBH:0194, a q = 1.518 waveform, where c4(ν) = 1 − 3ν.
SXS:BBH:0194 is given extrapolated with N = 3 (dashed orange) and N = 2 (solid green). While N = 2 and
TEOBiResumMultipoles show a good agreement, the N = 3 extrapolation shows a systematic o�set relative
to TEOBiResumMultipoles and N = 2. The bottom panel shows F̄EOB/NR between TEOBiResumMultipoles

and several SXS waveforms extrapolated with N = 2 (solid) and N = 3 (dashed). While for near-equal-mass
waveforms the choice of N clearly shows an impact, this e�ect decreases as q increases and for the largest
values of q = 10 is almost imperceptive.

for the merger and ringdown phase, while larger orders of N are recommended for the study of the

inspiral. Therefor N = 2 was chosen for the study of subdominant modes, similar to Ref. [70].

The reader should note that while the angular dependence for which the worst cases is achieved

is not explicitly stated in Fig. 3.2, for most waveforms it is the near-edge-on case for which the

contribution of the (2, 2) mode is minimal. Further, it is useful to recall that under the exchange

of the two BHs the waveforms transform as h`m ⇔ (−1)m h`,−m. In the equal-mass case one

�nds however that the exchange of the two BHs is an exact symmetry of the system, implying all

multipoles with oddm vanish in the equal-mass (equal-spin as well, generally speaking) case exactly.

The leading order Newtonian factor, stated explicitly in Sec. 5.2.3, indicates further that m odd

modes smoothly approach zero as they approach the equal-mass case and only develop meaningfully

once ν is su�ciently away from the equal-mass case. Thus, as the (4, 4) mode is at least the third

most dominant mode in the nearly-equal-mass case it seems only natural that any issue in the NR or

TEOB waveform would become more important as the equal-mass-case is approached. The discussion

on possible future improvements with this regard are left to chapter 5 and 8.
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Figure 3.3: A comparison of SXS:BBH:0039(solid black), (3,−0.5, 0), compared to TEOBiResumS_SM (dashed
purple). The waveform was extracted with N = 2. From top to bottom the rows show the strain h`m, the
strain amplitude A`m and the frequency Mω`m (where the scale given by the total mass is left explicit).
From left to right the columns show the (2, 2), (3, 3) and (4, 4) modes. As can be seen both the (2, 2) and
(3, 3) mode show a reasonable agreement between NR and TEOBiResumS_SM. The (4, 4) mode shows clear
unphysical behavior for both A44 and Mω44 around the peak of the mode. A44 shows strong unphysical
oscillations around it's peak, coinciding with similarly pathological features in Mω44. Thus, it can be
assumed that any unfaithfulness computation that would involve h44 would likely not lead to any insight
that could be useful in improving or validating a waveform model.

3.5 Pathological behavior of subdominant modes

As the (4, 4) mode can impact the unfaithfulness signi�cant through pathological e�ects in the non-

spinning sector it was only prudent to continue the search for possible pathological issues in the

spinning sector as well. Following the discussion of Paper II and III, the spinning sector similarly

explored looking for numerical noise and systematics in the NR data that can lead to a degradation

in the mismatches. As will be discussed in Chapter 6 thoroughly (see Fig. 6.8),the worst-case

unfaithfulness are typically found near edge-on cases, for which the contribution of the (2, 2)-mode

are minimized. Especially, for mass ratios near q ∼ 1, where the odd-m multipoles are suppressed.

As mentioned above in these cases the most dominant contribution to the waveform are the (4, 4)

and the (3, 2) mode. However, Fig. 3.3 demonstrates by example that the (4, 4) mode of many NR

datasets can often show pathological behaviors, especially when focusing in on the merger-ringdown

segment of the waveform. In particular, general theory predicts that the frequency of the (4, 4) mode

should increase monotonically, yet it oscillates strongly around it peak of the waveform. Similarly

in the amplitude un-physical, non-monotonic features can be made out. These e�ects are su�cient

to cause large unfaithfulness that cannot be used to indicate any quality issues within any waveform

model calibrated to this data. To minimize these issues waveforms that show pathological features

similar to Fig. 3.3 are discarded.
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3.5. Pathological behavior of subdominant modes

3.5.1 Extracting derivatives of subdominant modes from NR

For the (2, 2) mode, the waveform and all derivatives are su�ciently clean to determine all quantities

and achieve a su�cient performance all over the parameter space. For the subdominant modes, as

demonstrated above, this is not necessarily always the case. Thus, all individual points of the

waveform h`m, e.g. A
peak
`m and ωpeak

`m , are extracted with the MATLAB function spline. When the

noise becomes too large to obtain an accurate numerical derivative the MATLAB function smooth is

used to employ a Savitzky-Golay �lter with a third degree polynomial to the data starting at h`m

and all subsequently derived quantities until the target quantity is su�ciently smooth to obtain

an accurately extracted data point. This process has however the danger that it could lead to

unphysical data that might potentially heavily in�uenced by the �ltering process. Thus, the �lter

parameters are applied conservatively with a focus to only reduce noise in the derivative without

impacting the underlying functional form.
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Chapter 4

The dominant (2, 2) mode: TEOBResumS

The E�ective-One-Body (EOB) approach to the general relativistic two-body problem was �rst

introduced by Thibault Damour et al. [60, 61, 71, 78]. At its core the EOB represents a resummation

of relative PN dynamics of two coalescing point masses. This resummation is marked by stability

and reliability even in the strong-�eld, high-velocity regime and, thus, can be used to model CBC

events up to merger. Several models to generate Gravitational Waveforms for CBC events have

been developed with the help of EOB methods and formalism. The three most prominent families

of models that came from this are the TEOB-series, which is the focus of this thesis, and the SEOBNR-

series [38, 53, 70, 121, 136]. Additionally, the IMRPhenom-series [86, 87, 108�110, 114] uses EOB

waveforms for calibration to improve the inspiral.

In chapter 2, two important topics have been discussed. First, for a model to be used in GWA

it is necessary that it reproduces h`m, or h to be more precise, with an unfaithfulness, with respect

to a given target catalog of NR waveforms, that should never exceed 3% and ideally stay below 1%.

Secondly, the introduction to the TEOB model infrastructure was given, including the de�nition of

di�erent vessels that able to hold analytical information from PN, GSF or PM theory. Chapter 3,

discussed the full NR waveform catalog available in this work. Within this chapter it will be

su�cient to focus the discussion on the calibration set. With this understanding of the previous

two chapters it is now possible to discuss the calibration and validation of TEOBResumS. TEOBResumS

was introduced in Paper I and is a model focused on the (`,m) = (2, 2) mode. Thus, it is in fact the

simplest model that will be discussed in this thesis from the point of view of NR calibration. Several

of the methods used in the NR completion of TEOBResumS are general to the TEOB infrastructure.

Thus, both TEOBiResumMultipoles (Chapter 5) and TEOBiResumS_SM (Chapter 6) will expand on

these methods only in a limited manner, but rather focus on important details.

4.1 TEOBResumS Hamiltonian and waveform

Starting from the TEOB infrastructure set up in Sec. 2.3 three main choices must be made. First,

the A-potential must be chosen. Second, the gyro-gravitomagnetic ratios (GS , GS∗) have to be

chosen. Third, the resummed and factorized waveform must be speci�ed. Both the A-potential and

(GS , GS∗) are discussed in detail in Sec. 4.1.1, including the introduction of e�ective PN parameter

capable of capturing missing information through �tting GR.
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4.1. TEOBResumS Hamiltonian and waveform

The factorized1 and resummed was is taken from Refs. [76, 81, 137]. The waveform is often

referred to not just as h`m but also through the Regge-Wheeler-Zerilli (RWZ) normalization Ψlm =

(R/M)hlm/
√

(l + 2)(l + 1)l(l − 1). Within this chapter the notation of ˆ(. . . ) = (. . . )/ν is used at

several points for h`m, Ψlm and A`m.

4.1.1 EOB potentials and gyro-gravitomagnetic functions

The EOB potentials A and B, and the gyro-gravitomagnetic functions GS and GS∗ are informed by

state-of-the-art PN and GSF computations2. The A-function as computed by PN theory is given

as

APNorb (uc, ν) = 1− 2uc + 2νu3
c + νa4u

4
c + ν

(
ac5 + alog

5

)
u5
c + ν

(
ac6 + alog

6

)
u6
c (4.1)

with a4 = 94
3 − 41

32π
2 [78, 79]. The logarithmic coe�cients are known from analytical computa-

tions [41, 42, 52, 72] as

alog
5 =

64

5
, alog

6 = −7004

105
− 144

5
ν. (4.2)

Similar to Ref. [82], TEOBResumS �xes ac5 to the value a
c
5 = 23.5 [32, 42, 48] by hand. The PN results

are resummed with a Padé approximate in uc as

Aorb(uc, ν) = P 1
5

[
APNorb

]
(uc) (4.3)

and enters the full A-function of Horb
eff through

A (r, ν, S1, S2) =

[
Aorb(uc, ν)

1 + 2uc
1 + 2u

]

uc(u,S1,S2)

. (4.4)

The parameter ac6 is introduced to TEOBResumS without being �xed by analytical computation results

and, thus, takes on the role of an e�ective PN parameter capable of modifying the A-potential at

the �rst undetermined PN order. As such it has a di�erent physical interpretation then the other

parameters, which can be given independent from each other. ac6 on the other hand is an e�ective

representation of all terms entering the A-function at higher PN order, represented e�ectively at

5PN order and thus it depends on both the PN orders included, the parameters not included and

the resummation (see Sec. 4.2.3).

The B-potential can then be determined through the general relationship to the A-potential [76],

AB =
r2

r2
c

1

1 + 6νu2
c + 2 (26− 3ν) νu3

c

. (4.5)

The quantitiesGS andGS∗ entering the spin-orbit sector of the model are the gyro-gravitomagnet-

ic ratios and determine the strength of the spin-orbit coupling. The gyro-gravitomagnetic functions

GS and GS? are given at next-to-next-to-leading order (NNLO) [92]. The Damour-Jaranowski-

Schäfer gauge [80, 127], is �xed so that (GS , GS∗) only depend explicitly on (r, p2
r∗) and not on

1Following the factorization scheme presented in Sec.2.3.2.
2This section follows closely Paper I, Sec. II A.
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4.2. Numerical Relativity �ts

the angular momentum pϕ. GS and GS? are resummed by an inverse Taylor expansion, with the

test-particle limit factored out

GS =
2uu2

c

1 + c10uc + c20u2
c + c30u3

c + c02p2
r? + c12ucp2

r? + c04p4
r?

(4.6)

GS? =
3
2u

3
c

1 + c?10uc + c?20u
2
c + c?30u

3
c + c?40u

4
c + c?02p

2
r? + c?12ucp

2
r? + c?04p

4
r?

(4.7)

Similar to ac6, the coe�cients c30 and c?30 are not �xed by analytical computations but through a

free parameter c3 as

c30 =νc3 (4.8)

c?30 =
135

32
νc3. (4.9)

The remaining parameters are given in Ref. [76]. Again, di�erent from the analytically deter-

mined parameters, the meaning of c3 is less straight forward. Additionally to the dependence on

the parameters included, as well as the ones not included and the resummation and factorization of

the waveform, c3 also depends on the the calibration of ac6. Thus, the calibration can not be done

independently, but must be done hierarchically. Similarly to ac6 it is thus an e�ective representation

of all the higher PN terms that are not included, as well as an additional correction to the e�ect ac6
has on the spin evolution. Further, an important di�erence to keep in mind is that given a speci�c

choice of c3 the denominator of either GS or GS? can become 0 or close to 0. Thus, c3 needs to

be chosen with care and thoroughly checked across the parameter space to ensure the absence of a

divergence.

4.2 Numerical Relativity �ts

The discussion will now turn to the calibration of the analytical �exibility of TEOBResumS. The

calibration is partly taken from Refs. [76, 131, 132], which preceded Paper I, as selective aspects

calibration of TEOBResumS did not require an update. However, they are still reviewed to introduce

the reader to the concepts involved in the determination of these quantities.

4.2.1 Analytical �exibility of TEOBResumS

Starting from the TEOB infrastructure given in Sec. 2.3 and followed up by the prior discussion in

this chapter, several points of analytical �exibility in TEOBResumS have been introduced, which can

be used to capture NR information and complete the model. Brie�y summarized they are:

(i) The e�ective parameter ac6 introduced at �fth PN order to the A-potential.

(ii) The e�ective parameter c3 introduced at NNNLO into the gyro-gravitomagnetic functions GS

and GS∗ .

(iii) The Phenomenological merger-ringdown template consisting of

(a) the amplitude and frequency at merger {Âmrg
22 , ωmrg

22 },
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4.2. Numerical Relativity �ts

(b) the three parameters (cA22
3 , cφ22

3 , cφ22
4 ) characterizing the evolution between merger and

ringdown,

(c) the ringdown QNM parameters {α22
1 , α

22
2 , ω

22
1 }.

(iv) The NQC extraction points
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}
used in the iterative determination

of (a22
1 , a

22
2 , b

22
1 , b

22
2 ).

In the following discussion will highlight several ways to improve the �ts that have been proven by

experience. We will review structures that have been useful in obtaining a good quality �ts.

4.2.2 Implementation errors and waveform calibration

As errors in the implementation of a model are always possible, and have been to some extent

discussed in Paper I, it is useful now to brie�y review this on the example of TEOBResumS. While

some aspects of the analytical �exibility are de�ned in a way independent of the model such as the

merger-ringdown template and the NQC extraction points, others are not. Examples in TEOBResumS

are �rst and foremost ac6 and c3. Should the model be implemented with an error while these are

determined this would of course also impact their calibration. However, if the faulty implementation

only a�ects the waveform to a small quantitative degree, it is possible that these parameters can

correct for this error. In such a situation it is important to note that the potential for correcting

errors through such means is limited.

As discussed in Paper I, a coding error in the TEOBResumS Matlab numerical implementation

was found. This error has a�ected, though marginally, the spin-dependent sector of the model from

it's conception in 2014 [76, 84, 131, 132]. The leading order factor of ` = 5, m = odd multipolar

waveform amplitudes was missing the contribution of the factor X12 =
√

1− 4ν, which entered

squared into the radiation reaction force F̂ϕ. Especially, in the nearly-equal-mass case whenX2
12 ≈ 0

this e�ect can have a signi�cant impact. Once this error was corrected a new determination of c3

was in order. Further, in previous TEOB avatars ∆tNQC was �tted for χ1 = χ2 > 0.85, as discussed

in Ref. [131] [see also Sec. IIIC of Ref. [132], Eqs. (24)-(25) therein]. Through this correction

∆tNQC = 1 could be chosen also in the large, aligned spin region3.

4.2.3 E�ective Post-Newtonian coe�cients

The discussion will now focus on the �ts of the e�ective PN coe�cient ac6 and the NNNLO e�ective

spin-orbit parameter c3. The previous versions of these �ts were presented in Refs. [131, 132]. The

�t of ac6 has been found to perform su�ciently well to not warrant an update in Paper I. However,

due to the implementation error, discussed in the previous section, a new determination of c3 was

necessary4. In general the two �ts should be done in a hierarchical manner to avoid complication.

As c3 does not impact the waveform if χ1 = χ2 = 0, the �t of ac6 should be done �rst using non-

spinning waveforms. The �t of c3 should then follow up to complete the spinning sector. By this

design, ac6 is only a function of ν while c3 depends on ν as well as the individual spin ã1,2. Further,

it is useful to note that any change in ac6 would require a new determination of c3, while the reverse

is not the case.
3However, as will be discussed in Sec. 4.4, it is necessary to modify ∆tNQC for large mass-ratios and large negative

spins.
4This �t has been done by Dr. Alessandro Nagar.
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4.2. Numerical Relativity �ts

Table 4.1: cfirst guess
3 is chosen by hand to obtain a good agreement between TEOB and NR during the

late inspiral. As can be seen from the functional form of (GS , GS?), c3 enters the denominator and thus is
inversely proportional to it's e�ect onto the magnitude of (GS , GS?

). A larger value of c3, thus, makes the
spin-orbit-coupling more attractive while a smaller value makes it more repulsive. These are then compared
to the value cfit

3 obtained from the interpolating �t over all waveforms listed. The spin-variable Ŝ is given in
the last column, as it has been proven to be a useful characterization of quantities at merger, see Sec. 4.2.4.

# (q, χA, χB) cfirst guess
3 cfit

3 ∆c3/c
fit
3 [%] Ŝ

1 (1,−0.95,−0.95) 93.0 92.31 0.75 −0.4750
2 (1,−0.90,−0.90) 89.0 89.44 -0.49 −0.4500
3 (1,−0.80,−0.80) 83.0 83.78 -0.93 −0.4000
4 (1,−0.60,−0.60) 73.5 72.83 0.92 −0.3000
5 (1,−0.44,−0.44) 64 64.45 -0.70 −0.2200
6 (1,+0.20,+0.20) 35 34.85 0.43 +0.1000
7 (1,+0.60,+0.60) 20.5 20.17 1.64 +0.3000
8 (1,+0.80,+0.80) 13.5 14.15 -4.59 +0.4000
9 (1,+0.90,+0.90) 11.5 11.52 -0.17 +0.4500
10 (1,+0.99,+0.99) 9.5 9.39 1.17 +0.4950
11 (1,+0.994,+0.994) 9.5 9.30 2.15 +0.4970
12 (1,−0.50, 0) 61.5 56.62 8.62 −0.1250
13 (1,+0.90, 0) 25.5 22.33 14.20 +0.2250
14 (1,+0.90,+0.50) 17.0 15.73 8.07 +0.3500
15 (1,+0.50, 0) 32.0 31.20 2.56 +0.1250
16 (1.5,−0.50, 0 62.0 57.97 6.95 −0.1800
17 (2,+0.60, 0) 29.0 26.71 8.57 +0.26̄
18 (2,+0.85,+0.85) 15.0 14.92 0.54 +0.472̄
19 (3,−0.50, 0) 63.0 61.15 3.03 −0.28125
20 (3,−0.50,−0.50) 70.5 66.63 5.81 −0.3125
21 (3,+0.50, 0) 28.0 28.02 -0.07 +0.28125
22 (3,+0.50,+0.50) 26.5 24.44 8.43 +0.3125
23 (3,+0.85,+0.85) 16.5 14.38 14.74 +0.53125
24 (5,−0.50, 0) 62.0 59.84 3.61 −0.3472̄
25 (5,+0.50, 0) 30.5 29.01 5.14 +0.3472̄
26 (8,−0.50, 0) 57.0 56.48 0.92 −0.3951
27 (8,+0.50, 0) 35.0 33.68 3.92 +0.3951

Obtaining the values of ac6 and c3 for a given NR waveform would in principle be possible by

�t, but that is not necessary. Due to the very stable resummation of both the A-potential and

the gyro-gravitomagnetic ratios (GS , GS∗), the tolerance for error in both parameters is relatively

large. A deviation of O(1) could be without impact on unfaithfulness or phasing. Therefor the

values of ac6 and c3 for the individual NR waveforms have been chosen by hand. This choice was

primarily driven by the need to achieve a good phasing between TEOBResumS and that particular

NR waveform and to remain conservative and only minimally modify the A-potential or (GS , GS∗).

The parameter is tuned until the accumulated dephasing at merger between TEOBResumS and NR

is comparable to the NR error, which can be estimated by comparing the two highest resolutions

available. The interpolating �ts have been done using MATHEMATICA.
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4.2. Numerical Relativity �ts

The �t of ac6 used within TEOBResumS, presented in Ref. [76] is given by

ac6(ν) = 3097.3ν2 − 1330.6ν + 81.38 . (4.10)

The improved �t of c3(ã1, ã2, ν) was calibrated by a set of 27 SXS BBH-NR simulations (see

Tab. 4.1). The determination of c3(ã1, ã2, ν) in practice is done as follows. The �t of ac6 is held

�xed. The initial estimates of cfirst guess
3 are given for all 27 SXS waveforms in Tab. 4.1 The new and

improved �t of c3 was chosen to be of similar form as the one chosen in Ref. [132]. Explicitly, the

�t is done using the template

c3(ã1, ã2, ν) = p0
1 + n1â0 + n2â

2
0

1 + d1â0
+
(
p1ν + p2ν

2 + p3ν
3
)
â0

√
1− 4ν + p4 (ã1 − ã2) ν2, (4.11)

where

p0 = 43.371638, (4.12a)

n1 = −1.174839, (4.12b)

n2 = 0.354064, (4.12c)

d1 = −0.151961, (4.12d)

p1 = 929.579, (4.12e)

p2 = −9178.87, (4.12f)

p3 = 23632.3, (4.12g)

p4 = −104.891. (4.12h)

As can be seen in Tab. 4.1, where the values of c3 obtained from the �t and relative di�erences,

the error of c3 gets up to almost 15%. While this does impact the relative dephasing between

TEOBResumS and NR, those are not the relevant measures of accuracy with which this �t should be

judged. Ultimately, the �t quality can only be estimated by computing the EOB/NR unfaithfulness

or directly comparing the waveforms in the time-domain.

Hypothetically, it is possible that the calibration of c3, as it is limited to such a small parameter

space and limited functional form, is not yet the best that can be done. Thus, Eq. (4.11) is modi�ed.

A single, quadratic term in â0 is added with the explicit form p5νâ
2
0

√
1− 4ν, with the �tting coe�-

cient p5. The modi�ed c3 �t coe�cients are (p1, p2, p3, p4, p5) = (917.59,−8754.35, 20591.0,−78.95,

83.40). By explicit computation it can be checked that the second �t does improve the agreement

with the individual values of cfirst guess
3 . It remains to be seen how this impacts the comparison of

TEOBResumS and NR on the levels of unfaithfulness. This question will be discussed explicitly in

Sec. 4.3.

4.2.4 Merger amplitude and frequency

The merger-ringdown template applied to the (2, 2) mode is often referred to as the postmerger-

ringdown template. This name refers to the merger being de�ned as tmrg ≡ tpeak
22 , the peak of the

dominant quadrupolar mode. The starting point of the postmerger are therefor the �rst variables
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4.2. Numerical Relativity �ts

to be �tted: The (2, 2) mode amplitude Âmrg and frequency ωmrg at merger,

Âmrg =
A22 (t = tmrg)

ν
(4.13)

ωmrg = ω22 (t = tmrg) . (4.14)

These �ts are of key importance to obtain a robust and reliable postmerger-ringdown waveform,

as they do enter as overall scale factors into the phenomenological waveform template introduced

in Sec. 2.3.4.

When �tting the spin-dependence Âmrg it is useful to consider the leading order behavior of the

waveform, which within the EOB formalism is factorization and resummed following Refs. [76, 81,

137]. Starting from the analytical waveform Âmrg is factorized as

Âmrg = Âmrg
orb Â

SO
LO

ˆ̂
Amrg

S . (4.15)

In this equation, Âmrg
orb is the nonspinning (or orbital) contribution solely dependent on ν. The factor

ÂSO
LO, heuristically based on the analytical waveform, is chosen to extract leading order behavior and

simplify the �t of
ˆ̂
Amrg

S , the remnant spin-dependent factor. The orbital contribution is modeled as

a quadratic polynomial in ν as

Âmrg
orb = c

Âmrg
orb

0 + c
Âmrg

orb
1 ν + c

Âmrg
orb

2 ν2. (4.16)

In principle it would have been possible to impose the test-particle limit [90] directly onto c
Âmrg

orb
0 ,

however, in this �t it was not done explicitly. Yet their agreement is still within 1%. To simplify

the extrapolation to larger mass ratios both TEOBiResumMultipoles and TEOBiResumS_SM heavily

exploit the high level of accuracy and precision present in the test-particle data available, as will be

discussed in Chapter 5 and Chapter 6. The (2, 2) spin-dependence at leading order is motivated by

the analytical waveform (see e.g. Eq. (16) of [123]) and can be written as

ÂSO
LO = 1−

(
â0 +

1

3
X12ã12

)
x3/2

mrg. (4.17)

Where the spin variable ã12 ≡ ã1 − ã2 is used. The frequency xmrg ≡ (ωmrg
22 /2)

2/3
is a slight

approximation. The variable is generally given as x = Ω2/3. The frequency of the binary motion Ω

however does not relate directly to ω22/2, but only approximately. As can be seen in [81] explicitly,

ω22 does receive a correction from the tail factor of the waveform ĥtail
`m , which is in fact most relevant

when the frequency gets increases close to the merger. Yet, even with this approximation it is

possible to �t
ˆ̂
Amrg

S with remarkable simplicity. To this end it is useful to de�ne âeff ≡ â0 +X12ã12/3

as an e�ective spin variable. As can be seen in comparing the top-right to the top-left panel Fig. 4.1,

this parameterization is clearly superior to the structure of a simple �t against (â0, ν) as employed

in previous avatars of the TEOB model [83, 132]. The remnant spin dependence is then �tted as

ˆ̂
Amrg

S =
1− n ˆ̂

A(ν)âeff

1− d ˆ̂
A(ν)âeff

, (4.18)
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Figure 4.1: The quasi-universal structures exploited to obtain �ts of {Âmrg, ωmrg} are plotted (top-left and
bottom-left respectively). These are shown in a side-by-side comparison to the structure used in previous
works, versus the e�ective EOB Kerr parameter â0 (top-right and bottom-right) [83, 132]. In each plot
all waveforms with a given mass-ratio form a line. The mass-ratios plotted are q = 1 (red), q = 2 (blue),
q = 3 (purple), q = 4 (brown), q = 5 (yellow), q = 7 (dark green) , q = 8 (magenta), q = 18 (light green)
and the test-particle limit (black). Comparing (top-left) Âmrg normalized to the leading-order, spin-orbit
contribution plotted versus âeff to (top-right) Âmrg versus â0 the di�erences appear quite noteworthy. All
mass-ratios as a function of â0 show oscillations as well as an individual behavior. While this is not the case
for the mass-ratios as a function of âeff , where all mass-ratios are quasi-parallel and show a similar, only
slightly shifted behavior with almost no scattering, presenting an optimal starting point to obtain a �t. ωmrg

is plotted against Ŝ = (S1 + S2)/M2 (bottom-left) and the standard e�ective Kerr parameter â0 = Ŝ + Ŝ∗
(bottom-right). As discussed in the main text, the simpli�cation is quite remarkable and thus allows a very
straightforward approach to �tting the spin-dependence. Yet, the origin of this structure remains unclear.

where (n
ˆ̂
A, d

ˆ̂
A) are modeled at quadratic order in X12, which is given explicitly as

n
ˆ̂
A(ν) ≡ nÂ

mrg
spin

ν=1/4 + n
Âmrg

spin

1 X12 + n
Âmrg

spin

2 (X12)2 , (4.19)

d
ˆ̂
A(ν) ≡ dÂ

mrg
spin

ν=1/4 + d
Âmrg

spin

1 X12 + d
Âmrg

spin

2 (X12)2 . (4.20)

The reader should note that
ˆ̂
Amrg

S was �tted in two steps. First,

{
n
Âmrg

spin

ν=1/4, d
Âmrg

spin

ν=1/4

}
were �tted

with the equal-mass data. The �t-results were then imposed and the extrapolation coe�cients

proportional toX12 andX
2
12 were determined with the remaining SXS and BAM data of the calibration

set. All �tted coe�cients are listed in the left column of Tab. B.2.

The next target to be �tted is the merger frequency ωmrg of the (2, 2) mode. As in the case

of the amplitude, previous works employed a simple �t against (â0, ν) [83, 132]. This however
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Figure 4.2: The fractional error of the �ts for Âmrg (left) and ωmrg (right) with respect to the calibration

set, at the state of Paper I including the faulty (8,+0.85,+0.85) waveform, is shown. The individual lines
highlight the respective mass-ratios and are marked explicitly with the symmetric mass-ratio ν. The mass-
ratios given are q = 1 (red), q = 2 (blue), q = 3 (purple), q = 4 (brown), q = 5 (yellow), q = 7 (dark green)
, q = 8 (magenta), q = 18 (light green) and the test-particle limit (black). The �t coe�cients are given in
Tab. B.2 and are evaluated along eq. (4.15) � (4.24).

proved insu�cient in capturing the behavior of the amplitude for large oppositely aligned spins

with comparably small values of â0. In Fig. 4.1 (bottom left) a solution to this problem is shown,

that does avoid the introduction of a fully three-dimensional �t. ωmrg, extracted from NR5, is

plotted versus the e�ective spin variable Ŝ ≡ (S1 + S2)/M2. First, comparing the behavior of the

individual mass-ratios shown versus Ŝ (bottom left) and versus â0 (bottom right of Fig. 4.1), it is

evident that the oscillations of each curve reduces drastically. This can be seen in particular for

q = 2, 3 and 4 data which oscillates heavily as a function of â0. Further, it can be seen by eye

that plotted versus Ŝ all mass-ratios show qualitatively the same behavior of an approximate fourth

order polynomial, shifted vertically relative to each other. This simple structure is very useful in

obtaining an accurate �t of the merger frequency as will be exploited below. While it is still an

open question what the origin of this behavior is, it is possible to give a brief argument to explore

a connection to the EOB framework.

Starting from the approximation ωmrg
22 ' 2Ω, (which as mentioned above is not perfect, yet in

the case of large, positive spins Ŝ it is quite reliable) for u = umrg, ω
mrg can be approximated as

ωmrg
22 ' 2

[
Au2

cp
mrg
ϕ

HEOBĤorb
eff

+H−1
EOB

(
GSŜ +GS∗Ŝ∗

)]
. (4.21)

The reader should �rst note that uc, as introduced in Sec. 2.3, only depends on the spin through

even-parity powers of â0 = Ŝ + Ŝ∗. Further, looking at the functional form of Ŝ∗ it is easy to see

that Ŝ = Ŝ∗ in the q = 1 and the test-particle limit, thus, it seems natural that the dependency

on Ŝ would dominate the systems. However, when departing from the equal-mass case to the

q 6= 1 region it becomes less straight forward to �nd a plausible explanation for this behavior.

Nonetheless, Fig. 4.1 does indicate that Ŝ∗ does not contribute signi�cantly to ωmrg. Paper I

continues the discussion through exploring an expansion of eq. (4.21) in powers of Ŝ and Ŝ∗, yet

5The reader should note that while this is a remarkable result, it cannot be obtained blindly from NR, as a small
number of waveforms have to be discarded following the principle that small changes in (q, χ1, χ2) only cause small
changes in the amplitude and frequency.
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without arriving at a concrete justi�cation. For now, the simpli�ed scaling is quite remarkable and

will be exploited in the determination of a global �t. To do so, a template in factorized form is

chosen as

ωmrg = ωmrg
orb (ν)ωmrg

S

(
Ŝ,X12

)
, (4.22)

with the orbital factor ωmrg
orb �tted to a quadratic function in ν,

ωmrg
orb (ν) = c

ωmrg
orb

0 + c
ωmrg

orb
1 ν + c

ωmrg
orb

2 ν2. (4.23)

The functional form of
ˆ̂
Amrg

S of eq. (4.18) is kept for ωmrg
S , but the spin-variable is Ŝ as spin variable

ωmrg
S =

1− nω(ν)Ŝ

1− dω(ν)Ŝ
. (4.24)

The functions (nω, dω) are identically chosen to eq. (4.19) � (4.20). The ν = 1/4 factor is �tted �rst,

followed up by the �tting of the coe�cients proportional to X12 and X2
12. All coe�cients are given

in the right column of Table B.2. While the �rst exploratory �ts of ωmrg were assumed to necessitate

a full three-dimensional �t to accurately capture the NR behavior, this was indeed not necessary

due to the discovery of the simple behavior as a function of Ŝ. To estimate its performance, the �t

was compared with the full calibration set of data available, at the time of publication of Paper I.

The fractional di�erences are displayed in Fig. 4.2. It is useful to point towards the disagreement

between the BAM waveforms (8, 0.8, 0) and (8, 0.85, 0.85) that was present at the time. As these

two waveforms are very similar, one would expect that they would behave in a similar manner.

Yet, this is not the case for (8, 0.85, 0.85). While (8, 0.8, 0) continues to follow the trend of similar

waveforms, (8, 0.85, 0.85) actually shows a decrease in the merger frequency. Thus, by the principle

of consistency between similar waveforms (8, 0.85, 0.85) was excluded from the NR calibration of

TEOBResumS. As became evident after publishing Paper I, the NR waveform of (8, 0.85, 0.85) was

generated with insu�cient resolution and a waveform with increased resolution was generated. In

fact, this updated waveform will motivate an improved �t of the merger amplitude and frequency

in chapter 6. Additionally, the updated waveform (8, 0.85, 0.85), together with a majority of the

validation generated for approximately integer mass-ratios has been included in Fig. 4.1.

4.2.5 Next-to-Quasi-Circular corrections

Once the peak of the (2, 2) mode is �tted it is ideal to move directly to the NQC extraction point.

These are given by the NR waveform taken at the point tNQC ≡ tmrg + 2M , following the setup

in Sec. 2.3.2. From each SXS and BAM NR data set the quantities
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}
are

extracted and �tted globally. These are then used to determine the NQC parameters de�ned in

Sec. 2.3.2.

For ` = m = 2 mode a very high level of accuracy is necessary, as it is the only multipole

for which the NQC parameters enter the radiation reaction, eq. (2.32). While inaccuracies for the

subdominant multipoles are leaving the remainder of the model untouched, even a small inaccuracy

can lead to the failure of the iterative determination of the NQC parameters (a22
1 , a

22
2 ) to converge.

Especially, for the equal- and almost equal-mass region (q < 4) a very accurate �t is necessary. In
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Appendix B.1 the �ts of the equal mass region, eq. (B.1) and the nearly-equal-mass 1 < q < 4

region, eq. (B.2) are given. The former is �tted with quartic polynomials, while the latter is �tted

with cubic polynomials in â0. While these �ts are done very well for regions with an excellent NR

coverage, their extrapolation outside the domain of calibration is usually very poor. Any attempt

to build a singular �t starting from this structure will lead to pathological behavior for large mass-

ratios, where the NR coverage is thin. Therefor, both TEOBResumS and TEOBiResumS_SM have been

designed to only update the �ts in the region of q ≥ 4 as needed for the ` = m = 2 mode.

Another point to note when �tting the NQC it is useful to use a template similar to that utilized

for the �ts of the merger amplitude and frequency. This is to ensure that outside the domain of

calibration the waveform is robust and shows no pathological behavior. The robustness of the

waveform outside the domain of calibration will be discussed further in Sec. 4.4.

The discussion will now turn to updating the �t of the q ≥ 4 region. ÂNQC
22 employs the

factorization of Âmrg as

ÂNQC
22 = ÂNQC

orb ÂSO
LO

ˆ̂
ANQC

S . (4.25)

The leading-order, spin-orbit contribution ÂSO
LO is given by eq. (4.17) as well, however with a slight

di�erence using xNQC ≡
(
ωNQC

22 /2
)2/3

to ensure consistency. The nonspinning (orbital) contribution

ÂNQC
orb is �tted with an additional cubic term in ν as

ÂNQC
orb = c

ÂNQC
orb

3 ν3 + c
ÂNQC

orb
2 ν2 + c

ÂNQC
orb

1 ν + c
ÂNQC

orb
0 . (4.26)

The beyond leading-order spin dependence is then captured by �tting
ˆ̂
ANQC

S �rst to the q = 1 data

and followed up by the extrapolation to higher mass-ratios as

ˆ̂
ANQC

S =
1− nNQC

S âeff

1− dNQC
S âeff

, (4.27)

with (nNQC
S , dNQC

S ) both given by second-order polynomials in X12 as de�ned in eq. (4.19) � (4.20).

All coe�cients are listed in the top-left column of Table B.1.

The derivative of the amplitude
˙̂
ANQC

22 is particularly di�cult, as it is very close to 0 it is highly

sensitive to numerical noise. Thus, after several attempts to build a construction that would allow

to increase the robustness of
˙̂
ANQC

22 this form was chosen:

˙̂
ANQC

22 = ωNQC
22

[
ȦNQC

orb (ν) + ȦNQC
S (âeff , X12)

]
. (4.28)

A rational function, linear in both denominator and numerator as a function of ν is �tted to capture

the non-spinning behavior as

ȦNQC
orb (ν) = −N

ȦNQC
orb

0 +N
ȦNQC

orb
1 ν

1 +D
ȦNQC

orb
1 ν

. (4.29)

A rational function in the e�ective-amplitude-spin variable âeff is also chosen to capture the spin
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dependence of
˙̂
ANQC

22 as

ȦNQC
S =

nȦNQC âeff

1 + dȦNQC âeff

. (4.30)

Again, quadratic polynomials in X12 are used to capture (nȦNQC , dȦNQC). First, the functions are

calibrated to the equal-mass case and then extrapolated to the X12 6= 0 region. The explicit values

of the coe�cients are listed in the top-right column of Table B.1.

The NQC frequency is to be �tted next. A factorization and choice of spin-variable, inspired by

the merger-quasi-universal behavior of the merger frequency, are made as

ωNQC
22

(
ν; Ŝ

)
= MωNQC

orb (ν)ωNQC
S

(
Ŝ,X12

)
. (4.31)

The non-spinning contribution is �tted at quadratic order by a polynomial in ν as

ωNQC
orb (ν) = c

ωNQC
orb

0 + c
ωNQC

orb
1 ν + c

ωNQC
orb

2 ν2. (4.32)

Continuing to follow the principle of consistency between the merger and NQC the spin-factor is

�tted by a rational function in Ŝ as

ωNQC
S =

1− nωNQC
(ν)Ŝ

1− dωNQC(ν)Ŝ
. (4.33)

Following the typical procedure (nω
NQC

, dω
NQC

) are, as for the amplitude, quadratic functions of

X12. The �rst �t is done with respect to the equal-mass data and followed by the extrapolation

into the unequal-mass region. The functions are de�ned in eq. (4.19) � (4.20). The coe�cients are

listed in the bottom-left column of Table B.1.

The typical factorization of the orbital and spin-dependence into a hierarchical structure is also

done for the time derivative of the frequency as

ω̇NQC
22 = ω̇NQC

orb (ν) ω̇NQC
S

(
Ŝ,X12

)
. (4.34)

The non-spinning part is �tted to a rational function of linear order in ν for both numerator and

denominator as

ω̇NQC
orb (ν) =

N
ω̇NQC

orb
0 +N

ω̇NQC
orb

1 ν

1 +D
ω̇NQC

orb
1 ν

. (4.35)

Ŝ also proved useful here as the spin-dependence as a quadratic polynomial in Ŝ through

ω̇NQC
S

(
Ŝ; X12

)
= 1 + aω̇NQC (ν) Ŝ + bω̇NQC (ν) Ŝ2. (4.36)

Where again the coe�cients (aω̇NQC , bω̇NQC) are represented, as above, with quadratic functions of

X12, �tted to the equal-mass data then extrapolated to the unequal-mass-case. The corresponding

coe�cients are listed in the bottom column of Tab. B.1. The astute reader will have noticed that
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even though none of these �ts are meant for usage in the equal-mass case6 yet all four are �tted

directly to the equal-mass data. The reason for this is two-fold. First, the amplitude and frequency

at merger are �tted in such a way and thus to ensure consistency it is necessary to do the same for

the NQC amplitude and frequency. However, this does not justify to handle the derivatives in a

similar manner. The reason can be found once di�erent waveforms �ts are compared with respect to

stability to numerical noise, extrapolation and possible pathological features. What is found is that

if a one-dimensional �t is imposed directly, this stabilizes the �t and improves it's quality. Thus,

while it might not be intuitive to calibrate the �t in such a manner, it yet produces the best results.

4.2.6 Ringdown

To �t Y =
{
ω22

1 , α
22
1 , α

22
2

}
it is useful to consider their origin as BH perturbation modes. As such

they are functions only of the dimensionless spin of the remnant BH χf ≡ Jf/M
2
f . The dimensionless

spin of the �nal BH however was �tted with excellent accuracy and precision by Jimenez-Forteza

et al. [107] for merging BBH systems. Thus, to avoid unnecessary complications
{
ω22

1 , α
22
1 , α

22
2

}
are

�tted directly against χf , which is in turn reproduced using the above mentioned �t as a function

χf = χf (q, χ1, χ2). These �ts are informed by data interpolated from publicly available tables given

by Berti et al. [46, 47]. The χf = 0 limit is factored out and each parameter is �tted by a rational

function to third order of χf in both denominator and numerator as

Y (χf ) = Y0

1 + bY1 χf + bY2 χ
2
f + bY3 χ

3
f

1 + cY1 χf + cY2 χ
2
f + cY3 χ

3
f

, (4.37)

The �tted coe�cients are listed in Tab. B.3.

4.2.7 Postmerger evolution

The evolution parameters of the phenomenological merger-ringdown template are de�ned in Sec. 2.3.4.

They connect the peak of the mode to the later stages of the ringdown during which only the fun-

damental QNM is contributing to the GW strain. To �t them, �rst the GW strain is rescaled with

respect to the fundamental QNM, separated into amplitude and frequency, and then the derivative

of the amplitude at peak is set to 0, the peak amplitude and frequency as well as the dominant QNM

behavior are imposed on the templates. Once prepared as such, they are �tted �rst individually

to the SXS and BAM NR waveform data and interpolated globally in a second step. The templates

are given in eq. (2.46) and eq. (2.47) and on the level of the primary �t they have been �tted to

the time interval from the peak of the mode for 4τ22
1 = 4/α22

1 , four times the damping time of the

fundamental QNM. As will be discussed partially in the next chapters 4τ `m1 is su�cient to obtain

such a �t and the choice of the �tting interval length needs to be made consistently as in the case

of noise multipoles the e�ects of the noise are more and more signi�cant. The three parameters

Y =
{
cA22

3 , cφ22
3 , cφ22

4

}
are �tted with the template

Y (ν; Ŝ) = bY0 (ν) + bY1 (X12) Ŝ + bY2 (X12) Ŝ2 + bY3 (X12) Ŝ3 + bY4 (X12) Ŝ4. (4.38)

6Recall that the NQC for q < 4 are given by the �ts originally presented in Refs. [131, 132].
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Figure 4.3: The performance of the (2, 2) mode postmerger-ringdown template waveforms. The top row
shows the phase error ∆φNRFit

22 ≡ φNR
22 −φfit

22, while the bottom row shows the fractional error of the amplitude
∆ANRFit

22 ≡ (ANR
22 − Afit

22)/ANR
22 . The panels show: (top-left) The non-spinning SXS waveforms. (top-right)

The spinning SXS waveforms. And (bottom) the spinning BAM waveforms. The time is shifted to the peak

such tpeak
22 = 0 and normalized to the damping time of the fundamental QNM given as τ1 ≡MBH/α1.

Even though the hierarchical nature of the �t is not highlighted for this template, it is still done

in such a manner. The orbital and equal-mass contribution are �tted one-dimensionally each. The

extrapolation to higher mass-ratios is done through coe�cients proportional to X12. The coe�cients

of the �t are listed in Tab. B.4. The reader should note that the e�ective spin Ŝ was exploited here

again for the phase, while the amplitude parameter Y = cA22
3 was �tted with âeff . Even though,

other than for the frequency and amplitude this structure cannot be observed directly when looking

at the data for Y =
{
cA22

3 , cφ22
3 , cφ22

4

}
. These spin-variables do not simplify the structure presented

by the individual mass-ratios as it was for the frequency in Fig. 4.1. Yet, as will be shown in the

next section, the performance of the template when using these variables is improved.

4.2.8 Merger-ringdown-ringdown template performance

In the discussion above �ts of the individual parameters making up the postmerger template have

been presented. Before the focus is shifted to the comparison of the full TEOBResumS model with

NR, it is useful to consider the performance of the postmerger template. Two quantities are relevant

when evaluating the template performance on an NR waveform. These are ∆φNRFit
22 ≡ φNR

22 − φfit
22

and ∆ANRFit
22 ≡ (ANR

22 − Afit
22)/ANR

22 which are plotted in Fig. 4.3 for (from top-left over top-right
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to bottom) the non-spinning SXS waveforms, the spinning SXS waveforms and the BAM waveforms.

The top row shows ∆φNRFit
22 while the bottom row shows ∆ANRFit

22 . Typically, a good agreement

between the template and the NR would be constituted by
∥∥∆φNRFit

22

∥∥ < 0.2 and
∥∥∆ANRFit

22

∥∥ < 0.1.

The only two signi�cant outliers beyond this limit can be found in the right plot presenting

the BAM data. These are (8, 0.8, 0) (light blue, solid) and (8, 0.85, 0.85) (green, dashed). As already

discussed above the BAM waveform (8, 0.85, 0.85) did show a divergence from waveforms of similar

parameters therefor this outlier is not that di�cult. Still it will be shown below (see Sec. 4.3)

that through an improved NR calibration this behavior could in principle be captured, but this

in fact does push the boundaries of what can captured with the analytical �exibilities of the TEOB

infrastructure as will be discussed below. As will be further shown in chapter 6, once an improved

waveform with heightened resolution was available, the postmerger as well as many other parts of

the NR calibration have been redone and while the overall quality only improved slightly the main

goal of these improvements is achieved as TEOBiResumS_SM does indeed show excellent agreement

with BAM (8, 0.85, 0.85).

4.3 EOB/NR comparison and the unfaithfulness

When comparing a waveform model to a large catalog of NR it is useful to start the analysis

by computing the unfaithfulness F̄ between the model and the full catalog. Recall that for second

generation GW detectors such as advanced LIGO and advanced Virgo the aim is to have an EOB/NR

faithfulness, computed with respect to the advanced LIGO PSD [8], of F > 97% at minimum, but

ideally F > 99% [88, 112]. Similar standards have been applied for e.g. SEOBNRv4 [53].

Unfaithfulness of TEOBResumS vs. SXS: Now that TEOBResumS is fully calibrated to NR it

is necessary to access if it meets the requirements for GWA. To this end the unfaithfulness was

computed between TEOBResumS and the SXS and BAM data contained in the calibration set, de�ned

in Sec. 3.2. Fig. 4.4 (top-left) shows the F̄ computation of TEOBResumS and SXS for the total mass

varied between 10 and 200M�. The maximum unfaithfulness reached is max(F̄ ) . 2.7 × 10−3

with the exception of a single outlier (3,+0.85,+0.85), SXS:BBH:0293, reaching a maximum of

max(F̄ ) = 7.1 × 10−3. This is a clear improvement over the previous implementation of the TEOB

avatar presented in Ref.v [132] (see Fig. 7 therein) and well below both the 3% (light-blue, dotted,

horizontal line) and the ideal limit of 1% (black, dotted, horizontal line). Thus, clearly meeting the

quality requirement for GWA7

Unfaithfulness, the outlier SXS (3,+0.85,+0.85): Even though SXS:BBH:0293 (3,+0.85,+0.85)

does not violate the 1% bound, it does exceed the NR-NR unfaithfulness computed for the SXS data,

shown in the top-left panel of Fig. 3.1, which never exceeds 10−4 for SXS:BBH:0293, even when this

is reduced to the conservative estimate of 0.5%. Thus, it is still worth to investigate the origin of the

di�erences. When checking c3 of #23 of Tab. 4.1 it becomes plausible that the di�erence between

cfirstguess
3 = 16.5 and cfit

3 = 14.38 is potentially responsible for the increased unfaithfulness. To access

7While this is a very good result and, at the time, was the lowest max
[
max (F̄ )

]
ever achieved by a comparison

of an EOB model to the SXS catalog presented. This however only the �rst part of preparing a model for practical
use in GWA. Paper I further presents a stand-alone C-implementation of TEOBResumS and an example analysis of
GW150914, proving that the model is ready for application real data analysis.
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Figure 4.4: The unfaithfulness F̄EOB/NR, eq. (A.12), TEOBResumS vs the calibration set of SXS and
BAM waveforms. The unfaithfulness was computed with PSD [8]. (Top-left) TEOBResumS, implemented
using the c3 modeled after eq. (4.11), compared to the calibration set of SXS data, both spinning and
non-spinning waveforms. The unfaithfulness never reaches the 1% limit. With the exception of a sin-
gle waveform max (F̄ ) . 2.5 × 10−3 is achieved all over the SXS calibration set. For SXS:BBH:0293,
(q, χ1, χ2) = (3,+0.85,+0.85), max (F̄ ) ' 7.1× 10−3 is found. (Top-right) F̄ computed over the same set of
SXS waveforms against TEOBResumS. The representation of c3 has however been modi�ed with an additional
term proportional to νâ2

0

√
1− 4ν in the functional form added to Eq. (4.11). One �nds max (F̄ ) < 2.5×10−3

all over. (Bottom-left) F̄EOB/NR computed of TEOBResumS and BAM presented in Refs. [101, 108, 109]. c3
is modeled by the �tting template eq. (4.11). (Bottom-right) Global picture of the maximum value of the
EOB/NR faithfulness F , Eq. (A.12) over SXS and BAM NR data, corresponding to the plots in the top-left
and bottom-left. The only outlier above 1% or 3%, (8,+0.85,+0.85), is omitted from the �gure.

the potential improvement from a stronger �t of c3 , the functional form of the template eq. (4.11)

is modi�ed in the unequal-mass through the introduction of a quadratic in â0, taking the form

p5νâ
2
0

√
1− 4ν, introducing the �tting coe�cient p5. The updated �t is given in Sec. 4.2.3. Once

the �t is calibrated, the unfaithfulness between the SXS waveforms and TEOBResumS is recomputed

and shown in Fig. 4.4 (top-right). Two things are especially noteworthy. First, max(F̄ ) < 2.5×10−3

is reached all over the SXS-calibration set. Further, (3,+0.85,+0.85) lies now at max(F̄ ) = 5×10−4,

a remarkably good agreement, while still above the corresponding value of F̄NR/NR, it is well below

the conservative estimate of the uncertainty. While it might seem tempting based on these results

to simply chose the improved �t of c3 it can be seen that for larger mass-ratios the �t of c3 this �t

diverges and would require further waveforms to inform it to remain stable in the large-mass-ratio

region of the parameter space. Thus, for now the conservative approach is chosen and as will be

discussed below an alternative route to improvement of TEOBResumS will be outlined, that will come
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Figure 4.5: The BAM catalog gave an excellent opportunity to test the modelization in the large-mass-ratio
and large spin region. In particular the extrapolation of c3 can be tested and improved greatly through
the addition of the BAM catalog. At the time of Paper I, with an insu�ciently accurate version of BAM

(8,+0.85,+0.85), it was shown that an improvement of c3 = 28.7 down corrected to c3 = 23 indeed lowers
the unfaithfulness from going up to 5.2% down to F̄ ' 1.3 × 10−3. This �gure shows explicitly the time
domain comparison between the TEOBResumS and BAM (8,+0.85,+0.85), with TEOBResumS evaluated for both
c3 = 28.7 and c3 = 23, aligned with the BAM waveform in the frequency interval [0.2, 0.35]. This frequency
interval is very close to merger and in principle it would be necessary to determine c3 accurately it would be
necessary to align in a much lower frequency interval. However, c3 = 23 is actually very close to the limit
at which the NQC corrections can still be applied consistently, as any smaller values of c3 would lead to
the iterative determination of the NQC (introduced in Sec. 2.3.2) to diverge. Thus, to keep in line with the
conservative mindset employed in the calibration of TEOB models an improvement of the analytical baseline
will be necessary before improving the model.

to fruition in TEOBiResumS_SM, solving these issues as will be shown in chapter 6.

Unfaithfulness: TEOBResumS vs. BAM: The bottom-left panel of Fig. 4.4 shows the unfaithfulness

computed between TEOBResumS and the BAM catalog. While the q = 2 and q = 4 waveforms

overlap with the SXS coverage, the q = 8 and q = 18 spinning waveforms signi�cantly extend the

parameter space coverage of spinning waveforms. While for most waveforms an excellent agreement

between NR and TEOBResumS is found, this is not the case for the BAM waveforms (8,+0.85,+0.85)

con�guration, that yields a very NR/EOB disagreement of max(F̄ ) ' 5.2%. As mentioned in the

discussion above at several points, this waveform was at the time of Paper I not su�ciently accurate

even though it was already once improved relative to a waveform included in the previous analysis

presented in Ref. [132]. Yet this inaccuracy of the BAM waveform was not su�cient to justify this

large a value of the unfaithfulness. Thus an investigation of the origin behind this disagreement is

needed.

Unfaithfulness, the outlier BAM (8,+0.85,+0.85): The origin of the increased unfaithfulness

lies within an inaccuracy of the inspiral-plunge waveform of TEOBResumS. On the other hand, the

NR-calibrated description of NQC and postmerger-ringdown waveform, even though, not informed
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4.3. EOB/NR comparison and the unfaithfulness

by BAM (8,+0.85,+0.85 still captures the waveform accurately. Fig. 4.5 illustrates this point more

clearly through comparing TEOBResumS(blue, dash-dotted, lines) to the NR (black) waveform as

well as modi�ed TEOBResumS waveform for which the �t value of c3 ≈ 28.7 was replaced by c3 = 23

(red). The TEOBResumS waveforms have been aligned to the NR counterpart in the frequency interval

[0.2, 0.35], of the late inspiral-plunge region. Even though the alignment was done so close to merger

the TEOBResumS (blue) shows a signi�cant departure from the NR, while the modi�ed value of c3

does indeed lead to an almost perfectly accurate agreement with NR. This can be reproduced on the

level of unfaithfulness as F̄ ' 1.3× 10−3 with an improved value of c3. While this seems to require

an update in the NR calibration, two arguments stand against it. (i) The BAM (8,+0.85,+0.85) does

show indicators of being insu�cient accuracy and precision. Therefor, it should not be included

in the NR calibration. (ii) The improved value of c3 is in fact almost at the boundary at which

the NQC correction parameters
(
a22

1 , a
22
2

)
do converge. Any further reduction in c3 would lead to

divergent NQC corrections. This indicates that the NR calibration is at the limit of what it can

be used for. Therefor, Paper I concluded with leaving this for future work and in fact chapter 6

(following the results presented in Paper III) will show that including the improved factorization and

resummation of the waveform presented in Refs. [123, 129] indeed addresses this issue su�ciently,

producing an excellent agreement between TEOBiResumS_SM and BAM (8,+0.85,+0.85).

Unfaithfulness, Summary: A global representation of the unfaithfulness computation is given

as a histogram in Fig. 4.4 (bottom-right), showing the maximal faithfulness over the SXS and BAM

excluding BAM (8,+0.85,+0.85) to keep the plot informative. It is useful to highlight the results of

the unfaithfulness computation and insights about the analysis:

(i) The unfaithfulness is a powerful tool to identify disagreements between NR and TEOBResumS

. Yet, it is ill-suited to be used to identify the problem, while an analysis in the time-domain

will often prove to be more insightful to identify the problem. It is then useful to compute

the unfaithfulness to con�rm the origin of the problem.

(ii) The unfaithfulness all over the SXS-calibration set is in very good agreement reaching F̄ .

2.7 × 10−3 with the exception of a single outlier, not breaching the 1% bound. This single

outlier indicates a need for further improvement of the analytical information included in the

model.

(iii) For the BAM catalog a similar result is reached8. The outlier BAM (8,+0.85,+0.85) is however

far stronger.

(iv) Following the analysis of BAM (8,+0.85,+0.85) in Fig. 4.5 an improvement of the analytical

baseline information incorporated into TEOBResumS is motivated and it is pointed out that

the the improved factorized and resummed waveform of Ref. [123] represents a possible path

forward. Once included the improved waveform will indeed solve this problem as will be

discussed in chapter 6.

8The astute reader may have noticed a single BAM waveform above the 0.4% limit set as the goal over the BAM

catalog. This unfaithfulness corresponds to (8,+0.8, 0) and does indeed not produce any further insight other then
con�rming the analysis of BAM (8,+0.85,+0.85), which indicates an improved analytical baseline becomes necessary
and is thus omitted from the discussion as an explicit outlier, even though technically speaking it is one.
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Figure 4.6: During a more thorough comparison of TEOBResumS and the BAM catalog a peculiar feature
appears. For BAM (18,−0.80, 0), the TEOBResumS waveform shows a peculiar unphysical feature. As the full
EOB waveform shows a dip and sudden rise around the peak of the amplitude appears, even though the
waveform prior to inclusion of the NQC does not repeat this feature. As the frequency is not impacted
by this it is not surprising that this does not show up as an e�ect in the unfaithfulness, y is not impacted
Frequency and amplitude comparison between TEOBResumS and BAM for (18,−0.80, 0). The full waveform
amplitude develops a slightly unphysical feature due to the action of the NQC parameters. The frequency
(as well as F̄ ) is una�ected by this.

Beyond the unfaithfulness: Even though the unfaithfulness analysis was clearly useful it is still

necessary to study the waveform further. Fig. 4.6 illustrates one such e�ect that, due to lack of

impact on the frequency, does not show as an increase in the unfaithfulness. As can be seen the

TEOBResumS waveform (red) compared with BAM (18,−0.80, 0) (black) shows a peculiar, unphysical

dip in the amplitude close to merger. Looking at the TEOBResumS waveform prior to the application

of the NQC (orange) it can be seen that this pathological feature of the amplitude originates in the

NQC correction. Further investigation shows that the orbital EOB frequency Ω indeed becomes zero

close to merger. When computing the individual contributions to Ω it was found that (GS , GS∗),

de�ned in Sec. 4.1.1, becomes very large and negative if both spins are large and anti-aligned with

respect to the orbital angular momentum. Now it is important to note that in the case of a test-

particle plunging into a Kerr-BH with large anti-aligned spins the orbital frequency does indeed

change sign as the dragging of the frame of the test-particle dominates close to the merger. This is

however not the case here. Thus, it is useful to brie�y outline the source of this issue without going

to deep into it.

When Ref. [76] �rst de�ned the TEOB infrastructure, (GS , GS∗) where expressed as functions of

the inverse centrifugal radius 1/rc as opposed to merely the inverse radius 1/r (see Eqs. (36)-(37)

of [76]). After reversing this change it can be seen that the frequency Ω does in fact remain positive

in this region. As this e�ect does not have large practical implications for the use of TEOBResumS it

does not yet warrant to change the model at this stage, which in turn prevents the necessity for a

full recalibration to NR. Rather the e�ect on the amplitude will be explored and the robustness in

the large-mass-ratio, large-anti-aligned-spins region will be explored in Sec. 4.4. Further, it will be

shown that a modi�cation of ∆tNQC does indeed improve the robustness of the waveform at merger.
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Figure 4.7: The waveform SXS:BBH:1375, (8,−0.9, 0), is a remarkably accurate waveform and thus it is
worth taking a closer look at the performance compared between TEOBResumS and SXS for this waveform.
The waveforms are compared on the level of phasing with vertical lines marking the alignment in the inspiral
(top-left), amplitude and frequency around merger, aligned in the frequency interval [0.2, 0.3] close to merger
(top-right) and the unfaithfulness (bottom). The alignment of the waveforms in the early inspiral leads to
an accumulated dephasing of −1.3 rad at the NR (2, 2) mode waveform peak. The unfaithfulness reaches
max (F̄ ) = 1.027×10−3. All over TEOBResumS and SXS:BBH:1375 show an excellent agreement. It stands out
however that the postmerger is not perfectly captured, as can be observed in the middle panel. This is due
to the fact that currently, model does not account for the beating between positive and negative frequency
QNMs. An example of how to implement this feature can be found for the test-particle limit in Ref. [45].

4.3.1 An extreme BBH con�guration: (8,−0.90, 0)

During the preparation of Paper I, a new high precision SXS waveform was published: SXS:BBH:1375

describing a BBH system with (q, χ1, χ2) = (8,−0.90, 0) [100]. Aside from it's exceptional quality

it is remarkable for two reasons from the perspective taken in Paper I. First, with an e�ective spin

of Ŝ = −0.7111 it is slightly more relativistic than BAM (8,−0.85,−0.85) with Ŝ = −0.6821 (see

Tab. F.4). Secondly, while this is a marginal shift it is a marginal shift in a highly relativistic region

therefor granting a useful additional point to test TEOBResumS in a region where the modeling of

the analytical baseline is particularly challenging9. It is instructive to now compare the TEOBResumS

with the SXS waveform thoroughly to introduce the reader to several aspects of such a comparison.

The full comparison of TEOBResumS and SXS:BBH:1375 is shown in Fig. 4.7. The top-left panel

shows the comparison of the phasing and amplitude, the alignment region marked by vertical black-

dashed lines. The light-blue line represents the phase di�erence between TEOBResumS and SXS

9As mentioned above and as will be discussed in Sec. 4.4, the region of large mass-ratios and large spins anti-
aligned with respect ot the orbital angular momentum.
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4.4. Waveform robustness outside the domain of calibration

waveform, showing a slight oscillation around zero. Inspecting the parameters further shows that

SXS:BBH:1375 has a slight residual eccentricity ∼ 1.1× 10−3. This is of course to be expected as in

an any NR setup it is next to impossible generate eccentricity-free waveforms on a consistent basis.

Yet this is di�erent in the analytical setup of the TEOB model. The initial data is generated with

the 2PA approximation [75, 82] generating almost completely eccentricity-free waveforms. Further,

one notices that the departure of the phase di�erence from the oscillation around zero during the

late inspiral and the plunge, indicating a slightly slower plunge of the TEOBResumS system with

respect to the NR system. A possible physical interpretation might be that the prediction of the

TEOBResumS spin-orbit coupling is too low. This could be captured through a modi�cation of c3
10.

The top-right panel of Fig. 4.7 shows the comparison of the amplitude and frequency around

the merger aligned in the frequency interval [0.2, 0.3]. An alignment in a frequency window so

close to the merger is often useful to access the behavior of the two waveforms around merger as

the accumulated dephasing often distorts the picture if both waveforms are aligned in the early

inspiral. Even though this waveform lies outside the domain of calibration of both NQC and

postmerger, both waveforms agree very well on the level of amplitude as well as frequency. An

additional phenomenon that can be observed in this waveform is the beating between positive and

negative frequency QNMs, well known in the test-particle limit for Kerr-BHs with large anti-aligned

spins [45], creating oscillations in the ringdown of the NR waveform. Finally, the unfaithfulness is

presented in the bottom panel of Fig. 4.7. As can be seen by eye the agreement is excellent. The

unfaithfulness, reaching max (F̄ ) = 1.027 × 10−3, is well below the 1% limit and the conservative

NR uncertainty of 0.5%. Reiterating that even though a dephasing of 1 red occurs if aligned in the

inspiral this disagreement is not of concern for the practical application of the model.

In summary, four observations can be made:

(i) The postmerger template performed very well in comparison to SXS:BBH:1375. While the

parameters used in the template would not necessarily improve through the inclusion of this

waveform it might stabilize the extrapolation to higher mass-ratios with spins anti-aligned to

the orbital angular momentum.

(ii) As the ringdown is a very clean example of beating between positive and negative frequency

quasi-normal-modes [45] this waveform will be useful to explore extensions of the postmerger

template.

(iii) Despite the small eccentricity this waveform can be used to inform NR quantities related to

the spinning sector of the inspiral, e.g. c3.

(iv) As the subdominant modes are very clean and accurate as well it is likely that many �ts of

subdominant mode parameters will bene�t strongly from the inclusion of this waveform.

4.4 Waveform robustness outside the domain of calibration

The �ts of both NQC and postmerger, the peak in particular, have been done in similar fashion.

The same spin variables have been used consistently for quantities depending on whether they

10However, the reader should note that this disagreement is perfectly within the acceptable margin of error for
the application in any physical context.
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Figure 4.8: (q, χ1, χ2) = (11,−0.95,−0.50) lies well within the region for which ∆tNQC = 4 (blue) is used
instead of ∆tNQC = 1 (red), given by eq. (4.39)-(4.40). As can be seen the choice of ∆tNQC = 4 allows
for a smooth transition between the inspiral-plunge waveform and the postmerger template, avoiding the
unphysical feature in the amplitude, present if ∆tNQC = 1 is used.

were associated to the amplitude or the frequency. Amplitude and frequency at peak used identical

templates for the spin-dependence as the NQC amplitude and frequency, ensuring a similar behavior

asymptotically by design. These choice lead to a remarkable stable and robust extrapolation outside

the domain of calibration. Here, the robustness of the waveform is tested for large mass-ratios (up to

q ≤ 20) and large spin magnitudes both aligned and anti-aligned with respect to the orbital angular

momentum. However, it is important to point out that in particular in the case of large-aligned spins

the NQC correction parameters become large and diverge during the iterative determination, thus,

only a �rst determination of the NQC is possible in these cases. Similar behavior could already

be observed when comparing TEOBResumS to BAM (8,+0.85,+0.85), where the NQC parameters

became of order 10, limiting the choice of c3 for which the NQC parameter can be iterated upon

for consistency between �ux and waveform.

Pathological features in the amplitude: As was already observed for (18,−0.8, 0), the wave-

form shows pathological features in the amplitude for mass-ratios q ≥ 8 and large, anti-aligned spins.

The origin was already pointed out to lie in the crossing of the frequency through zero and becom-

ing negative during shortly before the merger for these waveforms. An example of this behavior is

shown in Fig. 4.8 for (11,−0.95,−0.50). While the frequency no signi�cant issues, the amplitude

clearly demonstrates an unphysical and pathological behavior. Similarly, to BAM (18,−0.8, 0), the

bare EOB-waveform amplitude is clean and without any clear and present issues that might cause

this e�ect prior to the addition of the NQC correction factor. It was veri�ed explicitly that Ω

crosses zero for this case, con�rming the origin of this unphysical feature. As mentioned above the

appropriate solution of this problem is a modi�cation of the spin-orbit sector of the Hamiltonian,

yet this would require for the inspiral to be recalibrated and retested, which due to the limited

practical impact of this pathology would be unwarranted for TEOBResumS, but to be remembered for
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Figure 4.9: The transition, de�ned in eq. (4.39)-(4.40), introduces a jump between ∆tNQC = 1 and
∆tNQC = 4. This jump has potentially the e�ect that a small change in the parameters could potentially
create a disproportionate jump in the waveform. Thus, it is necessary to access the error introduced by this
transition. To this end the unfaithfulness between waveforms along the border is computed. One waveform
each is generated with ∆tNQC = 1 and ∆tNQC = 4 and their unfaithfulness is plotted against the typical
mass-spectrum from 10M� to 200M�.

future models. A pragmatic solution to this problem can however be found in replacing ∆tNQC = 1

with the increased value ∆tNQC = 4 for the problematic waveforms. Several further con�gurations

showed this pathology as well and it was possible to identify the region in which it occurs. A

two-step boundary was taken around this area and at the boundary ∆tNQC = 1 is replaced by

∆tNQC = 4. The area in which the change is applied is given as

8 < q < 11 and χ1 < −0.9, (4.39)

11 < q < 19 and χ1 < −0.8. (4.40)

It is worth pointing out that despite this the lack of dependency on χ2, the boundary still su�ciently

prohibits the occurrence of the amplitude-pathology for most cases. To estimate the uncertainty this

jump produces in the waveform the unfaithfulness is computed at the border between waveforms

generated for identical parameters with ∆tNQC = 1 and ∆tNQC = 4. As it is found that F̄ (see

Fig. (4.9)) on average falls around 10−3, it can be safely assumed that the error introduced through

this modi�cation is limited and will not create additional errors.

The reader should note though, that in some highly extreme cases (see Fig. 4.10) the feature

still survives as the crossing through zero cannot be prohibited by this measure completely, yet this

was taken as trade-o� as the error introduced at the boundary is su�ciently low and the e�ect only

occurs in su�ciently rare cases. Ultimately, to solve this problem the (ĜS , ĜS∗) need to be adapted

to prevent this crossing of the frequency Ω through zero, yet this would require a new determination

of c3 and a repeat of the analysis of the model performance in the spinning sector, which due to the

limited impact seems unwarranted at this stage and will be addressed in TEOBiResumS_SM.

Waveform robustness for large spin magnitudes: Lastly, it remains to be explored how

the model performs for large spins outside the domain of calibration. In particular the waveform

around merger is most strongly adapted to NR and thus might show potential issues. Several
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Figure 4.10: Due to the modi�ed ∆tNQC given by eq. (4.39)-(4.40), it is important explore the consistency
at peak between the �tted postmerger template and the analytical inspiral waveform. As can be seen largely
the unphysical amplitude is gone for most waveforms. Only two quite extreme waveforms (10,−0.9,−0.99)
and (14,−0.8,−0.99) show a small dip in the amplitude at merger. As these e�ects only occur in these
very extreme cases and only mildly there, these are acceptable limits onto the model. And in fact it can be
checked that these waveforms become stable and free of pathological features for TEOBiResumS_SM.

waveforms have been computed. Fig. 4.11 shows waveforms, listed in Tab. I of Ref. [53] and used

in the calibration of SEOBNRv4, which have not been available in the calibration of TEOBResumS. To

explore the robustness of TEOBResumS the parameter combinations have been evaluated and plotted

focusing in on amplitude and frequency around merger. It is evident that both amplitude and

frequency perform excellently and no pathological features can be detected. Fig. 4.10 and Fig. 4.12

systematically explore the large spin regions with χ1 chosen either to be strongly anti-aligned

(Fig. 4.10) or aligned (Fig. 4.12). Here only two highly extreme waveforms, (10,−0.9,−0.99) and

(14,−0.8,−0.99), show a sign of the pathology discussed above. Yet these are both highly relativistic

with χ2 = −0.99 for both, thus for now this is an acceptable boundary to robustness of the waveform.

In future work this obviously has to be improved upon. On a �nal note it is important to point out

that since (8,+0.85,+0.85) already showed a quite troublesome unfaithfulness it is more than likely

that this will be carried over by all waveforms plotted Fig. 4.12 with 8 ≥ 8. Still the absence of clear

pathological features in the waveform is an achievement on it's own and suggests that the consistent

choice of the NR calibration between postmerger and NQC should be kept in future updates as well.
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Figure 4.11: Tab. I of Bohé et al. [53] listed several waveforms used in the calibration of SEOBNRv4 not
available in the preparation of Paper I. As a potential sanity check outside the domain of calibration the
parameter combinations are evaluated with TEOBResumS and the waveform is plotted on the level of both the
amplitude (left) and frequency (right) focused in around merger. Demonstrating that that these waveforms
indeed seem to behave qualitatively and quantitatively robust as the parameters are varied even outside the
domain of calibration of both NQC and postmerger template.
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Figure 4.12: The �ts of both NQC and postmerger, the peak in particular, have been done in similar
fashion with the same variables for both amplitude and frequency quantities. Here several waveforms with
high-spins and large range of mass-ratios are shown. Both the amplitude (left) and the frequency (right) are
plotted focusing in around merger. The consistency enforced by the �t structure extrapolates exceptionally
well leading to a highly consistent waveform throughout the parameter space.
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Chapter 5

Subdominant modes: The non-spinning

case

This chapter will now extend the discussion of Chapter 4 to include subdominant modes. The

discussion will focus on the non-spinning Waveform model TEOBiResumMultipoles, both from the

perspective of calibration and validation. Chapter 6 will extend this discussion to the spinning sector

with TEOBiResumS_SM. TEOBiResumMultipoles has been introduced in Paper II, calibrated and

validated by in total 19 SXS waveforms and 3 BAM waveforms, listed in Tab. F.14, lines #526−5471.

5.1 Motivation: Subdominant modes

The necessity of including subdominant modes can be seen by a simple consideration. The fully

calibrated waveform model TEOBiResumMultipoles is compared to SXS:BBH:0303, a non-spinning

binary of mass ratio q = 10, in Fig. 5.1. The waveform generated solely from the dominant quadrupo-

lar mode is shown explicitly (dashed orange), next to the full multipolar waveform (dashed blue),

both compared to NR. This comparison is done for three di�erent inclination angles θ = 0, π/3 and

2π/3 (corresponding to ι as used in other places of this thesis). For θ = 0 both agree very well with

NR. For θ = π/3 however the (2, 2) mode starts to departure from the NR waveform, and θ = 2π/3

it indeed almost vanishes. While the full multipolar waveform remains in good agreement with NR

for all inclinations. This illustrates the e�ect of subdominant modes. As can be explored explicitly

from eq. (2.4) � (2.5) the relative contributions of the multipoles do depend on the orientation of

the observer relative to the source. And, thus, while in many cases the dominant mode is su�cient

this is not always the case and it is necessary to incorporate subdominant modes into the waveform

model.

5.2 Hamiltonian and waveform

5.2.1 Hamiltonian and the A-potential

The analytical structure of TEOBiResumMultipoles is identical to TEOBResumS as presented in

Sec. 2.3.1 once S1 = S2 = 0 is set. There are however two di�erence between the A-potential

1Within this chapter all unfaithfulness computations have been performed exclusively by Geraint Pratten.
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Figure 5.1: TEOBiResumMultipoles is compared to SXS:BBH:0303, a non-spinning binary of mass ratio
q = 10, on the level of the pure (2, 2) mode (dashed orange), and the full multipolar waveform (dashed
blue). This comparison is done for three di�erent inclination angles θ = 0, π/3 and 2π/3 (corresponding to
ι as used in other places of this thesis). As for the former two it shows almost no e�ect which is used, even
though the full multipolar waveform shows a better agreement with the NR all over. For the last inclination
this is however not the case. The contribution of the (2, 2) mode as good as vanishes and while multipolar
waveform remains in good agreement with NR.

used for TEOBResumS and TEOBiResumMultipoles and thus we rede�ne eq. (4.1) as it was given in

Paper II. The EOB radial potential A is now given as a function of the radius r. The A-potential is

upgraded relative to TEOBResumS and taken from the full 4PN-accurate analytical term, completed

by the 5PN logarithmic term [42, 48, 52, 72, 77], as

APN
orb(u) = 1 − 2u + 2νu3 + νa4u

4 + ν
[
ac5(ν) + alog

5 lnu
]
u5 + ν

[
ac6(ν) + alog

6 lnu
]
u6, (5.1)

here u ≡ 1/r replaced the centrifugal radius and it's inverse, used in TEOBResumS. The 4PN and

5PN logarithmic coe�cients are given as

alog
5 =

64

5
, (5.2)

alog
6 (ν) = −7004

105
− 144

5
ν, (5.3)

where the 4PN coe�cient, ac5(ν), was computed in Ref. [48] and is given as

ac5(ν) = ac05 + νac15 , (5.4)

ac05 = −4237

60
+

2275

512
π2 +

256

5
ln 2 +

128

5
γE , (5.5)

ac15 = −221

6
+

41

32
π2, (5.6)

with the Euler constant γE . The reader should note that this marks the another di�erence in the
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A-potential. As stated above TEOBResumS utilizes, similar to Ref. [82], ac5 �xed to its �ducial value

ac5 = 23.5 [32, 42, 48]. The coe�cient ac6(ν) is chosen to be left �exible and to use it as a vessel for

NR information. Before this coe�cient is however �tted to NR, the PN-expanded radial potential

A(u) is resummed using a Padé approximate as

A(u; ν; ac6) = P 1
5

[
APN

orb(u)
]
. (5.7)

Due to the change of variable from uc and rc to u and r, it is important to restate the product of

the A and B potential, D ≡ AB which allows to recreate B(r), taken at 3PN accuracy. The D

potential is expanded as a P 0
3 approximate and reads

D(u) =
1

1 + 6νu2 + 2(26− 3ν)νu3
. (5.8)

5.2.2 Resummed waveform and radiation reaction:

two di�erent multipolar EOB models

The discussion now turns to the updated resummation used in TEOBiResumMultipoles, which is

the largest update in the analytical sector of the model relative to TEOBResumS. The standard EOB

factorization was �rst introduced in [81] and have brie�y reviewed in eq. (2.33) of Sec. 2.3.2. The

new improved resummation starts at the residual amplitude correction factor f`m as

f`m = [ρ`m(x)]` . (5.9)

The individual ρ`m(x) are then factorized in an orbital and spin-dependent part as

ρ`m = ρorb
`m ρ̂

S
`m (5.10)

where the superscript �orb� denotes orbital and the superscript �S� denotes spin, and all factors

are properly resummed following Refs. [123, 129]. This improved resummation, while in the non-

spinning case not yet as noticeable, greatly improved the performance of the TEOB model avatars.

The interested reader is referred to Paper II and Paper III as well as Refs. [123, 129] for an in depth

discussion and all necessary details of the improved resummation.

5.2.3 Newtonian prefactors in the waveform

With the NQC factor it is possible to capture several pieces of information that are not yet modeled

within any given TEOB avatar, even if these are not modeled therein. However, there is a limit

to what the NQC factor can correct as already seen on the BAM (8,+0.85,+0.85) waveform in the

previous chapter. During the testing and improvement of TEOBiResumMultipoles it was found that

the Newtonian prefactor could be modi�ed to improve the NQC performance.

The general form of the Newtonian prefactor of the circularized waveform is given as

h
(N,ε)
`m = νc`+ε(ν)n

(ε)
`mx

(`+ε)/2Y (`−ε,−m)(π/2, ϕ), (5.11)

where Y (π/2, ϕ) are the scalar spherical harmonics, n
(ε)
`m are parity-dependent constants given in

eq. (5)-(6) of Ref. [81], while c`+ε(ν) represent the leading-order ν dependence. In the case of
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5.2. Hamiltonian and waveform

circularized evolution one �nds the frequency parameters x = v2
Ω. However, following Ref. [73, 74]

it was proven that the (2, 2) mode indeed performs actually better during the late inspiral and

plunge if this constraint (often referred to within TEOB literature as Keppler's constraint) is relaxed

to x = v2
ϕ = (rωΩ)2 with rω ≡ rψ1/3, where ψ is de�ned such that vϕ and rω satisfy Kepler's

law 1 = Ω2r3
ω during the approximately adiabatic phase of the inspiral. The standard procedure

within TEOB is commonly to use x replaced by v2
ϕ, as it is typically done for the radiation reaction

within TEOB. As a consequence of this choice the amplitude of some multipoles are suppressed and

comparatively small. This fact hinders the performance of the NQC factor that works best if it

does not have to strongly correct the waveform. Further, one �nds experimentally for the NQC

factor that if the bare TEOB waveform is in fact larger then the NR amplitude, the performance of

the NQC factor is usually most e�cient.

Thus one way to increase the amplitude is to replace vϕ with vΩ. However, instead of completely

replacing them an individual choice was made multipole by multipole to e�ectively mimic missing

analytical information and lead to a better agreement with the NR and an improved performance

of the NQC correction factor. These choices are:

h
(N,0)
22 = −8

√
π

5
ν v2

ϕe
−2iϕ, (5.12)

h
(N,1)
21 = −8i

3

√
π

5
ν
√

1− 4ν v3
ϕe
−iϕ, (5.13)

h
(N,0)
33 = 3i

√
6π

7
ν
√

1− 4ν vϕv
2
Ωe
−3iϕ, (5.14)

h
(N,1)
32 =

8

3

√
π

7
ν(1− 3ν) v2

ϕv
2
Ωe
−2iϕ, (5.15)

h
(N,0)
31 = − i

3

√
2π

35
ν
√

1− 4νv3
Ωe
−iϕ, (5.16)

h
(N,0)
44 = −64

9

√
π

7
ν(1− 3ν) v2

ϕv
2
Ωe
−4iϕ, (5.17)

h
(N,1)
43 − 9i

5

√
2π

7
ν(2ν − 1)

√
1− 4ν v2

ϕv
3
Ωe
−3iϕ, (5.18)

h
(N,0)
42 =

8
√
π

63
ν(1− 3ν) vϕv

3
Ωe
−2iϕ, (5.19)

h
(N,1)
41 =

i

105

√
2πν(2ν − 1)

√
1− 4ν v5

Ωe
−iϕ, (5.20)

h
(N,0)
55 =

125i

12

√
5π

66
ν(2ν − 1)

√
1− 4νv4

Ωvϕe
−5iϕ. (5.21)

For all other multipoles the Newtonian prefactors in the TEOB waveform are obtained replacing

x = v2
ϕ in Eq. (5.11) as is the common practice. The reader should note that this modi�cation was

not carried over into the waveform multipoles as they enter the radiation reaction. This is clearly an

inconsistency between the waveform and the �ux. However, an inner inconsistency between any two

parts of the TEOB model in itself is not necessarily a problem, as the ultimate goal is to reproduce

faithful waveforms. Consistency is however a powerful tool to improve the model and if too many

inconsistencies are build in can potential increase the di�culty of improving the overall model. A

further potential modi�cation of the radiation reaction, aiming to increase its consistency with the

waveform, was explored in Ref. [82]. Therein it was tested how incorporating the (2, 1) and (3, 3)
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5.3. Calibration of the analytical �exibility

Table 5.1: The values of ac6 obtained through minimizing the EOB/NR dephasing at merger down to the
order of the numerical error δφNR

mrg. These values inform the �tting template given in eq. (5.22). The reader

should note that the values of δφNR
mrg di�er from those given in Tab. F.14 as the later are computed relative

to the relaxation time, while the former have been evaluated setting the relaxation time to 200M . As these
values of δφNR

mrg have been used to inform the �rst-guess values of ac6 it is best to state them here despite the
di�erence.

ID q a6
c δφNR

mrg [rad]

SXS:BBH:0002 1.00 −42 −0.063
SXS:BBH:0007 1.50 −47 −0.0186
SXS:BBH:0169 2.00 −59 −0.0271
SXS:BBH:0259 2.50 −54 −0.0080
SXS:BBH:0030 3.00 −52 −0.0870
SXS:BBH:0297 6.50 −27 −0.053
SXS:BBH:0298 7.00 −26 −0.0775
SXS:BBH:0302 9.50 −17 +0.0206

NQC corrections in the radiation reaction would a�ect the model performance. Both modi�cations

of the radiation reaction would likely come down to a redetermination of ac6, and not necessarily

improve the model beyond that. Thus, for now this inconsistency is simply accepted to improve the

model. Should the need arise to correct this inconsistency in the future it can be reimposed and

explored without large e�ort.

5.3 Calibration of the analytical �exibility

5.3.1 The calibration of ac6

As both the waveform and the A-potential have been modi�ed a new determination of ac6 is in

order2. To do so, 8 SXS waveforms with very small nominal errors are used, see Tab. 5.1. The

�rst-guess values of ac6 are determined in the manner already outlined in Sec. 4.2.3 and are listed

in Tab. 5.1. The interpolating �t is obtained with the template of a rational function as

ac6 = n0
1 + n1ν + n2ν

2 + n3ν
3

1 + d1ν
, (5.22)

with the �tted parameters being given as

n0 = 5.9951, (5.23)

n1 = −34.4844, (5.24)

n2 = −79.2997, (5.25)

n3 = 713.4451, (5.26)

d1 = −3.167. (5.27)
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Figure 5.2: A comparison of the �ts of (Âpeak
`m , ωpeak

`m ) versus SXS and BAM data for the multipoles ` ≤ 4,

1 ≤ m ≤ 4, and (`,m) = (5, 5). The reader should note that for the multipoles (3, 3) and (5, 5) the ωpeak
`m

at q = 1 was e�ectively determined by extrapolating q = 1 data with χ1 6= χ2 down to ã12 = 0, giving an
e�ective estimate of the frequency at peak of the equal-mass limit. The addition of these points was needed
ensure the proper limit of the frequency when equal-mass case is approached. The reader should further
note that the amplitude plots contain an error in the description of the y-axis as they are normalized to
Â0
`mc`+ε(ν).

5.3.2 Fits: waveform peak frequency and amplitude.

The analytical �ts of (Âpeak
`m , ωpeak

`m ) are build in a simple and straightforward manner, uniformly for

all multipoles. First, leading-order ν behavior of the Newtonian prefactor given as

c`+ε(ν) = X`+ε−1
2 + (−)`+εX`+ε−1

1 , (5.28)

is factored out for the amplitude. Second, the test-particle limit (Â0
`m, ω

0
`m), known with high

accuracy (see Tab 3 of Ref. [90]), is factored out as well for all multipoles. Leaving the quantities

2This �t was performed by Alessandro Nagar.
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Figure 5.3: The performance of the primary and global postpeak �t over the multipoles (`,m) =
(2, 2), (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1) and (5, 5) of SXS:BBH:0299, a mass ratio q = 7.5
waveform with high accuracy. For each mode the panel is divided into two subpanels, showing the direct
waveform comparison (top) and the performance of both primary and global �t on the levels of phase and
amplitude (bottom). In the top panel, the tick-red lines represent the �tted waveform template (amplitude
is solid, while the real part is dashed) obtained from the primary �t of the eq. (2.46)-(2.47) to the NR data.
This is contrasted by the real part of the NR waveform (thin, orange, dashed line) and the NR amplitude

(dashed, blue). The black, vertical line marks t`mpeak, while the blue one corresponds to t
peak
22 . Each mode has

a di�erent time normalization given by the damping time of the fundamental QNM as units of τ `m1 ≡ 1/α`m1
for the shifted time scale t− tpeak

`m . The bottom subpanel shows the �t error for both primary and global �t
on the level of phase and fractional amplitude. Comparing the two gives a general very good picture for this
waveform.

to be �tted (
ˆ̂
Apeak
`m , ω̂peak

`m ) given by the factorization

Âpeak
`m = c`+ε(ν)Â0

`m
ˆ̂
Apeak
`m , (5.29)

ωpeak
`m = ω0

`mω̂
peak
`m . (5.30)

(
ˆ̂
A`m, ω̂`m) are plotted versus ν for all �tted multipoles in Fig. 5.2. Whenever possible the BAM data

is shown as well. However, not all multipoles are well resolved in the BAM data and thus they had to

be skipped for some. Lastly, (
ˆ̂
A`m, ω̂`m) are �tted with a general template of a rational function as

k`m =
1 + nk`m1 ν + nk`m2 ν2

1 + dk`m1 ν + dk`m2 ν2
. (5.31)

The �t coe�cients are listed in Table C.1. All �ts have been done with fitnlm of MATLAB. If fitnlm

returned a su�ciently large p-value3, i.e. ' 0.3, for a coe�cient, it was set to zero manually and

the �t was redone.

3The p-value of fitnlm indicates the probability of a speci�c coe�cient to be zero as can be inferred from the
data. In the following we simply refer to this quantity as the p-value.
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5.3. Calibration of the analytical �exibility

5.3.3 Fits: postpeak waveform evolution

Similar as for the discussed in Sec. 4.2.7 and Sec. 2.3.4 the �t for (cA`m3 , cφ`m3 , cφ`m4 ) is done following

the same two-step procedure.

Primary and global �t: The ` = m = 2 postpeak �ts are using all 19 non-spinning datasets

in the calibration set. These are the �rst 19 datasets in Tab. F.14. By contrast, only subsamples

can be used for the subdominant modes, depending on the level of noise and unmodeled features

present in the waveform. One such unmodeled feature is the existence of mode-mixing. Another

feature is the beating between positive and negative QNMs [45]. While in principle it is possible to

average over these e�ects in the waveform this is not always advisable as this leads to unrealistic

and inconsistent parameters (cA`m3 , cφ`m3 , cφ`m4 ) obtained for di�erent waveforms. More precisely the

following datasets are used for the individual multipoles (the numbering of Tab F.14 is shifted by

525, i.e. waveform #2 corresponds to #(525 + 2 = 527)):{2 − 16, 18, 19} for (2, 1); {2 − 19} for
(3, 3); {1 − 15, 17, 18} for (3, 2); {2 − 11, 13, 14, 17, 18} for (3, 1); {1 − 11, 13, 15 − 19} for (4, 4);

{2 − 9, 13 − 19} for (4, 3); {1 − 8, 10 − 14, 17 − 18} for (4, 2) and {3, 6, 9 − 19} for (5, 5). For

each (`,m), the primary �t is performed over a consistently chosen time interval ∆τ`m. For the

(2, 2) mode ∆τ`m = 4τ `m1 = 4/α`m1 was chosen. All multipoles (except ` = m = 5) of the datasets

{10−19} (corresponding to q ≥ 6) utilize ∆τ`m = 4τ `m1 as well. The datasets {1−9}(corresponding
to q ≤ 5.5) and the ` = m = 5 mode all over, are �tted over ∆τ`m = τ `m1 . This choice was driven by

two factors: (i) data quality and (ii) presence of strong mode-mixing (see e.g. bottom, most-right

panel of Fig. 5.3 as a demonstrative example of the data-quality issues in the (5, 5) mode). Fig. 5.3

shows both primary and global �t illustrated on the data set SXS:BBH:0299 of a q = 7.5 BBH

waveform.

Mode-mixing: Mode-mixing best understood in the extreme-mass-ratio limit where it was stud-

ied in Ref. [45]. The origin of mode-mixing lies in the fact that during the postmerger-ringdown

phase the natural basis of the GW signal shifts from the typical spin-weighted spherical harmonics

to the spheroidal harmonic base of the �nal BH. This e�ect occurs for the ` ≥ 3 modes with ` 6= m

as modes only receive mixed contributions from modes with smaller ` and equal m. Therefor the

(2, 1) mode is largely free from any mode-mixing, yet fraught with di�erent challenges, while (3, 2),

(3, 1), (4, 3) and (4, 2) all obtain mode-mixing contributions from di�erent multipoles. The lack

of modelization of this e�ect is reason for the larger scale oscillations in the �t error of phase and

frequency for several of these modes. n conclusion, the postmerger template used here is a simple

and e�ective average of the waveform to be �tted. It is still physically incomplete, yet is a solid

approximation globally, as will be further explored below.

The �ts of (cA`m3 , cφ`m3 , cφ`m4 ) were obtained using the function fitnlm of MATLAB. As the func-

tional form of the �tting template was chosen multipole by multipole, it was chosen to list the �ts

explicitly in Tab. C.2.

Inspecting the table, it can be seen that for the piece wise �ts for cφ31
3 and cφ41

3 are discontinues

in their derivatives with respect to ν at their juncture. A more complex �t was in fact needed to

model the (4, 2) phase coe�cient cφ42
4 , with similar discontinuities in the derivative with respect to
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Figure 5.4: The NR data for q ≤ 4 shows a peculiar double peak structure in the post-peak amplitude of
the (4, 2) mode. With a particularly large secondary peak.

ν was needed. cφ42
4 was �tted with the piece-wise function

132.56− 1155.5ν + 2516.8ν2

1− 3.8231ν
if q ≤ 2.5,

−554.18ν + 120.23 if 2.5 < q < 3, (5.32)

−0.58736 + 16.401ν

1− 4.5202ν
if q ≥ 3.

The need of this complexity originates in the neglect to model mode-mixing in the postmerger. As

can be seen in Fig. 5.4, the e�ect of mode-mixing is particularly strong for 1 ≤ q ≤ 2.5 leading

in fact to a double peak structure. And in fact the peak introduced by mode-mixing is larger for

1 ≤ q ≤ 2. A model for which mode-mixing would be modeled accurately would like be able to

reproduce the double structure, yet with the template used here the secondary peak is neglected

and the model focuses in on capturing the �rst peak in an approximate fashion.

5.3.4 Fits: QNM parameters

The QNMs quantities (ω`m1 , α`m1 ) and α`m21 ≡ α`m2 − α`m1 are �tted for all multipoles considered,

exploiting the accurate representation of in terms of χf already utilized in Sec. 4.2.6. The �tting

template thus reads:

Y ′`m (χf ) = Y ′0
1 + bY

′
1 χf + bY

′
2 χ2

f + bY
′

3 χ3
f

1 + cY
′

1 χf + cY
′

2 χ2
f + cY

′
3 χ3

f

. (5.33)

The �t is following the same approach as laid out in Sec. 4.2.6. The coe�cients of the �ts above

are collected in Table C.3. All �ts were done with fitnlm of MATLAB and coe�cients have been set

to zero explicitly if the p-value was signi�cant, similar as described in Sec. 5.3.2. Note that the �ts

of(ω22
1 , α

22
1 , α

22
21) have been updated as well as they contained parameters with large p-value, thus

updating the �ts of chapter 4, listed in Tab. B.3.
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5.3.5 Fits: Peak-time-shift

The next step towards completing the NR calibration of the model is the determination fo the

peak-time shift ∆t`m relative to the (2, 2) mode as a function of ν. ∆t`m is de�ned as

∆tNR
`m = tpeak

`m − tpeak
22 . (5.34)

The test-particle limit ∆t0`m (see Table 3 of Ref. [90]) is factored out as

∆tNR
`m = ∆t0`m∆̂t`m. (5.35)

∆̂t`m is �tted against ν with the template

∆̂t`m =
1 + n∆t`m

1 ν + n∆t`m
2 ν2

1 + d∆t`m
1 ν + d∆t`m

2 ν2
. (5.36)

The coe�cients of the �ts, together with the values of ∆t0`m, are listed in Tab. C.4 explicitly. The

�ts have been done with fitnlm of MATLAB. As for the previous �ts coe�cients with a signi�cant

p-value are set to zero by hand.

5.3.6 Fits: NQC extraction point

The �nal piece to be �tted are the NQC extraction points Y =
{
ÂNQC
`m ,

˙̂
ANQC
`m , ωNQC

`m , ω̇NQC
`m

}
Which

are then used to determine the NQC correction parameters (a`m1 , a`m2 , b`m1 , b`m2 ) entering the multi-

polar NQC correction factor given in eq. (2.34). Due to a special circumstance the calibration of

the (2, 1) is postponed to be treated separately in Sec. 5.3.6 below due to the special behavior in

the test-particle limit. The NQC extraction points are de�ned following the typical manner laid out

in Sec. 2.3.2 and are �tted after the test-particle limit Y 0
`m is factorized as

Y NQC
`m = Y 0

`m
ˆ̂
Y NQC
`m . (5.37)

For frequency and derivatives the full ν dependence is encoded in
ˆ̂
Y NQC
`m , while the amplitude fur-

ther exploited the leading order Newtonian dependence on ν and is �tted instead as ÂNQC
`m /|c`+ε(ν)|.

The �ts are listed explicitly in the Tab. C.5.

(`,m) = (2, 1) mode

Fig. 5.5 shows that the onset of oscillations in the frequency right in between both merger and NQC

extraction time. This e�ect is due to beating of positive and negative frequency QNMs [45, 74, 130].

Thus, it can seen that the test-particle limit is currently unsuited for modeling the NQC extraction

points as this e�ect is not yet captured in the model and in fact would lead to quantitatively wrong

behavior of the derivatives. For this reasons the test-particle behavior is not factored out for the

(2, 1) mode but rather �tted directly all over the available data. The (2, 1) �ts are listed in the

second row of Tab. C.5.
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Figure 5.5: Amplitude |Ψ21|/ν and frequency ω21 plotted in the test-particle limit around the peak of
the mode. The waveform was generated by the code presented in Ref. [90]. As can be see zoomed in

around the peak of the waveform, tNQC
21 lies beyond the onset of the beating between negative and positive

QNMs [45, 74, 130] and thus is unsuited to be imposed onto the NQC �ts due to the presence of unmodeled
physical e�ects present.

5.4 Comparing TEOBiResumMultipoles and NR

So far in this chapter presented the individual building blocks that make up TEOBiResumMultipoles,

based on the structure on the TEOB structure introduced in Sec. 2.3. As TEOBiResumMultipoles is

now fully calibrated, it is time to focus on the validation of the model.

5.4.1 Unfaithfulness

Before starting into the discussion of the unfaithfulness it is important to point that in chapter 4 F̄

was a simple function of a single parameter for two given waveforms to be compared: the total binary

mass M . Now, as several multipoles are included it also depends on the angular orientation (ι, ϕ).

Thus, F̄ is plotted as a toned region between min-max curves of best and worst case orientation

over the total mass M . With this setup in mind it is now useful to summarize the main results of

the unfaithfulness computation presented in Paper II as4:

(i) The unfaithfulness computed for the dominant (2, 2) mode is well below 10−3 for all 19 wave-

forms. As the (2, 2) mode was already accurately reproduced all over the non-spinning catalog

by TEOBResumS it is neglected here and the interested reader is referred to Fig. 13 of Paper II

for a discussion of the (2, 2) mode.

(ii) The unfaithfulness computation between TEOBiResumMultipoles and the q = 10 waveform,

SXS:BBH:0303, is shown in Fig. 5.6 for a �xed total mass of M = 100M�. The NR waveform

is taken to include the multipoles {22, 21, 33, 44, 55} and is varied over the entire sky orien-

tation of the source binary. It demonstrates (a) that the (2,±2) mode (right panel) is fully

su�cient in the face-on or face-o� case yet strongly degrades in the edge-on case where the

contribution of the (2,±2) mode is weakest; and (b) that TEOBiResumMultipoles reproduces

4As mentioned above, the computation of the unfaithfulness has been carried out by Geraint Pratten.
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Figure 5.6: The full-sky unfaithfulness computed between TEOBiResumMultipoles and SXS:BBH:0303.
The NR simulation represents a q = 10 waveform. The NR waveform is constructed from the multipoles
{22, 21, 33, 44, 55} and compared to TEOBiResumMultipoles over the same multipoles (left) and exclusively
the (2,±2) mode (right). The system mass M = 100M� is held �xed throughout this computation. The
reader should note that the color scales change by a factor of 100 from the left to the right plot. This
signi�es the much worse performance of the pure (2,±2) mode when the edge-on case is approached, yet
for the face-on and face-o� case it performs reasonably well. Again as expected from general knowledge.
Further it is remarkable how well the full multipolar model performs when compared to NR, staying below
7× 10−3 in the worst case even.
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Figure 5.7: The minimum and maximum unfaithfulness region is computed between
TEOBiResumMultipoles and the BAM q = 18 waveform [101] (left) and the SXS:BBH:0166, q = 6
waveform (right). The vertical dot-dashed line in the left panel shows the minimum mass for which the
entire NR waveform is in band. The TEOB/NR performance for q = 6 is comparable to (though slightly
better than) SEOBNRv4HM, for the same SXS dataset, as can be seen through direct comparison with Fig. 16
of Ref. [70].

{22, 21, 33, 44, 55} very well for this system, reaching even in the worst case (edge-on) only

slightly below F̄ < 7× 10−3.

(iii) The single waveform comparison is continued for the multipole set {22, 21, 33, 44, 55} against
the BAM q = 18 and the SXS:BBH:0166 q = 6 waveform (here showing a similar performance
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Figure 5.8: The minimum and maximum unfaithfulness varied over a grid of the angles (θ, ϕ) is shown,
demonstrating clearly that the worst case performance is always below 3% for binaries with a total mass
M . 200M�. The neglecting of mode-mixing in TEOBiResumMultipoles does not show a signi�cant increase
in the unfaithfulness as it seems. The analysis in the top-panel is restricted to q ≥ 2 as the (4, 4) mode shows
several pathological features in the NR for q < 2. The best performance can be found when constraining
the F̄ computation to the modes {22, 21, 33, 44, 55} (blue). A slight degrading occurs when the (3, 2) mode
(green) or all calibrated modes (orange) are added, yet it remains below 3% for all masses up to 200M�.
The bottom panel, constrains the mode selection to {22, 21, 33}, neglecting the (4, 4) mode. This yields an
excellent agreement between TEOBiResumMultipoles and NR for all mass-ratios down to q = 1.

as SEOBNRv4HM demonstrated in Fig. 16 of Ref. [70]). The comparison is shown in Fig 5.7. An

excellent agreement is found for the entire mass-range, though the low-mass cuto� is increased

to 50M� for q = 18 and to 20M� for q = 6. Notably, q = 18 only enters the observable band

fully with a total mass of over 120M�. In fact Fig. 5.8 shows that this excellent performance

holds for all mass-ratios q ≥ 2 and can be extended to include all calibrated modes without

exceeding the maximum unfaithfulness.

(iv) Recalling the discussion of Sec. 3.5, the (4, 4) mode shows evidence of pathological features in

the region of q < 2 of the SXS catalog. Thus, an additional computation of the mismatch is

presented in the bottom panel of Fig. 5.8 to perform an unfaithfulness computation constrained

to the modes {22, 21, 33} for all waveforms down to q = 1 and it is found that the performance
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Figure 5.9: The time-domain comparison for the q = 6 SXS waveform (given by SXS:BBH:0166) compared
TEOBiResumMultipoles. The upper left panel shows the full waveform comparison on the level of phase
and relative amplitude di�erence, showing an excellent agreement and only a small dephasing accumulated
at merger despite the alignment in the inspiral. The lower left panel shows the direct comparison for the
real part of the waveform. The left hand side of this �gure is complemented by the direct comparison
of the (2, 2) and (2, 1) amplitude and frequency between TEOBiResumMultipoles and the NR. The four
panels on the right hand side show: The NR waveform (black), the bare TEOB waveform prior to NQC and
postmerger attachment (orange-dashed), the the TEOB with NQC corrections imposed (blue-dashed) and the
full TEOBiResumMultipoles waveform, combined with the postpeak waveform (red-dashed). It is noteworthy
that the waveform prior to the addition of the NQC is already in quite good agreement with NR up until
merger. It is also possible to note that the (2, 1) frequency exhibit oscillations in the late ringdown waveform.
This is likely an e�ect of mode-mixing or potentially due to the excitation of negative frequency QNMs. In
either case it is not captured at the moment by the postpeak-ringdown template.

of TEOBiResumMultipoles relative to the NR data is excellent over these modes as well.

In summary, TEOBiResumMultipoles performs with excellence when compared to several combina-

tions of modes for q ≥ 2, while for q ≥ 1 the analysis has to be constrained to exclude the (4, 4)

mode but can still produce excellent results. Improved NR data will be necessary to explore the

q < 2 performance of many subdominant modes, starting with the (4, 4) mode.

5.4.2 Time-domain phasing

It is now established that TEOBiResumMultipoles faithfully represents the NR, non-spinning wave-

forms used here. Within this context it is worth it to perrform an explicit, in depth comparison in

the time-domain for the q = 6 waveform, SXS:BBH:0166. With this comparison the following four

points can be made: (i) The bare TEOB reproduces both amplitude and frequency reasonably well

without any further need of NR calibration beyond the parameter ac6. (ii) The e�ect of the NQC is

small, limited and thus e�cient, as is the ideal case for a well build TEOB avatar. (iii) The transition

between inspiral and postpeak waveform can be done smoothly for all modes if the NR information

is taken into account properly. (iv) The description of the postpeak-ringdown waveform is reliable

and robust, even though incomplete with respect to mode-mixing.

The time-domain comparison is shown over Fig. 5.9 � 5.12 and a summary plot is shown in

Fig. 5.13. Studying these �gures in depth the following conclusions and observations can be made:

(i) The (2, 2) shows an excellent agreement with TEOBiResumMultipoles when aligned in the in-
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Figure 5.10: The continuation of Fig. 5.9, extending the comparison between TEOBiResumMultipoles

and SXS:BBH:0166, q = 6 to the multipoles {33, 32, 31, 44, 43, 42} mode, all calibrated to NR. Note that
even though clear e�ects of mode-mixing are visible, and while not incorporated in the analytical ringdown
description, still did not a�ect the overall unfaithfulness.

spiral, leading up to only a minimal dephasing, with all likely hood well within the uncertainty

of the waveform, even though this cannot be estimated due to the lack of a second resolution.

(ii) The bare TEOB waveform reproduces the frequency across all multipoles accurately until

around the merger. In itself this is already remarkable. Even though uncalibrated on any

level this holds true for the {54, 53, 52, 66} modes as well.

(iii) The (2, 1) mode postpeak-ringdown waveform lacks in modelization of the oscillation excited

in the late NR ringdown. Due to the shape of the oscillation this could potentially be the

beating of positive and negative frequency QNMs, but it would also be possible that it is an

e�ect due to mode-mixing. In either case this e�ect is currently not modeled in the postpeak

waveform, even though it is averaged in a robust manner. For all further modes with ` 6= m

clear signs of mode-mixing can be observed, yet the postpeak waveform averages the amplitude

accurately.

(iv) Considering the summary plot Fig. 5.13, it appears TEOBiResumMultipoles, while certainly

not perfectly, still robustly reproduces the waveforms SXS:BBH:0166 of a q = 6 BBH system.
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Figure 5.11: The continuation of Fig. 5.9 � 5.10, extending the comparison between
TEOBiResumMultipoles and SXS:BBH:0166, q = 6 to the multipoles {41, 55} mode, thus concluding all
NR calibrated multipoles. Note that even though clear e�ects of mode-mixing are visible, and while not
incorporated in the analytical ringdown description, still did not a�ect the overall unfaithfulness. Even
though the (4, 1) mode shows heavy numerical noise in the frequency, it shows qualitative an agreement the
three steps of evolution of NR calibration. The (5, 5) frequencies are in remarkably good agreement all over.
For both modes, the NQC-corrected amplitude, close to merger tends to be larger compared to the NR one.
While in the case of the (5, 5) mode it seems that NR is su�ciently resolved such that this disagreement is
a potentially physically relevant one, this cannot be said for the (4, 1) mode as it is clearly dominated by
noise preventing any statement, on the quality of the waveform comparison here, to be conclusive.
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Figure 5.12: The conclusion of Fig. 5.9 � 5.11 comparing the mass ratio q = 6 waveform, SXS:BBH:0166,
to TEOBiResumMultipoles. The multipoles {54, 53, 52, 66} are added, uncalibrated and thus only the bare
analytical waveform is given on the TEOBiResumMultipoles side. The vertical line in each panel marks the
location of the ` = m = 2 waveform peak, i.e. the merger. It is indeed remarkable that the bare frequency
reproduces the NR one with a reasonably good agreement up until merger across al multipoles.
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Figure 5.13: The full picture around merger for the mass-ratio q = 6, SXS:BBH:0166 data set (black
lines). TEOBiResumMultipoles is compared on the level of amplitudes |h`m(t)|/ [νc`+ε(ν)] (top panel) and
frequencies ω`m(t) (bottom panel) to the NR waveform.
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Chapter 6

Subdominant modes: The spinning case

The discussion will now turn to TEOBiResumS_SM, the third avatar of the TEOB model introduced in

Sec. 2.3. This chapter will be devoted to the extension of the multipoles of TEOBiResumMultipoles

to the spinning case. After the improved NR calibration is presented, following Paper III, it is

validated on the full NR catalog presented in chapter 3. The model will be evaluated in comparison

to both the calibration set, that was used to inform the model, and the validation that, with some

exceptions, was only used to test the performance of the model.

6.1 TEOBiResumS_SM Hamiltonian and waveform

The structure of TEOBiResumS_SM is take in the non-spinning sector to be that of TEOBiResumMultipoles,

with respect to the A-potential and waveform. For further details on the concrete resumma-

tion and factorization of the waveform the reader is referred to Paper II and Paper III as well

as Refs. [123, 129]. The gyro-gravitomagnetic ratios (GS , GS∗) are re-expressed as functions of

u = 1/r and r instead of uc and 1/rc as motivated by the discussion in Paper I and the robustness

analysis of the waveform presented in Sec. 4.4. These changes require an improved calibration of

the NNNLO spin-orbit parameter c3(ν, ã1, ã2). And due to the updated availability of an improved

(8,+0.85,+0.85) waveform an updated calibration of the postmerger as well as the NQC of the

(2, 2) mode is required.

6.2 Improved NR calibration of the multipolar ringdown waveform

It is now time to turn to the improved NR calibration of TEOBiResumS_SM. The updated NR cali-

bration includes:

(i) An improved �t of c3, to account for the changes in the Hamiltonian, the improved resumma-

tion of the waveform and the improved A-potential combined with the updated ac6 introduced

in the previous chapter.

(ii) Peak amplitude and frequency for the individual multipoles.

(iii) The peak-time-shifts ∆t`m of the subdominant modes relative to the merger.

(iv) The �ts of the NR NQC extraction points
(
ANQC
`m , ωNQC

`m , ȦNQC
`m , ω̇NQC

`m

)
.
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6.2. Improved NR calibration of the multipolar ringdown waveform

(v) The phenomenological postpeak evolution parameters (cA`m3 , cφ`m3 , cφ`m4 ).

However, the reader should note that in some situations the non-spinning �ts of (cA`m3 , cφ`m3 , cφ`m4 )

presented in Chap. 5 and Paper II are more stable and give overall a more robust representation

of the postpeak waveform. In some situations it was found indeed that the peak and ringdown

are su�cient to capture the spins dependence and thus the non-spinning evolution parameter were

chosen right away.

The �ts of the quasi-normal-mode frequencies and (inverse) damping times entering
(
ω`m1 , α`m1 , α`m21

)

are given in Paper II and discussed in Chap. 5. Due to their spin-dependence being captured by

the �t of χf presented in Ref. [107] no further modi�cation is necessary.

The NQC extraction points of the waveform are now extracted analytically from the postpeak

template as will discussed below. For the (4, 4) mode, however, this procedure was not able to

deliver an accurate time-derivative of the waveform amplitude, so that a dedicated �t is required.

Due to the inclusion of the (`,m) = (2, 2) NQC in the radiation reaction it is here necessary as

well to provide accurate �ts for all 4 NQC quantities. Unless otherwise stated all �ts are done

using fitnlm of matlab and NonLinearModelFit of MATHEMATICA. All �ts exclusively use the data

taken from the BAM catalog, test-particle data and the calibration set of SXS waveforms listed in

Appendix F and detailed in chapter 3. The exception is ∆t21, which is informed additionally by

the validation set of SXS waveforms.

6.2.1 NR-informed EOB functions: ac
6 and c3

The �t of ac6(ν) is used as presented in eq. (5.22) of Chap. 5. The improved �t of c3
1 is done in

an identical manner to the method discussed in Sec. 4.2.3, however with an increased set of NR

waveforms, listed in Tab. 6.1, consisting of 30 SXS and 2 BAM waveforms.

The data of Table 6.1 are �tted globally with a template simpli�ed relative to the one used in

Sec. 4.2.3. The template is given by

c3(ã1, ã2, ν) = p0
1 + n1ã0 + n2ã

2
0 + n3ã

3
0 + n4ã

4
0

1 + d1ã0

+ p1ã0ν
√

1− 4ν + p2 (ã1 − ã2) ν2, (6.1)

where the �tted parameters are given as

p0 = 45.235903, (6.2)

n1 = −1.688708, (6.3)

n2 = 0.787959, (6.4)

n3 = −0.018080, (6.5)

n4 = −0.001906, (6.6)

d1 = −0.751479, (6.7)

p1 = 47.3756, (6.8)

p2 = −36.1964. (6.9)

1This �t was performed by Alessandro Nagar.
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Table 6.1: Binary con�gurations, �rst-guess values of c3 used to inform the global interpolating �t given
in eq. (6.1), and the corresponding cfit

3 values.

# ID (q, χ1, χ2) cfirst guess
3 cfit

3

1 SXS:BBH:0156 (1,−0.95,−0.95) 88 87.87
2 SXS:BBH:0159 (1,−0.90,−0.90) 85.5 85.54
3 SXS:BBH:0154 (1,−0.80,−0.80) 81 80.90
4 SXS:BBH:0215 (1,−0.60,−0.60) 71.5 71.72
5 SXS:BBH:0150 (1,+0.20,+0.20) 38.0 36.92
6 SXS:BBH:0228 (1,+0.60,+0.60) 22.0 21.94
7 SXS:BBH:0230 (1,+0.80,+0.80) 15.5 16.25
8 SXS:BBH:0153 (1,+0.85,+0.85) 14.5 15.25
9 SXS:BBH:0160 (1,+0.90,+0.90) 14.9 14.53
10 SXS:BBH:0157 (1,+0.95,+0.95) 14.3 14.20
11 SXS:BBH:0177 (1,+0.99,+0.99) 14.2 14.32
12 SXS:BBH:0004 (1,−0.50, 0) 54.5 56.61
13 SXS:BBH:0231 (1,+0.90, 0) 27.0 26.18
14 SXS:BBH:0232 (1,+0.90,+0.50) 19.0 18.38
15 SXS:BBH:0005 (1,+0.50, 0) 34.3 34.34
16 SXS:BBH:0016 (1.5,−0.50, 0) 57.0 58.19
17 SXS:BBH:0255 (2,+0.60, 0) 29.0 29.75
18 SXS:BBH:0256 (2,+0.60,+0.60) 22.8 23.68
19 SXS:BBH:0257 (2,+0.85,+0.85) 15.7 17.73
20 SXS:BBH:0036 (3,−0.50, 0) 60.0 60.39
21 SXS:BBH:0267 (3,−0.50,−0.50) 69.5 65.28
22 SXS:BBH:0174 (3,+0.50, 0) 30.0 31.20
23 SXS:BBH:0286 (3,+0.50,+0.50) 26.0 27.28
24 SXS:BBH:0291 (3,+0.60,+0.60) 23.4 24.22
25 SXS:BBH:0293 (3,+0.85,+0.85) 16.2 18.48
26 SXS:BBH:0060 (5,−0.50, 0) 62.0 61.91
27 SXS:BBH:0110 (5,+0.50, 0) 31.0 29.97
28 SXS:BBH:1375 (8,−0.90, 0) 64.0 78.27
29 SXS:BBH:0064 (8,−0.50, 0) 57.0 63.23
30 SXS:BBH:0065 (8,+0.50, 0) 28.5 28.86
31 BAM (8,+0.80, 0) 24.5 20.85
32 BAM (8,+0.85,+0.85) 16.3 18.11

6.2.2 Modeling the peak of each multipole

The modelization of the peak and postpeak waveform multipole by multipole is done following

precisely the same procedure adopted in the nonspinning case, but incorporating spin dependence

(whenever possible) in all �ts. In practice the spin-dependence is included as: (i) complete spin-

dependence for what concerns peak quantities and postpeak �ts in all ` = m modes up to ` = 5; (ii)

modes like (2, 1), (3, 2), (4, 3) and (4, 2) include spin dependence for peak frequency and amplitude,

but they adopt the simpler nonspinning �ts for the parameters entering the postpeak waveform

description; (iii) the (3, 1) and (4, 1) mode only rely on nonspinning information. The values at

the NQC determination points are either obtained with dedicated �ts of the corresponding NR

quantities, or directly from the postpeak behavior. It will be shown, this approach allows one to
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obtain a rather robust description of the ringdown waveform all over the parameter space. Firstly,

it is useful to recall some symmetric combinations of the spin variables that will be useful later on

Ŝ ≡ S1 + S2

M2
=

1

2
(â0 +X12ã12) , (6.10)

S̄ ≡ S1 − S2

M2
=

1

2
(X12â0 + ã12) . (6.11)

Motivated by the leading-order analytical behavior of each multipole, rescaled multipolar amplitudes

Â`m which previously have only been rescaled by ν now are rede�ned as:

Â22 ≡ A22/
[
ν
(

1− Ŝω22

)]
, (6.12)

Â21 ≡ A21/ν, (6.13)

Â33 ≡ A33/ν, (6.14)

Â32 ≡ A32/
[
ν
(

1− â0 (ω32/2)1/3
)]
, (6.15)

Â44 ≡ A44/

[
ν

(
1− 1

2
Ŝω44

)]
, (6.16)

Â43 ≡ A43/ν, (6.17)

Â42 ≡ A42/
[
ν
(

1− â0 (ω42/2)1/3
)]
. (6.18)

Now each mode will be discussed individually.

(`,m) = (2, 2) multipole

The �rst mode to discuss is by describing the template with which ωmrg
22 and Âmrg

22 were �tted.

The same structure is used both for the amplitude and frequency at merger. The template is here

presented explicitly for ωmrg
22 , while the same for Âmrg

22 is obtained by suitably changing the coe�cient

labels. The frequency at merger ωmrg
22 is factorized as

ωmrg
22 = ω

mrg0
22 ωorb

22 (ν)ωŜ22(Ŝ,X12) , (6.19)

where ω
mrg0
22 is the value of the merger frequency obtained from a nonspinning test-particle waveform

(see e.g. Tab. 3 of [90]). The nonspinning ν-dependence is then introduced by �tting the nonspinning

data with a template of the form

ωorb
22 (ν) = 1 + aω1 ν + aω2 ν

2 , (6.20)

where the coe�cients aωi are determined using 19 non-spinning SXS waveforms with mass ratios

1 ≤ m1/m2 ≤ 10. The spin dependence is introduced in two steps: �rst one accurately �ts

the spin-dependence of equal-mass data. Then, additional �exibility to incorporate the spinning,

unequal-mass data is introduced. More precisely the equal-mass, spin-dependence is obtained with

ωŜ22(Ŝ,X12 = 0) =
1 + b

ωm1=m2
1 Ŝ + b

ωm1=m2
2 Ŝ2

1 + b
ωm1=m2
3 Ŝ

, (6.21)
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6.2. Improved NR calibration of the multipolar ringdown waveform

which is informed by 39 equal-mass, spin-aligned, SXS waveforms. The additional dependence on

mass ratio is incorporated substituting into Eq. (6.21)

b
ωm1=m2
i → b

ωm1=m2
i + cωi1X12

1 + cωi2X12
, (6.22)

with i = {1, 3}. where the additional coe�cients cij are �tted using test-particle data, 77 additional

SXS spinning waveforms and 14 additional NR waveforms from BAM. The coe�cients are explicitly

given in Table D.1.

(`,m) = (2, 1) multipole

The procedure followed for the subdominant modes is similar to what is done for the (2, 2). There

are however some di�erences. First of all, the peak time shift ∆t`m is also �tted to NR simulations.

Second, based on the analytical behavior of the multipolar waveform, it was decided to use di�er-

ent factorizations and di�erent variables to model each mode. For example, the (2, 1) multipole

(and every m-odd mode) vanishes because of symmetry in the equal-mass, equal-spin case. This

motivated the choice of the following factorization for Âpeak
21 , which is written as

Âpeak
21 = Â

peak0
21 X12Â

orb
21 (ν) + ÂSpin

21

(
S̄, ν

)
. (6.23)

where Â
peak0
21 is the peak amplitude in the test-particle limit. The factor Âorb

21 is informed by non-

spinning waveforms and is �tted with the template

Âorb
21 (ν) =

1 + aÂ21
1 ν + aÂ21

2 ν2

1 + aÂ21
3 ν

. (6.24)

The spin dependence is �rst captured in the test-particle limit with the function

ÂSpin
21 (S̄, ν = 0) =

1 + b
Â0

21
1 S̄ + b

Â0
21

2 S̄2

1 + b
Â0

21
3 S̄

. (6.25)

The ν-dependence is then modeled via the replacement

b
Â0

21
i → b

Â0
21

i + cÂ21
i1 ν + cÂ21

i2 ν2 , (6.26)

with i = {1, 2, 3}.
The gravitational wave frequency ω21 is instead factorized as

ωpeak
21 = ω

peak0
21 ωorb

21 (ν)ωSpin
21

(
Ŝ, ν

)
, (6.27)

where the ν-dependence of the nonspinning part is modeled as

ωorb
21 (ν) = 1 + aω21

1 ν + aω21
2 ν2 . (6.28)
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The spin dependence is �tted �rst in the test-particle limit

ωSpin
21

(
Ŝ, ν = 0

)
= 1 + b

ω0
21

1 Ŝ + b
ω0

21
2 Ŝ2 , (6.29)

and then extended to a general mass ratio via the replacement

b
ω0

21
i → b

ω0
21
i + cω21

i ν , (6.30)

with i = {1, 2}.
Finally, to represent analytically the time-delay ∆t21 the following template was used

∆t21 = ∆torb
21 (ν)∆tspin

21

(
S̄,X12

)
, (6.31)

where the orbital behavior is factorized into two separate parts before �tting with

∆torb
21 (ν) =

(
∆t021(1− 4ν) + ∆t

ν=1/4
21 4ν

)

×
(

1 + a∆t21
1 ν

√
1− 4ν

)
. (6.32)

The factor ∆t
ν=1/4
21 is obtained by �tting a 2nd-order polynomial, in â0 to the equal-mass waveforms.

∆t021 is the test-particle value. The equal-mass spin behavior is �tted with

∆tspin
21

(
S̄,X12 = 0

)
= 1 + b

∆t
ν=1/4
21

1 â0 + b
∆t

ν=1/4
21

2 â2
0 , (6.33)

while the comparable mass case is extrapolated using

b
∆t

ν=1/4
21

1 → b
∆t021
1 + c∆t21

i1 X12

1 + c∆t21
i2 X12

, (6.34)

with i = {1, 2}. The outcome of the �t, with the explicit values of all coe�cients, id found in

Table D.2.

(`,m) = (3, 3) multipole

For this mode, the peak amplitude is written as the sum of two terms

Âpeak
33 = Â

peak0
33 X12Â

orb
33 (ν) + ÂSpin

33 (ã12, ν) , (6.35)

where Â
peak0
33 is the peak amplitude in the test particle limit. The orbital term is modeled as

Âorb
33 (ν) =

1 + aÂ33
1 ν + aÂ33

2 ν2

1 + aÂ33
3 ν

. (6.36)

The spin dependence is �rst �tted in the test-particle limit using

ÂSpin
33 (ã12, ν = 0) =

b
Â0

33
1 ã12

1 + b
Â0

33
2 ã12

, (6.37)
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6.2. Improved NR calibration of the multipolar ringdown waveform

and then extended to comparable masses via the replacements

b
Â0

33
1 → b

Â0
33

1 + cÂ33
11 ν

1 + cÂ33
12 ν + cÂ33

13 ν2
, (6.38)

b
Â0

33
2 → b

Â0
33

2 + cÂ33
21 ν

1 + cÂ33
22 ν + cÂ33

23 ν2
. (6.39)

The instantaneous frequency ω33 is factorized as

ωpeak
33 = ω

peak0
33 ωorb

33 (ν)ωSpin
33

(
Ŝ, ν

)
, (6.40)

where

ωorb
33 (ν) = 1 + aω33

1 ν + aω33
2 ν2 . (6.41)

The test-particle spin factor is given by

ωSpin
33

(
Ŝ, ν = 0

)
=

1 + b
ω0

33
1 Ŝ + b

ω0
33

2 Ŝ2

1 + b
ω0

33
3 Ŝ

, (6.42)

while the general spin-dependence stems from the replacement

b
ω0

33
i → b

ω0
33
i + cω33

i1 ν

1 + cω33
i2 ν

, (6.43)

with i = {1, 3}.
To describe ∆t33 we start from the expression

∆t33 = ∆t033∆torb
33 (ν)∆tspin

33

(
Ŝ, ν

)
, (6.44)

with

∆torb
33 (ν) = 1 + a∆t33

1 ν + a∆t33
2 ν2 , (6.45)

∆tspin
33

(
Ŝ, ν = 0

)
=

1 + b
∆t033
1 Ŝ + b

∆t033
2 Ŝ2

1 + b
∆t033
3 Ŝ

. (6.46)

The spin-dependence is obtained from the replacement

b
∆t033
1 → b

∆t033
1 + c∆t33

i1 ν

1 + c∆t33
i2 ν

, (6.47)

with i = {1, 2, 3}. The explicit values of the �t coe�cients are listed in Table D.3.
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(`,m) = (3, 2) multipole

The peak amplitude of the (3, 2) mode is �tted with a factorized template of the form

Âpeak
32 = Â

peak0
32 (1− 3ν) Âorb

32 (ν) ÂSpin
32

(
S̄, ν

)
, (6.48)

where Â
peak0
32 is the peak amplitude of the mode in the test-particle limit. The factor Âorb

32 is informed

by non-spinning waveforms and is �tted with the template

Âorb
32 (ν) =

1 + aÂ32
1 ν + aÂ32

2 ν2

1 + aÂ32
3 ν

. (6.49)

The spin dependence is �rst captured for the test-particle limit with the function

ÂSpin
32 (S̄, ν = 0) =

1 + b
Â0

32
1 ã0

1 + b
Â0

32
2 ã0

, (6.50)

while the ν-dependence enters via the replacement

b
Â0

32
i → b

Â0
32

i + cÂ32
i1 ν + cÂ32

i2 ν2

1 + cÂ32
i3 ν + cÂ32

i4 ν2
, (6.51)

with i = {1, 2}.
The instantaneous frequency ω32 mode is factorized as

ωpeak
32 = ω

peak0
32 ωorb

32 (ν)ωSpin
32 (ã0, ν) . (6.52)

The orbital dependence is modeled as

ωorb
32 (ν) =

1 + aω32
1 ν + aω32

2 ν2

1 + aω32
3 ν + aω32

4 ν2
. (6.53)

The spin dependence is �tted �rst for the equal-mass case

ωSpin
32 (ã0, ν = 1/4) =

1 + b
ω
ν=1/4
32

1 ã0 + b
ω
ν=1/4
32

2 ã2
0

1 + b
ω
ν=1/4
32

3 ã0

, (6.54)

while the additional dependence on the mass ratio enters via the replacements

b
ω0

32
i → b

ω
ν=1/4
32
i + cω32

i1 X12 + cω32
i2 X2

12

1 + cω32
i3 X12

, (6.55)

with i = {1, 2}. The coe�cients of Âpeak
32 and ωpeak

32 are explicitly listed in Table D.4.

Moving to ∆t32, it is given by

∆t32 = ∆t032∆torb
32 (ν)∆tspin

32

(
Ŝ, ν

)
, (6.56)
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where the orbital behavior is �tted with

∆torb
32 (ν) =

1 + a∆t32
1 ν + a∆t32

2 ν2

1 + a∆t32
3 ν + a∆t32

4 ν2
. (6.57)

The spin behavior is more complicated than the corresponding term of other modes. This is sepa-

rated into two sectors, as

∆tspin
32

(
Ŝ, ν

)
= ∆t

spinν>1/5

32

(
Ŝ, ν

)
Θ (ν − 1/5)

+ ∆t
spinν≤1/5

32

(
Ŝ, ν

)
[1−Θ (ν − 1/5)] , (6.58)

where Θ denotes the Heaviside step function. In the ν > 1/5 regime the �t is �rst done to the

equal-mass case

∆t
spinν>1/5

32

(
Ŝ, ν = 1/4

)
=

1 + b
∆t

ν=1/4
32

1 Ŝ + b
∆t

ν=1/4
32

2 Ŝ2

1 + b
∆t

ν=1/4
32

3 Ŝ

. (6.59)

Then it is extrapolated following

b
∆t

ν=1/4
32

i → b
∆t

ν=1/4
32

1 + c∆t32
i1 X12 + c∆t32

i2 X2
12 + c∆t32

i3 X3
12

1 + c∆t43
i4 X12 + c∆t43

i5 X2
12

, (6.60)

with i = {1, 2, 3}.
In the ν ≤ 1/5 regime the �t is �rst done to the equal-mass case

∆t
spinν≤1/5

32

(
Ŝ, ν = 0

)
=

1 + b
∆t032
1 Ŝ + b

∆t032
2 Ŝ2

1 + b
∆t032
3 Ŝ

. (6.61)

Then it is extrapolated following

b
∆t032
i → b

∆t032
1 + c∆t32

i1 ν + c∆t32
i2 ν2 + c∆t32

i3 ν3

1 + c∆t32
i4 ν + c∆t32

i5 ν2
, (6.62)

with i = {1, 2, 3}. The coe�cients appearing in ∆t32 are shown in Table D.5.

(`,m) = (4, 4) multipole

The peak amplitude of the (4, 4) mode is �tted with

Âpeak
44 = Â

peak0
44 (1− 3ν) Âorb

44 (ν) ÂSpin
44

(
Ŝ, ν

)
, (6.63)

where Â
peak0
44 is the peak amplitude of the mode in the test-particle limit. The factor Âorb

44 is informed

by non-spinning waveforms and is �tted with the template

Âorb
44 (ν) =

1 + aÂ44
1 ν + aÂ44

2 ν2

1 + aÂ44
3 ν

. (6.64)
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The spin dependence is �rst captured for the test-particle limit with the function

ÂSpin
44 (Ŝ, ν = 0) =

1 + b
Â0

44
1 Ŝ + b

Â0
44

2 Ŝ2

1 + b
Â0

44
3 Ŝ

, (6.65)

and then extended in the comparable mass region of the parameter space through

b
Â0

44
i → b

Â0
44

i + cÂ44
i1 ν + cÂ44

i2 ν2

1 + cÂ44
i3 ν + cÂ44

i4 ν2
, with i = {1, 2, 3} . (6.66)

The peak frequency ω44 is factorized as

ωpeak
44 = ω

peak0
44 ωorb

44 (ν)ωSpin
44

(
Ŝ, ν

)
. (6.67)

The orbital dependence is modeled through

ωorb
44 (ν) =

1 + aω44
1 ν + aω44

2 ν2

1 + aω44
3 ν + aω44

4 ν2
. (6.68)

The spin dependence is �tted �rst for the test-particle limit as

ωSpin
44

(
Ŝ, ν = 0

)
=

1 + b
ω0

44
1 Ŝ + b

ω0
44

2 Ŝ2 + b
ω0

44
3 Ŝ3

1 + b
ω0

33
4 Ŝ

. (6.69)

The spin dependence in the comparable mass region of the parameter space is modeled through

b
ω0

44
i → b

ω0
44
i + cω44

i1 ν + cω44
i2 ν2

1 + cω44
i3 ν + cω44

i4 ν2
, (6.70)

with i = {1, 2, 3, 4}.
We �t ∆t44 in a factorized form as

∆t44 = ∆t044∆torb
44 (ν)∆tspin

44

(
Ŝ,X12

)
. (6.71)

The orbital behavior is �tted with

∆torb
44 (ν) =

1 + a∆t44
1 ν + a∆t44

2 ν2

1 + a∆t44
3 ν + a∆t44

4 ν2
, (6.72)

while the spinning one is �rst �tted to equal mass simulations as

∆tspin
44

(
Ŝ,X12 = 0

)
=

1 + b
∆t

ν=1/4
44

1 Ŝ

1 + b
∆t

ν=1/4
44

2 Ŝ

. (6.73)

The general ν-dependence enters via the replacement

b
∆t

ν=1/4
44

i → b
∆t

ν=1/4
44

i + c∆t44
i1 X12 + c∆t44

i2 X2
12 , (6.74)
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with i = {1, 2}. The explicit values of the �t coe�cients can be found in Table D.6.

(`,m) = (4, 3) multipole

The peak amplitude of the (4, 3) mode is �tted with

Âpeak
43 = Â

peak0
43 X12 (1− 2ν) Âorb

43 (ν) + ÂSpin
43 (ã0, ν) , (6.75)

where Â
peak0
43 is the peak amplitude of the mode in the test-particle limit. The factor Âorb

43 is informed

by non-spinning waveforms and is �tted with the template

Âorb
43 (ν) =

1 + aÂ43
1 ν + aÂ43

2 ν2

1 + aÂ43
3 ν

. (6.76)

The spin dependence is �rst captured for the test-particle limit with the function

ÂSpin
43 (ã0, ν = 0) =

1 + b
Â0

43
1 ã0 + b

Â0
43

2 ã2
0

1 + b
Â0

43
3 ã0

. (6.77)

The spin dependence in the comparable mass region of the parameter space is modeled through

b
Â0

43
i → b

Â0
43

i + cÂ43
i1 ν

1 + cÂ43
i2 ν + cÂ43

i3 ν2
, (6.78)

with i = {1, 2, 3}. For the equal mass case however a special �t is made to accurately capture the

correct behavior, i.e.

Âpeak
43

(
ã12, ν =

1

4

)
=
b
Â
ν=1/4
43

1 ã12 + b
Â
ν=1/4
43

2 ã2
12

1 + b
Â
ν=1/4
43

3 ã12

. (6.79)

The instantaneous frequency at peak ωpeak
43 is factorized as

ωpeak
43 = ω

peak0
43 ωorb

43 (ν)ωSpin
43

(
Ŝ, ν

)
, (6.80)

where the orbital factor is modeled as

ωorb
43 (ν) =

1 + aω43
1 ν + aω43

2 ν2

1 + aω43
3 ν + aω43

4 ν2
. (6.81)

The spin dependence is �tted �rst for the test-particle case

ωSpin
43

(
Ŝ, ν = 0

)
=

1 + b
ω0

43
1 Ŝ + b

ω0
43

2 Ŝ2

1 + b
ω0

43
3 Ŝ

, (6.82)

and then extended to other regions of the parameter space with

b
ω0

43
i → b

ω0
43
i + cω43

i1 ν + cω43
i2 ν2

1 + cω43
i3 ν

, (6.83)
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where i = {1, 2, 3}.
For what concerns ∆t43, it is represented as

∆t43 = ∆t043∆torb
43 (ν)∆tspin

43

(
Ŝ, ν

)
, (6.84)

with

∆torb
43 (ν) =

1 + a∆t43
1 ν + a∆t43

2 ν2

1 + a∆t43
3 ν + a∆t43

4 ν2
, (6.85)

∆tspin
43

(
Ŝ, ν = 0

)
=

1 + b
∆t043
1 Ŝ + b

∆t043
2 Ŝ2

1 + b
∆t043
3 Ŝ

. (6.86)

We then incorporate the general ν-dependence via the replacement

b
∆t043
i → b

∆t043
1 + c∆t43

i1 ν + c∆t43
i2 ν2

1 + c∆t43
i3 ν + c∆t43

i4 ν2
, (6.87)

with i = {1, 2, 3}. The explicit values of the �t coe�cients are listed in Table D.7.

(`,m) = (4, 2) multipole

The peak amplitude of the (4, 2) mode is �tted with a factorized template of the form

Âpeak
42 = Â

peak0
42 (1− 3ν) Âorb

42 (ν) ÂSpin
42

(
Ŝ, ν

)
, (6.88)

where Â
peak0
42 is the peak amplitude of the mode in the test-particle limit. The factor Âorb

42 is informed

by non-spinning waveforms and is �tted with the template

Âorb
42 (ν) = 1 + aÂ42

1 ν + aÂ42
2 ν2 . (6.89)

The spin dependence is �rst captured for the test-particle limit with the function

ÂSpin
42 (Ŝ, ν = 0) =

1 + b
Â0

42
1 Ŝ + b

Â0
42

2 Ŝ2

1 + b
Â0

42
3 Ŝ + b

Â0
42

4 Ŝ2
. (6.90)

The general ν-dependence is then taken into account via the replacement

b
Â0

42
i → b

Â0
42

i + cÂ42
i1 ν

1 + cÂ42
i2 ν

, (6.91)

with i = {1, 2, 3, 4}.
The instantaneous frequency ωpeak

42 is factorized as

ωpeak
42 = ω

peak0
42 ωorb

42 (ν)ωSpin
42

(
Ŝ, ν

)
(6.92)
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The orbital dependence is modeled through

ωorb
42 (ν) =

1 + aω42
1 ν + aω42

2 ν2

1 + aω42
3 ν + aω42

4 ν2
. (6.93)

The spin dependence is �tted �rst for the test-mass case with

ωSpin
42

(
Ŝ, ν = 0

)
=

1 + b
ω0

42
1 Ŝ + b

ω0
42

2 Ŝ2

1 + b
ω0

42
3 Ŝ + b

ω0
42

4 Ŝ2
, (6.94)

and then the general ν-dependence is taken into account via the replacement

b
ω0

42
i → b

ω0
42
i + cω42

i1 ν

1 + cω42
i2 ν + cω42

i3 ν2
, (6.95)

with i = {1, 2, 3, 4}. The delay ∆t42 is �tted as

∆t42 = ∆t042∆torb
42 (ν)∆tspin

42

(
Ŝ, ν

)
, (6.96)

where

∆torb
42 (ν) =

1 + a∆t42
1 ν + a∆t42

2 ν2

1 + a∆t42
3 ν + a∆t42

4 ν2
, (6.97)

∆tspin
42

(
Ŝ, ν = 0

)
=

1 + b
∆t042
1 Ŝ

1 + b
∆t042
2 Ŝ

. (6.98)

For ν < 6/25 the spin factor is approximated by the test-particle �t. For the other regions, it is

extrapolated using

b
∆t042
i → b

∆t042
1 + c∆t42

i1 ν

1 + c∆t42
i2 ν

, (6.99)

with i = {1, 2}. The explicit values of the coe�cients of the �ts are listed in Table D.8.

(`,m) = (5, 5) multipole

For this multipole, the peak amplitude is written as the sum of two terms as

Âpeak
55 = Â

peak0
55 X12 (1− 2ν) Âorb

55 (ν) + ÂSpin
55 (ã12, ν) , (6.100)

where Â
peak0
55 is the peak amplitude in the test particle limit. The non-spinning ν-dependence is

modeled as

Âorb
55 (ν) = 1 + aÂ55

1 ν + aÂ55
2 ν2 . (6.101)
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The spin dependence is �rst �tted to the test-particle limit using

ÂSpin
55 (ã12, ν = 0) =

b
Â0

55
1 ã12

1 + b
Â0

55
2 ã12

, (6.102)

and then extrapolated to the comparable mass region through

b
Â0

55
1 → b

Â0
55

1

1 + cÂ55
11 ν + cÂ55

12 ν2
, (6.103)

b
Â0

55
2 → b

Â0
55

2

1 + cÂ55
21 ν + cÂ55

22 ν2
. (6.104)

The frequency of the (5, 5) mode is factorized as

ωpeak
55 = ω

peak0
55 ωorb

55 (ν)ωSpin
55

(
Ŝ, ν

)
, (6.105)

where

ωorb
55 (ν) =

1 + aω55
1 ν + aω55

2 ν2

1 + aω55
3 ν

, (6.106)

and the test-particle spin factor is given by

ωSpin
55

(
Ŝ, ν = 0

)
=

1 + b
ω0

55
1 Ŝ

1 + b
ω0

55
2 Ŝ

. (6.107)

The spin dependence in the general case is obtained by means of

b
ω0

55
i → b

ω0
55
i + cω55

i1 ν

1 + cω55
i2 ν

, (6.108)

with i = {1, 2}. Note that, in this case, we do not incorporate spin-dependence in ∆t55, but only

rely on the nonspinning �t of Ref. [133]. The coe�cients of the �ts if Âpeak
55 and ωpeak

55 are listed in

Table D.9

6.2.3 NR-�tting of the postpeak parameters

The discussion turns now to the �ts of the postpeak evolution parameters (cA`m3 , cφ`m3 , cφ`m4 ) for (2, 2),

(3, 3), (4, 4), (5, 5). The �ts that explicitly depend on the spins of the black holes are presented

here. By contrast, the same parameters for the other multipoles (2, 1), (3, 2), (3, 1) (4, 3), (4, 2),

are approximated by the spin-independent �ts of Paper II. Even though the best �ts obtained of

(cφ33
3 , cφ33

4 ) and (cφ44
3 , cφ44

4 ), it is preferred not to use them as to improve the robustness of the model.

Here too the �ts of TEOBiResumMultipoles model are used to get a more robust behavior of ω33

and ω44 in all corners of the parameter space. This choice will be discussed further in Sec. 6.2.3.
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6.2. Improved NR calibration of the multipolar ringdown waveform

The (`,m) = (2, 2) postpeak

The data of (cA22
3 , cφ22

3 , cφ22
4 ) were extracted from NR �tting the NR waveforms in the calibration

set over an interval starting at the peak of length 4τ22
1 .

The �ts are done in three steps, based on the model

Y (ν; Ŝ) = bY0 (ν)+bY1 (X12) Ŝ + bY2 (X12) Ŝ2

+ bY3 (X12) Ŝ3 + bY4 (X12) Ŝ4. (6.109)

In the �rst step Y (ν; Ŝ = 0) is �tted to the non-spinning data. In the second step bYi (X12 = 0) are

�tted to the equal mass data. In the third and �nal step the �ts are extrapolated to the comparable

mass case imposing the 1-D �ts informed in the previous two steps. The coe�cients of the �t are

listed in Table D.10.

The (`,m) = (3, 3) postpeak

The data of (cA33
3 , cφ33

3 , cφ33
4 ) were extracted from NR �tting the NR waveforms in the calibration set

over an interval starting at the peak of length 1τ33
1 . The interpolation is modeled with the template

Y (ν; Ŝ) = bY0 (ν)+bY1 (X12) Ŝ. (6.110)

While for the case of cA33
3 the �t is done versus ã12. The �ts are done in two hierarchical steps. (i)

bY0 (ν) is �tted to the non-spinning data. (ii) bY1 (X12) is �tted with a quadratic polynomial, while

imposing the �t of bY0 (ν). The �ts are given explicitly in Table D.11.

The (`,m) = (4, 4) postpeak

The data of (cA44
3 , cφ44

3 , cφ44
4 ) were extracted from NR �tting the NR waveforms in the calibration

set over an interval starting at the peak of length 1τ44
1 . The interpolation of (cφ44

3 , cφ44
4 ) is modeled

with the template

Y (ν; Ŝ) = bY0 (ν) + bY1 (X12) Ŝ + bY2 (X12) Ŝ2 (6.111)

in three steps, similar to the the (2, 2) mode. (i) bY0 (ν) is �tted to the non-spinning data. (ii)

bYi (X12 = 0) is �tted to the equal mass data. (iii) The full dependence of bYi (X12) on X12 is �tted

while imposing the one-dimensional �ts informed in the �rst two steps. cA3 44 is modeled with the

template

cA44
3 (ν; Ŝ) = b

c
A44
3

0 (ν) + b
c
A44
3

1 νŜ + b
c
A44
3

2 νŜ2. (6.112)

The �t is is done in two steps. (i) b
c
A44
3

0 (ν) is �tted to the non-spinning data. (ii) The coe�cients

b
c
A44
3
i are informed using the spinning data, while imposing the non-spinning �t. The �ts are given

explicitly in Table D.12.
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Figure 6.1: In this �gure we compare the frequencyMω44 for the two NR waveforms (black) SXS:BBH:1124
(1, 0.998, 0.998) (left panel) and SXS:BBH:1146 (1.5, 0.95, 0.95) (right) with the corresponding EOB wave-
forms, once obtained using the �ts of Ref. [133] (right panel) and once with the spin-dependent �ts (green).

The (`,m) = (5, 5) postpeak

The data of (cA55
3 , cφ55

3 , cφ55
4 ) were extracted �tting the NR waveforms in the calibration set over an

interval of length τ55
1 starting at the peak. Their dependence on spin and mass ratio is modeled as

Y (ν; Ŝ) = bY0 (ν) + bY1 (X12) Ŝ + bY2 (X12) Ŝ2. (6.113)

, For the case of cA55
3 , we use the same functional form where however Ŝ is replaced by ã12. The

�ts are done in two hierarchical steps: (i) bY0 (ν) is �tted to the non-spinning data; (ii) bYi (X12)

are �tted with a linear polynomial, while imposing the �t of bY0 (ν). The �ts are given explicitly in

Table D.13.

Motivating the choices for the (3, 3) and (4, 4) postmerger phases

As mentioned above, the spin dependence of (cφ33
3 , cφ33

4 ) and (cφ44
3 , cφ44

4 ) is neglected. This choice was

made so to ensure a more robust behavior of the frequency at the beginning of the ringdown when the

spins are positive and large. Inspecting the behavior of ω44 for two highly-spinning con�gurations il-

lustrates this argument. Figure 6.1 shows EOB/NR comparisons with two EOB waveforms obtained

with either the nonspinning �ts (red online) or those with the full spin dependence (green). One

sees that the spin-dependent �t performs rather well for SXS:BBH:1124 (1, 0.998, 0.998), consistently

with the fact that we used SXS:BBH:0178, with parameters (1, 0.9942, 0.9942), to inform the �t. By

contrast, one sees that the same description applied to a di�erent con�guration, (1.5, 0.95, 0.95),

corresponding to SXS:BBH:1146, does not perform equally well, with a nonnegligible gap between

the EOB and NR frequencies accumulating right after the peak. One �nds, however, that remov-

ing the spin-dependence in (cφ44
3 , cφ44

4 ) allows one to obtain a much closer EOB/NR consistency

for SXS:BBH:1146. For the other case, moving to the nonspinning description slightly worsens the

agreement, both before and after the waveform peak. On the basis of these results, and especially

seen the rather good F̄ behavior illustrated below in Fig. 6.8, it was decided to chose the simple

option of removing the spin dependence in (cφ44
3 , cφ44

4 ) . The same rational also applies to the (3, 3)

mode. Clearly, in case of very high-spins, currents �ts should be improved to some extent, increasing
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6.2. Improved NR calibration of the multipolar ringdown waveform

the calibration set so to incorporate more points in that corner of the parameter space. This will

be investigated in future work.

6.2.4 Modeling the NQC extraction points

The discussion will now turn to the updated �ts of the NQC extraction points de�ned as in Sec. 2.3.2.

The (2, 2) NQC extraction point

For the (2, 2) mode the NQC-point quantities
{
ÂNQC

22 , ȦNQC
22 , ωNQC

22 , ω̇NQC
22

}
are �tted directly. The

3-piece hybrid �t, presented in [132] and Paper I is modi�ed for q > 4. The �ts of
{
ÂNQC

22 ωNQC
22

}

are done using the template discussed already for the peak. The reader should note however that

the �t of ωNQC
22 has additional �exibility. The replacement in (6.22) is also done for i = 2 for this

case.

In the following the �tting of ȦNQC
22 and ω̇NQC

22 . Both rely on the same template thus it is only

given for the former explicitly. To �t the time derivative of the amplitude at tNQC it was proven

useful to not �t it directly, but to �t ȦNQC
22 /νωNQC

22 , starting with the following factorization

ȦNQC
22

νωNQC
22

=
[

ˆ̇A
NQCorb
22 (ν) + ˆ̇A

NQCSpin

22

(
X12, Ŝ

)]
. (6.114)

The nonspinning contribution is �tted as

ˆ̇A
NQCorb
22 (ν) = 1 + a

ȦNQC
22

1 ν + a
ȦNQC

22
2 ν2. (6.115)

The spin-dependence is represented as

ˆ̇A
NQCSpin

22

(
X12Ŝ

)
= b

Ȧ
NQCm1=m2
22

1 Ŝ + b
Ȧ

NQCm1=m2
22

1 Ŝ2 . (6.116)

The extrapolation to the m1 6= m2 regime is done via the replacement

b
Ȧ

NQCm1=m2
22

i → b
Ȧ

NQCm1=m2
22

i + c
Ȧ

NQCm1=m2
22

i X12 , (6.117)

with i = {1, 2}. All coe�cients are listed explicitly in Table D.14.

Calculation of NQC quantities from the postpeak analytical waveform

The discussion will now focus on the computation of the NQC quantities
(
ANQC
`m , ωNQC

`m , ȦNQC
`m , ω̇NQC

`m

)

from the NR-informed analytical description of the postpeak waveform, de�ned in Sec. 2.3.4. Al-

though the formulas have to be intended valid multipole by multipole, in the following the (`,m)

indexes are dropped for clarity. The analytical expression for the amplitude and its time derivative

read
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6.2. Improved NR calibration of the multipolar ringdown waveform

Ah/ν = e
−α1

t−tpeak
MBH

[
cA1 tanh

(
cA2
t− tpeak

MBH
+ cA3

)
+ cA4

]
, (6.118)

Ȧh/ν =
cA1 c

A
2 e
−α1

t−tpeak
MBH sech2

(
cA2

t−tpeak

MBH
+ cA3

)

MBH
−
α1e
−α1

t−tpeak
MBH

[
cA1 tanh

(
cA2

t−tpeak

MBH
+ cA3

)
+ cA4

]

MBH
,

(6.119)

while those for the phase and its derivatives read

φh =− ω1
t− tpeak

M2
BH

− cφ1 ln


1 + cφ3e

−cφ2
t−tpeak
MBH + cφ4e

−2cφ2
t−tpeak
MBH

1 + cφ3 + cφ4


 , (6.120)

ωh =− φ̇h =
ω1

M2
BH

− cφ1c
φ
2

MBH

cφ3x(t) + 2cφ4x
2(t)

1 + cφ3x(t) + cφ4x
2(t)

, (6.121)

ω̇h =− φ̈h =
cφ1c

φ
2

2

M2
BH


 cφ3x(t) + 4cφ4x

2(t)

1 + cφ3x(t) + cφ4x
2(t)
−
(

cφ3x(t) + 2cφ4x
2(t)

1 + cφ3x(t) + cφ4x
2(t)

)2

 , (6.122)

where the quantity x is given as

x(t) = e
−cφ2

t−tpeak
MBH . (6.123)

The waveform quantities needed to compute the NQC correction to amplitude and phase are simply

obtained by evaluating the above expressions at t = tNQC
`m = tpeak

`m + 2 multipole by multipole.

The �tted derivative of the (`,m) = (4, 4) amplitude at the NQC extraction point

Unfortunately, the accuracy of the derivative obtained with the above template does not always

have su�cient accuracy. This is due to insu�cient �exibility of the �tting template, that will be

modi�ed in future work. To overcome this di�culty, an explicit �t of the amplitude time-derivative

is given. The derivative of NQC amplitude is separated in two terms as

ȦNQC
44 = νȦ

NQC0
44

ˆ̇Aorb
44 (ν) + ˆ̇ASpin

44 (Ŝ, ν) , (6.124)

where Ȧ
NQC0
44 is the peak amplitude in the test particle limit. The non-spinning behavior is modeled

with

ˆ̇Aorb
44 (ν) =

1 + a
ȦNQC

44
1 ν + a

ȦNQC
44

2 ν2

1 + a
ȦNQC

44
3 ν + a

ȦNQC
44

4 ν2
. (6.125)

The spin dependence is �rst �tted to the test-particle limit using

ˆ̇ASpin
44 (Ŝ, ν = 0) =

b
ȦNQC

44
1 Ŝ

1 + b
ȦNQC

44
2 Ŝ

, (6.126)
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Figure 6.2: EOB/NR unfaithfulness for the ` = m = 2 mode obtained from Eq. (A.12). Left panel:
computation using SXS waveforms publicly released before February 3, 2019. Right panel: same computation
done with BAM waveform data. As explained in Sec. 6.2.1, a subset of all this data (see Table 4.1) is used
to inform the c3 EOB function. Comparison with Figs. 1 and 3 of Ref. [135] allows one to appreciate the
improvement with respect to the original implementation The reader should actually note that we changed
from the, outdated, zero-detuned, high-power noise spectral density of Ref. [145] used in Ref. [135], to its
most recent realization, Ref. [11]. of TEOBResumS. Comparison with Fig. 3.1 highlights that the F̄EOB/NR is
either of the order of, or larger than the NR/NR uncertainties.

and then extrapolated to the comparable mass region through

b
ȦNQC

44
1 → b

ȦNQC
44

1 + c
ȦNQC

44
11 ν

1 + c
ȦNQC

44
12 ν

, (6.127)

b
ȦNQC

44
2 → b

ȦNQC
44

2 + c
ȦNQC

44
21 ν

1 + c
ȦNQC

44
22 ν

. (6.128)

The explicit coe�cients of the �ts are listed in Table D.15.

6.3 The ` = m = 2 mode: EOB/NR unfaithfulness

The discussion now turns to the performance of the analytical waveform model in terms of unfaith-

fulness between TEOBiResumS_SM and the full NR calibration and validation sets plotted for the

` = m = 2 mode, obtained computing Eq. (A.12) between TEOBiResumS_SM and NR waveforms,

using the PSD presented in Ref. [11]. Further details are given in appendix A. Figure 6.2 shows the

comparison with the calibration set already used to validate TEOBResumS. The global performance

of the model is largely greatly improved with respect to TEOBResumS as discussed in Sec. 4.3. Re-

markably, the model performs excellently also for large mass ratios and large spins, without any

outlier above the 1% threshold, but even F̄max
EOB/NR . 0.5% all over, meeting the NR uncertainty

level conservatively set in Sec. 3.3.1 for both SXS and BAM data.

The validation set of an additional 420 SXS waveforms is shown in Fig. 6.3. It is found that

F̄max
EOB/NR always remains below 0.85%, a value reached only by one dataset, (1.5,+0.95,+0.95)

SXS:BBH:1146, while for all others it stays at F̄max
EOB/NR . 0.4%. This outlier is not surprising

since the sets of NR waveforms used to inform c3 do not cover the region of 1 < q < 2 with
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Figure 6.3: EOB/NR ` = m = 2 unfaithfulness computation with SXS waveform data publicly released
after February 3, 2019. None of these datasets was used to inform the model in the dynamical EOB functions
(ac6, c3), although several were used for the postmerger waveform part. It is remarkable that F̄max

EOB/NR is

always below 0.4% except for a single outlier, red online, that however never exceeds 0.85%. The plot
includes �ve exceptionally long waveforms, each one developing more than 139 GW cycles before merger,
SXS:BBH:1412, 1413, 1414, 1415 and 1416 (blue online).
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Figure 6.4: EOB/NR unfaithfulness for all available non-spinning datasets. The analytical waveforms are
evaluated with (χ1, χ2) = (0, 10−4), so as to probe the stability of the model and its robustness in this
regime.

the exception of one single dataset with (1.5,−0.5, 0). In this respect, to better understand the

behavior of this outlier it was checked that the �t of c3 yields for this parameter combination

cfit
3 (1.5,+0.95,+0.95) = 15.96 leading to an accumulated phase di�erence∼ 4.7 rad at merger once

the two waveforms are aligned during the inspiral. Interestingly, by lowering the value of c3, and thus

increasing the magnitude of the spin-orbit e�ective coupling and thus making the EOB waveform

longer, one can easily reconcile it with the NR data. For convenience this result is illustrated in

Fig. 6.6, that is obtained with c3 = 11.1 (the two dash-dotted vertical lines indicate the alignment

region). We also point the reader to Table F.8, where the NR uncertainty for this dataset is

estimated to be F̄NR/NR = 0.0446%. On a di�erent note, this suggests that the current model could

be additionally, and easily, improved by also considering SXS:BBH:1146 to inform cfit
3 . Yet, this

results highlights the robustness of our model: without any additional input from NR simulations

to determine c3, it is able to deliver rather accurate waveforms even in a region of the parameter
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Figure 6.5: Global representation of F̄max
EOB/NR all over the SXS (555) and BAM (19) NR simulations. The

various SXS subsets, nonspinning (black online, 83 waveforms), merger-ringdown calibration (blue online,
116 spin-aligned waveforms) and validation (red online, 359 spin-aligned waveform) discussed in the text are
represented separately. The plot shows the fraction (expressed in %) n/Nset, where Nset is the total number
of waveforms in a given NR-waveform set and n is the number of waveforms, in the same set, that, given
a value F̄ , have F̄max

EOB/NR ≥ F̄ . The colored marker highlight the largest values in each NR dataset. Note
that this plot incorporates 420 new SXS waveforms that were not included in Fig. 6 of Paper I.
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Figure 6.6: Improved EOB/NR phasing comparison for SXS:BBH:1146 when the value of cfit
3 = 15.96 used

in Fig. 6.3 is lowered to c3 = 11.1. Top panel: (relative) amplitude and phase di�erences. Middle panel:
real part of the waveform. Bottom panel: gravitational frequencies. For convenience, also twice the EOB
orbital frequency 2Ω is shown on the plot. The dash-dotted vertical lines indicate the alignment frequency
region, while the dashed one the merger time. This comparison illustrates that SXS:BBH:1146 is an outlier
in Fig. 6.3 only because of the rather limited amount of NR waveforms used to inform cfit

3 .

space previously not covered by NR data. The model performance is summarized in Fig. 6.5. For

each dataset considered above, the �gure exhibits the fraction of waveform whose F̄max
EOB/NR is larger

or equal a given value F̄ . Thanks to the additional analytical information incorporated and to the

improved waveform resummation, TEOBiResumS_SM is currently the EOB model that exhibits the

lowest EOB/NR unfaithfulness for the ` = m = 2 mode.
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Figure 6.7: EOB/NR phasing comparison for SXS:BBH:1415, (1.5,+0.50,+0.50). Note that it does not
seem possible to �atten the phase di�erence up to t/M ' 1× 105. The vertical lines indicate the alignment
frequency region [MωL,MωR] = [0.038, 0.042].
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Figure 6.8: EOB/NR unfaithfulness computation putting together all ` = m modes up to ` = 4. Plot-
ted is the worst-case performance maximizing the unfaithfulness over the sky, Eq.(A.12). The worst-case
mismatches arise from near edge-on con�gurations, when the power emitted in the (2, 2) mode is minimized.

6.3.1 Long-inspiral Numerical Relativity waveforms

Now a brief comment is given on 5 exceptionally long NR waveforms contained in the validation set.

To explore the possible impact of these waveforms they are compared to TEOBiResumS_SM in the

time-domain. Fig. 6.7 shows this comparison for the particularly interesting case of SXS:BBH:1415.

A waveform of a (1.5,+0.50,+0.50) BBH system. Interestingly enough, the phase alignment fails for

low frequency and it is required to consistently increase the frequency window until [MωL,MωR] =

[0.038, 0.042] is reach for which a stable alignment is �nally successful. What is even more interesting

is that it seems that drift exists in the phase of the NR waveform relative to the TEOBiResumS_SM

waveform that a priori seems unphysical. as can be seen in the top-right panel of Fig. 3.1 the

unfaithfulness for low frequency with respect to the second highest waveform is quite large. For

now this is merely an interesting observation. It seems likely that the TEOBiResumS_SM in fact is

more physical as it is primarily informed by analytical sources of information assumed to be more

accurate at low frequencies, such as PN and GSF theory.
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Figure 6.9: Behavior of (2, 2), (3, 3) and (4, 4) modes for a few, illustrative, spin-aligned con�gurations
with q = 3: comparing NR (black) with EOB (red) waveform around the peak of the EOB (2, 2) mode
(dashed blue vertical line). Each panel plots the real part (left columns) and the instantaneous frequency
(right columns).

6.3.2 Nonspinning limit

AS an addendum to the excellent performance of TEOBiResumMultipoles in the non-spinning sector

it is tested how TEOBiResumS_SM performance when the spins are low. To check the consistency with

the non-spinning limit the unfaithfulness is computed between TEOBiResumS_SM and 89 non-spinning

NR waveforms listed in Tab. F.14-F.15. Figure 6.4 shows F̄EOB/NR for the 89 SXS nonspinning

waveforms with TEOBiResumS_SM evaluated at (χ1, χ2) = (0, 10−4). Only two waveforms show a

large F̄NR/NR value: SXS:BBH:0093 (q = 1.5) and SXS:BBH:0063 (q = 8), though both remain below

8 × 10−4. Consistently with Paper II, F̄EOB/NR shows a very well behaved unfaithfulness all over.

The largest unfaithfulness is reached by the BAM, q = 18 waveform at max(F̄EOB/NR) = 0.2533%.
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Figure 6.10: EOB/NR unfaithfulness, maximized over the direction from the sky, when including (2, 2),
(2, 1) and (3, 3) modes. Here we only consider a subset of the SXS waveforms with χi > −0.4, where the
(2, 1) EOB waveform mode does not present pathologies. The worst case con�guration is SXS:BBH:0239, a
binary of mass ratio and spins (2.0,−0.37,+0.85).

6.4 Higher multipolar modes

6.4.1 Multipoles (2, 2), (3, 3) and (4, 4)

It is now time to move the discussion onto the validation of the subdominant modes2. The quality of

the waveform model is illustrated with four q = 3 con�gurations, with equal spins, both aligned or

anti-aligned to the orbital angular momentum. More precisely, (3,−0.85,−0.85), (3,−0.60,−0.60),

(3.−0.30,−0.30) and (3,+0.60,+0.60) are used. This behavior can be considered fully representative

over the entire SXS catalog. Figure 6.9 illustrates the behavior of the (2, 2), (3, 3) and (4, 4) mode.

For each multipole, the real part of the TEOBiResumS_SM and NR waveform are shown together

with the instantaneous GW frequency ω`m. The TEOBiResumS_SM waveform is aligned to the NR

around merger, so to focus in on the excellent agreement between the waveforms around merger.

The EOB/NR agreement is rather good either for spins both anti-aligned or aligned with the orbital

angular momentum. It is however prudent to point out that when the spins are large and aligned

there is an increasing dephasing accumulating between the EOB and NR (4, 4) mode. This can

be seen in Fig. 6.9 (a). As it was the case for the ` = m = 2 mode discussed above, a global

understanding of the actual performance of the model requires the computation of the EOB/NR

unfaithfulness. While in the previous chapter the range from best to worst case of the unfaithfulness

was computed here only the worst case is considered. In Fig. 6.8, this is shown explicitly for the

` = m modes up to ` = 4, �nding excellent agreement up to ∼ 120M� above which the model

performance degrades slightly and moves above 3%. As one would expect the worst case scenario

is always the edge-on case for which the excellent (2, 2) mode is most suppressed. Further the

worst mismatches occur for mass ratios 1 ≤ q ≤ 1.5 and equal-spin con�gurations. These are in

particular the cases for which the m = odd modes are suppressed. For these binaries, the degraded

performance can be seen to correlate with the (4, 4) mode, both the TEOBiResumS_SM and on the

NR side, increasingly failing to be physically accurate.
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6.4.2 Other subdominant multipoles

It is now useful to only summarize the thorough analysis of the (2, 1), (3, 2), (3, 1), (4, 3), (4, 2) and

(5, 5) modes3.

(i) When the peak of a given subdominant mode h`m is signi�cantly delayed (∼ 7 − 8M) with

respect to the peak of the dominant h22 mode, which can happen for most m 6= ` modes, in

particular for (2, 1), (4, 3) or (3, 1), a crossing of the Ω into the negative prevents the correct

determination of the NQC.

(ii) The postmerger reproduces a robust waveform all over the parameter space even though it

does not model e�ects of mode-mixing or the beating between positive and negative QNMs.

(iii) Fig. 6.10, shows the mismatch for the {22, 21, 33} modes already showing a strong outlier for

waveforms with χi > −0.4. The unfaithfulness only exceeds the maximal bound of 3% for

two waveforms. And this case only slightly.

(iv) For a few select waveforms with mild spins an explicit comparison between TEOBiResumS_SM is

shown for all modes, indicating that the NR calibration works su�ciently well for mild spins,

as for larger spins the analytical model underlying is not su�cient to perform an analysis.

6.4.3 Peculiar behavior of m = 1 waveform amplitudes for 1 ≤ q ≤ 2.

It is �nally interesting to point out an interesting aspect captured in the TEOBiResumS_SMmultipolar

waveform. Ref. [70] pointed out that a peculiar feature, a minimum, appeared in the late inspiral

waveform for the (2, 1) mode of several waveforms with approximately equal mass and oppositely

aligned spins. Paper III further explored this topic going into several details that while very in-

teresting but it is chosen to only remark upon it brie�y by a single example. As can be seen in

Fig. 6.11 � 6.13, SXS:BBH:1466 is one such data set containing a minimum. And in fact this is

reproduced with high accuracy by the bare TEOBiResumS_SM, without NQC corrections. Further

the full model accurately reproduces the waveform with the peculiar (2, 1) mode included on the

level of unfaithfulness. Paper III manages to go deeper and actually predict the minimum for several

further waveforms and �nd waveforms overlooked in Ref. [70]. The interested reader is directed to

the discussion in Paper III.

6.5 Fitting the NQC parameters

We will brie�y review the NQC parameters for clarity. Each multipole (`,m) is modi�ed by 4

NQC parameters (a`m1 , a`m2 , b`m1 , b`m2 ). (a`m1 , a`m2 ) determine the NQC correct of the amplitude and

(b`m1 , b`m2 ) determine NQC correction to the phase and frequency of the multipole (`,m). The

parameters (a22
1 , a

22
2 ) hold a special place among them. They are the only parameters that also enter

the radiation reaction of the waveform. Thus, allowing to iterate on them. The �rst evaluation of

the model is started with (a22
1 , a

22
2 ) = (0, 0). Once the waveform is generated (a`m1 , a`m2 , b`m1 , b`m2 )

are generated by solving a set of 4 coupled equations by imposing NR-informed �ts of Amplitude,

2The unfaithfulness computations of the subdominant modes was performed by Geraint Pratten.
3As this analysis was performed by Alessandro Nagar and Geraint Pratten and does not utilize additional methods

not yet employed in this thesis, it is only referenced here.
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Figure 6.11: Mode (2, 1): comparison between the EOB amplitude (orange) and the corresponding NR
one from dataset SXS:BBH:1466. The purely analytical EOB waveform multipole can accurately predict
the location of the minimum (that analytically is a zero of the modulus) consistently with the one found
in the NR data. The excellent agreement shown is obtained naturally, without the need of calibrating any
additional parameter entering the waveform amplitude. The dashed vertical line corresponds to merger time,
i.e. the peak of the ` = m = 2 waveform. The cusp in the analytical amplitude occurs because of a zero in
f̂S

21 as illustrated in Fig. 6.12.
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Figure 6.12: Complementing Fig. 6.11: the behavior of the resummed versus non-resummed amplitude
versus x = Ω2/3.

Frequency and their �rst derivatives. The resulting values of (a22
1 , a

22
2 ) are then used as input in

the radiation reaction. This process is repeated until a convergence is found. Hereafter and prior

to this section, we refer to (a22
1 , a

22
2 ) as (a1, a2).

(a1, a2) has been generated for a large number of waveforms up to a total mass-ratio of q = 30

with χ = χ1 = χ2. The NR informed �ts are structured in 4 di�erent regions:

1. χ1 = χ2 = 0,

2. Spinning, equal-mass sector with ν > 0.2485,

3. 0.2485 ≥ ν > 0.16, spinning sector,
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Figure 6.13: The minimum and maximum EOB/NR unfaithfulness for SXS:BBH:1466 over the whole
sky. The blue curve uses the (2, 2), (3, 3) and (4, 4) modes. The purple curve uses the (2, 2), (2, 1) and (3, 3)
modes. Worst case mismatches occur near edge on con�gurations with the unfaithfulness being below 3%
up to 200M�.

4. 0.16 ≥ ν, spinning sector.

The �ts of (a1, a2) are structured accordingly due to the slightly di�erent values of (a1, a2) at the

border. The mismatch at the border due to the jump is not signi�cantly large. For large negative

spins no bad behavior shows up, but a choice was made for the robustness of the model to to hard

�x ∆tNQC = 4 instead of the large negative spins and large mass ratios, see Ref. [135] for further

details. This choice creates a small jump thus this region is merely extrapolated from the rest. This

works particularly well since (a1, a2) are very stable for large negative spins and large mass-ratios.

For large positive spins (a1, a2) diverge for increasing iteration. This shows up as q = 30 the

maximum spin is χ = 0.6. While for q = 18 and below spins up to χ = 0.85 are used. The �ts are

presented in Appendix E.

We will now evaluate these �ts. We compute the TEOBiResumS_SM with NR, using the �ts of

(a1, a2)without iteration. Two major di�erences exist. Firstly, the validation is done using also the

PA approach. Secondly, the results presented so far have been obtained with the MATLAB version

of the code. These results have been redone with the c code and the �ts presented in Appendix E.

These give a comparative estimate of the validity relative to the fully iterated code but can also

serve standalone. The results are summarized in Fig. 6.14. The F̄ computation results are good.

Globally below 1%, although slightly worse than the fully iterated MATLAB code which is to be

expected.
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Figure 6.14: EOB/NR unfaithfulness for the ` = m = 2 mode obtained by comparing the full catalog of NR
waveforms presented in Paper I with TEOBResumS. Two di�erences exist between this work and Paper I. (i)
TEOBResumS was evaluated with the Post-Adiabatic approximation. (ii) TEOBResumS was not iterated until
convergence but instead used the �ts presented above and a single iteration. This was much faster relative to
the lengthy computation of waveforms with the MATLAB version. Top-left shows the calibration set, Top-right
shows the BAM data. Center-left shows the full, spin-dependent Validation set and Center-right shows the
non-spinning set. The bottom �gure shows the accumulation plot n/N(F̄ ). Where n/N(F̄ ) de�ned for any
value of F̄ as the fraction of waveforms with a larger value of max

(
F̄
)
.
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Chapter 7

Peak-frequency

The advent of Gravitational Wave Astronomy (GWA), brought forward by the the LIGO and Virgo

Collaborations [13, 30], has opened several avenues to test GR in the strong-�eld regime through

CBC events. GW150914 [13] and several following detections [14, 18, 20] have provided to date

the best dynamical constraints on GR [14, 16, 20]. GW150914 in particular has provided excellent

opportunities for such tests [16], in large due to its mass and luminosity. As a matter of fact it

allowed to show the existence of the fundamental QNM of the presumed remnant BH, visible during

the end stages of the BBH waveform observed [16].

GR predicts that GWs have two independent polarizations namely (h+, h×) detectable as roughly

sketched out in chapter 2. The observed frequency is obtained from the complex GW strain h =

h+ − ih× as

f(t) =
1

2π

d

dt
(arg(h)) . (7.1)

In particular, the peak of the GW amplitude, taken as the peak of
(
h2

+ + h2
×
)1/2

, correlates to the

most turbulent period observed, which in the case of a BBH system corresponds to the merger.

Thus, the frequency at peak fpeak is directly connected to the strong-�eld dynamics of merging

BBH systems when curvature, velocity and acceleration of and around the BHs are maximal. To

study fpeak of BBH systems requires full NR simulations, stable, accurate and precise throughout

the merging of the two BHs. As NR simulations are computationally very costly it would be better

to �t the frequency. Indeed several �ts of the multipolar (`,m) peak frequency do exist [53, 70, 93�

95, 134, 135]. Two aspects have to be considered when using these �ts to estimate fpeak: (i) All of

them focus on the peak frequencies for the individual h`m, not on the peak of
(
h2

+ + h2
×
)1/2

. As

the peaks of the individual multipoles are often shifted with respect to each as has been discussed

in detail in the previous chapters, it is easy to see that likely only a full reconstruction of h would

allow to determine the peak frequency of h. (ii) As elaborated in chapter 2 GW observatories show

a bias towards the detection of spin-aligned binaries, thus the dominant number of �ts focuses on

the spin-aligned (nonprecessing) case.

Paper IV presented a potential test of GR focused around fpeak. The aforementioned prediction

of GR is compared to an agnostic, unmodeled reconstruction of the polarizations (h+, h×)1. This

1This can be extended to more generic polarization, see [102]
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allows to statistically test GR in the strong-�eld regime, similar to the test suggested in Ref. [95].

This test is build up along three steps:

(i) fpeak has be reconstructed as predicted by GR.

(ii) The BayesWave method [69, 124] is used to reconstruct (h+, h×) and obtain fpeak for GW150914

in a model-independent way2.

(iii) The reconstructed distributions of fpeak are compared directly3.

GR peak frequency As GW150914 did not show any evidence of subdominant modes, it will

su�ce to consider a GW model capable of reproducing the (`,m) = {(2, 2), (2,−2)} modes [29].

Recall that for spin-aligned binaries multipoles of opposite m are related as h`,−m = (−1)`h∗`m, thus

the complex GW strain is given as

h+ − ih× = −2Y22(ι, φ)h22 + −2Y2−2(ι, φ)h∗22 . (7.2)

Further, as the posterior distribution of the inclination angle strongly favors the face-o� (with the

angular momentum anti-aligned to the line of sight) [17] it is reasonable to simplify the computation

by imposing the face-o� orientation exactly. In the face-o� case, multipolar factors reduce to

−2Y22(π, φ) = 0, and −2Y2−2(π, φ) =
√

5
4πe
−2iφ ≡ κ e−2iφ, inserted into eq. (7.2) this yields

h+ − ih× = A22(t)eiϕ22(t) κ e−2iφ, (7.3)

reproducing the frequency as

f(t) =
1

2π

d(arg(h+ − ih×))

dt
=
ϕ̇22(t)

2π
= f22(t) , (7.4)

connecting f directly to f22. Considering further that, in the face-o� approximation, the amplitude

is given as

|h+ − ih×| = A22(t)κ , (7.5)

thus further, implying that both the peak of |h| and the peak of the (`,m) = (2, 2) mode coincide.

While it is fortunate that these simpli�cations appear for GW150914 they do not hold generally

and a full reconstruction of h is necessary. To access the error the NR simulation and released

posterior samples for GW150914 are combined [6, 14, 17]. Explicit reconstruction of h showed that

the face-o� approximation indeed is a good, introducing no large errors.

The GR prediction for fpeak is given as

fpeak
GR =

Mωmrg
22

(
ν,X12, Ŝ

)

2πM
, (7.6)

with Mωmrg
22 de�ned in eq. (6.19) � (6.22) and evaluated with the coe�cients of Tab. D.1. Note

that the total mass is here restored twice explicitly. Even though largely omitted to be pointed out

explicitly to simplify notation, Mωmrg
22 is �tted, not ωmrg

22 . Thus, the total mass needs to be restored

2This analysis was carried out by Ka Wa Tsang.
3This analysis was carried out by Gregorio Carullo.
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Figure 7.1: direct comparison of the peak frequency prediction of GR (red) and by the unmodelled
BayesWave reconstruction (blue) using Hanford data.

in the denominator as well. The distribution of fpeak
GR is then obtained by evaluating the analytical

expression explicitly over a given posterior distribution, obtained from a full Bayesian parameter

estimation analysis (with the waveform model IMRPhenomPv2 [101]) of GW150914. In this case

the publicly released samples have been used [6, 14, 17]. fpeak as predicted by GR, is now shown

in Figure 7.1

It is now useful to depart from the case of the face-o� approximation used for GW150914. Thus,

two methods are brie�y mentioned that allow to faithfully represent the dependence on (ι, φ):

(i) The peak frequency can be reconstructed directly using an NR-surrogate model [50, 149] or a

Waveform model containing higher mode contributions, such as TEOBiResumS_SM or Refs. [70,

101, 114, 122]. Either method allows to fully reconstruct h and thus directly access the peak

of |h| directly.

(ii) the peak frequency could be �tted directly to NR data, as many NR codes provide information

for such a �t [7, 49, 57, 59, 67, 68, 89, 90, 98, 101, 116, 118, 126, 142]. It might even be possible

to exploit quasi-universal structures, yet unlikely as the general case has a strong dependency

on several parameters in the general case of a BBH merger (q, ~χ1, ~χ2, ι, φ, ε), making this even

constrained to the spin-aligned, non-eccentric case an exceptionally challenging task.

Unmodeled peak frequency To obtain a model-independent reconstruction of the peak fre-

quency the BayesWave algorithm is employed on GW150914, building a distribution of reconstructed

waveforms.

BayesWave ([69, 124]) is a morphology-independent search algorithm. It utilizes Bayesian evi-

dences to distinguish a potential signal from either a potential glitch or noise, while reconstructing

the waveform. The h+ polarization is modeled by a decomposition into a sum of Morlet-Gabor

wavelets, which form a complete functional basis thus allowing the decomposition of arbitrary GW

signals. h× is then built with ε an ellipticity parameter as h× = εh+e
iπ/2. From this distribution

both h and fpeak can be reconstructed. The result of this computation is shown in Fig. 7.1
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Figure 7.2: The cumulative distribution G(∆f) is plotted as function of ∆f , using the Hanford data
(red), is plotted above the di�erence distribution (blue). The di�erence distribution is obtained from the
distributions shown in Fig. 7.1 between the GR prediction and the unmodeled reconstruction.

Null-hypothesis test The distribution of the peak frequency obtained from GR and the BayesWave

algorithm are combined as

∆f ≡ fpeak
rec − fpeak

GR . (7.7)

The posteriors p(fpeak|D ,GR) ≡ q(fpeak) and p(fpeak|D ,BW) ≡ r(fpeak) are de�ned. his allows

to compute the posterior distribution for ∆f as

g(∆f) =

∫
r(fpeak

rec ) q(fpeak
rec −∆f)dfpeak

rec . (7.8)

The null hypothesis of this analysis is that GR is the correct theory of nature. In such a scenario

it is evident that both the modeled and unmodeled reconstruction should be consistent giving a

distribution of g(∆f) centered around zero. In other words, ∆f is a quantitative indicator of the

agreement or disagreement between GR and the observed signal. It is therefor useful to compute the

cumulative distribution G(∆f) =
∫ ∆f
−∞ g(x)dx and computed the p-value p ≡ min [1−G(0),G(0)]

through it. This computation applied to the Hanford strain is shown in Fig. 7.2, yielding a p-value

p = 0.48. As the strain observed at Livingston yields p = 0.46. Thus, no signi�cant deviation from

the null hypothesis prediction p = 0.5 is present and therefor no violation of GR is observed.

Summary This test of GR exploited the correlation between the merger phase of a BBH system

with the peak of complex GW strain h. The peak frequency is reconstructed through two indepen-

dent methods. First, the peak frequency is reconstructed with a GR waveform model. The model

is used to perform a fully Bayesian parameter estimation run. The obtained posterior distribution

is then used to reconstruct the peak-frequency as predicted by the waveform model, thus, imposing

consistency between the peak and the full IMR waveform as predicted by GR. If GR is a true

theory of nature describing gravity this would be perfectly consistent with the model-independent

reconstruction through the BayesWave algorithm applied to the data.

As mentioned already above the face-o� approximation does not hold for a general Binary

complicating the form of h to be reconstructed. Given a reliable multipolar model such as an

NR-surrogate model [50, 149] or a Waveform model containing higher mode contributions, such as
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TEOBiResumS_SM or Refs. [70, 101, 114, 122] ,the reconstruction of h, even though not trivial, is

straightforward.

The unmodeled reconstruction of fpeak
rec through the BayesWave algorithm is however highly

sensitive to the noise of the detector. With GW150914 this is clearly the limiting factor of this

analysis, as can be seen from the shape of the distribution in Fig. 7.1. It might be interesting to

repeat this analysis with signals observed at improved detector quality. Further the null-hypothesis

test can be hardened by combining the p-values of several di�erent GW events observed. Yet these

considerations are left to future work.
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Discussion and Conclusion

This thesis presents an introduction to the NR driven completion and validation of waveform models

on the example of the TEOB infrastructure. In total three avatars of the model have been discussed

all focusing on spin-aligned, non-eccentric BBH systems. The model was calibrated and validated

with a catalog of 555 SXS and 19 BAM waveforms, completed by a set of test-particle waveforms.

The analysis of the NR catalog Within this thesis the NR was separated into two catalogs.

The calibration and validation set. The calibration set contains 135 SXS, 19BAM waveforms and

is completed by a set waveforms generated by a test-particle falling into a Kerr BH. Of those 19

SXS, 3 BAM and 1 test-particle waveform were non-spinning. With this data both TEOBResumS and

TEOBiResumMultipoles have been calibrated and validated. In the context of Paper III, it was

discussed that a total of 110 SXS waveforms in this set had been given with a next-to-highest

resolution. For each of these waveforms F̄NR/NR was computed for h22 between the two highest

levels. Showing that the large majority of waveforms did not reach F̄NR/NR ∼ 10−4. To remain

on the strongly conservative side the uncertainty was estimated to be at ∼ 0.5%. All data sets are

given in Tab. F.1 � F.4 and Tab. F.14.

The Validation set consists of an additional 420 SXS waveforms, expanding and re�ning the

parameter space covered by the SXS data. These waveforms are listed explicitly in Tab. F.5 � F.15.

Of these 382 have are given with an additional resolution, which was used to evaluate F̄NR/NR for

h22, �nding a similar situation as for the calibration set. Most waveforms have an unfaithfulness of

∼ 10−4. Thus, the uncertainty of the unfaithfulness is estimated to be ∼ 0.5%, to remain on the

conservative side.

This analysis forms the basis of using this NR catalog for calibration and validation of the three

TEOB avatars discussed in this thesis. However, while this analysis reached it's goal to get a measure

of uncertainty for h22 further improvement is possible. Two routs can be pursued to potentially im-

prove this catalog in future works. (i) The analysis of the h22 unfaithfulness between the two highest

levels of any given NR waveform should be extended to the subdominant modes. In particular the

analysis of h44 for nearly-equal-mass waveforms will be insightful and useful as currently the (4, 4)

mode does show disagreements between NR and the multipolar TEOB avatars. Any error analysis in

this area would shed additional insight onto whether or not the disagreement warrants an improve-

ment of the calibration or analytical baseline information included in TEOBiResumMultipoles and

TEOBiResumS_SM. (ii) In this thesis only 19 BAM waveforms are used together with 555 SXS waveforms.
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While the parameter spaces do overlap, they are not fully covering each other. Therefor it would

be advisable to include a third or potentially fourth set of waveforms from di�erent catalogs1. This

code should be chosen such that the maximum region of the parameter space is covered by at least

two di�erent codes. While it is unlikely that this extension will have any e�ect on the calibration

or validation of h22, the same cannot be said for the subdominant modes. For many waveforms

these are very noisy and di�cult to analyze. Given any problematic NR waveform, if two versions

generated by independent codes exist, it would be possible to tune the waveform model to minimize

the the unfaithfulness with respect to both waveforms. Thus, avoiding the danger of over-�tting of

parameters, as it is unlikely that both NR waveforms deviate in a similar manner from GR. (iii) The

validation and calibration can be attempted based on an NR surrogate model (see e.g. Ref. [150]).

It is reasonable to assume that the surrogate model will have �ltered a signi�cant aspect of the

noise and thus might give a more reliable picture, in particular in areas in which only a few NR

waveforms of high quality are available.

The dominant (2, 2) mode In total 3 di�erent fully calibrated models of h22 are discussed

in this thesis. First, TEOBResumS was presented in Paper I and while several aspects have been

improved, some were taken over from its predecessors presented in Refs. [76, 132]. The full cali-

bration of the model based on the calibration of 135 SXS and 19 BAM waveforms is presented and

discussed. max(F̄ ) . 2.5× 10−3 over the full set of SXS waveforms is achieved with one exception:

(3,+0.85,+0.85) where max(F̄ ) . 7.1× 10−3. As was shown, a more �exible �t of c3, in particular

if c3 is �tted with explicit quadratic dependence on the individual spin variables, it is possible to

achieve max(F̄ ) . 2.5× 10−3 all over the SXS waveform catalog. For the BAM waveforms, F̄ is well

below the 1% level with again a single exception of (8,+0.85,+0.85), reaching 5.2%. This problem

was shown to be caused by a discrepancy in the strength of the EOB-predicted spin-orbit interac-

tion. Exploring this through modi�cation of c3 showed that the spin-orbit interaction is too small

(i.e., leading to an earlier transition from inspiral to plunge as compared to NR) within this sector

of the parameter space. This issue can in principle be �xed by a modi�ed value of c3. However,

even if the value of c3 is modi�ed, it was still not possible to iterate on the NQC for this waveform,

indicating that the NR calibration is at it's limit. While NR calibration can account for a signi�cant

improvement in the waveform performance, it has limits to how far it can be done robustly. Therefor

the choice was made to postpone the solving of this issue until the resummation of the waveform

was improved with the methods presented in Refs. [123, 129] that, as was shown in Paper III and

chapter 6, indeed solve these problems and are thus no longer there for TEOBiResumS_SM.

The study of the BBH sector of TEOBResumS was concluded with an analysis outside of the

domain of calibration and validation. A trick in the NR calibration was applied. Both NQC and

peak amplitude and frequency were �tted very similar templates to the same data. Thus leading

to similar extrapolation behavior making the waveform peak very robust even in domains where

no NR data is available. This was explored in detail for large mass-ratios (q ≤ 20) and high-spins

(χ1 = χ2 = ±0.95). Especially, the robust nature of the peak, while not guaranteeing low F̄ , it

does prevent pathological behavior that would increase F̄ by a few percent.

Within TEOBiResumMultipoles, presented in Paper II and chapter 5, h22 was improved relative

1Some examples of such catalogs based on individual codes are NINJA [31, 37], NRAR [99], Georgia Tech [105]
and RIT [96, 97].
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to TEOBResumS. The analytical information and the NR calibration of the A-potential have been

updated. An improved resummation of the waveform has been implemented [123, 129]. As the

performance of TEOBResumS was however already su�cient from the point of both calibration and

validation in the non-spinning sector it only remained to verify that TEOBiResumMultipoles did

indeed perform similarly well. This is especially important looking to the subdominant modes. As

mentioned already in Sec. 2.3, the (2, 2) mode holds a special place as it is the only mode for which

the NQC corrections enter the radiation reaction. Thus, within TEOB it will always be important to

check the (2, 2) mode independently to ensure that no pathological features enter through the NQC

into the radiation reaction. The discussion of TEOBiResumMultipoles will be continued below with

respect to the extension to the subdominant modes in the non-spinning sector.

The extension of TEOBiResumMultipoles to the spinning sector is TEOBiResumS_SM, introduced

in Paper III and chapter 6. Almost all pieces of the analytical information in TEOBiResumS_SM were

changed relative to TEOBResumS. It is useful to summarize the changes. The non-spinning sector is

given by TEOBiResumMultipoles. The updated A-potential of TEOBiResumMultipoles is kept as

well together with the improved calibration of the e�ective PN parameter ac6(ν). Additionally, the

waveform resummation is greatly improved relative to TEOBResumS. Due to the changes in waveform

and A-potential it is also become necessary to redetermine the e�ective PN parameter c3(ν, S1, S2).

Finally, the �ts of the NQC are improved for q ≥ 4, as well as for the over all merger-ringdown

templates. Once calibrated, TEOBiResumS_SM was validated through the computation of F̄EOB/NR

for the (2, 2) mode. All over 19 BAM and 555 SXS waveforms, including the calibration set, F̄EOB/NR

for the (2, 2) mode is always below 0.5%. A single outlier is found for (1.5,+0.95,+0.95), for which

max
[
F̄EOB/NR

]
≈ 0.85%. This is evidently a signi�cant improvement relative to the performance of

TEOBResumS, which struggled immensely with (8,+0.85,+0.85), comparing this to F̄EOB/NR ∼ 10−3

for TEOBiResumS_SM is quite an impressive improvement. This jump in performance highlights that

NR calibration has to be done with care. While it might be in principle possible to solve a problem

through increasing the impact of the NR calibration, it might be recommendable to instead improve

the analytical information baseline of the model.

While most results of TEOBiResumS_SM are obtained with the MATLAB implementation of the code,

a stand-alone C-implementation of the model is available at Ref. [12]. Further, due to the improved

waveform resummation of TEOBiResumS_SM it was possible to �t the NQC parameters (a22
1 , a

22
2 ) of

the (2, 2). With this �t it is possible to skip the iteration process to improve the NQC accuracy

and obtain a good agreement between TEOBiResumS_SM and NR globally of F̄EOB/NR < 1%. After

the exclusion of (1.5,+0.95,+0.95), the global maximum is around ∼ 0.6%. Thus even though the

goal set by the NR uncertainty is missed, it is not missed by much, while the performance demand

of GWA is still met. The importance of this result can easily be seen once one considers that the

evaluation time of the C-implementation of TEOBiResumS_SM is dominated by the integration of the

TEOB Hamiltonian equations of motion. As each iteration requires a full integration, it is easy to

see that the computation time goes linearly with the number of iterations necessary. Thus this is a

major step towards meeting the ∼ 0.1ms evaluation time goal for TEOBResumS.

Subdominant modes: The non-spinning case In chapter 5 and Paper II, TEOBiResumMultipoles

was introduced and discussed. As mentioned above, several improvements have been made rela-
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tive to TEOBResumS, in the A-potential and the resummed waveform2. The multipoles (`,m) =

(2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1) and (5, 5) are fully calibrated to NR. All additional

multipoles ` ≤ 8 are given by their pure analytical, TEOB-factorized and resummed expression, falling

smoothly to 0 around the merger. The agreement between ω`m on both NR and TEOB side is excellent

up to the merger point. The major �ndings presented in chapter 5 are:

(i) Each multipole h`m of (`,m) = (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1) and (5, 5)

is fully calibrated to NR following the model as introduced in Sec.2.3. This includes a fully

calibratedmerger-ringdown template, the peak-time shit ∆tNR
`m and the NQC extraction points{

ÂNQC
`m ,

˙̂
ANQC
`m , ωNQC

`m , ω̇NQC
`m

}
. Especially the NQC are important for the �nal evolution of the

subdominant modes, starting at ∼ 50M before the peak. It is worth pointing out that it is

quite surprising that such a simple setup is very e�cient in completing the waveform until

the peak of the waveform. Important to note is that strong performance of the NQC was

enabled by modifying the Newtonian (multipolar) prefactors in the waveform, while leaving

it untouched in the radiation reaction, as discussed in Sec. 5.2.3. In particular the m = 1

multipoles are improved by this modi�cation of the Newtonian (multipolar) prefactors, for

these multipoles the derivatives of the radial momentum become especially important close

to the peak of the multipole.

(ii) F̄EOB/NR evaluated between TEOBiResumMultipoles and the non-spinning sector of the cali-

bration set was investigated thoroughly. For the inclusion of all modes the soft criteria of < 3%

was met for almost all binaries with a total mass 50M� ≤ M ≤ 200M�. In the parameter

space sector 1 . q . 2, for large total masses, this is however not the case. However, it stands

to reason that this uncertainty in the model is likely due to pathological features in h44 of the

NR waveform, ampli�ed due to e.g. the waveform extrapolation. In contrast for a total mass

of 100M� or less, F̄EOB/NR < 1% is generally met for all systems.

Subdominant modes: The spinning case TEOBiResumS_SM is the latest spin-aligned, non-

eccentric BBH waveform model discussed in this thesis and is introduced in Paper III and chapter 6.

Several modes, beyond the (2, 2) mode, for which TEOBiResumMultipoles was already de�ned,

are extended in TEOBiResumS_SM to include spin dependence. Concretely, these are the (`,m) =

(2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2) and (5, 5). The best performance in the extension to

the spinning domain is found for the ` = m modes up to ` = 5. The remaining waveforms,

in particular the (2, 1) mode can become problematic for spins χ1,2 . −0.5. Several aspects of

the TEOBiResumS_SM model are improved relative to TEOBResumS, as already mentioned above.

Further all modes are NR completed with NQC and merger-ringdown template waveform attached

at tEOB
NQC`m

.

The results presented for the extension to the subdominant modes can be summarized as:

(i) The NR informed �ts for many quantities already used in TEOBiResumMultipoles are extended

to include spin. The inclusion of spin is done through factoring out orbital dependence and

potentially also of leading order spin dependence. A spin parameter is chosen, exploiting quasi-

universal or approximately quasi-universal structures, to e�ectively reduce the dimensionality

2For a general discussion of the analytical improvements in detail the reader is referred to Paper II and references
therein, as the focus of this thesis is on the NR completion of TEOB model avatars.
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of total �t to two: (i) ν or alternatively X12 or X2
12, (ii) a spin parameter, most commonly

chosen to be Ŝ. With the exception of the e�ective merger-ringdown evolution parameters,

all �ts utilize the test-particle data to improve the extrapolation to higher mass-ratios.

The NR calibration and performance of the multipole as a whole is commonly most robust

and reliable for ` = m modes, up to ` = m = 5. The unfaithfulness of m = ` modes up to

` = 4 is well below 3% for BBH system masses M = 120M�. Due to disagreements between

TEOB and NR waveform for the (4, 4) mode this limit is somewhat exceeded for larger masses.

It is however not yet clear if this disagreement is entirely due to inaccurate modeling on the

waveform model side, or insu�ciently resolved, possibly pathological waveforms on the NR

side3. Similarly, when the (2, 1) mode is included the unfaithfulness performs reasonable well

F̄ . 3%. However, for systems with large, anti-aligned spins relative to the orbital angular

momentum, such as e.g. (3,−0.85,−0.85), the situation is more challenging. As between the

peak of the (2, 2) and (2, 1) mode the TEOB dynamics, as implemented in TEOBiResumS_SM,

become unreliable in those conditions.

(ii) One of the major results of Paper III, which is only summarized here, is the increased di�culty

that arises when the peak of a given subdominant mode h`m is signi�cantly delayed (∼ 7−8M)

with respect to the peak of the dominant h22 mode. This can happen for m 6= `, in particular

for (2, 1), (4, 3) or (3, 1). One method to solve this is could be found in the extension of

the merger-ringdown template into the late inspiral, as was done in Ref. [70]. The problem

with such an approach is that it has a high potential to miss subtle physical structures in

the waveform. One example is the zero in the waveform close to the peak of the (2, 1) mode

for (2,+0.60,−0.60). Thus, it is reasonable to instead focus on improving the dynamics and

aiming at building an improved dynamical structure which is more stable after the peak of

the (2, 2) mode.

m = 1 waveform minimum in the inspiral In Ref. [70] it was discovered that the (2, 1) mode

for nearly-equal-mass waveforms with oppositely aligned spins can potentially show can contain a

minimum or even a zero in the late-inspiral amplitude. This e�ect was loosely reproduced with the

PN waveform in which the leading order spin-orbit correction cancels with the dominant orbital

contribution. While the phenomena was pointed out it remains not included into the waveform

model discussed therein SEOBNRv4HM.

In chapter 6 touched upon this feature brie�y, while Paper III discussed it more thoroughly,

this topic was picked up in the context of TEOBiResumS_SM. The minimum, when it was su�ciently

before the merger shows an excellent agreement with the factorized and resummed TEOB waveform

developed in Ref. [123, 129], as was demonstrated. Starting from the analytical description of

the (2, 1) mode it was in principle possible for any m = odd multipole to develop a zero in the

inspiral. Thus, the SXS catalog was investigated and an additional SXS waveform was found with

a similar phenomenology. However, this waveform showed this behavior in the (3, 1) mode, which

was very well modeled by the TEOB waveform even without NR calibration. Thus, even though this

phenomenon was not intentionally targeted, the behavior could be recovered accurately, likely due

to the robust resummation and factorization of the waveform.

3A possible solution is to extend the discussion through the inclusion of an additional NR waveform catalog as
discussed above.
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Future improvement of the TEOB model There are a three ways to include new physical phe-

nomena into TEOB. (i) The basic infrastructure can be changed. Especially, when extending the

model, to e.g. eccentricity [66] or precessing spins [33], an improvement of the TEOB infrastruc-

ture becomes necessary. (ii) The analytical information contained in the A-potential, the gyro-

gravitomagnetic ratios (GS , GS∗) and the analytical waveform could be improved. (iii) The merger-

ringdown templates can be improved in several ways:

(i) Ref. [66] presented a minimally modi�ed version of TEOBiResumS_SM capable to include mild

eccentricity. Following this work it would be interesting to investigate if it would be possible

to modify the model independent sector of the analytical �exibility to include a dependency

on eccentricity. As has been shown in Ref. [66] the approximation of no eccentricity in the

merger-ringdown template is su�ciently accurate for mild eccentricity.

(ii) The inspiral model TEOBResumSP, allowing for generic, precessing spins was introduced in

Ref. [33]. Improving merger-ringdown and NQC to include the dependence on generic spins.

(iii) Currently, all modes are modeled neglecting mode-mixing, which occurs because the s = −2

spin-weighted spherical harmonics are not an eigen basis of the radiation emitted in the �nal

state and need to be replaced by spheroidal harmonics. Including this would greatly improve

the robustness merger-ringdown phase. Examples of such improvements can be found in

Ref. [113, 114].

(iv) Currently, model does not account for the beating between positive and negative frequency

quasi-normal-modes [45]. An example of this e�ect can be observed for BBH:1375 in Fig. 4.7.

This can be incorporated following the method of Ref. [45].

(v) The model is calibrated up to mass-ratios q = 20 and robust up to q = 30. Extending the �ts

of the merger and postpeak evolution parameters up to the test-particle limit would complete

the coverage of the aligned-spin parameter space The amplitude template of the merger needs

to be modi�ed to account for the test-particle behavior.

Future non-standard applications of the TEOB avatars Two possible future projects could

be the following:

(i) The very short BBH event GW170729 was announced in Ref. [23]. It was visible during its

late inspiral, merger and ringdown. It showed clear evidence of high spins, non-vanishing

mass di�erence and the presence of subdominant multipoles. It would be interesting to use

the merger-ringdown template developed in Paper III to explore a direct time-domain analysis

of GW170729. The method of such an analysis has been explored for a previous version of

the model on NR-injection samples in Ref. [83]. An analysis of the system has been presented

in Ref. [65].

(ii) In chapter 7 a consistency test of GR was introduced utilizing the fortunate face-o� orientation

of GW150914 to perform a strongly simpli�ed analysis. In the face-o� /face-on case of a

nearly-equal-mass waveform the signal is dominated by h22 or h2,−2 and the error due to the

exclusion of all subdominant multipoles is shown to be limited. In general this is not the case.

Thus a full multipolar waveform model is required to reconstruct the peak as determined by
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an analysis of the signal. It would be interesting to see if this method can be applied to similar

situations.
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Appendix A

Unfaithfulness and FFT computation

This appendix is dedicated to introduce the FFT and unfaithfulness computation. Given a waveform

h we will refer to its Fast Fourier Transform (FFT) by h̃. Prior to the FFT computation the

waveform needs to be tapered as

h→
{

0 , for t ≤ t0
h · htaper , for t > t0.

(A.1)

The time t0 for NR waveforms is chosen just after the passing of the initial-state radiation. As EOB

waveforms can typically be much longer the value of t0 for the EOB waveform is chosen such that

the initial frequency for both NR and EOB waveform agree. htaper is given by a Schwartz-function

htaper =
1

1 + eα·Z·Tcyc
, (A.2)

with Z =
1

(t− t0)
+

1

(t− t0)− ncyc · Tcyc
. (A.3)

Practice has shown that the following parameters give stable results

Tcyc =
2π

fGW (t = t0)
, ncyc = 1, α = 1 , (A.4)

with fGW (t = t0) being the GW frequency at t = t0
1. The FFT is computed with the MATLAB

function fft.

In this work we will primarily use the noise Power Spectral Density (PSD) of advanced LIGO.

The results presented in Papers I and II were computed using the anticipated sensitivity curve of

Advanced LIGO more speci�cally the zero-detuned, high-power PSD [8]. In Paper III the results

have been computed with the updated PSD presented in [11]. While Advanced Virgo and LIGO

show a very di�erent pro�les in terms of performance and technology applied, from the point of

view of waveform model development they are su�ciently similar.

To compare EOB waveform models with NR to access their standards of performance for third

generation gravitational it is recommended to use the results published in [147]. The PSD curves can

be found, prepared in ".txt" and ".mat" format, at [1]. The curve model ET_D is recommended.

1In practice it can happen that the numerical evaluation of htaper is singular at t = t0 but this singularity can be
circumvented by manually imposing htaper (t = t0) = 0.
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Figure A.1: A direct comparison of the noise spectrum and the �t shown in equations (A.5) � (A.11).

While the any code could handle raw PSDs as published some post-processing is advised.

In particular the individual peaks in the PSD have to be smoothed out. The anticipated PSD

Santicipated
n (f) was �tted and a direct comparison between the strains is shown in Fig. A.1.

Santicipated
n (f)fit =

1.23693× 10−45

f
× S?n

(
f

56.56

)
(A.5)

S?n (x) = 0.41473797 + 0.0927076 log (x) + 0.44943703x (A.6)

+ 0.0034297409x log (x)− 6.5736784× 10−5x2 + 0.0026988759x3 (A.7)

+ eS
exp
n (x) (A.8)

Sexpn (x) = −2.0158256− 4.1577911 log (x)− 1.0904057 log2 (x) (A.9)

− 0.75793805 log3 (x)− 0.34979753 log4 (x)− 0.098312294 log5 (x) (A.10)

+ 3.3732744× 10−6x−7. (A.11)

Spikes in the updated Advanced LIGO noise PSD were removed by hand and the cuts have been

smoothed out using the MATLAB function spline. The noise PSD of the Einstein Telescope can be

prepared similar in the same way.

For two waveforms (hI , hJ), the unfaithfulness is a function of the total mass M of the binary

and is de�ned as

F̄IJ(M) ≡ 1− FIJ = 1−max
t0,φ0

〈hI , hJ〉
||hI ||||hJ ||

, (A.12)

where (t0, φ0) are the initial time and phase, ||h|| ≡
√
〈h, h〉, and the inner product between two

waveforms is de�ned as 〈hI , hJ〉 ≡ 4<
∫∞
fNR
min(M) h̃I(f)h̃∗J(f)/Sn(f) df , where h̃(f) denotes the Fourier

transform of h(t), Sn(f) is one of the PSDs discussed above, fNR
min(M) = f̂NR

min/M is the initial

frequency of the NR waveform at highest resolution after the transition of initial-state radiation.

In chapter 5 and chapter 6 the unfaithfulness is additionally varied over the orientation of

the source given by the angles (ι, ϕ). Sec. 5.4.1 will introduce the reader onto the di�erence this
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generates on practical examples there presented.



Appendix B

TEOBResumS ` = m = 2 mode, additional

�t information

This appendix shows some additional information complimentary to the �ts presented in Chapter 4.

B.1 NQC hybrid �t of the ` = m = 2 mode

In previous works several excellent �ts of the NQC extraction points
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}

have been obtained [76, 131, 132]. In both Paper I and Paper III these �ts have been used to model

the NQC extraction points for the cases q = 1, see eq. (B.1), and 1 < q < 4, see eq. (B.2).

ÂNQC
22 =0.00178195â4

0 + 0.00435589â3
0 + 0.00344489â2

0 − 0.00076165â0 + 0.31973334, (B.1a)

˙̂
ANQC

22 =0.00000927â4
0 − 0.00024550â3

0 + 0.00012469â2
0 + 0.00123845â0 − 0.00195014, (B.1b)

ωNQC
22 =0.00603482â4

0 + 0.01604555â3
0 + 0.02290799â2

0 + 0.07084587â0 + 0.38321834, (B.1c)

ω̇NQC
22 =0.00024066â4

0 + 0.00038123â3
0 − 0.00049714â2

0 + 0.00041219â0 + 0.01190548. (B.1d)

ÂNQC
22 = (0.04680896ν − 0.00632114) â3

0 + (0.06586192ν − 0.01180039) â2
0

− (0.11617413ν − 0.02704959) â0 + (0.15597465ν + 0.28034978) , (B.2a)

˙̂
ANQC

22 =− (0.0013082ν − 0.00006202) â3
0 + (0.0019986ν − 0.00027474) â2

0

+ (0.00218838ν + 0.00071540) â0 − (0.00362779ν + 0.00105397) , (B.2b)

ωNQC
22 =

0.46908067ν + 0.27022141

1 + (0.64131115ν − 0.37878384) â0
, (B.2c)

ω̇NQC
22 = (0.00061175ν + 0.00074001) â0 + (0.02504442ν + 0.00548217) . (B.2d)

(B.3)
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Table B.1: Coe�cients of the NQC extraction points de�ned in Eqs. (4.25)-(4.36). As top-left, top-right,

bottom-left to bottom-right the columns show
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}
.

ÂNQC
22 ȦNQC

22 /ν

c
ÂNQC

orb
0 = 0.294888 N

ȦNQC
orb

0 = −0.00421428

c
ÂNQC

orb
1 = −0.0427442 N

ȦNQC
orb

1 = −0.0847947

c
ÂNQC

orb
2 = 0.816756 D

ȦNQC
orb

1 = 16.1559

c
ÂNQC

orb
3 = −0.986204

n
ÂNQC

spin

1/4 = −0.275052 n
ȦNQC

spin

1/4 = 0.00374616

d
ÂNQC

spin

1/4 = −0.469378 d
ȦNQC

spin

1/4 = 0.0636083

n
ÂNQC

spin

1 = 0.143066 n
ȦNQC

spin

1 = 0.00129393

n
ÂNQC

spin

2 = −0.0425947 n
ȦNQC

spin

2 = −0.00239069

d
ÂNQC

spin

1 = 0.176955 d
ȦNQC

spin

1 = −0.0534209

d
ÂNQC

spin

2 = −0.111902 d
ȦNQC

spin

2 = −0.186101

ωNQC
22 ω̇NQC

22

c
ωNQC

orb
0 = 0.286399 N

ω̇NQC
orb

0 = 0.00649349

c
ωNQC

orb
1 = 0.251240 N

ω̇NQC
orb

1 = 0.00452138

c
ωNQC

orb
2 = 0.542717 D

ω̇NQC
orb

1 = −1.44664

n
ωNQC

spin

1/4 = −0.292192 a
ω̇NQC

spin

1/4 = 0.1209112

d
ωNQC

spin

1/4 = −0.686036 b
ω̇NQC

spin

1/4 = −0.1198332

n
ωNQC

spin

1 = 0.1996112 a
ω̇NQC

spin

1 = 0.142343

n
ωNQC

spin

2 = −0.236196 a
ω̇NQC

spin

2 = −0.1001772

d
ωNQC

spin

1 = 0.1843102 b
ω̇NQC

spin

1 = 0.1844956

d
ωNQC

spin

2 = −0.148057 b
ω̇NQC

spin

2 = −0.0612272



B.1. NQC hybrid �t of the ` = m = 2 mode

Table B.2: The left column shows the coe�cients of the waveform amplitude at merger, de�ned in
Eq. (4.15) � (4.20). The right column shows the coe�cients of the waveform frequency at merger, de�ned
in Eq. (4.23) � (4.24), relying on (4.19) � (4.20).

c
Âmrg

orb
0 = 1.43842 c

ωmrg
orb

0 = 0.273813

c
Âmrg

orb
1 = 0.100709 c

ωmrg
orb

1 = 0.223977

c
Âmrg

orb
2 = 1.82657 c

ωmrg
orb

2 = 0.481959

n
Âmrg

spin

ν=1/4 = −0.293524 n
ωmrg

spin

ν=1/4 = −0.283200

d
Âmrg

spin

ν=1/4 = −0.472871 d
ωmrg

spin

ν=1/4 = −0.696960

n
Âmrg

spin

1 = 0.176126 n
ωmrg

spin

1 = 0.1714956

n
Âmrg

spin

2 = −0.0820894 n
ωmrg

spin

2 = −0.24547

d
Âmrg

spin

1 = 0.20491 d
ωmrg

spin

1 = 0.1653028

d
Âmrg

spin

2 = −0.150239 d
ωmrg

spin

2 = −0.1520046

Table B.3: Coe�cients of the �ts of the fundamental QNM frequency and inverse damping time of the
�nal remnant (ω1, α1) as well as the di�erence α21 = α2 − α1 of the inverse damping times of the �rst two
modes. See Eq. (4.37) for de�nitions.

Y = ω22
1 Y = α22

1 Y = α22
21

Y0 0.373672 0.0889623 0.184953
bY1 −1.74085 −1.82261 −1.41681
bY2 0.808214 0.701584 −0.0593166
bY3 −0.0598838 0.121126 0.476420
cY1 −2.07641 −1.80020 −1.35955
cY2 1.31524 0.720117 −0.0763529
cY3 −0.235896 0.0811633 0.438558



B.1. NQC hybrid �t of the ` = m = 2 mode

Table B.4: The �tted coe�cients of
{
cA3 , c

φ
3 , c

φ
4

}
as de�ned in Eq. (4.38).

Y = cφ3 Y = cφ4

b
cφ3
0 (ν) = 3.88838 +0.455847ν b

cφ4
0 (ν) = 1.49969 +2.08223ν

b
cφ3
1 (X12) = 5.11992 −0.924642X12 b

cφ4
1 (X12) = 8.26248 −0.899952X12

b
cφ3
2 (X12) = 10.29692 −3.618048X12 b

cφ4
2 (X12) = 14.27808 −3.923652X12

b
cφ3
3 (X12) = −4.041224 +3.501976X12 b

cφ4
3 (X12) = 0

b
cφ3
4 (X12) = −32.92144 +29.24000X12 b

cφ4
4 (X12) = 0

Y = cA3

b
cA3
0 (ν) = −0.561584 +0.829868ν

b
cA3
1 (X12) = −0.199494 +0.0169543X12

b
cA3
2 (X12) = 0.0227344 −0.0799343X12

b
cA3
3 (X12) = 0.0907477 −0.115928X12

b
cA3
4 (X12) = 0



Appendix C

TEOBiResumMultipoles, additional �t

information

Table C.1: Parameters for the �t of the peak amplitude and frequency of all multipoles up to ` = m = 5.
From left to right, the columns report: the multipolar indices; the values of the amplitude and frequency in
the test-particle limit, (Â0

`m, ω
0
`m); the amplitude �t coe�cients (nA`m

i , dA`m
i ) and the frequency �t coe�cients

(nω`m
i , dω`m

i ) for the functions (
ˆ̂
A`m, ω̂`m) de�ned in Eqs. (5.29)-(5.30) and �tted using the rational function

template of Eq. (5.31). Note that since all dA`m
2 values are found to be equal to zero we do not explicitly

report them in the table.

` m Â0
`m nA`m1 nA`m2 dA`m1

2 2 0.295896 −0.041285 1.5971 . . .
1 0.106935 9.0912 3.9331 11.108

3 3 0.051670 0.098379 3.8179 . . .
2 0.018168 −6.142 11.372 −3.6448
1 0.005694 −5.49 10.915 . . .

4 4 0.014579 −3.6757 0.32156 −3.6784
3 0.004962 −5.7791 12.589 −3.3039
2 0.001656 −4.7096 7.3253 . . .
1 0.000487 −8.4449 26.825 −1.2565

5 5 0.005227 −0.29628 6.4207 . . .

` m ω0
`m nω`m1 nω`m2 dω`m1 dω`m2

2 2 0.273356 0.84074 1.6976 . . . . . .
1 0.290672 −0.060432 1.9995 0.23248 . . .

3 3 0.454622 1.1054 2.2957 . . . . . .
2 0.451817 −9.0214 21.078 −8.6636 19.493
1 0.411755 . . . 7.5362 −2.7555 38.572

4 4 0.635415 3.2876 −29.122 1.696 −22.761
3 0.636870 −9.0124 22.011 −8.732 20.518
2 0.626030 −7.0558 12.738 −6.0595 9.3389
1 0.552201 −10.876 37.904 −11.194 42.77

5 5 0.818117 −2.8918 −3.2012 −3.773 . . .



Chapter C. TEOBiResumMultipoles, additional �t information

Table C.2: Fits of the postpeak functions (cA`m
3 , cφ`m

3 , cφ`m

4 ) entering Eqs. (2.46)-(2.47). Note the rather
special functional form needed for cA32

3 and cA44
3 , that is necessary to properly account for nearly equal-mass

data. In addition, the �ts of some multipoles are discontinuous, the interface between the branches being at
mass ratios q = 2.5 or q = 10. Such mass ratios correspond to the values ν = 10/49 and ν = 10/121 that
appear in the argument of the θ functions.

` m cA`m3

2 2 −0.56187 + 0.75497ν

1 0.23882−2.2982ν+5.7022ν2

1−7.7463ν+27.266ν2

3 3 −0.39337 + 0.93118ν

2 0.1877−3.0017ν+19.501ν2

1−1.8199ν − e−703.67(ν−2/9)2

1 3.5042−55.171ν+217ν2

1−15.749ν+605.17ν3

4 4 −0.25808 + 0.84605ν + 1.2376e−6054.7(ν−10/49)2

3 −0.02833+2.8738ν−31.503ν2+93.513ν3

1−10.051ν+156.14ν3

2 0.27143−2.2629ν+4.6249ν2

1−7.6762ν+15.117ν2

1 11.47 + 10.936ν

5 5 −0.19751+3.607ν−14.898ν2

1−20.046ν+108.42ν2

` m cφ`m3 cφ`m4

2 2 4.4414−63.107ν+296.64ν2

1−13.299ν+69.129ν2
7.1508−109.47ν

1+556.34ν+287.42ν2

1 2.6269−37.677ν+181.61ν2

1−16.082ν+89.836ν2
4.355−53.763ν+188.06ν2

1−18.427ν+147.16ν2

3 3 3.1017− 6.5849ν 3.4521−24.153ν+53.029ν2

1+3.1413ν

2 0.90944−1.8924ν+3.6848ν2

1−8.9739ν+21.024ν2
2.3038−50.79ν+334.41ν2

1−18.326ν+99.54ν2

1 −6.1719+29.617ν+254.24ν2

1−1.5435ν θ
(
ν − 10

121

)
3.6485 + 5.4536ν

−2.2784 θ
(

10
121 − ν

)

4 4 2.3328−9.4841ν+19.719ν2

1−2.904ν 0.94564 + 3.2761ν

3 2.284−23.817ν+70.952ν2

1−10.909ν+30.723ν2
2.4966−6.2043ν

1−252.47ν4

2 2.2065−17.629ν+65.372ν2

1−4.7744ν+3.1876ν2 Eq. (5.32)

1 (−6.0286 + 46.632ν)θ
(
ν − 10

121

)
1.6629 + 11.497ν

−2.1747 θ
(

10
121 − ν

)

5 5 0.83326 + 10.945ν 0.45082−9.5961ν+52.88ν2

1−19.808ν+99.078ν2
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Table C.3: Parameters of the �tting function given by Eq. (5.33) used to �t the QNM parameters entering
the phenomenological description of the postmerger waveform. We list here the fundamental QNM frequency
ω`m1 and (inverse) damping time α`m1 as well as the di�erence α`m21 = α`m2 − α`m1 .

Y ′ ` m Y ′0 bY
′

1 bY
′

2 bY
′

3 cY
′

1 cY
′

2 cY
′

3

ω`m1 2 2 0.373672 −1.5367 0.5503 . . . −1.8700 0.9848 −0.10943
1 0.373672 −0.79546 −0.1908 0.11460 −0.96337 −0.1495 0.19522

3 3 0.599443 −1.84922 0.9294 −0.07613 −2.18719 1.4903 −0.3014
2 0.599443 −0.251 −0.891 0.2706 −0.475 −0.911 +0.4609
1 0.599443 −0.70941 −0.16975 0.08559 −0.82174 −0.16792 0.14524

4 4 0.809178 −1.83156 0.9016 −0.06579 −2.17745 1.4753 −0.2961
3 0.809178 −1.8397 0.9616 −0.11339 −2.0979 1.3701 −0.2675
2 0.0941640 −1.44152 0.0542 0.39020 −1.43312 0.1167 0.32253
1 0.0941640 1.1018882 −0.88643 −0.78266 1.1065495 −0.80961 −0.68905

5 5 1.012295 −1.5659 0.5783 . . . −1.9149 1.0668 −0.14663

α`m1 2 2 0.08896 −1.90036 0.86200 0.0384893 −1.87933 0.88062 . . .
1 0.0889623 −1.31253 −0.21033 0.52502 −1.30041 −0.1566 0.46204

3 3 0.0927030 −1.8310 0.7568 0.0745 −1.8098 0.7926 0.0196
2 0.0927030 −1.58277 0.2783 0.30503 −1.56797 0.3290 0.24155
1 0.0927030 −1.2345 −0.30447 0.5446 −1.2263 −0.24223 0.47738

4 4 0.0941640 −1.8662 0.8248 0.0417 −1.8514 0.8736 −0.0198
3 0.0941640 −1.7177 0.5320 0.1860 −1.7065 0.5876 0.120939
2 0.190170 −1.38840 . . . 0.39333 −1.37584 0.0600017 0.32632
1 0.190170 1.0590157 −0.8650630 −0.75222 1.0654880 −0.7830051 −0.65814

5 5 0.0948705 −1.8845 0.8585 0.0263 −1.8740 0.9147 −0.0384

α`m21 2 2 0.184953 −1.89397 0.88126 0.0130256 −1.83901 0.84162 . . .
1 0.184952 −1.1329 −0.3520 0.4924 −1.10334 −0.3037 0.4262

3 3 0.188595 −1.8011 0.7046 0.0968 −1.7653 0.7176 0.0504
2 0.188595 −1.5212 0.1563 0.3652 −1.4968 0.1968 0.3021
1 0.188595 −1.035 −0.3816 0.4486 −1.023 −0.3170 0.3898

4 4 0.190170 −1.8546 0.8041 0.0507 −1.8315 0.8391 −0.0051
3 0.190170 −1.6860 0.4724 0.2139 −1.6684 0.5198 0.1508
2 0.809178 −0.6644 −0.3357 0.1425 −0.8366 −0.2921 0.2254
1 0.809178 −0.68647 −0.1852590 0.0934997 −0.77272 −0.1986852 0.1485093

5 5 0.190947 −1.8780 0.8467 0.0315 −1.8619 0.8936 −0.0293

Table C.4: The �t parameters to analytically represent the time lag between the peak of the (`,m)
waveform multipole and the peak of the (2, 2) mode, Eq. (5.34). The coe�cients refer to the functional form
of Eqs. (5.35)-(5.36).

` m ∆t0`m n∆t`m
1 n∆t`m

2 d∆t`m
1 d∆t`m

2

2 1 11.7900 −3.764 6.9051 . . . . . .

3 3 3.49238 −0.11298 5.0056 . . . . . .
3 2 9.22687 −11.398 33.244 −8.1976 19.537
3 1 12.9338 . . . −25.615 0.88803 16.292

4 4 5.28280 −8.4686 18.006 −6.7964 11.368
4 3 9.59669 −11.345 38.813 −7.5049 22.399
4 2 11.9225 −3.8284 −12.399 . . . . . .
4 1 13.1116 −9.6225 38.451 −7.7998 32.405

5 5 6.561811 −12.198 40.327 −11.501 39.431
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Table C.5: The �ts of the NQC functioning points {ÂNQC
`m , ȦNQC

`m /ν, ωNQC
`m , ω̇NQC

`m }. The �ts are given
explicitly. The �ts are done after the factorization de�ned in eq. (5.37). For all multipoles the factorization
of the test-particle limit Y 0

`m is highlighted explicitly in the third and �fth column of the table. The exception

to this is the (2, 1) mode for which the test-particle behavior has not been factorized (see Sec. 5.3.6).
ˆ̂
Y NQC
`m

is �tted for all multipoles with at most quadratic polynomials or rational functions in ν.

ÂNQC
`m /|c`+ε(ν)| ωNQC

`m

2 2 0.294773
(
1− 0.051898ν + 1.5886ν2

)
0.285588

(
1 + 0.92487ν + 1.7206ν2

)

2 1 0.097671− 0.0014424ν 0.29622 + 0.048182ν + 0.37472ν2

3 3 0.0512928
(
1 + 0.09537ν + 3.7217ν2

)
0.476647

(
1 + 1.1008ν + 2.84ν2

)

3 2 0.0178914
(

1−6.1472ν+11.435ν2

1−3.6362ν

)
0.482635

(
1−9.1403ν+21.399ν2

1−8.8647ν+20.185ν2

)

3 1 0.00520201
(
1− 4.9441ν + 8.9339ν2

)
0.485186

(
1− 0.4421ν − 6.8184ν2

)

4 4 0.0144330
(

1−3.7335ν−0.2895ν2

1−3.7298ν

)
0.665507 (1 + 0.95802ν)

4 3 0.00487784
(

1−5.7951ν+12.833ν2

1−3.2681ν

)
0.673274

(
1−9.2007ν+22.161ν2

1−9.026ν+21.238ν2

)

4 2 0.00161809
(
1− 4.6975ν + 7.3437ν2

)
0.663076

(
1− 0.086381ν − 8.5978ν2

)

4 1 0.00043987
(

1−8.4975ν+27.31ν2

1−1.2002ν

)
0.735051

(
1−8.3628ν+20.529ν2

1−7.4883ν+18.695ν2

)

5 5 0.00516272
(
1− 0.38892ν + 6.7413ν2

)
0.855016

(
1−2.8461ν−3.7163ν2

1−3.8378ν

)

˙̂
ANQC
`m /ν ω̇NQC

`m

2 2 −0.00119366
(
1 + 3.0125ν − 2.1792ν2

)
0.00628027

(
1 + 2.5374ν + 3.9341ν2

)

2 1 (−0.0011119 + 0.0042824ν) / (1− 3.0565ν) 0.0020157 + 0.049725ν

3 3 −0.00039568
(
1 + 1.0985ν − 13.458ν2

)
0.0110394

(
1 + 2.1358ν + 4.1544ν2

)

3 2 −0.00026840
(

1−8.4869ν+18.736ν2

1−5.7457ν+7.9581ν2

)
0.0141756

(
1−10.831ν+37.969ν2

1−12.954ν+51.155ν2

)

3 1 −0.00043382
(

1−9.0479ν+23.054ν2

1+88.626ν2

)
0.0673118

(
1+13.318ν
1+70.552ν

)

4 4 −0.00015129
(
1− 2.206ν + 2.0191ν2

)
0.0147878

(
1−3.4516ν+4.8703ν2

1−5.7616ν+11.286ν2

)

4 3 −0.00008468
(
1− 4.1848ν + 4.2192ν2

)
0.0172836

(
1−19.234ν+105.04ν2

1−19.837ν+107.76ν2

)

4 2 −0.00004223
(

1−5.1172ν+5.4408ν2

+6.1593ν

)
0.0213781

(
1−6.2629ν+10.1ν2

1−8.4232ν+21.204ν2

)

4 1 −0.00001827
(
1− 2.8242ν − 3.1871ν2

)
0.0739078

(
1 + 0.99186ν − 19.435ν2

)

5 5 −0.00006580 (1− 1.8592ν) 0.0178326 (1 + 2.4606ν)
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Table D.1: Explicit coe�cients and their errors for the merger frequency and amplitude �ts of the (2, 2)
mode. The analytic template of the �t is de�ned in Eqs. (6.19) � (6.22).

ω
mrg0
22 = 0.273356 Â

mrg=0
22 = 1.44959

aω1 = 0.84074 ±0.014341 aÂ1 = −0.041285 ±0.0078878

aω2 = 1.6976 ±0.075488 aÂ2 = 1.5971 ±0.041521

b
ωm1=m2
1 = −0.42311 ±0.088583 b

Âm1=m2
1 = −0.74124 ±0.016178

b
ωm1=m2
2 = −0.066699 ±0.042978 b

Âm1=m2
2 = −0.088705 ±0.0081611

b
ωm1=m2
3 = −0.83053 ±0.084516 b

Âm1=m2
3 = −1.0939 ±0.015318

cω11 = 0.15873 ±0.1103 cÂ11 = 0.44467 ±0.037352

cω12 = −0.43361 ±0.2393 cÂ12 = −0.32543 ±0.081211

cω21 = 0.60589 ±0.076215 cÂ31 = 0.45828 ±0.066062

cω22 = −0.71383 ±0.096828 cÂ32 = −0.21245 ±0.080254
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Table D.2: Explicit coe�cients of the �ts of Âpeak
21 , ωpeak

21 and ∆t21.

Â
peak0
21 = 0.523878 ω

peak0
21 = 0.290643 ∆t021 = 11.75925

aÂ21
1 = 3.33622 aω21

1 = −0.563075 ∆t
ν=1/4
21 = 6.6264

aÂ21
2 = 3.47085 aω21

2 = 3.28677 a∆t21
1 = −2.0728

aÂ21
3 = 4.76236

b
Â0

21
1 = −0.428186 b

ω0
21

1 = 0.179639 b
∆t021
1 = 0.0472289

b
Â0

21
2 = −0.335659 b

ω0
21

2 = −0.302122 b
∆t021
2 = 0.115583

b
Â0

21
3 = 0.828923

cÂ21
11 = 0.891139 cω21

1 = −1.20684 c∆t21
11 = −1976.13

cÂ21
12 = −5.191702 cω21

2 = 0.425645 c∆t21
12 = 3719.88

cÂ21
21 = 3.480139 c∆t21

21 = −2545.41

cÂ21
22 = 10.237782 c∆t21

22 = 5277.62

cÂ21
31 = −13.867475

cÂ21
32 = 10.525510

Table D.3: Explicit coe�cients of the �ts of Âpeak
33 , ωpeak

33 and ∆t33.

Â
peak0
33 = 0.566017 ω

peak0
33 = 0.454128 ∆t033 = 3.42593

aÂ33
1 = −0.22523 aω33

1 = 1.08224 a∆t33
1 = 0.183349

aÂ33
2 = 3.0569 aω33

2 = 2.59333 a∆t33
2 = 4.22361

aÂ33
3 = −0.396851

b
Â0

33
1 = 0.100069 b

ω0
33

1 = −0.406161 b
∆t033
1 = −0.49791

b
Â0

33
2 = −0.455859 b

ω0
33

2 = −0.0647944 b
∆t033
2 = −0.18754

b
ω0

33
3 = −0.748126 b

∆t033
3 = −1.07291

cÂ33
11 = −0.401156 cω33

11 = 0.85777 c∆t33
11 = −1.9478

cÂ33
12 = −0.141551 cω33

12 = −0.70066 c∆t33
12 = 13.9828

cÂ33
13 = −15.4949 cω33

31 = 2.97025 c∆t33
21 = 1.25084

cÂ33
21 = 1.84962 cω33

32 = −3.96242 c∆t33
22 = −3.41811

cÂ33
22 = −2.03512 c∆t33

31 = −1043.15

cÂ33
23 = −4.92334 c∆t33

32 = 1033.85
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Table D.4: Explicit coe�cients of the �ts of Âpeak
32 and ωpeak

32 .

Â
peak0
32 = 0.199019 ω

peak0
32 = 0.451607

aÂ32
1 = −6.06831 aω32

1 = −9.13525

aÂ32
2 = 10.7505 aω32

2 = 21.488

aÂ32
3 = −3.68883 aω32

3 = −8.81384
aω32

4 = 20.0595

b
Â0

32
1 = −0.258378 b

ω
ν=1/4
32

1 = −0.458126

b
Â0

32
2 = 0.679163 b

ω
ν=1/4
32

2 = 0.0474616

b
ω
ν=1/4
32

3 = −0.486049

cÂ32
11 = 4.36263 cω32

11 = 3.25319

cÂ32
12 = −12.5897 cω32

12 = 0.535555

cÂ32
13 = −7.73233 cω32

13 = −8.07905

cÂ32
14 = 16.2082 cω32

21 = 1.00066

cÂ32
21 = 3.04724 cω32

22 = −1.1333

cÂ32
22 = 46.5711 cω32

23 = 0.601572

cÂ32
23 = 2.10475

cÂ32
24 = 56.9136

Table D.5: Explicit coe�cients of ∆t32.

∆t032 = 9.16665 c
∆tν32
11 = −0.037634 c

∆t
X12
32

11 = 2.497188

a∆t32
1 = −11.3497 c

∆tν32
12 = 12.456704 c

∆t
X12
32

12 = −7.532596

a∆t32
2 = 32.9144 c

∆tν32
13 = 2.670868 c

∆t
X12
32

13 = 4.645986

a∆t32
3 = −8.36579 c

∆tν32
14 = −12.255859 c

∆t
X12
32

14 = −3.652524

a∆t32
4 = 20.1017 c

∆tν32
15 = 37.843505 c

∆t
X12
32

15 = 3.398687

b
∆t032
1 = −0.34161 c

∆tν32
21 = −25.058475 c

∆t
X12
32

21 = 7.054185

b
∆t032
2 = −0.46107 c

∆tν32
22 = 449.470722 c

∆t
X12
32

22 = −12.260185

b
∆t032
3 = 0.34744 c

∆tν32
23 = −1413.508735 c

∆t
X12
32

23 = 5.724802

b
∆t

ν=1/4
32

1 = 0.15477 c
∆tν32
24 = −11.852596 c

∆t
X12
32

24 = −3.242611

b
∆t

ν=1/4
32

2 = −0.755639 c
∆tν32
25 = 41.348059 c

∆t
X12
32

25 = 2.714232

b
∆t

ν=1/4
32

3 = 0.21816 c
∆tν32
31 = −5.650710 c

∆t
X12
32

31 = 2.614565

c
∆tν32
32 = −9.567484 c

∆t
X12
32

32 = −9.507583

c
∆tν32
33 = 173.182999 c

∆t
X12
32

33 = 7.321586

c
∆tν32
34 = −10.938605 c

∆t
X12
32

34 = −3.937568

c
∆tν32
35 = 35.670656 c

∆t
X12
32

35 = 4.584970
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Table D.6: Explicit coe�cients of the �ts of Âpeak
44 , ωpeak

44 and ∆t44.

Â
peak0
44 = 0.276618 ω

peak0
44 = 0.635659 ∆t044 = 5.27778

aÂ44
1 = −3.7082 aω44

1 = −0.964614 a∆t44
1 = −8.35574

aÂ44
2 = 0.280906 aω44

2 = −11.1828 a∆t44
2 = 17.5288

aÂ44
3 = −3.71276 aω44

3 = −2.08471 a∆t44
3 = −6.50259

aω44
4 = −6.89287 a∆t44

4 = 10.1575

b
Â0

44
1 = −0.316647 b

ω0
44

1 = −0.445192 b
∆t

ν=1/4
44

1 = 0.00159701

b
Â0

44
2 = −0.062423 b

ω0
44

2 = −0.0985658 b
∆t

ν=1/4
44

2 = −1.14134

b
Â0

44
3 = −0.852876 b

ω0
44

3 = −0.0307812

b
ω0

44
4 = −0.801552

cÂ44
11 = 1.2436 cω44

11 = −0.92902 c∆t4
11 = −2.28656

cÂ44
12 = −1.60555 cω44

12 = 10.86310 c∆t44
12 = 1.66532

cÂ44
13 = −4.05685 cω44

13 = −4.44930 c∆t44
21 = −0.589331

cÂ44
14 = 1.59143 cω44

14 = 3.01808 c∆t44
22 = 0.708784

cÂ44
21 = 0.837418 cω44

22 = 1.62523

cÂ44
22 = −2.93528 cω44

23 = −7.70486

cÂ44
23 = −11.5591 cω44

23 = 15.06517

cÂ44
24 = 34.1863 cω44

41 = 0.93790

cÂ44
31 = 0.950035 cω44

42 = 8.36038

cÂ44
32 = 7.95168 cω44

43 = −4.85774

cÂ44
33 = −1.26899 cω44

44 = 4.80446

cÂ44
34 = −9.72147
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Table D.7: Explicit coe�cients of the �ts of Âpeak
43 , ωpeak

43 and ∆t43.

Â
peak0
43 = 0.0941570 ω

peak0
43 = 0.636130 ∆t043 = 9.53705

aÂ43
1 = −5.74386 aω43

1 = −9.02463 a∆t43
1 = −11.2377

aÂ43
2 = 12.6016 aω43

2 = 21.9802 a∆t43
2 = 38.3177

aÂ43
3 = −3.27435 aω43

3 = −8.75892 a∆t43
3 = −7.29734

aω43
4 = 20.5624 a∆t43

4 = 21.4267

b
Â0

43
1 = −0.02132252 b

ω0
43

1 = −0.973324 b
∆t043
1 = −1.371832

b
Â0

43
2 = 0.02592749 b

ω0
43

2 = −0.109921 b
∆t043
2 = 0.362375

b
Â0

43
3 = −0.826977 b

ω0
43

3 = −1.08036 b
∆t043
3 = −1.0808402

b
Â
ν=1/4
43

1 = −0.00471163

b
Â
ν=1/4
43

2 = 0.0291409

b
Â
ν=1/4
43

3 = −0.351031

cÂ43
11 = 0.249099 cω43

11 = 11.5224 c∆t43
11 = 3.215984

cÂ43
12 = −7.345984 cω43

12 = −26.8421 c∆t43
12 = 42.133767

cÂ43
13 = 108.923746 cω43

13 = −2.84285 c∆t43
13 = −9.440398

cÂ43
21 = −0.104206 cω43

21 = 3.51943 c∆t43
14 = 35.160776

cÂ43
22 = 7.073534 cω43

22 = −12.1688 c∆t43
21 = 1.133942

cÂ43
23 = −44.374738 cω43

23 = −3.96385 c∆t43
22 = −10.356311

cÂ43
31 = 3.545134 cω43

31 = 5.53433 c∆t43
23 = −6.701429

cÂ43
32 = 1.341375 cω43

32 = 3.73988 c∆t43
24 = 10.726960

cÂ43
33 = −19.552083 cω43

33 = 4.219 c∆t43
31 = −6.036207

c∆t43
32 = 67.730599

c∆t43
33 = −3.082275

c∆t43
34 = 11.547917



Chapter D. TEOBiResumS_SM, additional �t information

Table D.8: Explicit coe�cients of the �ts of Âpeak
42 , ωpeak

42 and ∆t42.

Â
peak0
42 = 0.0314364 ω

peak0
42 = 0.617533 ∆t042 = 11.66665

aÂ42
1 = −4.56243 aω42

1 = −7.44121 a∆t42
1 = −9.844617

aÂ42
2 = 6.4522 aω42

2 = 14.233 a∆t42
2 = 23.32294

aω42
3 = −6.61754 a∆t42

3 = −5.760481

aω42
4 = 11.4329 a∆t42

4 = 7.121793

b
Â0

42
1 = −1.63682 b

ω0
42

1 = −2.37589 b
∆t042
1 = −1.3002045

b
Â0

42
2 = 0.854459 b

ω0
42

2 = 1.97249 b
∆t042
2 = −0.9494348

b
Â0

42
3 = 0.120537 b

ω0
42

3 = −2.36107

b
Â0

42
4 = −0.399718 b

ω0
42

4 = 2.16383

cÂ42
11 = 6.53943 cω42

11 = 10.1045 c∆t42
11 = 24.604717

cÂ42
12 = −4.00073 cω42

12 = −6.94127 c∆t42
12 = −0.808279

cÂ42
21 = −0.638688 cω42

13 = 12.1857 c∆t42
21 = 62.471781

cÂ42
22 = −3.94066 cω42

21 = −1.62866 c∆t42
22 = 48.340961

cÂ42
31 = −0.482148 cω42

22 = −2.6756

cÂ42
32 = 7.668× 10−9 − 4 cω42

23 = −4.7536

cÂ42
41 = 1.25617 cω42

31 = 10.071

cÂ42
42 = −4.04848 cω42

32 = −6.7299
cω43

33 = 12.0377
cω42

41 = −8.56139
cω42

42 = −5.27136
cω43

43 = 5.10653

Table D.9: Explicit coe�cients of the �ts of Âpeak
55 and ωpeak

55

Â
peak0
55 = 0.00522697 ω

peak0
55 = 0.818117

aÂ55
1 = −0.29628 aω55

1 = −2.8918

aÂ55
2 = 6.4207 aω55

2 = −3.2012
aω55

3 = −3.773

b
Â0

55
1 = 0.04360530 b

ω0
55

1 = −0.332703

b
Â0

55
2 = −0.5769451 b

ω0
55

2 = −0.675738

cÂ55
11 = 5.720690 cω55

11 = 1.487294

cÂ55
12 = 44.868515 cω55

12 = −2.058537

cÂ55
21 = 12.777090 cω55

21 = 1.454248

cÂ55
22 = −42.548247 cω55

22 = −1.301284
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Table D.10: The �tted coe�cients of (cA22
3 , cφ22

3 , cφ22

4 ) as de�ned in Eq. (6.109).

Y = cA22
3

b
cA3
0 (ν) = −0.5585 + 0.81196ν

b
cA3
1 (X12) = −0.398576 + 0.1659421X12

b
cA3
2 (X12) = 0.099805− 0.2560047X12

b
cA3
3 (X12) = 0.72125− 0.9418946X12

b
cA3
4 (X12) = 0

Y = cφ22
3 Y = cφ22

4

b
cφ3
0 (ν) = 3.8436 + 0.71565ν b

cφ4
0 (ν) = 1.4736 + 2.2337ν

b
cφ3
1 (X12) = 5.12794− 1.323643X12 b

cφ4
1 (X12) = 8.26539 + 0.779683X12

b
cφ3
2 (X12) = 9.9136− 3.555007X12 b

cφ4
2 (X12) = 14.2053− 0.069638X12

b
cφ3
3 (X12) = −4.1075 + 7.011267X12 b

cφ4
3 (X12) = 0

b
cφ3
4 (X12) = −31.5562 + 32.737824X12 b

cφ4
4 (X12) = 0

Table D.11: The explicit �ts of (cA33
3 , cφ33

3 , cφ33

4 ). The reader should note that the �ts of (cφ33

3 , cφ33

4 ) are
not used for any of the results given in the main text. Instead the corresponding �ts of Ref. [133] are used.
See Appendix 6.2.3 for a brief discussion.

cA33
3 (ν,X12, ã12) = −0.5585 + 0.81196ν + (−0.3502608 + 1.587606X12 − 1.555325X2

12)ã12

cφ33
3

(
ν,X12, Ŝ

)
= 3.0611− 6.1597ν + (−0.634377 + 5.983525X12 − 5.8819X2

12)Ŝ

cφ33
4

(
ν,X12, Ŝ

)
= 1.789− 5.6684ν + (−3.877528 + 12.0433X12 − 6.524665X2

12)Ŝ

Table D.12: The explicit �ts of (cA44
3 , cφ44

3 , cφ44

4 ). The reader should note that the �ts of (cφ44

3 , cφ44

4 ) are
not used for any of the results given in the main text. Instead the corresponding �ts of Paper II are used.
See Sec. 6.2.3 for a brief discussion.

cA44
3

(
ν, Ŝ

)
= −0.41591 +3.2099ν − 9.614738ν Ŝ + 122.461125ν Ŝ2

cφ44
3

(
ν,X12, Ŝ

)
= 3.6662−30.072ν+76.371ν2

1−3.5522ν + (−4.9184 +7.911653X12) Ŝ

+ (−15.6772 +21.181688X12) Ŝ2

cφ44
4

(
ν,X12, Ŝ

)
= 0.21595 +23.216ν + (−3.4207 +11.746452X12) Ŝ

+ (−15.5383 +34.922883X12) Ŝ2
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Table D.13: The explicit �ts of (cA55
3 , cφ55

3 , cφ55

4 ).

cA55
3 (ν,X12, ã12) = −7.063079 +65.464944ν + (−2.055335 −0.585373X12) ã12

+ (−12.631409 +19.271346X12) ã2
12

cφ55
3

(
ν,X12, Ŝ

)
= −1.510167 +30.569461ν + (−2.687133 +4.873750X12) Ŝ

+ (−14.629684 +19.696954X12) Ŝ2

cφ55
4

(
ν,X12, Ŝ

)
= −1.383721 +56.871881ν + (+7.198729 −3.870998X12) Ŝ

+ (−25.992190 +36.882645X12) Ŝ2
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Table D.14: Coe�cients of the (2, 2) quantities needed to calculate the NQC extraction point. From left

to right the columns show
{
ÂNQC

22 ,
˙̂
ANQC

22 , ωNQC
22 , ω̇NQC

22

}
.

ÂNQC
22 ȦNQC

22

Â
NQC0
22 = 0.294773 Ȧ

NQC0
22 /ν = −0.000243654

a
ÂNQC

22
1 = −0.052697 a

ȦNQC
22

1 = 2.86637

a
ÂNQC

22
2 = 1.6088 a

ȦNQC
22

2 = −1.3667

b
Â

NQCm1=m2
22

1 = −0.705226 b
Ȧ

NQCm1=m2
22

1 = 0.02679530

b
Â

NQCm1=m2
22

2 = −0.0953944 b
Ȧ

NQCm1=m2
22

2 = −0.0064409

b
Â

NQCm1=m2
22

3 = −1.087280

c
ÂNQC

22
11 = 0.009335 c

ȦNQC
22

1 = −0.015395218

c
ÂNQC

22
12 = 0.582869 c

ȦNQC
22

2 = 0.008732589

c
ÂNQC

22
31 = −0.140747

c
ÂNQC

22
32 = 0.505807

ωNQC
22 ω̇NQC

22

ω
NQC0
22 = 0.285588 ω̇

NQC0
22 = 0.00628027

a
ωNQC

22
1 = 0.91704 a

ω̇NQC
22

1 = 2.4351

a
ωNQC

22
2 = 1.7912 a

ω̇NQC
22

2 = 4.4928

b
ω

NQCm1=m2
22

1 = −0.46550 b
ω̇

NQCm1=m2
22

1 = 0.001425242

b
ω

NQCm1=m2
22

2 = −0.078787 b
ω̇

NQCm1=m2
22

2 = −0.00096073

b
ω

NQCm1=m2
22

3 = −0.852284

c
ωNQC

22
11 = −0.338008 c

ω̇NQC
22

1 = −0.000063766

c
ωNQC

22
12 = 1.077812 c

ω̇NQC
22

2 = 0.000513197

c
ωNQC

22
21 = 0.0555533

c
ωNQC

22
22 = −0.312861

c
ωNQC

22
31 = 0.289185

c
ωNQC

22
32 = −0.195838
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Table D.15: Explicit coe�cients of the �t of
˙̂
ANQC

44 .

Ȧ
NQC0
44 = −1.52614× 10−4

a
ȦNQC

44
1 = −7.63783

a
ȦNQC

44
2 = 15.8089

a
ȦNQC

44
3 = −5.88951

a
ȦNQC

44
4 = 11.1555

b
ȦNQC

44
1 = 3.76236× 10−5

b
ȦNQC

44
2 = −0.819379

c
ȦNQC

44
11 = −6.45958× 10−6

c
ȦNQC

44
12 = −2.35613

c
ȦNQC

44
21 = −298.678

c
ȦNQC

44
22 = −1063.08



Appendix E

Fits of (a1, a2) for TEOBiResumS_SM

All �ts have been performed with fitnlm of MATLAB.

E.1 Non-spinning sector

a1 in non-spinning sector is �tted against X2
12 = (1− 4ν)2 with the template

a1 =
aq=1

1

1 + ba1
1 X

2
12 + ba1

2 X
4
12

(E.1)

with

aq=1
1 = 0.070974

ba1
1 = 0.786350

ba1
2 = −9.085105 .

aq=1
1 is extracted from q = 1.

a2 in non-spinning sector is against X12 =
√

1− 4ν with the template

a2 = aq=1
2

1 + ba2
1 X12 + ba2

2 X
2
12

1 + ba2
3 X12

(E.2)

with

aq=1
2 = 1.315133

ba2
1 = −0.324849

ba2
2 = −0.304506

ba2
3 = −0.371614 .

aq=1
2 is extracted from q = 1.



E.2. 1 < q < 4 sector

Equal mass sector, ν > 0.2485

a1 in the equal mass case was �tted with the template:

a1 = ca1
0

1 + ca1
1 Ŝ + ca1

2 Ŝ
2 + ca1

3 Ŝ
3 + ca1

4 Ŝ
4

1 + ca1
5 Ŝ + ca1

6 Ŝ
2 + ca1

7 Ŝ
3

. (E.3)

with the �tted coe�cients:

ca1
0 = 0.121187 ca1

1 = −5.950663

ca1
2 = 9.420324 ca1

3 = −10.601339

ca1
4 = 17.641549 ca1

5 = −5.684777

ca1
6 = 10.910451 ca1

7 = −6.867377 .

a2 was �tted to the same template. The �tted coe�cients are:

ca2
0 = 1.331703 ca2

1 = −4.237724

ca2
2 = 1.786023 ca2

3 = 10.546205

ca2
4 = −9.698233 ca2

5 = −6.225823

ca2
6 = 13.209381 ca2

7 = −9.402513 .

E.2 1 < q < 4 sector

In this sector the �t of a1 di�ers in two ways from the previous. (i) The �t is factorized in a spinning

part aS1 and a non-spinning part a0
1, and (ii) it is �tted against the spin variable Ŝn = Ŝ/

(
m2

1 +m2
2

)
.

The full template is:

a1 = a0
1 · aS1 , (E.4)

a0
1 = da1

0

1 + da1
1 ν + da1

2 ν
3

1 + da1
3 ν

, (E.5)

aS1 =
1 + da1

4 Ŝn + da1
5 Ŝ

2
n + da1

6 Ŝ
3
n + da1

7 Ŝ
4
n

1 + da1
8 Ŝn + da1

9 Ŝ
2
n + da1

10Ŝ
3
n

. (E.6)

The �tted coe�cients take the values of a0
1 are:

da1
0 = 0.26132647 da1

1 = −4.90302367

da1
2 = 20.67036124 da1

3 = −3.17109808 .

Note these coe�cients have been �tted to waveforms for which χ2 = ±0.01 was set and χ1 was

chosen such that Ŝn = 0. This will be the case for all of the following non-spinning factor �ts.



E.2. 1 < q < 4 sector

The �tted coe�cients of aS1 are:

da1
4 = −3.082861 da1

5 = 2.169948

da1
6 = −0.636353 da1

7 = 0.741419

da1
8 = −2.843896 da1

9 = 2.709697

da1
10 = −0.832894 .

a2 is �tted in a factorized form as well. Additionally, it holds an explicit depends of aS2 on ν.

a2 = a0
2 · aS2 , (E.7)

a0
2 = da2

0

1 + da2
1 ν + da2

2 ν
3

1 + da2
3 ν

, (E.8)

aS2 =
1 + da2

4 Ŝn + da2
5 Ŝ

2
n + da2

6 Ŝ
3
n + da2

7 Ŝ
4
n

1 + da2
8 Ŝn + da2

9 Ŝ
2
n + da2

10Ŝ
3
n

, (E.9)

da2
i = da2

i,0

(
1 + da2

i,1ν
)
, for i = 4, ..., 10 . (E.10)

The �tted coe�cients of a0
2 are:

da2
0 = 1.03364144 da2

1 = −3.46191440

da2
2 = −7.86652243 da2

3 = −3.96268815 .

The �tted coe�cients of aS2 are:

da2
4,0 = 0.036452 da2

4,1 = −64.360789

da2
5,0 = 0.275707 da2

5,1 = −34.573145

da2
6,0 = −0.113951 da2

6,1 = 0

da2
7,0 = −2.531304 da2

7,1 = −7.691661

da2
8,0 = −1.025824 da2

8,1 = 4.237539

da2
9,0 = 0.593579 da2

9,1 = 1.661809

da2
10,0 = −0.939736 da2

10,1 = −6.333442 .

da2
6,1 was set to 0 prior to the evaluation of the �t to improve the convergence of the �t.



E.3. q ≥ 4 sector

E.3 q ≥ 4 sector

a1 for q ≥ 4 has an additional new feature. The explicit ν dependence is �tted through xν = ν−0.16.

The full template is:

a1 = a0
1 · aS1 , (E.11)

a0
1 = ea1

0

1 + ea1
1 ν + ea1

2 ν
3

1 + ea1
3 ν

, (E.12)

aS1 =
1 + ea1

4 Ŝn + ea1
5 Ŝ

2
n + ea1

6 Ŝ
3
n + ea1

7 Ŝ
4
n

1 + ea1
8 Ŝn + ea1

9 Ŝ
2
n + ea1

10Ŝ
3
n

, (E.13)

ea1
i = ea1

i,0

1 + ea1
i,1xν

1 + ea1
i,2xν

, for i = 4, ..., 10 . (E.14)

The �tted a0
1 coe�cients are:

ea1
0 = 0.341803 ea1

1 = −1.350488

ea1
2 = −6.353357 ea1

3 = 2.216156 .

The coe�cients of aS1 are �tted in 2 steps. First, for q = 4 and second, an extrapolated �t from

there. The coe�cients ea1
i,0 have been �tted to q = 4:

ea1
4,0 = −2.287721 ea1

5,0 = −0.598451

ea1
6,0 = 0.766069 ea1

7,0 = 1.857169

ea1
8,0 = −2.035234 ea1

9,0 = 0.836427

ea1
10,0 = 0.297476 .

The remaining coe�cients model the extrapolation of the spin dependence to larger mass ratios

and are:

ea1
4,1 = 7.650946 ea1

4,2 = 7.106992

ea1
5,1 = −60.630748 ea1

5,2 = −69.630357

ea1
6,1 = 47.114247 ea1

6,2 = 5.733002

ea1
7,1 = −12.905707 ea1

7,2 = 5.045688

ea1
8,1 = 3.515869 ea1

8,2 = 1.564146

ea1
9,1 = 0.642864 ea1

9,2 = 2.947890

ea1
10,1 = 31.023038 ea1

10,2 = 1.829543 .



E.3. q ≥ 4 sector

a2 is �tted similarly with the template:

a2 = a0
2 · aS2 , (E.15)

a0
2 = ea2

0

1 + ea2
1 ν + ea2

2 ν
3

1 + ea2
3 ν

, (E.16)

aS2 =
1 + ea2

4 Ŝn + ea2
5 Ŝ

2
n + ea2

6 Ŝ
3
n + ea2

7 Ŝ
4
n

1 + ea2
8 Ŝn + ea2

9 Ŝ
2
n

, (E.17)

ea2
i = ea2

i,0

1 + ea2
i,1xν

1 + ea2
i,2xν

, for i = 4, ..., 9 . (E.18)

The �tted a0
2 coe�cients are:

ea2
0 = 0.929192 ea2

1 = 1.334263

ea2
2 = −26.389790 ea2

3 = −1.289984 .

The coe�cients of aS2 are �tted in 2 steps as well. The coe�cients ea2
i,0 have been �tted to q = 4:

ea2
4,0 = −0.886561 ea2

5,0 = −1.953955

ea2
6,0 = 1.366537 ea2

7,0 = 0.950212

ea2
8,0 = −2.531000 ea2

9,0 = 1.723991 .

The remaining coe�cients model the extrapolation of the spin dependence to larger mass ratios

and are:

ea2
4,1 = 15.871482 ea2

4,2 = 5.066190

ea2
5,1 = 7.168498 ea2

5,2 = 6.709490

ea2
6,1 = 18.583382 ea2

6,2 = 5.764512

ea2
7,1 = −14.038564 ea2

7,2 = −17.126231

ea2
8,1 = 6.387917 ea2

8,2 = 3.438456

ea2
9,1 = 8.867098 ea2

9,2 = 2.910938 .



Appendix F

Numerical Relativity waveform tables

This appendix is devoted to listing details of the NR catalog utilized in this work. The spinning

sector of the calibration set is given in Tab. F.1 � F.4. The spinning sector of the validation set is

given in Tab. F.5 � F.13. The non-spinning sector of both sets is given in Tab. F.14 � F.15. The

columns of the tables show from left to right:

(i) The waveform number with respect to all the waveforms used in this work.

(ii) The ID with respect to the SXS catalog [7].

(iii) (q, χ1, χ2) mass-ratio and dimensionless spin parameters. In the case of non-spinning wave-

forms solely the mass-ratio q.

(iv) (ν, Ŝ) symmetric mass-ratio and the EOB spin-parameter Ŝ. In the case of non-spinning

waveforms solely the symmetric mass-ratio ν.

(iv) The number of orbits Norb between the reference time and the peak of the ` = m = 2 mode.

(v) The eccentricity in units 10−3. As for many waveforms only an upper limit of the eccentricity

was given we have chosen to use this upper limit as a conservative estimate of the eccentricity.

SXS (vi) δφNR
mrg, the accumulated phase di�erence between the two highest levels of resolution

available, from the reference time up until merger. Given in units of rad.

(vii) F̄NR/NR, the NR/NR unfaithfulness, eq. (A.12), computed between the two highest level

of resolution available. Given in units of %.

BAM (vi) rext, the radius of waveform extraction chosen.



Chapter F. Numerical Relativity waveform tables

Table F.1: This table list all SXS waveforms with at least one non-zero spin and equal-mass in the calibration
set.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

1 BBH:0178 (1,+0.9942,+0.9942) (0.25,+0.5) 23.91 1.8000 +0.0127 0.0066
2 BBH:0177 (1,+0.9893,+0.9893) (0.25,+0.5) 24.61 2.0000 −0.0162 0.0021
3 BBH:0172 (1,+0.9794,+0.9794) (0.25,+0.49) 24.63 1.1276 −0.1560 0.0022
4 BBH:0157 (1,+0.9496,+0.9496) (0.25,+0.47) 24.49 0.1483 −0.1286 0.0027
5 BBH:0160 (1,+0.8997,+0.8997) (0.25,+0.45) 24.09 0.4442 −0.0865 0.0118
6 BBH:0153 (1,+0.8498,+0.8498) (0.25,+0.42) 23.71 0.8694 .. ..
7 BBH:0230 (1,+0.8,+0.8) (0.25,+0.4) 23.35 0.1219 +0.1060 0.0016
8 BBH:0228 (1,+0.6,+0.6) (0.25,+0.3) 22.05 0.3081 −0.2269 0.0080
9 BBH:0150 (1,+0.2,+0.2) (0.25,+0.1) 18.48 0.2714 +0.0664 0.0027
10 BBH:0149 (1,−0.2,−0.2) (0.25,−0.1) 15.65 0.1604 +0.0649 0.0037
11 BBH:0148 (1,−0.44,−0.44) (0.25,−0.22) 13.94 0.0350 −0.1144 0.0013
12 BBH:0215 (1,−0.6,−0.6) (0.25,−0.3) 24.96 0.1975 −0.2331 0.0040
13 BBH:0154 (1,−0.8,−0.8) (0.25,−0.4) 12.61 0.6400 −0.0138 0.0036
14 BBH:0212 (1,−0.8,−0.8) (0.25,−0.4) 28.15 0.2318 +0.1907 0.0032
15 BBH:0159 (1,−0.8996,−0.8996) (0.25,−0.45) 12.33 0.8100 −0.0679 0.0069
16 BBH:0156 (1,−0.949,−0.949) (0.25,−0.47) 11.22 0.7671 +0.1668 0.0055
17 BBH:0232 (1,+0.8998,+0.5) (0.25,+0.35) 22.34 0.2839 −0.1349 0.0073
18 BBH:0225 (1,+0.8,+0.4) (0.25,+0.3) 22.21 0.3625 −0.2321 0.0014
19 BBH:0229 (1,+0.65,+0.25) (0.25,+0.23) 22.48 0.3121 −0.2027 0.0053
20 BBH:0231 (1,+0.8998, 0) (0.25,+0.22) 22.47 0.0340 −0.2667 0.0046
21 BBH:0227 (1,+0.6, 0) (0.25,+0.15) 22.45 0.3209 −0.2282 0.0052
22 BBH:0005 (1,+0.5, 0) (0.25,+0.12) 29.61 0.2355 −0.1223 0.0592
23 BBH:0219 (1,+0.8998,−0.5) (0.25,+0.1) 20.93 0.3404 −0.0954 0.0076
24 BBH:0221 (1,+0.8,−0.4) (0.25,+0.1) 22.10 0.2855 −0.1602 0.0053
25 BBH:0223 (1,+0.3, 0) (0.25,+0.08) 22.83 .. +0.0017 0.1520
26 BBH:0213 (1,−0.8,+0.8) (0.25, 0) 20.90 0.1435 −0.1251 0.0040
27 BBH:0211 (1,−0.8997,+0.8998) (0.25, 0) 21.58 0.2801 −0.2333 0.0027
28 BBH:0217 (1,−0.6,+0.6) (0.25, 0) 21.28 0.1926 −0.1533 0.0048
29 BBH:0218 (1,+0.5,−0.5) (0.25, 0) 28.21 0.0720 −0.1185 0.2160
30 BBH:0222 (1,−0.3, 0) (0.25,−0.08) 23.17 0.0540 +0.1129 0.1598
31 BBH:0224 (1,−0.8,+0.4) (0.25,−0.1) 21.65 0.2727 −0.1912 0.0020
32 BBH:0226 (1,−0.8997,+0.5) (0.25,−0.1) 22.33 0.2809 −0.2728 0.0018
33 BBH:0004 (1,−0.5, 0) (0.25,−0.12) 29.19 0.3802 −0.0769 0.0189
34 BBH:0216 (1,−0.6, 0) (0.25,−0.15) 22.94 0.2766 −0.2353 0.0040
35 BBH:0214 (1,−0.62,−0.25) (0.25,−0.22) 23.21 0.2089 −0.1904 0.0010
36 BBH:0210 (1,−0.8997, 0) (0.25,−0.22) 23.71 0.1567 −0.0818 0.0024
37 BBH:0220 (1,−0.8,−0.4) (0.25,−0.3) 24.67 0.1158 −0.1330 0.0040
38 BBH:0209 (1,−0.8997,−0.5) (0.25,−0.35) 26.49 0.1539 +0.1350 0.0010
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Table F.2: This table list all SXS waveforms with at least one non-zero spin and unequal-mass in the
calibration set. Part I, listing waveforms with mass-ratios q ≤ 3.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

39 BBH:0306 (1.3,+0.9612,−0.899) (0.2455,+0.14) 11.3344 1.3506 −0.1093 0.0031
40 BBH:0013 (1.5,+0.5, 0) (0.24,+0.18) 23.4984 0.1357 .. ..
41 BBH:0025 (1.5,+0.5,−0.5) (0.24,+0.1) 21.8575 0.0550 −0.1641 0.0278
42 BBH:0019 (1.5,−0.5,+0.5) (0.24,−0.1) 19.9375 0.0491 +0.0966 0.0213
43 BBH:0016 (1.5,−0.5, 0) (0.24,−0.18) 29.7855 0.4267 −0.0093 0.0009
44 BBH:0257 (2,+0.8498,+0.8498) (0.2222,+0.47) 24.1193 0.1139 −0.0213 0.0024
45 BBH:0256 (2,+0.6,+0.6) (0.2222,+0.33) 23.1240 0.0779 −0.0469 0.0068
46 BBH:0253 (2,+0.5,+0.5) (0.2222,+0.28) 28.1387 0.0490 −0.0109 0.0040
47 BBH:0251 (2,+0.3,+0.3) (0.2222,+0.17) 23.0196 0.0510 −0.0935 0.0037
48 BBH:0240 (2,−0.3,−0.3) (0.2222,−0.17) 23.1078 0.0450 +0.0636 0.0614
49 BBH:0238 (2,−0.5,−0.5) (0.2222,−0.28) 31.4030 0.0640 −0.0630 0.1110
50 BBH:0235 (2,−0.6,−0.6) (0.2222,−0.33) 23.8374 0.0610 −0.0738 0.0048
51 BBH:0234 (2,−0.85,−0.8496) (0.2222,−0.47) 27.2911 0.0374 +0.0393 0.0049
52 BBH:0258 (2,+0.8713,−0.8495) (0.2222,+0.3) 21.2744 0.1817 −0.0824 0.0061
53 BBH:0255 (2,+0.6, 0) (0.2222,+0.27) 22.3143 0.0379 +0.0250 0.0023
54 BBH:0254 (2,+0.6,−0.6) (0.2222,+0.2) 22.0411 0.0522 +0.0136 0.0009
55 BBH:0248 (2,+0.13,+0.8497) (0.2222,+0.15) 22.2757 0.0763 −0.1057 0.0030
56 BBH:0250 (2,+0.3, 0) (0.2222,+0.13) 22.6909 0.0540 −0.0904 0.0045
57 BBH:0249 (2,+0.3,−0.3) (0.2222,+0.1) 22.7597 0.0440 −0.0828 0.0057
58 BBH:0252 (2,+0.37,−0.8494) (0.2222,+0.07) 21.6622 0.3509 +0.2098 0.0029
59 BBH:0247 (2, 0,+0.6) (0.2222,+0.07) 21.6482 0.1320 −0.1635 0.0041
60 BBH:0246 (2, 0,+0.3) (0.2222,+0.03) 21.4548 66.0000 +0.3219 0.0081
61 BBH:0245 (2, 0,−0.3) (0.2222,−0.03) 22.1939 0.0400 +0.0421 0.0226
62 BBH:0244 (2, 0,−0.6) (0.2222,−0.07) 22.0958 0.0336 −0.1980 0.0010
63 BBH:0239 (2,−0.37,+0.8497) (0.2222,−0.07) 21.5943 0.0571 +0.2464 0.0005
64 BBH:0242 (2,−0.3,+0.3) (0.2222,−0.1) 22.5985 0.0490 −0.0164 0.0260
65 BBH:0241 (2,−0.3, 0) (0.2222,−0.13) 22.6575 0.0510 −0.0636 0.0129
66 BBH:0243 (2,−0.13,−0.8495) (0.2222,−0.15) 22.2092 0.2245 −0.2301 0.0006
67 BBH:0237 (2,−0.6,+0.6) (0.2222,−0.2) 21.1681 0.0370 +0.1251 0.0014
68 BBH:0236 (2,−0.6, 0) (0.2222,−0.27) 22.0960 0.0948 +0.0308 0.0029
69 BBH:0233 (2,−0.8713,+0.8497) (0.2222,−0.3) 20.5769 0.0961 +0.1486 0.0012
70 BBH:0293 (3,+0.85,+0.8495) (0.1875,+0.53) 23.8799 0.1022 −0.1300 0.0046
71 BBH:0291 (3,+0.6,+0.6) (0.1875,+0.37) 22.7550 0.0397 −0.1730 0.0010
72 BBH:0286 (3,+0.5,+0.5) (0.1875,+0.31) 23.5058 0.0610 +0.0367 0.0022
73 BBH:0283 (3,+0.3,+0.3) (0.1875,+0.19) 22.9428 0.0510 −0.0352 0.0032
74 BBH:0270 (3,−0.3,−0.3) (0.1875,−0.19) 22.3406 0.0366 −0.0006 0.0038
75 BBH:0267 (3,−0.5,−0.5) (0.1875,−0.31) 22.8962 0.0590 +0.0338 0.0058
76 BBH:0264 (3,−0.6,−0.6) (0.1875,−0.37) 22.0717 0.2819 +0.1772 0.0024
77 BBH:0260 (3,−0.85,−0.8494) (0.1875,−0.53) 24.5257 0.3523 +0.2350 0.0004
78 BBH:0290 (3,+0.6,+0.4) (0.1875,+0.36) 22.5790 0.1140 −0.0164 0.0032
79 BBH:0292 (3,+0.73,−0.8493) (0.1875,+0.36) 21.7414 0.1521 +0.0590 0.0009
80 BBH:0289 (3,+0.6, 0) (0.1875,+0.34) 23.0495 0.2296 −0.2081 0.0005
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Table F.3: This table list all SXS waveforms with at least one non-zero spin and unequal-mass in the
calibration set. Part II, listing waveforms with mass-ratios q ≥ 3.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

81 BBH:0288 (3,+0.6,−0.4) (0.1875,+0.31) 21.9643 0.2097 −0.2395 0.0006
82 BBH:0287 (3,+0.6,−0.6) (0.1875,+0.3) 22.7030 0.0718 +0.0163 0.0053
83 BBH:0174 (3,+0.5, 0) (0.1875,+0.28) 34.3933 0.2952 +0.2481 0.1040
84 BBH:0285 (3,+0.4,+0.6) (0.1875,+0.26) 22.0723 0.1220 −0.1738 0.0013
85 BBH:0045 (3,+0.5,−0.5) (0.1875,+0.25) 20.6343 0.6618 .. ..
86 BBH:0280 (3,+0.27,+0.8495) (0.1875,+0.2) 22.1099 0.0790 −0.0860 0.0052
87 BBH:0284 (3,+0.4,−0.6) (0.1875,+0.19) 21.9538 0.1151 +0.0367 0.0005
88 BBH:0282 (3,+0.3, 0) (0.1875,+0.17) 22.9026 0.0580 −0.0210 0.0011
89 BBH:0281 (3,+0.3,−0.3) (0.1875,+0.15) 22.7014 0.0480 −0.0379 0.0027
90 BBH:0279 (3,+0.23,−0.8494) (0.1875,+0.08) 21.0503 0.1136 +0.0198 0.0010
91 BBH:0278 (3, 0,+0.6) (0.1875,+0.04) 21.9491 0.1976 −0.2538 0.0015
92 BBH:0277 (3, 0,+0.3) (0.1875,+0.02) 22.1864 0.0480 −0.0326 0.0029
93 BBH:0276 (3, 0,−0.3) (0.1875,−0.02) 22.1734 .. −0.0130 0.0028
94 BBH:0275 (3, 0,−0.6) (0.1875,−0.04) 21.4036 0.1062 +0.0948 0.0008
95 BBH:0274 (3,−0.23,+0.8497) (0.1875,−0.08) 21.2795 0.2141 +0.1244 0.0018
96 BBH:0272 (3,−0.3,+0.3) (0.1875,−0.15) 22.1789 0.0510 −0.0051 0.0035
97 BBH:0271 (3,−0.3, 0) (0.1875,−0.17) 22.0431 0.0490 −0.0340 0.0014
98 BBH:0269 (3,−0.4,+0.6) (0.1875,−0.19) 20.8371 0.1165 +0.1110 0.0017
99 BBH:0273 (3,−0.27,−0.8493) (0.1875,−0.2) 21.5046 0.1867 +0.1087 0.0027
100 BBH:0268 (3,−0.4,−0.6) (0.1875,−0.26) 21.4250 0.1555 +0.0793 0.0016
101 BBH:0036 (3,−0.5, 0) (0.1875,−0.28) 31.4671 0.5330 −0.0150 0.0010
102 BBH:0263 (3,−0.6,+0.6) (0.1875,−0.3) 20.5094 0.2052 +0.0774 0.0009
103 BBH:0266 (3,−0.6,+0.4) (0.1875,−0.31) 21.2988 0.1705 −0.1800 0.0003
104 BBH:0262 (3,−0.6, 0) (0.1875,−0.34) 21.0470 0.2031 −0.1718 0.0002
105 BBH:0261 (3,−0.73,+0.8495) (0.1875,−0.36) 21.1482 1.1000 +0.0594 0.0016
106 BBH:0265 (3,−0.6,−0.4) (0.1875,−0.36) 22.0040 0.0880 −0.2962 0.0008
107 BBH:0110 (5,+0.5, 0) (0.1388,+0.35) 23.8397 0.4125 .. ..
108 BBH:0060 (5,−0.5, 0) (0.1388,−0.35) 22.8094 3.4344 .. ..
109 BBH:0208 (5,−0.9, 0) (0.1389,−0.63) 49.5728 0.5090 −2.0018 0.0385
110 BBH:0202 (7,+0.6, 0) (0.1094,+0.46) 60.8335 0.0959 −0.0908 0.0048
111 BBH:0203 (7,+0.4, 0) (0.1094,+0.3) 57.3589 0.0144 −1.3040 0.0095
112 BBH:0205 (7,−0.4, 0) (0.1094,−0.3) 43.6451 0.0672 −0.8000 0.0040
113 BBH:0207 (7,−0.6, 0) (0.1094,−0.46) 34.6589 0.1743 +0.1340 0.0011
114 BBH:0065 (8,+0.5, 0) (0.0987,+0.4) 33.5938 3.7400 +0.3529 0.0189
115 BBH:0064 (8,−0.5, 0) (0.0987,−0.4) 18.2981 0.4998 −0.3465 0.0338
116 BBH:1375 (8,−0.9004, 0) (0.0988,−0.71) 26.6545 1.1129 .. ..
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Table F.4: This table list the 16 BAM waveforms with at least one non-zero spin of the calibration set.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] rext

117 BAM (2,+0.75,+0.75) (0.2222,+0.42) 12.2855 4.4000 95
118 BAM (2,+0.5,+0.5) (0.2222,+0.28) 13.9746 1.2000 100
119 BAM (3,−0.5,−0.5) (0.1875,−0.31) 10.5346 1.0000 100
120 BAM (4,+0.75,+0.75) (0.16,+0.51) 15.4571 4.0000 100
121 BAM (4,+0.5,+0.5) (0.16,+0.34) 13.5333 3.6000 100
122 BAM (4,+0.25,+0.25) (0.16,+0.17) 12.0059 2.4000 100
123 BAM (4,−0.25,−0.25) (0.16,−0.17) 10.0061 1.0000 100
124 BAM (4,−0.5,−0.5) (0.16,−0.34) 9.6086 1.0000 100
125 BAM (4,−0.75,−0.75) (0.16,−0.51) 8.3831 0.8000 100
126 BAM (8,+0.85,+0.85) (0.0988,+0.68) 17.7168 0.0000 100
127 BAM (8,−0.85,−0.85) (0.0988,−0.68) 4.2467 0.5000 100
128 BAM (8,+0.8, 0) (0.0988,+0.63) 11.7887 4.9000 100
129 BAM (18,+0.8, 0) (0.0499,+0.72) 11.7559 0.0000 100
130 BAM (18,+0.4, 0) (0.0499,+0.36) 11.6451 1.8000 100
131 BAM (18,−0.4, 0) (0.0499,−0.36) 7.6889 0.5000 100
132 BAM (18,−0.8, 0) (0.0499,−0.72) 7.4415 0.5000 100
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Table F.5: This table shows the SXS waveforms with approximately equal-mass (ν > 0.2485) and at least
one non-zero spin in the validation set. Part I.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

133 BBH:1124 (1,+0.998,+0.998) (0.25,+0.5) 24.8752 0.8701 .. ..
134 BBH:0158 (1,+0.9695,+0.9695) (0.25,+0.48) 23.9199 0.5376 −0.1377 0.0031
135 BBH:0176 (1,+0.9596,+0.9596) (0.25,+0.48) 23.6711 0.7982 −0.1821 0.0065
136 BBH:0155 (1,+0.8,+0.8) (0.25,+0.4) 23.3269 0.5051 −0.0479 0.0035
137 BBH:1477 (1,+0.8,+0.8) (0.25,+0.4) 19.7056 0.0974 +0.0882 0.0037
138 BBH:0328 (1,+0.8,+0.8) (0.25,+0.4) 19.6887 0.1123 +0.0976 0.0034
139 BBH:2104 (1,+0.8,+0.8) (0.25,+0.4) 22.8590 0.2704 −0.0375 0.0033
140 BBH:0175 (1,+0.75,+0.75) (0.25,+0.37) 22.4926 3.5386 +0.3758 0.0030
141 BBH:0152 (1,+0.6,+0.6) (0.25,+0.3) 21.8026 0.4272 −0.0498 0.0047
142 BBH:2102 (1,+0.6,+0.6) (0.25,+0.3) 22.0345 0.1629 −0.0236 0.0007
143 BBH:1123 (1,+0.5,+0.5) (0.25,+0.25) 20.5204 0.6331 −0.0821 0.0033
144 BBH:1122 (1,+0.44,+0.44) (0.25,+0.22) 20.8795 0.3727 −0.2461 0.0031
145 BBH:1134 (1,−0.44,−0.44) (0.25,−0.22) 8.5884 0.1394 −0.0108 0.0025
146 BBH:1135 (1,−0.44,−0.44) (0.25,−0.22) 9.5239 0.2957 +0.0025 0.0047
147 BBH:1144 (1,−0.44,−0.44) (0.25,−0.22) 14.4435 8.2117 −0.0318 0.0054
148 BBH:0151 (1,−0.6,−0.6) (0.25,−0.3) 14.1702 0.4800 −0.0316 0.0022
149 BBH:2089 (1,−0.6,−0.6) (0.25,−0.3) 24.6948 0.1182 +0.0192 0.0072
150 BBH:1475 (1,−0.8,−0.8) (0.25,−0.4) 14.7348 0.6336 +0.3502 0.0026
151 BBH:2086 (1,−0.8,−0.8) (0.25,−0.4) 27.6225 0.2960 +0.0299 0.0033
152 BBH:0329 (1,−0.8005,−0.8) (0.25,−0.4) 14.6608 0.4020 +0.0586 0.0020
153 BBH:1137 (1,−0.9692,−0.9692) (0.25,−0.48) 11.4049 0.4313 +0.0190 0.0021
154 BBH:1481 (1,+0.8,+0.73) (0.25,+0.38) 19.5871 0.0640 +0.1565 0.0032
155 BBH:2106 (1,+0.8998,+0.5) (0.25,+0.35) 22.3954 0.0221 +0.0589 0.0064
156 BBH:1497 (1,+0.68,+0.67) (0.25,+0.34) 19.5347 0.5408 +0.2185 0.0032
157 BBH:1495 (1,+0.78,+0.53) (0.25,+0.33) 19.4806 0.5575 +0.2610 0.0058
158 BBH:2099 (1,+0.8,+0.4) (0.25,+0.3) 21.9856 0.0788 +0.0559 0.0048
159 BBH:0394 (1,+0.6,+0.4) (0.25,+0.25) 18.7477 0.0661 −0.0998 0.0023
160 BBH:1496 (1.16,+0.8,+0.03) (0.2487,+0.24) 18.6343 0.1039 −0.1859 0.0008
161 BBH:2103 (1,+0.65,+0.25) (0.25,+0.23) 21.6974 0.0965 +0.0563 0.0022
162 BBH:2105 (1,+0.8997, 0) (0.25,+0.22) 21.6971 0.1954 −0.0191 0.0002
163 BBH:1503 (1,+0.73,+0.14) (0.25,+0.22) 18.5877 0.7405 +0.2193 0.0028
164 BBH:1501 (1,+0.75,+0.09) (0.25,+0.21) 18.5604 0.7164 +0.3254 0.0040
165 BBH:0326 (1,+0.8, 0) (0.25,+0.2) 18.4268 0.3255 −0.0580 0.0056
166 BBH:1507 (1,+0.5,+0.29) (0.25,+0.2) 18.6017 0.4355 +0.2739 0.0032
167 BBH:1376 (1.01,+0.25,+0.5) (0.25,+0.19) 19.5992 0.5848 +0.0299 0.0035
168 BBH:0544 (1.08, 0,+0.69) (0.2496,+0.16) 18.2157 0.1142 +0.0369 0.0021
169 BBH:2101 (1,+0.6, 0) (0.25,+0.15) 21.7281 0.0724 +0.0719 0.0039
170 BBH:2095 (1,+0.8,−0.4) (0.25,+0.1) 21.2800 0.1571 +0.0545 0.0006
171 BBH:0418 (1,+0.4, 0) (0.25,+0.1) 17.8067 0.0830 +0.1507 0.0041
172 BBH:2093 (1,+0.8997,−0.5) (0.25,+0.1) 21.0059 0.1374 +0.0339 0.0018
173 BBH:2097 (1,+0.3, 0) (0.25,+0.07) 21.6499 0.0608 +0.0935 0.0014
174 BBH:1502 (1,+0.7,−0.42) (0.25,+0.07) 17.7053 0.1067 +0.1935 0.0026
175 BBH:0518 (1.1,−0.14,+0.43) (0.2493,+0.06) 17.5772 0.1262 −0.0530 0.0012



Chapter F. Numerical Relativity waveform tables

Table F.6: This table shows the SXS waveforms with approximately equal-mass (ν > 0.2485) and at least
one non-zero spin in the validation set. Part II.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

176 BBH:1352 (1.15,+0.71,−0.67) (0.2488,+0.06) 14.1426 0.0830 −0.1244 0.0013
177 BBH:1114 (1,+0.2, 0) (0.25,+0.05) 17.1729 0.0519 .. ..
178 BBH:0366 (1,+0.2, 0) (0.25,+0.05) 17.4831 0.1527 +0.1471 0.0027
179 BBH:0376 (1,+0.6,−0.4) (0.25,+0.05) 17.4690 0.3620 −0.1507 0.0013
180 BBH:0370 (1,+0.4,−0.2) (0.25,+0.05) 17.4752 0.0789 +0.0254 0.0006
181 BBH:1506 (1,+0.46,−0.32) (0.25,+0.03) 17.4223 0.5729 +0.2054 0.0023
182 BBH:1476 (1,−0.8,+0.8) (0.25, 0) 17.2858 0.1815 +0.3550 0.0045
183 BBH:2085 (1,−0.8996,+0.8997) (0.25, 0) 20.9333 0.0826 +0.0842 0.0021
184 BBH:2087 (1,−0.8,+0.8) (0.25, 0) 20.9499 0.0440 +0.0571 0.0007
185 BBH:2091 (1,−0.6,+0.6) (0.25, 0) 21.3166 0.0446 +0.0740 0.0019
186 BBH:0304 (1,−0.5,+0.5) (0.25, 0) 27.8687 0.0650 −0.0374 0.0014
187 BBH:2092 (1,+0.5,−0.5) (0.25, 0) 27.1687 0.0477 +0.0284 0.0028
188 BBH:0327 (1,−0.8,+0.8) (0.25, 0) 17.1166 0.1007 +0.0517 0.0042
189 BBH:0330 (1,−0.8005,+0.8) (0.25, 0) 17.1110 0.1500 +0.0995 0.0005
190 BBH:1513 (1.15,−0.1, 0) (0.2488,−0.03) 23.0477 0.1235 +0.5110 0.0051
191 BBH:0459 (1,−0.4,+0.2) (0.25,−0.05) 16.8421 0.0650 −0.1320 0.0023
192 BBH:0447 (1,−0.6,+0.4) (0.25,−0.05) 16.8472 0.2242 −0.1259 0.0054
193 BBH:1351 (1.03,−0.23, 0) (0.25,−0.06) 12.8464 0.2221 +0.1636 0.0005
194 BBH:2096 (1,−0.3, 0) (0.25,−0.07) 22.1277 0.2636 +0.1078 0.0005
195 BBH:1509 (1,−0.24,−0.1) (0.25,−0.09) 16.6398 0.5219 +0.1105 0.0014
196 BBH:2100 (1,−0.8996,+0.5) (0.25,−0.1) 21.6573 0.0715 +0.0693 0.0017
197 BBH:2098 (1,−0.8,+0.4) (0.25,−0.1) 21.5719 0.1550 +0.1126 0.0044
198 BBH:0415 (1,−0.4, 0) (0.25,−0.1) 16.5057 0.5098 −0.1718 0.0021
199 BBH:1499 (1,−0.75,+0.34) (0.25,−0.1) 16.5204 0.4727 +0.1788 0.0021
200 BBH:1498 (1.03,+0.22,−0.78) (0.25,−0.13) 16.3149 0.5239 +0.0433 0.0093
201 BBH:2090 (1,−0.6, 0) (0.25,−0.15) 22.3993 0.0623 −0.0285 0.0036
202 BBH:0436 (1,−0.4,−0.2) (0.25,−0.15) 16.1984 0.5864 −0.1123 0.0019
203 BBH:0585 (1,−0.6, 0) (0.25,−0.15) 16.2423 0.3059 −0.0298 0.0009
204 BBH:0325 (1,−0.8, 0) (0.25,−0.2) 15.9157 0.2440 +0.0200 0.0022
205 BBH:2088 (1,−0.62,−0.25) (0.25,−0.22) 23.2528 0.0803 +0.0274 0.0016
206 BBH:2084 (1,−0.8997, 0) (0.25,−0.22) 23.1546 0.1050 −0.0177 0.0031
207 BBH:1500 (1,−0.77,−0.2) (0.25,−0.24) 15.6588 0.4126 +0.1222 0.0012
208 BBH:0462 (1,−0.6,−0.4) (0.25,−0.25) 15.5965 0.5654 −0.1030 0.0025
209 BBH:2094 (1,−0.8,−0.4) (0.25,−0.3) 24.6859 0.1082 −0.1382 0.0009
210 BBH:1492 (1,−0.8,−0.47) (0.25,−0.32) 15.2146 0.7066 +0.1782 0.0009
211 BBH:2083 (1,−0.8997,−0.5) (0.25,−0.35) 25.8994 0.1105 −0.1156 0.0067
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Table F.7: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part I.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

212 BBH:0626 (1.17,−0.8277,+0.73) (0.2484,−0.09) 10.9579 0.0979 −0.0496 0.0061
213 BBH:0311 (1.19,+0.42,+0.38) (0.2482,+0.2) 16.8055 0.1275 +0.0568 0.0019
214 BBH:0312 (1.2,+0.4,−0.48) (0.2479,+0.02) 13.5938 0.3678 −0.0487 0.0046
215 BBH:0523 (1.2,−0.2,−0.47) (0.248,−0.16) 16.1744 0.1346 +0.1686 0.0012
216 BBH:1353 (1.22,+0.33,−0.44) (0.2476,+0.01) 13.6731 0.1515 −0.2410 0.0013
217 BBH:0309 (1.22,+0.33,−0.44) (0.2475,+0.01) 14.0816 29.3240 +0.3544 0.0103
218 BBH:0305 (1.22,+0.33,−0.44) (0.2475,+0.01) 13.7709 0.8382 −0.2457 0.0015
219 BBH:0318 (1.22,+0.33,−0.44) (0.2475,+0.01) 12.3868 0.1088 +0.0056 0.0018
220 BBH:0319 (1.22,+0.33,−0.44) (0.2475,+0.01) 12.5774 9.5765 −0.1374 0.0096
221 BBH:0313 (1.22,+0.38,−0.52) (0.2476, 0) 13.4606 0.3643 −0.0218 0.0035
222 BBH:0314 (1.23,+0.31,−0.46) (0.2474, 0) 13.4131 0.1054 +0.0955 0.0021
223 BBH:0307 (1.23,+0.32,−0.58) (0.2474,−0.02) 11.2821 0.4279 −0.1700 0.0016
224 BBH:0507 (1.25,+0.8,+0.4) (0.247,+0.33) 19.2477 0.0492 −0.0446 0.0043
225 BBH:0409 (1.25,+0.4,+0.8) (0.247,+0.28) 19.0811 0.5530 +0.4135 0.0058
226 BBH:1490 (1.25,+0.41,+0.76) (0.247,+0.28) 19.0150 0.5153 −0.2690 0.0026
227 BBH:0525 (1.25,+0.8,−0.4) (0.247,+0.17) 18.1613 0.0978 −0.0110 0.0008
228 BBH:0486 (1.25, 0,+0.8) (0.247,+0.16) 18.3046 0.1302 +0.5147 0.0024
229 BBH:0559 (1.25,−0.2,+0.8) (0.247,+0.1) 17.9270 0.0860 +0.5519 0.0035
230 BBH:0591 (1.25, 0,+0.4) (0.247,+0.08) 17.7346 0.5561 +0.3277 0.0028
231 BBH:0475 (1.25,−0.4,+0.8) (0.247,+0.03) 17.5411 0.2125 +0.6229 0.0036
232 BBH:0465 (1.25,+0.6,−0.8) (0.247,+0.03) 17.2130 0.1104 +0.1557 0.0010
233 BBH:1223 (1.25,+0.38,−0.46) (0.247,+0.03) 16.4422 0.6707 +0.4807 0.0034
234 BBH:0503 (1.25,−0.6,+0.8) (0.247,−0.03) 17.8042 0.2713 +0.5742 0.0017
235 BBH:0464 (1.25, 0,−0.4) (0.247,−0.08) 16.6696 0.1334 +0.0221 0.0013
236 BBH:0535 (1.25,+0.2,−0.8) (0.247,−0.1) 16.4933 0.4965 +0.0183 0.0023
237 BBH:1487 (1.25,−0.8,+0.51) (0.2468,−0.15) 16.4172 0.6620 +0.3609 0.0022
238 BBH:0398 (1.25, 0,−0.8) (0.247,−0.16) 16.1057 0.1052 +0.0427 0.0036
239 BBH:0377 (1.25,−0.8004,+0.4) (0.247,−0.17) 16.8055 0.0697 +0.1819 0.0017
240 BBH:0386 (1.25,−0.2,−0.8) (0.247,−0.22) 15.7385 0.2341 −0.0317 0.0012
241 BBH:0466 (1.25,−0.8004,−0.4) (0.247,−0.33) 15.6628 0.6737 +0.3469 0.0006
242 BBH:0438 (1.25,−0.6,−0.8) (0.247,−0.34) 15.5757 0.1831 +0.4975 0.0021
243 BBH:0315 (1.27,+0.32,−0.56) (0.2464, 0) 13.2377 0.4605 −0.0745 0.0011
244 BBH:1493 (1.28, 0,+0.8) (0.2462,+0.16) 18.2944 0.5462 −0.1611 0.0029
245 BBH:1508 (1.28,+0.3,−0.07) (0.2463,+0.08) 17.6905 0.1619 +0.3529 0.0057
246 BBH:1474 (1.28,+0.72,−0.8) (0.2462,+0.07) 17.4878 0.2141 +0.0671 0.0025
247 BBH:1505 (1.33,−0.1,+0.55) (0.245,+0.07) 17.8158 0.5458 +0.5601 0.0021
248 BBH:1471 (1.33,−0.78,−0.8) (0.245,−0.4) 14.7453 0.3099 +0.5592 0.0009
249 BBH:1482 (1.39,−0.58,+0.8) (0.2435,−0.06) 17.7124 0.1146 +0.5314 0.0016
250 BBH:0625 (1.4,−0.71,+0.22) (0.243,−0.2) 14.5338 0.2969 +0.0946 0.0046
251 BBH:1473 (1.45,+0.7,+0.79) (0.2416,+0.38) 20.0089 0.0789 +0.3752 0.0060
252 BBH:1511 (1.47,+0.03,−0.1) (0.241, 0) 12.9084 0.1650 +0.1356 0.0024
253 BBH:1146 (1.5,+0.95,+0.9493) (0.24,+0.5) 24.8558 0.2451 −0.1625 0.0446
254 BBH:0441 (1.5,+0.6,+0.8) (0.24,+0.34) 19.5122 0.0978 −0.1389 0.0034
255 BBH:0385 (1.5,+0.8, 0) (0.24,+0.29) 19.0432 0.0569 +0.1450 0.0016
256 BBH:0372 (1.5,+0.8,−0.4) (0.24,+0.22) 18.5367 0.0340 −0.0514 0.0025
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Table F.8: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part II.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

257 BBH:0009 (1.5,+0.5, 0) (0.24,+0.18) 16.5553 0.0950 .. ..
258 BBH:0361 (1.5, 0,+0.8) (0.24,+0.13) 18.2273 0.0828 −0.1191 0.0025
259 BBH:0369 (1.5,+0.6,−0.8) (0.24,+0.09) 17.6312 0.6193 +0.3635 0.0026
260 BBH:0440 (1.5, 0,+0.4) (0.24,+0.06) 17.7528 0.6448 +0.2463 0.0014
261 BBH:0392 (1.5,−0.2,+0.8) (0.24,+0.06) 17.7915 0.1732 −0.1267 0.0024
262 BBH:0579 (1.5,+0.4,−0.8) (0.24,+0.02) 17.1681 0.1731 +0.2433 0.0022
263 BBH:0404 (1.5, 0,−0.8) (0.24,−0.13) 16.3364 0.2054 +0.4135 0.0032
264 BBH:0012 (1.5,−0.5, 0) (0.24,−0.18) 18.3843 0.0596 −0.0689 0.0068
265 BBH:0014 (1.5,−0.5, 0) (0.24,−0.18) 22.3801 0.0403 +0.1597 0.0561
266 BBH:0101 (1.5,−0.5, 0) (0.24,−0.18) 29.5191 2.5157 .. ..
267 BBH:0437 (1.5,−0.2,−0.8) (0.24,−0.2) 15.9208 0.4417 +0.5762 0.0019
268 BBH:0397 (1.5,−0.8005,−0.4) (0.24,−0.35) 15.1362 0.3270 +0.3178 0.0017
269 BBH:0499 (1.52,+0.01,+0.74) (0.2392,+0.12) 18.1953 0.1718 +0.1801 0.0041
270 BBH:1470 (1.52,−0.73,−0.79) (0.2394,−0.39) 14.8268 0.5134 +0.0917 0.0035
271 BBH:1479 (1.55,−0.56,−0.8) (0.2384,−0.33) 15.1981 0.2308 +0.4428 0.0016
272 BBH:1480 (1.55,−0.8,−0.3) (0.2384,−0.34) 15.2383 0.5352 +0.4378 0.0035
273 BBH:0519 (1.57,+0.64,+0.41) (0.2379,+0.3) 19.2173 0.0873 −0.2563 0.0048
274 BBH:1488 (1.6,−0.33,+0.75) (0.237,−0.01) 17.6966 0.1815 +0.0664 0.0061
275 BBH:1491 (1.66,+0.2,−0.7) (0.2346,−0.02) 17.0597 0.2663 −0.0262 0.0020
276 BBH:0529 (1.7, 0,+0.53) (0.2333,+0.07) 17.9701 0.0492 +0.1170 0.0035
277 BBH:0510 (1.71,−0.02,−0.75) (0.2328,−0.11) 16.5467 0.2528 −0.2075 0.0044
278 BBH:1465 (1.7,−0.79,+0.77) (0.233,−0.2) 16.3485 0.1282 −0.2375 0.0038
279 BBH:0388 (1.75,+0.8,+0.4) (0.2314,+0.38) 19.7492 0.6847 −0.1235 0.0034
280 BBH:0501 (1.75,+0.6,+0.8) (0.2314,+0.35) 19.8571 0.4487 −0.0852 0.0063
281 BBH:0552 (1.75,+0.8,−0.4) (0.2314,+0.27) 19.0140 0.0930 −0.1956 0.0016
282 BBH:0435 (1.75,+0.4,+0.8) (0.2314,+0.27) 19.3303 0.1007 −0.1591 0.0029
283 BBH:0566 (1.75,+0.2,+0.8) (0.2314,+0.19) 18.7708 0.3194 −0.1644 0.0041
284 BBH:0488 (1.75,+0.6,−0.8) (0.2314,+0.14) 18.6404 0.4740 −0.0395 0.0040
285 BBH:0382 (1.75, 0,+0.8) (0.2314,+0.1) 18.2795 0.3617 −0.0908 0.0017
286 BBH:0451 (1.75, 0,+0.4) (0.2314,+0.05) 17.8566 0.0829 +0.0133 0.0022
287 BBH:0550 (1.75,−0.2,+0.8) (0.2314,+0.02) 17.7834 0.1276 −0.0566 0.0021
288 BBH:0473 (1.75,+0.2,−0.8) (0.2314,−0.02) 17.1561 0.2007 −0.1397 0.0019
289 BBH:0371 (1.75, 0,−0.4) (0.2314,−0.05) 16.9743 0.7776 −0.1956 0.0060
290 BBH:0423 (1.75, 0,−0.8) (0.2314,−0.1) 16.5558 0.3514 −0.1116 0.0008
291 BBH:0355 (1.75,−0.6,+0.8) (0.2314,−0.14) 16.8654 0.5512 −0.1105 0.0015
292 BBH:0414 (1.75,−0.4,−0.8) (0.2314,−0.27) 15.6249 0.2925 −0.3370 0.0038
293 BBH:0402 (1.75,−0.8004,+0.4) (0.2314,−0.27) 16.0475 0.4541 −0.1049 0.0017
294 BBH:0512 (1.75,−0.6,−0.8) (0.2314,−0.35) 15.1873 0.3508 −0.2491 0.0006
295 BBH:0454 (1.75,−0.8006,−0.4) (0.2314,−0.38) 15.1309 0.0889 −0.2238 0.0011
296 BBH:1510 (1.78,+0.03,+0.29) (0.2305,+0.05) 13.8311 0.3867 −0.0845 0.0018
297 BBH:0545 (1.79, 0,−0.8) (0.23,−0.1) 16.6161 0.2192 −0.1857 0.0026
298 BBH:1469 (1.85,+0.8,+0.67) (0.2277,+0.42) 20.6503 0.0250 +0.0057 0.0042
299 BBH:0403 (1.88, 0,−0.05) (0.2266, 0) 17.4511 0.0662 +0.0157 0.0048
300 BBH:0555 (1.9, 0,+0.53) (0.2263,+0.06) 18.0411 0.1155 −0.0744 0.0008
301 BBH:1466 (1.9,+0.7,−0.8) (0.226,+0.2) 18.6924 0.1602 −0.0823 0.0015
302 BBH:0368 (1.93,−0.05,+0.25) (0.2247, 0) 17.6389 0.0945 −0.0165 0.0015
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Table F.9: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part III.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

303 BBH:0580 (1.93,+0.02,−0.78) (0.2248,−0.08) 16.7867 0.2788 −0.0720 0.0020
304 BBH:0530 (1.95, 0,+0.54) (0.2241,+0.07) 18.1093 0.2104 −0.0596 0.0015
305 BBH:1478 (1.97,+0.8,+0.13) (0.2232,+0.37) 19.8240 0.6195 −0.1597 0.0047
306 BBH:1504 (1.98,+0.25,+0.08) (0.223,+0.12) 18.2656 0.3277 +0.1266 0.0013
307 BBH:0482 (2,−0.02,−0.13) (0.2225,−0.02) 17.9754 0.3742 +0.0126 0.0040
308 BBH:2131 (2,+0.85,+0.8498) (0.2222,+0.47) 23.1890 0.2857 −0.2845 0.0011
309 BBH:0333 (2,+0.8,+0.8) (0.2222,+0.44) 20.6856 0.6366 +0.3275 0.0115
310 BBH:2130 (2,+0.6,+0.6) (0.2222,+0.33) 22.4793 0.2069 −0.2371 0.0032
311 BBH:2127 (2,+0.5,+0.5) (0.2222,+0.28) 26.6115 0.0704 +0.3188 0.0102
312 BBH:0574 (2,+0.4,+0.4) (0.2222,+0.22) 18.9940 0.4547 −0.1836 0.0016
313 BBH:2125 (2,+0.3,+0.3) (0.2222,+0.17) 21.5845 0.0832 −0.1004 0.0017
314 BBH:2114 (2,−0.3,−0.3) (0.2222,−0.17) 21.9376 0.0506 +0.1410 0.0021
315 BBH:0584 (2,−0.4,−0.4) (0.2222,−0.22) 16.1090 0.4072 −0.3253 0.0027
316 BBH:2112 (2,−0.5,−0.5) (0.2222,−0.28) 30.2460 0.0950 −0.2919 0.0031
317 BBH:2109 (2,−0.6,−0.6) (0.2222,−0.33) 23.8427 0.2134 +0.5404 0.0015
318 BBH:0334 (2,−0.8006,−0.8) (0.2222,−0.44) 15.2440 0.4419 +0.3034 0.0033
319 BBH:2108 (2,−0.85,−0.8496) (0.2222,−0.47) 26.7728 0.1132 +0.2301 0.0068
320 BBH:2132 (2,+0.8713,−0.8496) (0.2222,+0.3) 21.2802 0.3036 −0.3758 0.0039
321 BBH:0410 (2,+0.6, 0) (0.2222,+0.27) 19.1585 0.0369 −0.0817 0.0047
322 BBH:2129 (2,+0.6, 0) (0.2222,+0.27) 21.6406 0.0930 −0.2838 0.0016
323 BBH:0513 (2,+0.6,−0.4) (0.2222,+0.22) 18.7680 0.3862 −0.0469 0.0030
324 BBH:2128 (2,+0.6,−0.6) (0.2222,+0.2) 21.9947 0.1265 +0.0760 0.0051
325 BBH:2122 (2,+0.13,+0.8496) (0.2222,+0.15) 21.7293 0.4362 +0.4124 0.0022
326 BBH:0448 (2,+0.4,−0.4) (0.2222,+0.13) 18.2305 0.1345 −0.2608 0.0031
327 BBH:0399 (2,+0.2,+0.4) (0.2222,+0.13) 19.0278 0.1255 −0.0364 0.0013
328 BBH:2124 (2,+0.3, 0) (0.2222,+0.13) 21.9927 0.0943 +0.1157 0.0014
329 BBH:2123 (2,+0.3,−0.3) (0.2222,+0.1) 22.0045 0.2970 +0.0823 0.0021
330 BBH:0332 (2, 0,+0.8) (0.2222,+0.09) 18.3471 0.4964 −0.0808 0.0021
331 BBH:0599 (2,+0.2, 0) (0.2222,+0.09) 18.7836 0.5784 +0.0118 0.0027
332 BBH:2126 (2,+0.37,−0.8496) (0.2222,+0.07) 21.1569 0.1032 +0.2130 0.0031
333 BBH:2121 (2, 0,+0.6) (0.2222,+0.07) 21.6921 0.1523 −0.1070 0.0017
334 BBH:0554 (2,+0.2,−0.4) (0.2222,+0.04) 17.7079 0.0975 −0.2369 0.0029
335 BBH:0407 (2, 0,+0.4) (0.2222,+0.04) 17.8992 0.7705 −0.1603 0.0020
336 BBH:2120 (2, 0,+0.3) (0.2222,+0.03) 21.4284 0.0624 −0.4640 0.0013
337 BBH:2119 (2, 0,−0.3) (0.2222,−0.03) 21.4883 0.1871 +0.2279 0.0034
338 BBH:0375 (2, 0,−0.4) (0.2222,−0.04) 17.1322 0.6961 −0.3064 0.0013
339 BBH:0354 (2,−0.2,+0.4) (0.2222,−0.04) 17.3865 0.1174 −0.1990 0.0006
340 BBH:2118 (2, 0,−0.6) (0.2222,−0.07) 22.2002 0.1064 +0.0998 0.0025
341 BBH:2113 (2,−0.37,+0.8497) (0.2222,−0.07) 21.1137 0.2335 +0.0176 0.0012
342 BBH:1112 (2,−0.2, 0) (0.2222,−0.09) 16.8761 0.0505 .. ..
343 BBH:0331 (2, 0,−0.8) (0.2222,−0.09) 16.7509 0.1533 −0.0024 0.0075
344 BBH:2116 (2,−0.3,+0.3) (0.2222,−0.1) 21.2824 0.0377 +0.1631 0.0027
345 BBH:2115 (2,−0.3, 0) (0.2222,−0.13) 21.8903 0.0598 −0.1213 0.0038
346 BBH:0412 (2,−0.2,−0.4) (0.2222,−0.13) 16.6145 0.8352 −0.6655 0.0018
347 BBH:2117 (2,−0.13,−0.8496) (0.2222,−0.15) 22.3465 0.1189 −0.4815 0.0057
348 BBH:2111 (2,−0.6,+0.6) (0.2222,−0.2) 21.2223 0.0383 −0.2196 0.0017
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Table F.10: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part IV.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

349 BBH:2110 (2,−0.6, 0) (0.2222,−0.27) 22.0617 0.0556 −0.2713 0.0021
350 BBH:0461 (2,−0.6, 0) (0.2222,−0.27) 16.4199 0.1519 −0.0076 0.0018
351 BBH:0335 (2,−0.8005,+0.8) (0.2222,−0.27) 16.2627 0.7099 +0.0043 0.0012
352 BBH:2107 (2,−0.8712,+0.8497) (0.2222,−0.3) 21.1942 0.1130 −0.4347 0.0012
353 BBH:0387 (2,−0.6,−0.4) (0.2222,−0.31) 16.0241 0.6065 −0.0152 0.0022
354 BBH:1148 (2.04,+0.43,+0.5) (0.2208,+0.25) 55.1780 0.4326 +0.0443 0.0048
355 BBH:1147 (2.04,+0.43,−0.51) (0.2208,+0.14) 52.0651 0.1895 −0.9533 0.0094
356 BBH:1494 (2.2,−0.47,−0.39) (0.2146,−0.26) 15.9926 0.2721 −0.2255 0.0025
357 BBH:1467 (2.23,−0.56,+0.8) (0.2137,−0.2) 17.2545 0.5618 −0.0638 0.0051
358 BBH:1459 (2.26,+0.76,+0.8) (0.2127,+0.44) 21.5007 0.6864 −0.4414 0.0112
359 BBH:1468 (2.27,+0.51,+0.8) (0.2124,+0.32) 20.6638 0.4641 −0.3303 0.0068
360 BBH:0631 (2.33,−0.13,−0.36) (0.2103,−0.1) 14.5709 0.0931 +0.0608 0.0036
361 BBH:1453 (2.35,+0.8002,−0.78) (0.2093,+0.32) 20.2689 0.0360 +0.0496 0.0048
362 BBH:1472 (2.37,−0.8,−0.12) (0.2088,−0.4) 15.4798 0.0937 −0.3256 0.0022
363 BBH:1512 (2.4,+0.24, 0) (0.2078,+0.12) 22.9613 0.4823 −0.6255 0.0045
364 BBH:1454 (2.45,−0.8,−0.73) (0.2057,−0.47) 15.4826 0.1984 −0.0135 0.0030
365 BBH:1462 (2.63,−0.8,+0.51) (0.1996,−0.38) 16.0754 0.5980 −0.1760 0.0021
366 BBH:1461 (2.88,−0.45,−0.8) (0.1912,−0.3) 16.3080 0.6354 −0.2885 0.0044
367 BBH:1484 (2.9,−0.56,+0.3) (0.1906,−0.3) 17.0362 0.5345 −0.2043 0.0019
368 BBH:1387 (2.98,+0.47,−0.36) (0.188,+0.24) 22.2480 0.1628 −0.1619 0.0026
369 BBH:1456 (3,+0.74,+0.7) (0.1877,+0.46) 21.3281 0.4467 −0.1343 0.0123
370 BBH:2163 (3,+0.6,+0.6) (0.1875,+0.37) 25.5841 0.1962 −0.2297 0.0029
371 BBH:2158 (3,+0.5,+0.5) (0.1875,+0.31) 25.1335 0.0968 −0.1136 0.0089
372 BBH:0047 (3,+0.5,+0.5) (0.1875,+0.31) 22.2615 0.4925 .. ..
373 BBH:2155 (3,+0.3,+0.3) (0.1875,+0.19) 23.2456 0.0965 −0.0703 0.0048
374 BBH:2142 (3,−0.3,−0.3) (0.1875,−0.19) 21.0437 0.2741 +0.0580 0.0009
375 BBH:0046 (3,−0.5,−0.5) (0.1875,−0.31) 13.9670 0.2173 .. ..
376 BBH:2139 (3,−0.5,−0.5) (0.1875,−0.31) 21.9678 0.0430 +0.1670 0.0029
377 BBH:2136 (3,−0.6,−0.6) (0.1875,−0.37) 22.1288 0.2589 +0.2913 0.0020
378 BBH:1151 (3,+0.7,+0.6) (0.1875,+0.43) 20.4047 0.0527 −0.3950 0.0093
379 BBH:1152 (3,+0.7,+0.6) (0.1875,+0.43) 20.4006 0.0721 −0.2896 0.0079
380 BBH:1382 (3,+0.7,+0.6) (0.1875,+0.43) 20.8126 9.0994 −0.3278 0.0072
381 BBH:1150 (3,+0.7,+0.6) (0.1875,+0.43) 20.4691 0.9730 −0.5133 0.0088
382 BBH:2162 (3,+0.6,+0.4) (0.1875,+0.36) 25.3936 0.2401 +0.1817 0.0020
383 BBH:2161 (3,+0.6, 0) (0.1875,+0.34) 25.3306 0.1645 +0.0554 0.0052
384 BBH:2160 (3,+0.6,−0.4) (0.1875,+0.31) 24.2444 0.1800 −0.0792 0.0058
385 BBH:2159 (3,+0.6,−0.6) (0.1875,+0.3) 23.5837 0.0969 +0.0942 0.0034
386 BBH:0031 (3,+0.5, 0) (0.1875,+0.28) 21.2242 0.0501 −0.0510 0.0244
387 BBH:0041 (3,+0.5, 0) (0.1875,+0.28) 14.4106 0.0990 .. ..
388 BBH:2157 (3,+0.4,+0.6) (0.1875,+0.26) 24.5757 0.2450 −0.4904 0.0043
389 BBH:2152 (3,+0.27,+0.8497) (0.1875,+0.2) 22.7604 0.0332 −0.0343 0.0047
390 BBH:2156 (3,+0.4,−0.6) (0.1875,+0.19) 22.1396 0.2944 −0.0579 0.0009
391 BBH:2154 (3,+0.3, 0) (0.1875,+0.17) 23.5527 0.0674 +0.0199 0.0081
392 BBH:2153 (3,+0.3,−0.3) (0.1875,+0.15) 22.9692 0.0985 −0.0711 0.0013
393 BBH:2151 (3,+0.23,−0.8493) (0.1875,+0.08) 21.0314 0.0542 −0.1003 0.0014
394 BBH:2150 (3, 0,+0.6) (0.1875,+0.04) 21.3851 0.0861 −0.0961 0.0022



Chapter F. Numerical Relativity waveform tables

Table F.11: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part V.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

395 BBH:2149 (3, 0,+0.3) (0.1875,+0.02) 21.3989 0.0780 +0.1824 0.0025
396 BBH:2148 (3, 0,−0.3) (0.1875,−0.02) 21.4080 0.2163 −0.2364 0.0049
397 BBH:2147 (3, 0,−0.6) (0.1875,−0.04) 21.4411 0.1130 −0.2911 0.0045
398 BBH:2146 (3,−0.23,+0.8496) (0.1875,−0.08) 21.4812 0.3473 −0.0135 0.0038
399 BBH:2144 (3,−0.3,+0.3) (0.1875,−0.15) 21.3457 0.0979 −0.1039 0.0032
400 BBH:2143 (3,−0.3, 0) (0.1875,−0.17) 21.0440 0.0242 −0.1665 0.0035
401 BBH:2141 (3,−0.4,+0.6) (0.1875,−0.19) 20.8091 0.0699 +0.1086 0.0030
402 BBH:2145 (3,−0.27,−0.8495) (0.1875,−0.2) 21.8265 0.1132 −0.1552 0.0044
403 BBH:2140 (3,−0.4,−0.6) (0.1875,−0.26) 21.9437 0.1044 −0.7785 0.0019
404 BBH:0038 (3,−0.5, 0) (0.1875,−0.28) 14.7221 0.1000 .. ..
405 BBH:0039 (3,−0.5, 0) (0.1875,−0.28) 21.8496 3.0069 .. ..
406 BBH:0040 (3,−0.5, 0) (0.1875,−0.28) 8.8088 0.9107 .. ..
407 BBH:2135 (3,−0.6,+0.6) (0.1875,−0.3) 20.9400 0.1234 +0.1837 0.0026
408 BBH:2138 (3,−0.6,+0.4) (0.1875,−0.31) 21.0642 0.1551 +0.1148 0.0020
409 BBH:2134 (3,−0.6, 0) (0.1875,−0.34) 21.3713 0.0310 −0.2258 0.0023
410 BBH:2133 (3,−0.73,+0.8495) (0.1875,−0.36) 20.5436 0.1903 +0.3355 0.0023
411 BBH:2137 (3,−0.6,−0.4) (0.1875,−0.36) 22.5091 0.1557 −0.3807 0.0019
412 BBH:1172 (3,−0.7,−0.6) (0.1875,−0.43) 17.4246 0.0714 −0.3701 0.0021
413 BBH:1170 (3,−0.7,−0.6) (0.1875,−0.43) 17.6633 9.7234 −0.3025 0.0021
414 BBH:1171 (3,−0.7,−0.6) (0.1875,−0.43) 17.7321 2.1688 −0.2922 0.0024
415 BBH:1173 (3,−0.7,−0.6) (0.1875,−0.43) 17.6095 0.0931 −0.2016 0.0013
416 BBH:1174 (3,−0.7,−0.6) (0.1875,−0.43) 17.6302 0.0560 −0.2199 0.0004
417 BBH:1175 (3,−0.7,−0.6) (0.1875,−0.43) 17.6034 0.0529 −0.2782 0.0022
418 BBH:1485 (3.1,+0.35,−0.4) (0.1846,+0.18) 19.9371 0.5472 +0.4004 0.0046
419 BBH:1446 (3.15,−0.8,+0.78) (0.1828,−0.42) 16.6309 0.4757 −0.5731 0.0047
420 BBH:1447 (3.16,+0.74,+0.8) (0.1826,+0.47) 21.5506 0.7076 .. ..
421 BBH:1483 (3.17,+0.56,−0.2) (0.1824,+0.31) 20.9944 0.2982 +0.3873 0.0059
422 BBH:1457 (3.25,+0.54,+0.8) (0.18,+0.36) 21.5910 0.5016 +0.1098 0.0095
423 BBH:0317 (3.33,+0.52,−0.45) (0.1777,+0.29) 45.8194 0.8090 −0.6215 0.0040
424 BBH:1489 (3.46,+0.3,−0.17) (0.1738,+0.17) 19.4817 0.2610 .. ..
425 BBH:1452 (3.64,+0.8,−0.43) (0.169,+0.47) 22.3615 0.1467 .. ..
426 BBH:1486 (3.72,+0.43,−0.03) (0.167,+0.26) 21.1556 0.1944 −0.5611 0.0038
427 BBH:1458 (3.8,−0.06,+0.8) (0.1649, 0) 18.7812 0.2951 −1.1364 0.0047
428 BBH:1936 (4,−0.8,−0.8) (0.16,−0.54) 15.4264 0.4739 +0.2498 0.0091
429 BBH:2014 (4,+0.8,+0.4) (0.16,+0.53) 23.5340 0.4193 .. ..
430 BBH:1938 (4,+0.4,+0.8) (0.16,+0.29) 21.8293 0.4565 −1.2430 0.0102
431 BBH:1417 (4,+0.4,+0.5) (0.16,+0.28) 78.9983 0.0420 +1.1516 0.0565
432 BBH:1937 (4,+0.4, 0) (0.16,+0.26) 20.3573 0.4157 −0.3860 0.0031
433 BBH:1942 (4,+0.4,−0.8) (0.16,+0.22) 19.8476 0.0370 −1.0339 0.0078
434 BBH:1907 (4, 0,+0.8) (0.16,+0.03) 19.9013 0.3965 −0.0364 0.0072
435 BBH:2013 (4, 0,+0.4) (0.16,+0.02) 19.7302 0.0903 −0.3687 0.0023
436 BBH:2036 (4, 0,−0.4) (0.16,−0.02) 19.1937 0.1487 +0.2866 0.0035
437 BBH:1911 (4, 0,−0.8) (0.16,−0.03) 18.9277 0.0849 −0.0922 0.0070
438 BBH:1962 (4,−0.4,+0.8) (0.16,−0.22) 17.8848 0.2271 −0.7077 0.0039
439 BBH:1961 (4,−0.4, 0) (0.16,−0.26) 17.1221 0.2005 +0.0155 0.0011
440 BBH:1418 (4,−0.4,−0.5) (0.16,−0.28) 65.5016 0.2177 +1.1166 0.0526
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Table F.12: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part VI.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

441 BBH:1966 (4,−0.4,−0.8) (0.16,−0.29) 16.4605 0.0830 −0.9591 0.0020
442 BBH:1932 (4,−0.8,+0.8) (0.16,−0.48) 16.5617 0.5770 −0.6471 0.0021
443 BBH:2018 (4,−0.8,+0.4) (0.16,−0.5) 16.3809 0.7924 −0.5072 0.0021
444 BBH:1931 (4,−0.8, 0) (0.16,−0.51) 15.3484 0.0739 −0.4649 0.0004
445 BBH:2040 (4,−0.8,−0.4) (0.16,−0.53) 15.1353 0.3243 −0.3889 0.0006
446 BBH:1451 (4.06,+0.31,−0.8) (0.1587,+0.17) 20.2972 0.1871 −0.6438 0.0070
447 BBH:1450 (4.07,−0.28,−0.8) (0.1584,−0.21) 17.8045 0.5048 −1.1502 0.0020
448 BBH:1449 (4.19,−0.8002,−0.34) (0.1557,−0.53) 15.1708 0.4271 −0.5360 0.0026
449 BBH:1434 (4.37,+0.8,+0.8) (0.1516,+0.56) 24.1808 0.3177 .. ..
450 BBH:1445 (4.67,−0.5,+0.8) (0.1452,−0.31) 17.1449 0.6327 −0.7205 0.0058
451 BBH:1463 (4.98,+0.61,+0.24) (0.1393,+0.43) 22.4088 0.4400 +0.2576 0.0032
452 BBH:0061 (5,+0.5, 0) (0.1388,+0.35) 34.2689 4.2423 .. ..
453 BBH:0109 (5,−0.5, 0) (0.1388,−0.35) 14.2349 1.3126 .. ..
454 BBH:1111 (5,−0.9, 0) (0.1389,−0.62) 8.9056 0.5800 +0.1885 0.0071
455 BBH:1428 (5.52,−0.8002,−0.7) (0.13,−0.59) 15.4075 0.3549 −1.0081 0.0066
456 BBH:1440 (5.64,+0.77,+0.3) (0.128,+0.56) 24.0226 0.6962 −0.7863 0.0055
457 BBH:1443 (5.68,+0.4,−0.74) (0.1273,+0.28) 21.2462 0.3166 −0.9964 0.0064
458 BBH:1432 (5.84,+0.66,+0.8) (0.1248,+0.5) 23.7073 0.1893 −1.3306 0.0192
459 BBH:1438 (5.87,+0.13,+0.8) (0.1244,+0.1) 20.5844 0.3179 −1.0427 0.0081
460 BBH:1444 (5.94,−0.06,−0.76) (0.1234,−0.06) 19.7323 0.2126 −1.9529 0.0164
461 BBH:1437 (6.04,+0.8,+0.15) (0.122,+0.6) 24.7986 0.2370 −0.9783 0.0141
462 BBH:1425 (6.12,−0.8,+0.67) (0.1208,−0.58) 15.7926 0.2328 −1.6995 0.0098
463 BBH:1436 (6.28, 0,−0.8) (0.1185, 0) 20.1015 0.4722 −0.3709 0.0142
464 BBH:1424 (6.46,−0.66,−0.8) (0.116,−0.5) 15.5688 0.2226 −2.9472 0.0134
465 BBH:1439 (6.48,+0.72,−0.32) (0.1158,+0.53) 24.0557 0.6145 .. ..
466 BBH:1464 (6.53,−0.05,−0.32) (0.1151,−0.05) 20.2563 0.7350 −0.0651 0.0057
467 BBH:1442 (6.59,−0.7,−0.18) (0.1144,−0.54) 15.5149 0.5355 −0.6941 0.0018
468 BBH:1435 (6.59,−0.79,+0.07) (0.1144,−0.6) 16.0754 0.3766 −1.2265 0.0081
469 BBH:1448 (6.95,−0.48,+0.52) (0.11,−0.36) 17.1456 0.2625 .. ..
470 BBH:0204 (7,+0.4, 0) (0.1094,+0.3) 87.3919 0.0268 −3.4007 0.0434
471 BBH:0206 (7,−0.4, 0) (0.1094,−0.3) 72.1627 0.0613 −2.2059 0.0171
472 BBH:1427 (7.41,−0.61,−0.73) (0.1048,−0.48) 15.8739 0.4001 −1.2677 0.0050
473 BBH:1429 (7.75,−0.2,−0.78) (0.1012,−0.17) 18.4554 0.0668 −0.5538 0.0049
474 BBH:1421 (7.8,−0.6,+0.8) (0.1006,−0.47) 16.5496 0.7512 +0.1973 0.0046
475 BBH:1422 (7.95,−0.8,−0.46) (0.0992,−0.64) 15.7759 0.1931 −0.7723 0.0060
476 BBH:1419 (8,−0.8,−0.8) (0.0988,−0.64) 14.7190 0.4369 .. ..
477 BBH:1441 (8,+0.6,−0.48) (0.0988,+0.46) 24.2874 0.1958 .. ..
478 BBH:1426 (8,+0.48,+0.75) (0.0988,+0.4) 23.9987 0.3326 −0.7854 0.0378
479 BBH:1430 (8,+0.28,−0.75) (0.0988,+0.22) 22.7065 0.1184 −1.1552 0.0302
480 BBH:1460 (8,+0.12,+0.1) (0.0988,+0.1) 22.2531 0.2232 +0.3258 0.0030
481 BBH:1431 (8,+0.08,−0.78) (0.0988,+0.05) 21.4002 0.5339 −1.9878 0.0153
482 BBH:1455 (8,−0.4, 0) (0.0988,−0.31) 17.8110 0.3867 +0.0479 0.0023
483 BBH:0114 (8,−0.5, 0) (0.0987,−0.4) 18.2319 1.7048 .. ..
484 BBH:1423 (8,−0.6,−0.75) (0.0988,−0.49) 16.8959 0.5557 −0.5687 0.0103
485 BBH:1433 (8,−0.74,+0.2) (0.0988,−0.58) 16.4276 0.5132 −0.3390 0.0037
486 BBH:1420 (8,−0.8,+0.8) (0.0988,−0.62) 16.1997 0.3312 +0.1364 0.0094
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Table F.13: This table shows the SXS waveforms with an extremely long inspiral of between 139 and 147
orbits in the validation set.

# id (q, χ1, χ2)
(
ν, Ŝ

)
Norb ε[10−3] δφNR

mrg [rad] F̄NR/NR [%]

487 BBH:1412 (1.63,+0.4,−0.3) (0.2357,+0.11) 144.9269 0.4450 −4.2211 0.7295
488 BBH:1413 (1.41,+0.5,+0.4) (0.2428,+0.24) 145.0944 0.1000 −7.0980 1.1856
489 BBH:1414 (1.83,−0.5,+0.4) (0.2285,−0.16) 143.0923 1.6000 −5.4034 0.8919
490 BBH:1415 (1.5,+0.5,+0.5) (0.24,+0.26) 147.2969 0.0430 −8.3376 1.5238
491 BBH:1416 (1.78,−0.4,−0.4) (0.2303,−0.22) 139.0149 1.7000 −5.1125 0.5986
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Table F.14: Non-spinning SXS and BAM data. The waveforms #526−#547 form the non-spinning sector
of the calibration set. While waveforms #548−#570 represent all waveforms in the non-spinning sector of
the validation set with a mass-ratio q < 2.

# id q ν Norb ε[10−3] δφNR
mrg [rad] F̄NR/NR [%]

492 BBH:0180 1 0.2500 27.8299 0.0511 +0.0259 0.0035
493 BBH:0007 1.5 0.2400 28.6965 0.4338 +0.0232 0.0020
494 BBH:0169 2 0.2222 14.9957 0.1000 +0.0074 0.0032
495 BBH:0259 2.5 0.2041 27.8710 0.0490 −0.0490 0.0050
496 BBH:0030 3 0.1875 17.6735 2.1213 −0.0295 0.0030
497 BBH:0167 4 0.1600 14.9332 0.0950 +0.0407 0.0057
498 BBH:0295 4.5 0.1488 27.0334 0.0267 −0.0965 0.0066
499 BBH:0056 5 0.1389 28.1856 0.4985 −0.1654 0.0158
500 BBH:0296 5.5 0.1302 27.1419 0.0330 −0.1691 0.0177
501 BBH:0166 6 0.1224 20.9629 0.0420 .. ..
502 BBH:0297 6.5 0.1156 18.9546 0.0590 −0.0124 0.0069
503 BBH:0298 7 0.1094 18.9115 0.0400 −0.0044 0.0023
504 BBH:0299 7.5 0.1038 19.3106 0.0560 −0.0254 0.0013
505 BBH:0063 8 0.0988 25.1734 0.2880 −0.4132 0.0754
506 BBH:0300 8.5 0.0942 17.8944 0.0600 −0.0095 0.0037
507 BBH:0301 9 0.0900 18.1073 0.0570 +0.0087 0.0014
508 BBH:0302 9.5 0.0862 18.2937 0.0540 −0.0280 0.0039
509 BBH:0185 9.99 0.0827 23.7637 0.2928 −0.0509 0.0033
510 BBH:0303 10 0.0826 18.4270 0.0560 −0.1486 0.0045

511 BAM 4 0.1600 11.0449 1.4000 rext = 100
512 BAM 10 0.0826 6.7622 0.8000 rext = 100
513 BAM 18 0.0499 6.5094 1.3000 rext = 100

514 BBH:0001 1 0.2500 27.7156 0.2569 .. ..
515 BBH:0066 1 0.2500 27.6928 0.0643 .. ..
516 BBH:0067 1 0.2500 27.7168 0.2365 .. ..
517 BBH:0068 1 0.2500 27.8923 1.9465 .. ..
518 BBH:0070 1 0.2500 27.6958 0.0459 .. ..
519 BBH:0071 1 0.2500 27.6918 0.0610 .. ..
520 BBH:0072 1 0.2500 27.6775 0.1462 .. ..
521 BBH:0073 1 0.2500 27.5006 1.8770 .. ..
522 BBH:0086 1 0.2500 27.7854 1.1708 .. ..
523 BBH:0090 1 0.2500 32.0416 1.0254 .. ..
524 BBH:0389 1 0.2500 17.1684 0.0892 +0.1455 0.0028
525 BBH:1132 1 0.2500 53.3421 0.7700 +0.6849 0.0192
526 BBH:1153 1 0.2500 39.6892 1.0400 +0.6347 0.0051
527 BBH:1154 1 0.2500 39.7730 0.0568 +0.5822 0.0071
528 BBH:1155 1 0.2500 39.7773 0.0490 +0.6307 0.0077
529 BBH:0198 1.2 0.2479 18.8232 0.2044 +0.0686 0.0030
530 BBH:0310 1.22 0.2475 13.5178 0.7880 −0.0402 0.0046
531 BBH:1143 1.25 0.2469 9.1879 0.1016 −0.3291 0.0062
532 BBH:0008 1.5 0.2400 20.8423 1.5862 −0.0758 0.0663
533 BBH:0093 1.5 0.2400 28.4823 2.3821 .. ..
534 BBH:0593 1.5 0.2400 17.3162 0.0676 +0.2927 0.0039
535 BBH:0194 1.52 0.2394 18.6350 0.8020 −0.0298 0.0042
536 BBH:1354 1.83 0.2284 19.6238 0.0479 −0.3128 0.0010
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Table F.15: The waveforms listed here represent all non-spinning waveforms in the validation set with a
mass-ratio q ≥ 2.

# id q ν Norb ε[10−3] δφNR
mrg [rad] F̄NR/NR [%]

537 BBH:1222 2 0.2222 27.5621 0.0623 +0.0526 0.0032
538 BBH:0184 2 0.2222 14.3278 0.0760 −0.0738 0.0039
539 BBH:1166 2 0.2222 39.4852 0.3876 −0.6920 0.0033
540 BBH:1164 2 0.2222 39.4971 1.2541 −0.0050 0.0010
541 BBH:1165 2 0.2222 39.5694 1.5612 −0.0533 0.0043
542 BBH:1167 2 0.2222 39.6251 0.3762 −0.0746 0.0027
543 BBH:0201 2.32 0.2106 19.0579 0.1406 −0.1260 0.0028
544 BBH:0191 2.5 0.2038 21.2360 0.7580 +0.1004 0.0036
545 BBH:1221 3 0.1875 25.8495 0.0390 +0.7166 0.0016
546 BBH:0168 3 0.1875 14.1701 0.0870 +0.0526 0.0022
547 BBH:0183 3 0.1875 14.5139 0.0630 −0.0814 0.0029
548 BBH:1177 3 0.1875 13.6732 2.6360 .. ..
549 BBH:1178 3 0.1875 13.7628 0.1401 .. ..
550 BBH:1179 3 0.1875 13.7675 0.0870 +0.0060 0.0020
551 BBH:2265 3 0.1875 64.9230 0.0689 +0.9661 0.0046
552 BBH:0200 3.27 0.1793 19.2608 0.4137 −0.1165 0.0013
553 BBH:0193 3.5 0.1729 18.6896 0.0390 −0.1776 0.0016
554 BBH:0294 3.5 0.1728 27.3567 0.0434 +0.1486 0.0102
555 BBH:1906 4 0.1600 19.3709 0.1472 +0.1092 0.0014
556 BBH:0182 4 0.1600 14.6056 0.0680 −0.0715 0.0049
557 BBH:1220 4 0.1600 25.4856 0.1037 −1.1501 0.0030
558 BBH:0190 4.5 0.1488 19.1304 0.0350 −0.2568 0.0012
559 BBH:0054 5 0.1389 14.7581 3.5135 +0.0511 0.0024
560 BBH:0055 5 0.1389 23.0954 0.2565 .. ..
561 BBH:0107 5 0.1389 27.9706 2.3614 −0.1168 0.0095
562 BBH:0112 5 0.1389 23.0307 1.2412 .. ..
563 BBH:0187 5.04 0.1382 18.3448 0.0460 −0.1198 0.0012
564 BBH:0197 5.52 0.1298 19.2079 0.2200 −0.2170 0.0011
565 BBH:0181 6 0.1225 25.3711 0.0791 −0.0572 0.0007
566 BBH:0192 6.58 0.1145 20.1365 0.0502 −0.2813 0.0020
567 BBH:0188 7.19 0.1072 21.3575 0.1609 −0.1357 0.0022
568 BBH:0195 7.76 0.1011 19.7015 0.2243 +0.0174 0.0040
569 BBH:0186 8.27 0.0963 23.1928 0.6700 −0.0843 0.0014
570 BBH:0199 8.73 0.0922 21.8602 0.0677 +0.1694 0.0089
571 BBH:0189 9.17 0.0887 24.1621 0.0817 −0.1516 0.0015
572 BBH:1108 9.2 0.0884 27.7155 0.1477 −0.2201 0.0032
573 BBH:0196 9.66 0.0850 22.3934 0.2629 −0.1411 0.0045
574 BBH:1107 10 0.0826 29.4820 1.1603 −0.1118 0.0010
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