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Abstract

Faithful, robust and fast waveform models are of critical importance to gravitational wave astronomy
to allow for accurate and precise detection and analysis of the source. The dominant source of
Gravitational Wave (GW) events observed to date is compact binary coalescence. Waveform models
based on the Effective-One-Body (EOB) approach have been proven to be very powerful in their
ability to combine analytical information from post-Newtonian theory, gravitational-self-force theory
and more, in order to capture the full picture of merging binary systems. Purely analytical EOB
models are however still of insufficient quality to be used in the detection and analysis of GW
events. This thesis presents an introduction to the solution of this problem: The completion of
EOB waveform models through Numerical Relativity (NR), on the example of non-precessing, non-
eccentric Binary Black Hole (BBH) systems, utilizing the framework of the TEOB model. Once
completed NR is further used to validate the model to ensure it meets the qualitative needs of GW
data analysis.

The infrastructure of the TEOB model is introduced and discussed with a strong focus onto analyt-
tcal flexibilities that can be used to capture missing information from NR waveforms. The analytical
flexibilities of the TEOB model are made up of effective parameters that enter the Hamiltonian so
as to modify both the orbital part (i.e. non-spinning) and the spin-orbit interaction between the
orbital angular momentum and the black hole spins. The approximation of a quasi-circular inspiral
is corrected effectively in the radiation reaction of the system by imposing NR fitted waveform
characteristics. The model is completed with a phenomenological template fitted directly to NR
to capture the merger and ringdown of the BBH system. In total 154 BBI-NR waveforms are
combined to inform the TEOB. An additional 420 waveforms are used to validate the model. These
waveforms span over a large part of the parameter space reaching mass-ratios mi/ms < 18 and
black hole spins of up to ]51,2|/m%72 < 0.998.

This calibration process is presented for three, successively improving avatars of the TEOB model.
All models include improved analytical information, presenting an excellent opportunity to discuss
the impact of analytical information onto the subsequent calibration to NR. Many important phe-
nomenological features of the multipolar waveform is explored and discussed, in particular this
includes several quasi-universal spin dependencies, simplifying direct fits of NR parameters greatly.
The TEOB avatars discussed in this thesis are: Firstly, TEOBResumS is a model for the dominant,
quadrupolar mode; Secondly, TEOBiResumMultipoles models BBH systems of non-rotating black
holes, extending the calibration of the quadrupolar mode to a large set of 9 further subdominant
modes; Finally, TEOBiResumS_SM extends the calibration of all but one subdominant mode to the
full spin-range available of available NR waveforms. The fully calibrated models are all evaluated
against the NR catalog. In many instances the model does not just meet but exceeds the quality
demands for application in GW astronomy. However, this is not always possible to achieve with
mere improvement of the NR calibration. For these cases the limits are investigated and discussed

thoroughly.

Keywords: Effective-One-Body, Waveform models, Numerical Relativity, Binary Black Holes,

Compact Binary Coalescence, Gravitational Waves.



Italian Abstract

Modelli di forme d’onda accurati, robusti e veloci sono di fondamentale importanza per 'astronomia,
delle onde gravitazionali. Essi consentono di ricavare informazioni precise sulla sorgente dei seg-
nali rilevati. La fonte piu importante degli eventi di onde gravitazionali osservati fino a oggi é la
coalescenza di sistemi binari di oggetti compatti. I modelli di forme d’onda basati sull’approccio
Effective-One-Body (EOB) si sono dimostrati molto importanti nella loro capacita di combinare in-
formazioni analitiche della teoria post-newtoniana, della gravitational self-force e di altri approcci, al
fine di riprodurre il quadro completo di sistemi binari coalescenti. I modelli EOB puramente analitici
non sono tuttavia sufficientemente accurati per essere utilizzati nella rilevazione e nell’analisi di
eventi di onde gravitazionali. Questa tesi presenta un’introduzione alla soluzione di questo prob-
lema: il completamento di modelli di forme d’onda EOB attraverso la Relativita Numerica (NR),
con esempio di sistemi binari di buchi neri (BBH) quasi-circolari e senza precessione, utilizzando la
struttura del modello TEOB. Una volta completato il modello, la relativitd numerica viene utilizzata
anche per convalidarlo in modo da garantire che esso soddisfi i requisiti necessari all’analisi dati dei
segnali.

L’infrastruttura del modello TEOB viene introdotta e discussa con particolare attenzione alla
flessibilita analitica, che puod essere usata per incorporare le informazioni mancanti utilizzando forme
d’onda numeriche. Le flessibilitd analitiche del modello TEOB sono costituite da parametri efficaci
che entrano nel’Hamiltoniana in modo da modificare sia la parte orbitale (i.e. mnon spinning)
sia l'interazione spin-orbita tra il momento angolare orbitale e gli spin dei buchi neri. L’inspiral
quasi-circolare viene corretto efficacemente nella reazione di radiazione del sistema imponendo delle
caratteristiche fittate alle onde NR. L’onda & quindi completata da un modello fenomenologico
fittato direttamente alla NR per riprodurre la coalescenza e il ringdown del sistema, binario di buchi
neri. In totale 154 forme d’onda BBH-NR vengono combinate per calibrare il modello TEOB. Ulteriori
420 forme d’onda vengono utilizzate per convalidarlo. Queste si estendono su gran parte dello spazio
dei parametri raggiungendo rapporti di massa mj/mg < 18 e spin del buco nero ]512\/771%2 < 0.998.

Questo processo di calibrazione viene presentato per tre successive iterazioni del modello TEOB.
Ogni iterazione include maggiori informazioni analitiche, offrendo un’eccellente opportunitad per
discutere 'impatto di queste ultime sulla successiva calibrazione a NR. Molte importanti caratter-
istiche fenomenologiche della forma d’onda multipolare vengono esplorate e discusse: in particolare
queste includono dipendenze quasi-universali dagli spin, che semplificano notevolmente i fit dei
parametri NR. Le diverse formulazioni del modello TEOB discusse in questa tesi sono: in primo
luogo TEOBResumS, un modello che include solamente il quadrupolo dominante; in secondo luogo,
TEOBiResumMultipoles, che modellizza sistemi di buchi neri non rotanti, estendendo la calibrazione
del modo quadrupolare ad altri 9 modi sottodominanti; infine, TEOBiResumS_SM, che estende la
calibrazione di tutti i modi sottodominanti tranne uno all’intervallo di spin disponibile nelle forme
d’onda NR. I modelli calibrati vengono dunque confrontati con 'intero catalogo di NR. In molti casi
il modello non solo soddisfa, ma supera i requisiti di accuratezza per ’applicazione nell’astronomia
delle onde gravitazionali. Tuttavia, questo non é sempre possibile, anche con il miglioramento della

calibrazione alla NR. In questi casi, i limiti vengono studiati e discussi a fondo.
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Glossary

Acronyms

GW
GWA
EOB
NR
BBH
BH
GR
CBC
NS
BNS
BINS
PM
PN
GSF
QNM
MR

Gravitational Wave
Gravitational Wave Astronomy
Effective-One-Body
Numerical Relativity

Binary Black Hole

Black Hole

General Relativity

Compact Binary Coalescence
Neutron star

Binary Neutron Star

Black Hole Neutron Star
Post-Minkowskian
Post-Newtonian
Gravitational-Self-Force
Quasi-Normal-Mode
Inspiral-Merger-Ringdown

Frequently used symbols

h&n
A&na¢hn

Wem,

Whn
HNQC

/m

Newtons gravitational constant

the speed of light

total mass of the system, set to M = 1 commonly

mass of the i-th BH with the convention m; > msg

mass-fraction of the i-th BH X; = m; /M

mass ratio ¢ = mj/mg > 1

symmetric mass-ratio v = myms/M?

mass-fraction-difference X179 = X7 — X — 2

spins of the i-th BH projected onto the orbital angular momentum
Kerr-spin parameters of the i-th BH a; = S;/m;

dimensionless spin of the i-th BH x; = S;/m?

sum of the effective Kerr-spin parameters ag = a1 + ao

difference of the effective Kerr-spin parameters @19 = a1 — ao
effective spin parameter S = (S; + So) /M?

gravitational wave polarizations

the complex gravitational wave strain h = hy — ih«

multipolar waveform modes of h with £ > 2 and |m| < ¢, see eq. (2.4)
multipolar amplitude and phase hyy, = Agppe 1 Ptm

multipolar frequency wep, = ¢pm

Regge-Wheeler-Zerilli normalized waveform Wy, = hgm//(€+2) (€ +1)£ (€ — 1)

NQC correction factor to the waveform, see Sec. 2.3.2



R the distance from the GW source to the observer
t,¢ angular position of the observer relative to the source frame
t, u time coordinate in the source frame (and inverse radius)
F, F faithfulness and unfaithfulness, see Sec. 2.1.1 and Appendix A
tlgslak the peak time of (¢,m) mode, max [Agy,] = A (t?;ak>
t™™8  the merger time is given by the peak of the (2,2) mode t™'& = tgsak
Atg,, peak time shift of the (¢, m) mode relative to the (2,2) mode, Aty,, = t?ﬁfk — e
E:fk (¢, m) frequency at the peak of the mode, wfﬁfk = Wem (t?;ak>
AE:;L&k (¢, m) amplitude at the peak of the mode, Ai’;ak = A (t?ﬁlak>
w™e  (2,2) frequency at the peak of the mode, w™™® = woy (t™'8)
A™T8 (2,2) amplitude at the peak of the mode, A™8 = Agg (t™'8)
(Gs,Ggs,) gyro-gravitomagnetic ratios, see Sec. 2.3 and 4.1.1
cg‘ fm effective evolution parameter of the postpeak (¢, m) amplitude
(cg"*m, cjf"'m) effective evolution parameter of the postpeak (¢,m) phase
(afm wf™) inverse damping time and frequency of the n-th QNM
odm  difference of the inverse damping times of the first and second QNM

Notation and Nomenclature

(q¢,x1,x2) the triplet notation is often used to refer to a specific waveform
(¢,m) the pair of integers is often used to refer to the multipole hgp,
merger the merger, referred to as a concrete point in time, is the peak of the (2,2) mode,
as a physical phase it is sometimes referred to as the physical merging of the BBH
postmerger the waveform past the merger is referred to as postmerger
postpeak  the waveform past the peak of a mode is also referred to as the postpeak waveform
inspiral  the inspiral phase is marked by a clear separation of the binary
while they move along semi stable orbits
plunge the radial, unstable plunge of the binary system preceding the merger
ringdown  the end-state of the evolution, during which the remnant BH is relaxing to a Kerr BH

NQC iteration defined in Sec. 2.3.2, to ensure consistency between waveform and flux
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NR/NR unfaithfulness uncertainty computed from Eq. (A.12) between the highest
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spinning waveforms used to inform TEOBResumS and TEOBiResumS_SM. (Top right)
The spinning-sector of the walidation set. 336 spinning datasets released and dis-
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sector of both the calibration and wvalidation set. 64 waveforms for which a second
resolution is available. (Bottom right) The global summary of FI{?P%’/(NR for all 510
SXS BBH-NR simulations for which a secondary resolution is available. The fraction
(expressed in %) n/Ng compared for each value of F, where n gives the number
of waveforms for which Fﬁlﬁ’/‘NR > F holds, divided by the total number of wave-
forms given with a second resolution Ngs. The PSD used in this computation was
presented in Ref. [11]. The unfaithfulness was always computed over the maximum
frequency range for which the individual NR waveforms are free of systematic features
and have a reasonably large amplitude (typically once the amplitude falls 3 orders of
magnitude with respect to the peak the waveform is cut.). . . . .. ... ... ...
The fully calibrated TEOBiResumMultipoles can be used to understand phenomeno-
logical issues in the SXS-NR waveforms. Following the discussion in the main text it is
useful to demonstrate the pathological features introduced into the waveform for near-
equal-mass waveforms. The top panel shows a comparison on the level of the real part
of Wa4/veq(v), the RWZ-normalized waveform, between TEOBiResumMultipoles(solid
blue) and SXS:BBH:0194, a ¢ = 1.518 waveform, where ¢4(v) = 1—3v. SXS:BBH:0194
is given extrapolated with N = 3 (dashed orange) and N = 2 (solid green). While
N = 2 and TEOBiResumMultipoles show a good agreement, the N = 3 extrapolation
shows a systematic offset relative to TEOBiResumMultipoles and N = 2. The bottom
panel shows Fyop /NR between TEOBiResumMultipoles and several SXS waveforms
extrapolated with N = 2 (solid) and N = 3 (dashed). While for near-equal-mass
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3.3 A comparison of SXS:BBH:0039(solid black), (3, —0.5,0), compared to TEOBiResumS_SM

4.1

4.2

4.3

(dashed purple). The waveform was extracted with N = 2. From top to bottom the
rows show the strain hy,,, the strain amplitude Ay, and the frequency Mwy,, (where
the scale given by the total mass is left explicit). From left to right the columns
show the (2,2), (3,3) and (4,4) modes. As can be seen both the (2,2) and (3,3)
mode show a reasonable agreement between NR and TEOBiResumS_SM. The (4,4)
mode shows clear unphysical behavior for both A4y and Mwy4 around the peak of
the mode. A4y shows strong unphysical oscillations around it’s peak, coinciding with
similarly pathological features in Mwyq. Thus, it can be assumed that any unfaith-
fulness computation that would involve hyq would likely not lead to any insight that
could be useful in improving or validating a waveform model. . . . . . . . ... ...

The quasi-universal structures exploited to obtain fits of {Amrg,wmrg} are plotted
(top-left and bottom-left respectively). These are shown in a side-by-side comparison
to the structure used in previous works, versus the effective EOB Kerr parameter ag
(top-right and bottom-right) [83, 132]. In each plot all waveforms with a given mass-
ratio form a line. The mass-ratios plotted are ¢ = 1 (red), ¢ = 2 (blue), ¢ = 3 (purple),
q = 4 (brown), g = 5 (yellow), ¢ = 7 (dark green) , ¢ = 8 (magenta), ¢ = 18 (light
green) and the test-particle limit (black). Comparing (top-left) A™2 normalized
to the leading-order, spin-orbit contribution plotted versus deg to (top-right) Amrg
versus ag the differences appear quite noteworthy. All mass-ratios as a function of
ao show oscillations as well as an individual behavior. While this is not the case
for the mass-ratios as a function of Geg, where all mass-ratios are quasi-parallel and
show a similar, only slightly shifted behavior with almost no scattering, presenting
an optimal starting point to obtain a fit. W™ is plotted against S = (S + Sy)/M?
(bottom-left) and the standard effective Kerr parameter o = S + S, (bottom-right).
As discussed in the main text, the simplification is quite remarkable and thus allows
a very straightforward approach to fitting the spin-dependence. Yet, the origin of
this structure remains unclear. . . . . . .. ..o Lo
The fractional error of the fits for A™2 (left) and w™$ (right) with respect to the
calibration set, at the state of Paper I including the faulty (8, +0.85, +0.85) waveform,
is shown. The individual lines highlight the respective mass-ratios and are marked
explicitly with the symmetric mass-ratio v. The mass-ratios given are ¢ = 1 (red),
g = 2 (blue), ¢ = 3 (purple), ¢ = 4 (brown), ¢ = 5 (yellow), ¢ = 7 (dark green) ,
q = 8 (magenta), ¢ = 18 (light green) and the test-particle limit (black). The fit
coefficients are given in Tab. B.2 and are evaluated along eq. (4.15) — (4.24).

The performance of the (2,2) mode postmerger-ringdown template waveforms. The
top row shows the phase error ApYRFt = pIR — ¢fit while the bottom row shows the
fractional error of the amplitude AANRFt = (ANR — Afit) /ANR  The panels show:
(top-left) The non-spinning SXS waveforms. (top-right) The spinning SXS waveforms.
And (bottom) the spinning BAM waveforms. The time is shifted to the peak such
245 — 0 and normalized to the damping time of the fundamental QNM given as
™ = MBH/a1 .........................................
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4.4

4.5

4.6

The unfaithfulness FEOB/NR, eq. (A.12), TEOBResumS vs the calibration set of SXS
and BAM waveforms. The unfaithfulness was computed with PSD [8]. (Top-left)
TEOBResumS, implemented using the c3 modeled after eq. (4.11), compared to the
calibration set of SXS data, both spinning and non-spinning waveforms. The un-
faithfulness never reaches the 1% limit. With the exception of a single waveform
max (F) < 2.5x 1073 is achieved all over the SXS calibration set. For SXS:BBH: (0293,
(¢,x1,x2) = (3,+0.85,+0.85), max (F) ~ 7.1 x 1073 is found. (Top-right) F
computed over the same set of SXS waveforms against TEOBResumS. The represen-
tation of c3 has however been modified with an additional term proportional to
va2y/1—4v in the functional form added to Eq. (4.11). One finds max (F) <
2.5 x 1072 all over. (Bottom-left) FEOB/NR computed of TEOBResumS and BAM pre-
sented in Refs. [101, 108, 109]|. c¢3 is modeled by the fitting template eq. (4.11).
(Bottom-right) Global picture of the maximum value of the EOB/NR faithfulness F,
Eq. (A.12) over SXS and BAM NR data, corresponding to the plots in the top-left and
bottom-left. The only outlier above 1% or 3%, (8,+0.85,40.85), is omitted from the
figure. . . L
The BAM catalog gave an excellent opportunity to test the modelization in the large-
mass-ratio and large spin region. In particular the extrapolation of c3 can be tested
and improved greatly through the addition of the BAM catalog. At the time of Paper I,
with an insufficiently accurate version of BAM (8,4-0.85,+0.85), it was shown that an
improvement of ¢g = 28.7 down corrected to cs = 23 indeed lowers the unfaithfulness
from going up to 5.2% down to F ~ 1.3 x 1073. This figure shows explicitly the
time domain comparison between the TEOBResumS and BAM (8, +0.85,+0.85), with
TEOBResumS evaluated for both ¢3 = 28.7 and ¢3 = 23, aligned with the BAM waveform
in the frequency interval [0.2,0.35]. This frequency interval is very close to merger and
in principle it would be necessary to determine cs accurately it would be necessary
to align in a much lower frequency interval. However, c3 = 23 is actually very close
to the limit at which the NQC corrections can still be applied consistently, as any
smaller values of c3 would lead to the iterative determination of the NQC (introduced
in Sec. 2.3.2) to diverge. Thus, to keep in line with the conservative mindset employed
in the calibration of TEOB models an improvement of the analytical baseline will be
necessary before improving the model. . . . . . .. ..o 0oL
During a more thorough comparison of TEOBResumS and the BAM catalog a peculiar
feature appears. For BAM (18, —0.80,0), the TEOBResumS waveform shows a peculiar
unphysical feature. As the full EOB waveform shows a dip and sudden rise around
the peak of the amplitude appears, even though the waveform prior to inclusion of
the NQC does not repeat this feature. As the frequency is not impacted by this it
is not surprising that this does not show up as an effect in the unfaithfulness, y is
not impacted Frequency and amplitude comparison between TEOBResumS and BAM for
(18,—0.80,0). The full waveform amplitude develops a slightly unphysical feature
due to the action of the NQC parameters. The frequency (as well as F) is unaffected
by this. . . . . e e e
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4.8

4.9
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The waveform SXS:BBH:1375, (8,—0.9,0), is a remarkably accurate waveform and
thus it is worth taking a closer look at the performance compared between TEOBResumS
and SXS for this waveform. The waveforms are compared on the level of phasing with
vertical lines marking the alignment in the inspiral (top-left), amplitude and fre-
quency around merger, aligned in the frequency interval [0.2,0.3] close to merger
(top-right) and the unfaithfulness (bottom). The alignment of the waveforms in
the early inspiral leads to an accumulated dephasing of —1.3 rad at the NR (2, 2)
mode waveform peak. The unfaithfulness reaches max (F) = 1.027 x 1073. All over
TEOBResumS and SXS:BBH:1375 show an excellent agreement. It stands out however
that the postmerger is not perfectly captured, as can be observed in the middle panel.
This is due to the fact that currently, model does not account for the beating between
positive and negative frequency QNMs. An example of how to implement this feature
can be found for the test-particle limit in Ref. [45]. . . . . .. ... .. .. ... ...
(g,x1,x2) = (11,—0.95,—0.50) lies well within the region for which Atnqc = 4
(blue) is used instead of Atngc = 1 (red), given by eq. (4.39)-(4.40). As can be
seen the choice of Atnge = 4 allows for a smooth transition between the inspiral-
plunge waveform and the postmerger template, avoiding the unphysical feature in
the amplitude, present if Atnqc =1isused. . . . ... ... ...
The transition, defined in eq. (4.39)-(4.40), introduces a jump between Atngc = 1
and Atnqgc = 4. This jump has potentially the effect that a small change in the
parameters could potentially create a disproportionate jump in the waveform. Thus,
it is necessary to access the error introduced by this transition. To this end the
unfaithfulness between waveforms along the border is computed. One waveform each
is generated with Atngc = 1 and Atnge = 4 and their unfaithfulness is plotted
against the typical mass-spectrum from 10Mg to 200Mg. . . . . . .. .. ... L.
Due to the modified Atnqc given by eq. (4.39)-(4.40), it is important explore the con-
sistency at peak between the fitted postmerger template and the analytical inspiral
waveform. As can be seen largely the unphysical amplitude is gone for most wave-
forms. Only two quite extreme waveforms (10, —0.9,—0.99) and (14,—0.8,—0.99)
show a small dip in the amplitude at merger. As these effects only occur in these
very extreme cases and only mildly there, these are acceptable limits onto the model.
And in fact it can be checked that these waveforms become stable and free of patho-
logical features for TEOBiResumS_SM. . . . . . . . . . . . . . . . ...
Tab. I of Bohé et al. [53] listed several waveforms used in the calibration of SEOBNRv4
not available in the preparation of Paper I. As a potential sanity check outside the
domain of calibration the parameter combinations are evaluated with TEOBResumS
and the waveform is plotted on the level of both the amplitude (left) and frequency
(right) focused in around merger. Demonstrating that that these waveforms indeed
seem to behave qualitatively and quantitatively robust as the parameters are varied
even outside the domain of calibration of both NQC and postmerger template.

The fits of both NQC and postmerger, the peak in particular, have been done in
similar fashion with the same variables for both amplitude and frequency quantities.
Here several waveforms with high-spins and large range of mass-ratios are shown.
Both the amplitude (left) and the frequency (right) are plotted focusing in around
merger. The consistency enforced by the fit structure extrapolates exceptionally well
leading to a highly consistent waveform throughout the parameter space. . . . . ..
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5.1

9.2

9.3

5.4

9.5

5.6

TEOBiResumMultipoles is compared to SXS:BBH: 0303, a non-spinning binary of mass
ratio ¢ = 10, on the level of the pure (2,2) mode (dashed orange), and the full multi-
polar waveform (dashed blue). This comparison is done for three different inclination
angles @ = 0,7/3 and 27/3 (corresponding to ¢ as used in other places of this thesis).
As for the former two it shows almost no effect which is used, even though the full
multipolar waveform shows a better agreement with the NR all over. For the last
inclination this is however not the case. The contribution of the (2,2) mode as good
as vanishes and while multipolar waveform remains in good agreement with NR.

A comparison of the fits of (A?;ak, wszk) versus SXS and BAM data for the multipoles
0<4,1<m <4, and (¢,m) = (5,5). The reader should note that for the multipoles
(3,3) and (5,5) the w?%ak at ¢ = 1 was effectively determined by extrapolating ¢ = 1
data with x1 # x2 down to aj2 = 0, giving an effective estimate of the frequency at
peak of the equal-mass limit. The addition of these points was needed ensure the
proper limit of the frequency when equal-mass case is approached. The reader should
further note that the amplitude plots contain an error in the description of the y-axis
as they are normalized to A?mc£+e(y). ..........................
The performance of the primary and global postpeak fit over the multipoles (¢, m) =
(2,2),(2,1),(3,3),(3,2),(3,1),(4,4), (4,3),(4,2),(4,1) and (5,5) of SXS:BBH:0299,
a mass ratio ¢ = 7.5 waveform with high accuracy. For each mode the panel is
divided into two subpanels, showing the direct waveform comparison (top) and the
performance of both primary and global fit on the levels of phase and amplitude
(bottom). In the top panel, the tick-red lines represent the fitted waveform template
(amplitude is solid, while the real part is dashed) obtained from the primary fit of
the eq. (2.46)-(2.47) to the NR data. This is contrasted by the real part of the NR
waveform (thin, orange, dashed line) and the NR amplitude (dashed, blue). The
black, vertical line marks tﬁ?akv while the blue one corresponds to tg;ak. Each mode
has a different time normalization given by the damping time of the fundamental
QNM as units of 7{™ = 1/a4™ for the shifted time scale ¢ — 2. The bottom
subpanel shows the fit error for both primary and global fit on the level of phase and
fractional amplitude. Comparing the two gives a general very good picture for this
waveform. . ...
The NR data for ¢ < 4 shows a peculiar double peak structure in the post-peak
amplitude of the (4,2) mode. With a particularly large secondary peak. . . ... ..
Amplitude |Uo;|/v and frequency wo; plotted in the test-particle limit around the
peak of the mode. The waveform was generated by the code presented in Ref. [90].
As can be see zoomed in around the peak of the waveform, thlQC lies beyond the
onset of the beating between negative and positive QNMs [45, 74, 130] and thus is
unsuited to be imposed onto the NQC fits due to the presence of unmodeled physical
effects present. . . . . . . L
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The full-sky unfaithfulness computed between TEOBiResumMultipoles and SXS:BBH:(0303.

The NR simulation represents a ¢ = 10 waveform. The NR waveform is constructed
from the multipoles {22,21, 33,44, 55} and compared to TEOBiResumMultipoles over
the same multipoles (left) and exclusively the (2, 4+2) mode (right). The system mass
M = 100Mg is held fixed throughout this computation. The reader should note
that the color scales change by a factor of 100 from the left to the right plot. This
signifies the much worse performance of the pure (2,42) mode when the edge-on
case is approached, yet for the face-on and face-off case it performs reasonably well.
Again as expected from general knowledge. Further it is remarkable how well the
full multipolar model performs when compared to NR, staying below 7 x 1072 in the
WOISt CaSe €VEIL. . . . . . . . . Lo e e e e e



5.7 The minimum and maximum unfaithfulness region is computed between TEOBiResumMultipoles
and the BAM ¢ = 18 waveform [101] (left) and the SXS:BBH:0166, ¢ = 6 waveform
(right). The vertical dot-dashed line in the left panel shows the minimum mass for
which the entire NR waveform is in band. The TEOB/NR performance for ¢ = 6 is
comparable to (though slightly better than) SEOBNRv4HM, for the same SXS dataset,
as can be seen through direct comparison with Fig. 16 of Ref. [70]. . . . . ... ... 80

5.8 The minimum and maximum unfaithfulness varied over a grid of the angles (0, ¢)
is shown, demonstrating clearly that the worst case performance is always below
3% for binaries with a total mass M < 200Mg. The neglecting of mode-mixing in
TEOBiResumMultipoles does not show a significant increase in the unfaithfulness as
it seems. The analysis in the top-panel is restricted to ¢ > 2 as the (4,4) mode
shows several pathological features in the NR for ¢ < 2. The best performance
can be found when constraining the ' computation to the modes {22,21, 33,44, 55}
(blue). A slight degrading occurs when the (3,2) mode (green) or all calibrated
modes (orange) are added, yet it remains below 3% for all masses up to 200Mg,.

The bottom panel, constrains the mode selection to {22,21, 33}, neglecting the (4,4)
mode. This yields an excellent agreement between TEOBiResumMultipoles and NR
for all mass-ratios down tog=1. . . . . . . .. L 81

5.9 The time-domain comparison for the ¢ = 6 SXS waveform (given by SXS:BBH:0166)
compared TEOBiResumMultipoles. The upper left panel shows the full waveform
comparison on the level of phase and relative amplitude difference, showing an ex-
cellent agreement and only a small dephasing accumulated at merger despite the
alignment in the inspiral. The lower left panel shows the direct comparison for
the real part of the waveform. The left hand side of this figure is complemented
by the direct comparison of the (2,2) and (2,1) amplitude and frequency between
TEOBiResumMultipoles and the NR. The four panels on the right hand side show:

The NR waveform (black), the bare TEOB waveform prior to NQC and postmerger at-
tachment (orange-dashed), the the TEOB with NQC corrections imposed (blue-dashed)
and the full TEOBiResumMultipoles waveform, combined with the postpeak wave-
form (red-dashed). It is noteworthy that the waveform prior to the addition of the
NQC is already in quite good agreement with NR up until merger. It is also possible
to note that the (2, 1) frequency exhibit oscillations in the late ringdown waveform.
This is likely an effect of mode-mixing or potentially due to the excitation of negative
frequency QNMs. In either case it is not captured at the moment by the postpeak-
ringdown template. . . . ... oL 82

5.10 The continuation of Fig. 5.9, extending the comparison between TEOBiResumMultipoles
and SXS:BBH: 0166, ¢ = 6 to the multipoles {33, 32,31, 44, 43,42} mode, all calibrated
to NR. Note that even though clear effects of mode-mixing are visible, and while not
incorporated in the analytical ringdown description, still did not affect the overall
unfaithfulness. . . . . . . .. L 83

5.11 The continuation of Fig. 5.9 —5.10, extending the comparison between TEOBiResumMultipoles
and SXS:BBH:0166, ¢ = 6 to the multipoles {41,55} mode, thus concluding all NR
calibrated multipoles. Note that even though clear effects of mode-mixing are visible,
and while not incorporated in the analytical ringdown description, still did not affect
the overall unfaithfulness. Even though the (4,1) mode shows heavy numerical noise
in the frequency, it shows qualitative an agreement the three steps of evolution of
NR calibration. The (5,5) frequencies are in remarkably good agreement all over.

For both modes, the NQC-corrected amplitude, close to merger tends to be larger
compared to the NR one. While in the case of the (5,5) mode it seems that NR is suf-
ficiently resolved such that this disagreement is a potentially physically relevant one,
this cannot be said for the (4, 1) mode as it is clearly dominated by noise preventing
any statement, on the quality of the waveform comparison here, to be conclusive. . 84



5.12 The conclusion of Fig. 5.9 — 5.11 comparing the mass ratio ¢ = 6 waveform, SXS:BBH: 0166,

9.13

6.1

6.2

6.3

6.4

6.5

6.6

to TEOBiResumMultipoles. The multipoles {54,53,52,66} are added, uncalibrated
and thus only the bare analytical waveform is given on the TEOBiResumMultipoles
side. The vertical line in each panel marks the location of the £ = m = 2 waveform
peak, i.e. the merger. It is indeed remarkable that the bare frequency reproduces the
NR one with a reasonably good agreement up until merger across al multipoles.

The full picture around merger for the mass-ratio ¢ = 6, SXS:BBH: 0166 data set (black

84

lines). TEOBiResumMultipoles is compared on the level of amplitudes |l (t)|/ [Vcrte (V)]

(top panel) and frequencies wy, (t) (bottom panel) to the NR waveform. . . . .. ..

In this figure we compare the frequency Mwyy for the two NR waveforms (black)
SXS:BBH:1124 (1,0.998,0.998) (left panel) and SXS:BBH:1146 (1.5, 0.95,0.95) (right)
with the corresponding EOB waveforms, once obtained using the fits of Ref. [133]
(right panel) and once with the spin-dependent fits (green). . . . . ... .. ... ..
EOB/NR unfaithfulness for the £ = m = 2 mode obtained from Eq. (A.12). Left
panel: computation using SXS waveforms publicly released before February 3, 2019.
Right panel: same computation done with BAM waveform data. As explained in
Sec. 6.2.1, a subset of all this data (see Table 4.1) is used to inform the c3 EOB
function. Comparison with Figs. 1 and 3 of Ref. [135] allows one to appreciate the
improvement with respect to the original implementation The reader should actually
note that we changed from the, outdated, zero-detuned, high-power noise spectral
density of Ref. [145] used in Ref. [135], to its most recent realization, Ref. |[11]|. of
TEOBResumS. Comparison with Fig. 3.1 highlights that the FEOB/NR is either of the
order of, or larger than the NR/NR uncertainties. . . . . . .. ... .. .. ... ...
EOB/NR ¢ = m = 2 unfaithfulness computation with SXS waveform data publicly
released after February 3, 2019. None of these datasets was used to inform the
model in the dynamical EOB functions (ag, c3), although several were used for the
postmerger waveform part. It is remarkable that Fggﬁ /NR is always below 0.4%
except for a single outlier, red online, that however never exceeds 0.85%. The plot
includes five exceptionally long waveforms, each one developing more than 139 GW
cycles before merger, SXS:BBH:1412, 1413, 1414, 1415 and 1416 (blue online). . . . .
EOB/NR unfaithfulness for all available non-spinning datasets. The analytical wave-
forms are evaluated with (x1, x2) = (0,107%), so as to probe the stability of the model
and its robustness in this regime. . . . . . . ... L L Lo oo
Global representation of Figs /ng all over the SXS (555) and BAM (19) NR simula-
tions. The various SXS subsets, nonspinning (black online, 83 waveforms), merger-
ringdown calibration (blue online, 116 spin-aligned waveforms) and validation (red
online, 359 spin-aligned waveform) discussed in the text are represented separately.
The plot shows the fraction (expressed in %) n/Nget, where Nyt is the total number
of waveforms in a given NR-waveform set and n is the number of waveforms, in the
same set, that, given a value I, have Fggﬁ /NR > F. The colored marker highlight
the largest values in each NR dataset. Note that this plot incorporates 420 new SXS
waveforms that were not included in Fig. 6 of Paper I. . . . . .. ... .. ... ...
Improved EOB/NR phasing comparison for SXS:BBH:1146 when the value of cgt =
15.96 used in Fig. 6.3 is lowered to ¢3 = 11.1. Top panel: (relative) amplitude and
phase differences. Middle panel: real part of the waveform. Bottom panel: gravita-
tional frequencies. For convenience, also twice the EOB orbital frequency 22 is shown
on the plot. The dash-dotted vertical lines indicate the alignment frequency region,
while the dashed one the merger time. This comparison illustrates that SXS:BBH: 1146
is an outlier in Fig. 6.3 only because of the rather limited amount of NR waveforms
used to inform cft.
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6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

7.1

7.2

Al

EOB/NR phasing comparison for SXS:BBH:1415, (1.5,40.50,40.50). Note that it
does not seem possible to flatten the phase difference up to t/M ~ 1 x 105. The
vertical lines indicate the alignment frequency region [Mwy, Mwg] = [0.038,0.042].
EOB/NR unfaithfulness computation putting together all £ = m modes up to ¢ = 4.
Plotted is the worst-case performance maximizing the unfaithfulness over the sky,
Eq.(A.12). The worst-case mismatches arise from near edge-on configurations, when
the power emitted in the (2,2) mode is minimized. . . . . . . .. .. ... ... ...
Behavior of (2,2), (3,3) and (4,4) modes for a few, illustrative, spin-aligned config-
urations with ¢ = 3: comparing NR (black) with EOB (red) waveform around the
peak of the EOB (2,2) mode (dashed blue vertical line). Each panel plots the real
part (left columns) and the instantaneous frequency (right columns). . . . . .. . ..
EOB/NR unfaithfulness, maximized over the direction from the sky, when including
(2,2), (2,1) and (3,3) modes. Here we only consider a subset of the SXS waveforms
with y; > —0.4, where the (2,1) EOB waveform mode does not present pathologies.
The worst case configuration is SXS:BBH:0239, a binary of mass ratio and spins
(2.0, —0.37,4+0.85). . . . L
Mode (2,1): comparison between the EOB amplitude (orange) and the corresponding
NR one from dataset SXS:BBH:1466. The purely analytical EOB waveform multipole
can accurately predict the location of the minimum (that analytically is a zero of the
modulus) consistently with the one found in the NR data. The excellent agreement
shown is obtained naturally, without the need of calibrating any additional parameter
entering the waveform amplitude. The dashed vertical line corresponds to merger
time, i.e. the peak of the £ = m = 2 waveform. The cusp in the analytical amplitude
occurs because of a zero in f2sl as illustrated in Fig. 6.12. . . . . .. .. ... oL
Complementing Fig. 6.11: the behavior of the resummed versus non-resummed am-
plitude versus = = Q3. . . .
The minimum and maximum EOB/NR unfaithfulness for SXS:BBH:1466 over the
whole sky. The blue curve uses the (2,2),(3,3) and (4,4) modes. The purple curve
uses the (2,2),(2,1) and (3,3) modes. Worst case mismatches occur near edge on
configurations with the unfaithfulness being below 3% up to 200Ms. . . . . . . ..
EOB/NR unfaithfulness for the £ = m = 2 mode obtained by comparing the full
catalog of NR waveforms presented in Paper 1 with TEOBResumS. Two differences
exist between this work and Paper 1. (i) TEOBResumS was evaluated with the Post-
Adiabatic approximation. (i) TEOBResumS was not iterated until convergence but
instead used the fits presented above and a single iteration. This was much faster
relative to the lengthy computation of waveforms with the MATLAB version. Top-
left shows the calibration set, Top-right shows the BAM data. Center-left shows the
full, spin-dependent Validation set and Center-right shows the non-spinning set. The

bottom figure shows the accumulation plot n/N(F). Where n/N(F') defined for any
value of F' as the fraction of waveforms with a larger value of maz (F) .........

direct comparison of the peak frequency prediction of GR (red) and by the unmodelled
BayesWave reconstruction (blue) using Hanford data. . . . . . ... ... ... ...
The cumulative distribution G(Af) is plotted as function of Af, using the Hanford
data (red), is plotted above the difference distribution (blue). The difference distribu-
tion is obtained from the distributions shown in Fig. 7.1 between the GR prediction
and the unmodeled reconstruction. . . . . . ... .. Lo Lo

A direct comparison of the noise spectrum and the fit shown in equations (A.5) - (A.11).
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List of Tables
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4.1

5.1

6.1

B.1

B.2

B.3

B.4

This table lists the sub-catalogs of NR data from both SXS and BAM catalog. From left

to right, the columns report: origin; interval of parameters covered for the mass ratio

q and the spins x12; total number of waveforms in the particular sub-catalog; the

number of SXS data with a second resolution LevM available; the average waveform

length expressed in number of orbits, (Ny,), counted here between the relaxation

time (i.e., after the initial-state radiation) and the waveform amplitude peak; the
max

absolute maximum F Nk and the average of the individual maxima <F‘1{In§’/<NR) of

the unfaithfulness Fyg /NR computed between the highest, LevH, and second highest,
LevM, resolutions. See section 3.3.1 for further discussion of the unfaithfulness.

first guess

C3 is chosen by hand to obtain a good agreement between TEOB and NR during
the late inspiral. As can be seen from the functional form of (Gg,Gg, ), c3 enters the
denominator and thus is inversely proportional to it’s effect onto the magnitude of
(Gs,Gg,). A larger value of c3, thus, makes the spin-orbit-coupling more attractive
while a smaller value makes it more repulsive. These are then compared to the value
cgt obtained from the interpolating fit over all waveforms listed. The spin-variable S
is given in the last column, as it has been proven to be a useful characterization of
quantities at merger, see Sec. 4.2.4. . . . . ..o

The values of af obtained through minimizing the EOB/NR dephasing at merger
down to the order of the numerical error 5(;511\1111;%. These values inform the fitting
template given in eq. (5.22). The reader should note that the values of 5¢>§1}g differ
from those given in Tab. F.14 as the later are computed relative to the relaxation
time, while the former have been evaluated setting the relaxation time to 200M. As
these values of (5@55}% have been used to inform the first-guess values of ag it is best
to state them here despite the difference. . . . . . . . . . . .. ... ..

Binary configurations, first-guess values of c3 used to inform the global interpolating
fit given in eq. (6.1), and the corresponding ci® values. . . . . ... ... . ... ...

Coefficients of the NQC extraction points defined in Eqs. (4.25)-(4.36). As top-left,

iNQC iNQC NQC .NQC
A9y Agy™ Wan™ Woy

top-right, bottom-left to bottom-right the columns show {
The left column shows the coefficients of the waveform amplitude at merger, defined
in Eq. (4.15) — (4.20). The right column shows the coefficients of the waveform
frequency at merger, defined in Eq. (4.23) — (4.24), relying on (4.19) — (4.20).

Coefficients of the fits of the fundamental QNM frequency and inverse damping time
of the final remnant (w1, 1) as well as the difference as; = ag — a7 of the inverse

damping times of the first two modes. See Eq. (4.37) for definitions. . . . .. .. ..
The fitted coefficients of {c?, cg, cjf} as defined in Eq. (4.38). . ... ... ... ...

xvii
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C.1 Parameters for the fit of the peak amplitude and frequency of all multipoles up to
£ = m = 5. From left to right, the columns report: the multipolar indices; the
values of the amplitude and frequency in the test-particle limit, (A9  w? ); the

amplitude fit coefﬁAcients (nf‘“”, d?"") and the frequency fit coefficients (n;*™, ;™)

for the functions (Agy,, @) defined in Eqs. (5.29)-(5.30) and fitted using the rational
function template of Eq. (5.31). Note that since all d’;zm values are found to be equal
to zero we do not explicitly report them in the table. . . . . . .. ... .. ... ...
C.2 Fits of the postpeak functions (c?"”, c?ém, ci)ém) entering Eqs. (2.46)-(2.47). Note the
rather special functional form needed for 0?32 and c§444, that is necessary to properly
account for nearly equal-mass data. In addition, the fits of some multipoles are
discontinuous, the interface between the branches being at mass ratios ¢ = 2.5 or
g = 10. Such mass ratios correspond to the values v = 10/49 and v = 10/121 that
appear in the argument of the 6 functions. . . . . . .. ... ... ... ...
C.3 Parameters of the fitting function given by Eq. (5.33) used to fit the QNM parameters
entering the phenomenological description of the postmerger waveform. We list here
the fundamental QNM frequency w!™ and (inverse) damping time o{™ as well as the
difference o = o™ — 4™,
C.4 The fit parameters to analytically represent the time lag between the peak of the
(¢, m) waveform multipole and the peak of the (2,2) mode, Eq. (5.34). The coeffi-
cients refer to the functional form of Eqs. (5.35)-(5.36). . . . ... .. .. .. ... ..
C.5 The fits of the NQC functioning points {AKNW?C, A?ﬂ?c/u, w?ﬂ?c, dj?ﬂ?c}. The fits are
given explicitly. The fits are done after the factorization defined in eq. (5.37). For
all multipoles the factorization of the test-particle limit an is highlighted explicitly
in the third and fifth column of the table. The exception to this is the (2,1) mode

for which the test-particle behavior has not been factorized (see Sec. 5.3.6). Y;?\LQC is

fitted for all multipoles with at most quadratic polynomials or rational functions in v.

D.1 Explicit coefficients and their errors for the merger frequency and amplitude fits of
the (2,2) mode. The analytic template of the fit is defined in Eqs. (6.19) — (6.22). . .
D.2 Explicit coefficients of the fits of Agfak, wgleak and Ator. . . ...
D.3 Explicit coefficients of the fits of Ag;ak, wggak and Atss. . . ...
D.4 Explicit coefficients of the fits of flg;ak and wggak .....................
D.5 Explicit coefficients of Atzo. . . . . . . .
D.6 Explicit coefficients of the fits of flizak, w}fjak and Atga. . . ..
D.7 Explicit coefficients of the fits of Aigak, wﬁak and Atgs. . . ...
D.8 Explicit coefficients of the fits of Aigak, wi’gak and Atgo. .. ...
D.9 Explicit coefficients of the fits of flggak and wggak ....................
D.10 The fitted coefficients of (c522, cg’”, cff”) as defined in Eq. (6.109). . . .. ... ...
D.11 The explicit fits of (03433, c§33, CZ)SS). The reader should note that the fits of (0233, ci)?’g)
are not used for any of the results given in the main text. Instead the corresponding
fits of Ref. [133] are used. See Appendix 6.2.3 for a brief discussion. . . . . . . . . ..
D.12 The explicit fits of (5, cg“, Cf“). The reader should note that the fits of (c?“, cf“)
are not used for any of the results given in the main text. Instead the corresponding
fits of Paper II are used. See Sec. 6.2.3 for a brief discussion. . . . .. .. ... ...
D.13 The explicit fits of (c5%5, 5, ¢3%). . oo
D.14 Coefficients of the (2,2) quantities needed to calculate the NQC extraction point.
AQNZQC’ AZNQQC NQC .NQC}_

From left to right the columns show { , Woo T, Woy

D.15 Explicit coefficients of the fit of A4N4QC. ..........................



F.1 This table list all SXS waveforms with at least one non-zero spin and equal-mass in
the calibration set. . . . . . . . L
F.2 This table list all SXS waveforms with at least one non-zero spin and unequal-mass
in the calibration set. Part I, listing waveforms with mass-ratios ¢ <3. . . . . . . ..
F.3 This table list all SXS waveforms with at least one non-zero spin and unequal-mass
in the calibration set. Part 11, listing waveforms with mass-ratios ¢ > 3. . . . .. ..
F.4 This table list the 16 BAM waveforms with at least one non-zero spin of the calibration

F.5 This table shows the SXS waveforms with approximately equal-mass (v > 0.2485)
and at least one non-zero spin in the validation set. Part I. . . . . . . . . ... ...
F.6 This table shows the SXS waveforms with approximately equal-mass (v > 0.2485)
and at least one non-zero spin in the validation set. Part II. . . . . . . .. ... ...
F.7 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the validation set. Part I. . . . . . . . . . . .. ... . L
F.8 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the validation set. Part IL. . . . . . . . . . . .. . ... ... ... ... ...
F.9 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the validation set. Part III. . . . . . . . . . .. ... ... . ... .. .....
F.10 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the validation set. Part IV. . . . . . .. ... .. oo oo
F.11 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the walidation set. Part V.. . . . . . . . . . ... o
F.12 This table shows the SXS waveforms with unequal-mass and at least one non-zero
spin in the walidation set. Part VI. . . . . . . . . . . . ... o
F.13 This table shows the SXS waveforms with an extremely long inspiral of between 139
and 147 orbits in the walidation set. . . . . . . . . . .. L o
F.14 Non-spinning SXS and BAM data. The waveforms #526 — #547 form the non-spinning
sector of the calibration set. While waveforms #548 — #570 represent all waveforms
in the non-spinning sector of the wvalidation set with a mass-ratioq <2. . .. .. ..
F.15 The waveforms listed here represent all non-spinning waveforms in the validation set
with a mass-ratio ¢ > 2. . . . . . .. e



Chapter 1

Introduction

Gravitational Waves (GWs) were first proposed by Albert Einstein in 1916 when he had discovered
wave solutions to the linearized, weak-field equations of General Relativity (GR)[85]. Despite this
early insight, the question of the physical relevance of GWs was to remain unclear for decades to
come. Ounly in 1960, 44 years later, the first, direct GW detector was proposed by Joseph Weber
[153]. Yet GWs proved too elusive and the first detection of the effects of GWs was only in 1981.
Taylor and Weisberg showed that the energy loss of the binary pulsar system PSR B 1913+16 was
consistent with the radiating off of GWs as predicted by GR[154].

The first direct detection of a GW event however did not succeed until fall of 2015, when on
the 14th of September GW150914, a binary black hole (BBH) merger was detected in the first
observational run of the two advanced LIGO detectors in Hanford and Livingston, USA [15], with
the detector technology proposed by Rainer Weiss [155] in 1989. Thus, the era of gravitational
wave astronomy had begun. In the following months two additional Compact Binary Coalescence
(CBC) signals have been detected in the first observation run, ending on January 19th, 2017 [22].
During the second and first half of the third observing runs from November 30, 2016 to August 25,
2017 and April 1st, 2019, to October 1st, 2019, the advanced LIGO detectors were joined by the
Virgo observatory in Cascina by Pisa in Italy and a total of 47 additional CBC events have been
observed [22, 28].

GWs are unique among the different windows into the universe that can be observed. GWs are
predominantly generated in cataclysmic events with the most extreme curvatures and the largest
accelerations and are then carried off unperturbed through almost any medium. Therefore, direct
observation of GWs allowed to test GR in the strong field regime directly. For a number of tests
this has already been done for the observed CBC GW events (see e.g. Ref. [16, 24, 26, 27]).

GWs originating in CBC events have a further characteristic principle. The GW signal is
dominated by the Chirp mass M [119]. Due to this special characteristic Bernard Schutz suggested
that it was possible to extract both the redshift and the luminosity distance independently from a
single observation [144]. Using CBC events as so called standard siren would then allow to directly
measure Hubble constant from a single observation already. The constraints possibly arising from
such an observation would be event stronger if the GW event could be observed together with an
electromagnetic counterpart. Such an analysis has been indeed done using GW170817 the GW
event which was also observed with an electromagnetic counterpart [21].

Observing BBH merger events allows to infer possible distributions of BHs through out spacetime
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in terms of mass and individual BH spins [25]. Through this it is possible to study formation
mechanisms of BHs and alternative processes that cannot be observed directly but their effects
might lead to the accumulation or transformation of BHs with specific spins and masses. E.g. the
existence of axion-like particles was linked to a mechanism that would limit the maximum spin for
a given mass of BH [35, 36].

These have been just some examples of the possible insights that can be gained by in the study
of CBC events through GWs. A key ingredient in the works that have been cited so far is the use
of a CBC waveform model. This model has to reliably reproduce the GW signature observed on
earth for a given source configuration. Many factors impact a GW signal. They can generally be
separated into extrinsic and intrinsic factors. The former relates the GW signal as generated in the
source frame to the detector frame. These include the relative orientation of the source frame to the
detector, distances, redshift and other details that are needed to project the emitted GW signature
onto the detector response that can be observed!. These parameters are defined independent of the
source.

The intrinsic parameters characterize the GW source through a model. In the definition of these
parameters and all following equations, unless otherwise specified, geometric units G = ¢ = 1 will
be used. In the ideal case this model reconstructs the GW signal for a given set of parameters
based on GR. While it is often useful to build a model that additionally reconstructs the underlying
dynamics accurately, it is most important that the model output reproduces the GW signal on a
phenomenological level to a high degree of accuracy. In the case of CBC systems a set of parameters
is commonly used that is defined uniformly across models. These parameters are the total mass of
a the binary system M, the individual masses of the BHs my, mg and their mass-ratio ¢ = mj/mo
with the convention my > mo (therefore ¢ > 1 is true for all systems). Each BH can have a total
spin |§Z| of up to m?, with the index i = 1, 2 referring to the individual BHs unless otherwise stated.
This limit to the spin is based on the cosmic censorship conjecture (see e.g. [152]). Further the
binary motion in the most general case is not necessarily confined to a single plane and the orbits of
a system can show non-zero eccentricity. If the two bodies are sufficiently close it is also necessary
to account for their mass distributions. The case of a BH is however special. Israel et al. proved the
no-hair theorem [62, 103, 104] for both Schwarzschild and Kerr metrics, showing that in these two
cases no further parameters then mass and spin of the BH were necessary to fully characterize the
metric fully?. Neutron Stars (NS) however are different and the momenta of their mass-distribution
have to be considered.

Constructing such a model is however by no means an easy feat. Several sources of information
are possible. The analytical approach has produced methods based on perturbation theory such
as Post-Minkowskian (PM) and Post-Newtonian (PN) theory, expanding in powers of Newtons
Gravitational constant G and the velocity of a body v relative to the speed of light ¢ in powers
of (v/c)? [119]. Gravitational Self-Force (GSF) approach computes perturbations in the mass-ratio
q to the motion of a test-particle moving through an external Kerr metric [125, 141]. Finally BH
perturbation theory can be used to identify dominant modes in the waveform. While each of these

methods has a range in which it is very reliable they are not stable all over. Equations of motion

!See e.g. Chapter 7 of Ref. [119] for a discussion and derivation.
2A general mathematical proof of the no-hair theorem is still missing though, thus it would be more accurate to
speak of the no-hair conjecture.
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derived from PN theory are commonly unstable and accumulate too large errors. Even at small
orders of PN theory a large amount of terms arise. But currently PN theory is even in the best of
circumstances not able to fully predict the waveform of a CBC event through the inspiral, merger
and ringdown. Thus analytical methods are powerful tools to construct models for the inspiral and
potentially the ringdown of the system if the final state is known, but during the merger a different
set of tolls is necessary to construct an adequate waveform model.

Numerical Relativity offers a potential solution to study the merging of two compact objects,
but numerical solutions to the Einstein Equations prove to be very difficult even in the simplest
of cases. The metric which defining the distance between two points is necessary to construct the
grid and simultaneously the main goal of the computation. Thus, the general formalism is naturally
quite involved and requires a large amount of study before it can be used [34, 43|. It is therefore
not surprising that the first successful simulation of two BHs for the duration of a full orbit was
indeed only achieved in 2003 [58]. Nowadays many large catalogs of NR waveforms exists and a
variety of codes are capable of reliably generating waveforms for several orbits up until the merger
and through the full ringdown. However, even the longest among them are not longer then a few
hundred cycles and these simulations take several million CPU hours each (see e.g. [55]).

This leads to the current situation at hand. Both on the numerical and analytical side many
useful sources of information exist that can be used to solve the problem of building a waveform
model that robustly reproduces the GW signal as predicted by GR. On the analytical side the meth-
ods are not sufficiently stable and require a large amount of computational effort to be improved.
On the numerical side it would be too costly to generate waveforms for arbitrary parameter com-
binations and length due to the excessive computational cost. A solution is necessary to combine
the analytical sources of information in a reliable and robust manner, that can further include the
necessary missing information that has not yet become available through analytical computations
by extracting the difference from NR simulations. One such solution was introduced by Thibault
Damour et al. in 1998: the Effective-One-Body (EOB) approach [60, 61, 71, 78]. In this setup
the action describing the motion of two bodies is mapped onto the motion of a single body in an
external metric. The large number of terms common in PN calculations are reduced to merely a
handful. Over the years since then it was shown that the EOB approach was a robust and reliable
resummation of the analytical information and currently the EOB approach is the foundation of
most modern waveform models.

The focus of this thesis is set on the NR completion of EOB models. In particular the example
of three EOB models of the TEOB-series. These models will be introduced with a strong focus on
analytical parameters build into the models that are left free to be informed by NR simulations
through fitting of several waveforms. Further once the calibration of the individual models is
presented, the discussion is turned to the evaluation of the model on the basis of waveforms generated
with NR. This will be done as follows. Chapter 2 introduces the EOB formalism from a conceptual
framework and discusses the main theoretical context of this work. Chapter 3 focuses on introducing
the reader to Numerical Relativity focusing primarily on the example of the SXS catalog [55].
Chapters 4 — 6 will discuss the different EOB models from the point of view of calibration as well as
performance. Chapter 7 will discuss the potential application of the model discussed in chapter 6
in a non-standard context allowing for an interesting test of GR. This thesis is then concluded in

chapter 8 through a general discussion of the results presented here.
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During the preparation of this work several aspects of this work have been published already
as short-author list articles and within the LIGO scientific, Virgo and KAGRA collaboration. The

main results discussed in this thesis can be found in:

e A. Nagar, S. Bernuzzi, W. del Pozzo, G. Riemenschneider et al. " Time-domain effective-
one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins,
tides and self-spin effects", published as Phys.Rev.D 98 (2018) 10, 104052. Hereafter referred
to as Paper 1.

e A. Nagar, , G. Pratten, G. Riemenschneider and R. Gamba " Multipolar effective one body
model for nonspinning black hole binaries", published as Phys.Rev.D 101 (2020) 2, 024041.

Hereafter referred to as Paper II.

e A. Nagar, G. Riemenschneider et al. "Multipolar effective one body waveform model for
spin-aligned black hole binaries", published as Phys.Rev.D 102 (2020) 2, 024077. Hereafter
referred to as Paper III.

e G. Carullo, G. Riemenschneider, Ka Wa Tsang et al. "GW15091/4 peak frequency: a novel
consistency test of strong-field General Relativity", published as Class.Quant.Grav. 36 (2019)
10, 105009. Hereafter referred to as Paper IV.




Chapter 2

Gravitational Wave Astronomy and the

Effective-One-Body approach

This chapter is devoted to an introductory waveform modeling for GW astronomy (GWA). The
general framework of GWA is defined with respect to all necessary parameters important to consider
for building waveform models from a general perspective and afterwards focused on CBC events,
BBH in particular. The quality requirements for GWA are defined and the validation process is
outlined. BBH systems are discussed and the choice to prioritize spin-aligned, non-eccentric BBH
systems is motivated and their parameter space and general evolution are discussed.

The two-body problem of GR gives the starting point for a brief review of both analytical
approximations and numerical solutions to the Einstein Equations given for coalescing BBH systems.
The EOB approach is introduced to resum analytical information in a robust and reliable way. NR
codes are used to generate BBH waveforms that can be used to complete and validate EOB waveform
models.

This is discussed in detail by introducing the general framework of the TEOB Hamiltonian and
how analytical and numerical information can be captured within this approach. The generation
of the full EOBNR waveform is outlined first in detail, followed by a summary and including the
completion of the waveform with phenomenological templates capturing the NR waveform of the

merger-ringdown phase. The discussion of this chapter is concluded by an outline of this thesis.

2.1 Grayvitational Wave Astronomy

The first thing to define in the context of GW astronomy is the GW strain h itself, following the
definition given in Ref. [119]. The GW strain h contains two independent polarizations hy and hy!.
Assuming a four-dimensional spacetime with the Cartesian coordinate system {t,x,y, z}, endowed
with the flat Minkowski metric and mostly plus convention. A GW traveling along the z axis with

the polarizations hy » would then impact the line element as follows:

ds? = —dt* + [1 + hy]do* + [1 — hy] dy® + 2hxdady + d2* (2.1)

'For a full introduction to the theory of GWs and the basic concepts of GW detectors the interested reader is
referred to the excellent book by Michelle Maggiore [119].

5
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The complex strain h is defined from these polarizations as
h=hy —ihyx . (2.2)

The astute reader may have already noticed that the above definition of the GW polarization is done
in the transverse-traceless gauge which will be used throughout this work [119]. Therefore, to detect
a GW it is necessary to measure the effect of hy « on ds. This can be done with interferometric
detectors based on the principles of a Michelson interferometer. The reader should note that this
represents an essential difference to observations of electromagnetic radiation which is commonly
detected through absorption of energy. The energy radiated off goes proportional to 1/R?, with
the distance R. The GW strain however falls off proportional to 1/R [119]. At the moment of
preparation of this thesis four operational GW observatories exist that are sufficiently powerful
to observe GWs originating in astrophysical CBC events. The two advanced LIGO detectors are
located in Hanford, Washington, and Livingston, Louisiana, in the United States of America and
have observed the first GW event GW150914 [15]. On August 14th, 2017, the Virgo detector in
Cascina near Pisa, Italy, detected GW170814 jointly with the two LIGO detectors in the second
observing run, making it the first three detector observation of a merging BBH system [10, 19].
On February 25th, 2020, the KAGRA detector, located in the Kamioka Observatory near the city
of Hida, Japan, went online as well as the fourth GW detector capable of observing CBC events
through GWs [4].

It is useful to consider how the effects of GWs traveling through a detector are measured and
observed. Fig. 2.1 shows the systematic layout of advanced Virgo? at the beginning of the third
observing run O3 [10]. The schematic setup is based on the principles of a Michelson interferometer
as follows: A 25W laser with a wavelength of 1064nm is setup and send through a input mode
cleaner and sent into an equal 50% beam splitter which separates the beam into two orthogonal
arms. Each arm consists of an optical Fabry-Perot cavity between two mirrors acting as test-masses,
three kilometers apart. After passing through the arms several times the beam is then recombined at
the beam splitter and sent to a photo-diode detector. The signal reaching the photo diode is tuned
to be as close as possible to total destructive interference. A gravitational wave passing through the
plane of the detector would then oscillate between elongating one arm while shortening the other
and the reverse. As a result the photo diode would detect a change in the signal observed which
is directly correlated to the GW polarizations h+, x. The detector response function, relating the
physical GW event to the observed interference pattern, depends primarily on the geometry of the
detector and the relative position of the source in the detector frame?.

While it is possible to detect the presence of GWs with a singular detector it is very difficult to
obtain any form of sky localization without the addition of at least one further detector. Which is
in turn greatly improved through the addition of a third detector as can be seen on the example of
GW170814 [19]. Commonly an increased number of detectors additionally increases the statistical
significance of any GW event. Especially in the case of faint GW signals additional detectors would
be very useful to improve the total Signal-to Noise-Ratio (SNR) p of the signal, which as a function
of the individual detector SNR py, goes as p = /> ;. P% with k being summed over all detectors.

2While there are many noteworthy differences between the LIGO and KAGRA detectors compared to the Virgo
detector the operational principle is identical for all and thus the Virgo detector will suffice as an example.
A derivation of an example detector response function can be found in chapter 9 of Ref. [119].
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Figure 2.1: The schematic layout of the advanced Virgo detector at the beginning of the third observing
run O3. For a more detailed discussion of interferometric GW detectors see e.g. Ref. [9, 10] or chapter 9 of
Ref. [119]. [Picture source: [10]]

In the context of GW astronomy there are a list of variables that strongly influence the signal
which are however independent of the source observed. These parameters are commonly referred
to as eztrinsic opposed to the intrinsic ones describing the system within the framework given by
a specific model. The extrinsic parameters are mainly related to the three dimensional orientation
of the source relative to the detector frames. The distance can be measured in both redshift and

luminosity distance simultaneously*. The GW strain goes as
hox R, (2.3)

see e.g. [119]. To fully capture the relative orientation of the source to the detector four angles
are necessary. Two pairs of azimuthal and longitudinal angles (¢, ¢). The first pair describing the
position of the source relative to the detector frame and the second describing the direction of the
detector relative to the source frame®. Within this thesis, unless stated explicitly otherwise, (¢, @)
will refer to the position of the detector relative to the source frame.

In principle, the parameters (¢, ¢) can be defined independent of any knowledge of the source

*As mentioned in the previous chapter, this specific property allows GW signals to be used as standard sirens,
especially systems as clean and well controlled as CBC events [144].

Sthe second pair of angles will always be necessary since spherically symmetric sources are excluded by Birkhoff’s
Theorem [151].
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and are technically extrinsic. While they naturally do not impact the waveform that is generated
at the source, they do have a great impact on the signal observed. To account for the dependence

on (¢, ¢) the complex waveform h is decomposed into multipoles following Ref. [56] as

oo m={

h(M,t,R,1,¢) = %Z > e (t=R) “Vim (1, 0) (2.4)
(=2 m=—/

The expansion coefficients are the complex functions hy,,, which depend on the retarded time ¢t — R
at the separation R from the source while of course also depending the intrinsic parameters of
the underlying waveform model. The dependency on M and the remaining dependency on R are
factored out®. The expansion basis is given by the s = —2 spin-weighted spherical harmonics

“2Ym (1, @) given in terms of the Wigner d-functions is

Vi (1,0) = (~1)° | 2 ()™ (25

k
, & (DR m) = m)(€ 4 8)!( — )M
with dfn,s@—kzl;l (L+m—k)(l—s—k)E(k+s—m)

X (cos <§>>2€+m_8_2k (sin <§>>2k+s_m , (2.6)

with k1 = maz(0,m — s) and ka = min(¢ + m,¢ — s) [56]. The monopole and dipole radiation,
corresponding to ¢ = 0,1 are 0 for all possible sources (see e.g. [119]). As can be seen from eq. (2.4)
there are 2¢ 4+ 1 multipoles for each value of ¢ > 2. This number of multipoles hy,, can however be

reduced due to the identity
hom = (= 1) Rj_,,, (2.7)

where * denotes the complex conjugation, reducing the number of independent multipoles to £ + 1
for each value of £ > 2. In the case of concrete waveform models this assumption is often build into
the model and only Ay, with m > 0 are generated while the remaining ones are obtained with the
above identity. Unless specified otherwise the discussion in this thesis will always restrict itself to
m > 0. In the case of waveforms generated with NR codes all multipoles are typically given. To
simplify the modeling of each multipole hy,, a further separation into amplitude Ay,, phase ¢um

and frequency wy,, is done as

hEm = Aém : e—i¢£m ’ (28)
Wem = (Zgém y (29)

where the notation (..) = 8;(..) was used. While in principle an infinite number of multipoles
contribute to the GW signal, in the case of CBC events, a general hierarchy exists between the
magnitude of the different multipoles. For any given value of ¢ the largest multipole is given by
m = ¢ and the magnitude of the Ay, decreases with m until m = 0. Comparing two different

¢ = m multipoles shows that magnitude of Ay, increases as ¢ decreases’. Therefor, the most

5The fact that the total mass of the system can be factored out is a consequence of the scale free nature of the
Einstein Equations in vacuum without a cosmological constant and will be discussed later in this chapter.
"This can be seen in Paper II and III, where the individual amplitudes are compared for the different multipoles

8
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dominant mode generated during a CBC event is the (¢/,m) = (2,2) mode® combined with the
(2,—2) mode. Further, the reader should note that for example the relative magnitude of Ay,
between (¢,m) = (2,1) and the (3,3) depends on the binary in question. In some cases one will
find Agy > Ass, or possibly the reverse. In some cases the two amplitudes will be of comparable
magnitude. In fact in some cases the relative contribution to h of these two amplitudes can change

with the position of the observer relative to the observed binary system.

2.1.1 Comparing waveforms: The Match and the Unfaithfulness

Thus, the main outputs of the waveform models needed for GW astronomy are the hy,, coefficient
functions that then allow a reconstruction of h. Once h is reconstructed it can be projected onto
the detector frame and the detector response function can be computed that allows to compare the
generated waveform h with the data observed by a given detector. The natural follow up question
is how to compare the waveform generated by a given model to a realistic data set containing a
specific realization of noise in addition to the physical signal. To answer this question the match
M is introduced. M is the normalized inner product of two waveforms in the frequency domain
weighted against the noise of the detector under consideration. The characterization of the detector
noise in the frequency domain is given by the Power Spectral Density (PSD) commonly denoted by
S, given as a function of the physical frequency f (See App. A for further discussion on the PSD).

The inner product of two waveforms h; and h; is then given as

/°° fmmdf] | (2.10)

where R[...] denotes the real part, h denotes the Fourier transform of h and fmin denotes the
minimal frequency for which both waveform are defined or a minimum cut-off frequency defined by

a specific experimental context. The norm of a waveform and the match M can then be defined as

[|h]| = v/ (h, h), (2.11)
_ (hr,h)

M(hr,hy) = max Tl TRl (2.12)
where max;, 4, denotes the maximization with respect to an initial time shift ¢y and phase shift ¢q.
A few observations can be made from eq. (2.10) — (2.12). (i) The match is normalized and therefor
can be 1 at most. (ii) The norm ||h|| is often referred to as the Signal-to-Noise Ratio (SNR)
in the experimental context. (iii) A match close to 1 between two waveforms would then imply
hr = hy with respect to the detector while a smaller match would indicate measurable differences.
Eq. (2.10) indicates that the PSD S,, is compared to quantities that are quadratic in the GW strain.
It is therefor useful to consider the strain noise spectrum which is given by \/m . The design
sensitivities for advanced LIGO [5], advanced Virgo [10] and KAGRA |3| are shown in Fig. 2.2.

at their respective peak. As an explicit example it is additionally useful to consider the test-particle data presented
in [90].

8For many GW events of the first two observing runs, Ol and O2, an accurate model representing the hos was
sufficient to obtain a thorough analysis of the data [22].




2.1. Gravitational Wave Astronomy

10% ] i
advanced LIGO | -
— — — — advanced Virgo
o= KAGRA

o 102
‘N
<
£
=
g, 2

-22 |
210
@
0
o
=
=
g
@ 49

-24 i |
10’ 10° 10° 10°
Frequency (Hz)

10

Figure 2.2: Strain noise spectral density estimated by the design sensitivity [146] given for the advanced
LIGO, advanced Virgo and KAGRA design as a function of the physical frequency. [Picture source: [146]]

Each GW event that accumulates sufficient SNR can then be detected and analyzed®.

Equipped with the definition of the inner product and the match M it is now possible to turn to
the Parameter Estimation (PE) process. But first it is necessary to define the relative probability:
Given a set of assumptions B, the probability of the statements A to be true is defined as p(A|B).
The aim of the PE process is then to perform a Bayesian Inference Analysis to obtain the posterior
density distribution p(¢|data), with ¢ being an element of the space of all possible combinations
of extrinsic and intrinsic parameters © [44, 106]. Examples of such an analysis can be found with
each detected and analyzed GW event, see e.g. |22, 28|. The posterior can then be estimated from
Bayes theorem as

L(data|) - p(1F)
p(data)

p(¥|data) = (2.13)
where L(data|d) is the likelihood function and p(+) is the prior distribution. The probability of
the data p(data) is a general normalizing constant and as only the shape of the integral has a
physical meaning, it is possible to normalize it to 1, fixing p(data). The main constraint of p()
are the domains of validation and definition of the waveform model used to perform the analysis.
Additionally, it is possible to chose p(d) such that this impacts the resulting posterior (see e.g.
Ref. [106] for a discussion). The likelihood function is commonly obtained as follows. Given an
observed signal dj with the index k denoting each detector that has recorded a signal. Given a

waveform model; the waveform for the k-th detector generated is then denoted by h (). Then it

9The reader should note however that these are strongly idealized curves and a number or additional small and
large noise spikes complicate the analysis. Further it is not always possible to reach level of performance. For a more
detailed information on observed GW data and the detector performance one should see e.g. Ref. [2].

10
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is possible to estimate the likelihood function as

1

L(data|?) o exp {— > (b (V) = diy b () — dk>} , (2.14)

kmax k

where kpax denotes the total number of detectors. To evaluate the right-hand side of this expression
several methods can be used. In practice most common ones are nested sampling or Markov-Chain-
Monte-Carlo integration [22, 28|. For a waveform model to be usable in such an analysis two
conditions must be met: (i) It needs to be possible to evaluate to model very quickly on time
scales of about ~ 0.1s. The analysis of most GW events observed in practice demands models to
be evaluated around 10° to 107 times [13, 22]. (ii) the model needs to be robust and smooth. In
practice this means that small changes in ¥ correspond to small changes in hg,,.

It is useful to compare the maxima of £(datald) and My, (dy, h(9%))!°. Following from their
respective definitions above it stands to reason that if a GW event is present in the data dj, that the
combination of parameters ¥ that maximizes L£(data|d) will correspond to the 95 that maximize
M (dg, h(9)). This observation can now be used to define the currently most used quality estimate
for waveform models: The faithfulness F' and the unfaithfulness F. The faithfulness F is computed
in the same way as the match!!. Within this work the following distinction will be made. The match
M will always compare a waveform model with observed data. This obviously necessitates that all
extrinsic and intrinsic parameters are set to precise values on the side of the waveform model and
the projection of the generated waveform into the detector frame. The faithfulness on the other
hand will be used to compare two different waveforms that both aim to model GR. Therefor, as the
projection of the waveform strain polarizations hy » is known exactly, it is not necessary to test
for various combinations of the extrinsic parameters. Thus faithfulness and it’s complement the

unfaithfulness are given as

F(hr,hy) = M(hy, hy), (2.15)
F(hy,hy)=1—F(hr, hy) . (2.16)

Alternatively, the notation Fy; = F(hy,hy) or Frj = F(hy,hy) will be used. While both the un-
faithfulness and the faithfulness will be used in this thesis the primary focus is on the unfaithfulness
since it is more efficient in most cases to compare numbers close to 0 as opposed to 1. Generally,
in this thesis two computations of the unfaithfulness are distinguished. First, mode-by-mode com-
parisons for which Ay, is compared directly for two different models, in particular hoo as the most
dominant mode is often the first focus of such an analysis. Alternatively, if the aim is to compute
the performance of the full waveform h it is necessary to vary the computation of F with respect to
(t,¢). F can either be minimized (corresponding to F' being maximized) with respect to the (¢, ¢) or
it can be evaluated over a grid. Both approaches are useful to study the performance of a waveform

model and will be used and discussed in a practical context in chapter 5 and 6. The computation

!The reader should note that while L(datal) contains information of all detectors, this is not true for
My, (di, h(9%)) which is given for each detector k individually due to the dependence on the detector specific PSD.
Further note a slight abuse of notation since 9 in principle contains the initial relative time and phase shifts (to, ¢o)
which are maximized in the computation of the match.

"1n fact it is common in the literature that match (mismatch) and faithfulness (unfaithfulness) are used inter-
changeably.
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of the unfaithfulness together with some technical aspects is summarized in Appendix A.

2.1.2 Quality demands and estimation of waveforms

Assuming a catalog of perfect waveforms that exactly represent GR is given. With this perfect
catalog it would then be possible to compute F between the catalog and a waveform model. The
generated distribution F(Oinrinsic) would therefor represent the error of the waveform model. As
in any realistic case this error will not be zero it is important to estimate what level of accuracy
and precision are necessary for the model to produce reliable results in application to real data. A
thorough discussion of this question can be found in Refs. [88, 112]. A good heuristic that can be
derived from their discussion is this: Assume a GW event detected with an SNR p. Then to ensure
that the analysis of the signal is reliable and the detection loss is reasonable the error should be
capped as

max [F(ﬁmtrinsic)] é (2.17)

D=

Common practice for second generation GW detectors such as advanced LIGO, advanced Virgo
and KAGRA, these bounds are set to < 0.03 at minimum, but ideally < 0.01 (see e.g. [53] or
Paper 1 — III). In summary, the goal of waveform modeling is ultimately, given a catalog that
accurately and precisely represents GR. over the parameter space of GW-CBC events, to build a
model such that one can reach max [F(ﬁmmnsic)] < 0.03 or even better max [F(ﬁmm‘nsic)] < 0.01
over the entire catalog. This discussion of F is amended by several practical details in Appendix A.

Within this thesis one of the main points of focus will be on using NR waveforms generated with
different codes to estimate the quality of such waveform models and on how those waveform models
can be improved utilizing the information contained in a catalog of NR waveforms. The catalog of
NR waveforms will be discussed in chapter 3, while the discussion of the improvement and quality
analysis of three waveform models will be presented in chapters 4 — 6. Further two additional notes
should be made here:(i) the reader should note that the unfaithfulness is very useful to compare two
waveforms within a given experimental context and probe them for relevant differences. To find the
cause of said differences it is however more efficient to compare two waveforms directly in the time
domain, after aligning them to minimize the phase difference in a reasonable frequency interval.
In practice this method will be used heavily throughout chapters 3 — 6 to demonstrate agreement
or disagreement between waveforms. The frequency intervals chosen are always given to allow the
reproduction of the results.

(ii) While these methods can be used to access the quality of a given waveform model it is still
important to point out that these methods of estimating the quality of a waveform model are not
the best possible way to ensure that no pathological effects are present in the model even though
they might not be exhibited in this waveform model. Some additional simple methods to explore the
stability and reliability of a waveform model will be explored in practice in the later chapters 3 — 6.
In principle the best test to determine if a model adequately represents the prediction of GR is to
perform an injection study [31, 37, 99, 143]. During an injection study a waveform, assumed to
reliably represent GR for a given set of parameters ¥ is projected into a combination of detectors
and to each signal a single realization of the detector noise is added. Thus one obtains the set

d,i"jemon(ﬁ). This data can then be treated as a possible real event and a PE algorithm can be
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applied. If the model can accurately recover several combinations of 9 it can be considered ready
and reliable. In principle it would be possible to use real GW event data that has been analyzed
already by trusted models, however such a setup would be less controlled and also would limit the
parameter space to the parameter combinations that have been observed so far. Especially models
that aim to increase the range of the parameter space covered it is advisable to validate the model
through injection studies to estimate possible biases that would be exhibited in the application to
observed GW events.

2.2 The two-body problem and the EOB approach

The discussion so far aimed to outline the two major aspects that set the context for waveform
model development. First, the model needs to produce h or the individual hy,, for a set of intrinsic
parameters Vinsrinsic- Secondly, given a catalog of waveforms representing the prediction of GR it
is then necessary to test and develop the waveform model until it meets the first quality demand:
Namely, that the maximum of F computed over the parameter space covered by the catalog of GR
waveforms.

So far the focus was set most generally on the case of building a waveform model and only
partially focused in on relevant only to CBC systems. In the following, the discussion will turn
exclusively to the problem of a BBH systems emitting GW. First, an introduction to the two-body
problem will be given. The discussion will then focus on the analytical methods capable of studying
BBH systems. In particular, PM, PN and Gravitational-Self-Force (GSF) theory. These theories
however will prove insufficient to form the basis of a robust waveform model. The introduction of the
EOB approach allowed to combine the analytical information into a robust and reliable framework.
Many choices are involved in constructing an EOB model and it is not self-evident which is superior
to the others. Further, even given the wealth of information that can be found in PM, PN and
GSF theory, it is not sufficiently to model a BBH system to the above stated quality demands all
the way through merger to the final state. Therefor more information is needed. Additionally,
purely from the analytical framework it is not possible to construct a reliable target catalog of
waveforms that accurately represent GR. To solve these two problems the discussion will then turn
to NR. NR waveforms will be discussed both as a source of missing information and as a catalog of
waveforms representing GR. NR is however not perfect and the uncertainty of the NR catalog has
been estimated and accounted for when NR waveform catalogs are utilized for the building of GR

waveform models.

2.2.1 The two-body problem of GR: Binary Black Holes

Once a BBH system has formed four stages of evolution will follow. First, the inspiral during which
the two BHs are bound gravitationally. The two BHs orbit each other while slowly emitting GWs
and steadily increasing the frequency at which they orbit each other getting slightly closer to each
other with every orbit. This process is extremely slow. Typically time spans of the order of 10° to
100 years or even longer can be expected for astrophysical, relevant sources observable with second
generation GW detectors such as advanced LIGO, advanced Virgo and KAGRA [64, 119, 120].
The second step of the evolution of a BBH system is the plunge (see e.g. [61]). The plunge
marks the end of the inspiral of a BBH systems. After a sufficiently long inspiral the two BHs
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Figure 2.3: The three phases of BBH coalescence: inspiral, merger and ringdown. Matched with the
ranges of validity for the three sources of information about the BBH coalescence. Post-Newtonian Theory,
Numerical Relativity and Black Hole perturbation theory. [Picture credits: Kip Thorne]

will have gotten close enough to each other that any further emission of GWs will push them so
close together that the semi-stable inspiral will transition into an unstable radial plunge and a
successive head-on collision of the two BHs: The merger, the third step of the BBH evolution. In
the context of a test-particle orbiting a BH'? the transition from the inspiral to the plunge occurs
at the Innermost-Stable-Circular Orbit [64].

The plunge and the merger are the most extreme stages of the BBH evolution and consequently
also the peak of the GW luminosity lies within this stage. The end of the merger is marked by the
formation of a final BH in a perturbed state. This exited BH will then enter the ringdown phase
and emit GWs through Quasi-Normal-Modes (QNM) [47] until it has reached the state of a relaxed
Kerr BH. Once the BBH system has reached this state the evolution will be considered over.

The reader should note that while from a modeling point of view the addition of the plunge
phase can be useful as it is dynamically different from both the inspiral and merger, it is not
always treated as a different phase. This can be seen e.g. in the fact that a waveform model
that covers the full range of the BBH evolution is commonly referred to as an Inspiral-Merger-
Ringdown (IMR) waveform model. A schematic example of an IMR waveform is shown in Fig. 2.3.
Additionally, it shows schematically the different theories that allow the study of BBH systems
and their approximate range of validity throughout the evolution of the system. In chapter 1 a
brief introduction to the intrinsic parameters describing a BBH system was given. The discussion
will now return to this list of parameters, extend them and expand on some general considerations.
Additionally, the motivation to focus on waveform models with following constraints will be reviewed
and discussed: (i) The motion of the BBH system be constrained to a singular plane of motion with
constant BH spins perpendicular to the plane of motion. (ii) The BBH system should have vanishing
eccentricity.

The first thing to note when considering to build BBH systems is that the spacetime describing

12A test-particle orbiting a BH can be interpreted as a BBH system with one BH being several hundred to a
thousand times larger than the smaller one.
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their full IMR evolution will solve the Einstein Equations in vacuum given as
G =0 (2.18)

where Gy, is the Einstein Tensor and a, b are spacetime indices defined with respect to a suitable four
dimensional coordinate system [152]. While it might not be obvious at first sight, but the Einstein
Equations in vacuum are special due to the absence of any physical scale. This scale free nature
thus would imply that the scale would have to be set by the BBH system and one can find that
indeed the total mass M of the BBH system can be scaled out without loss of generality [34, 43]'.
In practice this allows to set M = 1 while preparing any computing any waveform. M can then be
reintroduced through dimensional analysis together with Newtons gravitational constant G and the
speed of light ¢, which are set to 1 as well.

While M sets the overall scale of the system, just as important are the individual masses of
the BHs mq, mg and their mass-ratio ¢ = mi/mgy with the convention m; > mg (therefore ¢ > 1
is true for all systems). As a matter of fact it can be seen that the GW emission of a BBH
system is dominated by the mass-ratio at leading order. More precisely the GW strain h is directly

proportional to the symmetric mass-ratio v given as

y— (2.19)
(my + ma)

It can easily be seen that the case of m; = mgo implies v = 1/4. While the case of m; > my is
equivalent to v =~ 0. Each BH has additionally a spin given by the 3-vector S_';-, with the index
1 = 1,2 referring to the individual BHs unless otherwise stated. The cosmic censorship conjecture
implies then that |§z| < m? [152]. The properties of the BH spins 52 and masses m; are defined
for each BH individually. To fully classify the trajectory of both BHs their initial positions and
3-momenta are given by the 3-vectors &; and p; at an initial time ¢3. Based on the no-hair theorem,
proven by Israel et al. [62, 103, 104]'*, both BHs are thus fully characterized. The reader should
note that the determination of the BH mass, BH spins and the linear momentum are by no means
trivial in a general setup. One way to reliably determine these quantities is the ADM formalism

(see e.g. [43]) 1°.
Earlier it was pointed out that within this thesis the focus is on BBH waveform models with

two constraints. The first constraint is relatively easy to justify: In a BBH system only the total

!3The reader should note that this scale invariance will not be a true in the general case. For any GW source for
which effects of a non-zero Cosmological Constant or matter play a role the invariance would be explicitly broken.

"For completion the reader should note two things: (i) The no-hair theorem generally allows for the BH to carry
electrical charge. As most BHs are assumed to neutralize on very fast time scales relative to the length of an inspiral
of the order of 10° years or even more, it is reasonable to neglect the electric charge (see e.g. Ref. [64] for a discussion
of charges BHs). (ii) Israel et al. have proven the no-hair theorem in the context of static BHs while for the full
dynamical case the proof of the no-hair theorem is still undiscovered. However, no violation of the no-hair theorem
has been observed experimentally or numerically.

'5Within the ADM formalism masses and angular momenta are given locally as integrals over the three dimen-
sional volume segments > . Through Stokes Theorem these integrals can alternatively be expressed as integrals of
the boundary of > . Especially in a NR setup can this formulation be useful. The moving puncture method for
example "removes" the interior of the BH and therefor an integration over the full volume would not be possible (see
e.g. Ref. [43]).
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angular momentum J is conserved and given by

-

J=L+8 + S+ Jow (2.20)

where L is the orbital angular momentum and Jaw the total angular momentum carried by GWs
emitted by the system. It can be shown in EOB models with general spin vectors that this will lead
to a precessing dynamics of L, S; and Sy (see e.g. Refs. [33, 71]). When observing the concrete
equations of motions directly it is noticeable that the time derivatives of Sy, S, and L = L/||L]|,
where ||L|| denotes the norm of L, are all linear combination of cross-products between each other.
Consequently, if the 3-vectors f/, S, and S, will be parallel, they will also be constants of motion
during the insgpiral phase. This alone would not necessarily justify the restriction to this special
case, but it has been pointed out in Ref. [71] that the GW signals of BBH systems with both BH
spins aligned with L (i.e. L - S; > 0) will produce a larger GW strain h and therefor will be easier
to detect. Thus, it is a reasonable strategy to first focus on waveform models with spins parallel to
L.

Turning now to the initial position and momentum vectors. Within the framework of this all
work will be done in the Center-of-Mass frame. In the discussion it was established that L is a
constant of motion and therefor #; and p; have to be in the plane perpendicular to L. The most
general orbit in a two dimensional plane would be given by the semi-major axis a and an eccentricity
€. Due to the emission of GWs both a and & will be time-dependent. Applying the quadrupole

formula to the motion of a BBH system the time derivative of ¢ is given as

(2.21)

304 G*mymg M £ < 121€2>

— 14 ==
15 cdat (1 —g2)%2 * 30

with M, G and c left explicit (see e.g. chapter 4 of Ref. [119] for a derivation). As can be seen
€ is negative and becomes proportional to ¢ in the limit of ¢ <« 1. This phenomena is generally
referred to as circularization of compact binary systems. As most observed BBH systems have
evolved for thousands of cycles and more it is likely that by the time they get close to merger and
become detectable with GW observatories they will have been fully circularized. As the inclusion
of eccentricity would further complicate any GW model it is reasonable to first construct a working
model without it.

It is useful to now summarize and conclude the discussion of the BBH parameter space relevant
for this thesis. Each individual BH is given through it’s mass m; and the spin 5”;-, which is parallel
to the orbital angular momentum L. The direction of L is given by L and is constant throughout
the evolution of the BBH system. The source frame is defined as the coordinate system ¢, x,y, 2.
The origin is = y = z = 0 is chosen to coincide with the Center of Mass (CoM). The coordinate ¢
is chosen to be time-like. L is chosen to coincide with the positive z-axis'® and thus the motion of
the BBH system is constrained to the z = 0 plane. As the eccentricity € = 0 is imposed, the motion
of the BBH system will ba succession of circularized orbits driven to smaller and smaller radii by
the emission of GWs until the two BHs merge to a final BH. It is easy to see that in this setup the

radial separation of the two BHs will monotonically together with the orbital angular momentum

16This can be assumed without loss of generality as the transformation I, — —L would change the waveform as
hem — he,—m as can be seen from explicitly evaluating eq. (2.5).
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while the orbital frequency does increase.

As the total mass mj +mg = M =1 can be scaled out only the ratio of the masses ¢ = mj/mg
(with the convention my > mg follows that ¢ > 1) and the spins S; = §Z . L of the two BHs determine
the evolution of the BBH system uniquely. The parameter ¢ is commonly used to denote the mass-
ratio. For example the overwhelming majority of the waveforms used in Paper I were generated for
integer values of ¢ and the interpretation is intuitively accessible. With the exception of the extreme
mass-ratio limit (e.g. ¢ > 1) it however has no large dynamical impact. More commonly used is the
symmetric mass-ratio v defined in eq. (2.19) as v = myma/M?, going from 0 (test-particle limit) to
1/4 (equal-mass case). As will be seen later many important aspects of the dynamics scale directly
with v, e.g. the GW strain generated by a BBH system h o v. Often it will be useful to work
with the fractions of the individual BH masses X; = m;/M. Their difference X195 = X7 — X5 can
be obtained from the symmetric mass-ratio as X1o = /1 — 4v. The BH spins S; are on the other
hand some of the most meaningful variables if combined. As will be shown in chapters 4 and 6 the
spin-dependence of many important waveform parameters can effectively modeled as a function of
a single linear combination of S7 and S3. However, their maximal range depends on ¢ as each of
them is limited to be at most mf Thus it is useful to express them in terms of the dimensionless
spin variables y; = S;/ m? which go from —1 to 1 for all values of q. The spins S; are related to the
Kerr spins of the BHs as a; = S;/m;. Within this thesis the notation (g, x1, x2) will often be used
to refer to a specific BBH system.

2.2.2 Analytical methods and the Effective-One-Body approach

So far the discussion derived the context in which the problem of waveform model building is
defined: To construct a model that can generate a set of hy,, for a reasonable range of combinations
of (¢,x1,x2) (¢ > 1 and |x;| < 1) usable in the computation of L(data|d) as discussed above.
Especially, keeping in mind that the waveform model has to be smooth and robust as well as fast
to evaluate.

Starting with these goals in mind the natural place to start is with the analytical methods
provided. In the context of this work three major analytical approximation methods have been
used to inform the inspiral-plunge sector of the TEOB-series of waveform models: (i) PN theory
expands the metric dynamics as a series of the inverse speed of light 1/¢, often relative to a typical
velocity v of the system as v/c, it is thus a low velocity approximation. The leading order is given
in the case of a BBH system by Newtons law of Gravity and the Einstein Quadrupole Formula (see
e.g. Refs. [51, 119, 138] for a review). (ii) The PM approach represents an expansion in powers of
Newtons gravitational constant G around flat Minkowskian space time and can be seen as a low
curvature approximation (a review of PM theory can be found in Refs. [51, 119, 138]). (iii) GSF
theory computes the corrections of the motion of a small mass around a BH in powers of the inverse
mass-ratio (1/¢) and thus is a large-mass-ratio approximation (see e.g. Refs. [40, 139, 148] for a
review).

All three are important sources in building BBH waveform models. However already on the level
of leading order computations for a Binary system it can be seen that a the BHs during the plunge
and merger move with velocities comparable to the speed of light, the the curvature of the metric
will be a significant deviation from the Minkowski metric and that the most important signals will

be of comparable mass BBH systems (recall that h oc v). Therefor, it is no surprise that neither of
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the methods have produced stable and reliable results for BBH dynamics in the late inspiral-plunge
regime. In the late 1990s this problem was still unsolved and debated. The solution to this problem
was presented in the EOB approach developed, after an example in quantum electro dynamics, by
Thibault Damour et al. [60, 61, 71, 78| in 1998. Through direct comparison of the PN Hamiltonian
describing a BBH system onto that of a point-mass moving in an external metric it was possible
to resummate many hundreds of terms into a small number of exact coefficients that captured the
information of the PN expansion in a stable and accurate manner. Since then the EOB formalism
has become the commonly used standard and most modern waveform models are based on the EOB
approach!”. The interested reader is referred to the above named reviews and books for more details
and discussion of PN, PM and GSF theory and their subsequent mapping into the EOB picture. As
neither computation and mapping are subject to this thesis no further discussion will be given and
the results of the mapping will merely be presented when it is meaningful but this thesis does not
aim to give a full overview of these topics. The focus of this thesis starts at the end of the mapping
into the EOB picture. While there is a great wealth of analytical information available already
it is still not enough to satisfy the general quality demands for GW astronomy discussed above.
Further even if the models would reliably predict the waveform it would still be only accurate for the
inspiral-plunge phase as most models are conceptually not necessarily to capture the merger of the
BBH system. This missing information can be captured through the fitting of effective parameters
to NR.

2.2.3 Numerical Relativity

In 2003 the first evolution of a BBH system over a full orbit succeeded [58, 140]. Since then NR
has developed greatly. Since then many catalogs'® of NR simulation describing the evolution of a
BBH system over several orbits through inspiral, plunge, merger and ringdown have been achieved
(see Refs. 34, 43| for an introductory review of the topic of NR).

NR catalogs serve a dual role within waveform model building. On the one hand they are
currently the best option to obtain exact solutions of the Einstein Equations for merging BHs
starting in the late inspiral, through the plunge and merger to the ringdown. Therefor they are
the natural choice to be used as a "target" catalog. On the other hand they are a useful source of
information that can complete a waveform model through the incorporation of effective degrees of
freedom that are calibrated to reduce the unfaithfulness F between the NR catalog and the waveform
model. Still NR has a finite error. This error in some cases can be managed and estimated to an
accurate degree. One example of this are the waveforms generated by the BAM code [101, 108, 109].
BAM is a finite difference code. As the error scales with the grid size it is possible to obtain a
reasonable measure of the uncertainty by comparing different resolutions. With a sufficient number
of successive waveforms generated for different grid size parameters in the domain of convergence
allow one to extrapolate the error to infinite resolution, though this is computationally extremely
costly. The SXS code however is based on spectral methods |7, 55]. While in a finite difference

code a given difference between grid size parameters corresponds linearly to the local resolution of

1"This can be seen e.g. by the list of waveform models used in the analyses presented with the first and second
GWTC [22, 28]

'8Some examples of such Catalogs based on individual codes are NINJA [31, 37], NRAR [99], Georgia Tech [105]
and RIT [96, 97]. In this thesis however only two catalogs of NR waveforms are used BAM [101, 108, 109] and SXS [7, 55].
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the spacetime, this is not the case for codes generated with the spectral approximations. In the
later case it can be that a significant increase in the grid size parameter has almost no effect on the
actual grid size and vice versa. Therefor it is not necessarily as useful to compare different grid size
parameters for finite-difference methods.

Estimating the error of NR waveforms is therefor no simple task in itself. To ensure that the
waveforms faithfully represent GR a general threefold strategy is commonly employed. First, a
given waveform is evaluated on an individual basis. The waveform can be inspected visually for
indicators of nonphysical or pathological behavior and if a second resolution is available the two are
compared. Secondly, the waveform is compared to other waveforms with similar but slightly different
parameters (g, x1, x2) expecting that similar parameters will lead to similar waveforms. Finally, the
results of different codes can be compared, based on the assumption that it is unlikely that different
codes would diverge from GR in a similar manner on both a qualitative and quantitative level.
Largely, along all strategies a good agreement and stable behavior is found it is highly unlikely to
expect that the NR waveforms do not represent GR with reasonable faithfulness.

Within this thesis two waveform catalogs, SXS and BAM, are used as the main sources of NR
information used in this thesis and will be reviewed and discussed in chapter 3. Once their uncer-
tainties are under control they will be used to complete several incarnations of the TEOB model in

chapters 4 — 6.

2.3 TEOB infrastructure

The discussion will now turn to the basic structure of the TEOB model and how both analytical and
numerical information can be incorporated in the model. This infrastructure is common among all
three incarnations of the TEOB model discussed in this thesis. These are TEOBResumS a model for
hag for the entire parameter space (g, x1, x2) (Paper I), TEOBiResumMultipoles a model for several
multipoles hg,, over the non-spinning sector exploring the application of the modeling techniques
employed for TEOBResumS for subdominant modes (Paper II), and TEOBiResumS_SM an extension of
TEOBiResumMultipoles to the spinning sector for a subset of the Ay, combined with a significant

performance upgrade with respect to the hoy of TEOBResumS (Paper IIT).

2.3.1 TEOB Hamiltonian and Equations of motion

The first point of discussion is the TEOB Hamiltonian and the corresponding equations of motions,
laying the basis for the model with respect to the inspiral and plunge until the first peak of the
multipole hg,,. The TEOB Hamiltonian can be best understood as a deformation of a test-particle
moving on the background of a spinning Kerr BH, with the deformation parameter given by the
symmetric mass-ratio v. The Kerr-limit (i.e. the evolution of a test-particle falling into a spinning
BH) is reached as v goes to 0 and the deformation of the Kerr-Hamiltonian is maximized in the
equal-mass case when v = 1/4.

Generally in the PN context it is possible to separate the conservative dynamics from the
dissipative radiation reaction by PN order. Even powers of v/c are referred to as integer PN orders
while half integer PN orders refer to odd powers of v/c. In summary the the term (v/c)™ correction
with respect to the leading order is commonly referred to as the n/2 PN order. As can be seen

by explicit PN computations integer PN expansion terms contribute to the conservative dynamics,
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while half-integer PN expansion terms contribute to the dissipative radiation reaction [119]'°. This
allows the separation of the Hamiltonian into Hgop capturing the conservative dynamics of the
system and the radiation reaction force F (entering the equations of motion directly), which can
both are obtained from the mapping of the two-body dynamics onto the EOB picture.

The relative dynamics are evolved using dimensionless, phase-space variables (7, py, ¢, p¢)20,
corresponding to polar coordinates in the equatorial plane § = 7/2. r is given as the relative
separation with its conjugate momentum, p, is replaced by p,, = (A/B)l/2 pr, with respect to
the “tortoise" (dimensionless) radial coordinate r, = [ dr(A/B)~/2, where A and B are the EOB
potentials. The A and B potentials are the first vessels to account for analytical information.
Commonly the A potential is defined explicitly, obtained from PN theory, and the B potential is
then obtained from the product AB, fixed in the TEOB framework. Within the TEDB framework the
A potential is closest associated with the orbital dynamics®'. The concrete forms of the A and B
potentials are introduced in Sec. 4.1.1 for TEOBResumS and in Sec. 5.2.1 for TEOBiResumMultipoles
and TEOBiResumS_SM.

The dimensionless phase-space variables are related to the dimensionful ones (R, Pr, ¢, P,) as
R _ Pg, P, T

Al T ) = ’ l= .
R T E) Vi GM

(2.22)

The spin variables (S1,S2) defined within the two-body BBH picture are mapped onto the EOB

spin variables as
Mo M,
S= 5+5 Sy =—51+—55. 2.23
1+ 52, M 1+ M, (2.23)

The EOB Hamiltonian Hgop is rescaled by = Mv and expressed as

Hron — Hros _ %\/1 + 2y(jfjeff — 1), (2.24)

with
Heog =H3" + p,(GsS + G, S), (2.25)
HP :\/pg* + A (1 + ];% + zgjiz’f). (2.26)

First, the reader should note the reappearance of the A potential in the Hamiltonian, one of the main
vessels of analytical and NR information. Further, the coefficient z3 is given as z3 = 2v(4 — 3v).

The variables S = S/M 2 and 5; = S,/M 2 are rescaled dimensionless expressions of the above

19While for lower order terms this separation has a valid physical interpretation this is no longer true for higher
PN orders [51].

2076 simplify the discussion in the previous section p, was not defined explicitly. The relationship to Lis given
as [ = pwﬁ.

21The reader should note two things: (i) "Orbital" is a general reference to the orbital angular momentum L.
"Orbital dynamics" therefor refers to the aspect of the underlying dynamics driven by L. In practice this is sector of
the model is informed based with the non-spinning (1,2 = 0) sector and is therefor a function of v (or ¢). (ii) While
the A potential of TEOBResumS does not depend explicitly on the spins it depends implicitly on the spins variables
as can be seen in Sec. 4.1.1. For TEOBiResumMultipoles and TEOBiResumS_SM this dependence on the spin has been
removed to improve the performance.
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mentioned EODB spin variables. The centrifugal radius r. was introduced into the TEOB framework

in Ref. [76] including next-to-leading (NLO) spin-spin terms [91] and is given as
2 _ .2 A2 2 ~2
ri=1"4a; <1—|—T>+5a , (2.27)

here ag refers to the dimensionless effective Kerr parameter given as

a0 =S+ 5. = X1x1 + Xoxe = a1 + ay . (2.28)

The NLO spin-spin contribution is given by da? presented in Refs. [39, 76] as

R 115, A 5 v\ . 1 -
(5@2 = 7«{4((11 — ag)a0X12 — (4 + 2) a% + <2 + 2l/> alag}. (229)

The gyro-gravitomagnetic ratios Gg and Gg, are formally coefficient functions of the EOB spins onto
the orbital angular momentum and capture the strength of the spin-orbit coupling. These are the
second major vessel for analytical and numerical information. The are given explicitly in Sec. 4.1.1
and are used consistently for all three TEOB incarnations. Based on Refs. [76, 127] the models
presented here are incorporating next-to-next-to-leading order (NNLO) spin orbit coupling [92].
The Damour-Jaranowski-Schéfer gauge is fixed and as a result (Gg,Gg,) depend exclusively on
(r,p%.) and not on the angular momentum p, [80, 127]. The Hamilton’s equations for the TEOB

Hamiltonian are thus simplified and given in compact form as

H
dj_Qza EOB

i e (2.30a)
- (4" On am
%‘P = Fo, (2.30¢)
b (3)"

which in turn can be expanded to
%‘p 0= 1 AP+ AP (GsS + Gs. 54, (2.31a)

t vHgopHoP L 12
% - (g) v VHE:BH? [pr* (1 + 2z3ép$*) n ﬁgf}bpw(ggfé + aaii* 5)] (2.31b)
%ﬁ" = F,, (2.31c)

1/2
dg;* = <2) / m {A’ + 5 (g)l + 23 pr, (g)/ + 2ﬁg§bp¢,( S+ G/SS”

(2.31d)
where the notation (---)" = 9,(---) implies the spatial derivative with respect to r. Similar to
Hgop, F is similarly rescaled by p as ]:}, = F,/p. Note that p is constant for a given waveform
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and thus the rescaling has no impact on the equations of motion. The radiation reaction force F
in the general case is made up of two components ]:—so and .7:}*. However, following previous works
the choice F,, = 0 is made or all models discussed in this thesis [76]*2. Further note that the
horizon absorption is included to leading order in the radiation reaction (see Eqgs. (97)-(98) of [76]).
The initial data for the TEOB equations of motion are generated with the post-post-adiabatic (2PA)
initial data |75, 82| for all waveform computations presented in this thesis. The reader should note
that Ref. [128] greatly improved upon the post-adiabatic concept and these methods can be included

into all models presented here without any negative impact?3.

2.3.2 The TEOB waveform and Next-to-Quasi-Circular corrections

The radiation reaction force .7:'@ incorporates the back reaction of the emission of GWs onto the
the system. ]:Ip is obtained from the summation over all available multipoles hg,,. These hg,, are
expressed through a special factorization and resummation presented originally in Ref. [81]. The

explicit form of F, is given in Ref. [76] as

8 l
Fo= 812232:3 m2Q | (R/M) hi (2.32)

where ) is the frequency of h and (R /M) reintroduces the dependence on distance and total system
mass scaled out in the definition of hg,,. The factorized and resummed hy,, are introduced in the

form presented in Refs. [76, 81, 137]. In the notation of [76], this factorization is given as

hom = h 8 RED £, 2O, (2.33)

(Nse)

with € denoting the parity of £+m, hy,_ " is the Newtonian (or leading-order) contribution, S”é;f) the

effective source factor, l%}iifll the tail factor, fs, the residual amplitude correction and IAzKN,SC the next-
to-quasi-circular (NQC) correction factor. The explicit expressions of the individual factors of hg,,
form the third vessel for analytical and numerical information to be included into the TEOB model.
The waveform is however different from both the A potential and the gyro-gravitomagnetic ratios.
In both of the latter, as can be seen in Sec. 4.1.1, the function is taken to the highest available order
from analytical computations (the A-potential from PN theory, while (Gg,Gg,) are informed by
GSF theory) and the next-to-highest-available-order term is taken to be an effective parameter that
is fitted against (g, x1, x2)- The factors up to fngn?C are computed within PN theory. The factor H?W?C
accounts for possibly missing information of the remaining factors while simultaneously accounting
for the radial radiation reaction ]:'T* = 0. While .7:}* = 0 is a good approximation in the circularized
inspiral, this breaks down once the binary transitions into the near-radial plunge. Therefor ﬁ?w?c
explicitly depends on the radial momentum and it’s derivatives [74]. This allows the generation of

ENQC depends on 4 parameters that

NQC

waveforms up till the peak of the individual multipole. Each

are extracted by comparison between the generated waveform and the NR waveform. While h,

22This choice can be easily justified by the observation that the radial motion will be very slow while the angular
motion will dominate in the case of BBH system with zero eccentricity. For a model with eccentricity this needs to
be then included.

Z3The post-adiabatic approach presented in Ref. [128] actually solves also another problem as it greatly reduces
the evaluation time of the TEOB equations of motion and thus allow a full waveform to be of the order of 0.1ms and
thus meeting the computation time requirement of GW astronomy.
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is defined and can be calculated for each (¢,m), only EQNQQC contributes to .7:"<p for all three model
incarnations. Thus the accuracy and precision demands for the (2,2) mode are much higher. While
in principle also the NQC of any of the subdominant modes can be included into the NQC at the
stage of consideration within this thesis, this has not yet been done. See Chap. 5 and references
listed there for a further discussion on this topic.

The NQC factor is modeled as

hNQC (1+at m EmJragmngm)ei(bl{mngm+bgmnﬁm) ‘ (2.34)

The coefficients (a1 ,aQ ,b bgm) are determined by imposing the waveform amplitude, frequency
and their derivatives around the peak of the waveform. The coefficient basis (n{™, n§™, n§™, nf™) is
given in terms of the radial momentum and its derivatives. The NQC for the (2,2) mode are intro-
duced in Ref. [76]. Paper II expands the NQC basis (n{™, n§™, nf™, nf™) for TEOBiResumMultipoles
and TEOBiResumS_SM to include the subdominant modes as well.

The NQC basis (n3%,n3?,n3?,n3?) of TEOBResumS is given as

n22 = (%)2 (2.352)
ny’ = (:32(2) (2.35b)
n22 = };Q (2.35¢)
n3? = p,..rQ = n(rQ)>. (2.35d)

The superscript (0) in the definition of ng refers to the evaluation of the second time derivative of
r along the conservative dynamics, i.e. this implies that the equations of motion are used with
F =0 imposed (see the Appendix of [82] for a discussion and motivation of this choice).

The NQC bases of the subdominant modes beyond the (¢,m) = (2,2) are modifications of the
n%Q. These are chosen by experience as they provided more stable and accurate results over the
parameter space. The NQC basis of the (2,1) mode has been chosen separately from the remaining

modes as

ny =ni, (2.36a)
n2' = n2202/3, (2.36h)
n3l = n2?, (2.36¢)
n# = n22Q%3, (2.36d)

while for all modes with ¢ > 3 the basis was uniformly chosen to be

Im 22

ny™ =ni‘, (2.37a)
n§™ = n32, (2.37b)
n§™ = n3?, (2.37¢c)
ni" = n3?Q*3, (2.37d)

As the modelization of the NQC is now given it remains to describe the determination process of
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the NQC parameters (a{™, a§™, b4™, b5™). This is done by imposing {A?ﬂ?c,ﬁysc,wyfc,wyfc}
extracted from NR onto the EOB waveforms. This generates a system of four coupled linear
equations that can be solved for the NQC parameters. The superscript NQC refers to the NQC
extraction time defined below for both NR and EOB?%. It is now necessary to point out the notation.
Commonly Ay, refers to the amplitude of the strain multipole hg,,, with flgm = hym /v being the

25 This is different in the case

v rescaled Wav_eform strain corresponding to the amplitude Apm,
of flggc and A?TWC?C (with a slight abuse of notation), which refer to the amplitude of the Regge-
Wheeler normalized strain waveform W, = ﬁgm/\/(f +2)(+1)¢(¢—1) and thus (AKNn?C, AZN:?C)
are obtained from AKNTSC = ‘\ilgm(tNQC)‘.

As the NQC are meant to correct the waveform during the plunge-merger phase and allow to

capture the neglected effect of the radial contribution to the radiation reaction. Therefor the NQC
are extracted at the peak of the merger. However, as the derivative of the amplitude is 0 at peak
it is advisable to extract them slightly after the peak. On the NR side the NQC extraction point is

therefor chose to be
NG, = the ™t 4 20 (2.38)

where t?skaR refers to the time at which Ay, reaches its maximum, the peak. While for hos this is
a unique definition as the waveform has only a singular peak this is not necessarily the case for the
subdominant modes. As can be shown from the study of perturbations around a BH, the appropriate
basis for the multipole expansion around a BH is the spheroidal harmonic base (see e.g. Ref. [47]).
This will necessarily lead to a complicated multi-peak structure in the merger-ringdown phase for
the subdominant multipoles as will be discussed explicitly in chapter 5 and 6.

Moving to the TEOB side one finds that the determination of the time coordinate to impose the
NQC is by far not as simple as for NR, as the waveform without the NQC corrections is incomplete,
which is especially significant in the late inspiral-plunge phase where the NQC are meant to be

imposed. To solve this problem the following approach was developed in Ref. [76] which is given as
1888, = 1R~ M-+ e 239)
where Aty,, refers to the time shift between the peak of hy,, and hoy given as

Aty,, = tPeak _ pmrg (2.40)

Im

where t™8 ig the time of merger, the peak of hso, and is fitted directly to NR. Qg refers to the
pure orbital frequency (see Eq. (100) of Ref. [76]) and is derived from Eq. (2.31a) above, as

1 ot 2A
Qorb = I7 B orb _ pquA i (241)
EOB OPy HEOBngb

where u. = 1/7. is the inverse centrifugal radius. Atnqgc = 1 is set by hand. In the case of large

24Within this thesis it is common practice to denote a variable with a given superscript to refer to the variable
taken at a specific time.

ZWithin discussions of the TEOB model this is the most common definition. Within the discussion of
TEOBiResumMultipoles and TEOBiResumS_SM this notation will however be adapted to simplify the notation and
will be pointed out directly.
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2.3. TEOB infrastructure

mass-ratios and a large spins of the heavier BH x1, however, Atnqc = 4 was needed to ensure a
stable determination of the NQC which will be discussed for TEOBResumS explicitly (see Sec. 4.4).
With the definition of the NQC extraction time on both the NR and TEOB side it is now possible

to set the system of four equations that allow the determination of (a1, az,b1,b2) as

Aim® ( NQC, ) A (tﬁgcgm) ) (2.42a)
AR ( Nae, m> A (tﬁgcém) : (2.42D)
whe® (R, ) = whit (e, ) - (2.42¢)
whe® (R8R,,) = ab (Ne,,.) - (2.424)

As the extraction of the NQC parameters is now defined formally, it is now necessary to elaborate

the practical approach to their determination:

(i) The equations of motion are integrated while the NQC parameters are set to (a{™, a§™, o™, b5™)
= (0,0,0,0). Once the full waveform is integrated and once t1%8%27n has been passed, (a™, a5™,

bi™, bi™) are computed.

(ii) The equations of motion are reintegrated with (a2?, a3%) taken from the previous step and the

remaining ones set to zero as they have no impact on the radiation reaction. Once t%%%é has

been passed again, (a{m a2 ,bem bgm) are computed and compared to the parameters with

which the waveform has been integrated.

iii) Step (ii) is repeated until the NQC parameters (a?2,a3?) converged. Typically, this occurs
1,03

after four to five iterations at the latest. However, several very large positive spins will demand

seven or more iterations.

This concludes the introduction to the TEOB infrastructure used for the generation of the hgy,,
multipoles until their respective peaks. In brief summary, the TEOB Hamiltonian was introduced
together with a list of parameters and functions that can be used to account for information from

analytical approximations and numerical solutions to the Einstein Equations.

2.3.3 The full TEOB Hamiltonian waveform

As the full infrastructure is defined it is now useful to summarize and briefly reflect on the Hamil-
tonian driven model with respect to the individual building blocks, how they impact the waveform

generated and how they are informed:

(i) The A-potential in the TEOB picture represents the dependence of the dynamics on the orbital
angular momentum and depends explicitly only on v and not directly on the spins x;22%. Tt
is primarily informed by PN theory and completed through the addition of a single effective
parameter. This parameter is fitted, as a function of v, to NR and thus represents effectively

the difference between the PN prediction and GR as captured within the NR framework.

26This is not fully correct in fact. A residual dependency on the spins can be introduced through a redefinition of
the function in terms of the centrifugal radius. This is however only done in TEOBResumS and dropped later on.
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The calibration of the dynamics of the orbital angular momentum is generally done in the

non-spinning sector x12 = 0. The A-potential will be discussed in Sec. 4.1.1 and Sec. 5.2.1.

(ii) The gyro-gravitomagnetic ratios (Gg,Gg,) are similarly given as an expansion in PN powers
of v/c but obtained from GSF theory. An effective parameter is introduced to capture the
missing information going beyond the GSF computation. However, there is a major difference
with respect to the calibration of the A-potential to NR. The calibration of the A potential in
the TEOB-picture si fixed by the waveforms in the non-spinning sector and thus independent of
any particular form or coefficient incorporated into (Gg, G, ). This is not true for the later as
the calibration of (Gg,Gg,) does depend on the A potential. This will explicitly be discussed
in Sec. 4.1.1.

(iii) The analytical waveform hg,, is obtained from PN theory, factorized and resummed. While
the factorization is strongly motivated by general physical considerations, the resummation is
chosen to solely to improve the performance of the waveform model. This is generally done
through comparing different resummations to NR and optimizing for the most robust agree-
ment. The impact of the resummation can be seen for example when comparing the perfor-
mance of hoo between TEOBResumS and TEOBiResumS_SM, where the latter utilizes an updated
and improved resummation. The waveform will be discussed at several points throughout
chapters 4 — 6. The discussion will however in manner aim at completeness with respect to
the analytical waveform and be limited to the aspects directly impacting the work discussed

in this thesis.

(iv) The NQC correction factor lAzéNﬁC is introduced to account for the constraint 7., = 0 and
limitations in the analytical waveform. The NQC parameters (a4™,as™, b{™ b5™) are com-
bined with a functional basis depending on the radial momentum and it’s derivatives. The
equality between TEOB and NR is imposed at the NQC extraction point around the peak

of the multipole. This allows to obtain the NQC parameters if the NQC extraction point

AKNH?C,AKNW?C,w?n?C,wyfc} is given. The NQC parameters are then iterated upon until
(a?2,a3?) converge to ensure the consistency between radiation reaction and the waveform

hao. In principle it is also possible to fit (a2?,a3%) so that one could use them as a suit-

able first-guess values giving an acceptable waveform with a single iteration. While this is in
principle always possible to obtain a fit, it is quite challenging to do so over the full three
dimensional parameter space (¢, x1, x2). For TEOBResum$S it was not possible to obtain such a
fit as the NQC had to account for relatively large effects that have not been accounted for by
the analytical waveform. Through the improved resummation it was possible to obtain such

fits over the full three dimensional parameter space for TEOBiResumS_SM.

(v) The peak-time shift Aty, is one of the necessary ingredients to determine tﬁgam for the sub-
dominant modes. Further, t%%%l marks the transition point from the Hamiltonian driven
waveform to the phenomenological template waveforms. Thus, Atg, gains additional impor-
tance for the subdominant modes. As it generally can be extracted from NR directly, it is

fitted as such.

The discussion will now turn to the extension of the waveform beyond the peak by the introduc-

tion of a phenomenological postpeak-ringdown templates that can be fitted to NR and be attached
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to the TEOB inspiral-plunge-merger waveform obtained form integrating the equations of motion.

2.3.4 Phenomenological Merger-Ringdown waveform templates

Ref. [77] introduced an approach to fit an NR waveform from the peak onward against NR after
factoring out leading order behavior of the remnant BH. This model was expanded first to a larger
section of the parameter space in Refs. [83] and Paper I, while Paper IT and Paper I1I expanded it
to subdominant modes. Modified versions of this model have been adopted in Ref. |53, 70| as well.
The basic setup of the model is as follows: First, the leading order QNM [47]| behavior is factored
out and the next-to-leading-order QNM decay time are imposed. Secondly, the factored waveform is
separated into phase and amplitude which are fitted independent of each other. The reader should
note that Ref. [77] is dealing exclusively with the hgs mode. The template about to be discussed
represents the straight forward generalization to generic multipoles.

As the fit is done from the peak onward exploiting the QNM behavior of the remnant BH it is
useful to define a new time coordinate 7 with 7 > 0 given as a function of the time ¢ as

t— tpeak

Im
, 2.43
Y- (2.43)

\]
Il

where Mpy refers to the mass-fraction of the remnant BH with respect to the total mass M. Note
that 7 differs for each multipole, despite this dependency not being acknowledged explicitly through
a set of indices g,,,. As all parameters used in this section need to carry these indices they are omitted.
Once the fitted parameters are introduced they will be given explicitly with indices gp,.

Starting with the complex frequency of the fundamental QNM as o1 = a1 +iw1, made up of the

inverse damping time «; and the frequency w;?’, the QNM-factorized waveform h(7) is given as

h(r) = e ™% (1) (2.44)

The amplitude and phase are then obtained through

h(r) = Az (1)), (2.45)
fitted to the templates
A; (1) =¢i tanh (05‘7' + c;‘?) + ¢, (2.46)
8a(r) = — i (1 & S q;) - (2.47)
14+ec3+cy

Prior to the fit five conditions are imposed. The peak v normalized amplitude Apeak g frequency
wPek together with a vanishing derivative of the amplitude, are imposed at 7 = 0. The decay

behavior of the next-to-leading-order inverse damping time are imposed on both the phase and

2"This notation deviates from the more standard notation where the QNM parameters are commonly denoted
as €.g. Wemn- When dealing only with the (2,2) mode the multipolar index is omitted. And to be consistent with
prior notation with the EOB literature the fundamental QNM is denoted by 1 instead of 0. Consequently, the first
overtone is denoted with 2.
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amplitude. These conditions are then explicitly given as

1
0,24 :50421, (2.48)
et =APeak _ A tanh (c{?) , (2.49)
R cosh? (¢4
c{‘ :Apeakach(‘g), (2.50)
2
14y od
& A BT (2.51)
! ¢ (.6 o0
cy <c3 + 204)
) =ao, (2.52)

with Aw = w; — MpawP®, and as; = ag — aq, the difference between the inverse damping times of

the first overtone (az) and the fundamental mode (a). This leaves the three parameters (c?, cg, cf)

free and thus can be fitted to NR. First, in a primary fit these parameters are extracted from NR

while in a secondary global fit the individual primary fits are interpolated across (g, x1, x2). 1t is

useful to highlight a few points:

(i)

(i)

(iii)

2.4

The dominant indicator of the fit performance is the accuracy of the fits capturing the peak
amplitude Apeak and frequency wP®*. These parameters capture the peak behavior and
the overall scale of the waveform. Inaccuracies of these fits will lead, if large enough, to

pathological waveforms.

The QNM parameters can be fitted with high precision and accuracy against the dimensionless
spin x s of the final BH. In practice, x is obtained through the fit presented in Ref. [107], given
as a function of (¢, x1, x2). Thus reducing the fit-dimensionality from three to one combined

with a gain in both accuracy and precision.

The effective parameters (c{?,cg,cﬁ)) capture the transition from the peak to the ringdown

regime. Their behavior is generally very sensitive to noise in NR waveforms used in their
determination. Further, it is in many cases possible to capture the waveform accurately even
with differences between global and primary fit that are similar in magnitude to the primary,
which is not necessarily surprising as they enter the waveform non-linearly. This is however
not generally true. The proper measure of their performance is accuracy and precision of the

reconstructed waveform amplitude and frequency.

In some cases it will become evident that the amplitude template Eq. (2.46) is not sufficiently
flexible to account for the NR behavior accurately. In particular for the extreme-mass-ratio
limit and for multipoles this limitation will become evident. An improvement of the template

represents a possible avenue for future work.

Thesis outline

This chapter introduced the reader to the basic concepts of GW astronomy in a strongly simplified

manner to allow a definition of the quality goals of waveform model building. Starting with the

two-body problem the TEOB framework was introduced and the focus on spin-aligned, non-eccentric

28



2.4. Thesis outline

BBH systems was motivated. This chapter will now be concluded by briefly discussing Papers I -1V
and outlining their results in the context of this thesis. The discussion will be focused around two
major aspects important when building waveform models for GW astronomy: Firstly, completing
analytically defined waveform models using NR waveform catalogs. Secondly, the validation of
waveform models such that they can be used within the practical framework of GW astronomy.
This discussion will then be concluded by a brief review of a non-standard application of waveform

models in GW astronomy.

Paper I In Ref. [135] TEOBResumS is introduced. TEOBResumsS is a full CBC waveform model for BBH,
Black Hole-Neutron Star (BHNS) and Binary Neutron Star (BNS) systems. For BHNS and
BNS systems the waveform is constrained to the inspiral. In the BBH sector the model
generates the full hso, inspiral-plunge-merger-ringdown waveform for spin-aligned binaries
without eccentricity. The model is fully calibrated to NR, in all aspects of the TEOB setup
discussed above relevant for (¢, m) = (2,2). The NR waveform catalog used contains 135 SXS
waveforms generated with SpEC, 19 waveforms obtained with BAM and a list of waveforms of a
test-particle falling into Kerr BHs with various spins covering the interval (—0.99,0.999). The
calibration of the model exploits analytically motivated spin variables to allow the effective and
accurate fitting over the full (g, x1, x2) parameter space with a two-dimensional fit. Exploring
the model performance with respect to the NR catalog Paper I showed that, with the exception
of a single BAM waveform (8,+0.85,+0.85)%, the model shows an excellent agreement with
NR. Outside the parameter space covered by NR the robustness of the model is explored and
improved to grantee a stable, non-pathological waveform all over. Several technical aspects
of the model are discussed explicitly. A C++ implementation of the code is introduced. This
code is then used in an analysis of GW150914, proving the readiness of TEOBResumS for GW

astronomy by example.

Paper II In Ref. [133] TEOBiResumMultipoles introduced which, similarly to TEOBResumS, is based on
the TEOB infrastructure introduced above. The changes with respect to TEOBResumS can be
seen in an updated A-potential and an improved resummation of the waveform and represents
an extension of TEOBResum$ to include all modes with m > 1 for £ = 2,3, 4 and the (5,5) mode.
However, TEOBiResumMultipoles models the non-spinning sector exclusively. Therefor the
NR catalog used in Paper I is limited to the non-spinning waveforms. These are the waveform
of a test-particle falling along circularized orbits into a Schwarzschild BH together with 16 SXS
and 3 BAM waveforms. Several aspects of incorporating subdominant modes are discussed and
applied. This in particular includes the computation of the unfaithfulness F for the full strain

h, for which the position of the detector relative to the source frame needs to be included.

Paper ITT In Ref. [134] TEOBiResumS_SM is introduced, extending a selective number of the multipoles
covered by TEOBiResumMultipoles to the spinning sector. The SXS catalog is extended to
include 555 waveforms of aligned-spin, non-eccentric BBH systems. The uncertainty of these

waveforms is discussed and analyzed. This additionally includes an improved version of the

28The reader should note that with waveform was not used in the calibration of TEOBResumS as the waveform
was not sufficiently stable and did not allow an accurate determination of the NQC. In Paper III with an improved
resummation of the waveform and a newly generated waveform at higher resolution, one finds excellent agreement
between TEOBiResumS_SM and this waveform.
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hoo showing that with an improved resummation of the analytical waveform it is possible
to resolve the issues that have been present in TEOBResumS. The subdominant modes are
compared in detail to NR. A peculiar dip in the NR waveform amplitude of the m = 1 modes,
pointed out in Ref. [70], was discussed and it was shown that the TEOBiResumS_SM waveform

predicts and models this effect accurately.

Paper IV In Ref. [63] an alternative application of TEOBiResumS_SM is discussed. The article proposes a
test of GR as follows: Given a GW event of a BBH, it is possible to locally reconstruct the peak
of the GW waveform strain using the BayesWave method. A model, such as TEOBiResumS_SWV,
can then be used to fit the signal and give an alternative prediction of the peak waveform
strain. The BBH signal can be fitted over the entire IMR waveform or merely over the inspiral
by imposing a frequency cut-off. As TEDBiResumS_SM represents the waveform as predicted by
GR any significant disagreement between the reconstructed peaks, given by TEOBiResumS_SM
and the BayesWave method would thus be a direct violation of General Relativity. This test
of GR was then applied to GW150914, showing no deviation from GR.

The foundation of using NR information to complete or validate a waveform model is an under-
standing of the different formats of NR waveforms and an estimate of their uncertainty. This will
be the focus of Chapter 3. The SXS and BAM waveform catalogs are reviewed and summarized. The
error of the SXS waveform catalog is explored in more detail. Several pathological aspects of NR
waveforms are discussed and explored. Additionally, several aspects of waveform extraction and
post-processing are discussed. This discussion covers the NR catalogs used in Papers I — III.

In Chapter 4, the discussion will turn to introducing TEOBResumS and its BBH sector as presented
in Paper I. The discussion will focus on the NR completion of the model and performance evaluation.
The robustness of the model outside the domain of calibration is estimated and methods aimed to
improve that stability are presented.

Following the results and discussion of Paper II, Chapter 5 will discuss TEOBiResumMultipoles.
The differences between the general multipolar case and the exclusive dominant mode analysis are
discussed in both model calibration and validation. The comparison of TEOBiResumMultipoles the
non-spinning waveforms used in Paper II is thus used as a case study to demonstrate the increased
complexities.

Chapter 6, based on Paper 111, is devoted to TEOBiResumS_SM and the calibration of subdominant
modes in the spinning case. The discussion will cover several quantities that have been fitted to
inform the waveform and compare the full NR catalog available with TEOBiResumS_SM. As only part
of the catalog was used to inform TEOBiResumS_SM it is useful to explore the model outside the
domain of calibration yet still covered by NR. A peculiar feature of the m = 1 modes, that has
been observed for the (2,1) in Ref. [70] from the perspective of NR, is discussed and shown to be
accurately reproduced by TEOBiResumS_SM. Additionally a fit of the NQC parameters (a?2,a2?) is
reviewed, allowing a fast and accurate implementation of TEOBiResumS_SM.

Chapter 7 will focus on the test of GR presented in Paper IV and briefly review the possible
prospects and future applications of it. This thesis is concluded, in Chapter 8, with a summary and
discussion of the individual topics and results presented in this thesis, especially from the context
of the two major topics of this thesis: (i) The completion of waveform models with NR and (ii) the

validation of waveform models with NR, all focused on the aim set to use the models in the context

30



2.4. Thesis outline

of GW astronomy.
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Chapter 3
Numerical Relativity Catalog

This chapter is devoted to the Binary Black Hole (BBH), Numerical Relativity (NR) catalog used
in the following chapters and in the major publications associated with this thesis. The focus will
be set on the basics needed to use NR waveforms to inform the TEOB infrastructure presented in
the previous chapter. The waveforms have been generated with three codes. First, a set of high
precision waveforms of a test particles falling into Kerr BHs along circularized orbits, generated with
the code presented in Ref. [90]. Second, 555 waveforms taken from the SXS catalog |7|, generated
with SpEC [49, 59, 67, 68, 98, 111, 115-117, 126, 142]. The most recent version of the SXS catalog,
as considered for this work, was presented in Ref. [55], covering massratios 1 < ¢ < 10. Third,
19 waveforms generated with the BAM code [101, 108, 109|, with massratios 2 < ¢ < 18 with spin
parameters ||x1,2| < 0.85.

Several important aspects of NR waveforms are discussed in this chapter. First the format is
set into context with respect to the two-body problem. Important aspects of meta-data files are
reviewed. The numerical waveform extraction is discussed. Characteristic waveform parameters,
already mentioned in chapter 2, are defined explicitly and put into the context of their impact on
the calibration and validation of the TEOB waveform models.

The overall catalog of waveforms is discussed with respect to their parameter space coverage.
The uncertainties of the SXS waveform catalog is assessed on an individual basis. Several aspects

when considering subdominant modes are reviewed and discussed.

3.1 NR waveforms and data formats

Generally speaking NR! is based on the 3 + 1 decomposition of the Einstein Equations (following a
similar argument presented in Ref. [43]): Given the Einstein Tensor Gy, the Christoffel Connection
I'f., the partial derivatives over time 0; and with respect to space 9;. One finds that the Bianchi

Identity V,G® = 0, with the covariant derivative operator V, implies

9GP = —9;,GY — G*TE, — GUI%, | (3.1)

!Here only a brief introduction will be given to illustrate the most important aspect needed for the use of NR in
calibrating and validating waveform models. The reader interested in a thorough introduction to the field of NR is
referred to Refs. [34, 43].
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3.1. NR waveforms and data formats

where the indices a,b,c run over the full four dimensional spacetime indices 0,1,2,3, while the
indices 4, j only run over the three spatial indices 1,2,3. The right-hand side of eq. (3.1) has at
most second order derivatives with respect to the time. Thus, it can be seen that G° has at most
first order derivatives with respect to the time. This observation allows to separate the full Einstein

Equations into four constraint equations as

GO = 8rTY (3.2)
with the energy momentum tensor 7%, and into six evolution equations as

GY = 8nT" . (3.3)

The initial data for the NR simulation is obtained by solving eq. (3.2), for the metric tensor gqp
projected onto a three-dimensional, space-like hypersurface =gy and thus separated into the induced
metric on Zg and a set of parameters extrinsic with respect to Zg. This 3 4+ 1 decomposition of the
metric is then evolved with eq. (3.3) to generate a one-parameter family Z; along the time-like 0
coordinate t. For each value of ¢ the hypersurface Z; is endowed with 3 + 1 decomposition of the
metric with respect to that hypersurface?. In the idealized case eq. (3.2) would be solved exactly
and evolved without any numerical truncation error or other limitations along eq. (3.3). In such
a case all parameters would be set explicitly within the initial data. However, in practice this
approach is not recommendable. Commonly when a code starts evolving a set of initial data will
the simulated system will undergo a transition during which it will emit a large burst of seemingly
chaotic GWs leading the system to relax into a stable GR orbit. This burst of radiation is called
the initial state radiation. While largely it is reasonable to assume that GWs emitted by the system
are not significantly impacting the masses m; and spins S; of the BHs, this is not strictly true for
the initial state radiation. Thus, all binary parameters that are assumed to be constant during the
evolution should be extracted only once the initial state radiation has left the system.

The astute reader might have noticed a large difference between NR and analytical approxima-
tion methods. In the analytical setup it is trivial to chose the desired combination of parameters
(q,x1,x2) as they are explicit variables. These are how ever not naturally defined in the context
of NR which is most naturally described in terms of the family of =; and the induced 3 + 1 de-
composition of the metric onto each hypersurface. This comes with the obvious advantage that the
NR waveform, if the resolutions lies in the domain of convergence, represents full GR without any
need to individually model a phenomena to ensure that it is captured accurately. The downside is
however that it is difficult to extract the quantities which can be defined in a very precise manner
in the analytical context. One side to this are the masses and spins of the BHs. Another side is
the extraction of GWs and their extrapolation to the observer. Thus the question is when and how
are the relevant parameters defined. One option is the ADM formalism, reviewed in Ref. [43], can
be used to compute masses and angular momenta. Several other methods are possible 3. GWs
are however more difficult as they are part of the metric, but they can be distinguished from the

comparably static background through a frequency filter (see e.g. Ref. [119]).

?Naturally, this is a tremendously oversimplified picture of NR. As it took until 2003 for the first BBH system to
be evolved for a single cycle [58]. Today, waveforms with hundreds of cycles before the merger can be evolved until
the final state is reached (see e.g. Ref. [7]).

3See Ref. [7] for what is practically used in the SXS catalog.
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Metadata While it is useful to understand these details, it is not necessary to be in a position to
apply them before using NR data. Commonly all important parameters needed to use NR waveform
are given in metadata files. In publicly available catalogs they are released with the waveform data
directly (see e.g. the public release of the SXS catalog [7]). It is now useful to go over a list of
parameters given in the metadata for SXS waveforms and a brief review of how they relate to the

TEOB parameters discussed in Sec. 2.2:

(i) The identification code of BBH-NR waveforms within the SXS catalog commonly reads SXS:BBH
with the four-digit integer number xzzx uniquely identifying the simulation. This is in par-
ticular important as there are waveforms that have similar parameters (q, x1, x2) which differ
on a more subtle level. Possible differences include the waveform length, resolutions available,

version of the code used or the generation of the initial data.

(ii) The relaxation time ¢g is the time at which the initial state radiation has left the system (See
e.g. Sec. 2.2.2 of [55].).

(iii) X; = m;/M: the masses of the i-th BH as fractions of the total mass M. As already pointed
out the individual masses are not directly relevant as all necessary information is captured
by their ratio. However, within this thesis the convention mq > ms is chosen, which is not
universally used by all NR waveform catalogs. The transformation BH; < BH> does not
affect any of the physical processes involved but it is only an exact symmetry of the system if
both BHs are equal in mass and spin. Thus it does create a number of sign changes for variables
defined in the previous chapter (e.g. X12 — —Xi2) and for the waveform multipoles hg,,*.
Typically, the metadata file contains several masses for each BH which do not necessarily
agree. In line with previous discussion in this chapter it is recommended to use quantities

that are defined at or around tg.

(iv) Xi or S;/M?: the dimensionless or dimensionful (normalized to the total mass of the BBH
system M) spin vector of the i-th BH?. Their relation is given as m2y,;/M? = S;/M?. Recall
that within this thesis the focus is exclusively onto BBH systems with spins parallel to the

6. Within this thesis the spins extracted at the relaxation time

orbital angular momentum
t = tg are used. In the previous chapter the spin variable y; was introduced, which can also

be expressed as x; = |Xil-

(v) The eccentricity . Following the discussion in Sec. 2.2 it is reasonable to assume that all
astrophysical binaries have been circularized through the emission of GWs, thus motivating
to primarily focus on the case of ¢ = 0. This is however rarely achieved exactly in NR
simulations. Therefor an upper bound on the eccentricity has to be chosen. Within this thesis

the exclusion bound for a waveform was set around € ~ 5 x 1073,

“Both BHs are confined to the z = 0 plane and therefor the rotation ¢ — ¢+ would be equivalent to BH; <> BH>
in their effect on the h¢.,. Following from eq. (2.4) — (2.5) the multipoles would transform as hem — (—1)™ hem.

5The reader should note that the coordinate system chosen in this work naturally agrees with the SXS catalog [7],
this convention is however not uniform among all NR catalogs by default. Therefor care must be taken when
extracting information of the spin from a given metadata file. Further, if the BH masses have been interchanged to
ensure my > my then this must be done for the spins as well.

6See the discussion in Sec. 2.2 for the motivation.
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3.1. NR waveforms and data formats

(vi) (Msn,Xr): The mass and spin of the remnant BH, the final state of the BBH evolution as
described in Sec. 2.2, normalized to the total mass M. These parameters are particularly
impactful in the description of the phenomenological merger-ringdown waveform as they de-
termine the time-scale and dominant frequency and damping time of the ringdown part of the

signal.

Waveform extraction From the perspective of BBH waveform model building the most impor-
tant output of NR simulations are the GW strain polarizations h , which defined through their
effect on the metric as introduced in chapter 2. From them it is possible to construct the complex
GW strain h = hy — ihyx which can be split into hg,, following eq. (2.4). In practice it is quite
complicated to separate h from the background metric. Most methods rely on the fact that it is
possible to e.g. separate the slowly changing background from the rapidly moving GW strain’. For
test-particle waveforms h is computed directly, either through high level analytical approximations
or through the fact that the background Kerr metric is known exactly. BAM waveforms are extracted
at several radii [101, 108, 109]. When comparing different extractions of waveforms it is important
that if the waveform is extracted too close to the center of mass the waveform will show large
systematic error since it could not be accurately separated from the background. If the extraction
radius is too large the waveform will show finite-size effects from reflections off the boundary. The
SXS catalog provides the waveform extracted at the outer-most-extraction-radius as well, but also
waveforms that have been extracted at finite radius and extrapolated with polynomials of different
order to future null infinity®. The extracted GW signal is fitted over several radii as a polynomial of
the inverse radial distance to the source 1/R. The polynomial order is designated by N = 1,2, 3,4.
As the extraction of the GW signal already has factored out the leading order radial dependence
1/R it is easy to see that only the constant polynomial term survives at future null infinity |7, 55].
The (2,2) mode is taken with N = 3 extrapolation if no other modes are included in the particular
computation. Otherwise all modes are extrapolated with N = 2. This choice and the motivation

for it will be discussed below in Sec. 3.4.

Characteristic parameters Before turning to the catalog itself it is useful to define on the NR

side explicitly several parameters that are used in the calibration and validation of TEOB models.
(i) Appy = Agm/v: The amplitude of the (¢, m) mode, scaled with the symmetric mass-ratio.

(ii) t?;ak: The time of the peak of Ay, given as Az, (t = t%’fk> = max [flgm] In this thesis the

notation (..)fok = (.)em (t = t?ﬁfk) will be used frequently. Especially, the amplitude and
frequency at the peaks of the individual multipoles are important in fitting the phenomeno-

logical merger-ringdown templates.

(iii) ¢t™e = tg;ak: Within TEOB literature the merger is often given a slightly dual meaning. On
the one hand it refers generally to the phase in which the two BHs merge to form the final
BH. On the other hand if it is used to refer to a concrete time it refers to the peak of the

"see chapter 1 of Ref. [119] for a general discussion, while a more technical introduction for applications in NR. can
be found in Section 9.4 of Ref. [43]. For details of the GW extraction used for a specific code it is always necessary
to refer to the code documentation or the article introducing the catalog, which for the SXS catalog can be found in
Refs. [7, 55].

8See e.g. chapter 11 of Ref. [151] for a definition.
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dominant (2,2) mode, t™". Similar to the peak-time a superscript is used to simplify notation
as (..)™Me = (L) (t =t™e).

(iv) Aty = t?;ak —t™'8; The relative time shift of the peak of the (¢,m) mode with respect to the
merger. As was discussed in Sec.2.3.2, Aty,, is used in imposing the NQC and thus indirectly

ensures that the relative position of the amplitude peaks agree with NR.

(v) Nob: The number of orbits the system goes through between t = ¢y and tmr,. Even though
Norb, with slightly different definition, is given in most cases as the part of the metadata, it is

useful to have a universal definition that can ba applied to an arbitrary waveform. Formally,
Nowb = |pge° — ¢a2(t = to)|/(4m), with dgy, defined in Sec. 2.1, is used in this thesis.

(vi) 5¢§11%£m = ( Ig;;g — Gom(t = t0))Levir — ( ?;;g — ¢um(t = to))revm: The accumulated phase
difference at merger between the highest resolution LevH and the second highest resolution
LevM, computed for (¢,m) = (2,2) for all SXS waveforms for which a second resolution is

publicly available.

(vii) FLeVH/LeVM: The (¢,m) = (2,2) NR/NR unfaithfulness, defined in eq. (A.12). Computed for
all XS waveforms for which a second resolution is publicly available. A thorough discussion

of FLeVH/LeVM over the SXS catalog is given in below in Sec. 3.3.1.

In case of possible confusion the superscript ¥ or FOB will be added to clarify the notation. In

cases in which it is assumed to be clear the superscript will be dropped to simplify the notation.

3.2 Catalog overview

The discussion will now turn to the catalog of NR waveforms used in this work and the parameter
space covered by the different sub catalogs. Within this work 555 SXS [55]° and 19 BAM [101, 108, 109]
waveforms merging BBH systems of comparable masses, aligned spins and with small eccentricity
are used. Additionally, a set of test-particle waveforms is used, which describe a test-particle falling
into a Kerr BH along circularized orbits [90]. These have been generated with dimensionless spin
parameters of the central Kerr BH x; going from —0.99 up to 0.999. The reader should note
that the sign of y; represents the relative alignment with the orbital angular momentum. The full
catalog of SXS and BAM waveforms is summarized in Tab. 3.1. The NR waveform catalog has been
separated into two sets. The Calibration and Validation set primarily used as their name implies

in the building of TEOB waveform models'?.

Calibration set The Calibration set consists of 135 SXS and all 19 BAM waveforms. These
waveforms have been used to inform all three models: TEOBResumS, TEOBiResumMultipoles and
TEOBiResumS_SM. The 135 SXS waveforms consist of (i) 19 non-spinning (Tab. F.14), (ii) 38 spin-
ning, equal-mass (Tab. F.1) and (iii) 78 spinning, unequal mass BBH waveforms (Tab. F.2 — F.3).

9The reader should note that the publicly available SXS catalog contains many more waveforms. However, the
ones presented here are all the waveforms with BH spins parallel to the orbital angular momentum and sufficiently
small eccentricity.

10The reader should note that the TP waveforms are excluded from these considerations as they have been used
solely to inform the model and stabilize the extrapolation to large mass-ratios. Nonetheless, the waveforms lie outside
the domain of validity of all waveform models discussed in this work.
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Parameter interval ranges Waveform count # | (Nyp) F v /LevM
q=my/mg X1,2 total with LevM FI{IHSXNR (F&T‘}%"NQ
Calibration set
SXS [1.0, 10.0] 0 19 18 21.98 | 0.075%  0.0092%
[1.0, 1.0] [—0.95,0.9942] 38 37 22.77 | 0.22% 0.020%
[1.3, 8.0] [—0.9,0.96] 78 73 25.09 | 0.11% 0.0088%
BAM [4.0, 18.0] 0 3 — 811 | <01% < 0.1%
[2.0, 18.0] [—0.85,0.85] 16 — 11.13 | <0.1% < 0.1%
Validation set
SXS [1.0, 10.0] 0 61 46 24.99 | 0.066%  0.0051%
1. 0 1.16] [—0.97,0.998] 79 77 20.29 | 0.0093% 0.0029%
[1.17, 8.0] [—0.9,0.95] 275 254 20.07 | 0.056%  0.0052%
long SXS | [1.41, 1.83] [—0.5,0.5] 5 5 144.05 | 1.52% 0.98%

Table 3.1: This table lists the sub-catalogs of NR data from both SXS and BAM catalog. From left to right,
the columns report: origin; interval of parameters covered for the mass ratio ¢ and the spins x1 2; total number
of waveforms in the particular sub-catalog; the number of SXS data with a second resolution LevM available;
the average waveform length expressed in number of orbits, (N, ), counted here between the relaxation time
(i-e., after the initial-state radiation) and the waveform amplitude peak; the absolute maximum Fﬁﬁ%’/‘NR and

the average of the individual maxima <F§}§~7NR> of the unfaithfulness Fyr /Nr computed between the highest,
LevH, and second highest, LevM, resolutions. See section 3.3.1 for further discussion of the unfaithfulness.

For all three sets sufficiently many waveforms have been published with at least one additional reso-
lution. Thus, it is possible to infer the accuracy of the waveforms that have been published without
a second resolution. See Sec. 3.3 for the presentation and discussion of the uncertainty estima-
tion. The 19 non-spinning waveforms cover mass-ratios 1 < ¢ < 10. The 38 equal-mass BBH have
spins —0.95 < x12 < 4+0.9942. The 78 spinning, unequal-mass BBH waveforms contain in particu-
lar three waveforms with highly relativistic spins: SXS:BBH:0306 (1.3,+0.96,—0.9); SXS:BBH: (0208
(5,—0.9,0); and SXS:BBH:1375 (8,—0.9,0). The spin range for ¢ = 2 and ¢ = 3 is very well
covered with spins —0.87 < x12 < 0.87. For mass-ratios 3 < ¢ < 8 the spins remain in the range
—0.6 < x1,2 < 0.6. The BAM waveforms consist of three non-spinning BBH systems, with mass-ratios
q =4, 10 and 18, and 16 spinning BBH systems. The latter contain five waveforms with large mass-
ratios and highly relativistic spins: (8, +0.85,+0.85), (8,+0.8,0),(8, —0.85, —0.85),(18, +0.8,0) and
(18,—0.8,0), thus extending the parameter space, complementing the SXS sub-catalogs above.

Validation set The Validation set consists of 420 SXS waveforms that have been made publicly
available with Ref. [55]. These include 61 non-spinning waveforms with mass-ratios 1 < ¢ < 10
(Tab. F.14 — F.15), refining the coverage of this region given in the Calibration set. Of the remaining
359 waveforms five have a very long inspiral with an average of 144.05 cycles. While the waveforms
in the Calibration set have been almost exclusively waveforms with integer or half-integer mass-
ratios, this is no longer the case for these waveforms. The waveforms have been separated into two
groups as v > 0.2485 and v < 0.2485 which corresponds approximately to ¢ < 1.17 and ¢ > 1.17.
This split is motivated by the fact that while the ¢ = 1 can be modeled very well, in practice
however it is used very rarely or almost never. On the other hand waveforms with a mass-ratio
approximately equal one are used very often, thus it is useful to treat waveforms with v > 0.2485

from a modeling perspective as equal mass. The set of approximately, equal-mass BBH waveforms
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contains 79 waveforms and extends the the range of spins covered to —0.97 < x12 < +0.998
(Tab. F.5 — F.6). The remaining waveforms cover the spin range —0.9 < x12 < 40.95 and go up to
mass-ratios ¢ =8 < v =8/81 (Tab. F.7 - F.12)!L.

3.3 Estimating NR uncertainties: SXS catalog

When comparing waveform models to NR it is important to have an estimate of NR uncertainties.
Several possible sources of uncertainty for NR waveforms can be relevant. (i) Finite-Resolution;
(ii) Waveform extraction; And (iii) systematic errors. As there exist several methods of waveform
extraction these can be compared to limit any uncertainty due to the extraction method. Systematic
errors can be limited by comparing waveforms generated by different codes. For NR-codes build
upon finite difference methods it is possible to do a convergence study and extrapolate observable
quantities to infinite resolution. However, even for the simplest of NR simulations a full convergence
study would be too inefficient with respect to computing resources. Two possible routes to minimize
the uncertainty exist under such circumstances. First, conservative estimates can be made from
studying differences between two waveforms with sufficiently high resolution. Second, if comparing
NR waveforms, generated with different codes, gives a good agreement it is reasonable to assume
that the waveform is physical as it is unlikely that different errors would be similar in effect to
each other and produce such an agreement. Within this work the discussion will focus on the
former solution and consider the differences between the highest, available resolutions, while the
using partially the latter option as well through the inclusion of a second catalog with slightly
overlapping parameter space coverage.

BAM waveform uncertainties have been studied and analyzed in the publishing article [109]. Based
upon the analysis presented there a conservative estimate on the uncertainty is that an unfaithfulness
larger then 0.5% is a meaningful disagreement to the NR waveform. Similarly, uncertainties of the
Test-Particle waveforms are discussed in Ref. [90]. As uncertainties of the Test-Particle waveforms
are orders of magnitude smaller then those of SXS and BAM waveform they can be neglected within
this work.

With the most recent update to the SXS catalog Ref. [55] an updated discussion of the un-
faithfulness between the two highest levels of resolution has been presented. As SXS waveforms are
generated with SpEC, a spectral code, it is not possible to directly determine a convergence order
between two different levels of resolution. Further, due to the adaptive refinement used in SpEC it
might be the case that the two highest levels of resolution for a given waveform are very close, while
others might be very far apart. Nonetheless, differences between the two highest levels of resolution

can be used as a conservative estimate on the uncertainty.

3.3.1 SXS catalog: NR-NR mismatch

We will now review the computation of the (2,2) mode Fl{?ﬁ’/‘NR for the 510 SXS waveforms for which

a second resolution exists. The unfaithfulness was introduced in Sec. 2.1 and further technical

1The reader should note that the validation set as presented and discussed in Paper III contained additional
40 waveforms, for which the spin of the secondary BH had a non-zero component transverse to the orbital angular
momentum. All affected figures and numbers have been redone. The results and discussion presented in this thesis
remain unaffected by this error.
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Figure 3.1: NR/NR unfaithfulness uncertainty computed from Eq. (A.12) between the highest and next
to highest resolution for each SXS waveform for which the second highest resolution is available. (Top left)
The spinning-sector of the calibration set. The 110 spinning waveforms used to inform TEOBResumS and
TEOBiResumS_SM. (Top right) The spinning-sector of the validation set. 336 spinning datasets released and
discussed in Ref. [55] and used in Paper III. (Bottom left) The combined non-spinning sector of both the
calibration and validation set. 64 waveforms for which a second resolution is available. (Bottom right) The
global summary of FI{TI‘F";’/‘NR for all 510 SXS BBH-NR simulations for which a secondary resolution is available.

The fraction (expressed in %) n/Nget compared for each value of F, where n gives the number of waveforms
for which F§1§7NR > F holds, divided by the total number of waveforms given with a second resolution Ngey.

The PSD used in this computation was presented in Ref. [11]. The unfaithfulness was always computed over
the maximum frequency range for which the individual NR waveforms are free of systematic features and
have a reasonably large amplitude (typically once the amplitude falls 3 orders of magnitude with respect to
the peak the waveform is cut.).

details are given in Appendix A. The computation results are shown in Fig. 3.1. The top-left
panel shows the Calibration sets spinning sector. In black are highlighted the waveforms which
reach an unfaithfulness of at least 1073. The waveforms marked in color represent four particularly
interesting cases from the perspective of waveform model building. All four show highly relativistic
spins and probe two important aspects of waveform phenomenology. Large spins both aligned with
the angular momentum or anti-aligned relative to each other. This convention has already been
adopted in Paper 1. The top-right shows the Validations sets spinning waveforms. For all waveforms
Fﬁlg’/‘NR never exceeds 1072 with the exception of 5 waveforms an average length of 144.05 orbits

before merger. For system masses of approximately 50M and below they show a very large Fﬁ}%’/{NR
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up to and above the 1% mark'?. The bottom-left panel shows the non-spinning waveforms of both
Calibration and Validation set. Only two waveforms ever reach values of FI{IHI%)/(NR ~ 1073 and are
marked in black. The bottom-right panel shows as summary the cumulative curves corresponding
to the three previous plots. The plot shows the fraction (expressed in %) n/Nget, where Nge is
the total number of waveforms in a given NR-waveform set and n is the number of waveforms, in

the same set, that, given a value F, have Fﬁ%}/‘NR > F. As can be seen the majority of waveforms

reach FI{I“P?’/‘NR < 107*. Only a few waveforms reach 7§1§>‘NR > 1073, Summarizing these results

one can make an estimate of the uncertainty for the SXS catalog. To remain very conservative the
uncertainty of F is estimated to be globally at the 0.5% level. This choice is made to prevent
over fitting of the NR-informed parameters, although it will be seen that very often a much better
EOB/NR agreement arises naturally.

All SXS waveforms have been given with all multipoles up to and including ¢ = 8. The analysis
of the NR-NR unfaithfulness of subdominant modes was however omitted within this work. The
SXS collaboration recommends as a general rule of thumb that any mode with an amplitude of less
then 107° of the dominant ¢ = m = 2 mode should not be trusted [7].

Alternatively, there are some ways to gain a non-quantitative impression of the uncertainty.
As mentioned above the comparison with waveforms obtained from different codes is an option
as it is unlikely that their respective errors produce quantitatively comparable effects. Once a
waveform model is sufficiently calibrated, and in some cases such as the very early inspiral even
without explicit calibration to NR, can be used to indicate errors on a qualitative level as will be
demonstrated below. Lastly, a comparison of waveforms with similar spins and mass-ratios can be

used based on the principle that small changes in (g, x1, x2) should correspond to small changes in

P

3.4 SXS waveform extraction of subdominant modes

The SXS hgo multipolar waveforms have been extrapolated with N = 3 for all applications within
this thesis. In Paper I and Paper III no issues arose and no unphysical phenomena have shown
up during any analysis of the SXS data. In Paper II, however a peculiar effect was discovered. As
the bottom panel of Fig. 3.2 shows!?, the unfaithfulness (maximized with respect to the observer
position (¢, ¢)) between TEOBiResumMultipoles and the SXS waveforms consistently increased for
larger masses if the waveforms were nearly-equal-mass. Fig. 3.2 illustrates these issues further. In
the top-panel N = 2 and N = 3 extrapolation are compared for SXS:BBH:0194, ¢ = 1.518 waveform,
demonstrating that the N = 3 extrapolation of Uy indeed shows a noticeable offset relative to the
N = 2 extrapolation and TEOBiResumMultipoles. Additionally, noticeable is that the bottom panel
shows that the effect of the extrapolation is almost negligible once the mass-ratio is sufficiently large.

This effect was pointed out already in previous works. Ref. [70] noted that the N = 3 ex-
trapolation does indeed introduce pathological features into the waveform. When the waveform
extrapolation method was introduced in Ref. [54] it was pointed out that an ill-chosen polynomial

order N can introduce pathological features into the waveform. Lower orders N are advisable in

!2The interested reader is referred to Sec. ITT C and Sec. IV A of Paper IIT where a brief discussion is given
individually and in reference to TEOBiResumS_SM.
!3This analysis was carried out by Geraint Pratten.
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Figure 3.2: The fully calibrated TEOBiResumMultipoles can be used to understand phenomenological
issues in the SXS-NR waveforms. Following the discussion in the main text it is useful to demonstrate
the pathological features introduced into the waveform for near-equal-mass waveforms. The top panel
shows a comparison on the level of the real part of Wyuy/ves(v), the RWZ-normalized waveform, between
TEOBiResumMultipoles(solid blue) and SXS:BBH:0194, a ¢ = 1.518 waveform, where ¢4(v) = 1 — 3v.
SXS:BBH:0194 is given extrapolated with N = 3 (dashed orange) and N = 2 (solid green). While N = 2 and
TEOBiResumMultipoles show a good agreement, the N = 3 extrapolation shows a systematic offset relative
to TEOBiResumMultipoles and N = 2. The bottom panel shows FEOB/NR between TEOBiResumMultipoles
and several SXS waveforms extrapolated with N = 2 (solid) and N = 3 (dashed). While for near-equal-mass
waveforms the choice of N clearly shows an impact, this effect decreases as ¢ increases and for the largest
values of ¢ = 10 is almost imperceptive.

for the merger and ringdown phase, while larger orders of N are recommended for the study of the
inspiral. Therefor N = 2 was chosen for the study of subdominant modes, similar to Ref. [70].
The reader should note that while the angular dependence for which the worst cases is achieved
is not explicitly stated in Fig. 3.2, for most waveforms it is the near-edge-on case for which the
contribution of the (2,2) mode is minimal. Further, it is useful to recall that under the exchange
of the two BHs the waveforms transform as hgy, < (—1)" hy_n,. In the equal-mass case one
finds however that the exchange of the two BHs is an exact symmetry of the system, implying all
multipoles with odd m vanish in the equal-mass (equal-spin as well, generally speaking) case exactly.
The leading order Newtonian factor, stated explicitly in Sec. 5.2.3, indicates further that m odd
modes smoothly approach zero as they approach the equal-mass case and only develop meaningfully
once v is sufficiently away from the equal-mass case. Thus, as the (4,4) mode is at least the third
most dominant mode in the nearly-equal-mass case it seems only natural that any issue in the NR or
TEOB waveform would become more important as the equal-mass-case is approached. The discussion

on possible future improvements with this regard are left to chapter 5 and 8.
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Figure 3.3: A comparison of SXS:BBH:0039(solid black), (3, —0.5,0), compared to TEOBiResumS_SM (dashed
purple). The waveform was extracted with N = 2. From top to bottom the rows show the strain hg,,, the
strain amplitude Ay, and the frequency Mwy,, (where the scale given by the total mass is left explicit).
From left to right the columns show the (2,2), (3,3) and (4,4) modes. As can be seen both the (2,2) and
(3,3) mode show a reasonable agreement between NR and TEOBiResumS_SM. The (4,4) mode shows clear
unphysical behavior for both 444 and Mwyy around the peak of the mode. A4y shows strong unphysical
oscillations around it’s peak, coinciding with similarly pathological features in Mwyy. Thus, it can be
assumed that any unfaithfulness computation that would involve hyy would likely not lead to any insight
that could be useful in improving or validating a waveform model.

3.5 Pathological behavior of subdominant modes

As the (4,4) mode can impact the unfaithfulness significant through pathological effects in the non-
spinning sector it was only prudent to continue the search for possible pathological issues in the
spinning sector as well. Following the discussion of Paper II and III, the spinning sector similarly
explored looking for numerical noise and systematics in the NR data that can lead to a degradation
in the mismatches. As will be discussed in Chapter 6 thoroughly (see Fig. 6.8),the worst-case
unfaithfulness are typically found near edge-on cases, for which the contribution of the (2,2)-mode
are minimized. Especially, for mass ratios near ¢ ~ 1, where the odd-m multipoles are suppressed.
As mentioned above in these cases the most dominant contribution to the waveform are the (4,4)
and the (3,2) mode. However, Fig. 3.3 demonstrates by example that the (4,4) mode of many NR
datasets can often show pathological behaviors, especially when focusing in on the merger-ringdown
segment of the waveform. In particular, general theory predicts that the frequency of the (4,4) mode
should increase monotonically, yet it oscillates strongly around it peak of the waveform. Similarly
in the amplitude un-physical, non-monotonic features can be made out. These effects are sufficient
to cause large unfaithfulness that cannot be used to indicate any quality issues within any waveform
model calibrated to this data. To minimize these issues waveforms that show pathological features

similar to Fig. 3.3 are discarded.
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3.5. Pathological behavior of subdominant modes

3.5.1 Extracting derivatives of subdominant modes from NR

For the (2,2) mode, the waveform and all derivatives are sufficiently clean to determine all quantities
and achieve a sufficient performance all over the parameter space. For the subdominant modes, as
demonstrated above, this is not necessarily always the case. Thus, all individual points of the
waveform hgm,, €.g. A%Lak and wz;ak, are extracted with the MATLAB function spline. When the
noise becomes too large to obtain an accurate numerical derivative the MATLAB function smooth is
used to employ a Savitzky-Golay filter with a third degree polynomial to the data starting at hgy,
and all subsequently derived quantities until the target quantity is sufficiently smooth to obtain
an accurately extracted data point. This process has however the danger that it could lead to
unphysical data that might potentially heavily influenced by the filtering process. Thus, the filter
parameters are applied conservatively with a focus to only reduce noise in the derivative without

impacting the underlying functional form.
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Chapter 4

The dominant (2,2) mode: TEOBResumS

The Effective-One-Body (EOB) approach to the general relativistic two-body problem was first
introduced by Thibault Damour et al. [60, 61, 71, 78]. At its core the EOB represents a resummation
of relative PN dynamics of two coalescing point masses. This resummation is marked by stability
and reliability even in the strong-field, high-velocity regime and, thus, can be used to model CBC
events up to merger. Several models to generate Gravitational Waveforms for CBC events have
been developed with the help of EOB methods and formalism. The three most prominent families
of models that came from this are the TEOB-series, which is the focus of this thesis, and the SEOBNR-
series [38, 53, 70, 121, 136]. Additionally, the IMRPhenom-series [86, 87, 108-110, 114] uses EOB
waveforms for calibration to improve the inspiral.

In chapter 2, two important topics have been discussed. First, for a model to be used in GWA
it is necessary that it reproduces hy,, or h to be more precise, with an unfaithfulness, with respect
to a given target catalog of NR waveforms, that should never exceed 3% and ideally stay below 1%.
Secondly, the introduction to the TEOB model infrastructure was given, including the definition of
different vessels that able to hold analytical information from PN, GSF or PM theory. Chapter 3,
discussed the full NR waveform catalog available in this work. Within this chapter it will be
sufficient to focus the discussion on the calibration set. With this understanding of the previous
two chapters it is now possible to discuss the calibration and validation of TEOBResumS. TEOBResumS
was introduced in Paper I and is a model focused on the (¢,m) = (2,2) mode. Thus, it is in fact the
simplest model that will be discussed in this thesis from the point of view of NR calibration. Several
of the methods used in the NR completion of TEOBResumS are general to the TEOB infrastructure.
Thus, both TEOBiResumMultipoles (Chapter 5) and TEOBiResumS_SM (Chapter 6) will expand on

these methods only in a limited manner, but rather focus on important details.

4.1 TEOBResumS Hamiltonian and waveform

Starting from the TEOB infrastructure set up in Sec. 2.3 three main choices must be made. First,
the A-potential must be chosen. Second, the gyro-gravitomagnetic ratios (Gg,Gg,) have to be
chosen. Third, the resummed and factorized waveform must be specified. Both the A-potential and
(Gg,Gg,) are discussed in detail in Sec. 4.1.1, including the introduction of effective PN parameter

capable of capturing missing information through fitting GR.
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4.1. TEOBResumS Hamiltonian and waveform

The factorized! and resummed was is taken from Refs. [76, 81, 137]. The waveform is often
referred to not just as hg,, but also through the Regge-Wheeler-Zerilli (RWZ) normalization ¥y, =
(R/M)him/+/ (I +2)(I +1)I(I — 1). Within this chapter the notation of (. ) =(...)/vis used at

several points for hy,,, ¥, and Agy,.

4.1.1 EOB potentials and gyro-gravitomagnetic functions

The EOB potentials A and B, and the gyro-gravitomagnetic functions Gg and Gg, are informed by
state-of-the-art PN and GSF computations®?. The A-function as computed by PN theory is given

as
APN (e, v) =1 = 2ue + 200 + vagul +v (ag + a15°g> ud +v (ag + aé°g> ul (4.1)
with a4 = % - %772 [78, 79]. The logarithmic coefficients are known from analytical computa-

tions [41, 42, 52, 72] as

log:% 10g:_@_% 42
as = ag 105 5y. (4.2)

Similar to Ref. [82], TEOBResumsS fixes af to the value af = 23.5 (32, 42, 48| by hand. The PN results

are resummed with a Padé approximate in u. as

Aopp(te,v) = P51 [Afrjlﬂ (ue) (4.3)

and enters the full A-function of Hg}“?y through

1+ 2u,.

A(r,v,81,82) = | Aorp(te, V) (4.4)

L4 2u |y us,80)
The parameter ag is introduced to TEOBResumS without being fixed by analytical computation results
and, thus, takes on the role of an effective PN parameter capable of modifying the A-potential at
the first undetermined PN order. As such it has a different physical interpretation then the other
parameters, which can be given independent from each other. ag on the other hand is an effective
representation of all terms entering the A-function at higher PN order, represented effectively at
5PN order and thus it depends on both the PN orders included, the parameters not included and
the resummation (see Sec. 4.2.3).

The B-potential can then be determined through the general relationship to the A-potential [76],

r2 1

AB = — .
r2 14 6vu2 + 2 (26 — 3v) vu?

(4.5)

The quantities Gg and Gg, entering the spin-orbit sector of the model are the gyro-gravitomagnet-
ic ratios and determine the strength of the spin-orbit coupling. The gyro-gravitomagnetic functions
Gs and Gg, are given at next-to-next-to-leading order (NNLO) [92]. The Damour-Jaranowski-
Schifer gauge [80, 127], is fixed so that (Gg,Gs.) only depend explicitly on (r,p? ) and not on

!Following the factorization scheme presented in Sec.2.3.2.
2This section follows closely Paper I, Sec. IT A.
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4.2. Numerical Relativity fits

the angular momentum p,. Gs and Gg, are resummed by an inverse Taylor expansion, with the

test-particle limit factored out

2uu?
Gs = 2 R 2 1 (4.6)
I+ crouce + cooug + cgouy + co2p;, + cr2ucpy, + Coapy,
3,3
Gs, 2 ¢ (4.7)

= * * * * * x
L+ cfgue + csqu? + chyud + choud + cgop?, + Clauch?, + cupy,

Similar to ag, the coefficients c3g and c3, are not fixed by analytical computations but through a

free parameter c3 as

C30 =VcC3 (4.8)
135

}' — . 4:.

C30 =55 V3 (4.9)

The remaining parameters are given in Ref. [76]. Again, different from the analytically deter-
mined parameters, the meaning of cs is less straight forward. Additionally to the dependence on
the parameters included, as well as the ones not included and the resummation and factorization of
the waveform, c3 also depends on the the calibration of a§. Thus, the calibration can not be done
independently, but must be done hierarchically. Similarly to ag it is thus an effective representation
of all the higher PN terms that are not included, as well as an additional correction to the effect ag
has on the spin evolution. Further, an important difference to keep in mind is that given a specific
choice of c3 the denominator of either Gg or Gg, can become 0 or close to 0. Thus, c3 needs to
be chosen with care and thoroughly checked across the parameter space to ensure the absence of a

divergence.

4.2 Numerical Relativity fits

The discussion will now turn to the calibration of the analytical flexibility of TEOBResumS. The
calibration is partly taken from Refs. |76, 131, 132, which preceded Paper I, as selective aspects
calibration of TEOBResumS did not require an update. However, they are still reviewed to introduce

the reader to the concepts involved in the determination of these quantities.

4.2.1 Analytical flexibility of TEOBResumS

Starting from the TEOB infrastructure given in Sec. 2.3 and followed up by the prior discussion in
this chapter, several points of analytical flexibility in TEOBResumS have been introduced, which can

be used to capture NR information and complete the model. Briefly summarized they are:
(1) The effective parameter a§ introduced at fifth PN order to the A-potential.

(ii) The effective parameter c3 introduced at NNNLO into the gyro-gravitomagnetic functions Gg
and Gg,.

(iii) The Phenomenological merger-ringdown template consisting of

(a) the amplitude and frequency at merger {Ay®, whs®},
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4.2. Numerical Relativity fits

(b) the three parameters (03A22, c?”, cf”) characterizing the evolution between merger and

ringdown,

(¢) the ringdown QNM parameters {a3?, a3?, w??}.

(iv) The NQC extraction points {AQNQQC, AIQ\IQQC, wQI\IQQC,dJQNQQC} used in the iterative determination
of (a2, a3, b2, b3?).

In the following discussion will highlight several ways to improve the fits that have been proven by

experience. We will review structures that have been useful in obtaining a good quality fits.

4.2.2 Implementation errors and waveform calibration

As errors in the implementation of a model are always possible, and have been to some extent
discussed in Paper I, it is useful now to briefly review this on the example of TEOBResumS. While
some aspects of the analytical flexibility are defined in a way independent of the model such as the
merger-ringdown template and the NQC extraction points, others are not. Examples in TEOBResumS
are first and foremost ag and c3. Should the model be implemented with an error while these are
determined this would of course also impact their calibration. However, if the faulty implementation
only affects the waveform to a small quantitative degree, it is possible that these parameters can
correct for this error. In such a situation it is important to note that the potential for correcting
errors through such means is limited.

As discussed in Paper I, a coding error in the TEOBResumS Matlab numerical implementation
was found. This error has affected, though marginally, the spin-dependent sector of the model from
it’s conception in 2014 [76, 84, 131, 132|. The leading order factor of ¢ = 5, m = odd multipolar
waveform amplitudes was missing the contribution of the factor X125 = /1 — 4v, which entered
squared into the radiation reaction force ]:'50. Especially, in the nearly-equal-mass case when X2, ~ 0
this effect can have a significant impact. Once this error was corrected a new determination of c3
was in order. Further, in previous TEOB avatars Atnqc was fitted for x1 = x2 > 0.85, as discussed
in Ref. [131] [see also Sec. IIIC of Ref. [132], Eqs. (24)-(25) therein]. Through this correction
Atnqc = 1 could be chosen also in the large, aligned spin region?.

4.2.3 Effective Post-INewtonian coefficients

The discussion will now focus on the fits of the effective PN coefficient ag and the NNNLO effective
spin-orbit parameter c3. The previous versions of these fits were presented in Refs. [131, 132]. The
fit of ag has been found to perform sufficiently well to not warrant an update in Paper 1. However,
due to the implementation error, discussed in the previous section, a new determination of c3 was
necessary?. In general the two fits should be done in a hierarchical manner to avoid complication.
As c3 does not impact the waveform if x; = x2 = 0, the fit of ag should be done first using non-
spinning waveforms. The fit of c3 should then follow up to complete the spinning sector. By this
design, ag is only a function of v while c3 depends on v as well as the individual spin a; 2. Further,
it is useful to note that any change in ag would require a new determination of c3, while the reverse

is not the case.

3However, as will be discussed in Sec. 4.4, it is necessary to modify Atnqc for large mass-ratios and large negative
spins.
“This fit has been done by Dr. Alessandro Nagar.
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4.2. Numerical Relativity fits

Table 4.1: ci™" & i chosen by hand to obtain a good agreement between TEOB and NR during the
late inspiral. As can be seen from the functional form of (Gg,Gs, ), c3 enters the denominator and thus is
inversely proportional to it’s effect onto the magnitude of (Gg,Ggs,). A larger value of ¢z, thus, makes the
spin-orbit-coupling more attractive while a smaller value makes it more repulsive. These are then compared
to the value cft obtained from the interpolating fit over all waveforms listed. The spin-variable S is given in
the last column, as it has been proven to be a useful characterization of quantities at merger, see Sec. 4.2.4.

# (¢, x4, x8) g Acgy/ef %] S

1 (1,-0.95,—-0.95) 93.0 92.31 0.75 —0.4750
2 (1,-0.90,-0.90)  89.0 89.44 -0.49 —0.4500
3 (1,-0.80, —0.80) 83.0 83.78 -0.93 —0.4000
4 (1,-0.60, —0.60) 73.5 72.83 0.92 —0.3000
5 (1,-0.44, —0.44) 64 64.45 -0.70 —0.2200
6 (1,+0.20, +0.20) 35 34.85 0.43 +0.1000
7 (1,+0.60, +0.60) 20.5 20.17 1.64 +0.3000
8 (1,+0.80,+0.80) 13.5 14.15 -4.59 +0.4000
9  (1,+0.90,+0.90) 11.5 11.52 -0.17 +0.4500
10 (1,+0.99,+0.99) 9.5 9.39 1.17 +0.4950
11 (1,40.994,+0.994) 9.5 9.30 2.15 +0.4970
12 (1,-0.50,0) 61.5 56.62 8.62 —0.1250
13 (1,+0.90, 0) 25.5 22.33 14.20 +0.2250
14 (1,+0.90,40.50) 17.0 15.73 8.07 +0.3500
15 (1,+0.50,0) 32.0 31.20 2.56 +0.1250
16 (1.5,—0.50,0 62.0 57.97 6.95 —0.1800
17 (2, +0 60,0) 29.0 26.71 8.57 +0.26
18 (2,+0.85,+0.85) 15.0 14.92 0.54 +0.472
19 (3,-0.50,0) 63.0 61.15 3.03 —0.28125
20 (3,—0.50,—0.50) 70.5 66.63 5.81 —0.3125
21 (3,40.50,0) 28.0 28.02 -0.07 +0.28125
22 (3,40.50,40.50) 26.5 24.44 8.43 +0.3125
23 (3,40.85,+0.85) 16.5 14.38 14.74 +0.53125
24 (5,—0.50,0) 62.0 59.84 3.61 —0.3472
25 (5,40.50,0) 30.5 29.01 5.14 +0.3472
26 (8,-0.50,0) 57.0 56.48 0.92 —0.3951
27 (8,40.50,0) 35.0 33.68 3.92 +0.3951

Obtaining the values of ag and c3 for a given NR waveform would in principle be possible by
fit, but that is not necessary. Due to the very stable resummation of both the A-potential and
the gyro-gravitomagnetic ratios (Gg,Gg, ), the tolerance for error in both parameters is relatively
large. A deviation of O(1) could be without impact on unfaithfulness or phasing. Therefor the
values of ag and c3 for the individual NR waveforms have been chosen by hand. This choice was
primarily driven by the need to achieve a good phasing between TEOBResumS and that particular
NR waveform and to remain conservative and only minimally modify the A-potential or (Gg,Gg, ).
The parameter is tuned until the accumulated dephasing at merger between TEOBResumS and NR
is comparable to the NR error, which can be estimated by comparing the two highest resolutions
available. The interpolating fits have been done using MATHEMATICA.
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4.2. Numerical Relativity fits

The fit of a§ used within TEOBResumS, presented in Ref. [76] is given by
aé(v) = 3097.3v2 — 1330.6v + 81.38 . (4.10)

The improved fit of c3(a@1,ae,v) was calibrated by a set of 27 SXS BBH-NR simulations (see
Tab. 4.1). The determination of c3(ai,az,v) in practice is done as follows. The fit of af is held
fixed. The initial estimates of cgm 819 are given for all 27 $XS waveforms in Tab. 4.1 The new and
improved fit of c3 was chosen to be of similar form as the one chosen in Ref. [132]. Explicitly, the

fit is done using the template

1+ njap + TLQ&%
1+diag

c3(a1,a2,v) = po + (prv + p2v® + p3v®) aoV1 — v + py (G — ag) v?,  (4.11)

where

po = 43.371638, (4.12a)
ny = —1.174839, (4.12Db)
ny = 0.354064, (4.12¢)
dy = —0.151961, (4.12d)
p1 = 929.579, (4.12€)
p2 = —9178.87, (4.12f)
p3 = 23632.3, (4.12g)
p1 = —104.891. (4.12h)

As can be seen in Tab. 4.1, where the values of c3 obtained from the fit and relative differences,
the error of c3 gets up to almost 15%. While this does impact the relative dephasing between
TEOBResumS and NR, those are not the relevant measures of accuracy with which this fit should be
judged. Ultimately, the fit quality can only be estimated by computing the EOB/NR unfaithfulness
or directly comparing the waveforms in the time-domain.

Hypothetically, it is possible that the calibration of cs, as it is limited to such a small parameter
space and limited functional form, is not yet the best that can be done. Thus, Eq. (4.11) is modified.
A single, quadratic term in ag is added with the explicit form p51/&3m, with the fitting coeffi-
cient ps. The modified c3 fit coefficients are (p1, p2, ps, pa, ps) = (917.59, —8754.35,20591.0, —78.95,
83.40). By explicit computation it can be checked that the second fit does improve the agreement
with the individual values of cgm 815 Tt remains to be seen how this impacts the comparison of
TEOBResumS and NR on the levels of unfaithfulness. This question will be discussed explicitly in

Sec. 4.3.

4.2.4 Merger amplitude and frequency

The merger-ringdown template applied to the (2,2) mode is often referred to as the postmerger-
ringdown template. This name refers to the merger being defined as tmyg = 2% the peak of the

dominant quadrupolar mode. The starting point of the postmerger are therefor the first variables
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4.2. Numerical Relativity fits

to be fitted: The (2,2) mode amplitude A™ and frequency w™$ at merger,

(4.13)

w™E = w22 (t = tmrg) . (4.14)

These fits are of key importance to obtain a robust and reliable postmerger-ringdown waveform,
as they do enter as overall scale factors into the phenomenological waveform template introduced
in Sec. 2.3.4.

When fitting the spin-dependence A™2 it is useful to consider the leading order behavior of the
waveform, which within the EOB formalism is factorization and resummed following Refs. |76, 81,

137]. Starting from the analytical waveform A™E ig factorized as
Amr A 780 2
A™E = ATE AT AL (4.15)

In this equation, Agig is the nonspinning (or orbital) contribution solely dependent on v. The factor
flig, heuristically based on the analytical waveform, is chosen to extract leading order behavior and
simplify the fit of Aglrg, the remnant spin-dependent factor. The orbital contribution is modeled as

a quadratic polynomial in v as

Amrg Amrg Amrg

Amrg — c(?orb + Cl orb v + c?orb VQ. (416)

orb

S : : . o . Amre
In principle it would have been possible to impose the test-particle limit [90] directly onto ¢, ,

however, in this fit it was not done explicitly. Yet their agreement is still within 1%. To simplify
the extrapolation to larger mass ratios both TEOBiResumMultipoles and TEOBiResumS_SM heavily
exploit the high level of accuracy and precision present in the test-particle data available, as will be
discussed in Chapter 5 and Chapter 6. The (2,2) spin-dependence at leading order is motivated by
the analytical waveform (see e.g. Eq. (16) of [123]) and can be written as

A R 1 5
Aig =1- (ao + 3X12a12> xf’I{fg (4.17)

Where the spin variable @1p = @ — ag is used. The frequency Tmrg = (why® /2)2/ ? is a slight
approximation. The variable is generally given as z = 02/3. The frequency of the binary motion §
however does not relate directly to waa/2, but only approximately. As can be seen in [81] explicitly,

tail

7!, which is in fact most relevant

wao does receive a correction from the tail factor of the waveform h
when the frequency gets increases close to the merger. Yet, even with this approximation it is
possible to fit flglrg with remarkable simplicity. To this end it is useful to define aeg = ao+ X12a12/3
as an effective spin variable. As can be seen in comparing the top-right to the top-left panel Fig. 4.1,
this parameterization is clearly superior to the structure of a simple fit against (ag, ) as employed

in previous avatars of the TEOB model [83, 132]. The remnant spin dependence is then fitted as

B

1 —n?(V)aes

s 120
1 — dA(v)aeg

, (4.18)
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Figure 4.1: The quasi-universal structures exploited to obtain fits of {Amrg, w™€} are plotted (top-left and
bottom-left respectively). These are shown in a side-by-side comparison to the structure used in previous
works, versus the effective EOB Kerr parameter ao (top-right and bottom-right) [83, 132]. In each plot
all waveforms with a given mass-ratio form a line. The mass-ratios plotted are ¢ = 1 (red), ¢ = 2 (blue),
q = 3 (purple), ¢ = 4 (brown), ¢ = 5 (yellow), ¢ = 7 (dark green) , ¢ = 8 (magenta), ¢ = 18 (light green)
and the test-particle limit (black). Comparing (top-left) Am™re normalized to the leading-order, spin-orbit
contribution plotted versus deg to (top-right) A™re versus ao the differences appear quite noteworthy. All
mass-ratios as a function of ag show oscillations as well as an individual behavior. While this is not the case
for the mass-ratios as a function of d.g, where all mass-ratios are quasi-parallel and show a similar, only
slightly shifted behavior with almost no scattering, presenting an optimal starting point to obtain a fit. w™"#
is plotted against S = (S; 4 Sy)/M? (bottom-left) and the standard effective Kerr parameter ao = S + S,
(bottom-right). As discussed in the main text, the simplification is quite remarkable and thus allows a very
straightforward approach to fitting the spin-dependence. Yet, the origin of this structure remains unclear.

A

where (n ,dA) are modeled at quadratic order in X719, which is given explicitly as
/i ‘mltg AHlI:g ‘m{g 9
n (l/) = nyiplu/14 +ny P X0 + Mg spin (X12) , (4.19)
N Amrg Amrg Amrg
A — spin spin spin 2
d*(v) = dV:p1/4 +dy " X +dy T (X12)” (4.20)
2 Amlfg Aml:g
The reader should note that Arsnrg was fitted in two steps. First, {nyipl’;4,duipl“}4 were fitted

with the equal-mass data. The fit-results were then imposed and the extrapolation coefficients
proportional to X12 and X%, were determined with the remaining SXS and BAM data of the calibration
set. All fitted coefficients are listed in the left column of Tab. B.2.

The next target to be fitted is the merger frequency w™*® of the (2,2) mode. As in the case
of the amplitude, previous works employed a simple fit against (ag,v) [83, 132]. This however
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Figure 4.2: The fractional error of the fits for A™2 (left) and w™# (right) with respect to the calibration
set, at the state of Paper I including the faulty (8,40.85,+0.85) waveform, is shown. The individual lines
highlight the respective mass-ratios and are marked explicitly with the symmetric mass-ratio ». The mass-
ratios given are ¢ = 1 (red), ¢ = 2 (blue), ¢ = 3 (purple), ¢ = 4 (brown), ¢ = 5 (yellow), ¢ = 7 (dark green)
, ¢ = 8 (magenta), ¢ = 18 (light green) and the test-particle limit (black). The fit coeflicients are given in
Tab. B.2 and are evaluated along eq. (4.15) — (4.24).

proved insufficient in capturing the behavior of the amplitude for large oppositely aligned spins
with comparably small values of ag. In Fig. 4.1 (bottom left) a solution to this problem is shown,
that does avoid the introduction of a fully three-dimensional fit. w™®, extracted from NR?, is
plotted versus the effective spin variable S = (Sy + Sy)/M?2. First, comparing the behavior of the
individual mass-ratios shown versus S (bottom left) and versus ao (bottom right of Fig. 4.1), it is
evident that the oscillations of each curve reduces drastically. This can be seen in particular for
qg = 2, 3 and 4 data which oscillates heavily as a function of Gg. Further, it can be seen by eye
that plotted versus S all mass-ratios show qualitatively the same behavior of an approximate fourth
order polynomial, shifted vertically relative to each other. This simple structure is very useful in
obtaining an accurate fit of the merger frequency as will be exploited below. While it is still an
open question what the origin of this behavior is, it is possible to give a brief argument to explore
a connection to the KOB framework.
mr

Starting from the approximation wyy® ~ 2§, (which as mentioned above is not perfect, yet in

the case of large, positive spins S it is quite reliable) for u = Uy, w™® can be approximated as

Au2pmrg R R
mig g | APy g1 (GSS +Gs S*) . (4.21)
22 Heop HoP EOB

The reader should first note that u., as introduced in Sec. 2.3, only depends on the spin through
even-parity powers of ag = S + S,. Further, looking at the functional form of S, it is easy to see
that S = S, in the q = 1 and the test-particle limit, thus, it seems natural that the dependency
on S would dominate the systems. However, when departing from the equal-mass case to the
q # 1 region it becomes less straight forward to find a plausible explanation for this behavior.
Nonetheless, Fig. 4.1 does indicate that S, does not contribute significantly to w™®. Paper 1

continues the discussion through exploring an expansion of eq. (4.21) in powers of S and S,, yet

5The reader should note that while this is a remarkable result, it cannot be obtained blindly from NR, as a small
number of waveforms have to be discarded following the principle that small changes in (g, x1, x2) only cause small
changes in the amplitude and frequency.
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4.2. Numerical Relativity fits

without arriving at a concrete justification. For now, the simplified scaling is quite remarkable and

will be exploited in the determination of a global fit. To do so, a template in factorized form is

chosen as
WTE = WTE (1) W (S, X0a) (4.22)
with the orbital factor wi,? fitted to a quadratic function in v,
mrg mrg mrg
WE (V) = ™ + P v+ eyt U, (4.23)

The functional form of flglrg of eq. (4.18) is kept for wg ®, but the spin-variable is S as spin variable

g M(V)‘; ) (4.24)

S 1— d“(v)

The functions (n%, d“) are identically chosen to eq. (4.19) — (4.20). The v = 1/4 factor is fitted first,
followed up by the fitting of the coefficients proportional to X712 and XZ,. All coefficients are given
in the right column of Table B.2. While the first exploratory fits of w™"® were assumed to necessitate
a full three-dimensional fit to accurately capture the NR behavior, this was indeed not necessary
due to the discovery of the simple behavior as a function of S. To estimate its performance, the fit
was compared with the full calibration set of data available, at the time of publication of Paper I.
The fractional differences are displayed in Fig. 4.2. It is useful to point towards the disagreement
between the BAM waveforms (8,0.8,0) and (8,0.85,0.85) that was present at the time. As these
two waveforms are very similar, one would expect that they would behave in a similar manner.
Yet, this is not the case for (8,0.85,0.85). While (8,0.8,0) continues to follow the trend of similar
waveforms, (8,0.85,0.85) actually shows a decrease in the merger frequency. Thus, by the principle
of consistency between similar waveforms (8,0.85,0.85) was excluded from the NR calibration of
TEOBResumS. As became evident after publishing Paper I, the NR waveform of (8,0.85,0.85) was
generated with insufficient resolution and a waveform with increased resolution was generated. In
fact, this updated waveform will motivate an improved fit of the merger amplitude and frequency
in chapter 6. Additionally, the updated waveform (8,0.85,0.85), together with a majority of the

validation generated for approximately integer mass-ratios has been included in Fig. 4.1.

4.2.5 Next-to-Quasi-Circular corrections

Once the peak of the (2,2) mode is fitted it is ideal to move directly to the NQC extraction point.
These are given by the NR waveform taken at the point txnqc = twrg + 2M, following the setup
in Sec. 2.3.2. From each SXS and BAM NR data set the quantities {flg;Qc, AQNQQC,wQNfC,LL)gQQC} are
extracted and fitted globally. These are then used to determine the NQC parameters defined in
Sec. 2.3.2.

For £ = m = 2 mode a very high level of accuracy is necessary, as it is the only multipole
for which the NQC parameters enter the radiation reaction, eq. (2.32). While inaccuracies for the
subdominant multipoles are leaving the remainder of the model untouched, even a small inaccuracy
can lead to the failure of the iterative determination of the NQC parameters (a32, a3?) to converge.

Especially, for the equal- and almost equal-mass region (¢ < 4) a very accurate fit is necessary. In
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4.2. Numerical Relativity fits

Appendix B.1 the fits of the equal mass region, eq. (B.1) and the nearly-equal-mass 1 < ¢ < 4
region, eq. (B.2) are given. The former is fitted with quartic polynomials, while the latter is fitted
with cubic polynomials in ag. While these fits are done very well for regions with an excellent NR
coverage, their extrapolation outside the domain of calibration is usually very poor. Any attempt
to build a singular fit starting from this structure will lead to pathological behavior for large mass-
ratios, where the NR coverage is thin. Therefor, both TEOBResumS and TEOBiResumS_SM have been
designed to only update the fits in the region of ¢ > 4 as needed for the £ = m = 2 mode.

Another point to note when fitting the NQC it is useful to use a template similar to that utilized
for the fits of the merger amplitude and frequency. This is to ensure that outside the domain of
calibration the waveform is robust and shows no pathological behavior. The robustness of the
waveform outside the domain of calibration will be discussed further in Sec. 4.4.

The discussion will now turn to updating the fit of the ¢ > 4 region. AQNzQC employs the
factorization of A™8 ag

iNQC _ 2NQC 43S0 iNQC
ApRC = ANAC A4S ATQC, (4.25)

orb

The leading-order, spin-orbit contri;[;éltion AE% is given by eq. (4.17) as well, however with a slight
difference using rnqc = (wé\;QC / 2) to ensure consistency. The nonspinning (orbital) contribution

Ai%c is fitted with an additional cubic term in v as

ANQC ANQC ANQC ANQC

ANQC =cy orb 1/3 + Cy orb V2 + o orb 4, + <o orb (426)

orb

The beyond leading-order spin dependence is then captured by fitting fngC first to the ¢ = 1 data

and followed up by the extrapolation to higher mass-ratios as

iNge 1 — nchfleff
1— d5y% g

with (ngQC, dec) both given by second-order polynomials in X9 as defined in eq. (4.19) — (4.20).
All coefficients are listed in the top-left column of Table B.1.

The derivative of the amplitude Ag;QC is particularly difficult, as it is very close to 0 it is highly
sensitive to numerical noise. Thus, after several attempts to build a construction that would allow
to increase the robustness of AQNQQC this form was chosen:

ANQC — (NQC T ANQC () | 4NQC (5 0 X)) (4.28)

A rational function, linear in both denominator and numerator as a function of v is fitted to capture

the non-spinning behavior as

NAN(SC NAN%C

\NOC or + orb 4,

Aorclg (]/) = - 0 A-Néc . (429)
1 + _D1 orb v

A rational function in the effective-amplitude-spin variable deg is also chosen to capture the spin
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4.2. Numerical Relativity fits

dependence of AZNQQC as

. ANQC p~
ANQO - 1T Geft (4.30)
1+ dANac Qoft

Again, quadratic polynomials in X5 are used to capture (nANQC, dANQC). First, the functions are
calibrated to the equal-mass case and then extrapolated to the Xis # 0 region. The explicit values
of the coefficients are listed in the top-right column of Table B.1.

The NQC frequency is to be fitted next. A factorization and choice of spin-variable, inspired by
the merger-quasi-universal behavior of the merger frequency, are made as

szQQC (V; S) = MwhC (v) ngC (S,Xu) . (4.31)

orb

The non-spinning contribution is fitted at quadratic order by a polynomial in v as

NQC NQC NQC

NQC (V) = g + ¢ v et VR (4.32)

orb
Continuing to follow the principle of consistency between the merger and NQC the spin-factor is

fitted by a rational function in S as

»NQc A
NQC _ 1—”(”>§ (4.33)

o 1 — ¥ (y)

‘*’NQC,d‘*’NQC) are, as for the amplitude, quadratic functions of

Following the typical procedure (n
X12. The first fit is done with respect to the equal-mass data and followed by the extrapolation
into the unequal-mass region. The functions are defined in eq. (4.19) — (4.20). The coefficients are
listed in the bottom-left column of Table B.1.

The typical factorization of the orbital and spin-dependence into a hierarchical structure is also

done for the time derivative of the frequency as
@y = NP () wg ¥ (S’,Xlz) : (4.34)

The non-spinning part is fitted to a rational function of linear order in v for both numerator and

denominator as

NLZ)NCSC + N"'JN%C
. N C or or ]/
or(l? (V) =0 wNéC (4-35)
1+ D" v
S also proved useful here as the spin-dependence as a quadratic polynomial in S through
dngC (SA', X12> =1+ ayNqc (l/) S' + waQC (l/) S'Q. (4.36)

Where again the coefficients (ag~aqc, bynac) are represented, as above, with quadratic functions of
X0, fitted to the equal-mass data then extrapolated to the unequal-mass-case. The corresponding

coefficients are listed in the bottom column of Tab. B.1. The astute reader will have noticed that
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4.2. Numerical Relativity fits

even though none of these fits are meant for usage in the equal-mass case® yet all four are fitted
directly to the equal-mass data. The reason for this is two-fold. First, the amplitude and frequency
at merger are fitted in such a way and thus to ensure consistency it is necessary to do the same for
the NQC amplitude and frequency. However, this does not justify to handle the derivatives in a
similar manner. The reason can be found once different waveforms fits are compared with respect to
stability to numerical noise, extrapolation and possible pathological features. What is found is that
if a one-dimensional fit is imposed directly, this stabilizes the fit and improves it’s quality. Thus,

while it might not be intuitive to calibrate the fit in such a manner, it yet produces the best results.

4.2.6 Ringdown

To fit Y = {w??, af?, a3} it is useful to consider their origin as BH perturbation modes. As such
they are functions only of the dimensionless spin of the remnant BH xt = J¢ /Mf2 The dimensionless
spin of the final BH however was fitted with excellent accuracy and precision by Jimenez-Forteza
et al. [107] for merging BBH systems. Thus, to avoid unnecessary complications {wl ,a3?) a22} are
fitted directly against xf, which is in turn reproduced using the above mentioned fit as a function
Xt = Xt (¢, X1, x2)- These fits are informed by data interpolated from publicly available tables given
by Berti et al. [46, 47]. The x; = 0 limit is factored out and each parameter is fitted by a rational

function to third order of x¢ in both denominator and numerator as

Y., 3’

0 (4.37)
l—l—c1 Xf+C2Xf+c3Xf

Y (xs) =

The fitted coeflicients are listed in Tab. B.3.

4.2.7 Postmerger evolution

The evolution parameters of the phenomenological merger-ringdown template are defined in Sec. 2.3.4.
They connect the peak of the mode to the later stages of the ringdown during which only the fun-
damental QNM is contributing to the GW strain. To fit them, first the GW strain is rescaled with
respect to the fundamental QNM, separated into amplitude and frequency, and then the derivative
of the amplitude at peak is set to 0, the peak amplitude and frequency as well as the dominant QNM
behavior are imposed on the templates. Once prepared as such, they are fitted first individually
to the SXS and BAM NR waveform data and interpolated globally in a second step. The templates
are given in eq. (2.46) and eq. (2.47) and on the level of the primary fit they have been fitted to
the time interval from the peak of the mode for 4722 = 4/a32, four times the damping time of the
fundamental QNM. As will be discussed partially in the next chapters 47{™ is sufficient to obtain
such a fit and the choice of the fitting interval length needs to be made consistently as in the case
of noise multipoles the effects of the noise are more and more significant. The three parameters
Y = { })422 ?22, szz} are fitted with the template

Y(V; S) = bUY(V) + bi/ (Xlg) S + b%/ (Xlg) Sz + b-}y,/ (Xlg) SS + b}f (X12) S4. (4.38)

Recall that the NQC for ¢ < 4 are given by the fits originally presented in Refs. [131, 132].
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Figure 4.3: The performance of the (2,2) mode postmerger-ringdown template waveforms. The top row
shows the phase error AghFFit = pNR — ¢fit  while the bottom row shows the fractional error of the amplitude
AANRFit = (ADR — Afity JANR . The panels show: (top-left) The non-spinning SXS waveforms. (top-right)

The spinning SXS waveforms. And (bottom) the spinning BAM waveforms. The time is shifted to the peak

such tg;ak = 0 and normalized to the damping time of the fundamental QNM given as 71 = Mpy/a.

Even though the hierarchical nature of the fit is not highlighted for this template, it is still done
in such a manner. The orbital and equal-mass contribution are fitted one-dimensionally each. The
extrapolation to higher mass-ratios is done through coefficients proportional to X15. The coefficients
of the fit are listed in Tab. B.4. The reader should note that the effective spin S was exploited here
again for the phase, while the amplitude parameter ¥ = c?” was fitted with deg. Even though,
other than for the frequency and amplitude this structure cannot be observed directly when looking
at the data for Y = {63422, cﬁ”, cff”}. These spin-variables do not simplify the structure presented
by the individual mass-ratios as it was for the frequency in Fig. 4.1. Yet, as will be shown in the

next section, the performance of the template when using these variables is improved.

4.2.8 Merger-ringdown-ringdown template performance

In the discussion above fits of the individual parameters making up the postmerger template have
been presented. Before the focus is shifted to the comparison of the full TEOBResumS model with
NR, it is useful to consider the performance of the postmerger template. Two quantities are relevant
when evaluating the template performance on an NR waveform. These are Aghitit = pNR — pfit

and AANRFt = (ANR — Afit) JANR which are plotted in Fig. 4.3 for (from top-left over top-right
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4.3. EOB/NR comparison and the unfaithfulness

to bottom) the non-spinning SXS waveforms, the spinning SXS waveforms and the BAM waveforms.
The top row shows A¢YRFit while the bottom row shows AANRFt
between the template and the NR would be constituted by HA%NQRF“H < 0.2 and HAAQNQRFitH < 0.1.

The only two significant outliers beyond this limit can be found in the right plot presenting
the BAM data. These are (8,0.8,0) (light blue, solid) and (8,0.85,0.85) (green, dashed). As already

discussed above the BAM waveform (8,0.85,0.85) did show a divergence from waveforms of similar

. Typically, a good agreement

parameters therefor this outlier is not that difficult. Still it will be shown below (see Sec. 4.3)
that through an improved NR calibration this behavior could in principle be captured, but this
in fact does push the boundaries of what can captured with the analytical flexibilities of the TEOB
infrastructure as will be discussed below. As will be further shown in chapter 6, once an improved
waveform with heightened resolution was available, the postmerger as well as many other parts of
the NR calibration have been redone and while the overall quality only improved slightly the main
goal of these improvements is achieved as TEOBiResumS_SM does indeed show excellent agreement
with BAM (8,0.85,0.85).

4.3 EOB/NR comparison and the unfaithfulness

When comparing a waveform model to a large catalog of NR it is useful to start the analysis
by computing the unfaithfulness F' between the model and the full catalog. Recall that for second
generation GW detectors such as advanced LIGO and advanced Virgo the aim is to have an EOB/NR
faithfulness, computed with respect to the advanced LIGO PSD [8], of F' > 97% at minimum, but
ideally F' > 99% (88, 112]. Similar standards have been applied for e.g. SEOBNRv4 [53].

Unfaithfulness of TEOBResumS vs. SXS: Now that TEOBResumS is fully calibrated to NR it
is necessary to access if it meets the requirements for GWA. To this end the unfaithfulness was
computed between TEOBResumS and the SXS and BAM data contained in the calibration set, defined
in Sec. 3.2. Fig. 4.4 (top-left) shows the F' computation of TEOBResumS and SXS for the total mass
varied between 10 and 200M. The maximum unfaithfulness reached is max(F) < 2.7 x 1073
with the exception of a single outlier (3,+0.85,+0.85), SXS:BBH:0293, reaching a maximum of
max(F) = 7.1 x 1073, This is a clear improvement over the previous implementation of the TEOB
avatar presented in Ref.v [132] (see Fig. 7 therein) and well below both the 3% (light-blue, dotted,
horizontal line) and the ideal limit of 1% (black, dotted, horizontal line). Thus, clearly meeting the
quality requirement for GWAT

Unfaithfulness, the outlier SXS (3, +0.85,+0.85): Even though SXS:BBH:0293 (3, +0.85, +0.85)
does not violate the 1% bound, it does exceed the NR-NR unfaithfulness computed for the SXS data,
shown in the top-left panel of Fig. 3.1, which never exceeds 10™* for SXS:BBH:0293, even when this
is reduced to the conservative estimate of 0.5%. Thus, it is still worth to investigate the origin of the
differences. When checking cz of #23 of Tab. 4.1 it becomes plausible that the difference between

cgrStguess = 16.5 and cgt = 14.38 is potentially responsible for the increased unfaithfulness. To access

"While this is a very good result and, at the time, was the lowest max [max (F)] ever achieved by a comparison
of an EOB model to the SXS catalog presented. This however only the first part of preparing a model for practical
use in GWA. Paper I further presents a stand-alone C-implementation of TEOBResumS and an example analysis of
GW150914, proving that the model is ready for application real data analysis.
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Figure 4.4: The unfaithfulness FEOB/NR, eq. (A.12), TEOBResumS vs the calibration set of SXS and
BAM waveforms. The unfaithfulness was computed with PSD [8]. (Top-left) TEDBResumS, implemented
using the c3 modeled after eq. (4.11), compared to the calibration set of SXS data, both spinning and
non-spinning waveforms. The unfaithfulness never reaches the 1% limit. With the exception of a sin-
gle waveform max (F) < 2.5 x 1072 is achieved all over the SXS calibration set. For SXS:BBH:0293,
(g, x1,x2) = (3,40.85,+0.85), max (F) ~ 7.1 x 1072 is found. (Top-right) F' computed over the same set of
SXS waveforms against TEOBResumS. The representation of c3 has however been modified with an additional
term proportional to va2/1 — 4v in the functional form added to Eq. (4.11). One finds max (F) < 2.5x 1073
all over. (Bottom-left) F’EOB/NR computed of TEOBResumS and BAM presented in Refs. [101, 108, 109]. cs3
is modeled by the fitting template eq. (4.11). (Bottom-right) Global picture of the maximum value of the
EOB/NR faithfulness F', Eq. (A.12) over SXS and BAM NR data, corresponding to the plots in the top-left
and bottom-left. The only outlier above 1% or 3%, (8,40.85,+0.85), is omitted from the figure.

the potential improvement from a stronger fit of c3 , the functional form of the template eq. (4.11)
is modified in the unequal-mass through the introduction of a quadratic in ag, taking the form
psva3y/1 — 4v, introducing the fitting coefficient ps. The updated fit is given in Sec. 4.2.3. Once
the fit is calibrated, the unfaithfulness between the SXS waveforms and TEOBResumS is recomputed
and shown in Fig. 4.4 (top-right). Two things are especially noteworthy. First, max(F) < 2.5x1073
is reached all over the SXS-calibration set. Further, (3,+0.85,40.85) lies now at max(F) = 5x 1074,
a remarkably good agreement, while still above the corresponding value of Fyxg /NR; it is well below
the conservative estimate of the uncertainty. While it might seem tempting based on these results
to simply chose the improved fit of c3 it can be seen that for larger mass-ratios the fit of c3 this fit
diverges and would require further waveforms to inform it to remain stable in the large-mass-ratio
region of the parameter space. Thus, for now the conservative approach is chosen and as will be

discussed below an alternative route to improvement of TEOBResumS will be outlined, that will come
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Figure 4.5: The BAM catalog gave an excellent opportunity to test the modelization in the large-mass-ratio
and large spin region. In particular the extrapolation of c3 can be tested and improved greatly through
the addition of the BAM catalog. At the time of Paper I, with an insufficiently accurate version of BAM
(8,40.85,40.85), it was shown that an improvement of ¢35 = 28.7 down corrected to c3 = 23 indeed lowers
the unfaithfulness from going up to 5.2% down to F' ~ 1.3 x 1073, This figure shows explicitly the time
domain comparison between the TEOBResumS and BAM (8, +0.85, +0.85), with TEOBResumS evaluated for both
cs = 28.7 and ¢z = 23, aligned with the BAM waveform in the frequency interval [0.2,0.35]. This frequency
interval is very close to merger and in principle it would be necessary to determine cs accurately it would be
necessary to align in a much lower frequency interval. However, cg = 23 is actually very close to the limit
at which the NQC corrections can still be applied consistently, as any smaller values of ¢ would lead to
the iterative determination of the NQC (introduced in Sec. 2.3.2) to diverge. Thus, to keep in line with the
conservative mindset employed in the calibration of TEOB models an improvement of the analytical baseline
will be necessary before improving the model.

to fruition in TEOBiResumS_SM, solving these issues as will be shown in chapter 6.

Unfaithfulness: TEOBResumS vs. BAM: The bottom-left panel of Fig. 4.4 shows the unfaithfulness
computed between TEOBResumS and the BAM catalog. While the ¢ = 2 and ¢ = 4 waveforms
overlap with the SXS coverage, the ¢ = 8 and ¢ = 18 spinning waveforms significantly extend the
parameter space coverage of spinning waveforms. While for most waveforms an excellent agreement
between NR and TEOBResum$ is found, this is not the case for the BAM waveforms (8, 40.85, 40.85)
configuration, that yields a very NR/EOB disagreement of max(F) ~ 5.2%. As mentioned in the
discussion above at several points, this waveform was at the time of Paper I not sufficiently accurate
even though it was already once improved relative to a waveform included in the previous analysis
presented in Ref. [132]. Yet this inaccuracy of the BAM waveform was not sufficient to justify this
large a value of the unfaithfulness. Thus an investigation of the origin behind this disagreement is

needed.

Unfaithfulness, the outlier BAM (8,+0.85,+0.85): The origin of the increased unfaithfulness
lies within an inaccuracy of the inspiral-plunge waveform of TEOBResumS. On the other hand, the

NR-calibrated description of NQC and postmerger-ringdown waveform, even though, not informed
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by BAM (8, +0.85, +0.85 still captures the waveform accurately. Fig. 4.5 illustrates this point more
clearly through comparing TEOBResumS(blue, dash-dotted, lines) to the NR (black) waveform as
well as modified TEOBResumS waveform for which the fit value of cs ~ 28.7 was replaced by c3 = 23
(red). The TEOBResumS waveforms have been aligned to the NR counterpart in the frequency interval
[0.2,0.35], of the late inspiral-plunge region. Even though the alignment was done so close to merger
the TEOBResumS (blue) shows a significant departure from the NR, while the modified value of c3
does indeed lead to an almost perfectly accurate agreement with NR. This can be reproduced on the
level of unfaithfulness as F' ~ 1.3 x 102 with an improved value of c3. While this seems to require
an update in the NR calibration, two arguments stand against it. (i) The BAM (8, +0.85,40.85) does
show indicators of being insufficient accuracy and precision. Therefor, it should not be included
in the NR calibration. (ii) The improved value of c3 is in fact almost at the boundary at which
the NQC correction parameters (a?, a%Q) do converge. Any further reduction in c3 would lead to
divergent NQC corrections. This indicates that the NR calibration is at the limit of what it can
be used for. Therefor, Paper I concluded with leaving this for future work and in fact chapter 6
(following the results presented in Paper III) will show that including the improved factorization and
resummation of the waveform presented in Refs. [123, 129] indeed addresses this issue sufficiently,
producing an excellent agreement between TEOBiResumS_SM and BAM (8, 40.85, 40.85).

Unfaithfulness, Summary: A global representation of the unfaithfulness computation is given
as a histogram in Fig. 4.4 (bottom-right), showing the maximal faithfulness over the SXS and BAM
excluding BAM (8, 4+0.85,+0.85) to keep the plot informative. It is useful to highlight the results of

the unfaithfulness computation and insights about the analysis:

(i) The unfaithfulness is a powerful tool to identify disagreements between NR and TEOBResumS
. Yet, it is ill-suited to be used to identify the problem, while an analysis in the time-domain
will often prove to be more insightful to identify the problem. It is then useful to compute

the unfaithfulness to confirm the origin of the problem.

(ii) The unfaithfulness all over the SXS-calibration set is in very good agreement reaching F' <
2.7 x 1073 with the exception of a single outlier, not breaching the 1% bound. This single
outlier indicates a need for further improvement of the analytical information included in the

model.

(iii) For the BAM catalog a similar result is reached®. The outlier BAM (8, +0.85, +0.85) is however

far stronger.

(iv) Following the analysis of BAM (8,40.85,+0.85) in Fig. 4.5 an improvement of the analytical
baseline information incorporated into TEOBResumS is motivated and it is pointed out that
the the improved factorized and resummed waveform of Ref. [123] represents a possible path
forward. Once included the improved waveform will indeed solve this problem as will be

discussed in chapter 6.

8The astute reader may have noticed a single BAM waveform above the 0.4% limit set as the goal over the BAM
catalog. This unfaithfulness corresponds to (8,+0.8,0) and does indeed not produce any further insight other then
confirming the analysis of BAM (8,+0.85,40.85), which indicates an improved analytical baseline becomes necessary
and is thus omitted from the discussion as an explicit outlier, even though technically speaking it is one.
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Figure 4.6: During a more thorough comparison of TEOBResumS and the BAM catalog a peculiar feature
appears. For BAM (18, —0.80,0), the TEOBResumS waveform shows a peculiar unphysical feature. As the full
EOB waveform shows a dip and sudden rise around the peak of the amplitude appears, even though the
waveform prior to inclusion of the NQC does not repeat this feature. As the frequency is not impacted
by this it is not surprising that this does not show up as an effect in the unfaithfulness, y is not impacted
Frequency and amplitude comparison between TEOBResumS and BAM for (18,—0.80,0). The full waveform
amplitude develops a slightly unphysical feature due to the action of the NQC parameters. The frequency
(as well as ) is unaffected by this.

Beyond the unfaithfulness: Even though the unfaithfulness analysis was clearly useful it is still
necessary to study the waveform further. Fig. 4.6 illustrates one such effect that, due to lack of
impact on the frequency, does not show as an increase in the unfaithfulness. As can be seen the
TEOBResumS waveform (red) compared with BAM (18, —0.80,0) (black) shows a peculiar, unphysical
dip in the amplitude close to merger. Looking at the TEOBResumS waveform prior to the application
of the NQC (orange) it can be seen that this pathological feature of the amplitude originates in the
NQC correction. Further investigation shows that the orbital EOB frequency € indeed becomes zero
close to merger. When computing the individual contributions to € it was found that (Gg,Gg,),
defined in Sec. 4.1.1, becomes very large and negative if both spins are large and anti-aligned with
respect to the orbital angular momentum. Now it is important to note that in the case of a test-
particle plunging into a Kerr-BH with large anti-aligned spins the orbital frequency does indeed
change sign as the dragging of the frame of the test-particle dominates close to the merger. This is
however not the case here. Thus, it is useful to briefly outline the source of this issue without going
to deep into it.

When Ref. [76] first defined the TEOB infrastructure, (Gg,Gg,) where expressed as functions of
the inverse centrifugal radius 1/7. as opposed to merely the inverse radius 1/r (see Egs. (36)-(37)
of [76]). After reversing this change it can be seen that the frequency Q does in fact remain positive
in this region. As this effect does not have large practical implications for the use of TEOBResumS it
does not yet warrant to change the model at this stage, which in turn prevents the necessity for a
full recalibration to NR. Rather the effect on the amplitude will be explored and the robustness in
the large-mass-ratio, large-anti-aligned-spins region will be explored in Sec. 4.4. Further, it will be

shown that a modification of Atngc does indeed improve the robustness of the waveform at merger.
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Figure 4.7: The waveform SXS:BBH:1375, (8,—0.9,0), is a remarkably accurate waveform and thus it is
worth taking a closer look at the performance compared between TEOBResumS and SXS for this waveform.
The waveforms are compared on the level of phasing with vertical lines marking the alignment in the inspiral
(top-left), amplitude and frequency around merger, aligned in the frequency interval [0.2,0.3] close to merger
(top-right) and the unfaithfulness (bottom). The alignment of the waveforms in the early inspiral leads to
an accumulated dephasing of —1.3 rad at the NR (2,2) mode waveform peak. The unfaithfulness reaches
max (F) = 1.027 x 10~3. All over TEOBResumS and SXS:BBH: 1375 show an excellent agreement. It stands out
however that the postmerger is not perfectly captured, as can be observed in the middle panel. This is due
to the fact that currently, model does not account for the beating between positive and negative frequency
QNMs. An example of how to implement this feature can be found for the test-particle limit in Ref. [45].

4.3.1 An extreme BBH configuration: (8,—-0.90,0)

During the preparation of Paper I, a new high precision SXS waveform was published: SXS:BBH:1375
describing a BBH system with (g, x1, x2) = (8,—0.90,0) [100]. Aside from it’s exceptional quality
it is remarkable for two reasons from the perspective taken in Paper I. First, with an effective spin
of § = —0.7111 it is slightly more relativistic than BAM (8, —0.85, —0.85) with S = —0.6821 (see
Tab. F.4). Secondly, while this is a marginal shift it is a marginal shift in a highly relativistic region
therefor granting a useful additional point to test TEOBResumS in a region where the modeling of
the analytical baseline is particularly challenging®. It is instructive to now compare the TEOBResumS
with the SXS waveform thoroughly to introduce the reader to several aspects of such a comparison.

The full comparison of TEOBResumS and SXS:BBH: 1375 is shown in Fig. 4.7. The top-left panel
shows the comparison of the phasing and amplitude, the alignment region marked by vertical black-

dashed lines. The light-blue line represents the phase difference between TEOBResumS and SXS

9As mentioned above and as will be discussed in Sec. 4.4, the region of large mass-ratios and large spins anti-
aligned with respect ot the orbital angular momentum.
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4.4. Waveform robustness outside the domain of calibration

waveform, showing a slight oscillation around zero. Inspecting the parameters further shows that
SXS:BBH:1375 has a slight residual eccentricity ~ 1.1 x 1073. This is of course to be expected as in
an any NR setup it is next to impossible generate eccentricity-free waveforms on a consistent basis.
Yet this is different in the analytical setup of the TEOB model. The initial data is generated with
the 2PA approximation |75, 82| generating almost completely eccentricity-free waveforms. Further,
one notices that the departure of the phase difference from the oscillation around zero during the
late inspiral and the plunge, indicating a slightly slower plunge of the TEOBResumS system with
respect to the NR system. A possible physical interpretation might be that the prediction of the
TEOBResum$ spin-orbit coupling is too low. This could be captured through a modification of c3'°.

The top-right panel of Fig. 4.7 shows the comparison of the amplitude and frequency around
the merger aligned in the frequency interval [0.2,0.3]. An alignment in a frequency window so
close to the merger is often useful to access the behavior of the two waveforms around merger as
the accumulated dephasing often distorts the picture if both waveforms are aligned in the early
inspiral. Even though this waveform lies outside the domain of calibration of both NQC and
postmerger, both waveforms agree very well on the level of amplitude as well as frequency. An
additional phenomenon that can be observed in this waveform is the beating between positive and
negative frequency QNMs, well known in the test-particle limit for Kerr-BHs with large anti-aligned
spins [45], creating oscillations in the ringdown of the NR waveform. Finally, the unfaithfulness is
presented in the bottom panel of Fig. 4.7. As can be seen by eye the agreement is excellent. The
unfaithfulness, reaching max (F) = 1.027 x 1073, is well below the 1% limit and the conservative
NR uncertainty of 0.5%. Reiterating that even though a dephasing of 1 red occurs if aligned in the
ingpiral this disagreement is not of concern for the practical application of the model.

In summary, four observations can be made:

(i) The postmerger template performed very well in comparison to SXS:BBH:1375. While the
parameters used in the template would not necessarily improve through the inclusion of this
waveform it might stabilize the extrapolation to higher mass-ratios with spins anti-aligned to

the orbital angular momentum.

(ii) As the ringdown is a very clean example of beating between positive and negative frequency
quasi-normal-modes [45] this waveform will be useful to explore extensions of the postmerger

template.

(iii) Despite the small eccentricity this waveform can be used to inform NR quantities related to

the spinning sector of the inspiral, e.g. c3.

(iv) As the subdominant modes are very clean and accurate as well it is likely that many fits of

subdominant mode parameters will benefit strongly from the inclusion of this waveform.

4.4 Waveform robustness outside the domain of calibration

The fits of both NQC and postmerger, the peak in particular, have been done in similar fashion.

The same spin variables have been used consistently for quantities depending on whether they

However, the reader should note that this disagreement is perfectly within the acceptable margin of error for
the application in any physical context.
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Figure 4.8: (¢, x1,x2) = (11, —-0.95,—0.50) lies well within the region for which Atnqc = 4 (blue) is used
instead of Atngc = 1 (red), given by eq. (4.39)-(4.40). As can be seen the choice of Atngc = 4 allows
for a smooth transition between the inspiral-plunge waveform and the postmerger template, avoiding the
unphysical feature in the amplitude, present if Atnge =1 is used.

were associated to the amplitude or the frequency. Amplitude and frequency at peak used identical
templates for the spin-dependence as the NQC amplitude and frequency, ensuring a similar behavior
asymptotically by design. These choice lead to a remarkable stable and robust extrapolation outside
the domain of calibration. Here, the robustness of the waveform is tested for large mass-ratios (up to
q < 20) and large spin magnitudes both aligned and anti-aligned with respect to the orbital angular
momentum. However, it is important to point out that in particular in the case of large-aligned spins
the NQC correction parameters become large and diverge during the iterative determination, thus,
only a first determination of the NQC is possible in these cases. Similar behavior could already
be observed when comparing TEOBResumS to BAM (8, +0.85,+0.85), where the NQC parameters
became of order 10, limiting the choice of c3 for which the NQC parameter can be iterated upon

for consistency between flux and waveform.

Pathological features in the amplitude: As was already observed for (18, —0.8,0), the wave-
form shows pathological features in the amplitude for mass-ratios ¢ > 8 and large, anti-aligned spins.
The origin was already pointed out to lie in the crossing of the frequency through zero and becom-
ing negative during shortly before the merger for these waveforms. An example of this behavior is
shown in Fig. 4.8 for (11,—0.95, —0.50). While the frequency no significant issues, the amplitude
clearly demonstrates an unphysical and pathological behavior. Similarly, to BAM (18, —0.8,0), the
bare EOB-waveform amplitude is clean and without any clear and present issues that might cause
this effect prior to the addition of the NQC correction factor. It was verified explicitly that
crosses zero for this case, confirming the origin of this unphysical feature. As mentioned above the
appropriate solution of this problem is a modification of the spin-orbit sector of the Hamiltonian,
yet this would require for the inspiral to be recalibrated and retested, which due to the limited

practical impact of this pathology would be unwarranted for TEOBResumS, but to be remembered for
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Figure 4.9: The transition, defined in eq. (4.39)-(4.40), introduces a jump between Atngc = 1 and
Atngce = 4. This jump has potentially the effect that a small change in the parameters could potentially
create a disproportionate jump in the waveform. Thus, it is necessary to access the error introduced by this
transition. To this end the unfaithfulness between waveforms along the border is computed. One waveform
each is generated with Atnqe = 1 and Atnge = 4 and their unfaithfulness is plotted against the typical
mass-spectrum from 10M¢ to 200M.

future models. A pragmatic solution to this problem can however be found in replacing Atnqc = 1
with the increased value Atngc = 4 for the problematic waveforms. Several further configurations
showed this pathology as well and it was possible to identify the region in which it occurs. A
two-step boundary was taken around this area and at the boundary Atnqc = 1 is replaced by
Atnqc = 4. The area in which the change is applied is given as

8 < g < 11 and x1 < —0.9, (4.39)
11 <g<19and x; < —0.8. (4.40)

It is worth pointing out that despite this the lack of dependency on o, the boundary still sufficiently
prohibits the occurrence of the amplitude-pathology for most cases. To estimate the uncertainty this
jump produces in the waveform the unfaithfulness is computed at the border between waveforms
generated for identical parameters with Atngc = 1 and Atnge = 4. As it is found that F (see
Fig. (4.9)) on average falls around 1073, it can be safely assumed that the error introduced through
this modification is limited and will not create additional errors.

The reader should note though, that in some highly extreme cases (see Fig. 4.10) the feature
still survives as the crossing through zero cannot be prohibited by this measure completely, yet this
was taken as trade-off as the error introduced at the boundary is sufficiently low and the effect only
occurs in sufficiently rare cases. Ultimately, to solve this problem the (Gs, G‘s) need to be adapted
to prevent this crossing of the frequency (2 through zero, yet this would require a new determination
of c3 and a repeat of the analysis of the model performance in the spinning sector, which due to the

limited impact seems unwarranted at this stage and will be addressed in TEOBiResumS_SM.

Waveform robustness for large spin magnitudes: Lastly, it remains to be explored how
the model performs for large spins outside the domain of calibration. In particular the waveform

around merger is most strongly adapted to NR and thus might show potential issues. Several
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Figure 4.10: Due to the modified Atxqc given by eq. (4.39)-(4.40), it is important explore the consistency
at peak between the fitted postmerger template and the analytical inspiral waveform. As can be seen largely
the unphysical amplitude is gone for most waveforms. Only two quite extreme waveforms (10, —0.9,—0.99)
and (14,—0.8,—0.99) show a small dip in the amplitude at merger. As these effects only occur in these
very extreme cases and only mildly there, these are acceptable limits onto the model. And in fact it can be
checked that these waveforms become stable and free of pathological features for TEOBiResumS_SM.

waveforms have been computed. Fig. 4.11 shows waveforms, listed in Tab. I of Ref. [53] and used
in the calibration of SEOBNRv4, which have not been available in the calibration of TEOBResumS. To
explore the robustness of TEOBResumS the parameter combinations have been evaluated and plotted
focusing in on amplitude and frequency around merger. It is evident that both amplitude and
frequency perform excellently and no pathological features can be detected. Fig. 4.10 and Fig. 4.12
systematically explore the large spin regions with X1 chosen either to be strongly anti-aligned
(Fig. 4.10) or aligned (Fig. 4.12). Here only two highly extreme waveforms, (10, —0.9,—0.99) and
(14, —-0.8,—0.99), show a sign of the pathology discussed above. Yet these are both highly relativistic
with xo = —0.99 for both, thus for now this is an acceptable boundary to robustness of the waveform.
In future work this obviously has to be improved upon. On a final note it is important to point out
that since (8, 40.85, +0.85) already showed a quite troublesome unfaithfulness it is more than likely
that this will be carried over by all waveforms plotted Fig. 4.12 with 8 > 8. Still the absence of clear
pathological features in the waveform is an achievement on it’s own and suggests that the consistent

choice of the NR calibration between postmerger and NQC should be kept in future updates as well.
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Figure 4.11: Tab. I of Bohé et al. [53] listed several waveforms used in the calibration of SEOBNRv4 not
available in the preparation of Paper I. As a potential sanity check outside the domain of calibration the
parameter combinations are evaluated with TEOBResumS and the waveform is plotted on the level of both the
amplitude (left) and frequency (right) focused in around merger. Demonstrating that that these waveforms
indeed seem to behave qualitatively and quantitatively robust as the parameters are varied even outside the
domain of calibration of both NQC and postmerger template.
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Figure 4.12: The fits of both NQC and postmerger, the peak in particular, have been done in similar
fashion with the same variables for both amplitude and frequency quantities. Here several waveforms with
high-spins and large range of mass-ratios are shown. Both the amplitude (left) and the frequency (right) are
plotted focusing in around merger. The consistency enforced by the fit structure extrapolates exceptionally
well leading to a highly consistent waveform throughout the parameter space.
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Chapter 5

Subdominant modes: The non-spinning

case

This chapter will now extend the discussion of Chapter 4 to include subdominant modes. The
discussion will focus on the non-spinning Waveform model TEDBiResumMultipoles, both from the
perspective of calibration and validation. Chapter 6 will extend this discussion to the spinning sector
with TEOBiResumS_SM. TEOBiResumMultipoles has been introduced in Paper II, calibrated and
validated by in total 19 SXS waveforms and 3 BAM waveforms, listed in Tab. F.14, lines #526 — 547".

5.1 Motivation: Subdominant modes

The necessity of including subdominant modes can be seen by a simple consideration. The fully
calibrated waveform model TEOBiResumMultipoles is compared to SXS:BBH:0303, a non-spinning
binary of mass ratio ¢ = 10, in Fig. 5.1. The waveform generated solely from the dominant quadrupo-
lar mode is shown explicitly (dashed orange), next to the full multipolar waveform (dashed blue),
both compared to NR. This comparison is done for three different inclination angles § = 0,7/3 and
27/3 (corresponding to ¢ as used in other places of this thesis). For § = 0 both agree very well with
NR. For 8 = 7/3 however the (2,2) mode starts to departure from the NR waveform, and 6 = 27/3
it indeed almost vanishes. While the full multipolar waveform remains in good agreement with NR
for all inclinations. This illustrates the effect of subdominant modes. As can be explored explicitly
from eq. (2.4) — (2.5) the relative contributions of the multipoles do depend on the orientation of
the observer relative to the source. And, thus, while in many cases the dominant mode is sufficient
this is not always the case and it is necessary to incorporate subdominant modes into the waveform

model.

5.2 Hamiltonian and waveform

5.2.1 Hamiltonian and the A-potential

The analytical structure of TEOBiResumMultipoles is identical to TEOBResumS as presented in

Sec. 2.3.1 once S; = Sy = 0 is set. There are however two difference between the A-potential

Within this chapter all unfaithfulness computations have been performed exclusively by Geraint Pratten.

69



5.2. Hamiltonian and waveform

no A --- EOB
EOB 22 Only
SXS:0303

0.050

00004 N/ o\ [

____________

h(t)

-0.050

0.050

h(t)

0000 N\ / N\

-0.050 i

0.050

____________

h(t)

A \
0.000 = =N AN
~— N/

-0.050

Figure 5.1: TEOBiResumMultipoles is compared to SXS:BBH:0303, a non-spinning binary of mass ratio
g = 10, on the level of the pure (2,2) mode (dashed orange), and the full multipolar waveform (dashed
blue). This comparison is done for three different inclination angles § = 0,7/3 and 27 /3 (corresponding to
¢ as used in other places of this thesis). As for the former two it shows almost no effect which is used, even
though the full multipolar waveform shows a better agreement with the NR all over. For the last inclination
this is however not the case. The contribution of the (2,2) mode as good as vanishes and while multipolar
waveform remains in good agreement with NR.

used for TEOBResumS and TEOBiResumMultipoles and thus we redefine eq. (4.1) as it was given in
Paper II. The EOB radial potential A is now given as a function of the radius . The A-potential is
upgraded relative to TEOBResumS and taken from the full 4PN-accurate analytical term, completed
by the 5PN logarithmic term [42, 48, 52, 72, 77|, as

APNW) = 1 — 2u + 20u® + vagut + v |af(v) + al® lnu} u’ + v [ag(y) +afnulus, (5.1)

9

here u = 1/r replaced the centrifugal radius and it’s inverse, used in TEOBResumS. The 4PN and
5PN logarithmic coefficients are given as

64
a® = - (5.2)
g, \ 7004 144
ag®(v) = o5 "5 Y (5.3)
where the 4PN coefficient, af(v), was computed in Ref. [48] and is given as
a§(v) = a2 + vag], (5.4)
4237 2275 256 128
c0 2
= 2l e ey 228 5.5
“ 60 sz T Mt Tm (5:5)
221 41
cl _ 2=~ =2
a5 = ——¢ + 337 (5.6)

with the Fuler constant yg. The reader should note that this marks the another difference in the
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A-potential. As stated above TEOBResum$ utilizes, similar to Ref. [82], af fixed to its fiducial value
af = 23.5 [32, 42, 48]. The coefficient a§(v) is chosen to be left flexible and to use it as a vessel for
NR information. Before this coefficient is however fitted to NR, the PN-expanded radial potential
A(u) is resummed using a Padé approximate as

Alus v:a§) = P [AEN(w)] (5.7)
Due to the change of variable from w,. and r. to w and r, it is important to restate the product of

the A and B potential, D = A B which allows to recreate B(r), taken at 3PN accuracy. The D

potential is expanded as a Pé) approximate and reads

1
1+ 6vu? +2(26 — 3v)rud’

D(u) (5.8)
5.2.2 Resummed waveform and radiation reaction:
two different multipolar EOB models

The discussion now turns to the updated resummation used in TEOBiResumMultipoles, which is
the largest update in the analytical sector of the model relative to TEOBResumS. The standard EOB
factorization was first introduced in [81] and have briefly reviewed in eq. (2.33) of Sec. 2.3.2. The

new improved resummation starts at the residual amplitude correction factor fo,, as

fom = lpem(@)]" . (5.9)
The individual pg,,(z) are then factorized in an orbital and spin-dependent part as

b ~
Plm = pgrrn p?m (510)
where the superscript “orb” denotes orbital and the superscript “S” denotes spin, and all factors
are properly resummed following Refs. [123, 129]. This improved resummation, while in the non-
spinning case not yet as noticeable, greatly improved the performance of the TEOB model avatars.
The interested reader is referred to Paper II and Paper 111 as well as Refs. [123, 129] for an in depth

discussion and all necessary details of the improved resummation.

5.2.3 Newtonian prefactors in the waveform

With the NQC factor it is possible to capture several pieces of information that are not yet modeled
within any given TEOB avatar, even if these are not modeled therein. However, there is a limit
to what the NQC factor can correct as already seen on the BAM (8,+0.85,+0.85) waveform in the
previous chapter. During the testing and improvement of TEOBiResumMultipoles it was found that
the Newtonian prefactor could be modified to improve the NQC performance.

The general form of the Newtonian prefactor of the circularized waveform is given as

(N.e)
Im

hin = veps (W)Y e (19 o), (5.11)

(€)

where Y (7/2, ) are the scalar spherical harmonics, n,,,

are parity-dependent constants given in

eq. (5)-(6) of Ref. [81], while ¢sy.(v) represent the leading-order v dependence. In the case of
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5.2. Hamiltonian and waveform

circularized evolution one finds the frequency parameters x = U?z- However, following Ref. |73, 74]
it was proven that the (2,2) mode indeed performs actually better during the late inspiral and
plunge if this constraint (often referred to within TEOB literature as Keppler’s constraint) is relaxed
to x = vgj = (roQ)? with 7, = r¢/3, where ¢ is defined such that v, and 7, satisfy Kepler’s
law 1 = Q2r3 during the approximately adiabatic phase of the inspiral. The standard procedure
within TEOB is commonly to use x replaced by Ui, as it is typically done for the radiation reaction
within TEOB. As a consequence of this choice the amplitude of some multipoles are suppressed and
comparatively small. This fact hinders the performance of the NQC factor that works best if it
does not have to strongly correct the waveform. Further, one finds experimentally for the NQC
factor that if the bare TEOB waveform is in fact larger then the NR amplitude, the performance of
the NQC factor is usually most efficient.

Thus one way to increase the amplitude is to replace v, with vg. However, instead of completely
replacing them an individual choice was made multipole by multipole to effectively mimic missing
analytical information and lead to a better agreement with the NR and an improved performance

of the NQC correction factor. These choices are:

hg’o) = —8\/§1/ vie_m‘p, (5.12)

8i ~
héjlv’l) = —;\/ny/l —4v vie*w, (5.13)

hég’o) =3i %V@UQPU%G_?’W, (5.14)
h = gﬁu(l — 3v)v2vde Y, (5.15)
héll\/,o) = —;@VMU%G_W’, (5.16)
pi0 = —6;\/5/(1 — 3v)v2vde 1Y, (5.17)
D _ % 27”u(2y — )= D odude e, (5.18)
hg,o) = Sgg?y(l — 3v) v,ude H¢, (5.19)
hz(év’l) = 1%\/%1/(2V — DVI — dvvge ™, (5.20)
hgg’o) _ 1 511/(21/ — V1 — dvvdu,e %, (5.21)

12 'V 66

For all other multipoles the Newtonian prefactors in the TEOB waveform are obtained replacing
T = ”3: in Eq. (5.11) as is the common practice. The reader should note that this modification was
not carried over into the waveform multipoles as they enter the radiation reaction. This is clearly an
inconsistency between the waveform and the flux. However, an inner inconsistency between any two
parts of the TEOB model in itself is not necessarily a problem, as the ultimate goal is to reproduce
faithful waveforms. Consistency is however a powerful tool to improve the model and if too many
inconsistencies are build in can potential increase the difficulty of improving the overall model. A
further potential modification of the radiation reaction, aiming to increase its consistency with the

waveform, was explored in Ref. [82]. Therein it was tested how incorporating the (2,1) and (3, 3)
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Table 5.1: The values of a§ obtained through minimizing the EOB/NR dephasing at merger down to the
order of the numerical error §¢N% . These values inform the fitting template given in eq. (5.22). The reader

mrg-

should note that the values of 6¢NE, differ from those given in Tab. F.14 as the later are computed relative

mrg

to the relaxation time, while the former have been evaluated setting the relaxation time to 200M . As these
values of 5¢ﬂf‘g have been used to inform the first-guess values of ag it is best to state them here despite the
difference.
ID q al  d¢NR [rad]

SXS:BBH:0002 1.00 —42 —0.063

SXS:BBH:0007 1.50 —47 —0.0186

SXS:BBH:0169 2.00 —59 —0.0271

SXS:BBH:0259 2.50 —54 —0.0080

SXS:BBH:0030 3.00 —52 —0.0870

SXS:BBH:0297 6.50 —27 —0.053

SXS:BBH:0298 7.00 —26 —0.0775

SXS:BBH:0302 9.50 -—17 +0.0206

NQC corrections in the radiation reaction would affect the model performance. Both modifications
of the radiation reaction would likely come down to a redetermination of ag, and not necessarily
improve the model beyond that. Thus, for now this inconsistency is simply accepted to improve the
model. Should the need arise to correct this inconsistency in the future it can be reimposed and

explored without large effort.

5.3 Calibration of the analytical flexibility

5.3.1 The calibration of ag

As both the waveform and the A-potential have been modified a new determination of ag is in
order?. To do so, 8 SXS waveforms with very small nominal errors are used, see Tab. 5.1. The
first-guess values of ag are determined in the manner already outlined in Sec. 4.2.3 and are listed

in Tab. 5.1. The interpolating fit is obtained with the template of a rational function as

1+ nv + nov? + ngv®
¢ = 5.22
Qg no 1+ le ; ( )

with the fitted parameters being given as

no = 5.9951, (5.23)
ny = —34.4844, (5.24)
ng = —79.2997, (5.25)
ng = 713.4451, (5.26)
d; = —3.167. (5.27)
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Figure 5.2: A comparison of the fits of (AP®™* wP°**) versus SXS and BAM data for the multipoles ¢ < 4,

tm ) hm

1<m <4, and (¢,m) = (5,5). The reader should note that for the multipoles (3,3) and (5,5) the wP®**

Im

at ¢ = 1 was effectively determined by extrapolating ¢ = 1 data with x; # x2 down to @12 = 0, giving an
effective estimate of the frequency at peak of the equal-mass limit. The addition of these points was needed
ensure the proper limit of the frequency when equal-mass case is approached. The reader should further
note that the amplitude plots contain an error in the description of the y-axis as they are normalized to

Agmcf"rﬁ (V) .

5.3.2 Fits: waveform peak frequency and amplitude.

The analytical fits of (AE:;Lak, wZiLak) are build in a simple and straightforward manner, uniformly for

all multipoles. First, leading-order v behavior of the Newtonian prefactor given as
c£+€(y) _ X§+€_1 + (—)Z+6Xf+€_1 7 (528)

is factored out for the amplitude. Second, the test-particle limit (/lgm,w?m), known with high

accuracy (see Tab 3 of Ref. [90]), is factored out as well for all multipoles. Leaving the quantities

2This fit was performed by Alessandro Nagar.
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Figure 5.3: The performance of the primary and global postpeak fit over the multipoles (¢,m) =
(2,2),(2,1),(3,3),(3,2),(3,1),(4,4), (4,3),(4,2),(4,1) and (5,5) of SXS:BBH:0299, a mass ratio ¢ = 7.5
waveform with high accuracy. For each mode the panel is divided into two subpanels, showing the direct
waveform comparison (top) and the performance of both primary and global fit on the levels of phase and
amplitude (bottom). In the top panel, the tick-red lines represent the fitted waveform template (amplitude
is solid, while the real part is dashed) obtained from the primary fit of the eq. (2.46)-(2.47) to the NR data.

This is contrasted by the real part of the NR waveform (thin, orange, dashed line) and the NR amplitude

peak

(dashed, blue). The black, vertical line marks tﬁ’gak, while the blue one corresponds to t5," . Each mode has

a different time normalization given by the damping time of the fundamental QNM as units of 7{™ = 1/a{™
for the shifted time scale ¢ — ti’;ﬁk. The bottom subpanel shows the fit error for both primary and global fit
on the level of phase and fractional amplitude. Comparing the two gives a general very good picture for this

waveform.

to be fitted (A?;ak, dj?ﬁfk) given by the factorization

APK — ¢y (V) A, AP, (5.29)
Whetlt = W beek (5.30)

(Agm, Wem) are plotted versus v for all fitted multipoles in Fig. 5.2. Whenever possible the BAM data
is shown as well. However, not all multipoles are well resolved in the BAM data and thus they had to

be skipped for some. Lastly, (Agm, Wem ) are fitted with a general template of a rational function as

1 + nlff'my + nglm V2

- 1+dlf2my+dé:£myz ’

kom (5.31)
The fit coefficients are listed in Table C.1. All fits have been done with fitnlm of MATLAB. If fitnlm
returned a sufficiently large p-value?, i.e. Z 0.3, for a coefficient, it was set to zero manually and

the fit was redone.

3The p-value of fitnlm indicates the probability of a specific coefficient to be zero as can be inferred from the
data. In the following we simply refer to this quantity as the p-value.
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5.3.3 Fits: postpeak waveform evolution

Similar as for the discussed in Sec. 4.2.7 and Sec. 2.3.4 the fit for (cgl’“’m, cgj‘m, ci’é’”) is done following

the same two-step procedure.

Primary and global fit: The ¢/ = m = 2 postpeak fits are using all 19 non-spinning datasets
in the calibration set. These are the first 19 datasets in Tab. F.14. By contrast, only subsamples
can be used for the subdominant modes, depending on the level of noise and unmodeled features
present in the waveform. One such unmodeled feature is the existence of mode-mixing. Another
feature is the beating between positive and negative QNMs [45]. While in principle it is possible to
average over these effects in the waveform this is not always advisable as this leads to unrealistic
and inconsistent parameters (cé4 tm cgem, cf“") obtained for different waveforms. More precisely the
following datasets are used for the individual multipoles (the numbering of Tab F.14 is shifted by
525, i.e. waveform #2 corresponds to #(525 + 2 = 527)):{2 — 16, 18,19} for (2,1); {2 — 19} for
(3,3); {1 —15,17,18} for (3,2); {2 — 11,13,14,17,18} for (3,1); {1 — 11,13,15 — 19} for (4,4);
{2 -9,13 — 19} for (4,3); {1 — 8,10 — 14,17 — 18} for (4,2) and {3,6,9 — 19} for (5,5). For
each (¢, m), the primary fit is performed over a consistently chosen time interval A7y,,. For the
(2,2) mode ATy, = 47{™ = 4/a{™ was chosen. All multipoles (except £ = m = 5) of the datasets
{1019} (corresponding to q > 6) utilize A7y, = 47{™ as well. The datasets {1—9}(corresponding
to ¢ < 5.5) and the £ = m = 5 mode all over, are fitted over A7y, = 7{™. This choice was driven by
two factors: (i) data quality and (ii) presence of strong mode-mixing (see e.g. bottom, most-right
panel of Fig. 5.3 as a demonstrative example of the data-quality issues in the (5,5) mode). Fig. 5.3
shows both primary and global fit illustrated on the data set SXS:BBH:0299 of a ¢ = 7.5 BBH

waveform.

Mode-mixing: Mode-mixing best understood in the extreme-mass-ratio limit where it was stud-
ied in Ref. [45]. The origin of mode-mixing lies in the fact that during the postmerger-ringdown
phase the natural basis of the GW signal shifts from the typical spin-weighted spherical harmonics
to the spheroidal harmonic base of the final BH. This effect occurs for the ¢ > 3 modes with £ # m
as modes only receive mixed contributions from modes with smaller £ and equal m. Therefor the
(2,1) mode is largely free from any mode-mixing, yet fraught with different challenges, while (3,2),
(3,1), (4,3) and (4,2) all obtain mode-mixing contributions from different multipoles. The lack
of modelization of this effect is reason for the larger scale oscillations in the fit error of phase and
frequency for several of these modes. n conclusion, the postmerger template used here is a simple
and effective average of the waveform to be fitted. It is still physically incomplete, yet is a solid
approximation globally, as will be further explored below.

The fits of (cg4 Zm,c?"m, cff‘“”) were obtained using the function fitnlm of MATLAB. As the func-
tional form of the fitting template was chosen multipole by multipole, it was chosen to list the fits
explicitly in Tab. C.2.

Inspecting the table, it can be seen that for the piece wise fits for ¢ 4

gﬁ‘“ are discontinues

and cj;
in their derivatives with respect to v at their juncture. A more complex fit was in fact needed to

model the (4, 2) phase coefficient ¢j;**, with similar discontinuities in the derivative with respect to
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Figure 5.4: The NR data for ¢ < 4 shows a peculiar double peak structure in the post-peak amplitude of
the (4,2) mode. With a particularly large secondary peak.

P42
4

v was needed. c;** was fitted with the piece-wise function

132.56 — 1155.50 + 2516.81/2

if ¢<o2.
1—3.8231 it =295
554180 +120.23  if 2.5 <q <3, (5.32)
~058736 + 16401 L
1— 4.52020

The need of this complexity originates in the neglect to model mode-mixing in the postmerger. As
can be seen in Fig. 5.4, the effect of mode-mixing is particularly strong for 1 < ¢ < 2.5 leading
in fact to a double peak structure. And in fact the peak introduced by mode-mixing is larger for
1 < ¢ < 2. A model for which mode-mixing would be modeled accurately would like be able to
reproduce the double structure, yet with the template used here the secondary peak is neglected

and the model focuses in on capturing the first peak in an approximate fashion.

5.3.4 Fits: QNM parameters

The QNMs quantities (w{™, a!™) and o4 = o™ — af™ are fitted for all multipoles considered,
exploiting the accurate representation of in terms of x s already utilized in Sec. 4.2.6. The fitting

template thus reads:

L40Y x5 + b3 %3 +bY X3

0 ; , ~ (5.33)
Lol 'xp+ x5+ X3

Yl@m (Xf) =Y’

The fit is following the same approach as laid out in Sec. 4.2.6. The coefficients of the fits above
are collected in Table C.3. All fits were done with fitnlm of MATLAB and coefficients have been set
to zero explicitly if the p-value was significant, similar as described in Sec. 5.3.2. Note that the fits
of(w#?,a2?, a3?) have been updated as well as they contained parameters with large p-value, thus

updating the fits of chapter 4, listed in Tab. B.3.
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5.3.5 Fits: Peak-time-shift

The next step towards completing the NR calibration of the model is the determination fo the
peak-time shift Aty, relative to the (2,2) mode as a function of v. Aty, is defined as

AR = ghenkc — ghoek (5.34)
The test-particle limit At) = (see Table 3 of Ref. [90]) is factored out as
AR = AL) Aty (5.35)

Aty is fitted against v with the template

A 1+ nlAt“”V + 7712&””1/2 5 96
bom = Atom Atom 2" (5.36)
14 dj vH4dy My

The coefficients of the fits, together with the values of At) . are listed in Tab. C.4 explicitly. The

fits have been done with fitnlm of MATLAB. As for the previous fits coefficients with a significant

p-value are set to zero by hand.

5.3.6 Fits: NQC extraction point

The final piece to be fitted are the NQC extraction points Y = {AeNn?c, A?IW(?C’ wyﬂ?c, d)g,?c} Which
are then used to determine the NQC correction parameters (a{m, agm, b{m, bgm) entering the multi-
polar NQC correction factor given in eq. (2.34). Due to a special circumstance the calibration of
the (2,1) is postponed to be treated separately in Sec. 5.3.6 below due to the special behavior in
the test-particle limit. The NQC extraction points are defined following the typical manner laid out
in Sec. 2.3.2 and are fitted after the test-particle limit 1@% is factorized as

YRS = ¥0, YA, (5.37)
For frequency and derivatives the full ¥ dependence is encoded in {’ellQC, while the amplitude fur-
ther exploited the leading order Newtonian dependence on v and is fitted instead as fl?w?c /e (V)]
The fits are listed explicitly in the Tab. C.5.

(¢,m) = (2,1) mode

Fig. 5.5 shows that the onset of oscillations in the frequency right in between both merger and NQC
extraction time. This effect is due to beating of positive and negative frequency QNMs [45, 74, 130].
Thus, it can seen that the test-particle limit is currently unsuited for modeling the NQC extraction
points as this effect is not yet captured in the model and in fact would lead to quantitatively wrong
behavior of the derivatives. For this reasons the test-particle behavior is not factored out for the
(2,1) mode but rather fitted directly all over the available data. The (2,1) fits are listed in the
second row of Tab. C.5.
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Figure 5.5: Amplitude |Us;|/v and frequency ws; plotted in the test-particle limit around the peak of
the mode. The waveform was generated by the code presented in Ref. [90]. As can be see zoomed in

around the peak of the waveform, t2N1QC lies beyond the onset of the beating between negative and positive
QNMs [45, 74, 130] and thus is unsuited to be imposed onto the NQC fits due to the presence of unmodeled
physical effects present.

5.4 Comparing TEOBiResumMultipoles and NR

So far in this chapter presented the individual building blocks that make up TEOBiResumMultipoles,
based on the structure on the TEOB structure introduced in Sec. 2.3. As TEOBiResumMultipoles is

now fully calibrated, it is time to focus on the validation of the model.

5.4.1 TUnfaithfulness

Before starting into the discussion of the unfaithfulness it is important to point that in chapter 4 F
was a simple function of a single parameter for two given waveforms to be compared: the total binary
mass M. Now, as several multipoles are included it also depends on the angular orientation (¢, ).
Thus, F is plotted as a toned region between min-max curves of best and worst case orientation
over the total mass M. With this setup in mind it is now useful to summarize the main results of

the unfaithfulness computation presented in Paper IT as*:

(i) The unfaithfulness computed for the dominant (2,2) mode is well below 1072 for all 19 wave-
forms. As the (2,2) mode was already accurately reproduced all over the non-spinning catalog
by TEOBResumS it is neglected here and the interested reader is referred to Fig. 13 of Paper 11

for a discussion of the (2,2) mode.

(ii) The unfaithfulness computation between TEOBiResumMultipoles and the ¢ = 10 waveform,
SXS:BBH:0303, is shown in Fig. 5.6 for a fixed total mass of M = 100My. The NR waveform
is taken to include the multipoles {22, 21, 33,44,55} and is varied over the entire sky orien-
tation of the source binary. It demonstrates (a) that the (2, £2) mode (right panel) is fully
sufficient in the face-on or face-off case yet strongly degrades in the edge-on case where the
contribution of the (2, £2) mode is weakest; and (b) that TEOBiResumMultipoles reproduces

*As mentioned above, the computation of the unfaithfulness has been carried out by Geraint Pratten.
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Figure 5.6: The full-sky unfaithfulness computed between TEOBiResumMultipoles and SXS:BBH:0303.
The NR simulation represents a ¢ = 10 waveform. The NR waveform is constructed from the multipoles
{22,21,33, 44,55} and compared to TEOBiResumMultipoles over the same multipoles (left) and exclusively
the (2,42) mode (right). The system mass M = 100M is held fixed throughout this computation. The
reader should note that the color scales change by a factor of 100 from the left to the right plot. This
signifies the much worse performance of the pure (2,42) mode when the edge-on case is approached, yet
for the face-on and face-off case it performs reasonably well. Again as expected from general knowledge.
Further it is remarkable how well the full multipolar model performs when compared to NR, staying below
7 x 1073 in the worst case even.
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Figure 5.7: The minimum and maximum unfaithfulness region is computed between

TEOBiResumMultipoles and the BAM ¢ = 18 waveform [101] (left) and the SXS:BBH:0166, ¢ = 6
waveform (right). The vertical dot-dashed line in the left panel shows the minimum mass for which the
entire NR waveform is in band. The TEOB/NR performance for ¢ = 6 is comparable to (though slightly
better than) SEOBNRv4HM, for the same SXS dataset, as can be seen through direct comparison with Fig. 16
of Ref. [70].

{22,21,33,44,55} very well for this system, reaching even in the worst case (edge-on) only
slightly below F < 7 x 1073.

(iii) The single waveform comparison is continued for the multipole set {22, 21,33, 44,55} against

the BAM ¢ = 18 and the SXS:BBH:0166 ¢ = 6 waveform (here showing a similar performance
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Figure 5.8: The minimum and maximum unfaithfulness varied over a grid of the angles (6, ¢) is shown,
demonstrating clearly that the worst case performance is always below 3% for binaries with a total mass
M < 200Mg. The neglecting of mode-mixing in TEOBiResumMultipoles does not show a significant increase
in the unfaithfulness as it seems. The analysis in the top-panel is restricted to ¢ > 2 as the (4, 4) mode shows
several pathological features in the NR for ¢ < 2. The best performance can be found when constraining
the F' computation to the modes {22,21,33, 44,55} (blue). A slight degrading occurs when the (3,2) mode
(green) or all calibrated modes (orange) are added, yet it remains below 3% for all masses up to 200M.
The bottom panel, constrains the mode selection to {22,21, 33}, neglecting the (4,4) mode. This yields an
excellent agreement between TEOBiResumMultipoles and NR for all mass-ratios down to g = 1.

as SEOBNRv4HM demonstrated in Fig. 16 of Ref. [70]). The comparison is shown in Fig 5.7. An
excellent agreement is found for the entire mass-range, though the low-mass cutoff is increased
to 50My for ¢ = 18 and to 20M,, for ¢ = 6. Notably, ¢ = 18 only enters the observable band
fully with a total mass of over 120My. In fact Fig. 5.8 shows that this excellent performance
holds for all mass-ratios ¢ > 2 and can be extended to include all calibrated modes without

exceeding the maximum unfaithfulness.

(iv) Recalling the discussion of Sec. 3.5, the (4,4) mode shows evidence of pathological features in
the region of ¢ < 2 of the SXS catalog. Thus, an additional computation of the mismatch is
presented in the bottom panel of Fig. 5.8 to perform an unfaithfulness computation constrained

to the modes {22,21, 33} for all waveforms down to ¢ = 1 and it is found that the performance
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Figure 5.9: The time-domain comparison for the ¢ = 6 SXS waveform (given by SXS:BBH:0166) compared
TEOBiResumMultipoles. The upper left panel shows the full waveform comparison on the level of phase
and relative amplitude difference, showing an excellent agreement and only a small dephasing accumulated
at merger despite the alignment in the inspiral. The lower left panel shows the direct comparison for the
real part of the waveform. The left hand side of this figure is complemented by the direct comparison
of the (2,2) and (2,1) amplitude and frequency between TEOBiResumMultipoles and the NR. The four
panels on the right hand side show: The NR waveform (black), the bare TEOB waveform prior to NQC and
postmerger attachment (orange-dashed), the the TEOB with NQC corrections imposed (blue-dashed) and the
full TEOBiResumMultipoles waveform, combined with the postpeak waveform (red-dashed). It is noteworthy
that the waveform prior to the addition of the NQC is already in quite good agreement with NR up until
merger. It is also possible to note that the (2, 1) frequency exhibit oscillations in the late ringdown waveform.
This is likely an effect of mode-mixing or potentially due to the excitation of negative frequency QNMs. In
either case it is not captured at the moment by the postpeak-ringdown template.

of TEOBiResumMultipoles relative to the NR data is excellent over these modes as well.

In summary, TEOBiResumMultipoles performs with excellence when compared to several combina-
tions of modes for ¢ > 2, while for ¢ > 1 the analysis has to be constrained to exclude the (4,4)
mode but can still produce excellent results. Improved NR data will be necessary to explore the

q < 2 performance of many subdominant modes, starting with the (4,4) mode.

5.4.2 Time-domain phasing

It is now established that TEOBiResumMultipoles faithfully represents the NR, non-spinning wave-
forms used here. Within this context it is worth it to perrform an explicit, in depth comparison in
the time-domain for the ¢ = 6 waveform, SXS:BBH:0166. With this comparison the following four
points can be made: (i) The bare TEOB reproduces both amplitude and frequency reasonably well
without any further need of NR calibration beyond the parameter af. (i) The effect of the NQC is
small, limited and thus efficient, as is the ideal case for a well build TEOB avatar. (iii) The transition
between inspiral and postpeak waveform can be done smoothly for all modes if the NR information
is taken into account properly. (iv) The description of the postpeak-ringdown waveform is reliable
and robust, even though incomplete with respect to mode-mixing.

The time-domain comparison is shown over Fig. 5.9 — 5.12 and a summary plot is shown in

Fig. 5.13. Studying these figures in depth the following conclusions and observations can be made:

(i) The (2,2) shows an excellent agreement with TEOBiResumMultipoles when aligned in the in-
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Figure 5.10: The continuation of Fig. 5.9, extending the comparison between TEOBiResumMultipoles
and SXS:BBH:0166, ¢ = 6 to the multipoles {33,32,31,44, 43,42} mode, all calibrated to NR. Note that
even though clear effects of mode-mixing are visible, and while not incorporated in the analytical ringdown
description, still did not affect the overall unfaithfulness.

(i)

(iii)

spiral, leading up to only a minimal dephasing, with all likely hood well within the uncertainty

of the waveform, even though this cannot be estimated due to the lack of a second resolution.

The bare TEOB waveform reproduces the frequency across all multipoles accurately until
around the merger. In itself this is already remarkable. Even though uncalibrated on any
level this holds true for the {54,53,52,66} modes as well.

The (2,1) mode postpeak-ringdown waveform lacks in modelization of the oscillation excited
in the late NR ringdown. Due to the shape of the oscillation this could potentially be the
beating of positive and negative frequency QNMs, but it would also be possible that it is an
effect due to mode-mixing. In either case this effect is currently not modeled in the postpeak
waveform, even though it is averaged in a robust manner. For all further modes with ¢ # m
clear signs of mode-mixing can be observed, yet the postpeak waveform averages the amplitude

accurately.

Considering the summary plot Fig. 5.13, it appears TEOBiResumMultipoles, while certainly
not perfectly, still robustly reproduces the waveforms SXS:BBH:0166 of a ¢ = 6 BBH system.
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Figure 5.11: The continuation of Fig. 5.9 — 5.10, extending the comparison between
TEOBiResumMultipoles and SXS:BBH:0166, ¢ = 6 to the multipoles {41,55} mode, thus concluding all
NR calibrated multipoles. Note that even though clear effects of mode-mixing are visible, and while not
incorporated in the analytical ringdown description, still did not affect the overall unfaithfulness. Even
though the (4, 1) mode shows heavy numerical noise in the frequency, it shows qualitative an agreement the
three steps of evolution of NR calibration. The (5,5) frequencies are in remarkably good agreement all over.
For both modes, the NQC-corrected amplitude, close to merger tends to be larger compared to the NR one.
While in the case of the (5,5) mode it seems that NR is sufficiently resolved such that this disagreement is
a potentially physically relevant one, this cannot be said for the (4,1) mode as it is clearly dominated by
noise preventing any statement, on the quality of the waveform comparison here, to be conclusive.
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Figure 5.12: The conclusion of Fig. 5.9 — 5.11 comparing the mass ratio ¢ = 6 waveform, SXS:BBH: 0166,
to TEOBiResumMultipoles. The multipoles {54, 53,52,66} are added, uncalibrated and thus only the bare
analytical waveform is given on the TEOBiResumMultipoles side. The vertical line in each panel marks the
location of the £ = m = 2 waveform peak, i.e. the merger. It is indeed remarkable that the bare frequency
reproduces the NR one with a reasonably good agreement up until merger across al multipoles.
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Figure 5.13: The full picture around merger for the mass-ratio ¢ = 6, SXS:BBH:0166 data set (black
lines). TEOBiResumMultipoles is compared on the level of amplitudes |k, (t)|/ [Vcete(v)] (top panel) and

frequencies wyy, (t) (bottom panel) to the NR waveform.
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Chapter 6
Subdominant modes: The spinning case

The discussion will now turn to TEOBiResumS_SM, the third avatar of the TEOB model introduced in
Sec. 2.3. This chapter will be devoted to the extension of the multipoles of TEOBiResumMultipoles
to the spinning case. After the improved NR calibration is presented, following Paper III, it is
validated on the full NR catalog presented in chapter 3. The model will be evaluated in comparison
to both the calibration set, that was used to inform the model, and the validation that, with some

exceptions, was only used to test the performance of the model.

6.1 TEOBiResumS_SM Hamiltonian and waveform

The structure of TEOBiResumS_SM is take in the non-spinning sector to be that of TEOBiResumMultipoles,
with respect to the A-potential and waveform. For further details on the concrete resumma-
tion and factorization of the waveform the reader is referred to Paper II and Paper III as well

as Refs. [123, 129]. The gyro-gravitomagnetic ratios (Gg,Gg,) are re-expressed as functions of

u = 1/r and r instead of u. and 1/r. as motivated by the discussion in Paper I and the robustness
analysis of the waveform presented in Sec. 4.4. These changes require an improved calibration of

the NNNLO spin-orbit parameter c3(v, a1, az2). And due to the updated availability of an improved
(8,40.85,+0.85) waveform an updated calibration of the postmerger as well as the NQC of the
(2,2) mode is required.

6.2 Improved NR calibration of the multipolar ringdown waveform

It is now time to turn to the improved NR calibration of TEOBiResumS_SM. The updated NR cali-

bration includes:

(i) An improved fit of c3, to account for the changes in the Hamiltonian, the improved resumma-
tion of the waveform and the improved A-potential combined with the updated ag introduced

in the previous chapter.
(ii) Peak amplitude and frequency for the individual multipoles.

(iii) The peak-time-shifts Aty, of the subdominant modes relative to the merger.

Im

(iv) The fits of the NR NQC extraction points (A?;?C, w?n?c, Agﬁ?c, wNQC).
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6.2. Improved NR calibration of the multipolar ringdown waveform

(v) The phenomenological postpeak evolution parameters (cg4 m c:‘f"’m, ciem').

However, the reader should note that in some situations the non-spinning fits of (c? fm cg""‘, cf“”)
presented in Chap. 5 and Paper II are more stable and give overall a more robust representation
of the postpeak waveform. In some situations it was found indeed that the peak and ringdown
are sufficient to capture the spins dependence and thus the non-spinning evolution parameter were
chosen right away.

The fits of the quasi-normal-mode frequencies and (inverse) damping times entering (w{™, a{™, a47")
are given in Paper II and discussed in Chap. 5. Due to their spin-dependence being captured by
the fit of x; presented in Ref. [107] no further modification is necessary.

The NQC extraction points of the waveform are now extracted analytically from the postpeak
template as will discussed below. For the (4,4) mode, however, this procedure was not able to
deliver an accurate time-derivative of the waveform amplitude, so that a dedicated fit is required.
Due to the inclusion of the (¢,m) = (2,2) NQC in the radiation reaction it is here necessary as
well to provide accurate fits for all 4 NQC quantities. Unless otherwise stated all fits are done
using fitnlm of matlab and NonLinearModelFit of MATHEMATICA. All fits exclusively use the data
taken from the BAM catalog, test-particle data and the calibration set of SXS waveforms listed in
Appendix F and detailed in chapter 3. The exception is Atsq, which is informed additionally by

the validation set of SXS waveforms.

6.2.1 NR-informed EOB functions: ag and c3

The fit of a§(v) is used as presented in eq. (5.22) of Chap. 5. The improved fit of ¢3! is done in
an identical manner to the method discussed in Sec. 4.2.3, however with an increased set of NR
waveforms, listed in Tab. 6.1, consisting of 30 SXS and 2 BAM waveforms.

The data of Table 6.1 are fitted globally with a template simplified relative to the one used in
Sec. 4.2.3. The template is given by

1+ 711560 + 712&(2] + ngfb(g] + 7’L4(~13
1+ diag

+ praovV1 — 4v + po (a1 — ag) V2, (6.1)

c3(@r, @z, v) = po

where the fitted parameters are given as

po= 45.235903, (6.2)
ny = —1.688708, (6.3)
ny = 0.787959, (6.4)
ns = —0.018080, (6.5)
ny = —0.001906, (6.6)
dy = —0.751479, (6.7)
p1= 47.3756, (6.8)
p2 = —36.1964. (6.9)

!This fit was performed by Alessandro Nagar.
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6.2. Improved NR calibration of the multipolar ringdown waveform

Table 6.1: Binary configurations, first-guess values of c3 used to inform the global interpolating fit given

in eq. (6.1), and the corresponding cit values.

4 1D (q’ Y1, X2) Cgrst guess Cgt

1 SXS:BBH:0156 (1,—0.95,—0.95) 88 87.87
2 SXS:BBH:0159 (1,-0.90,—0.90) 85.5 85.54
3 SXS:BBH:0154 (1,-0.80,—0.80) 81 80.90
4  SXS:BBH:0215 (1,-0.60,—0.60) 71.5 71.72
5 SXS:BBH:0150 (1,+0.20,+0.20) 38.0 36.92
6  SXS:BBH:0228 (1,+0.60,+0.60) 22.0 21.94
7  SXS:BBH:0230 (1,+0.80,40.80) 15.5 16.25
8  SXS:BBH:0153 (1,+0.85,40.85) 145 15.25
9 SXS:BBH:0160 (1,+0.90,+0.90) 14.9 14.53
10 SXS:BBH:0157 (1,40.95,40.95) 14.3 14.20
11 SXS:BBH:0177 (1,+40.99,40.99) 14.2 14.32
12 SXS:BBH:0004 (1,-0.50,0) 54.5 56.61
13 SXS:BBH:0231 (1,40.90,0) 27.0 26.18
14 SXS:BBH:0232 (1,40.90,40.50) 19.0 18.38
15 SXS:BBH:0005 (1,40.50,0) 34.3 34.34
16 SXS:BBH:0016 (1.5,—0.50,0) 57.0 58.19
17 SXS:BBH:0255 (2,40.60,0) 29.0 29.75
18 SXS:BBH:0256 (2,+40.60,40.60) 22.8 23.68
19 SXS:BBH:0257 (2,40.85,40.85) 15.7 17.73
20 SXS:BBH:0036 (3,—0.50,0) 60.0 60.39
21 SXS:BBH:0267 (3,—0.50,—0.50) 69.5 65.28
22 SXS:BBH:0174 (3,+0.50,0) 30.0 31.20
23 SXS:BBH:0286 (3,+0.50,+0.50) 26.0 27.28
24 SXS:BBH:0291 (3,-+0.60,+0.60) 23.4 24.22
25 SXS:BBH:0293 (3,+0.85,40.85) 16.2 18.48
26 SXS:BBH:0060 (5,—0.50,0) 62.0 61.91
27 SXS:BBH:0110 (5,4+0.50,0) 31.0 29.97
28 SXS:BBH:1375 (8,-0.90,0) 64.0 78.27
29 SXS:BBH:0064 (8,—0.50,0) 57.0 63.23
30 SXS:BBH:0065 (8,+0.50,0) 28.5 28.86
31 BAM (8,40.80,0) 24.5 20.85
32 BAM (8,40.85,+0.85) 16.3 18.11

6.2.2 Modeling the peak of each multipole

The modelization of the peak and postpeak waveform multipole by multipole is done following
precisely the same procedure adopted in the nonspinning case, but incorporating spin dependence
(whenever possible) in all fits. In practice the spin-dependence is included as: (i) complete spin-
dependence for what concerns peak quantities and postpeak fits in all £ = m modes up to £ = 5; (ii)
modes like (2,1), (3,2), (4,3) and (4,

but they adopt the simpler nonspinning fits for the parameters entering the postpeak waveform

2) include spin dependence for peak frequency and amplitude,

description; (iii) the (3,1) and (4,1) mode only rely on nonspinning information. The values at
the NQC determination points are either obtained with dedicated fits of the corresponding NR

quantities, or directly from the postpeak behavior. It will be shown, this approach allows one to
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6.2. Improved NR calibration of the multipolar ringdown waveform

obtain a rather robust description of the ringdown waveform all over the parameter space. Firstly,

it is useful to recall some symmetric combinations of the spin variables that will be useful later on

S1+ S 1

S = e = 5 (&0 + X12(~L12) R (610)
c_S1—5 1 S
S = M2 = 5 (X12a0 + CL12) . (6.11)

Motivated by the leading-order analytical behavior of each multipole, rescaled multipolar amplitudes

Ay, which previously have only been rescaled by v now are redefined as:

Aoy = Ago/ [1/ (1 ~ S'wmﬂ : (6.12)
Aoy = Aoy /v, (6.13)
Asg = Ass /v, (6.14)
Az = Azy/ :1/ (1 — ao (w32/2)1/3)} : (6.15)
Ay = Ags/ -u (1 — ;Smﬂ , (6.16)
Agg = Ays/v, (6.17)
Ap = A/ :y (1 _ &g (u)42/2)1/3)} . (6.18)

Now each mode will be discussed individually.

(¢,m) = (2,2) multipole

The first mode to discuss is by describing the template with which why® and Ahy® were fitted.
The same structure is used both for the amplitude and frequency at merger. The template is here
presented explicitly for wyy ¢, while the same for Ag;rg is obtained by suitably changing the coefficient

labels. The frequency at merger wayy © is factorized as
wyy © = W?zrgowgab(V)wgg(S,Xm) ) (6.19)

where wayy 20 is the value of the merger frequency obtained from a nonspinning test-particle waveform
(see e.g. Tab. 3 0of [90]). The nonspinning v-dependence is then introduced by fitting the nonspinning

data with a template of the form
WP (V) =14 a¥v + a¥1? | (6.20)

where the coefficients a are determined using 19 non-spinning SXS waveforms with mass ratios
1 < my/mge < 10. The spin dependence is introduced in two steps: first one accurately fits
the spin-dependence of equal-mass data. Then, additional flexibility to incorporate the spinning,
unequal-mass data is introduced. More precisely the equal-mass, spin-dependence is obtained with

: Lppmeeg g gmema 2

Wy (S, X123 = 0) W : (6.21)
3
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6.2. Improved NR calibration of the multipolar ringdown waveform

which is informed by 39 equal-mass, spin-aligned, SXS waveforms. The additional dependence on
mass ratio is incorporated substituting into Eq. (6.21)
bwml "2 G X12

e : 6.22
v 1+ CZ»QXlQ ( )

with ¢ = {1,3}. where the additional coefficients ¢;; are fitted using test-particle data, 77 additional
SXS spinning waveforms and 14 additional NR waveforms from BAM. The coefficients are explicitly
given in Table D.1.

(¢,m) = (2,1) multipole

The procedure followed for the subdominant modes is similar to what is done for the (2,2). There
are however some differences. First of all, the peak time shift Aty,, is also fitted to NR simulations.
Second, based on the analytical behavior of the multipolar waveform, it was decided to use differ-
ent factorizations and different variables to model each mode. For example, the (2,1) multipole
(and every m-odd mode) vanishes because of symmetry in the equal-mass, equal-spin case. This
[igfak

motivated the choice of the following factorization for , which is written as

Abeak — beako x 0 ASP (1) + ASP™ (S, 0) . (6.23)

where /lg(fa © is the peak amplitude in the test-particle limit. The factor Aorb is informed by non-
spinning waveforms and is fitted with the template

1 Aoy Ay 2
AgP(y) = v VT (6.24)

1+ a?m

The spin dependence is first captured in the test-particle limit with the function

A0 _ A0 _
Ly i g

ASP(S 1y =0) = o (6.25)
1+b5%S
The v-dependence is then modeled via the replacement
bA81 — b el + CA211/ + c‘421 2 (6.26)
with ¢ = {1,2,3}.
The gravitational wave frequency ws; is instead factorized as
B = Wi ows et (Sv) (6.27)
where the v-dependence of the nonspinning part is modeled as
WP (V) = 14 v + a5 v? | (6.28)
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6.2. Improved NR calibration of the multipolar ringdown waveform

The spin dependence is fitted first in the test-particle limit
WP (5 v = o) S 1B S bhg? (6.29)
and then extended to a general mass ratio via the replacement
I I (6.30)

with ¢ = {1, 2}.
Finally, to represent analytically the time-delay Ato; the following template was used

Ata = AtSPW)AER™ (S, X12) (6.31)
where the orbital behavior is factorized into two separate parts before fitting with

AP (1) = (At21(1 — vy + ATy )
(1 + a1 - 4y) . (6.32)

The factor At;lz /4 s obtained by fitting a 2nd-order polynomial, in a¢ to the equal-mass waveforms.

AtY; is the test-particle value. The equal-mass spin behavior is fitted with

AER™ (8, X1 = 0 A bt
21 12 = ) =1 + b + b2 ag (633)

while the comparable mass case is extrapolated using

At A
bAtu 1/4 bl 21 Ci1t21 X9
! 1452 x
i2 12

: (6.34)

with ¢ = {1,2}. The outcome of the fit, with the explicit values of all coefficients, id found in
Table D.2.
(¢,m) = (3,3) multipole

For this mode, the peak amplitude is written as the sum of two terms

AggakzﬁggakOXleorb( )_‘_ASpln(aw’ )7 (635)

ko

where flgga is the peak amplitude in the test particle limit. The orbital term is modeled as

. 1+ aA331/ + aA33 V2
AGP(v) = ST (6.36)
1+a3%v

The spin dependence is first fitted in the test-particle limit using

bl
ASP™ (9,0 = 0) = % , (6.37)
1 + b2 33&12
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6.2. Improved NR calibration of the multipolar ringdown waveform

and then extended to comparable masses via the replacements

" Ags Asz
bfg?’ — b + Ci1 Vv
1+ cA331/ + cA33

A %3 Ass
b‘;g?’ - b2 oy
1+ CA33V + CA‘“

The instantaneous frequency wss is factorized as
peak Peako orb Spln
W33 wyy w3y’ (V)ws (5 V) )
where
orb( ) 1+ a“33y + q¥33 2
w33 = ay®v + a5 v .

The test-particle spin factor is given by

[N [N

Sein (& L bBS 4 b8

wss | S, v=0)= - ,
1+b5%8

while the general spin-dependence stems from the replacement

w3 w33,
bwgs bi + Ci1

¢ 1+ cf233y

)

with ¢ = {1, 3}.

To describe Atss we start from the expression
Atsz = Atd AP (V) ALE" (S y) :
with

Atorb( )7 1 +aAt33y+aAt33 2 7

®:1+q%5+%%§'

A" (8,0 = 2
1405758

The spin-dependence is obtained from the replacement

At At
bAt83 . b 4 Aty
1 At3s

1+cp

with ¢ = {1,2,3}. The explicit values of the fit coefficients are listed in Table D.3.

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)
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6.2. Improved NR calibration of the multipolar ringdown waveform

(¢,m) = (3,2) multipole

The peak amplitude of the (3,2) mode is fitted with a factorized template of the form
ABS = APS™O (1 — 30) AGP (v) ASE™ (S,v) (6.48)

where flgzeak" is the peak amplitude of the mode in the test-particle limit. The factor flggb is informed
by non-spinning waveforms and is fitted with the template

1 Ass Ass 2
AQP(v) = IV VT (6.49)

1+ aA32

The spin dependence is first captured for the test-particle limit with the function

A9,

2Spin/ & 1+ b %%ag

A" (S v =0)= ——, (6.50)
1+b2326~10

while the v-dependence enters via the replacement

Ag2 b 32 +CA32I/+CA32 2

b, (6.51)
1+ cA321/ + cA32
with i = {1,2}.
The instantaneous frequency wso mode is factorized as
Whs™ = Wi WP (VWi (a0, v) - (6.52)
The orbital dependence is modeled as
WD (1) = 1+ af*v + a*2v? ' (6.53)
w32 1+ a3®v + a®?v?
The spin dependence is fitted first for the equal-mass case
1 bw§2:1/4 ~ bwzl’:z:lM ~2
WP (G0 = 1/4) = —F ot % (6.54)
14035 ag
while the additional dependence on the mass ratio enters via the replacements
wyy 1/4 w32 w32
pe b P X1o + 65" XTy (6.55)
t 1 —|— Cw32 X129 ’
with i = {1,2}. The coefficients of A2S™ and whs™ are explicitly listed in Table D.4.
Moving to Atss, it is given by
Atgy = At AL () AL (5 u) : (6.56)
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6.2. Improved NR calibration of the multipolar ringdown waveform

where the orbital behavior is fitted with

Atso Atza 2

1+aj
1+as

v+ ag

Atorb( )
v+ ay

(6.57)

Atgz At32

The spin behavior is more complicated than the corresponding term of other modes. This is sepa-

rated into two sectors, as

At?gn (5’, V) At;gmwl/s (S, V) O (v—1/5)

spin

+ AL (S y) 1-0@w-1/5) (6.58)

where © denotes the Heaviside step function. In the v > 1/5 regime the fit is first done to the

equal-mass case

1 bAt§2 1/4S b = 1/4}512
A (8 = 1/4) = fl 2 . (6.59)
Aty
1+ by S
Then it is extrapolated following
NG 1/4 bAtg;IM A1532)( 19+ CAtsz X2 Ats2 x3
b; — - ~ ~ Gs 1 (6.60)
1+ (& 43X12 + ¢ t43X2
with i = {1,2,3}.
In the v < 1/5 regime the fit is first done to the equal-mass case
Aty A At 4
in, <15 (4 1+b] 228 + b, 3252
At (8,0 =0) = o oo 2 (6.61)
14 0bg 228
Then it is extrapolated following
A0 b 9 + CAtszy + CAtsz 2 + CAtsz 3
b % = At At ) (6.62)
1+ ¢y v+ ¢ %y
with ¢ = {1,2,3}. The coefficients appearing in Atse are shown in Table D.5.
(¢,m) = (4,4) multipole
The peak amplitude of the (4,4) mode is fitted with
ARG = AR (1= 3v) AP () A" (Sv) (6.63)

where flizak“ is the peak amplitude of the mode in the test-particle limit. The factor fl?lflb is informed

by non-spinning waveforms and is fitted with the template

1—|—CLA44V—|-CL§44 2

Aorb( )
1+ aA44

(6.64)
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The spin dependence is first captured for the test-particle limit with the function

Spin, ¢ 14 bhg 4 gt g2
A (S0 = 0) = T (6.65)
1+ 558

and then extended in the comparable mass region of the parameter space through

. Al A Agg 2
o b; i Ay 4ty
bl 2 7 with i = {1,2,3}.
2

s (6.66)
1+ sy + ci4 ty
The peak frequency wy4 is factorized as
Why™ = Wl WP (v)wip™ (S V) : (6.67)

The orbital dependence is modeled through

orb

14 a*v + a5* 2
wiy (v) =

. 6.68
1+ a3+ aj*v? (6.68)

The spin dependence is fitted first for the test-particle limit as

R 1 Wiy & wly &2 wly &3
spm<8 0) + b, + by* 5% 4 bt S (6.69)
1+ bw33S

The spin dependence in the comparable mass region of the parameter space is modeled through

44 wa4 w44, ,2
b"}’24 N b + G1 vV + Cig V
K

1+ cw441/ + et (6.70)

with i = {1,2,3,4}.

We fit Atyy in a factorized form as

Atyy = At AP (V) ALE™ (S Xlg) :

(6.71)
The orbital behavior is fitted with
1 Atyy Atgy 2
Atorb( ) + aAt v+ aAt , (672)
1 + a 441/ + a 44
while the spinning one is first fitted to equal mass simulations as
AtV:1/4 R
in [ A 1 +b, S
14 b S
The general v-dependence enters via the replacement
v=1/4 v=1/4
bt RTINS PR LD N (6.74)
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with ¢ = {1,2}. The explicit values of the fit coefficients can be found in Table D.6.
(¢,m) = (4,3) multipole
The peak amplitude of the (4,3) mode is fitted with
APeak — Abeko xyo (1 — 20) AQP (v) + ASP™ (@, v) | (6.75)

where flig is the peak amplitude of the mode in the test-particle limit. The factor Aorb is informed
by non-spinning waveforms and is fitted with the template
1+ aA43y + a,A43 V2

AP (v) = i . (6.76)
1+a3*v

The spin dependence is first captured for the test-particle limit with the function

A9, A9,
1 pias pitas 2

0 (6.77)
1+ b5*ag

The spin dependence in the comparable mass region of the parameter space is modeled through

N A
bA23_> b43—|—c43

1

T T (6.78)

with ¢ = {1,2,3}. For the equal mass case however a special fit is made to accurately capture the

correct behavior, i.e.

u 1/4 Av= 1/4 9
. 1 b B a9+ b Baq
k(- 12 12
Agga <a12,V = 4) = A= 1/4 : (679)
1+ b Atz ais
The instantaneous frequency at peak wpea is factorized as
W™ = W ™ (5,v)), (6.80)
where the orbital factor is modeled as
Wb () = 1+ a{®v + ay*v? . (6.81)
W3 14+ aw43y + aZJ43V2
The spin dependence is fitted first for the test-particle case
in [ A 1+0b7 435 bw4352
Wi (S, v = 0) 0 :r , (6.82)
1 + b343S
and then extended to other regions of the parameter space with
b"f’gis b 3 4 Cw43y+ 620243”2 (6,83)
E 1+ 3By ’
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6.2. Improved NR calibration of the multipolar ringdown waveform

where i = {1,2,3}.

For what concerns Atys, it is represented as

Aty = AtS AP () ALED (S u) :

with
Atorb 1+ aAt43V + aAt43 2
() = 1+ am“?’u + aAt43
At A9
X R 1 b 43 S b 43 52
At (8,0 =0) = LEIS 40
1+ by 43§

We then incorporate the general v-dependence via the replacement

Atys Aty3 2

bAt23—>b 43+c v+ Ch
1 + CAt43y + CAt43

7
with ¢ = {1,2,3}. The explicit values of the fit coefficients are listed in Table D.7.

(¢,m) = (4,2) multipole

The peak amplitude of the (4,2) mode is fitted with a factorized template of the form

AR = A (1 3v) AP (v) A" (S.v)

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

where fligako is the peak amplitude of the mode in the test-particle limit. The factor AL is informed

by non-spinning waveforms and is fitted with the template
Aorb( )_ 1—|—aA42V+aA42 2
The spin dependence is first captured for the test-particle limit with the function

A0 A A0 A
Lyt it

N
A (S =00 = 1 ppihg g
T 0375+ 0y

The general v-dependence is then taken into account via the replacement

. o A42

A9, b + ¢y

b, ¥ — 71 A
sz 14

with i = {1,2,3,4}.

. k . :
The instantaneous frequency why " is factorized as

peak _  peakg orb Spin [ &
Wiy =wgy Cwiy (Vwyy S,V

(6.89)

(6.90)

(6.91)

(6.92)
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6.2. Improved NR calibration of the multipolar ringdown waveform

The orbital dependence is modeled through

1+ ai*?v + a3*? 2

rb
wip' (V) = 1 T T G (6.93)
The spin dependence is fitted first for the test-mass case with
- R 1_|_bw22$v+bw22§2
WP (S, = 0) , (6.94)
14+ b3425 4 bw4252
and then the general v-dependence is taken into account via the replacement
bng bw42 + C;ufml/ (6 95)
‘ 1+ v+ e?v? 7 ‘
with i = {1,2,3,4}. The delay Aty is fitted as
Atgy = At AL () AR (S u) : (6.96)
where
1 Aty Ataz 2
Aty = UV (6.97)
1+a5*v+ay, *v
At9
in [ A 14 by 428
AEE™ (S,v=0) = TEh (6.98)

L+ 5%

For v < 6/25 the spin factor is approximated by the test-particle fit. For the other regions, it is

extrapolated using

At At
0 b 42 42
btz +—At (6.99)
1+cy™*
with ¢ = {1,2}. The explicit values of the coefficients of the fits are listed in Table D.8.
(¢,m) = (5,5) multipole
For this multipole, the peak amplitude is written as the sum of two terms as
Abeak — AP0y 10 (1 — 20) AZP (1) + ASP™ (Gyg,v) (6.100)

ko

where flg;a is the peak amplitude in the test particle limit. The non-spinning v-dependence is

modeled as

AZP (1) = 1+ a5y + afosp? (6.101)
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The spin dependence is first fitted to the test-particle limit using

A bAg5a
A g,y = 0) = —Lo—=— (6.102)

1+ 655Gy,

and then extrapolated to the comparable mass region through

b/l()r
'\0 [als]
bl : (6.103)
1+ c1 v+ cA55
AO
0 pilss
by — 2 . (6.104)
1+ 02 v+ 02 J155,,2
The frequency of the (5,5) mode is factorized as
B = WEMoug st (Sv) | (6.105)
where
1 w55 ws5,,2
wgy) = AL (6.106)

1+ a3*v

and the test-particle spin factor is given by

0 A

. 140558
WP (Sov=0) = e (6.107)

1+ 5558

The spin dependence in the general case is obtained by means of

OO wdk)
b‘f’g5 b + Ch'V

4 NI
2 1 + 020255]/ Y (6 08)

with ¢ = {1,2}. Note that, in this case, we do not incorporate spin-dependence in Atss, but only
rely on the nonspinning fit of Ref. [133]. The coefficients of the fits if AP and wPE™ are listed in
Table D.9

6.2.3 NR-fitting of the postpeak parameters

The discussion turns now to the fits of the postpeak evolution parameters ( cst g"” jf“”) for (2,2),
(3,3), (4,4), (5,5). The fits that explicitly depend on the spins of the black holes are presented
here. By contrast, the same parameters for the other multipoles (2,1), (3,2), (3,1) (4,3), (4,2),
are approximated by the spin-independent fits of Paper II. Even though the best fits obtained of
(c g‘” Z’“) and (cg“‘*, cf“), it is preferred not to use them as to improve the robustness of the model.
Here too the fits of TEOBiResumMultipoles model are used to get a more robust behavior of wss

and wy4 in all corners of the parameter space. This choice will be discussed further in Sec. 6.2.3.
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6.2. Improved NR calibration of the multipolar ringdown waveform

The (¢,m) = (2,2) postpeak

The data of (0’34 22,0?”, ci’”) were extracted from NR fitting the NR waveforms in the calibration
set over an interval starting at the peak of length 4732,

The fits are done in three steps, based on the model

Y(v; S) = by (1)+b) (X12) S+ by (X12) 52
+bY (X12) S + b)Y (X12) 5% (6.109)

In the first step Y (v; S = 0) is fitted to the non-spinning data. In the second step bY (X2 = 0) are
fitted to the equal mass data. In the third and final step the fits are extrapolated to the comparable
mass case imposing the 1-D fits informed in the previous two steps. The coefficients of the fit are
listed in Table D.10.

The (¢,m) = (3,3) postpeak

The data of (c§433, c§33, 0233) were extracted from NR fitting the NR waveforms in the calibration set

over an interval starting at the peak of length 1733, The interpolation is modeled with the template
Y(v; S) = by (v)+b) (X12) S. (6.110)

While for the case of 03433 the fit is done versus aj2. The fits are done in two hierarchical steps. (i)
by (v) is fitted to the non-spinning data. (i) b} (Xi2) is fitted with a quadratic polynomial, while
imposing the fit of b} (v). The fits are given explicitly in Table D.11.

The (¢,m) = (4,4) postpeak

The data of (03‘444,0?44, cf“) were extracted from NR fitting the NR waveforms in the calibration

?44 7 6244 )

set over an interval starting at the peak of length 17{*. The interpolation of (c is modeled

with the template
Y(v; §) = by (v) +bY (X12) S + by (X12) 52 (6.111)

in three steps, similar to the the (2,2) mode. (i) b} (v) is fitted to the non-spinning data. (ii)
by (X12 = 0) is fitted to the equal mass data. (iii) The full dependence of b} (X12) on X1 is fitted
while imposing the one-dimensional fits informed in the first two steps. cg‘ 44 18 modeled with the

template

A

A A cAaa caa cAaa 0
c3*(v; S) =0 (v)+b2® vS+0b* vS°. (6.112)

Aqq
The fit is is done in two steps. (i) b (v) is fitted to the non-spinning data. (ii) The coefficients

Aqq
b?’ are informed using the spinning data, while imposing the non-spinning fit. The fits are given
explicitly in Table D.12.
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— SXS:BBH:1124 — SXS:BBH:1146 ——
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Figure 6.1: In this figure we compare the frequency Mwy4 for the two NR waveforms (black) SXS:BBH:1124
(1,0.998,0.998) (left panel) and SXS:BBH:1146 (1.5,0.95,0.95) (right) with the corresponding EOB wave-
forms, once obtained using the fits of Ref. [133] (right panel) and once with the spin-dependent fits (green).

The (¢/,m) = (5,5) postpeak

The data of (c?sf’, c?“, cjf“) were extracted fitting the NR waveforms in the calibration set over an

interval of length 79 starting at the peak. Their dependence on spin and mass ratio is modeled as
Y(v; 8) =0 (v) +b] (X12) S+ by (X12) §2. (6.113)

, For the case of 03455, we use the same functional form where however $ is replaced by aia. The
fits are done in two hierarchical steps: (i) bf (v) is fitted to the non-spinning data; (ii) b (X12)
are fitted with a linear polynomial, while imposing the fit of b (v). The fits are given explicitly in
Table D.13.

Motivating the choices for the (3,3) and (4,4) postmerger phases

:?337 02533) %544’ 01544)

As mentioned above, the spin dependence of (¢ and (¢ is neglected. This choice was
made so to ensure a more robust behavior of the frequency at the beginning of the ringdown when the
spins are positive and large. Inspecting the behavior of wyy for two highly-spinning configurations il-
lustrates this argument. Figure 6.1 shows EOB/NR comparisons with two EOB waveforms obtained
with either the nonspinning fits (red online) or those with the full spin dependence (green). One
sees that the spin-dependent fit performs rather well for SXS:BBH: 1124 (1,0.998,0.998), consistently
with the fact that we used SXS:BBH:0178, with parameters (1,0.9942,0.9942), to inform the fit. By
contrast, one sees that the same description applied to a different configuration, (1.5,0.95,0.95),
corresponding to SXS:BBH:1146, does not perform equally well, with a nonnegligible gap between
the EOB and NR frequencies accumulating right after the peak. One finds, however, that remov-
ing the spin-dependence in (c?‘“,cf“) allows one to obtain a much closer EOB/NR consistency
for SXS:BBH:1146. For the other case, moving to the nonspinning description slightly worsens the
agreement, both before and after the waveform peak. On the basis of these results, and especially
seen the rather good F behavior illustrated below in Fig. 6.8, it was decided to chose the simple
02447 02544)

option of removing the spin dependence in ( . The same rational also applies to the (3,3)

mode. Clearly, in case of very high-spins, currents fits should be improved to some extent, increasing
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6.2. Improved NR calibration of the multipolar ringdown waveform

the calibration set so to incorporate more points in that corner of the parameter space. This will

be investigated in future work.

6.2.4 Modeling the NQC extraction points

The discussion will now turn to the updated fits of the NQC extraction points defined as in Sec. 2.3.2.

The (2,2) NQC extraction point

For the (2,2) mode the NQC-point quantities {AIQ\IQQC, AIQ\IQQC, wQNQQC, w;“QQC} are fitted directly. The

3-piece hybrid fit, presented in [132] and Paper I is modified for ¢ > 4. The fits of {AIQ\IQQCwQNQQC

are done using the template discussed already for the peak. The reader should note however that
the fit of wQNzQC has additional flexibility. The replacement in (6.22) is also done for i = 2 for this
case.

I . . 1NQC . NQC .

n the following the fitting of A,,* and wy,~~. Both rely on the same template thus it is only
given for the former explicitly. To fit the time derivative of the amplitude at tNnqc it was proven

useful to not fit it directly, but to fit AQNZQC / ngNQQC, starting with the following factorization

ANQC ’.\N C ?NQC n “
% = |AY00 () + Ay (X12,5>} : (6.114)
VCL)22

The nonspinning contribution is fitted as

2 iNQC AgT2QC

AgIQQCorb V) =1+ a‘1422 v+ d V2. (6.115)
The spin-dependence is represented as
. ' . iNQCi =my NQCmy=mgy
A2N2QCSp1n (XlQS) — b‘f22 S _|_ b11422 52 . (6116)

The extrapolation to the m; # mo regime is done via the replacement

NQCpy =my NQCy; =iy NQCrn ) =y

b2 bl 4ot X1, (6.117)

3 (2 (3

with ¢ = {1,2}. All coefficients are listed explicitly in Table D.14.

Calculation of NQC quantities from the postpeak analytical waveform

NQC NQC ;iNQC .NQC
Afm Wom ’AEm w

’ " im

The discussion will now focus on the computation of the NQC quantities (
from the NR-informed analytical description of the postpeak waveform, defined in Sec. 2.3.4. Al-
though the formulas have to be intended valid multipole by multipole, in the following the (¢, m)
indexes are dropped for clarity. The analytical expression for the amplitude and its time derivative

read

102



6.2. Improved NR calibration of the multipolar ringdown waveform

_totpeak t—t
Apjv=e ' MEn [c{‘ tanh (c‘;peak + c§4> + Cf:| , (6.118)
Mpn
A A 70‘1t1v3#eak 2 [ At—lpeak A 70‘1?#%1( A Al—lpeak A A
_ cyeye BH sech” ( ¢y 7= + ¢3 ate BH ¢y tanh ¢y o= 4o ) + ¢
Anfv = Mgn - Mgn ’
(6.119)
while those for the phase and its derivatives read
¢ —tpeak ¢ t—tpeak
¢ ~Ca b —2¢;
t—1 1 Mpy Mg
bp = — wy Pk oy [ 1 GC ¢+ C‘f , (6.120)
Mgy 14+c3+c¢y
wn = — dp = wi 0cd c?w(t) +2¢022(t) (6.121)
M2, Mpu1+ ch(t) + cffasQ(t)7
2 2
e cfcg) cgz‘(t) + 4cfm2(t) cgz‘(t) + Qsz:z(t) 6.1
wh__¢h_M2 b b 9 - b b 9 ) ( )
BH | 1+ c5z(t) 4+ cja?(t) 1+ c5a(t) + cya?(t)
where the quantity = is given as
_C¢ t_tpeak
z(t)y=e 2* Meu . (6.123)

The waveform quantities needed to compute the NQC correction to amplitude and phase are simply

obtained by evaluating the above expressions at t = tZNn?C = t?;ak + 2 multipole by multipole.

The fitted derivative of the (¢,m) = (4,4) amplitude at the NQC extraction point

Unfortunately, the accuracy of the derivative obtained with the above template does not always
have sufficient accuracy. This is due to insufficient flexibility of the fitting template, that will be
modified in future work. To overcome this difficulty, an explicit fit of the amplitude time-derivative

is given. The derivative of NQC amplitude is separated in two terms as
ARRC = vARPCOATP (1) + AT (S, v) (6.124)

where A4N4QCO is the peak amplitude in the test particle limit. The non-spinning behavior is modeled
with

L o, A
% orb +a v+a v
AZEL (V) = 1-NQC ZNQC (6'125)
l4+az;* v+a,™ v?
The spin dependence is first fitted to the test-particle limit using
25 5
2Spin, & b S
A44Il) (S,V = 0) = ! ANQC (6126)
1+b,* S
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Figure 6.2: EOB/NR unfaithfulness for the £ = m = 2 mode obtained from Eq. (A.12). Left panel:
computation using SXS waveforms publicly released before February 3, 2019. Right panel: same computation
done with BAM waveform data. As explained in Sec. 6.2.1, a subset of all this data (see Table 4.1) is used
to inform the ¢ EOB function. Comparison with Figs. 1 and 3 of Ref. [135] allows one to appreciate the
improvement with respect to the original implementation The reader should actually note that we changed
from the, outdated, zero-detuned, high-power noise spectral density of Ref. [145] used in Ref. [135], to its
most recent realization, Ref. [11]. of TEOBResumS. Comparison with Fig. 3.1 highlights that the FEOB/NR is
either of the order of, or larger than the NR/NR uncertainties.

and then extrapolated to the comparable mass region through

ANQC ANQC
AR o by * +ct v

bl " ANQC ) (6127)
1+c5* v
ANQC ANQC
INQC pilaa
b 2 Tl Y (6.128)

ANQC
1+ 02 v

The explicit coefficients of the fits are listed in Table D.15.

6.3 The ¢/ =m =2 mode: EOB/NR unfaithfulness

The discussion now turns to the performance of the analytical waveform model in terms of unfaith-
fulness between TEOBiResumS_SM and the full NR calibration and walidation sets plotted for the
¢ = m = 2 mode, obtained computing Eq. (A.12) between TEOBiResumS_SM and NR waveforms,
using the PSD presented in Ref. [11]. Further details are given in appendix A. Figure 6.2 shows the
comparison with the calibration set already used to validate TEOBResumS. The global performance
of the model is largely greatly improved with respect to TEOBResumS as discussed in Sec. 4.3. Re-
markably, the model performs excellently also for large mass ratios and large spins, without any
outlier above the 1% threshold, but even F]glgg /NR S < 0.5% all over, meeting the NR uncertainty
level conservatively set in Sec. 3.3.1 for both SXS and BAM data.

The walidation set of an additional 420 SXS waveforms is shown in Fig. 6.3. It is found that
Fmax r always remains below 0.85%, a value reached only by one dataset, (1.5,+0.95,40.95)

EOB/N

SXS:BBH:1146, while for all others it stays at FESE/NR < 0.4%. This outlier is not surprising

since the sets of NR waveforms used to inform c3 do not cover the region of 1 < ¢ < 2 with
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Figure 6.3: EOB/NR ¢ = m = 2 unfaithfulness computation with SXS waveform data publicly released
after February 3, 2019. None of these datasets was used to inform the model in the dynamical EOB functions
(ag, c3), although several were used for the postmerger waveform part. It is remarkable that FE‘S‘E /NR is
always below 0.4% except for a single outlier, red online, that however never exceeds 0.85%. The plot
includes five exceptionally long waveforms, each one developing more than 139 GW cycles before merger,
SXS:BBH:1412, 1413, 1414, 1415 and 1416 (blue online).
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Figure 6.4: EOB/NR unfaithfulness for all available non-spinning datasets. The analytical waveforms are
evaluated with (x1,x2) = (0,107%), so as to probe the stability of the model and its robustness in this
regime.

the exception of one single dataset with (1.5,—0.5,0). In this respect, to better understand the
behavior of this outlier it was checked that the fit of c3 yields for this parameter combination
cit(1.5,40.95, +0.95) = 15.96 leading to an accumulated phase difference~ 4.7 rad at merger once
the two waveforms are aligned during the inspiral. Interestingly, by lowering the value of c3, and thus
increasing the magnitude of the spin-orbit effective coupling and thus making the EOB waveform
longer, one can easily reconcile it with the NR data. For convenience this result is illustrated in
Fig. 6.6, that is obtained with ¢3 = 11.1 (the two dash-dotted vertical lines indicate the alignment
region). We also point the reader to Table F.8, where the NR uncertainty for this dataset is
estimated to be Fyr /NR = 0.0446%. On a different note, this suggests that the current model could
be additionally, and easily, improved by also considering SXS:BBH:1146 to inform cgt. Yet, this
results highlights the robustness of our model: without any additional input from NR simulations

to determine cs, it is able to deliver rather accurate waveforms even in a region of the parameter
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Figure 6.5: Global representation of FESE/NR all over the SXS (555) and BAM (19) NR simulations. The
various SXS subsets, nonspinning (black online, 83 waveforms), merger-ringdown calibration (blue online,
116 spin-aligned waveforms) and validation (red online, 359 spin-aligned waveform) discussed in the text are
represented separately. The plot shows the fraction (expressed in %) n/Nset, where Nyt is the total number
of waveforms in a given NR-waveform set and n is the number of waveforms, in the same set, that, given
a value F', have F22% > F. The colored marker highlight the largest values in each NR dataset. Note

EOB/NR
that this plot incorporates 420 new SXS waveforms that were not included in Fig. 6 of Paper L.
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Figure 6.6: Improved EOB/NR phasing comparison for SXS:BBH: 1146 when the value of c§* = 15.96 used
in Fig. 6.3 is lowered to ¢3 = 11.1. Top panel: (relative) amplitude and phase differences. Middle panel:
real part of the waveform. Bottom panel: gravitational frequencies. For convenience, also twice the EOB
orbital frequency 22 is shown on the plot. The dash-dotted vertical lines indicate the alignment frequency
region, while the dashed one the merger time. This comparison illustrates that SXS:BBH:1146 is an outlier
in Fig. 6.3 only because of the rather limited amount of NR waveforms used to inform cft.

space previously not covered by NR data. The model performance is summarized in Fig. 6.5. For
each dataset considered above, the figure exhibits the fraction of waveform whose F‘é‘g‘% /NR is larger
or equal a given value F. Thanks to the additional analytical information incorporated and to the
improved waveform resummation, TEOBiResumS_SM is currently the EOB model that exhibits the
lowest EOB/NR unfaithfulness for the £ = m = 2 mode.
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Figure 6.8: EOB/NR unfaithfulness computation putting together all £ = m modes up to ¢ = 4. Plot-
ted is the worst-case performance maximizing the unfaithfulness over the sky, Eq.(A.12). The worst-case
mismatches arise from near edge-on configurations, when the power emitted in the (2, 2) mode is minimized.

6.3.1 Long-inspiral Numerical Relativity waveforms

Now a brief comment is given on 5 exceptionally long NR waveforms contained in the validation set.
To explore the possible impact of these waveforms they are compared to TEOBiResumS_SM in the
time-domain. Fig. 6.7 shows this comparison for the particularly interesting case of SXS:BBH:1415.
A waveform of a (1.5,40.50, 40.50) BBH system. Interestingly enough, the phase alignment fails for
low frequency and it is required to consistently increase the frequency window until [Mwy,, Mwg] =
[0.038,0.042] is reach for which a stable alignment is finally successful. What is even more interesting
is that it seems that drift exists in the phase of the NR waveform relative to the TEOBiResumS_SM
waveform that a priori seems unphysical. as can be seen in the top-right panel of Fig. 3.1 the
unfaithfulness for low frequency with respect to the second highest waveform is quite large. For
now this is merely an interesting observation. It seems likely that the TEOBiResumS_SM in fact is
more physical ag it is primarily informed by analytical sources of information assumed to be more

accurate at low frequencies, such as PN and GSF theory.
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Figure 6.9: Behavior of (2,2), (3,3) and (4,4) modes for a few, illustrative, spin-aligned configurations
with ¢ = 3: comparing NR (black) with EOB (red) waveform around the peak of the EOB (2,2) mode
(dashed blue vertical line). Each panel plots the real part (left columns) and the instantaneous frequency
(right columns).

6.3.2 Nonspinning limit

AS an addendum to the excellent performance of TEOBiResumMultipoles in the non-spinning sector
it is tested how TEOBiResumS_SM performance when the spins are low. To check the consistency with
the non-spinning limit the unfaithfulness is computed between TEOBiResumS_SM and 89 non-spinning
NR waveforms listed in Tab. F.14-F.15. Figure 6.4 shows Fpop /NR for the 89 SXS nonspinning
waveforms with TEOBiResumS_SM evaluated at (x1,x2) = (0,107%). Only two waveforms show a
large Fgr/ng value: SXS:BBH:0093 (¢ = 1.5) and SXS:BBH:0063 (¢ = 8), though both remain below
8 x 107*. Consistently with Paper 1I, Frop /NR shows a very well behaved unfaithfulness all over.
The largest unfaithfulness is reached by the BAM, ¢ = 18 waveform at max(Fgop /NR) = 0.2533%.
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Figure 6.10: EOB/NR unfaithfulness, maximized over the direction from the sky, when including (2, 2),
(2,1) and (3,3) modes. Here we only consider a subset of the SXS waveforms with x; > —0.4, where the
(2,1) EOB waveform mode does not present pathologies. The worst case configuration is SXS:BBH:0239, a
binary of mass ratio and spins (2.0, —0.37,40.85).

6.4 Higher multipolar modes

6.4.1 Multipoles (2,2), (3,3) and (4,4)

It is now time to move the discussion onto the validation of the subdominant modes?. The quality of
the waveform model is illustrated with four ¢ = 3 configurations, with equal spins, both aligned or
anti-aligned to the orbital angular momentum. More precisely, (3, —0.85, —0.85), (3, —0.60, —0.60),
(3.—0.30, —0.30) and (3,40.60, +0.60) are used. This behavior can be considered fully representative
over the entire SXS catalog. Figure 6.9 illustrates the behavior of the (2,2), (3,3) and (4,4) mode.
For each multipole, the real part of the TEOBiResumS_SM and NR waveform are shown together
with the instantaneous GW frequency wy,,. The TEOBiResumS_SM waveform is aligned to the NR
around merger, so to focus in on the excellent agreement between the waveforms around merger.
The EOB/NR agreement is rather good either for spins both anti-aligned or aligned with the orbital
angular momentum. It is however prudent to point out that when the spins are large and aligned
there is an increasing dephasing accumulating between the EOB and NR (4,4) mode. This can
be seen in Fig. 6.9 (a). As it was the case for the £ = m = 2 mode discussed above, a global
understanding of the actual performance of the model requires the computation of the EOB/NR
unfaithfulness. While in the previous chapter the range from best to worst case of the unfaithfulness
was computed here only the worst case is considered. In Fig. 6.8, this is shown explicitly for the
¢ = m modes up to £ = 4, finding excellent agreement up to ~ 120Mg above which the model
performance degrades slightly and moves above 3%. As one would expect the worst case scenario
is always the edge-on case for which the excellent (2,2) mode is most suppressed. Further the
worst mismatches occur for mass ratios 1 < ¢ < 1.5 and equal-spin configurations. These are in
particular the cases for which the m = odd modes are suppressed. For these binaries, the degraded
performance can be seen to correlate with the (4,4) mode, both the TEOBiResumS_SM and on the

NR side, increasingly failing to be physically accurate.
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6.4.2 Other subdominant multipoles

It is now useful to only summarize the thorough analysis of the (2,1), (3,2), (3,1), (4,3), (4,2) and
(5,5) modes?.

(i) When the peak of a given subdominant mode hy, is significantly delayed (~ 7 — 8 M) with
respect to the peak of the dominant hso mode, which can happen for most m # ¢ modes, in
particular for (2,1), (4,3) or (3,1), a crossing of the € into the negative prevents the correct
determination of the NQC.

(ii) The postmerger reproduces a robust waveform all over the parameter space even though it

does not model effects of mode-mixing or the beating between positive and negative QNMs.

(iii) Fig. 6.10, shows the mismatch for the {22, 21,33} modes already showing a strong outlier for
waveforms with y; > —0.4. The unfaithfulness only exceeds the maximal bound of 3% for

two waveforms. And this case only slightly.

(iv) For a few select waveforms with mild spins an explicit comparison between TEOBiResumS_SM is
shown for all modes, indicating that the NR calibration works sufficiently well for mild spins,

as for larger spins the analytical model underlying is not sufficient to perform an analysis.

6.4.3 Peculiar behavior of m = 1 waveform amplitudes for 1 < q < 2.

It is finally interesting to point out an interesting aspect captured in the TEOBiResumS_SMmultipolar
waveform. Ref. [70] pointed out that a peculiar feature, a minimum, appeared in the late inspiral
waveform for the (2,1) mode of several waveforms with approximately equal mass and oppositely
aligned spins. Paper III further explored this topic going into several details that while very in-
teresting but it is chosen to only remark upon it briefly by a single example. As can be seen in
Fig. 6.11 — 6.13, SXS:BBH:1466 is one such data set containing a minimum. And in fact this is
reproduced with high accuracy by the bare TEOBiResumS_SM, without NQC corrections. Further
the full model accurately reproduces the waveform with the peculiar (2,1) mode included on the
level of unfaithfulness. Paper I1I manages to go deeper and actually predict the minimum for several
further waveforms and find waveforms overlooked in Ref. [70]. The interested reader is directed to

the discussion in Paper III.

6.5 Fitting the NQC parameters

We will briefly review the NQC parameters for clarity. Each multipole (¢,m) is modified by 4
NQC parameters (a™, a§™, b4™, b5™). (a{™, as™) determine the NQC correct of the amplitude and
(b™,b5™) determine NQC correction to the phase and frequency of the multipole (¢£,m). The
parameters (a2, a3?) hold a special place among them. They are the only parameters that also enter
the radiation reaction of the waveform. Thus, allowing to iterate on them. The first evaluation of
the model is started with (a3?,a3?) = (0,0). Once the waveform is generated (a{™,a4™,b™, b5™)

are generated by solving a set of 4 coupled equations by imposing NR-informed fits of Amplitude,

2The unfaithfulness computations of the subdominant modes was performed by Geraint Pratten.
3 As this analysis was performed by Alessandro Nagar and Geraint Pratten and does not utilize additional methods
not yet employed in this thesis, it is only referenced here.
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Figure 6.11: Mode (2,1): comparison between the EOB amplitude (orange) and the corresponding NR
one from dataset SXS:BBH:1466. The purely analytical EOB waveform multipole can accurately predict
the location of the minimum (that analytically is a zero of the modulus) consistently with the one found
in the NR data. The excellent agreement shown is obtained naturally, without the need of calibrating any
additional parameter entering the waveform amplitude. The dashed vertical line corresponds to merger time,

i.e. the peak of the £ = m = 2 waveform. The cusp in the analytical amplitude occurs because of a zero in
f5, as illustrated in Fig. 6.12.
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Figure 6.12: Complementing Fig. 6.11: the behavior of the resummed versus non-resummed amplitude
versus z = Q2/3,

Frequency and their first derivatives. The resulting values of (a3?,a3?) are then used as input in
the radiation reaction. This process is repeated until a convergence is found. Hereafter and prior
to this section, we refer to (a3?,a3?) as (a1, asz).

(a1, az2) has been generated for a large number of waveforms up to a total mass-ratio of ¢ = 30

with x = x1 = x2. The NR informed fits are structured in 4 different regions:
1. X1 = X2 = 0,
2. Spinning, equal-mass sector with v > 0.2485,

3. 0.2485 > v > 0.16, spinning sector,
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Figure 6.13: The minimum and maximum EOB/NR unfaithfulness for SXS:BBH:1466 over the whole
sky. The blue curve uses the (2,2),(3,3) and (4,4) modes. The purple curve uses the (2,2),(2,1) and (3, 3)
modes. Worst case mismatches occur near edge on configurations with the unfaithfulness being below 3%
up to 200Mg.

4. 0.16 > v, spinning sector.

The fits of (a1, a2) are structured accordingly due to the slightly different values of (a1, a2) at the
border. The mismatch at the border due to the jump is not significantly large. For large negative
spins no bad behavior shows up, but a choice was made for the robustness of the model to to hard
fix Atnge = 4 instead of the large negative spins and large mass ratios, see Ref. [135] for further
details. This choice creates a small jump thus this region is merely extrapolated from the rest. This
works particularly well since (a1, a2) are very stable for large negative spins and large mass-ratios.

For large positive spins (ai,ag) diverge for increasing iteration. This shows up as ¢ = 30 the
maximum spin is xy = 0.6. While for ¢ = 18 and below spins up to x = 0.85 are used. The fits are
presented in Appendix E.

We will now evaluate these fits. We compute the TEOBiResumS_SM with NR, using the fits of
(a1, az)without iteration. Two major differences exist. Firstly, the validation is done using also the
PA approach. Secondly, the results presented so far have been obtained with the MATLAB version
of the code. These results have been redone with the ¢ code and the fits presented in Appendix E.
These give a comparative estimate of the validity relative to the fully iterated code but can also
serve standalone. The results are summarized in Fig. 6.14. The F' computation results are good.
Globally below 1%, although slightly worse than the fully iterated MATLAB code which is to be

expected.
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Figure 6.14: EOB/NR unfaithfulness for the £ = m = 2 mode obtained by comparing the full catalog of NR
waveforms presented in Paper I with TEOBResumS. Two differences exist between this work and Paper I. (i)
TEOBResumS was evaluated with the Post-Adiabatic approximation. (ii) TEOBResumS was not iterated until
convergence but instead used the fits presented above and a single iteration. This was much faster relative to
the lengthy computation of waveforms with the MATLAB version. Top-left shows the calibration set, Top-right
shows the BAM data. Center-left shows the full, spin-dependent Validation set and Center-right shows the

non-spinning set. The bottom figure shows the accumulation plot n/N(F). Where n/N(F') defined for any
value of F as the fraction of waveforms with a larger value of max (F)
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Chapter 7
Peak-frequency

The advent of Gravitational Wave Astronomy (GWA), brought forward by the the LIGO and Virgo
Collaborations [13, 30], has opened several avenues to test GR in the strong-field regime through
CBC events. GW150914 [13] and several following detections [14, 18, 20] have provided to date
the best dynamical constraints on GR [14, 16, 20]. GW150914 in particular has provided excellent
opportunities for such tests [16], in large due to its mass and luminosity. As a matter of fact it
allowed to show the existence of the fundamental QNM of the presumed remnant BH, visible during
the end stages of the BBH waveform observed [16].

GR predicts that GWs have two independent polarizations namely (h4, hy ) detectable as roughly
sketched out in chapter 2. The observed frequency is obtained from the complex GW strain h =
hy —ihy as

1d

f(t):%a

(axg(h)) - (7.1)
In particular, the peak of the GW amplitude, taken as the peak of (h?|r + hQX)l/Q, correlates to the
most turbulent period observed, which in the case of a BBH system corresponds to the merger.
Thus, the frequency at peak fP°¥ is directly connected to the strong-field dynamics of merging
BBH systems when curvature, velocity and acceleration of and around the BHs are maximal. To
study fPek of BBH systems requires full NR simulations, stable, accurate and precise throughout
the merging of the two BHs. As NR simulations are computationally very costly it would be better
to fit the frequency. Indeed several fits of the multipolar (¢, m) peak frequency do exist [53, 70, 93—
95, 134, 135]. Two aspects have to be considered when using these fits to estimate fP¢*: (i) All of
them focus on the peak frequencies for the individual hy,,, not on the peak of (h%_ + hQX)l/Q. As
the peaks of the individual multipoles are often shifted with respect to each as has been discussed
in detail in the previous chapters, it is easy to see that likely only a full reconstruction of h would
allow to determine the peak frequency of h. (ii) As elaborated in chapter 2 GW observatories show
a bias towards the detection of spin-aligned binaries, thus the dominant number of fits focuses on
the spin-aligned (nonprecessing) case.

Paper IV presented a potential test of GR focused around fP¢@K. The aforementioned prediction

of GR is compared to an agnostic, unmodeled reconstruction of the polarizations (hy,hy)'. This

!This can be extended to more generic polarization, see [102]
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allows to statistically test GR in the strong-field regime, similar to the test suggested in Ref. [95].
This test is build up along three steps:

(i) fPeak has be reconstructed as predicted by GR.

(ii) The BayesWave method [69, 124] is used to reconstruct (h4, hx ) and obtain fP¢ak for GW150914

in a model-independent way?.

(iii) The reconstructed distributions of fP®¥ are compared directly?.

GR peak frequency As GW150914 did not show any evidence of subdominant modes, it will
suffice to consider a GW model capable of reproducing the (¢,m) = {(2,2),(2,—2)} modes [29].
Recall that for spin-aligned binaries multipoles of opposite m are related as hy _,, = (—1)£hzm, thus

the complex GW strain is given as
hy —ihy = _QYQQ(L, ¢)h22 + _QYQ_Q(L, (Z))h;Q . (72)

Further, as the posterior distribution of the inclination angle strongly favors the face-off (with the
angular momentum anti-aligned to the line of sight) [17] it is reasonable to simplify the computation
by imposing the face-off orientation exactly. In the face-off case, multipolar factors reduce to
—oYos(m,¢) =0, and _oYs_o(m, @) = \/Ee*%‘ﬁ = ke 2% inserted into eq. (7.2) this yields

4
hy —ihy = Ag(t)e22(M) ;g =29 (7.3)
reproducing the frequency as
1 d(arg(hy —ih Doo(t
ity = - el =) _ om0 _ g (7.4
27 dt 27

connecting f directly to foo. Considering further that, in the face-off approximation, the amplitude
is given as

he —ihy| = Ao (t) K, (7.5)

thus further, implying that both the peak of |h| and the peak of the (¢,m) = (2,2) mode coincide.
While it is fortunate that these simplifications appear for GW150914 they do not hold generally
and a full reconstruction of h is necessary. To access the error the NR simulation and released
posterior samples for GW150914 are combined |6, 14, 17|. Explicit reconstruction of i showed that
the face-off approximation indeed is a good, introducing no large errors.

The GR prediction for fP° is given as

mrg &
fpeak _ MOJ22 <V, X12, S)
GR 2 M ’

(7.6)

with Mwyy® defined in eq. (6.19) — (6.22) and evaluated with the coefficients of Tab. D.1. Note
that the total mass is here restored twice explicitly. Even though largely omitted to be pointed out

explicitly to simplify notation, Mways ® is fitted, not wyy ©. Thus, the total mass needs to be restored

2This analysis was carried out by Ka Wa Tsang.
3This analysis was carried out by Gregorio Carullo.
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Figure 7.1: direct comparison of the peak frequency prediction of GR (red) and by the unmodelled
BayesWave reconstruction (blue) using Hanford data.

in the denominator as well. The distribution of fg%ak is then obtained by evaluating the analytical

expression explicitly over a given posterior distribution, obtained from a full Bayesian parameter
estimation analysis (with the waveform model IMRPhenomPv2 [101]) of GW150914. In this case
the publicly released samples have been used [6, 14, 17]. fP°* as predicted by GR, is now shown
in Figure 7.1

It is now useful to depart from the case of the face-off approximation used for GW150914. Thus,

two methods are briefly mentioned that allow to faithfully represent the dependence on (¢, ¢):

(i) The peak frequency can be reconstructed directly using an NR-surrogate model |50, 149] or a
Waveform model containing higher mode contributions, such as TEOBiResumS_SM or Refs. [70,
101, 114, 122]. Either method allows to fully reconstruct h and thus directly access the peak
of |h| directly.

(ii) the peak frequency could be fitted directly to NR data, as many NR codes provide information
for such a fit [7, 49, 57, 59, 67, 68, 89, 90, 98, 101, 116, 118, 126, 142]. It might even be possible
to exploit quasi-universal structures, yet unlikely as the general case has a strong dependency
on several parameters in the general case of a BBH merger (¢, X1, X2, ¢, ¢, €), making this even

constrained to the spin-aligned, non-eccentric case an exceptionally challenging task.

Unmodeled peak frequency To obtain a model-independent reconstruction of the peak fre-
quency the BayesWave algorithm is employed on GW150914, building a distribution of reconstructed
waveforms.

BayesWave (]|69, 124]) is a morphology-independent search algorithm. It utilizes Bayesian evi-
dences to distinguish a potential signal from either a potential glitch or noise, while reconstructing
the waveform. The hi polarization is modeled by a decomposition into a sum of Morlet-Gabor
wavelets, which form a complete functional basis thus allowing the decomposition of arbitrary GW
i /2

signals. hy is then built with e an ellipticity parameter as hy = ehi €™/, From this distribution

both h and fpeax can be reconstructed. The result of this computation is shown in Fig. 7.1
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Figure 7.2: The cumulative distribution G(Af) is plotted as function of Af, using the Hanford data
(red), is plotted above the difference distribution (blue). The difference distribution is obtained from the
distributions shown in Fig. 7.1 between the GR prediction and the unmodeled reconstruction.

Null-hypothesis test The distribution of the peak frequency obtained from GR and the BayesWave
algorithm are combined as
Af = freak _ pheak, (7.7)

The posteriors p(fP°*K|D, GR) = ¢(fP°®*) and p(fPe<|D,BW) = r(fP°®*) are defined. his allows

to compute the posterior distribution for Af as

9(Af) = / r(fREY) a(FREN — Af)dfEE™ . (7.8)

The null hypothesis of this analysis is that GR is the correct theory of nature. In such a scenario
it is evident that both the modeled and unmodeled reconstruction should be consistent giving a
distribution of g(Af) centered around zero. In other words, Af is a quantitative indicator of the
agreement or disagreement between GR and the observed signal. It is therefor useful to compute the
cumulative distribution G(Af) = f_AOO g(x)dx and computed the p-value p = min [1 — G(0), G(0)]
through it. This computation applied to the Hanford strain is shown in Fig. 7.2, yielding a p-value
p = 0.48. As the strain observed at Livingston yields p = 0.46. Thus, no significant deviation from

the null hypothesis prediction p = 0.5 is present and therefor no violation of GR is observed.

Summary This test of GR exploited the correlation between the merger phase of a BBH system
with the peak of complex GW strain h. The peak frequency is reconstructed through two indepen-
dent methods. First, the peak frequency is reconstructed with a GR waveform model. The model
is used to perform a fully Bayesian parameter estimation run. The obtained posterior distribution
is then used to reconstruct the peak-frequency as predicted by the waveform model, thus, imposing
consistency between the peak and the full IMR waveform as predicted by GR. If GR is a true
theory of nature describing gravity this would be perfectly consistent with the model-independent
reconstruction through the BayesWave algorithm applied to the data.

As mentioned already above the face-off approximation does not hold for a general Binary
complicating the form of A to be reconstructed. Given a reliable multipolar model such as an

NR-surrogate model |50, 149| or a Waveform model containing higher mode contributions, such as
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TEOBiResumS_SM or Refs. [70, 101, 114, 122| ,the reconstruction of h, even though not trivial, is
straightforward.

The unmodeled reconstruction of ffeiak through the BayesWave algorithm is however highly
sensitive to the noise of the detector. With GW150914 this is clearly the limiting factor of this
analysis, as can be seen from the shape of the distribution in Fig. 7.1. It might be interesting to
repeat this analysis with signals observed at improved detector quality. Further the null-hypothesis
test can be hardened by combining the p-values of several different GW events observed. Yet these

considerations are left to future work.
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Discussion and Conclusion

This thesis presents an introduction to the NR driven completion and validation of waveform models
on the example of the TEOB infrastructure. In total three avatars of the model have been discussed
all focusing on spin-aligned, non-eccentric BBH systems. The model was calibrated and validated

with a catalog of 555 SXS and 19 BAM waveforms, completed by a set of test-particle waveforms.

The analysis of the NR catalog Within this thesis the NR was separated into two catalogs.
The calibration and wvalidation set. The calibralion set contains 135 SXS, 19BAM waveforms and
is completed by a set waveforms generated by a test-particle falling into a Kerr BH. Of those 19
SXS, 3 BAM and 1 test-particle waveform were non-spinning. With this data both TEOBResumS and
TEOBiResumMultipoles have been calibrated and validated. In the context of Paper III, it was
discussed that a total of 110 SXS waveforms in this set had been given with a next-to-highest
resolution. For each of these waveforms FNR/NR was computed for hgo between the two highest
levels. Showing that the large majority of waveforms did not reach FNR/NR ~ 107*. To remain
on the strongly conservative side the uncertainty was estimated to be at ~ 0.5%. All data sets are
given in Tab. F.1 — F.4 and Tab. F.14.

The Validation set consists of an additional 420 SXS waveforms, expanding and refining the
parameter space covered by the SXS data. These waveforms are listed explicitly in Tab. F.5 — F.15.
Of these 382 have are given with an additional resolution, which was used to evaluate Fyg /NR for
hoo, finding a similar situation as for the calibration set. Most waveforms have an unfaithfulness of
~ 107%. Thus, the uncertainty of the unfaithfulness is estimated to be ~ 0.5%, to remain on the
conservative side.

This analysis forms the basis of using this NR catalog for calibration and validation of the three
TEOB avatars discussed in this thesis. However, while this analysis reached it’s goal to get a measure
of uncertainty for hog further improvement is possible. Two routs can be pursued to potentially im-
prove this catalog in future works. (i) The analysis of the hgo unfaithfulness between the two highest
levels of any given NR waveform should be extended to the subdominant modes. In particular the
analysis of hgq for nearly-equal-mass waveforms will be insightful and useful as currently the (4,4)
mode does show disagreements between NR and the multipolar TEOB avatars. Any error analysis in
this area would shed additional insight onto whether or not the disagreement warrants an improve-
ment of the calibration or analytical baseline information included in TEOBiResumMultipoles and
TEOBiResumS_SM. (ii) In this thesis only 19 BAM waveforms are used together with 555 SXS waveforms.
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While the parameter spaces do overlap, they are not fully covering each other. Therefor it would
be advisable to include a third or potentially fourth set of waveforms from different catalogs'. This
code should be chosen such that the maximum region of the parameter space is covered by at least
two different codes. While it is unlikely that this extension will have any effect on the calibration
or validation of hgg, the same cannot be said for the subdominant modes. For many waveforms
these are very noisy and difficult to analyze. Given any problematic NR waveform, if two versions
generated by independent codes exist, it would be possible to tune the waveform model to minimize
the the unfaithfulness with respect to both waveforms. Thus, avoiding the danger of over-fitting of
parameters, as it is unlikely that both NR waveforms deviate in a similar manner from GR. (iii) The
validation and calibration can be attempted based on an NR surrogate model (see e.g. Ref. [150]).
It is reasonable to assume that the surrogate model will have filtered a significant aspect of the
noise and thus might give a more reliable picture, in particular in areas in which only a few NR

waveforms of high quality are available.

The dominant (2,2) mode In total 3 different fully calibrated models of hay are discussed
in this thesis. First, TEOBResumS was presented in Paper I and while several aspects have been
improved, some were taken over from its predecessors presented in Refs. [76, 132]. The full cali-
bration of the model based on the calibration of 135 SXS and 19 BAM waveforms is presented and
discussed. max(F) < 2.5 x 1073 over the full set of SXS waveforms is achieved with one exception:
(3,40.85,+0.85) where max(F) < 7.1 x 1073, As was shown, a more flexible fit of c3, in particular
if ¢3 is fitted with explicit quadratic dependence on the individual spin variables, it is possible to
achieve max(F') < 2.5 x 1073 all over the SXS waveform catalog. For the BAM waveforms, F is well
below the 1% level with again a single exception of (8, +0.85,+0.85), reaching 5.2%. This problem
was shown to be caused by a discrepancy in the strength of the EOB-predicted spin-orbit interac-
tion. Exploring this through modification of c3 showed that the spin-orbit interaction is too small
(i.e., leading to an earlier transition from inspiral to plunge as compared to NR) within this sector
of the parameter space. This issue can in principle be fixed by a modified value of c3. However,
even if the value of c3 is modified, it was still not possible to iterate on the NQC for this waveform,
indicating that the NR calibration is at it’s limit. While NR calibration can account for a significant
improvement in the waveform performance, it has limits to how far it can be done robustly. Therefor
the choice was made to postpone the solving of this issue until the resummation of the waveform
was improved with the methods presented in Refs. [123, 129] that, as was shown in Paper III and
chapter 6, indeed solve these problems and are thus no longer there for TEOBiResumS_SM.

The study of the BBH sector of TEOBResumS was concluded with an analysis outside of the
domain of calibration and validation. A trick in the NR calibration was applied. Both NQC and
peak amplitude and frequency were fitted very similar templates to the same data. Thus leading
to similar extrapolation behavior making the waveform peak very robust even in domains where
no NR data is available. This was explored in detail for large mass-ratios (¢ < 20) and high-spins
(x1 = x2 = £0.95). Especially, the robust nature of the peak, while not guaranteeing low F, it
does prevent pathological behavior that would increase F by a few percent.

Within TEOBiResumMultipoles, presented in Paper II and chapter 5, hoo was improved relative

'Some examples of such catalogs based on individual codes are NINJA [31, 37], NRAR, [99], Georgia Tech [105]
and RIT [96, 97].
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to TEOBResumS. The analytical information and the NR calibration of the A-potential have been
updated. An improved resummation of the waveform has been implemented [123, 129]. As the
performance of TEOBResumS was however already sufficient from the point of both calibration and
validation in the non-spinning sector it only remained to verify that TEOBiResumMultipoles did
indeed perform similarly well. This is especially important looking to the subdominant modes. As
mentioned already in Sec. 2.3, the (2,2) mode holds a special place as it is the only mode for which
the NQC corrections enter the radiation reaction. Thus, within TEOB it will always be important to
check the (2,2) mode independently to ensure that no pathological features enter through the NQC
into the radiation reaction. The discussion of TEOBiResumMultipoles will be continued below with
respect to the extension to the subdominant modes in the non-spinning sector.

The extension of TEOBiResumMultipoles to the spinning sector is TEOBiResumS_SV, introduced
in Paper III and chapter 6. Almost all pieces of the analytical information in TEOBiResumS_SM were
changed relative to TEOBResumS. It is useful to summarize the changes. The non-spinning sector is
given by TEOBiResumMultipoles. The updated A-potential of TEOBiResumMultipoles is kept as
well together with the improved calibration of the effective PN parameter af(r). Additionally, the
waveform resummation is greatly improved relative to TEOBResumS. Due to the changes in waveform
and A-potential it is also become necessary to redetermine the effective PN parameter c3(v, S1,S2).
Finally, the fits of the NQC are improved for ¢ > 4, as well as for the over all merger-ringdown
templates. Once calibrated, TEOBiResumS_SM was validated through the computation of FEOB/NR
for the (2,2) mode. All over 19 BAM and 555 SXS waveforms, including the calibration set, FEOB/NR
for the (2,2) mode is always below 0.5%. A single outlier is found for (1.5, +0.95, +0.95), for which
max [FEOB /NR] ~ 0.85%. This is evidently a significant improvement relative to the performance of
TEOBResumS, which struggled immensely with (8, 40.85,40.85), comparing this to FEOB/NR ~ 1073
for TEOBiResumS_SM is quite an impressive improvement. This jump in performance highlights that
NR calibration has to be done with care. While it might be in principle possible to solve a problem
through increasing the impact of the NR calibration, it might be recommendable to instead improve
the analytical information baseline of the model.

While most results of TEOBiResumS_SM are obtained with the MATLAB implementation of the code,
a stand-alone C-implementation of the model is available at Ref. [12]. Further, due to the improved
waveform resummation of TEOBiResumS_SM it was possible to fit the NQC parameters (a3?, a3?) of
the (2,2). With this fit it is possible to skip the iteration process to improve the NQC accuracy
and obtain a good agreement between TEOBiResumS_SM and NR globally of Fiop /NR < 1%. After
the exclusion of (1.5,40.95,+0.95), the global maximum is around ~ 0.6%. Thus even though the
goal set by the NR uncertainty is missed, it is not missed by much, while the performance demand
of GWA is still met. The importance of this result can easily be seen once one considers that the
evaluation time of the C-implementation of TEOBiResumS_SM is dominated by the integration of the
TEOB Hamiltonian equations of motion. As each iteration requires a full integration, it is easy to
see that the computation time goes linearly with the number of iterations necessary. Thus this is a

major step towards meeting the ~ 0.1ms evaluation time goal for TEOBResumS.

Subdominant modes: The non-spinning case In chapter5and Paper I, TEOBiResumMultipoles

was introduced and discussed. As mentioned above, several improvements have been made rela-
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tive to TEOBResum$, in the A-potential and the resummed waveform?. The multipoles (¢,m) =

(2,1),(3,3),(3,2),(3,1),(4,4), (4,3), (4,2), (4,1) and (5,5) are fully calibrated to NR. All additional
multipoles £ < 8 are given by their pure analytical, TEOB-factorized and resummed expression, falling
smoothly to 0 around the merger. The agreement between wy,, on both NR and TEOB side is excellent

up to the merger point. The major findings presented in chapter 5 are:

(i) Each multipole hg,, of (4,m) = (2,1),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2),(4,1) and (5,5)
is fully calibrated to NR following the model as introduced in Sec.2.3. This includes a fully
calibrated merger-ringdown template, the peak-time shit At?ﬁ and the NQC extraction points
{AKNn?C, AKNW?C, wgr?c, wfn?c}. Especially the NQC are important for the final evolution of the
subdominant modes, starting at ~ 50M before the peak. It is worth pointing out that it is
quite surprising that such a simple setup is very efficient in completing the waveform until
the peak of the waveform. Important to note is that strong performance of the NQC was
enabled by modifying the Newtonian (multipolar) prefactors in the waveform, while leaving
it untouched in the radiation reaction, as discussed in Sec. 5.2.3. In particular the m =1
multipoles are improved by this modification of the Newtonian (multipolar) prefactors, for
these multipoles the derivatives of the radial momentum become especially important close

to the peak of the multipole.

(il) Frop/nr evaluated between TEOBiResumMultipoles and the non-spinning sector of the cali-
bration set was investigated thoroughly. For the inclusion of all modes the soft criteria of < 3%
was met for almost all binaries with a total mass 50Ms < M < 200M. In the parameter
space sector 1 < ¢ < 2, for large total masses, this is however not the case. However, it stands
to reason that this uncertainty in the model is likely due to pathological features in hyq of the
NR waveform, amplified due to e.g. the waveform extrapolation. In contrast for a total mass

of 100Mg, or less, Frop /NR < 1% is generally met for all systems.

Subdominant modes: The spinning case TEOBiResumS_SM is the latest spin-aligned, non-
eccentric BBH waveform model discussed in this thesis and is introduced in Paper III and chapter 6.
Several modes, beyond the (2,2) mode, for which TEOBiResumMultipoles was already defined,
are extended in TEOBiResumS_SM to include spin dependence. Concretely, these are the (¢,m) =
(2,1),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2) and (5,5). The best performance in the extension to
the spinning domain is found for the ¢ = m modes up to ¢ = 5. The remaining waveforms,

< —0.5. Several aspects of

~

in particular the (2,1) mode can become problematic for spins x; 2
the TEOBiResumS_SM model are improved relative to TEOBResumS, as already mentioned above.

Further all modes are NR completed with NQC and merger-ringdown template waveform attached

EOB
at tNQCM .

The results presented for the extension to the subdominant modes can be summarized as:

(i) The NR informed fits for many quantities already used in TEOBiResumMultipoles are extended
to include spin. The inclusion of spin is done through factoring out orbital dependence and
potentially also of leading order spin dependence. A spin parameter is chosen, exploiting quasi-

universal or approximately quasi-universal structures, to effectively reduce the dimensionality

2For a general discussion of the analytical improvements in detail the reader is referred to Paper II and references
therein, as the focus of this thesis is on the NR completion of TEOB model avatars.
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of total fit to two: (i) v or alternatively Xio or X3, (ii) a spin parameter, most commonly
chosen to be S. With the exception of the effective merger-ringdown evolution parameters,

all fits utilize the test-particle data to improve the extrapolation to higher mass-ratios.

The NR calibration and performance of the multipole as a whole is commonly most robust
and reliable for £ = m modes, up to £ = m = 5. The unfaithfulness of m = ¢ modes up to
¢ =4 is well below 3% for BBH system masses M = 120Mg. Due to disagreements between
TEOB and NR waveform for the (4,4) mode this limit is somewhat exceeded for larger masses.
It is however not yet clear if this disagreement is entirely due to inaccurate modeling on the
waveform model side, or insufficiently resolved, possibly pathological waveforms on the NR
side®. Similarly, when the (2,1) mode is included the unfaithfulness performs reasonable well
F < 3%. However, for systems with large, anti-aligned spins relative to the orbital angular
momentum, such as e.g. (3,—0.85,—0.85), the situation is more challenging. As between the
peak of the (2,2) and (2,1) mode the TEOB dynamics, as implemented in TEOBiResumS_SM,

become unreliable in those conditions.

(ii) One of the major results of Paper ITI, which is only summarized here, is the increased difficulty
that arises when the peak of a given subdominant mode hy,, is significantly delayed (~ 7—8M)
with respect to the peak of the dominant hos mode. This can happen for m # £, in particular
for (2,1), (4,3) or (3,1). One method to solve this is could be found in the extension of
the merger-ringdown template into the late inspiral, as was done in Ref. [70]. The problem
with such an approach is that it has a high potential to miss subtle physical structures in
the waveform. One example is the zero in the waveform close to the peak of the (2,1) mode
for (2,40.60, —0.60). Thus, it is reasonable to instead focus on improving the dynamics and
aiming at building an improved dynamical structure which is more stable after the peak of
the (2,2) mode.

m = 1 waveform minimum in the inspiral In Ref. [70] it was discovered that the (2,1) mode
for nearly-equal-mass waveforms with oppositely aligned spins can potentially show can contain a
minimum or even a zero in the late-inspiral amplitude. This effect was loosely reproduced with the
PN waveform in which the leading order spin-orbit correction cancels with the dominant orbital
contribution. While the phenomena was pointed out it remains not included into the waveform
model discussed therein SEOBNRv4yy.

In chapter 6 touched upon this feature briefly, while Paper III discussed it more thoroughly,
this topic was picked up in the context of TEOBiResumS_SM. The minimum, when it was sufficiently
before the merger shows an excellent agreement with the factorized and resummed TEOB waveform
developed in Ref. [123, 129], as was demonstrated. Starting from the analytical description of
the (2,1) mode it was in principle possible for any m = odd multipole to develop a zero in the
ingpiral. Thus, the SXS catalog was investigated and an additional SXS waveform was found with
a similar phenomenology. However, this waveform showed this behavior in the (3,1) mode, which
was very well modeled by the TEOB waveform even without NR calibration. Thus, even though this
phenomenon was not intentionally targeted, the behavior could be recovered accurately, likely due

to the robust resummation and factorization of the waveform.

3 A possible solution is to extend the discussion through the inclusion of an additional NR waveform catalog as
discussed above.
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Future improvement of the TEOB model There are a three ways to include new physical phe-

nomena into TEOB. (i) The basic infrastructure can be changed. Especially, when extending the

model, to e.g. eccentricity [66] or precessing spins [33]|, an improvement of the TEOB infrastruc-

ture becomes necessary. (ii) The analytical information contained in the A-potential, the gyro-

gravitomagnetic ratios (Gg,Gg,) and the analytical waveform could be improved. (iii) The merger-

ringdown templates can be improved in several ways:

(1)

Ref. [66] presented a minimally modified version of TEOBiResumS_SM capable to include mild
eccentricity. Following this work it would be interesting to investigate if it would be possible
to modify the model independent sector of the analytical flexibility to include a dependency
on eccentricity. As has been shown in Ref. [66] the approximation of no eccentricity in the

merger-ringdown template is sufficiently accurate for mild eccentricity.

The inspiral model TEOBResumSP, allowing for generic, precessing spins was introduced in

Ref. [33]. Improving merger-ringdown and NQC to include the dependence on generic spins.

Currently, all modes are modeled neglecting mode-mixing, which occurs because the s = —2
spin-weighted spherical harmonics are not an eigen bagis of the radiation emitted in the final
state and need to be replaced by spheroidal harmonics. Including this would greatly improve
the robustness merger-ringdown phase. Examples of such improvements can be found in

Ref. [113, 114].

Currently, model does not account for the beating between positive and negative frequency
quasi-normal-modes [45]. An example of this effect can be observed for BBH:1375 in Fig. 4.7.
This can be incorporated following the method of Ref. [45].

The model is calibrated up to mass-ratios ¢ = 20 and robust up to ¢ = 30. Extending the fits
of the merger and postpeak evolution parameters up to the test-particle limit would complete
the coverage of the aligned-spin parameter space The amplitude template of the merger needs

to be modified to account for the test-particle behavior.

Future non-standard applications of the TEOB avatars Two possible future projects could

be the following:

(i)

The very short BBH event GW170729 was announced in Ref. [23]|. It was visible during its
late inspiral, merger and ringdown. It showed clear evidence of high spins, non-vanishing
mass difference and the presence of subdominant multipoles. It would be interesting to use
the merger-ringdown template developed in Paper 111 to explore a direct time-domain analysis
of GW170729. The method of such an analysis has been explored for a previous version of
the model on NR-injection samples in Ref. [83]. An analysis of the system has been presented
in Ref. [65].

In chapter 7 a consistency test of GR was introduced utilizing the fortunate face-off orientation
of GW150914 to perform a strongly simplified analysis. In the face-off /face-on case of a
nearly-equal-mass waveform the signal is dominated by hgg or hg _o and the error due to the
exclusion of all subdominant multipoles is shown to be limited. In general this is not the case.

Thus a full multipolar waveform model is required to reconstruct the peak as determined by
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an analysis of the signal. It would be interesting to see if this method can be applied to similar

situations.
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Appendix A

Unfaithfulness and FFT computation

This appendix is dedicated to introduce the FFT and unfaithfulness computation. Given a waveform
h we will refer to its Fast Fourier Transform (FFT) by h. Prior to the FFT computation the

waveform needs to be tapered as

0 t<t
h— Jor sty (A1)
h - htaper , for t>to.

The time tg for NR waveforms is chosen just after the passing of the initial-state radiation. As EOB
waveforms can typically be much longer the value of ¢y for the EOB waveform is chosen such that

the initial frequency for both NR and EOB waveform agree. Agaper is given by a Schwartz-function

1
htaper = m ’ (A-Q)
1 1
with Z = + . A3
(t - to) (t - tO) — Ncyc - Tcyc ( )
Practice has shown that the following parameters give stable results
27
T Jow(t=t) ) T 0 0T 4y

with fow (t = to) being the GW frequency at ¢t = to!. The FFT is computed with the MATLAB
function fft.

In this work we will primarily use the noise Power Spectral Density (PSD) of advanced LIGO.
The results presented in Papers I and II were computed using the anticipated sensitivity curve of
Advanced LIGO more specifically the zero-detuned, high-power PSD [8]. In Paper III the results
have been computed with the updated PSD presented in [11]. While Advanced Virgo and LIGO
show a very different profiles in terms of performance and technology applied, from the point of
view of waveform model development they are sufficiently similar.

To compare EOB waveform models with NR to access their standards of performance for third
generation gravitational it is recommended to use the results published in [147]. The PSD curves can

be found, prepared in ".txt" and ".mat" format, at [1]. The curve model ET_D is recommended.

'In practice it can happen that the numerical evaluation of Ataper is singular at ¢ = to but this singularity can be
circumvented by manually imposing Ataper (£ = to) = 0.
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Figure A.1: A direct comparison of the noise spectrum and the fit shown in equations (A.5) — (A.11).

While the any code could handle raw PSDs as published some post-processing is advised.
In particular the individual peaks in the PSD have to be smoothed out. The anticipated PSD

ganticipated £y gas fitted and a direct comparison between the strains is shown in Fig. A.1.
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Spikes in the updated Advanced LIGO noise PSD were removed by hand and the cuts have been
smoothed out using the MATLAB function spline. The noise PSD of the Einstein Telescope can be
prepared similar in the same way.

For two waveforms (hr, hy), the unfaithfulness is a function of the total mass M of the binary

and is defined as

= (hr,hy)
Frp(M)=1—F; =1 — max ——D2J7_ A2
17 (M) 1J TR TTTTART (A.12)
where (tg, ¢g) are the initial time and phase, ||h|| = /(h,h), and the inner product between two

waveforms is defined as (hr, hy) = 4R fiﬁg(m ﬁj(f)ﬁj}(f)/Sn(f) df , where h(f) denotes the Fourier

transform of h(t), S,(f) is one of the PSDs discussed above, fNR(M) = fg}}l/M is the initial

frequency of the NR waveform at highest resolution after the transition of initial-state radiation.
In chapter 5 and chapter 6 the unfaithfulness is additionally varied over the orientation of

the source given by the angles (¢, ). Sec. 5.4.1 will introduce the reader onto the difference this
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generates on practical examples there presented.




Appendix B

TEOBResumS ¢ = m = 2 mode, additional

fit information

This appendix shows some additional information complimentary to the fits presented in Chapter 4.

B.1 NQC hybrid fit of the / = m = 2 mode
In previous works several excellent fits of the NQC extraction points {AQNQQC, AQNQQC,w;\IQQC, ag;QC
have been obtained |76, 131, 132]|. In both Paper I and Paper III these fits have been used to model

the NQC extraction points for the cases ¢ = 1, see eq. (B.1), and 1 < ¢ < 4, see eq. (B.2).

ANQC —0.00178195a8 + 0.00435589a7 + 0.0034448942 — 0.00076165a0 + 0.31973334,  (B.1a)
2152@0 =0.00000927a3 — 0.00024550a3 + 0.0001246942 + 0.001238454¢ — 0.00195014,  (B.1b)
whs¥® =0.00603482a4 + 0.0160455543 + 0.02290799a2 + 0.07084587ag + 0.38321834,  (B.1c)
Gpa 2 =0.00024066a7 + 0.00038123a3 — 0.00049714a2 + 0.0004121940 4 0.01190548.  (B.1d)

ANQC — (0.046808961 — 0.00632114) a3 + (0.065861921 — 0.01180039) G2
22 0 0

— (0.11617413v — 0.02704959) dg + (0.155974650 + 0.28034978) , (B.2a)
AN = — (0.00130820 — 0.00006202) a3 + (0.0019986 — 0.00027474) a3
+ (0.00218838v 4 0.00071540) éig — (0.00362779v + 0.00105397) , (B.2b)
NQC 0.46908067v + 0.27022141
Wog ™ = ) (B.2¢)
1+ (0.641311150 — 0.37878384) ag
@ = (0.000611751 + 0.00074001) g + (0.025044420 + 0.00548217) . (B.2d)

(B.3)
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1. NQC hybrid fit of the { = m = 2 mode

Table B.1: Coefficients of the NQC extraction points defined in Eqs. (4.25)-(4.36). As top-left, top-right,

bottom-left to bottom-right the columns show {AQQQQ 212N2QC, wQNQQC,w;\;QC}.
ANQC iNQC
A22Q A22Q /v
ANQC ANQC
™ = 0.204888 | Nyt = —0.00421428
ANQC iNQC
clodT = _0.0427442 | Nt = —0.0847947
ANQC iNQC
et = 0816756 | D™ =  16.1559
ANQC
o = —0.986204
ANQC 'NQC
ny gt = —0275052 | mPt = 0.00374616
ANQC ‘NQC
dv™ = —0.469378 | d;P" = 0.0636083
ANQC 'NQC
LT = 0.143066 | n, " = 0.00129393
“N(_QC ‘NQC
o = —0.0425947 | ny" = —0.00239069
ANQC iNQC
d," = 0176955 | d;*™ = —0.0534209
ANQC iNQC
dy™™ = —0.111902 | d,™™ = —0.186101
NQC - NQC
W22Q w22Q
wNQC wNQC
= 0.286399 | Njo* = 0.00649349
NQC .NQC
&t = 0.251240 | Ny = 0.00452138
NQC .NQC
et = 0.542717 | D} = —1.44664
NQC wNQC
oEn = 0292192 | ah = 0.1209112
QC - NQC
diy" = 0686036 | by = —0.1198332
N(_QC wNQC
P = 01996112 | a;™ = 0.142343
NQC .NQC
ng®m = —0.236196 | a;P" = —0.1001772
wNQC @NQC
d,*™™ = 01843102 | b, = 0.1844956
NQC - NQC
dyP" = —0.148057 | b, = —0.0612272




B.1. NQC hybrid fit of the { = m = 2 mode

Table B.2:

The left column shows the coefficients of the waveform amplitude at merger, defined in

Eq. (4.15) — (4.20). The right column shows the coefficients of the waveform frequency at merger, defined
in Eq. (4.23) — (4.24), relying on (4.19) — (4.20).

Amrg mrg
o = 1.43842 g = 0.273813
Amrg mrg
ot = 0.100709 || ¢t = 0.223977
Amrg mrg
o = 1.82657 || et = 0.481959
wn (0993524 || n“PR = _0.283200
v=1/4 v=1/4
Armfg mrg
dPn = 0472871 | 4P = —0.696960
Ams mrg
PR = 0176126 || ;™™ = 0.1714956
Amre WTE
o = —0.0820894 || n,™" = —0.24547
Amlfg mrg
d,™™ = 0.20491 d;™" = 0.1653028
Armfg mrg
dy™™ = —0.150239 | dyT™ = —0.1520046

Table B.3:

Coeflicients of the fits of the fundamental QNM frequency and inverse damping time of the

final remnant (wy,aq) as well as the difference as; = as — ay of the inverse damping times of the first two
modes. See Eq. (4.37) for definitions.

Y = w?? Y = a?? Y = a3}
Yo | 0.373672 0.0889623 | 0.184953
bY | —1.74085 —1.82261 —1.41681
by | 0.808214 0.701584 | —0.0593166
bY | —0.0598838 | 0.121126 0.476420
el | —2.07641 | —1.80020 —1.35955
cy | 1.31524 0.720117 | —0.0763529
el | —0.235896 0.0811633 |  0.438558




B.1. NQC hybrid fit of the { = m = 2 mode

Table B.4: The fitted coefficients of {C3A, c?f, cf} as defined in Eq. (4.38).

Y:cg Y:cff
ol )
be® (v) = 3.88838  +0.455847v | byt (v) = 1.49969  +2.08223v
¢ P
b (X12) = 511992  —0.924642X1s | b (X12) = 826248  —0.899952X75
P P
by’ (X12) = 10.29692 —3.618048X1s | by! (X12) = 14.27808 —3.923652X 12
ol P
bf;;(Xlg) =  —4.041224 +3.501976X 5 bgz(xlz) = 0
b (X19) = —32.92144 429.24000X15 | by (X12) = 0
Y:cf))4
A
b (v) = —0.561584  +0.829868v
A
b1 (X12) —0.199494  +0.0169543X 15
A
bgi (X12) 0.0227344 —0.0799343X 1,
bs¥ (X12) = 0.0907477 —0.115928 X2
T (X10)

= 0




Appendix C

TEOBiResumMultipoles, additional fit

information

Table C.1: Parameters for the fit of the peak amplitude and frequency of all multipoles up to £ = m = 5.
From left to right, the columns report: the multipolar indices; the values of the amplitude and frequency in

the test-particle limit, (Agm, wy .); the amplitude fit coefficients (n*m  d2em) and the frequency fit coefficients

(nem, d2e) for the functions (Agy,, ey, ) defined in Egs. (5.29)-(5.30) and fitted using the rational function
template of Eq. (5.31). Note that since all d2‘4’5m values are found to be equal to zero we do not explicitly

report them in the table.

¢ m| A nf“” n’;@m d’fx"’"
2 2 0.295896 | —0.041285 1.5971 -
1 | 0.106935 9.0912 3.9331 11.108
3 3 | 0.051670 | 0.098379 3.8179 -
2 0.018168 —6.142 11.372  —3.6448
1 | 0.005694 —5.49 10.915 -
4 4 | 0.014579 —3.6757  0.32156 —3.6784
3 | 0.004962 —5.7791 12.589 —3.3039
2 | 0.001656 —4.7096 7.3253
1 | 0.000487 —8.4449 26.825 —1.2565
5 5 10.005227 | —0.29628 6.4207
o om| Wl nym ng ™ dym dsm
2 2 10.273356 0.84074 1.6976 .
1 | 0.290672 | —0.060432  1.9995 0.23248
3 3 | 0.454622 1.1054 2.2957 e -
2 | 0.451817 —9.0214 21.078 —8.6636  19.493
1 | 0.411755 .. 7.5362  —2.7555  38.572
4 4 | 0.635415 3.2876 —29.122 1.696 —22.761
3 | 0.636870 —9.0124 22.011 —8.732 20.518
2 | 0.626030 —7.0558 12.738  —6.0595  9.3389
1 | 0.552201 —10.876 37904 —11.194 42.77
5 5 | 0.818117 —2.8918 —-3.2012 —-3.773
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Table C.2: Fits of the postpeak functions (c5*", cf‘f"‘,cfzm) entering Eqgs. (2.46)-(2.47). Note the rather
special functional form needed for 03432 and 0’3444, that is necessary to properly account for nearly equal-mass
data. In addition, the fits of some multipoles are discontinuous, the interface between the branches being at
mass ratios ¢ = 2.5 or ¢ = 10. Such mass ratios correspond to the values v = 10/49 and v = 10/121 that

appear in the argument of the 6 functions.

Ap
£ m cy
2 2 —0.56187 + 0.75497v
1 0.23882—2.29821/4-5.70221/
1—7.7463v+27.26612
3 3 —0.39337 + 0.93118v
9 0.1877—3.0017v+19.501v2 e~ 703.67(v—2/9)
1—1.8199v
1 3.5042—55.171v4-217v2
1—15.749v+605.1703
4 4 | —0.25808 + 0.84605v + 1.2376¢06054.7(v—10/49)
3 —0.028334-2.8738v—31.503v24-93.51313
1—10.051v+156.1413
92 0.27143—2.2629v4-4.62491/2
1-7.6762v+15.11712
1 11.47 + 10.936v
5 5 —0.19751+3.607v—14.8981/2
1—20.0460+108.4212
be Do
{ m ey e,
9 9 4.4414—63.107v+296.6402 7.1508—109.47v
1—13.2990+69.12912 1+556.340+287.4212
1 2.6269—37.677v+181.6112 4.355—53.7631+188.061>
1—16.0821+-89.836.2 1—18.427v+147.1612
3 3 3.1017 — 6.5849y 3.4521—24.153v453.029,2
. . 1+3.1413v
0.90944—1.89241+3.684812 2.3038—50.79v+334.411/2
2
1-8.97391/4-21.02412 1—18.3260+99.5412
1| =079 00 RA20A20 g () — %) 3.6485 + 5.4536v
’ 10
i —2.2784 0 (755 — v)
4 4 2SO e 1Ty 0.94564 + 3.2761v
3 2.284—23.817v470.95212 2.4966—6.2043v
1-10.9091+30.7231% 1—-252.470%
2.2065—17.629v+65.372v
2 477440 3187607 Eq. (5.32)
1| (—6.0286 + 46.632v)6 (v — 141 1.6629 + 11.497v
121
10
—2.1747 6 ({5 — v) ]
0.45082—9.596114-52.88v
5 9 0.83326 + 10.945v 1—19.808,199.078,2
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Table C.3: Parameters of the fitting function given by Eq. (5.33) used to fit the QNM parameters entering
the phenomenological description of the postmerger waveform. We list here the fundamental QNM frequency

wi™ and (inverse) damping time o{™ as well as the difference a47* = a§™ — ™.
Y’ m Y’y 28 by’ by’ a” 28 '
w{m 2 2 0.373672 —1.5367 0.5503 —1.8700 0.9848 —0.10943
1 0.373672 | —0.79546 —0.1908 0.11460 —0.96337 —0.1495 0.19522
3 3 0.599443 | —1.84922 0.9294 —0.07613 | —2.18719 1.4903 —0.3014
2 0.599443 —0.251 —0.891 0.2706 —0.475 —-0.911 +0.4609
1 0.599443 | —0.70941 —0.16975 0.08559 —0.82174 —0.16792 0.14524
4 4 0.809178 | —1.83156 0.9016 —0.06579 | —2.17745 1.4753 —0.2961
3 0.809178 —1.8397 0.9616 —0.11339 —2.0979 1.3701 —0.2675
2 ] 0.0941640 | —1.44152 0.0542 0.39020 —1.43312 0.1167 0.32253
1 1 0.0941640 | 1.1018882 —0.88643 —0.78266 | 1.1065495 —0.80961 —0.68905
5) 1.012295 —1.5659 0.5783 .. —1.9149 1.0668 —0.14663
O/im 2 0.08896 —1.90036 0.86200 0.0384893 | —1.87933 0.88062 o
1 | 0.0889623 | —1.31253 —0.21033 0.52502 —1.30041 —0.1566 0.46204
3 3 ]0.0927030 | —1.8310 0.7568 0.0745 —1.8098 0.7926 0.0196
2 1 0.0927030 | —1.58277 0.2783 0.30503 —1.56797 0.3290 0.24155
1 | 0.0927030 | —1.2345 —0.30447 0.5446 —1.2263 —0.24223 0.47738
4 4 10.0941640 | —1.8662 0.8248 0.0417 —1.8514 0.8736 —0.0198
3 ] 0.0941640 | —-1.7177 0.5320 0.1860 —1.7065 0.5876 0.120939
2 0.190170 | —1.38840 .. 0.39333 —1.37584  0.0600017 0.32632
1 0.190170 | 1.0590157 —0.8650630 —0.75222 | 1.0654880 —0.7830051 —0.65814
5 5 ]0.0948705 | —1.8845 0.8585 0.0263 —1.8740 0.9147 —0.0384
aé’f 2 2 0.184953 | —1.89397 0.88126 0.0130256 | —1.83901 0.84162
1 0.184952 —1.1329 —0.3520 0.4924 —1.10334 —0.3037 0.4262
3 3 0.188595 —1.8011 0.7046 0.0968 —1.7653 0.7176 0.0504
2 0.188595 —1.5212 0.1563 0.3652 —1.4968 0.1968 0.3021
1 0.188595 —1.035 —0.3816 0.4486 —1.023 —0.3170 0.3898
4 4 0.190170 —1.8546 0.8041 0.0507 —1.8315 0.8391 —0.0051
3 0.190170 —1.6860 0.4724 0.2139 —1.6684 0.5198 0.1508
2 0.809178 —0.6644 —0.3357 0.1425 —0.8366 —0.2921 0.2254
1 0.809178 | —0.68647 —0.1852590 0.0934997 | —0.77272 —0.1986852 0.1485093
5 b 0.190947 —1.8780 0.8467 0.0315 —1.8619 0.8936 —0.0293
Table C.4: The fit parameters to analytically represent the time lag between the peak of the (¢,m)

waveform multipole and the peak of the (2,2) mode, Eq. (5.34). The coefficients refer to the functional form

of Egs. (5.35)-(5.36).

¢ m | A, ntem nQA% dStem d2A fem
2 1 | 11.7900 —3.764  6.9051

3 3 |349238 —0.11298  5.0056 o

3 2 | 9.22687 —11.398  33.244 —8.1976 19.537
3 1 | 12,9338 o —25.615 0.88803  16.292
4 4 |528280 —84686 18.006 —6.7964 11.368
4 3 | 9.59669 —11.345  38.813 —7.5049 22.399
4 2 | 11.9225 —3.8284 —12.399 -

4 1 | 13.1116 —9.6225 38451  —7.7998 32.405
5 5 | 6.561811 —12.198 40.327 —11.501 39.431
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Table C.5: The fits of the NQC functioning points {AZN”(?C,AZSC/V, wyfc,wyﬁc}. The fits are given
explicitly. The fits are done after the factorization defined in eq. (5.37). For all multipoles the factorization

of the test-particle limit Y2 is highlighted explicitly in the third and fifth column of the table. The exception

to this is the (2, 1) mode for which the test-particle behavior has not been factorized (see Sec. 5.3.6). Y;:TRQC
is fitted for all multipoles with at most quadratic polynomials or rational functions in v.

ANQC NQC
Ap e dw)| WS
2 2 (0.294773 (1 —0.051898v + 1.58861) | 0.285588 (1 + 0.92487v + 1.72061°)
2 1 0.097671 — 0.0014424v 0.29622 + 0.048182v + 0.374721/*
3 3] 0.0512928 (140.09537v 4 3.7217v%) | 0.476647 (1 + 1.1008v + 2.8417)
1-6.1472v+11.43502 1-9.1403v+21.3991/>
3200178914 ( 1731./63621/ - ) 0.482635 (178.86471;120.18552>
3 1]0.00520201 (1 —4.9441v +8.9339v%) | 0.485186 (1 —0.4421v — 6.81841?)
4 40.0144330 SR 0.665507 (1 +0.95802v)
1-5.7951v+12.8331/2 1-9.2007v+22.16112
4 310.00487784 1—3%/2+681u - 0.673274 ( 1—9.026;:21.238;/2
4 210.00161809 (1 —4.6975v + 7.34371%) | 0.663076 (1 — 0.086381r — 8.59781?)
1-8.49750+27.3112 1—8.3628v+20.52912
4 1 0.00043987 < 171.;3_021/ - ) 0.735051 (177.488315118.69552)
55000516272 (1-0.38302 + 6.74130%) | 0855016 (12810 anent)
zéieNn?C/u w?n?c
2 2| —0.00119366 (1+3.01250 —2.17920%) | 0.00628027 (1 + 2.5374v + 3.93411/?)
2 1| (—0.0011119 + 0.0042824v) / (1 — 3.0565v) 0.0020157 4 0.049725v
3 3| —0.00039568 (1+1.0985v —13.4580%) | 0.0110394 (1 + 2.1358v + 4.154417)
1-8.4869v+18.736v2 1-10.831v+37.969v>
3 2] —0.00026840 175.7457Z+7.958152 0.0141756 1712.954111151.15552)
1-9.0479v+23.05412 14+13.318
3 1| —0.00043382 g Aot 0.0673118 W)
1—3.45160+4.870312
4 4] -0.00015129 (1 —2.206v + 2.01911?) 0.0147878 (=25t ogiez
2 1-19.234v+105.0412
4 3| —0.00008468 (1 —4.1848v +4.21920%) | 0.0172836  ({={g5ar 107762
1-5.1172v+5.44081/> 1-6.2629v+10.11/2
4 2| -0.00004223 ( +6.l{;93u : ) 0.0213781 178.42321/14151.2021/2
4 1] -0.00001827 (1 —2.8242v —3.1871v%) | 0.0739078 (14 0.99186r — 19.4350%)
5 5| —0.00006580 (1 —1.8592v) 0.0178326 (1 + 2.4606v)
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information

Table D.1: Explicit coefficients and their errors for the merger frequency and amplitude fits of the (2, 2)
mode. The analytic template of the fit is defined in Eqs. (6.19) — (6.22).

Wy B = 0.273356 Apy®=0 = 1.44959

ay = 0.84074  +0.014341 ai! = —0.041285 +0.0078878
ay = 16976 +0.075488 a3 = 1.5971  40.041521
by = 042311 +0.088583 imETE = 074124 £0.016178
by = —0.066699 +0.042978 by = —0.088705 +0.0081611
by" =" = —0.83053  +0.084516 by™TT = 10939  0.015318
& = 0.15873  +0.1103 ch = 0.44467  40.037352
) = 043361  +0.2393 e = —0.32543  40.081211
& = 0.60589  +0.076215 3 = 045828  40.066062

&) — —0.71383  +0.096828 e —  —0.21245  +0.080254
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Table D.2: Explicit coefficients of the fits of AP WP and Aty;.

AP0 .523878 WhO = 0.290643 Aty = 11.75925
al = 3.33622 A = —0.563075 Aty = 6.6264
e = 347085 ag = 3.28677 ap’® —2.0728
Al = 476236
b = 0428186 B = 0179639 b = 0.0472289
b = 0335659 = 0302122 B = 011558
b = 0.828923
et = 0891139 ¢ = —1.20684 ey = —1976.13
el = 5191702 &M = 0425645 cy* = 3719.88
G = 3480139 o = —254541
Gy = 10237782 ® = 527762
2 = —13.867475
G = 10525510
Table D.3: Explicit coefficients of the fits of APS™ WP and Atss.
AP0 — 0566017 Whso = 0.454128 Aty = 3.42593
o = 022523 A% = 1.08224 a9 = 0.183349
a)® = 3.0569 as® 2.59333 a3 = 4.22361
al —0.396851
b5 0.100069 b = -0.406161 by —0.49791
il —0.455859 b —0.0647944 b —0.18754
S = 0.748126 bt —1.07291
(aa —0.401156 & = 085777 The —1.9478
ciss —0.141551 &3 = —0.70066 iy 13.9828
¢ ~15.4949 @B = 2.97025 o1’ 1.25084
e 1.84962 &P = —3.96242 o —3.41811
il —2.03512 cAas —1043.15
e —4.92334 it 1033.85
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Table D.4: Explicit coefficients of the fits of A55** and whs™*.

APSHo = 0.199019 WhSo = 0.451607
al®? = —6.06831 a¥? = 913525
ag® = 10.7505 ag® = 21.488
ag® = —3.68883 ag® = -8.81384
a2 = 20.0595
AO wu=14
bj# = —0.258378 b2 = —0.458126
20 v=1/4
B2 = 0.679163 byi2 = 0.0474616
v=1/4
by = —0.486049
¢ = 436263 & = 3.25319
¢ = 12,5807 &3 = 0.535555
¥ = 773233 & =  —8.07905
et = 16.2082 ot = 1.00066
A = 3.04724 & = —1.1333
cy? = 465711 53 = 0.601572
= 210475
& = 56.9136
Table D.5: Explicit coefficients of Atss.
0 AtY, Aty
AtY, 9.16665 P = —0.037634 o = 2497188
At AtY At12
a2 —11.3497 ¢y = 12.456704 ¢® = —T7.532596
At At At12
a5t 32.9144 ¢y? = 2.670868 ¢y® = 4.645986
v X12
a2 —8.36579 = —12.255859 B = —3.652524
v X12
afte 20.1017 eyt = 37.843505 csT = 3398687
v X12
bt —0.34161 o = 25058475 ol = 7.054185
v X12
b5 —0.46107 B = 449470722 Gy = —12.260185
v X12
b5 0.34744 y® = 1413508735 oy = 5.724802
v=1/4 v X
b2 0.15477 Al = 11.852506 At = 3242611
v=1/4 v X2
by'a2 —0.755639 B = 41.348059 o = 2714232
v=1/4 v X
bt 0.21816 A = 5650710 A2 = 2.614565
v X12
¥ = 0567484 ¥ = —9.507583
v X12
¥ = 173.182999 = 7.321586
At At
e = —10.938605 e ® = —3.937568
Aty At12
¢ = 35.670656 e = 4.584970
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Table D.6: Explicit coefficients of the fits of APS™ WP and Atyy.

AP0 0276618 0 = 0.635659 Aty, = 527778
al = 37082 a = —0.964614 af™ = -8.35574
adi = 0.280906 ag = 111828 ay = 17.5288
af = —3.71276 A = —2.08471 ag™ = —6.50259
a¥t = —6.89287 af™ = 10.1575
pl = 0316647 B = 0.445192 b2 0.00159701
% = _0.062423 b = —0.0985658 p25 11413
b = 0.852876 b = —0.0307812
i = _0.801552
el = 19436 A = —0.92902 T = —2.28656
el = 160555 &4 = 10.86310 iy = 1.66532
s = 405685 &y = —4.44930 et = —0.589331
el = 150143 & = 301808 A = 0708784
Gt = 0.837418 st = 162523
Gt = 293528 it = —T.70486
cht = 115591 At = 15.06517
612%4 —  34.1863 i = 0.93790
chit = 0.950035 ¢t = 8.36038
it = 7.95168 it = —4.857T4
G = —1.26899 it = 4.80446

c = —9.72147
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Table D.7: Explicit coefficients of the fits of APS*

ak
5 wfl’;d and At43.

APk —0.0941570 WP = 0.636130 At); = 9.53705
Al = 574386 A = —9.02463 ats = _11.2377
A = 12,6016 A = 21.9802 apts = 383177
af® = —3.27435 ass —8.75892 afts = —7.29734
s = 20.5624 aits = 21.4267
b = 0.02132252 BB = 0973324 b ~1.371832
by s 0.02592749 b ~0.109921 b tis 0.362375
bt = _0.826077 S = 1.08036 b2 = 1.0808402
b = 000471163
qr=1/4
by = 0.0291409
Av=1/4
byt = —0.351031
chis = 0.249099 s = 115224 A5 = 3215984
chis = 7345984 s —26.8421 A = 42133767
¢l = 108.923746 M = 284285 A = -0.440398
s = 20104206 &8 = 351943 Al = 35160776
chis = 7073534 &8 = —12.1688 Al = 1133942
chs = _44.374738 &8 = —3.96385 At = —10.356311
chis = 3545134 &8 = 5.53433 Al = 6701429
chs = 1.341375 &8 = 373988 Al = 10.726960
chs = 19552083 s 4.219 A —6.036207
s = 67.730599
¢l = —3.082275
el = 11.547917
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Table D.8: Explicit coefficients of the fits of APS*™*,

k
whs ™ and Atys.

0.0314364 wheHko 0.617533 At), = 11.66665
—4.56243 ay? = —7.44121 a2 = —9.844617
6.4522 ay”? = 14.233 ag™? = 23.32294
ag? = —6.61754 ag™? = 5760481
a2 11.4329 as? = 7121793
~1.63682 b —2.37589 S = 1.3002045
0.854459 b 1.97249 b = 0.0494348
0.120537 b ~2.36107
—0.399718 b 2.16383
6.53943 i 10.1045 A2 = 24.604717
—4.00073 a2 —6.94127 Bl = (.808279
—0.638688 a2 12.1857 o2 = 62471781
—3.94066 i —1.62866 coi2 = 48.340961
= —0.482148 s = 26756
= 7.668x 1077 —4 iz = —4.7536
= 1.25617 &2 = 10.071
—4.04848 s = _6.7299
i = 12,0377
i —8.56139
(a2 —5.27136
a8 5.10653

Table D.9: Explicit coefficients of the fits of ALS** and wpe?*

APeeko 0.00522697 peako  —0.818117
ajlss —0.29628 a¥® = —2.8918
ags® 6.4207 as® = —3.2012
g% = —3.773
0 0
b 0.04360530 b5 = —0.332703
A0 0
b —0.5769451 by® = —0.675738
i 5.720690 B = 1.487294
i 44.868515 &P = —2.058537
4 12.777090 &P = 1.454248
s —42.548247 & = —1.301284
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Table D.10: The fitted coefficients of (522, ¢5**, ¢?*) as defined in Eq. (6.109).

} Y = 0?22
by’ (v) = —0.5585 + 0.81196v

b4 (X12) = —0.398576 + 0.1659421 X5

bgg(Xm) = 0.099805 — 0.2560047 X 12

b?ff (X12) = 0.72125 — 0.9418946 X5

b9 (X1) =0

Y = §2 Y = Cf”

g? (v) = 3.8436 4 0.71565v bgf(y) = 1.4736 + 2.2337v
?‘f (X12) 5.12794 — 1.323643X 2 bi’f (X12) = 8.26539 + 0.779683 X 12
;g (X12) = 9.9136 — 3.555007X 15 b;ff (X12) = 14.2053 — 0.069638 X5
§§ (X12) = —4.1075 + 7.011267X 5 bgf’f (X12) =0
b by? (X12) = —31.5562 + 32.737824 X5 bf}’ (X12) =0

Table D.11: The explicit fits of (¢5%*,¢5*, ¢4%%). The reader should note that the fits of (c5°°, ¢$%*) are
not used for any of the results given in the main text. Instead the corresponding fits of Ref. [133] are used.
See Appendix 6.2.3 for a brief discussion.

3 (v, X19, 12) = —0.5585 + 0.81196v + (—0.3502608 + 1.587606 X 15 — 1.555325 X 2,) 1o
2 (v, X12,8) = 3.0611 — 6.15970 + (—0.634377 + 5.983525X 12 — 5.8819X %) 5

¢ (1, X12,8) = 1.789 — 5.6684v + (—3.877528 + 12.0433X 15 — 6.524665X2,)S

Table D.12: The explicit fits of (¢4, ¢5*, ¢2**). The reader should note that the fits of (c5**, ¢2**) are
not used for any of the results given in the main text. Instead the corresponding fits of Paper II are used.
See Sec. 6.2.3 for a brief discussion.

g (y, S) =  —0.41591 +3.2099r — 9.614738v S + 122.4611251 S2

4 (v, X2, 8) = BESZODLLTRITIE | (_4.9184 +T7911653X1,) §
+ (—15.6772 +21.181688X15) 52

cfi (u, X1a, S) —  0.21595 +23.216v + (—3.4207 +11.746452X15) S

+ (—15.5383 +34.922883X15) 52
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Table D.13: The explicit fits of (C3A55,c§55, cff“)‘

455 (v, X19,419) = —T.063079 +65.464944r + (—2.055335 —0.585373X12) 12
+ (—12.631409 +19.271346 X12) a2,

o (y, X12, S) =  —1.510167 +30.569461v + (—2.687133 +4.873750X15) S
+ (—14.629684 +19.696954X15) 52

o (1/, X12,5'> = —1.383721 +56.871881v + (+7.198729 —3.870998X15) S

+ (—25.992190 +36.882645X12) S
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Table D.14: Coefficients of the (2,2) quantities needed to calculate the NQC extraction point. From left

U)ﬂghtthecohunnsshOW'{Agﬁc,ﬁggc,wggc,wggc}.

ANQC iNQC

AQ;Q AQ;Q
Ay — 0204773 | AN/ = —0.000243654
ANQC iNQC
a2 —  —0.052697 | a]> = 2.86637
ANQC iNQC
al 22 —  1.6088 al 2 = —1.3667
ANQcml:m2 ANQlezmQ
by = —0.705226 | by > = 0.02679530
ANQle:m2 ANQle—mQ
by = —0.0953944 | by*2 = —0.0064409
ANQCnblanQ
by 22 = —1.087280
ANQC ANQC
o = 0.009335 | ¢ > = —0.015395218
ANQC iNQC
¢z = 0582869 | ¢, = 0.008732589
ANQC
¢y = —0.140747
(A —  0.505807
32 .

NQC - NQC

W22Q u’22Q'
iy 20 — 0285588 | w20 —  0.00628027
NQC . NQC
a;?? = 0.91704 a;? = 24351
NQC . NQC
ay?? = 17912 g2 = 4.4928
NQlefm2 . NQlezmg
by = —0.46550 by = 0.001425242
wNQCnLl:mQ wNQlezmg
by 22 = —0.078787 | by = —0.00096073
NQCm1:7rL2
by = —0.852284
wNQc oNQc
2 = —0.338008 | ¢;* = —0.000063766
wpy @y
3 = 1077812 | ¢ = 0.000513197
NQC
o2 = 0.0555533
wNQC
o3 = —0.312861
wNac
a2 = 0.289185
wNQC
o2 = —0.195838
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Table D.15: Explicit coefficients of the fit of A4N4QC.

ApRY = 152614 x 10~
A‘NQC

al = 763783
iNQC

a; = 15.8089

iNQC

@) = 588951
iNQC

ajt = 111555

iNQC

bl = 376236 x 107
iNQC

by = —0.819379
iNQC

¢ = —6.45958 x 107
ANQC

T = 235613
Ao

ch = —208.678
ANQC

it = —1063.08




Appendix E

Fits of (a1, ao) for TEOBiResumS_SM

All fits have been performed with fitnlm of MATLAB.

E.1 Non-spinning sector

a1 in non-spinning sector is fitted against X2, = (1 — 4v)* with the template

a?=!
a = E.1
' L+ b7 X7, + by' X (B
with
ai=" = 0.070974
byt = 0.786350
by' = —9.085105 .
a?™! is extracted from ¢ = 1.
ag in non-spinning sector is against Xj2 = +/1 — 4v with the template
_1 1+ b2 X7, + 032 X3
ag = ag_l oA 4 0 Ay (E.2)

1+ b2 X1

with

ad™' = 1.315133

b2 = —0.324849
b32 = —0.304506
b3 = —0.371614 .

a?™" is extracted from ¢ = 1.



E.2.1 < q < 4 sector

Equal mass sector, v > 0.2485

a1 in the equal mass case was fitted with the template:

T NS+ 5 8%+ 3t S8+ g S

a)p = 0 = = = (E3)
145t S+cgt 5% + 'S8

with the fitted coefficients:

¢ = 0.121187 ¢ = —5.950663
¢ = 9.420324 1 = —10.601339
1 = 17.641549 = —5.6847T7
¢ =10.910451 4= —6.867377 .

as was fitted to the same template. The fitted coeflicients are:

@2 = 1.331703 42 = —4.237724
2 = 1.786023 42 = 10.546205
42 = —9.698233 2 = —6.225823
@2 = 13.209381 %2 = —9.402513 .

E.2 1< g<4 sector

In this sector the fit of a; differs in two ways from the previous. (i) The fit is factorized in a spinning
part aj and a non-spinning part a{, and (ii) it is fitted against the spin variable S, = S/ (m% + m%)
The full template is:

ap =al-ay | (E.4)
1+ dV'v + dgtvs
1+d3'v
. 1+d§*S, +Adg1SA,% +Ad31§,?; + d7’ sS4 |

14 d3S,, + d3 52 + d% 93

al = d3

, (E.5)

The fitted coefficients take the values of af are:

dyt = 0.26132647 di* = —4.90302367
dy' = 20.67036124 ds' = —3.17109808 .

Note these coefficients have been fitted to waveforms for which yo = £0.01 was set and y; was

chosen such that S, = 0. This will be the case for all of the following non-spinning factor fits.




E.2.1 < q < 4 sector

The fitted coefficients of a; are:

3 = —3.082861 2t = 2.169948
a3 = —0.636353 d¥ = 0.741419
a3 = —2.843896 ds* = 2.709697

d%h = —0.832894

as is fitted in a factorized form as well. Additionally, it holds an explicit depends of a3 on v.

a9 = ag . ag 5 (E7)
1 + da2y + da2l/3
0 _ 1 2
ag = do'—— 7 v e
o — LT A5 + dS] + di? 53 + S, (E.9)
L+d@ S, +dpS2 +di3538
dit =i (14 div)  fori=4,..,10. (E-10)

The fitted coefficients of a are:

dy> = 1.03364144 d?* = —3.46191440
dy? = —7.86652243 ds® = —3.96268815 .

The fitted coefficients of a5 are:

dj? = 0.036452 dyy = —64.360789
% = 0.275707 d¥ = —34.573145
dg? = —0.113951 s = 0

d%%) = —2.531304 ¥ = —7.691661
d% = —1.025824 iy = 4.237539
dg? = 0.593579 3y = 1.661809
d§3 o = —0.939736 df3 | = —6.333442 .

dg* was set to 0 prior to the evaluation of the fit to improve the convergence of the fit.




E.3. ¢ > 4 sector

E.3 ¢ > 4 sector

aj for ¢ > 4 has an additional new feature. The explicit v dependence is fitted through x,, = v—0.16.

The full template is:

0. .S
alzal'al ,

1+ ef'v+ egly?’
1+ e5'v
g 1+efr Sy +egtS2 4 egS3 + e S

n

0 _
1=

a
=0

9

ai = ~ ~ -
' 1+ eg' Sy +eg' S2 + €153
1 + eqlll'u i
e = 621071 n 6312%, fori=4,..,10.
1y

The fitted af coefficients are:

egt = 0.341803 elt = —1.350488

eyt = —6.353357 est = 2.216156 .

(E.11)

(E.12)
(E.13)

(E.14)

The coefficients of af are fitted in 2 steps. First, for ¢ = 4 and second, an extrapolated fit from

there. The coefficients e, have been fitted to ¢ = 4:

efly = —2.287721 ety = —0.598451
ey = 0.766069 ¥y = 1.857169
el = —2.035234 ey = 0.836427

efho = 0.297476

The remaining coefficients model the extrapolation of the spin dependence to larger mass ratios

and are:

ey = 7.650946 efh = 7.106992
et = —60.630748 ett, = —69.630357
cal = 47.114247 egh = 5.733002
es = —12.905707 ey = 5.045688
efy =  3.515869 ety = 1.564146
ey = 0.642864 g = 2.947890

ey, = 31.023038 ey, = 1.829543 .




E.3. ¢ > 4 sector

as is fitted similarly with the template:

0 S
az = Qg - Ay ,

az az. 3
W — ay L €77V + €%y
2 — %0 1+6a2V
3

s _ 1+ €S+ ¢525) + eg?Sh + e Sy

)

“ 1+ 228, + €242 ’
el? = eZ%iiZ%Z’ fori=4,..,9.
The fitted a) coefficients are:
682 = 0.929192 6?2 = 1.334263
e5? = —26.389790 es? = —1.289984 .

(E.15)

(E.16)
(E.17)

(E.18)

The coefficients of af are fitted in 2 steps as well. The coefficients €{? have been fitted to g = 4:

ef% = —0.886561 e2% = —1.953955
ey = 1.366537 e = 0950212
€% = —2.531000 gy = 1.723991 .

The remaining coefficients model the extrapolation of the spin dependence to larger mass ratios

and are:

¢y = 15.871482 ¢y = 5.066190
e = 7.168498 e = 6.709490
ey = 18.583382 €y = 5.764512
e% = —14.038564 €83 = —17.126231
el = 6.387917 € =  3.438456

)

el2 = 8.867098 2, = 2.910938 .




Appendix F

Numerical Relativity waveform tables

This appendix is devoted to listing details of the NR catalog utilized in this work. The spinning
sector of the calibration set is given in Tab. F.1 — F.4. The spinning sector of the wvalidation set is
given in Tab. F.5 — F.13. The non-spinning sector of both sets is given in Tab. F.14 — F.15. The

columns of the tables show from left to right:
(i) The waveform number with respect to all the waveforms used in this work.
(ii) The ID with respect to the SXS catalog [7].

(iii) (g, x1,x2) mass-ratio and dimensionless spin parameters. In the case of non-spinning wave-

forms solely the mass-ratio q.

(iv) (v, 5’) symmetric mass-ratio and the EOB spin-parameter S. In the case of non-spinning

waveforms solely the symmetric mass-ratio v.
(iv) The number of orbits N1, between the reference time and the peak of the £ = m = 2 mode.

(v) The eccentricity in units 1073. As for many waveforms only an upper limit of the eccentricity

was given we have chosen to use this upper limit as a conservative estimate of the eccentricity.

SXS (vi) d¢NE  the accumulated phase difference between the two highest levels of resolution

mrg»

available, from the reference time up until merger. Given in units of rad.

(vii) Fngr /NR, the NR/NR unfaithfulness, eq. (A.12), computed between the two highest level

of resolution available. Given in units of %.

BAM (Vi) 7Text, the radius of waveform extraction chosen.
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Table F.1: This table list all SXS waveforms with at least one non-zero spin and equal-mass in the calibration

set.

# id (g, x15Xx2) (V, 5) Nowy  €[107%] | 6¢2%, [rad]  Fyryng [%)]
1 | BBH:0178 | (1,40.9942,+0.9942) | (0.25,40.5) | 23.91 1.8000 +0.0127 0.0066
2 | BBH:0177 | (1,40.9893,+0.9893) | (0.25,40.5) | 24.61 2.0000 —0.0162 0.0021
3 | BBH:0172 | (1,+0.9794,40.9794) | (0.25,+0.49) | 24.63 1.1276 —0.1560 0.0022
4 | BBH:0157 | (1,+0.9496,+0.9496) | (0.25,+0.47) | 24.49 0.1483 —0.1286 0.0027
5 | BBH:0160 | (1,+0.8997,40.8997) | (0.25,+0.45) | 24.09 0.4442 —0.0865 0.0118
6 | BBH:0153 | (1,+0.8498,+0.8498) | (0.25,+0.42) | 23.71 0.8694 .. ..

7 | BBH:0230 (1,40.8,40.8) (0.25,40.4) | 23.35 0.1219 +0.1060 0.0016
& | BBH:0228 (1,40.6,+0.6) (0.25,40.3) | 22.05 0.3081 —0.2269 0.0080
9 | BBH:0150 | (1,402, 10.2) (0.25,40.1) | 1848 0.2714 | 10.0664  0.0027
10 | BBH:0149 (1,-0.2,-0.2) (0.25,—0.1) | 15.65 0.1604 +0.0649 0.0037
11 | BBH:0148 | (1,-0.44,-0.44) | (0.25,-0.22) | 13.94 0.0350 | —0.1144  0.0013
12 | BBH:0215 (1,-0.6,—0.6) (0.25,-0.3) | 24.96 0.1975 —0.2331 0.0040
13 | BBH: 0154 (1,—-0.8,—0.8) (0.25,—0.4) | 12.61 0.6400 —0.0138 0.0036
14 | BBH:0212 | (1,-0.8,-0.8) (0.25,—0.4) | 28.15 0.2318 | +0.1907  0.0032
15 | BBH:0159 | (1,—0.8996, —0.8996) | (0.25,—0.45) | 12.33  0.8100 —0.0679 0.0069
16 | BBH: 0156 (1,—-0.949, —0.949) (0.25,—0.47) | 11.22  0.7671 +0.1668 0.0055
17 | BBH: 0232 (1,40.8998, +0.5) (0.25,40.35) | 22.34  0.2839 —0.1349 0.0073
18 | BBH: 0225 (1, +0.8, —1—0.4) (0.25, —I—O.S) 22.21 0.3625 —0.2321 0.0014
19 | BBH: 0229 (1,+0.65,+0.25) (0.25,40.23) | 22.48 0.3121 —0.2027 0.0053
20 | BBH:0231 (1,40.8998,0) (0.25,40.22) | 22.47 0.0340 —0.2667 0.0046
21 | BBH:0227 (1,40.6,0) (0.25,40.15) | 22.45 0.3209 —0.2282 0.0052
22 | BBH:0005 (1,40.5,0) (0.25,40.12) | 29.61 0.2355 —0.1223 0.0592
23 | BBH:0219 (1,40.8998, —0.5) (0.25,40.1) | 20.93 0.3404 —0.0954 0.0076
24 | BBH:0221 (1,40.8,—-0.4) (0.25,40.1) | 22.10 0.2855 —0.1602 0.0053
95 | BBH:0223 (1,+0.3,0) (0.25,10.08) | 22.83 .. 400017 0.1520
26 | BBH:0213 |  (1,-0.8,+0.8) (0.25,0) | 20.90 0.1435 | —0.1251  0.0040
27 | BBH: 0211 | (1,—0.8997,40.8998) (0.25,0) 21.58 0.2801 —0.2333 0.0027
28 | BBH:0217 | (1,0.6,+0.6) (0.25,0) | 21.28 0.1926 | —0.1533  0.0048
29 | BBH:0218 (1,40.5,—-0.5) (0.25,0) 28.21 0.0720 —0.1185 0.2160
30 | BBH:0222 (1,-0.3,0) (0.25,—0.08) | 23.17  0.0540 +0.1129 0.1598
31 | BBH:0224 | (1,-0.8,+0.4) (0.25,-0.1) | 21.65 0.2727 | —0.1912  0.0020
32 | BBH:0226 (1,—0.8997,40.5) (0.25,—0.1) | 22.33 0.2809 —0.2728 0.0018
33 | BBH: 0004 (1,-0.5,0) (0.25,—0.12) | 29.19  0.3802 —0.0769 0.0189
34 | BBH:0216 (1,-0.6,0) (0.25,—0.15) | 22.94 0.2766 —0.2353 0.0040
35 | BBH:0214 | (1, -0.62,-0.25) | (0.25,—0.22) | 23.21 0.2089 | —0.1904  0.0010
36 | BBH:0210 (1,-0.8997,0) (0.25,—0.22) | 23.71  0.1567 —0.0818 0.0024
37 | BBH:0220 (1,—0.8,—-0.4) (0.25,—0.3) | 24.67 0.1158 —0.1330 0.0040
38 | BBH:0209 (1,—0.8997,—0.5) (0.25,—0.35) | 26.49 0.1539 +0.1350 0.0010
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Table F.2:
calibration set. Part I, listing waveforms with mass-ratios ¢ < 3.

This table list all SXS waveforms with at least one non-zero spin and unequal-mass in the

# id (q’ X1 XZ) (V7 S) Norb 5[10_3} 6¢mrg [rad] FNR/NR [%]
39 | BBH:0306 | (1.3,40.9612,—0.899) | (0.2455,+40.14) | 11.3344 1.3506 —0.1093 0.0031
40 | BBH:0013 (1.5,40.5,0) (0.24,40.18) | 23.4984  0.1357 . .
41 | BBH:0025 (1.5,40.5,—0.5) (0.24,+0.1) 21.8575  0.0550 —0.1641 0.0278
42 | BBH:0019 (1.5,-0.5,+0.5) (0.24,—-0.1) 19.9375  0.0491 +0.0966 0.0213
43 | BBH:0016 (1.5,-0.5,0) (0.24,—-0.18) | 29.7855  0.4267 —0.0093 0.0009
44 | BBH:0257 | (2,+0.8498,+0.8498) | (0.2222,+0.47) | 24.1193 0.1139 | —0.0213 0.0024
45 | BBH:0256 (2,+0.6,+0.6) (0.2222,+0.33) | 23.1240 0.0779 —0.0469 0.0068
46 | BBH: 0253 (2,40.5,+0.5) (0.2222,+0.28) | 28.1387  0.0490 —0.0109 0.0040
47 | BBH:0251 (2,+0.3,+0.3) (0.2222,40.17) | 23.0196 0.0510 —0.0935 0.0037
48 | BBH:0240 (2,-0.3,—0.3) (0.2222,—0.17) | 23.1078  0.0450 +0.0636 0.0614
49 | BBH:0238 (2,—-0.5,—0.5) (0.2222,—-0.28) | 31.4030 0.0640 —0.0630 0.1110
50 | BBH:0235 (2,—0.6,—0.6) (0.2222,—0.33) | 23.8374 0.0610 —0.0738 0.0048
51 | BBH:0234 (2,—0.85,—0.8496) (0.2222,—0.47) | 27.2911  0.0374 +0.0393 0.0049
52 | BBH:0258 | (2,+0.8713,—0.8495) | (0.2222,+0.3) | 21.2744 0.1817 —0.0824 0.0061
53 | BBH:0255 (2,+0.6,0) (0.2222,4+0.27) | 22.3143  0.0379 +0.0250 0.0023
54 | BBH:0254 (2,+0.6,—0.6) (0.2222,+0.2) | 22.0411 0.0522 +0.0136 0.0009
55 | BBH:0248 (2,+0.13,40.8497) (0.2222,4+0.15) | 22.2757  0.0763 —0.1057 0.0030
56 | BBH:0250 (2,+0.3,0) (0.2222,+0.13) | 22.6909  0.0540 —0.0904 0.0045
57 | BBH:0249 (2,+0.3,-0.3) (0.2222,+0.1) | 22.7597  0.0440 | —0.0828 0.0057
58 | BBH:0252 (2,+0.37,—0.8494) (0.2222,40.07) | 21.6622  0.3509 +0.2098 0.0029
59 | BBH:0247 (2,0,40.6) (0.2222,+0.07) | 21.6482  0.1320 —0.1635 0.0041
60 | BBH:0246 (2,0,40.3) (0.2222,+0.03) | 21.4548 66.0000 | +0.3219 0.0081
61 | BBH:0245 (2,0,-0.3) (0.2222,—0.03) | 22.1939  0.0400 +0.0421 0.0226
62 | BBH:0244 (2,0,—-0.6) (0.2222,—0.07) | 22.0958 0.0336 —0.1980 0.0010
63 | BBH:0239 (2,-0.37,40.8497) (0.2222,—0.07) | 21.5943  0.0571 +0.2464 0.0005
64 | BBH:0242 (2,-0.3,+0.3) (0.2222,-0.1) | 22.5985  0.0490 | —0.0164 0.0260
65 | BBH:0241 (2,-0.3,0) (0.2222,—0.13) | 22.6575 0.0510 —0.0636 0.0129
66 | BBH:0243 (2,—0.13,—0.8495) (0.2222,—0.15) | 22.2092 0.2245 —0.2301 0.0006
67 | BBH:0237 (2,—-0.6,+0.6) (0.2222,—-0.2) | 21.1681 0.0370 +0.1251 0.0014
68 | BBH:0236 (2,—0.6,0) (0.2222,—0.27) | 22.0960 0.0948 +0.0308 0.0029
69 | BBH:0233 | (2,—0.8713,+0.8497) | (0.2222,—0.3) | 20.5769 0.0961 +0.1486 0.0012
70 | BBH:0293 (3,40.85,40.8495) (0.1875,+0.53) | 23.8799  0.1022 —0.1300 0.0046
71 | BBH:0291 (3,40.6,40.6) (0.1875,+0.37) | 22.7550  0.0397 —0.1730 0.0010
72 | BBH:0286 (3,40.5,40.5) (0.1875,+0.31) | 23.5058 0.0610 +0.0367 0.0022
73 | BBH:0283 (3,40.3,40.3) (0.1875,4+0.19) | 22.9428 0.0510 —0.0352 0.0032
74 | BBH: 0270 (3,-0.3,-0.3) (0.1875,—0.19) | 22.3406  0.0366 —0.0006 0.0038
75 | BBH: 0267 (3,—0.5,—0.5) (0.1875,—0.31) | 22.8962  0.0590 +0.0338 0.0058
76 | BBH: 0264 (3,—0.6,—0.6) (0.1875,—0.37) | 22.0717 0.2819 +0.1772 0.0024
77 | BBH:0260 (3,—0.85,—0.8494) (0.1875,—-0.53) | 24.5257  0.3523 +0.2350 0.0004
78 | BBH:0290 (3,40.6,+0.4) (0.1875,40.36) | 22.5790 0.1140 —0.0164 0.0032
79 | BBH:0292 (3,40.73,—0.8493) (0.1875,+0.36) | 21.7414  0.1521 +0.0590 0.0009
80 | BBH:0289 (3,+0.6,0) (0.1875,40.34) | 23.0495 0.2296 —0.2081 0.0005
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Table F.3:

This table list all SXS waveforms with at least one non-zero spin and unequal-mass in the
calibration set. Part II, listing waveforms with mass-ratios g > 3.

“ id (¢, x1,X2) <V7 5‘) Now,  €[1077] | donn, [rad]  Fyp/ng [%)]
81 | BBH:0288 (3,40.6,—0.4) (0.1875,+0.31) | 21.9643 0.2097 —0.2395 0.0006
82 | BBH: 0287 (3,+0.6,—0.6) (0.1875,+0.3) | 22.7030 0.0718 +0.0163 0.0053
83 | BBH:0174 (3,40.5,0) (0.1875,+0.28) | 34.3933  0.2952 +0.2481 0.1040
84 | BBH: 0285 (3,+0.4,4+0.6) (0.1875,+0.26) | 22.0723  0.1220 —0.1738 0.0013
85 | BBH:0045 (3,40.5,—-0.5) (0.1875,+0.25) | 20.6343 0.6618 .. ..
86 | BBH:0280 | (3,+0.27,40.8495) | (0.1875,40.2) | 22.1099 0.0790 —0.0860 0.0052
87 | BBH:0284 (3,40.4,—-0.6) (0.1875,+0.19) | 21.9538 0.1151 +0.0367 0.0005
88 | BBH: (0282 (3,40.3,0) (0.1875,+0.17) | 22.9026  0.0580 —0.0210 0.0011
89 | BBH:0281 (3,40.3,—-0.3) (0.1875,+0.15) | 22.7014  0.0480 —0.0379 0.0027
90 | BBH:0279 | (3,+0.23,—0.8494) | (0.1875,+0.08) | 21.0503 0.1136 +0.0198 0.0010
91 | BBH:0278 (3,0,40.6) (0.1875,+0.04) | 21.9491 0.1976 —0.2538 0.0015
92 | BBH:0277 (3,0,+0.3) (0.1875,+0.02) | 22.1864 0.0480 —0.0326 0.0029
93 | BBH: 0276 (3,0,—0.3) (0.1875,—0.02) | 22.1734 .. —0.0130 0.0028
94 | BBH:0275 (3,0,—0.6) (0.1875,—0.04) | 21.4036 0.1062 +0.0948 0.0008
95 | BBH:0274 | (3,—0.23,40.8497) | (0.1875,—0.08) | 21.2795 0.2141 +0.1244 0.0018
96 | BBH:0272 (3,—0.3,+0.3) (0.1875,—0.15) | 22.1789 0.0510 —0.0051 0.0035
97 | BBH:0271 (3,-0.3,0) (0.1875,—0.17) | 22.0431  0.0490 —0.0340 0.0014
98 | BBH:0269 (3,—0.4,+0.6) (0.1875,—0.19) | 20.8371 0.1165 +0.1110 0.0017
99 | BBH:0273 | (3,—0.27,—0.8493) | (0.1875,—0.2) | 21.5046 0.1867 +0.1087 0.0027
100 | BBH:0268 (3,—0.4,-0.6) (0.1875,—0.26) | 21.4250 0.1555 +0.0793 0.0016
101 | BBH: 0036 (3,—-0.5,0) (0.1875,—0.28) | 31.4671 0.5330 —0.0150 0.0010
102 | BBH: 0263 (3,-0.6,40.6) (0.1875,—0.3) | 20.5094 0.2052 +0.0774 0.0009
103 | BBH:0266 (3,-0.6,+0.4) (0.1875,—0.31) | 21.2988 0.1705 —0.1800 0.0003
104 | BBH:0262 (3,-0.6,0) (0.1875,—0.34) | 21.0470 0.2031 —0.1718 0.0002
105 | BBH:0261 | (3,—0.73,+0.8495) | (0.1875,—0.36) | 21.1482 1.1000 +0.0594 0.0016
106 | BBH: 0265 (3,-0.6,—0.4) (0.1875,—0.36) | 22.0040 0.0880 —0.2962 0.0008
107 | BBH:0110 (5,40.5,0) (0.1388,+0.35) | 23.8397 0.4125

108 | BBH: 0060 (5,—0.5,0) (0.1388,—0.35) | 22.8094 3.4344 .. ..
109 | BBH: 0208 (5,—0.9,0) (0.1389,—0.63) | 49.5728  0.5090 —2.0018 0.0385
110 | BBH: 0202 (7,40.6,0) (0.1094, +0.46) | 60.8335 0.0959 —0.0908 0.0048
111 | BBH: 0203 (7,40.4,0) (0.1094,+40.3) | 57.3589 0.0144 —1.3040 0.0095
112 | BBH: 0205 (7,—0.4,0) (0.1094,—0.3) | 43.6451 0.0672 —0.8000 0.0040
113 | BBH:0207 (7,—0.6,0) (0.1094, —0.46) | 34.6589 0.1743 +0.1340 0.0011
114 | BBH: 0065 (8,40.5,0) (0.0987,+0.4) | 33.5938  3.7400 +0.3529 0.0189
115 | BBH: 0064 (8,—0.5,0) (0.0987,—0.4) | 18.2981 0.4998 —0.3465 0.0338
116 | BBH:1375 (8,—0.9004,0) (0.0988,—0.71) | 26.6545 1.1129
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Table F.4: This table list the 16 BAM waveforms with at least one non-zero spin of the calibration set.

4 | id (4 X1, X2) <us) Now  €[1073]  rext
117 | BAM | (2, 10.75, 10.75) | (0.2222, 10.42) | 12.2855 4.4000 95
118 | BAM | (2,40.5,40.5) | (0.2222,10.28) | 13.9746 1.2000 100
119 | BAM | (3,-0.5,—0.5) | (0.1875,-0.31) | 10.5346 1.0000 100
120 | BAM | (4,40.75,+0.75) | (0.16,40.51) | 154571 4.0000 100
121 | BAM | (4,40.5,+0.5) | (0.16,40.34) | 13.5333 3.6000 100
122 | BAM | (4,40.25,+0.25) | (0.16,40.17) | 12.0059 2.4000 100
123 | BAM | (4,-0.25,-0.25) | (0.16,—0.17) | 10.0061 1.0000 100
124 | BAM | (4,-0.5,—0.5) | (0.16,-0.34) | 9.6086 1.0000 100
125 | BAM | (4,-0.75,—0.75) | (0.16,—0.51) | 83831 0.8000 100
126 | BAM | (8, +0.85,+0.85) | (0.0988,40.68) | 17.7168 0.0000 100
127 | BAM | (8,-0.85,—0.85) | (0.0988, —0.68) | 4.2467 0.5000 100
128 | BAM | (8,40.8,0) | (0.0988,+0.63) | 11.7887 4.9000 100
120 | BAM | (18,40.8,0) | (0.0499,+0.72) | 11.7559 0.0000 100
130 | BAM | (18,40.4,0) | (0.0499,40.36) | 11.6451 1.8000 100
131 | BAM | (18,-0.4,0) | (0.0499,-0.36) | 7.6889 0.5000 100
132 | BAM | (18,-0.8,0) | (0.0499, —0.72) | 7.4415 0.5000 100
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Table F.5: This table shows the SXS waveforms with approximately equal-mass (v > 0.2485) and at least

one non-zero spin in the validation set. Part 1.

# | i (4,1, x2) (v.9) Noo  €[107%] | 66NE [rad]  Fynnn [%
133 | BBH: 1124 | (1, +0.998,4+0.998) (0.25,+0.5) | 24.8752 0.8701 B B
134 | BBH:0158 | (1,+0.9695,+40.9695) | (0.25,+0.48) | 23.9199 0.5376 —0.1377 0.0031
135 | BBH:0176 | (1,+0.9596, 4+0.9596) (0.25,40.48) | 23.6711 0.7982 —0.1821 0.0065
136 | BBH:0155 (1,+40.8,+0.8) (0.25,+0.4) 23.3269  0.5051 —0.0479 0.0035
137 | BBH:1477 (1,40.8,+0.8) (0.25,+0.4) 19.7056  0.0974 +0.0882 0.0037
138 | BBH:0328 (1,40.8,+0.8) (0.25,+0.4) 19.6887 0.1123 +0.0976 0.0034
139 | BBH:2104 (1,40.8,+0.8) (0.25,+0.4) 22.8590 0.2704 —0.0375 0.0033
140 | BBH:0175 (1,40.75,40.75) (0.25,40.37) | 22.4926 3.5386 +0.3758 0.0030
141 | BBH:0152 (1,40.6,+0.6) (0.25,+0.3) 21.8026  0.4272 —0.0498 0.0047
142 | BBH:2102 (1,40.6,+0.6) (0.25,40.3) 22.0345 0.1629 —0.0236 0.0007
143 | BBH:1123 (1,40.5,+0.5) (0.25,40.25) | 20.5204 0.6331 —0.0821 0.0033
144 | BBH:1122 (1,+0.44,40.44) (0.25,40.22) | 20.8795 0.3727 —0.2461 0.0031
145 | BBH:1134 | (1, —0.44, —0.44) (0.25,-0.22) | 8.5884 0.1394 | —0.0108 0.0025
146 | BBH:1135 | (1, —0.44, —0.44) (0.25,-0.22) | 9.5239  0.2957 | +0.0025 0.0047
147 | BBH:1144 (1,—0.44,—-0.44) (0.25,—-0.22) 14.4435 8.2117 —0.0318 0.0054
148 | BBH: 0151 (1,-0.6,—0.6) (0.25,—0.3) 14.1702  0.4800 —0.0316 0.0022
149 | BBH:2089 (1,-0.6,—0.6) (0.25,-0.3) 24.6948 0.1182 -+0.0192 0.0072
150 | BBH:1475 (1,-0.8,—0.8) (0.25,—0.4) 14.7348  0.6336 +0.3502 0.0026
151 | BBH:2086 (1,—0.8,—0.8) (0.25,—0.4) 27.6225  0.2960 -+0.0299 0.0033
152 | BBH:0329 (1,—-0.8005, —0.8) (0.25,—0.4) 14.6608  0.4020 +0.0586 0.0020
153 | BBH:1137 | (1,—-0.9692, —0.9692) (0.25,—0.48) 11.4049 0.4313 +0.0190 0.0021
154 | BBH:1481 (1,+0.8,+0.73) (0.25,+40.38) 19.5871  0.0640 +0.1565 0.0032
155 | BBH:2106 (1,+0.8998,40.5) (0.25,40.35) | 22.3954 0.0221 +0.0589 0.0064
156 | BBH:1497 (1,40.68,40.67) (0.25,40.34) | 19.5347 0.5408 +0.2185 0.0032
157 | BBH:1495 (1,+0.78,40.53) (0.25,+40.33) 19.4806 0.5575 +0.2610 0.0058
158 | BBH:2099 (1,40.8,+0.4) (0.25,+0.3) 21.9856  0.0788 +0.0559 0.0048
159 | BBH:0394 (1,40.6,+0.4) (0.25,+40.25) 18.7477  0.0661 —0.0998 0.0023
160 | BBH:1496 (1.16,40.8,+0.03) (0.2487,+0.24) | 18.6343 0.1039 —0.1859 0.0008
161 | BBH:2103 (1,+0.65,40.25) (0.25,40.23) | 21.6974 0.0965 +0.0563 0.0022
162 | BBH:2105 (1,+0.8997,0) (0.25,40.22) | 21.6971 0.1954 —0.0191 0.0002
163 | BBH:1503 (1,+0.73,40.14) (0.25,+40.22) 18.5877  0.7405 +0.2193 0.0028
164 | BBH:1501 (1,40.75,+0.09) (0.25,40.21) 18.5604 0.7164 +0.3254 0.0040
165 | BBH:0326 (1,+0.8,0) (0.25,+0.2) 18.4268  0.3255 —0.0580 0.0056
166 | BBH:1507 (1,40.5,40.29) (0.25,+0.2) 18.6017  0.4355 +0.2739 0.0032
167 | BBH:1376 (1.01,+40.25,+0.5) (0.25,40.19) | 19.5992 0.5848 -+0.0299 0.0035
168 | BBH:0544 (1.08,0,40.69) (0.2496,+0.16) | 18.2157 0.1142 -+0.0369 0.0021
169 | BBH:2101 (1,+0.6,0) (0.25,40.15) | 21.7281 0.0724 +0.0719 0.0039
170 | BBH:2095 (1,+40.8,—0.4) (0.25,+0.1) 21.2800 0.1571 +0.0545 0.0006
171 | BBH:0418 (1,+0.4,0) (0.25,+0.1) 17.8067  0.0830 +0.1507 0.0041
172 | BBH:2093 (1,+0.8997,—0.5) (0.25,+0.1) 21.0059 0.1374 +0.0339 0.0018
173 | BBH:2097 (1,+0.3,0) (0.25,40.07) | 21.6499 0.0608 -+0.0935 0.0014
174 | BBH:1502 (1,+40.7,—-0.42) (0.25,+40.07) 17.7053  0.1067 +0.1935 0.0026
175 | BBH: 0518 (1.1,-0.14,+0.43) (0.2493,+40.06) | 17.5772  0.1262 —0.0530 0.0012
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Table F.6: This table shows the SXS waveforms with approximately equal-mass (v > 0.2485) and at least
one non-zero spin in the wvalidation set. Part II.

“ id (2, x1,Xx2) (V, S) Now,  €[107°] | don [rad]  Fr/wr [%)]
176 | BBH:1352 (1.15,40.71,—0.67) (0.2488,+0.06) | 14.1426  0.0830 —0.1244 0.0013
177 | BBH:1114 (1,40.2,0) (0.25,40.05) | 17.1720  0.0519 . .
178 | BBH: 0366 (1,40.2,0) (0.25,40.05) 17.4831 0.1527 +0.1471 0.0027
179 | BBH: 0376 (1,+40.6,—0.4) (0.25,40.05) 17.4690 0.3620 —0.1507 0.0013
180 | BBH: 0370 (1,40.4,-0.2) (0.25,40.05) 17.4752  0.0789 +0.0254 0.0006
181 | BBH: 1506 (1,40.46, —0.32) (0.25,40.03) 17.4223 0.5729 +0.2054 0.0023
182 | BBH:1476 (1,—0.8,+0.8) (0.25,0) 17.2858  0.1815 +0.3550 0.0045
183 | BBH:2085 | (1,—0.8996, +0.8997) (0.25,0) 20.9333 0.0826 +0.0842 0.0021
184 | BBH:2087 (1,—0.8,+0.8) (0.25,0) 20.9499  0.0440 +0.0571 0.0007
185 | BBH:2091 (1,-0.6,+0.6) (0.25,0) 21.3166 0.0446 +0.0740 0.0019
186 | BBH: 0304 (1,—0.5,+0.5) (0.25,0) 27.8687 0.0650 —0.0374 0.0014
187 | BBH:2092 (1,40.5,—0.5) (0.25,0) 27.1687 0.0477 +0.0284 0.0028
188 | BBH:(0327 (1,-0.8,+0.8) (0.25,0) 17.1166 0.1007 +0.0517 0.0042
189 | BBH: 0330 (1,—-0.8005, 40.8) (0.25,0) 17.1110 0.1500 +0.0995 0.0005
190 | BBH: 1513 (1.15,-0.1,0) (0.2488,—0.03) | 23.0477 0.1235 +0.5110 0.0051
191 | BBH:0459 (1,-0.4,+0.2) (0.25,—0.05) 16.8421 0.0650 —0.1320 0.0023
192 | BBH:0447 | (1,-0.6,+0.4) (0.25,—0.05) | 16.8472 0.2242 | —0.1259  0.0054
193 | BBH:1351 (1.03,—-0.23,0) (0.25,—0.06) 12.8464 0.2221 +0.1636 0.0005
194 | BBH:2096 (1,-0.3,0) (0.25,—0.07) 22.1277  0.2636 +0.1078 0.0005
195 | BBH:1509 (1,—-0.24,-0.1) (0.25,—0.09) 16.6398 0.5219 +0.1105 0.0014
196 | BBH: 2100 (1,—-0.8996, 40.5) (0.25,—0.1) 21.6573 0.0715 +0.0693 0.0017
197 | BBH:2098 (1,—0.8,+0.4) (0.25,—0.1) 21.5719  0.1550 +0.1126 0.0044
198 | BBH: 0415 (1,—0.4,0) (0.25,—0.1) 16.5057  0.5098 —0.1718 0.0021
199 | BBH:1499 (1, —0.75,40.34) (0.25,—-0.1) 16.5204 0.4727 +0.1788 0.0021
200 | BBH:1498 (1.03,40.22, —0.78) (0.25,—-0.13) 16.3149  0.5239 +0.0433 0.0093
201 | BBH:2090 (1,-0.6,0) (0.25,—0.15) 22.3993 0.0623 —0.0285 0.0036
202 | BBH:0436 | (1, -0.4,-0.2) (0.25,—0.15) | 16.1984 0.5864 | —0.1123  0.0019
203 | BBH: 0585 (1,-0.6,0) (0.25,—0.15) 16.2423 0.3059 —0.0298 0.0009
204 | BBH:0325 (1,-0.8,0) (0.25,—-0.2) 15.9157 0.2440 +0.0200 0.0022
205 | BBH:2088 (1,-0.62,—0.25) (0.25,—0.22) 23.2528  0.0803 +0.0274 0.0016
206 | BBH:2084 (1,—0.8997,0) (0.25,—0.22) 23.1546  0.1050 —0.0177 0.0031
207 | BBH:1500 (1,-0.77,-0.2) (0.25,—0.24) 15.6588 0.4126 +0.1222 0.0012
208 | BBH:0462 (1,—0.6,—0.4) (0.25,—0.25) 15.5965 0.5654 —0.1030 0.0025
209 | BBH:2094 (1,-0.8,—0.4) (0.25,—0.3) 24.6859 0.1082 —0.1382 0.0009
210 | BBH:1492 (1, —0.8, —0.47) (O.25, —0.32) 15.2146 0.7066 +0.1782 0.0009
211 | BBH:2083 (1,—0.8997, —0.5) (0.25,—0.35) 25.8994 0.1105 —0.1156 0.0067
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Table F.7: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the

validation set. Part 1.

- id (2, x1,X2) <Va 5> Now, — €[107°] | dpnn. [rad]  Fyp/ng [%)]
212 | BBH:0626 | (1.17,—0.8277,40.73) | (0.2484,—0.09) | 10.9579  0.0979 —0.0496 0.0061
213 | BBH:0311 (1.19,+0.42,40.38) (0.2482,4+0.2) | 16.8055 0.1275 +0.0568 0.0019
214 | BBH:0312 (1.2,40.4, —0.48) (0.2479,+0.02) | 13.5938 0.3678 —0.0487 0.0046
215 | BBH:0523 | (1.2,-0.2,-0.47) | (0.248,—0.16) | 16.1744 0.1346 | +0.1686  0.0012
216 | BBH:1353 (1.22,40.33,—0.44) (0.2476,+0.01) | 13.6731  0.1515 —0.2410 0.0013
217 | BBH:0309 (1.22,40.33,—0.44) (0.2475,40.01) | 14.0816 29.3240 +0.3544 0.0103
218 | BBH: 0305 (1.22,40.33,—0.44) (0.2475,40.01) | 13.7709  0.8382 —0.2457 0.0015
219 | BBH: 0318 (1.22,40.33,—0.44) (0.2475,40.01) | 12.3868 0.1088 +0.0056 0.0018
220 | BBH:0319 (1.22,+0.33,—0.44) (0.2475,40.01) | 12.5774  9.5765 —0.1374 0.0096
221 | BBH:0313 (1.22,40.38,—0.52) (0.2476,0) 13.4606  0.3643 —0.0218 0.0035
222 | BBH:0314 (1.23,+0.31,—0.46) (0.2474,0) 13.4131 0.1054 +0.0955 0.0021
223 | BBH:0307 (1.23,40.32, —0.58) (0.2474,-0.02) | 11.2821 0.4279 —0.1700 0.0016
224 | BBH:0507 (1.25,+0.8,+0.4) (0.247,4-0.33) | 19.2477  0.0492 —0.0446 0.0043
225 | BBH: 0409 (1.25,40.4,+0.8) (0.247,4-0.28) | 19.0811  0.5530 +0.4135 0.0058
226 | BBH: 1490 (1.25,+0.41,40.76) (0.247,4-0.28) | 19.0150 0.5153 —0.2690 0.0026
227 | BBH:0525 (1.25,40.8,—0.4) (0.247,4-0.17) | 18.1613  0.0978 —0.0110 0.0008
228 | BBH: 0486 (1.25,0,+0.8) (0.247,4-0.16) | 18.3046  0.1302 +0.5147 0.0024
229 | BBH: 0559 (1.25,—-0.2,+0.8) (0.247,4-0.1) 17.9270  0.0860 +0.5519 0.0035
230 | BBH: 0591 (1.25,0,+0.4) (0.247,4-0.08) | 17.7346  0.5561 +0.3277 0.0028
231 | BBH: 0475 (1.25,—0.4,+0.8) (0.247,4-0.03) | 17.5411 0.2125 +0.6229 0.0036
232 | BBH:0465 (1.25,40.6, —0.8) (0.247,4-0.03) | 17.2130 0.1104 +0.1557 0.0010
233 | BBH:1223 (1.25,+0.38,—0.46) (0.247,4-0.03) | 16.4422  0.6707 +0.4807 0.0034
234 | BBH:0503 (1.25,—-0.6,+0.8) (0.247,—-0.03) | 17.8042 0.2713 +0.5742 0.0017
235 | BBH: 0464 (1.25,0,—0.4) (0.247,—0.08) | 16.6696 0.1334 +0.0221 0.0013
236 | BBH: 0535 (1.25,40.2, —0.8) (0.247,—-0.1) 16.4933  0.4965 +0.0183 0.0023
237 | BBH: 1487 (1.25,—0.8,+0.51) (0.2468,—0.15) | 16.4172  0.6620 +0.3609 0.0022
238 | BBH:0398 (1.25,0,—0.8) (0.247,—-0.16) | 16.1057 0.1052 +0.0427 0.0036
239 | BBH:0377 | (1.25,—0.8004,+0.4) (0.247,—-0.17) | 16.8055  0.0697 +0.1819 0.0017
240 | BBH:0386 (1.25,—-0.2,—0.8) (0.247,—-0.22) | 15.7385 0.2341 —0.0317 0.0012
241 | BBH:0466 | (1.25,—0.8004,—0.4) (0.247,—-0.33) | 15.6628 0.6737 +0.3469 0.0006
242 | BBH:0438 (1.25,—-0.6,—0.8) (0.247,—0.34) | 15.5757 0.1831 +0.4975 0.0021
243 | BBH:0315 (1.27,40.32, —0.56) (0.2464,0) 13.2377  0.4605 —0.0745 0.0011
244 | BBH:1493 (1.28,0, 10.8) (0.2462, +0.16) | 18.2944 0.5462 | —0.1611  0.0029
245 | BBH:1508 (1.28,40.3,—0.07) (0.2463,+40.08) | 17.6905 0.1619 +0.3529 0.0057
246 | BBH:1474 (1.28,40.72,—0.8) (0.2462,+0.07) | 17.4878 0.2141 +0.0671 0.0025
247 | BBH:1505 (1.33,—0.1,+0.55) (0.245,40.07) | 17.8158  0.5458 +0.5601 0.0021
248 | BBH:1471 (1.33,—0.78,—0.8) (0.245,—0.4) 14.7453  0.3099 +0.5592 0.0009
249 | BBH:1482 (1.39,—0.58, 4+0.8) (0.2435,—0.06) | 17.7124  0.1146 +0.5314 0.0016
250 | BBH: 0625 (1.4,-0.71,+0.22) (0.243,—-0.2) 14.5338  0.2969 +0.0946 0.0046
251 | BBH:1473 (1.45,40.7,+0.79) (0.2416,+0.38) | 20.0089 0.0789 +0.3752 0.0060
952 | BBH:1511 | (1.47,40.03, —0.1) (0.241,0) | 12.9084 0.1650 | +0.1356  0.0024
953 | BBH:1146 | (1.5,+0.95,40.9493) | (0.24,40.5) | 24.8558 0.2451 | —0.1625  0.0446
254 | BBH:0441 (1.5,40.6,+0.8) (0.24,4-0.34) 19.5122  0.0978 —0.1389 0.0034
255 | BBH: 0385 (1.5,40.8,0) (0.24,+0.29) 19.0432  0.0569 +0.1450 0.0016
256 | BBH: 0372 (1.5,40.8,—0.4) (0.24,40.22) 18.5367  0.0340 —0.0514 0.0025
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Table F.8: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part II.

# | i (4, X1, X2) (v.5) Noo  e[107%] | 66NE [rad]  Fynnn [%)
257 | BBH:0009 (1.5,+0.5,0) (0.24,40.18) | 16.5553  0.0950 . .
258 | BBH:(361 (1.5,0,+0.8) (0.24,+40.13) 18.2273  0.0828 —-0.1191 0.0025
259 | BBH: 0369 (1.5,40.6,—0.8) (0.24,+40.09) 17.6312 0.6193 +0.3635 0.0026
260 | BBH: 0440 (1.5,0,+0.4) (0.24,4+0.06) | 17.7528 0.6448 | +0.2463 0.0014
261 | BBH:0392 (1.5,—0.2,+0.8) (0.24,+0.06) 17.7915 0.1732 —0.1267 0.0024
262 | BBH:0579 |  (1.5,40.4,—0.8) (0.24,+0.02) | 17.1681 0.1731 | +0.2433 0.0022
263 | BBH:0404 (1.5,0,—0.8) (0.24,—-0.13) 16.3364  0.2054 +0.4135 0.0032
264 | BBH: (0012 (1.5,—-0.5,0) (0.24,—-0.18) | 18.3843 0.0596 —0.0689 0.0068
265 | BBH:0014 (1.5,-0.5,0) (0.24,—0.18) | 22.3801 0.0403 +0.1597 0.0561
266 | BBH:0101 (1.5,-0.5,0) (0.24,—0.18) 29.5191 2.5157 .. .
267 | BBH: 0437 | (1.5,—-0.2,—0.8) (0.24,-0.2) | 15.9208 0.4417 | +0.5762 0.0019
268 | BBH:0397 | (1.5,—0.8005,—0.4) (0.24,—-0.35) 15.1362  0.3270 +0.3178 0.0017
269 | BBH:0499 | (1.52,40.01,+0.74) | (0.2392,40.12) | 18.1953 0.1718 | +0.1801 0.0041
270 | BBH: 1470 | (1.52,—0.73,—0.79) | (0.2394,—0.39) | 14.8268 0.5134 +0.0917 0.0035
271 | BBH:1479 | (1.55,—0.56,—0.8) | (0.2384,—0.33) | 15.1981 0.2308 +0.4428 0.0016
272 | BBH:1480 (1.55,—0.8,—0.3) (0.2384,—0.34) | 15.2383 0.5352 +0.4378 0.0035
273 | BBH:0519 | (1.57,+0.64,+0.41) | (0.2379,+0.3) | 19.2173 0.0873 —0.2563 0.0048
274 | BBH:1488 | (1.6,—0.33,40.75) (0.237,—0.01) | 17.6966 0.1815 +0.0664 0.0061
275 | BBH:1491 (1.66,+0.2, —0.7) (0.2346,—0.02) | 17.0597 0.2663 —0.0262 0.0020
276 | BBH:0529 (1.7,0,40.53) (0.2333,40.07) | 17.9701  0.0492 +0.1170 0.0035
277 | BBH:0510 | (1.71,-0.02,—0.75) | (0.2328,—0.11) | 16.5467 0.2528 —0.2075 0.0044
278 | BBH:1465 | (1.7,—0.79,40.77) (0.233,—-0.2) 16.3485 0.1282 —0.2375 0.0038
279 | BBH:(0388 (1.75,40.8,+0.4) (0.2314,+0.38) | 19.7492  0.6847 —0.1235 0.0034
280 | BBH:(0501 (1.75,40.6, +0.8) (0.2314,+0.35) | 19.8571 0.4487 —0.0852 0.0063
281 | BBH:0552 (1.75,40.8,—0.4) (0.2314,40.27) | 19.0140 0.0930 —0.1956 0.0016
282 | BBH:0435 (1.75,40.4,+0.8) (0.2314,+0.27) | 19.3303 0.1007 —0.1591 0.0029
283 | BBH:0566 (1.75,40.2,+0.8) (0.2314,40.19) | 18.7708 0.3194 —0.1644 0.0041
284 | BBH:(0488 (1.75,40.6, —0.8) (0.2314,+0.14) | 18.6404 0.4740 —0.0395 0.0040
285 | BBH: 0382 (1.75,0,40.8) (0.2314,+0.1) | 18.2795 0.3617 —0.0908 0.0017
286 | BBH:(0451 (1.75,0,40.4) (0.2314,+0.05) | 17.8566 0.0829 +0.0133 0.0022
287 | BBH:0550 (1.75,—-0.2,+0.8) (0.2314,+40.02) | 17.7834 0.1276 —0.0566 0.0021
288 | BBH:0473 (1.75,40.2, —0.8) (0.2314,—-0.02) | 17.1561 0.2007 —0.1397 0.0019
289 | BBH: (371 (1.75,0,—0.4) (0.2314,—0.05) | 16.9743 0.7776 —0.1956 0.0060
290 | BBH:0423 (1.75,0,—0.8) (0.2314,—0.1) | 16.5558 0.3514 —0.1116 0.0008
291 | BBH:0355 (1.75,—0.6,+0.8) (0.2314,—-0.14) | 16.8654 0.5512 —0.1105 0.0015
292 | BBH:0414 (1.75,—0.4, —0.8) (0.2314,—0.27) | 15.6249 0.2925 —0.3370 0.0038
293 | BBH:0402 | (1.75,—0.8004,+0.4) | (0.2314,—0.27) | 16.0475 0.4541 —0.1049 0.0017
294 | BBH: (0512 (1.75,—-0.6, —0.8) (0.2314,—0.35) | 15.1873  0.3508 —0.2491 0.0006
295 | BBH:0454 | (1.75,—0.8006,—0.4) | (0.2314,—0.38) | 15.1309 0.0889 —0.2238 0.0011
296 | BBH:1510 | (1.78,+0.03,+0.29) | (0.2305,4-0.05) | 13.8311 0.3867 —0.0845 0.0018
297 | BBH:0545 (1.79,0,—0.8) (0.23,—-0.1) 16.6161 0.2192 —0.1857 0.0026
298 | BBH:1469 | (1.85,+0.8,40.67) (0.2277,40.42) | 20.6503  0.0250 +0.0057 0.0042
299 | BBH:0403 (1.88,0,—0.05) (0.2266,0) 17.4511 0.0662 +0.0157 0.0048
300 | BBH: 05655 (1.9,0,+40.53) (0.2263,+0.06) | 18.0411 0.1155 —0.0744 0.0008
301 | BBH:1466 (1.9,40.7,—-0.8) (0.226,+0.2) 18.6924 0.1602 —0.0823 0.0015
302 | BBH:0368 | (1.93,—0.05,+0.25) (0.2247,0) 17.6389  0.0945 —0.0165 0.0015
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Table F.9: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part III.

# | i (4,1, X2) (.9) Noo  €[107%] | 66NE [rad]  Fynnn [%)
303 | BBH:0580 | (1.93,+0.02,—0.78) | (0.2248,—0.08) | 16.7867 0.2788 —0.0720 0.0020
304 | BBH: (0530 (1.95,0,40.54) (0.2241,40.07) | 18.1093 0.2104 —0.0596 0.0015
305 | BBH:1478 (1.97,40.8,+0.13) (0.2232,40.37) | 19.8240 0.6195 —0.1597 0.0047
306 | BBH:1504 | (1.98,+0.25,+0.08) (0.223,40.12) | 18.2656 0.3277 +0.1266 0.0013
307 | BBH:0482 (2,-0.02, —-0.13) (0.2225,-0.02) | 17.9754 0.3742 | +0.0126 0.0040
308 | BBH:2131 | (2,40.85,40.8498) | (0.2222,+0.47) | 23.1890 0.2857 —0.2845 0.0011
309 | BBH:0333 (2,40.8,+0.8) (0.2222,40.44) | 20.6856 0.6366 +0.3275 0.0115
310 | BBH:2130 (2,40.6,+0.6) (0.2222,40.33) | 22.4793  0.2069 —0.2371 0.0032
311 | BBH:2127 (2,40.5,+0.5) (0.2222,+0.28) | 26.6115 0.0704 +0.3188 0.0102
312 | BBH:0574 (2,+40.4,+0.4) (0.2222,40.22) | 18.9940 0.4547 —0.1836 0.0016
313 | BBH:2125 (2,40.3,+0.3) (0.2222,40.17) | 21.5845 0.0832 —0.1004 0.0017
314 | BBH:2114 (2,-0.3,-0.3) (0.2222,—0.17) | 21.9376  0.0506 +0.1410 0.0021
315 | BBH: 0584 (2,—0.4,—0.4) (0.2222,-0.22) | 16.1090 0.4072 | —0.3253 0.0027
316 | BBH:2112 (2,-0.5,—0.5) (0.2222, —0.28) | 30.2460 0.0950 | —0.2919 0.0031
317 | BBH:2109 (2, 0.6, —0.6) (0.2222, —0.33) | 23.8427 0.2134 | +0.5404 0.0015
318 | BBH: 0334 (2,—0.8006, —0.8) (0.2222,—0.44) | 15.2440 0.4419 +0.3034 0.0033
319 | BBH:2108 | (2,—0.85,—0.8496) (0.2222, —-0.47) | 26.7728 0.1132 +0.2301 0.0068
320 | BBH:2132 | (2,+40.8713,—0.8496) | (0.2222,40.3) | 21.2802 0.3036 —0.3758 0.0039
321 | BBH: (0410 (2,+0.6,0) (0.2222,40.27) | 19.1585 0.0369 —0.0817 0.0047
322 | BBH:2129 (2,+0.6,0) (0.2222,40.27) | 21.6406 0.0930 —0.2838 0.0016
323 | BBH: 0513 (2,+40.6,—0.4) (0.2222,40.22) | 18.7680 0.3862 —0.0469 0.0030
324 | BBH:2128 (2,+0.6,—0.6) (0.2222,+0.2) | 21.9947 0.1265 -+0.0760 0.0051
325 | BBH:2122 (2,+0.13,40.8496) (0.2222,4-0.15) | 21.7293  0.4362 +0.4124 0.0022
326 | BBH:(0448 (2,40.4,—-0.4) (0.2222,40.13) | 18.2305 0.1345 —0.2608 0.0031
327 | BBH:0399 (2,40.2,+0.4) (0.2222,40.13) | 19.0278 0.1255 —0.0364 0.0013
328 | BBH:2124 (2,+0.3,0) (0.2222,40.13) | 21.9927 0.0943 | +0.1157 0.0014
329 | BBH:2123 (2,+0.3,-0.3) (0.2222,+0.1) | 22.0045 0.2970 | +0.0823 0.0021
330 | BBH: (0332 (2,0,40.8) (0.2222,40.09) | 18.3471  0.4964 —0.0808 0.0021
331 | BBH:0599 (2,40.2,0) (0.2222,4+0.09) | 18.7836 0.5784 +0.0118 0.0027
332 | BBH:2126 | (2,40.37,—0.8496) | (0.2222,4-0.07) | 21.1569 0.1032 +0.2130 0.0031
333 | BBH:2121 (2,0,40.6) (0.2222,40.07) | 21.6921 0.1523 —0.1070 0.0017
334 | BBH:0554 (2,+40.2,—-0.4) (0.2222,4-0.04) | 17.7079 0.0975 —0.2369 0.0029
335 | BBH:0407 (2,0,+0.4) (0.2222,40.04) | 17.8992 0.7705 —0.1603 0.0020
336 | BBH:2120 (2,0,40.3) (0.2222,4-0.03) | 21.4284 0.0624 —0.4640 0.0013
337 | BBH:2119 (2,0,-0.3) (0.2222, —0.03) | 21.4883 0.1871 | +0.2279 0.0034
338 | BBH:0375 (2,0,—0.4) (0.2222,—0.04) | 17.1322 0.6961 —0.3064 0.0013
339 | BBH:0354 (2,—-0.2,+0.4) (0.2222,-0.04) | 17.3865 0.1174 —0.1990 0.0006
340 | BBH:2118 (2,0,—0.6) (0.2222,—0.07) | 22.2002 0.1064 +0.0998 0.0025
341 | BBH:2113 | (2,—0.37,40.8497) | (0.2222,—0.07) | 21.1137 0.2335 | +0.0176 0.0012
342 | BBH:1112 (2,-0.2,0) (0.2222, —0.09) | 16.8761  0.0505 . .
343 | BBH:(0331 (2,0,-0.8) (0.2222,-0.09) | 16.7509 0.1533 —0.0024 0.0075
344 | BBH:2116 (2,-0.3,40.3) (0.2222, -0.1) | 21.2824 0.0377 | +0.1631 0.0027
345 | BBH:2115 (2,—-0.3,0) (0.2222,—0.13) | 21.8903 0.0598 —0.1213 0.0038
346 | BBH: (0412 (2,—-0.2,-0.4) (0.2222,—0.13) | 16.6145 0.8352 —0.6655 0.0018
347 | BBH:2117 | (2,—0.13,—0.8496) (0.2222,—0.15) | 22.3465 0.1189 —0.4815 0.0057
348 | BBH:2111 (2, —0.6,40.6) (0.2222,-0.2) | 21.2223 0.0383 | —0.2196 0.0017




Chapter F. Numerical Relativity waveform tables

Table F.10: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part IV.

# id (¢, X1, x2) (V, 5> Noy, — €[107%] | 6o [rad]  Fagynr [%)]
349 | BBH:2110 (2, —0.6, 0) (0.2222, —0.27) 22.0617 0.0556 —0.2713 0.0021
350 | BBH: 0461 (2,—0.6,0) (0.2222,—0.27) | 16.4199 0.1519 —0.0076 0.0018
351 | BBH:0335 (2,—0.8005,40.8) (0.2222,—0.27) | 16.2627 0.7099 +0.0043 0.0012
352 | BBH:2107 | (2,—0.8712,+0.8497) (0.2222,-0.3) | 21.1942 0.1130 —0.4347 0.0012
353 | BBH: 0387 (2,-0.6,—0.4) (0.2222,—0.31) | 16.0241 0.6065 —0.0152 0.0022
354 | BBH: 1148 (2.04,40.43,40.5) (0.2208,+40.25) | 55.1780 0.4326 +0.0443 0.0048
355 | BBH:1147 (2.04,40.43,—-0.51) (0.2208,+0.14) | 52.0651 0.1895 —0.9533 0.0094
356 | BBH:1494 (2.2,—-0.47,—-0.39) (0.2146,—0.26) | 15.9926 0.2721 —0.2255 0.0025
357 | BBH: 1467 (2.23,—0.56, 40.8) (0.2137,—0.2) | 17.2545 0.5618 —0.0638 0.0051
358 | BBH:1459 (2.26,40.76,+0.8) (0.2127,40.44) | 21.5007 0.6864 —0.4414 0.0112
359 | BBH: 1468 (2.27,40.51, 40.8) (0.2124,+40.32) | 20.6638 0.4641 —0.3303 0.0068
360 | BBH: 0631 (2.33,—-0.13,—-0.36) (0.2103,—0.1) | 14.5709 0.0931 +0.0608 0.0036
361 | BBH:1453 | (2.35,40.8002,—0.78) | (0.2093,+0.32) | 20.2689 0.0360 +0.0496 0.0048
362 | BBH:1472 (2.37,—0.8,—0.12) (0.2088,—0.4) | 15.4798 0.0937 —0.3256 0.0022
363 | BBH: 1512 (2.4,40.24,0) (0.2078,+40.12) | 22.9613  0.4823 —0.6255 0.0045
364 | BBH: 1454 (2.45,—-0.8,—0.73) (0.2057,—0.47) | 15.4826 0.1984 —0.0135 0.0030
365 | BBH: 1462 (2.63,—0.8,+0.51) (0.1996,—0.38) | 16.0754  0.5980 —0.1760 0.0021
366 | BBH: 1461 (2.88,—0.45,—0.8) (0.1912,-0.3) | 16.3080 0.6354 —0.2885 0.0044
367 | BBH: 1484 (2.9, —-0.56,+0.3) (0.1906,—0.3) | 17.0362 0.5345 —0.2043 0.0019
368 | BBH:1387 (2.98,40.47,—0.36) (0.188,+40.24) | 22.2480 0.1628 —0.1619 0.0026
369 | BBH:1456 (3,40.74,40.7) (0.1877,+40.46) | 21.3281  0.4467 —0.1343 0.0123
370 | BBH: 2163 (3,40.6,+0.6) (0.1875,40.37) | 25.5841 0.1962 —0.2297 0.0029
371 | BBH:2158 (3,+0.5,40.5) (0.1875,+0.31) | 25.1335 0.0968 —0.1136 0.0089
372 | BBH:0047 | (3,40.5,40.5) (0.1875,40.31) | 22.2615  0.4925 . .
373 | BBH:2155 (3,+0.3,40.3) (0.1875,+0.19) | 23.2456  0.0965 —0.0703 0.0048
374 | BBH:2142 (3,—-0.3,-0.3) (0.1875,—0.19) | 21.0437 0.2741 +0.0580 0.0009
375 | BBH: 0046 (3,—0.5,—0.5) (0.1875,—0.31) | 13.9670 0.2173 .. ..
376 | BBH:2139 (3,—0.5,-0.5) (0.1875,—0.31) | 21.9678  0.0430 +0.1670 0.0029
377 | BBH:2136 (3,—0.6,—0.6) (0.1875,—0.37) | 22.1288  0.2589 +0.2913 0.0020
378 | BBH: 1151 (3,40.7,+0.6) (0.1875,40.43) | 20.4047 0.0527 —0.3950 0.0093
379 | BBH: 1152 (3,40.7,40.6) (0.1875,40.43) | 20.4006 0.0721 —0.2896 0.0079
380 | BBH:1382 (3,+0.7,40.6) (0.1875,+0.43) | 20.8126  9.0994 —0.3278 0.0072
381 | BBH: 1150 (3,40.7,40.6) (0.1875,40.43) | 20.4691 0.9730 —0.5133 0.0088
382 | BBH:2162 (3,+0.6,+0.4) (0.1875,+0.36) | 25.3936  0.2401 +0.1817 0.0020
383 | BBH:2161 (3, +0.6,0) (0.1875,+0.34) | 25.3306 0.1645 | +0.0554  0.0052
384 | BBH: 2160 (3,+0.6,—0.4) (0.1875,+0.31) | 24.2444  0.1800 —0.0792 0.0058
385 | BBH: 2159 (3,40.6,—0.6) (0.1875,40.3) | 23.5837  0.0969 +0.0942 0.0034
386 | BBH: 0031 (3,40.5,0) (0.1875,40.28) | 21.2242  0.0501 —0.0510 0.0244
387 | BBH: 0041 (3,40.5,0) (0.1875,+0.28) | 14.4106  0.0990 . ..
388 | BBH: 2157 (3,40.4,+0.6) (0.1875,40.26) | 24.5757  0.2450 —0.4904 0.0043
389 | BBH:2152 (3,40.27,+0.8497) (0.1875,40.2) | 22.7604 0.0332 —0.0343 0.0047
390 | BBH:2156 (3, 40.4, —0.6) (0.1875,+0.19) | 22.1396 0.2044 | —0.0579  0.0009
391 | BBH:2154 (3,40.3,0) (0.1875,+0.17) | 23.5527  0.0674 +0.0199 0.0081
392 | BBH:2153 (3,40.3,-0.3) (0.1875,40.15) | 22.9692  0.0985 —0.0711 0.0013
393 | BBH: 2151 (3,+0.23, —0.8493) (0.1875,+0.08) | 21.0314  0.0542 —0.1003 0.0014
394 | BBH:2150 (3,0,+0.6) (0.1875,40.04) | 21.3851 0.0861 —0.0961 0.0022
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Table F.11: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part V.

# | i (4, x1,x2) (9) Noo  €[107%] | 66NE [rad]  Fynnn [%
395 | BBH:2149 (3,0,40.3) (0.1875,4+0.02) | 21.3989 0.0780 +0.1824 0.0025
396 | BBH:2148 (3,0,—-0.3) (0.1875,—0.02) | 21.4080 0.2163 —0.2364 0.0049
397 | BBH:2147 (3,0,-0.6) (0.1875,—0.04) | 21.4411 0.1130 —0.2911 0.0045
398 | BBH:2146 | (3,—0.23,+0.8496) | (0.1875,—0.08) | 21.4812 0.3473 —0.0135 0.0038
399 | BBH:2144 (3,—0.3,+0.3) (0.1875,—0.15) | 21.3457 0.0979 —0.1039 0.0032
400 | BBH:2143 (3,-0.3,0) (0.1875,—0.17) | 21.0440 0.0242 —0.1665 0.0035
401 | BBH:2141 (3,—0.4,40.6) (0.1875,—0.19) | 20.8091 0.0699 +0.1086 0.0030
402 | BBH:2145 | (3,—0.27,—0.8495) | (0.1875,—0.2) | 21.8265 0.1132 | —0.1552 0.0044
403 | BBH:2140 (3,-0.4,-0.6) (0.1875,—0.26) | 21.9437 0.1044 —0.7785 0.0019
404 | BBH: 0038 (3,-0.5,0) (0.1875,—0.28) | 14.7221  0.1000
405 | BBH:0039 (3,—0.5,0) (0.1875,—0.28) | 21.8496  3.0069
406 | BBH: 0040 (3,-0.5,0) (0.1875,—0.28) | 8.8088  0.9107 . "
407 | BBH:2135 (3,—0.6,+0.6) (0.1875,—0.3) | 20.9400 0.1234 +0.1837 0.0026
408 | BBH:2138 (3,—0.6,+0.4) (0.1875,—0.31) | 21.0642 0.1551 +0.1148 0.0020
409 | BBH:2134 (3,-0.6,0) (0.1875,—0.34) | 21.3713  0.0310 —0.2258 0.0023
410 | BBH:2133 | (3,—0.73,40.8495) | (0.1875,—0.36) | 20.5436 0.1903 +0.3355 0.0023
411 | BBH:2137 (3,—-0.6,—0.4) (0.1875,—0.36) | 22.5091 0.1557 —0.3807 0.0019
412 | BBH:1172 (3,—-0.7,—0.6) (0.1875,—0.43) | 17.4246 0.0714 —0.3701 0.0021
413 | BBH:1170 (3,-0.7,—0.6) (0.1875,—0.43) | 17.6633 9.7234 —0.3025 0.0021
414 | BBH:1171 (3,—-0.7,—0.6) (0.1875,—0.43) | 17.7321  2.1688 —0.2922 0.0024
415 | BBH:1173 (3,-0.7,—0.6) (0.1875,—0.43) | 17.6095 0.0931 —0.2016 0.0013
416 | BBH:1174 (3,—-0.7,—0.6) (0.1875,—0.43) | 17.6302 0.0560 —0.2199 0.0004
417 | BBH: 1175 (3,-0.7,—0.6) (0.1875,—0.43) | 17.6034 0.0529 —0.2782 0.0022
418 | BBH:1485 | (3.1,40.35,—0.4) (0.1846,+0.18) | 19.9371 0.5472 +0.4004 0.0046
419 | BBH:1446 | (3.15,—0.8,+0.78) | (0.1828,—0.42) | 16.6309 0.4757 —0.5731 0.0047
420 | BBH:1447 | (3.16,40.74,+0.8) | (0.1826,40.47) | 21.5506 0.7076 . .
421 | BBH:1483 | (3.17,40.56,—0.2) | (0.1824,40.31) | 20.9944 0.2982 +0.3873 0.0059
422 | BBH:1457 | (3.25,+0.54,+0.8) (0.18,40.36) | 21.5910 0.5016 +0.1098 0.0095
423 | BBH: 0317 | (3.33,4+0.52,—0.45) | (0.1777,40.29) | 45.8194 0.8090 —0.6215 0.0040
424 | BBH:1489 | (3.46,+0.3,—0.17) | (0.1738,40.17) | 19.4817 0.2610
425 | BBH:1452 | (3.64,-+0.8,-0.43) | (0.169,+0.47) | 22.3615 0.1467 . .
426 | BBH:1486 | (3.72,40.43,—0.03) | (0.167,+0.26) | 21.1556 0.1944 —0.5611 0.0038
427 | BBH:1458 | (3.8,—0.06,+0.8) (0.1649,0) 18.7812  0.2951 —1.1364 0.0047
428 | BBH:1936 (4,-0.8,—0.8) (0.16,—0.54) 15.4264 0.4739 +0.2498 0.0091
429 | BBH:2014 (4,+0.8,+0.4) (0.16,40.53) | 23.5340  0.4193 . .
430 | BBH:1938 (4,+0.4,+0.8) (0.16,+0.29) | 21.8293 0.4565 —1.2430 0.0102
431 | BBH:1417 (4,+0.4,+0.5) (0.16,+0.28) | 78.9983 0.0420 +1.1516 0.0565
432 | BBH:1937 (4,40.4,0) (0.16,40.26) | 20.3573  0.4157 —0.3860 0.0031
433 | BBH:1942 (4,40.4,-0.8) (0.16,40.22) | 19.8476 0.0370 —1.0339 0.0078
434 | BBH:1907 (4,0,40.8) (0.16,+0.03) 19.9013 0.3965 —0.0364 0.0072
435 | BBH:2013 (4,0,40.4) (0.16,40.02) | 19.7302 0.0903 —0.3687 0.0023
436 | BBH:2036 (4,0,—0.4) (0.16,—0.02) 19.1937  0.1487 +0.2866 0.0035
437 | BBH:1911 (4,0,-0.8) (0.16,—0.03) 18.9277  0.0849 —0.0922 0.0070
438 | BBH:1962 (4,—-0.4,+0.8) (0.16,—0.22) 17.8848 0.2271 —0.7077 0.0039
439 | BBH: 1961 (4,-0.4,0) (0.16,—0.26) | 17.1221  0.2005 | +0.0155 0.0011
440 | BBH:1418 (4,—-0.4,-0.5) (0.16,—0.28) | 65.5016 0.2177 +1.1166 0.0526
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Table F.12: This table shows the SXS waveforms with unequal-mass and at least one non-zero spin in the
validation set. Part VI.

# id (¢, x1,Xx2) (V, 5> Nowo  €[1073] | 8¢5, [rad]  Fgynr [%]
441 | BBH:1966 (4,-0.4,-0.8) (0.16,—0.29) 16.4605 0.0830 —0.9591 0.0020
442 | BBH:1932 (4,—-0.8,+0.8) (0.16,—0.48) 16.5617  0.5770 —0.6471 0.0021
443 | BBH:2018 (4,-0.8,+0.4) (0.16,—0.5) 16.3809 0.7924 —0.5072 0.0021
444 | BBH:1931 (4,-0.8,0) (0.16,—0.51) 15.3484 0.0739 —0.4649 0.0004
445 | BBH:2040 (4,—-0.8,—-0.4) (0.16,—0.53) 15.1353 0.3243 —0.3889 0.0006
446 | BBH:1451 (4.06,40.31, —0.8) (0.1587,40.17) | 20.2972 0.1871 —0.6438 0.0070
447 | BBH:1450 (4.07,—0.28, —0.8) (0.1584,—0.21) | 17.8045 0.5048 —1.1502 0.0020
448 | BBH:1449 | (4.19,—-0.8002,—0.34) | (0.1557,—0.53) | 15.1708 0.4271 —0.5360 0.0026
449 | BBH:1434 (4.37,40.8,40.8) (0.1516,40.56) | 24.1808 0.3177 .. ..
450 | BBH:1445 (4.67,—0.5,40.8) (0.1452,—0.31) | 17.1449 0.6327 —0.7205 0.0058
451 | BBH:1463 (4.98,40.61,40.24) (0.1393,+0.43) | 22.4088  0.4400 +0.2576 0.0032
452 | BBH:0061 (5, +0.5,0) (0.1388,+0.35) | 34.268)  4.2423
453 | BBH:0109 (5, -0.5,0) (0.1388,-0.35) | 14.2349  1.3126 . .
454 | BBH:1111 (5,-0.9,0) (0.1389,—0.62) | 8.9056  0.5800 +0.1885 0.0071
455 | BBH:1428 | (5.52,—0.8002, —0.7) (0.13,—-0.59) 15.4075 0.3549 —1.0081 0.0066
456 | BBH:1440 (5.64,40.77,40.3) (0.128,40.56) | 24.0226 0.6962 —0.7863 0.0055
457 | BBH:1443 | (5.68,40.4,—0.74) | (0.1273,40.28) | 21.2462 0.3166 | —0.9964  0.0064
458 | BBH:1432 (5.84,40.66, 4+0.8) (0.1248,40.5) | 23.7073 0.1893 —1.3306 0.0192
450 | BBH:1438 | (5.87,40.13,40.8) | (0.1244,+0.1) | 20.5844 0.3179 | —1.0427  0.0081
460 | BBH:1444 | (5.94,-0.06,—0.76) | (0.1234,-0.06) | 19.7323 02126 | —1.9529  0.0164
461 | BBH:1437 (6.04,40.8,+0.15) (0.122,+0.6) 24.7986 0.2370 —0.9783 0.0141
462 | BBH:1425 (6.12,—0.8,+0.67) (0.1208,—0.58) | 15.7926  0.2328 —1.6995 0.0098
463 | BBH:1436 (6.28,0,—0.8) (0.1185,0) 20.1015 0.4722 —0.3709 0.0142
464 | BBH:1424 | (6.46,-0.66,—0.8) | (0.116,—0.5) | 15.5688 0.2226 | —2.9472  0.0134
465 | BBH:1439 | (6.48,+0.72,-0.32) | (0.1158,+0.53) | 24.0557 0.6145 . .
466 | BBH:1464 (6.53,—0.05,—0.32) (0.1151,—-0.05) | 20.2563  0.7350 —0.0651 0.0057
467 | BBH:1442 (6.59,—0.7, —0.18) (0.1144,—0.54) | 15.5149 0.5355 —0.6941 0.0018
468 | BBH:1435 (6.59,—0.79,40.07) (0.1144,—-0.6) | 16.0754 0.3766 —1.2265 0.0081
469 | BBH:1448 | (6.95,—0.48,10.52) | (0.11,-0.36) | 17.1456 0.2625 . .
470 | BBH: 0204 (7,40.4,0) (0.1094,+0.3) | 87.3919  0.0268 —3.4007 0.0434
471 | BBH: 0206 (7,—0.4,0) (0.1094,—0.3) | 72.1627 0.0613 —2.2059 0.0171
472 | BBH:1427 (7.41,-0.61,—-0.73) (0.1048,—0.48) | 15.8739  0.4001 —1.2677 0.0050
473 | BBH:1429 (7.75,—0.2, —0.78) (0.1012,—0.17) | 18.4554  0.0668 —0.5538 0.0049
474 | BBH:1421 (7.8,-0.6,+0.8) (0.1006, —0.47) | 16.5496 0.7512 +0.1973 0.0046
475 | BBH:1422 (7.95,—0.8, —0.46) (0.0992,—0.64) | 15.7759 0.1931 —0.7723 0.0060
476 | BBH:1419 |  (8,-0.8,-0.8) (0.0988, —0.64) | 14.7190  0.4369
477 | BBH:1441 | (8,40.6,-0.48) | (0.0988,+0.46) | 24.2874 0.1958 } .
478 | BBH:1426 (8,+0.48,+0.75) (0.0988,+0.4) | 23.9987 0.3326 —0.7854 0.0378
479 | BBH:1430 (8,+0.28, —0.75) (0.0988,+0.22) | 22.7065 0.1184 —1.1552 0.0302
480 | BBH:1460 (8,40.12,+0.1) (0.0988,+0.1) | 22.2531 0.2232 +0.3258 0.0030
481 | BBH:1431 (8,+0.08,—0.78) (0.0988,+4-0.05) | 21.4002 0.5339 —1.9878 0.0153
482 | BBH:1455 (8,—-0.4,0) (0.0988,—0.31) | 17.8110 0.3867 +0.0479 0.0023
483 | BBH:0114 (8, —0.5,0) (0.0087, —0.4) | 18.2319  1.7048 . .
484 | BBH:1423 (8,—0.6,—0.75) (0.0988,—0.49) | 16.8959 0.5557 —0.5687 0.0103
485 | BBH:1433 (8,—0.74,40.2) (0.0988, —0.58) | 16.4276 0.5132 —0.3390 0.0037
486 | BBH:1420 (8,—0.8,+0.8) (0.0988,—0.62) | 16.1997 0.3312 +0.1364 0.0094
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Table F.13: This table shows the SXS waveforms with an extremely long inspiral of between 139 and 147
orbits in the validation set.

# ] i (4, X1, X2) (»9) Noo  £[107%] | 6¢NR [rad]  Fyn/ne [%]
487 | BBH:1412 | (1.63,+0.4,—0.3) | (0.2357,4+0.11) | 144.9269 0.4450 | —4.2211 0.7295
488 | BBH:1413 | (1.41,40.5,+40.4) | (0.2428,40.24) | 145.0944 0.1000 —7.0980 1.1856
489 | BBH:1414 | (1.83,-0.5,40.4) | (0.2285,—0.16) | 143.0923  1.6000 —5.4034 0.8919
490 | BBH:1415 | (1.5,40.5,40.5) (0.24,+0.26) 147.2969  0.0430 —8.3376 1.5238
491 | BBH:1416 | (1.78,—-0.4,—0.4) | (0.2303,—0.22) | 139.0149 1.7000 —5.1125 0.5986
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Table F.14: Non-spinning SXS and BAM data. The waveforms #526 — #547 form the non-spinning sector
of the calibration set. While waveforms #548 — #570 represent all waveforms in the non-spinning sector of
the validation set with a mass-ratio g < 2.

# id q v No,  €[107°] | 6oy [rad]  Fxryng [%]
492 | BBH: 0180 1 0.2500 | 27.8299 0.0511 +0.0259 0.0035
493 | BBH:0007 | 1.5 0.2400 | 28.6965 0.4338 +0.0232 0.0020
494 | BBH: 0169 2 0.2222 | 14.9957 0.1000 +0.0074 0.0032
495 | BBH:0259 | 2.5 0.2041 | 27.8710 0.0490 —0.0490 0.0050
496 | BBH: 0030 3 0.1875 | 17.6735 2.1213 —0.0295 0.0030
497 | BBH: 0167 4 0.1600 | 14.9332 0.0950 +0.0407 0.0057
498 | BBH:0295 | 4.5 0.1488 | 27.0334 0.0267 —0.0965 0.0066
499 | BBH: 0056 ) 0.1389 | 28.1856 0.4985 —0.1654 0.0158
500 | BBH:0296 | 5.5 0.1302 | 27.1419 0.0330 —0.1691 0.0177

501 | BBH:0166 6  0.1224 | 20.9629 0.0420 . .
502 | BBH:0297 | 6.5 0.1156 | 18.9546 0.0590 —0.0124 0.0069
503 | BBH: 0298 7 0.1094 | 18.9115 0.0400 —0.0044 0.0023
504 | BBH:0299 | 7.5 0.1038 | 19.3106 0.0560 —0.0254 0.0013
505 | BBH: 0063 8 0.0988 | 25.1734 0.2880 —0.4132 0.0754

506 | BBH:0300 | 8.5 0.0942 | 17.8944 0.0600 —0.0095 0.0037
507 | BBH:0301 9 0.0900 | 18.1073 0.0570 +0.0087 0.0014
508 | BBH:0302 | 9.5 0.0862 | 18.2937 0.0540 —0.0280 0.0039
509 | BBH:0185 | 9.99 0.0827 | 23.7637 0.2928 —0.0509 0.0033
510 | BBH:0303 | 10  0.0826 | 18.4270 0.0560 —0.1486 0.0045
511 BAM 4  0.1600 | 11.0449 1.4000 Text = 100

012 BAM 10 0.0826 | 6.7622  0.8000 Text = 100

513 BAM 18 0.0499 | 6.5094  1.3000 Text = 100

514 | BBH: 0001 1 0.2500 | 27.7156  0.2569

515 | BBH: 0066 1 0.2500 | 27.6928 0.0643

516 | BBH:0067 1 0.2500 | 27.7168 0.2365

517 | BBH:0068 1 0.2500 | 27.8923 1.9465

518 | BBH:0070 1 0.2500 | 27.6958 0.0459

519 | BBH: (0071 1 0.2500 | 27.6918 0.0610

520 | BBH:0072 1 0.2500 | 27.6775 0.1462

521 | BBH:0073 1 0.2500 | 27.5006 1.8770

522 | BBH:0086 1 0.2500 | 27.7854 1.1708

523 | BBH:0090 1 0.2500 | 32.0416 1.0254 . .
524 | BBH:0389 1 0.2500 | 17.1684 0.0892 +0.1455 0.0028
525 | BBH:1132 1 0.2500 | 53.3421 0.7700 +0.6849 0.0192
526 | BBH:1153 1 0.2500 | 39.6892  1.0400 +0.6347 0.0051
527 | BBH:1154 1 0.2500 | 39.7730 0.0568 +0.5822 0.0071
528 | BBH:1155 1 0.2500 | 39.7773  0.0490 +0.6307 0.0077
529 | BBH:0198 | 1.2 0.2479 | 18.8232 0.2044 +0.0686 0.0030
030 | BBH:0310 | 1.22 0.2475 | 13.5178 0.7880 —0.0402 0.0046
531 | BBH:1143 | 1.25 0.2469 | 9.1879  0.1016 —0.3291 0.0062

032 | BBH:0008 | 1.5 0.2400 | 20.8423 1.5862 —0.0758 0.0663
533 | BBH:0093 | 1.5 0.2400 | 28.4823 2.3821 . -
534 | BBH:0593 | 1.5 0.2400 | 17.3162 0.0676 +0.2927 0.0039
535 | BBH:0194 | 1.52 0.2394 | 18.6350 0.8020 —0.0298 0.0042
536 | BBH:1354 | 1.83 0.2284 | 19.6238 0.0479 —0.3128 0.0010
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Table F.15: The waveforms listed here represent all non-spinning waveforms in the validation set with a
mass-ratio ¢ > 2.

# id q v Nowy,  e[1077] | dgnn. [rad]  Fyr/wg [%)
537 | BBH:1222 2 0.2222 | 27.5621 0.0623 +0.0526 0.0032
538 | BBH: (0184 2 0.2222 | 14.3278 0.0760 —0.0738 0.0039
539 | BBH:1166 2 0.2222 | 39.4852 0.3876 —0.6920 0.0033
540 | BBH:1164 2 0.2222 | 39.4971 1.2541 —0.0050 0.0010
541 | BBH:1165 2 0.2222 | 39.5694 1.5612 —0.0533 0.0043
542 | BBH:1167 2 0.2222 | 39.6251 0.3762 —0.0746 0.0027
543 | BBH:0201 | 2.32 0.2106 | 19.0579 0.1406 —0.1260 0.0028
044 | BBH:0191 | 2.5 0.2038 | 21.2360 0.7580 +0.1004 0.0036
545 | BBH:1221 3 0.1875 | 25.8495 0.0390 +0.7166 0.0016
546 | BBH: (0168 3 0.1875 | 14.1701 0.0870 +0.0526 0.0022
547 | BBH:0183 3 0.1875 | 14.5139 0.0630 —0.0814 0.0029
548 | BBH:1177 3 0.1875 | 13.6732  2.6360
549 | BBH:1178 3 0.1875 | 13.7628 0.1401 .. .
550 | BBH:1179 3 0.1875 | 13.7675 0.0870 +0.0060 0.0020
551 | BBH:2265 3 0.1875 | 64.9230 0.0689 +0.9661 0.0046
552 | BBH:0200 | 3.27 0.1793 | 19.2608 0.4137 —0.1165 0.0013
5953 | BBH:0193 | 3.5 0.1729 | 18.6896 0.0390 —0.1776 0.0016
554 | BBH:0294 | 3.5 0.1728 | 27.3567 0.0434 +0.1486 0.0102
055 | BBH:1906 4 0.1600 | 19.3709 0.1472 +0.1092 0.0014
556 | BBH: (0182 4 0.1600 | 14.6056 0.0680 —0.0715 0.0049
557 | BBH:1220 4 0.1600 | 25.4856 0.1037 —1.1501 0.0030
558 | BBH:0190 | 4.5 0.1488 | 19.1304 0.0350 —0.2568 0.0012
559 | BBH: 0054 ) 0.1389 | 14.7581 3.5135 +0.0511 0.0024
560 | BBH: 0055 ) 0.1389 | 23.0954 0.2565 . .
561 | BBH:0107 ) 0.1389 | 27.9706 2.3614 —0.1168 0.0095
562 | BBH:(0112 ) 0.1389 | 23.0307 1.2412 .. .
563 | BBH:0187 | 5.04 0.1382 | 18.3448 0.0460 —0.1198 0.0012
064 | BBH:0197 | 5.52 0.1298 | 19.2079 0.2200 —0.2170 0.0011
565 | BBH:(0181 6 0.1225 | 25.3711 0.0791 —0.0572 0.0007
066 | BBH:0192 | 6.58 0.1145 | 20.1365 0.0502 —0.2813 0.0020
567 | BBH:0188 | 7.19 0.1072 | 21.3575 0.1609 —0.1357 0.0022
068 | BBH:0195 | 7.76 0.1011 | 19.7015 0.2243 +0.0174 0.0040
569 | BBH:0186 | 8.27 0.0963 | 23.1928 0.6700 —0.0843 0.0014
570 | BBH:0199 | 8.73 0.0922 | 21.8602 0.0677 +0.1694 0.0089
571 | BBH:0189 | 9.17 0.0887 | 24.1621 0.0817 —0.1516 0.0015
572 | BBH:1108 | 9.2 0.0884 | 27.7155 0.1477 —0.2201 0.0032
973 | BBH:0196 | 9.66 0.0850 | 22.3934 0.2629 —0.1411 0.0045
574 | BBH:1107 | 10  0.0826 | 29.4820 1.1603 —0.1118 0.0010
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