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Abstract 

The home monitoring of patients affected by chronic heart failure (CHF) is of 

key importance to prevent acute episodes, the main contributors to hospitalization 

and mortality. The most effective biomarker in this sense is the intracardiac 

pressure, whose changes start weeks before the acute episode occurs. Nevertheless, 

no wearable technological solution currently exists to monitor them. A possibility 

could be offered by Cardiac Time Intervals (CTIs), which provide a temporal 

description of the phases of the cardiac cycle from an electro-mechanical 

perspective and can be extracted from simultaneous recordings of 

electrocardiography (ECG) and of phonocardiography (PCG). In fact, PCG is the 

digital recording of the heart sounds, that are generated by the closure of the four 

cardiac valves. This approach offers many benefits in terms of applicability to 

homecare: low cost, portability, noninvasivity. Nevertheless, the applicability of 

PCG in home care is limited at this time by the need for an expert examiner: the 

recording of a good-quality PCG signal requires an accurate positioning of the 

stethoscope over the chest, which is unfeasible for a naïve user as the patient or a 

caregiver.  

The goal of this work is to propose a wearable multi-sensor array to enable the 

noninvasive monitoring of the time of closure of the cardiac valves in a domicile 

context by naïve users. The design of the system spans from its conceptualization 

to the design of the hardware and mechanical aspects of the device, to the design 

and implementation of the signal processing algorithms to extract the clinical 

features of interest, to the pre-clinical validation. 

The multi-sensor array was designed in the form of a flexible pad consisting of 

a flexible PCB mounting the sensors and a 3D-printed biocompatible case. The 



 

sensors consist of 48 microphones, distributed over the pad with a high spatial 

resolution, 3 electrodes to record an ECG in a nonstandard precordial lead, and a 

Magneto-Inertial Measurement Unit (MIMU) to detect motion and posture. The 

array was designed to cover the left hemithorax of the subject: in this way, the 

problem of finding the best auscultation area for the specific valve is shifted from 

the recording phase, when the user is in charge for, to the processing phase.  

The proposed signal processing pipeline includes four main steps. First, an 

algorithm for the estimation of the time of closure of the four cardiac valves based 

on the Shannon Energy envelope of the heart sounds was designed. Second, the 

automated assessment of the quality of the PCG signals was carried out and 

thresholds were determined depending on the acceptable error on the estimate. 

Third, a method to divide the multiple available channels into consistent groups 

representing potential auscultation areas was proposed. And fourth, the automatic 

selection of the best auscultation area was investigated, testing multiple criteria and 

their combination. 

In the end, two distinct pre-clinical validation studies were carried out. On one 

side, the physiological hypothesis of the project, i.e., that changes in the intracardiac 

pressures reflect in changes of the timing of heart sounds, was validated on a 

porcine model. Preliminary results show that a positive correlation exists between 

the split of the second heart sound and the pressure in the pulmonary artery and 

open to novel possibilities of analysis on the effect of different physiological 

variables on the timing of heart sounds. On the other side, the technical hypothesis 

of the project, i.e., that multi-source PCG enables inexperienced users to record 

heart sounds in a domiciliary setting, was validated on a population of 42 healthy 

volunteers. Extremely promising results were obtained concerning the usability of 

the device by inexperienced users, regardless of their anatomical characteristics. A 

consistent comparison between the CTIs estimated using the proposed multi-sensor 

array positioned by naïve users and the CTIs estimated using a traditional single-



 

source system located by an expert user suggests that the primary goal of the project 

was fulfilled.  

In the overall, this work shows the benefits of the use of multi-source PCG not 

only to enable inexperienced users to record heart sounds without the help of 

clinical staff, but also to gain access to a novel insight into the hemodynamic 

behavior of the heart. The presented multi-sensor array is expected to find a 

straightforward clinical application in the near future and to move a step further 

towards the noninvasive monitoring of patients affected by HF to prevent acute 

episodes.
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Chapter 1 

Introduction 

1.1 An innovative solution to an established clinical 

problem 

Every biomedical engineering project strives to propose an answer to a clinical 

problem. The object of this PhD thesis finds its motivation in the cardiological field. 

To date, cardiovascular diseases (CVDs) are the first cause of death globally, and 

thus they are object of wide research. Among CVDs, heart failure (HF) is the one 

that poses the highest challenges to the clinicians, given the non-specific nature of 

its symptoms, its pervasiveness in the elderly population worldwide and the typical 

severity of the prognosis following an acute episode. Although some effective 

pharmacological solutions exist to treat heart failure patients if a worsening of their 

status is detected, how to effectively predict the occurrence of an acute episode is 

still an open problem.  

The problem implicitly resides in finding a suitable biomarker that correlates 

with the status of decompensation of an HF-patient and that could be monitored in 

a homecare setting. This issue is not naïve: the earliest changes in the 

pathophysiological pathway of AHF occur in terms of changes in the intracardiac 

pressures, which can only be monitored invasively, thus limiting the target 

population. Therefore, even though some technological solutions exist in the 

literature and on the market, they are either invasive or ineffective, because they act 

in a late stage of the decompensation process.  



2 1.2 Goal of the project 

 

A novel way to tackle the problem consists of grounding the monitoring of HF-

patients on the time relationships between electrical and mechanical events in the 

cardiac cycle. In fact, the time interval between the ventricular depolarization 

(electrical event) and the closure of the cardiac valves (mechanical event) is 

determined by the intracardiac pressures. This approach could enable the 

monitoring of the intracardiac pressures in a noninvasive way: the biomarkers of 

interest can be extracted from a combined recording of an electrocardiographic 

signal (ECG) and heart sounds, i.e., the acoustic waves generated by the closure of 

the cardiac valves. 

Even if promising, the applicability of acoustic cardiography to a homecare 

context is not straightforward and a number of technological challenges need to be 

solved. First and foremost, the positioning of the electronic stethoscope: the latter 

requires an expert user to find the most appropriate location over the patient’s chest, 

depending on the application of interest. A possible solution resides in multi-source 

phonocardiography (PCG) at high spatial resolution: instead of recording a single 

signal from a well-determined point on the chest, we could record multiple signals 

from multiple points on the chest and devolve the identification of the best 

auscultation area to the processing phase. In this way, recordings could be 

performed even by an unexperienced user in a homecare setting. 

What if a system existed, suitable to be used by an unexperienced user in a 

domiciliary context, capable of recording combined ECG and multi-source PCG 

signals and extract from them biomarkers that correlate with the worsening of HF 

patients?  

1.2 Goal of the project 

The goal of this PhD project is to design and validate a wearable multi-sensor array 

for the monitoring of at-risk patients for HF, devolved to predict and prevent acute 

episodes. The final goal, from a clinical perspective, is to integrate the system in a 

telemedicine clinical pathway with the scope of reducing the HF-related 

hospitalization rate and mortality. 

Given the complex nature of the task, the project was articulated in three main 

objectives, that can be described as follows. 
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Objective 1. Design, development, and testing of a wearable multi-sensor device 

for the simultaneous recording of ECG and multi-source PCG from a hardware 

perspective.  

Objective 2. Design, development, and testing of the algorithms for processing the 

signals recorded by the device and extracting the features of clinical interest. 

Objective 3. Validate the functionality and usability of the system in a pre-clinical 

setting.  

1.3 Structure of the thesis 

The present chapter is aimed at introducing the goal of the thesis. The remaining of 

the thesis is structured as follows. 

Chapter 2 provides the reader with some background about HF from a clinical 

perspective, along with a summary of the monitoring approaches that have been 

tested in the literature, of the commercially available devices, and of the current 

guidelines for the diseases management. The existing know-how about electro-

phonocardiography for HF monitoring is included with the scope of understanding 

the rationale of the proposed approach.  

Chapter 3 presents the design and implementation of the hardware and mechanical 

aspects of the multi-sensors array. Details about the architecture, the electronical 

circuits, the microcontroller firmware and the interface with the computer are 

provided, along with the mechanical design. 

Chapter 4 focuses on the design and implementation of the algorithms for the 

processing of the recorded signals and the extraction of the clinically relevant 

features. In particular, details about algorithms for the assessment of the quality of 

PCG signals, for the estimation of the time of closure of the cardiac valves, for the 

identification of the best auscultation area are provided, along with the results of 

their testing on real-life recordings. 

Chapter 5 shows the results of the pre-clinical validation phase. The pre-clinical 

validation is two-fold. On one side the assumption of the relationship between the 

time of closure of the cardiac valves and the intracardiac pressure was tested on an 

animal model. On the other side, the usability of the device was tested on a 

population of healthy volunteers and its functionality against a single-source PCG 

system was assessed. The results are discussed from a clinical perspective. 



4 1.3 Structure of the thesis 

 

Chapter 6 concludes the work and highlights the most important findings as well as 

the limitations of the present work, with the scope of giving hints for future 

developments. 



  

 

Chapter 2 

Clinical and Technical Background 

2.1 The clinical problem: Acute Heart Failure 

As anticipated in the Introduction, every bioengineering project is driven by a 

clinical problem: fully understanding the nature of the problem and the implications 

for the patients, the healthcare system, and the society is a first essential step to 

solve it. In the next paragraphs a brief pathophysiology of heart failure is proposed, 

followed by a summary of the current management of the disease in the clinical 

practice and of its impact on the public health and society. The goal of this 

paragraph is to gather all the elements necessary to understand why the prevention 

of acute episodes of HF is of key importance. 

2.1.1 Brief pathophysiology of heart failure  

Heart failure is not a disease in the strict sense, but a complex clinical syndrome. 

Clinically, heart failure refers to every pathological condition involving an 

impairment of the ability of the heart of fulfilling its main function, i.e., pumping 

blood. The reduced cardiac output results in an incapability of the heart of providing 

a sufficient blood flow to meet the metabolic requirements of the body tissues and 

organs. In this sense, heart failure is not a disorder of the heart, but a disorder of the 

circulating system in its overall.   

The pathophysiology of heart failure is heterogeneous, due to the 

heterogeneous nature of its underlying cardiac cause [1]. In fact, a structural or 
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functional cardiac condition is a prerequisite for the development of HF and the 

identification of its etiology provides significant clues towards the diagnosis and 

treatment [2]. The most typical causes of HF are coronary artery diseases, which 

are responsible for reducing the oxygen delivery to the myocardium and thus its 

functionality; and myocardial infarction, where infarcted myocardial regions 

cannot contribute to the contraction. Other pathological conditions that can lead to 

HF are valvular diseases, cardiomyopathies, infective and noninfective myocarditis 

and chronic arrhythmias [3]. The large variety of pathological conditions leading to 

HF already gives a hint about its pervasiveness in the population. 

Depending on the pre-existing cardiac condition, different pathophysiological 

pathways are activated to counter the effects of a reduced oxygen delivery to the 

tissues. The signs and symptoms characterizing the clinical presentation of AHF 

are highly non-specific: reduced exercise capability, exertional dyspnea, fluid 

retention, pulmonary or systemic edema [3,4]. Mostly, they can be traced back to 

systemic congestion: the filling pressure of the ventricular chambers of the heart 

increases to try to compensate the reduced cardiac output, causing extracellular 

fluid accumulation [1]. In the clinical practice, the presence of signs and symptoms 

is a prerequisite for a HF diagnosis, but it is not sufficient alone [2].  

Two classification systems of HF patients are most widely accepted at date. 

The New York Heart Association (NYHA) classification divides HF patients in 4 

classes based on the functional disability caused by their symptoms [5]. The 

American Heart Association and American College of Cardiology (AHA/ACC) 

 

Figure 1: The two major classification systems for HF, namely ACC/AHA based on the 

progression of the disease and the NYHA, based on the disability caused by the symptoms [5,6]. 
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classification defines 4 stages based on the progression of the disease [6]. Figure 1 

shows the two classification systems and how they can be integrated. 

Systolic and diastolic HF 

The functional impairment of the cardiac function can result from either 

impaired contractility (systolic failure) or impaired filling ability (diastolic failure) 

[3]. The two conditions may also be simultaneously present.  

In systolic HF, the impaired contractility of the heart causes a reduced stroke 

volume, which is compensated by an increase in the preload (i.e., the ventricular 

end-diastolic pressure) for the Frank-Starling mechanism [3]. The compensatory 

effect has a limit, though, given by the maximum length of the sarcomeres’ fibers. 

This may even lead to ventricular remodeling, devolved to enlarge its volume and 

increase its compliance [3]. A decrease in the stroke volume and a simultaneous 

increase in the end-diastolic volume produce a decrease in the ejection fraction 

(EF), which can fall to below 20% in severe cases. 

In diastolic HF, the impaired ventricular filling ability can be caused by either 

decreased ventricular compliance, typically produced by the hypertrophic effect of 

prolonged hypertension, or impaired relaxation [3]. An impaired ventricular filling 

results in a higher preload combined to a lower ventricular end-diastolic volume 

[3]. Therefore, contrarily to systolic HF, diastolic HF may or may not be associated 

with a decreased ejection fraction, depending on the relative decrease of stroke 

volume with respect to ventricular end-diastolic volume. 

Both types of HF feature a decrease in the cardiac output and an increase in the 

preload. The first is typically responsible for a decrease in the arterial pressure and 

the consequent fatigue and dyspnea experienced by HF patients. The second is 

mainly responsible for an increase in the venous pressure and thus for the most 

serious clinical consequences anticipated above. In fact, an increase in the left 

ventricular pressure reflects back in the pulmonary capillaries causing pulmonary 

congestion and edema, whereas an increase in the right ventricular pressure is 

reflected back into the right atrium and the systemic venous vasculature, leading to 

a systemic congestion and peripheral edema [3,4].  

Chronic and Acute HF 

Heart failure is a chronic and progressive syndrome [1]. In patients diagnosed 

with chronic HF, acute heart failure (AHF) is defined as a sudden exacerbation of 

the symptoms which follows an acute decompensation of the heart. Precipitating 
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factors are highly heterogenous and are typically related to sudden changes in the 

body demands to the heart: increased afterload (e.g., due to uncontrolled 

hypertension), increased stroke volume (e.g., due to arterial-venous shunts), 

increased body demands (e.g., due to physical activity) [3].  

A chronic patient diagnosed with HF, if carefully compliant to the prescribed 

therapy and in absence of huge physical efforts, can live a relatively normal life. 

The occurrence of an acute episode, though, often leads to hospitalization with a 

poor prognosis. Moreover, as shown in Figure 2, each subsequent acute episodes 

further reduces the myocardial functionality, and therefore the patient’s prognosis 

[7,8]. The importance of timing in the management of AHF has been progressively 

recognized in the literature and stressed in the clinical practice: AHF episodes 

should be considered as much emergencies as myocardial infarction or 

cerebrovascular accidents [1]. 

2.1.2 Management of heart failure in the clinical practice  

The first assessment of a patient with suspected HF relies on the physical 

examination and the clinical history. Indeed, suspect of HF grounds on the presence 

of signs and symptoms, even though non-specific, combined with the presence of 

risk factors and a history of CVDs. If suspect is confirmed, diagnostics tests are run 

to confirm or exclude the HF diagnosis. Figure 3 presents the diagnostic algorithm 

first proposed by the European Society of Cardiology (ESC) in the “2021 ESC 

Guidelines for the diagnosis and treatment of acute and chronic heart failure” [2]. 

 

Figure 2: Effect of the acute episodes of HF on the deterioration of the myocardial function. From 

[7]. 
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At date, the algorithm is the most widely recognized diagnostic pathway worldwide, 

since it was transposed by the American Heart Association (AHA) and the 

American College of Cardiology (ACC) in their “2022 AHA/ACC/HFSA 

Guideline for the management of Heart Failure”.  

 

Figure 3: Diagnostic algorithm for HF proposed by the ESC and accepted by the main clinical 

guidelines worldwide [2]. At date, the HF diagnosis is mainly based on BNP and echocardiography. 
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According to current guidelines [2,6], two diagnostic tests are fundamental to 

confirm or exclude the HF diagnosis, namely the measurement of the plasma 

concentration of natriuretic peptides (NPs) and transthoracic echocardiography. 

Ancillary recommended tests include chest X-ray, routine blood tests and 12-lead 

electrocardiography (ECG), with the scope of identifying the underlaying cardiac 

condition, if unknow.  

Natriuretic peptides are biomarkers released by cardiomyocytes in response to 

stretch [9]. In other words, the secretion of NPs is triggered by a hemodynamic 

stimulus, such as pressure overload or volume expansion, which produces a stress 

in the cardiac wall, as happens in HF [10,11]. In particular, B-type natriuretic 

peptides (BNP) and N-terminal pro-B-type natriuretic peptides (NT-proBNP) are 

secreted by the ventricular tissue, therefore they are useful to analyze ventricular 

dysfunctions [10]. A plasma concentration of BNP lower than 35 pg/mL, or a 

concentration of NT-proBNP lower than 125 pg/mL rule out a HF diagnosis, as 

recommended by clinical guidelines [2].  

Echocardiography is a key diagnostic test in many clinical situations because it 

allows for studying the cardiac structure and functionality. Other imaging 

modalities such as cardiac MR, cardiac CT, PET, SPECT and coronary angiography 

may provide additional information [6]. Right heart catheterization is recommended 

only in cases where the echocardiography results are uncertain, or in acute settings. 

Besides providing clues about the possible underlying cause, echocardiography 

is used to extract indices associated to the heart functionality and in particular to its 

hemodynamics. One of those indices is the Ejection Fraction (EF). Clinical 

guidelines currently classify HF phenotypes depending on the measured left 

ventricular ejection fraction (LVEF): HF with reduced EF (HFrEF) if LVEF ≤ 40%, 

HF with mid-range EF (HFmrEF) if 40% < LVEF ≤ 50%, and HF with preserved 

EF (HFpEF) if LVEF > 50% (and raised NPs confirm the diagnosis) [2,6]. It was 

often documented that a progressive decrease in the EF is commonly expected in 

chronic HF patients and a significant reduction is a poor prognostic factor [2,6].  

As shown, the diagnostic pathway for HF is quite complex and requires tests 

and skills that are not always readily available in an Emergency Department. 

Clearly, the consequence is a delay in treatment and an increase in mortality [12]. 

After diagnosis, HF is typically addressed by means of a pharmacological 

treatment with a three-fold goal: reducing the mortality, improving the cardiac 
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output to guarantee organ perfusion and reducing the symptoms, particularly edema 

and dyspnea [3]. In chronic patients, guidelines recommend the use of diuretics, to 

counter edema, and vasodilators, to decrease the high filling pressures [1]. In 

addition, in acute states and in case of cardiogenic shock, positive inotropic 

medicaments are used to improve the cardiac output [8].  

Even though the guidelines recommend a variety of therapeutic patterns 

depending on the etiology of the patient [2,6,13], no established pharmacological 

pattern exists due to the high heterogeneity of HF presentation in cardiological 

patients. On the contrary, the treatment must be frequently adjusted to meet the 

specific patient’s needs and the specific development of the disease. Increasing 

body of evidence confirms that delayed treatment is associated with poor outcomes 

[1,14], whereas prompt therapy adjustments can increase the survival rate. 

2.1.3 Heart failure in numbers  

Heart failure has often been referred to as a global burden, both in the scientific 

literature and in common speech. It was first described as a pandemic in 1997 [15] 

and it has indeed all the characteristics of one.  

Worldwide, 64 million people living with HF were estimated in 2017 – 42 

million people live with cancer, for the sake of the comparison [16]. The incidence 

has been estimated to 3/1000 person-years in all age groups, but the number is 

strongly dependent on the age [17]. Studies show a slow decline in the incidence 

over the latest 20 years, which reflects, to some extent, a slowly increasing 

effectiveness of the preventive measures [17,18]. Nevertheless, the absolute 

number of new cases per year is steadily increasing, due to population ageing [17] 

and it is expected to keep on raising in the next decades. A larger and larger fraction 

of the yearly new HF cases presents a preserved EF: this is interesting from a 

clinical point of view since the patients affected by HFpEF proved to poorly 

respond to the treatment [18].  

Prevalence provides the best indication of the burden of HF for the society and 

the healthcare system. Recent studies estimate HF prevalence between 1% and 2% 

in developed countries [2,18]. It should be highlighted that even if incidence is 

slowly decreasing, prevalence is steadily increasing due to population ageing, but 

also to the increasing survival rate to cardiovascular events such as myocardial 

infarction [19]. Moreover, the real prevalence may be significantly higher than what 

stated because an impressive number of cases are still undiagnosed: a meta-analysis 
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study reports a prevalence estimated from systematic echocardiographic screening 

as high as 11.8% [20]. The prevalence was found significantly correlated to age, as 

shown by the age-specific prevalence which was found as high as [21]:  

• 1.36% in the 25-49 years-old group 

• 2.93% in the 50-59 years-old group 

• 7.63% in the 60-69 years-old group 

• 12.67% in the 70-79 years-old group 

• 16.14% in the over 80 years-old group 

The lifetime risk for HF was estimated around 21% at the age of 40, 28% in the 

presence of hypertension: one out of five people is expected to develop HF at some 

point of their life [22,23]. These numbers give real perspective on the pervasiveness 

of HF syndrome in the population. 

Hospital admissions after HF diagnosis occur averagely once a year, and are 

expected to raise by 50% in the future because of population growth, population 

ageing and increase of the prevalence of comorbidities [2]. AHF due to the 

decompensation of a chronic HF patient accounts for the vast majority 

(approximately 70%) of hospital admissions [24]. In-hospital mortality after an 

acute episode ranges from 4% to 11% [24,25]. It was proved that each further 

hospitalization provides a deterioration of the life expectancy of the patient: average 

life expectancy decreases from 2.5 years after the first hospitalization to 0.5 years 

after the fourth [24]. 

Mortality rates impressively high and stable, regardless the efforts and 

progresses made in the management of HF patients in the latest years, confirm that 

the prognosis is still poor [2]. A 1-year mortality between 20% and 30%, and a 5-

year mortality as high as 50% were found in recent studies [18,26]. High mortality 

rates make evident that there is room for improvement both in the prevention and 

in the treatment phase. 

Heart failure is not only a clinical problem in its strict sense, but also a severe 

cost for the society and for the healthcare system. It was reported that 1 to 3% of 

the overall healthcare expenditure in developed countries is related to HF 

management [22]. The main contributor to HF-related expenses is hospitalization 

[24]. Typically, an hospital stay following an acute episode of HF lasts between 4 

and 11 days [25]. In the US, the total HF-related cost was estimated at $31 billion 

in 2012, accounting for 1% to 2% of the overall healthcare expenditure [27]. 
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Nevertheless, projections indicate that it will increase by 127% by 2030, reaching 

almost $70 billion [28,29]. In 2013, the global overall expenditure for HF was 

estimated around $108 billion [27].  

More difficult to quantify, but worth of being mentioned, HF strongly reduces 

the quality of life of affected patients (and also their family and caregivers). 

Symptoms such as extreme fatigue and shortness of breath most often prevent HF 

patients to work and perform even the most normal daily activities, with a 

consequent psychological, social and financial distress [22]. Anxiety and 

depression, often undiagnosed, characterize chronic HF patients, even when treated 

at their domicile [30]. 

2.1.4 Importance of the prevention of acute episodes 

Prevention of HF can be distinguished in two phases. Primary prevention 

concerns the prevention of chronic HF and is strictly related to the prevention, early 

diagnosis, and treatment of HF underlying causes [25]. It can be highly stratified 

due to the high heterogeneity of possible underlying causes. Secondary prevention 

concerns the prevention of AHF, i.e., of the episodes of decompensation of chronic 

HF patients leading to hospitalization [25]. 

Because of the high impact of hospitalization on mortality, expected quality of 

life and cost for the healthcare system, secondary prevention is of key importance, 

both from the medical and the socioeconomical point of view. 

In chronic patients, personalized and timed therapy adjustments are capable of 

avoiding heart decompensation and thus AHF. Nevertheless, accurate and effective 

treatment adjustments are possible only if a frequent assessment of the status of 

compensation of the heart is possible.  In other words, the prevention of AHF 

episodes is possible from a therapeutic point of view but requires a reliable method 

to monitor the status of compensation of the heart of the patient and promptly detect 

its worsening. According to guidelines, the latter is still an open problem [2,6]. 

Even though the onset of AHF may look abrupt from a clinical perspective, 

because signs and symptoms appear in the latest stages, the process of 

decompensation typically takes several days to weeks [1,31]. Therefore, from the 

physiopathology perspective, there is room for prompt intervention. The challenge 

is to find a biomarker, i.e., a measurable indicator of the status of compensation of 

the heart, with two characteristics: 
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1. is correlated with changes in a physiological variable involved in the earliest 

stages of the process of decompensation; 

2. is suitable for a frequent, domiciliary follow-up of HF patients. 

Figure 4 proposes a graphical representation of the phases of the process of 

decompensation and their timeline. This interpretation of decompensation as a 

process was first proposed by Adamson et al. in 2009 [32] and adopted by all the 

major players in the field. The first detectable variations in the physiological status 

of a decompensating patient are expected in the intracardiac pressures (phase A). 

In fact, the first compensatory mechanism of the body to reduced cardiac output 

consists of increasing the ventricles’ filling pressure. Over the days, the downside 

of this compensatory effect is an autonomic adaptation (phase B), followed by an 

increasingly higher fluid retention (phase C). It is important to highlight that such 

increase in tissue fluid could be easily counteracted with an appropriate diuretic 

adjustment, if detected. If no intervention is carried out, the fluid retention continues 

and, at some point, it becomes so relevant that an abrupt change in body weight 

occurs (phase D). Shortly after, symptoms appear (phase E) and hospitalization is 

most often required, with a poor prognosis. 

If small changes in the hemodynamics could be detected, i.e., at the stage of 

filling pressure increase, changes in the medications could be sufficient to 

repristinate the status of compensation. Nevertheless, if changes can be detected 

only at the latest change, i.e., when symptoms occur, as it is to date, important 

therapy modifications are needed, and they are seldom sufficient to prevent the 

decompensation [32]. 

 

Figure 4: Phases of the process of decompensation in AHF. Adapted from [32] 
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It is clear that the challenge is on the technological side: the availability of novel 

technological means capable of detecting the earliest changes in physiological 

variables would allow for a prompt and easy intervention and a reverse of the 

decompensation process in its earlier phases, with a dramatic impact on HF 

patients’ life expectancy and quality of life. 

2.2 Monitoring of heart failure patients: state of the art 

Admittedly, the follow-up of patients diagnosed with heart failure is a relatively 

understudied area, compared to its fundamental importance to optimize the therapy 

and recognize exacerbation of the syndrome before it reaches the symptomatic level 

[2].  

Nevertheless, a wide new interest in the area has been raised in the latest years, 

particularly driven by the COVID-19 pandemics. In 2021, the “Guidelines for the 

diagnosis and treatment of acute and chronic heart failure” by the European Society 

of Cardiology  inserted “The role of remote monitoring strategies in HF in the post 

COVID-19 era” among the issues that deserve to be addressed in future clinical 

research [2].     

The traditional approach for HF-patient monitoring after a diagnosis or an 

hospital discharge was based on the monitoring of body weight and symptoms [33]. 

Until recently, clinical guidelines recommended an intervention in case of 

worsening of the symptoms or in case of an abrupt increase in body weight, index 

of liquid retention. Nevertheless, as shown in Figure 4, such intervention 

corresponds to a very late phase in the process of decompensation, and typically 

proves ineffective. 

At date, novel technological approaches, aiming at tackling the problem at an 

earlier stage, are under trial. The goal of the following paragraphs is to review the 

current clinical guidelines, the novel technological approaches proposed in the 

literature and the devices already on the market. 

2.2.1 Current clinical guidelines for the follow-up of HF patients 

At date, clinical guidelines ground the follow-up of HF-patients on a periodic 

repetition of the main diagnostic tests for HF. The recommended interval before the 

repetition of the tests is 6 months, with a higher frequency being recommended after 

hospitalization [2]. The scope of the tests is to detect a worsening of the HF status 
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even if this is not associated with a worsening of patient’s symptoms. In fact, at 

date, treatment is devolved to improve the symptoms. Therefore, variations in the 

therapeutic plan are mostly guided by symptoms rather than on their effect on the 

cardiac output or other hemodynamic variables [6].  

The plasma concentration of BNP and NT-proBNP is not recommended by 

either of the main clinical guidelines for the monitoring of the severity of the 

pathology due to lack of evidence and controversial results of clinical trials [2,6]. 

On the other side, echocardiogram is often repeated to assess changes in the EF, 

structural remodeling and valvular function [6]. More hemodynamic indices can be 

extracted from echocardiography to describe the cardiac structure and function, 

which can be helpful in identifying worsening of the overall condition of the 

patient’s heart. Nevertheless, this is not recommended by guidelines today. 

This follow-up strategy has proved ineffective in reducing the rate of 

decompensation episodes [6]. Moreover, it is challenging for the logistics of the 

healthcare system. From an organizational point of view, follow-up should be 

performed in primary care, but several studies even confirmed that improved 

outcomes can be obtained if the follow-up is performed by a HF specialist instead 

[2].  

Another aspect to be considered is the frequency of the follow-up. Recent 

studies show that a more frequent follow-up would improve the survival chances of 

patients after hospital discharge [34]. Nonetheless, given the burden the healthcare 

system is already subjected to, a high-frequency follow-up would be feasible only 

in a domiciliary context. From this point of view, it should be highlighted that the 

two main diagnostic tests for HF are both unfeasible in a domiciliary context 

because they rely either on blood tests or on echocardiography, which must be 

performed by an experienced clinician.  

In the latest years, some home telemonitoring approaches have been proposed 

in the literature, with a high variety of levels of effectiveness. Nevertheless, official 

recommendations from clinical guidelines are still quite conservative. In the latest 

version, both ESC and AHA/ACC state that invasive hemodynamic monitors for 

the measurement of the pulmonary artery pressure “may be considered” in selected 

symptomatic patients [2,6]. In the overall, the trust in technology in the field of 

monitoring of HF patients is still quite poor in the clinical practice: at date, device-

based care is proposed to less than 40% of the patients who have a class 1 indication 

with a level of evidence A [32].  
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2.2.2 Literature review 

Many attempts have been made over the last decade to find a suitable biomarker for 

monitoring the status of compensation of a HF patient. The objective of this 

literature review is to provide a synthetic yet exhaustive overview of the studies 

which analyzed the effectiveness of the proposed systems for the monitoring of HF 

patients.  

This literature review grounds on the integration of the results of two systematic 

reviews published in 2022 on “Heart Failure Reviews” journal. Mhanna et al. [35] 

reviewed the efficacy of remote physiological monitoring‑guided care for CHF. 

Hafkamp et al. [36] proposed an umbrella review of the effectiveness of heart 

failure management, and in particular the effectiveness of interventions to reduce 

the rehospitalization of HF patients. Both systematic reviews followed the PRISMA 

guidelines [37]. In this analysis were included only the studies involving a device-

based monitoring of the status of HF patients. Studies involving telephone-based 

approaches, educational approaches and pharmacological-based approaches were 

excluded.  

Currently available systems can be grouped into invasive and noninvasive 

systems. Noninvasive systems are typically based on the monitoring on some 

traditional physiological parameters. A wide number of parameters and their 

combinations has been tried out over the years, including weight, blood pressure, 

heart rate, heart rate variability, blood oxygen saturation (SpO2) [32,33]. Invasive 

systems rely either on an active implantable medical device (AIMD), such as 

pacemakers and CRT-Ds, or a hemodynamic monitor based on an invasive pressure 

sensor.  

The stages of the process of decompensation provide a good track on where to 

search for a suitable biomarker. Therefore, existing methodologies for HF 

monitoring were classified according to the phase of the decompensation process 

where they intervene. Figure 5 shows the correspondence between the existing 

methodologies, described below, and the stage of the process of decompensation 

where they act. 

According to the stage of the process of decompensation where they intervene, 

monitoring approaches can be divided into [38]: 

1. Monitoring of vital signs 
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2. Monitoring of lung congestion 

3. Monitoring of hemodynamic parameters 

A fourth category of systems, not strictly related to the phase of the process of 

decompensation, has been object of several studies: multiparameter systems based 

on an existing AIMD. The rationale for the study of such systems is that a relevant 

percentage of HF patients are implanted with an AIMD following an indication 

related to an underlying cardiac cause. Therefore, it may be of interest to use the 

already existing AIMD for monitoring, even though the monitoring parameters are 

not directly related to the decompensation phase. 

The following paragraphs provide details about the studies conducted for each 

of the four mentioned categories of systems, with particular emphasis on their 

effectiveness to reduce mortality and hospitalization. 

Monitoring of vital signs 

Among vital signs, weight monitoring is preferred by clinical practitioners. A 

change in weight higher than 2 kg over 48 to 72 hours, or a 2% gain, triggers the 

alarm [39]. Nevertheless, besides occurring in a late phase of decompensation, 

previous studies found that many HF worsening episodes are not necessarily 

associated with a detectable weight increase [40]. The credibility of the latter as a 

AHF predictor was thus questioned and current guidelines do not recommend its 

monitoring as they did in the past. Clinical trials showed that a raise of 2 kg over 

 

Figure 5: Main existing approaches for HF monitoring and phase of the decompensation process 

where they act. Partially adapted from [32]. 
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48 hours has a specificity as high as 97%, but a sensitivity of just 9% [39]. A 2% 

weight gain has a sensitivity of 17% [39]. These numbers prove that the weight 

changes are un insufficient predictor of decompensation. Accordingly, the 

WHARF-HF clinical trial showed no reduction in readmission rates, mortality and 

emergency visits [41]. Consistent results were found in the WISH clinical trial [42]. 

The value of other physiological parameters measurable through wearables as 

predictors of AHF is still under analysis. At date, though, evidence about their 

benefits in reducing hospitalizations and/or mortality is still highly controversial 

[38]. In fact, a high number of randomized clinical trials analyzed the influence of 

telemonitoring performed using a combination of vital signs on the clinical 

outcomes: TENS-HMS [43], HOME-HF [44], HHH [45], MOBITEL [46], SPAN-

CHF2 [47], TIM-HF [48], Seto et al. [49], Blum et al. [50], TEMA-HF [51], 

Vuorinen et al. [52], IN TOUCH [53], BEAT-HF [54], SUPPORT-HF2 [55]. 

Results concerning readmission rates, mortality, adherence to therapy, quality of 

life are highly controversial, and most studies report them to be not significant or 

based on small sample populations. More promising results were found in the TIM-

HF2 clinical trial [56]. 1571 patients with HF were provided with a multiparameter 

monitoring system, involving the daily measurement of weight, heart rate, heart rate 

variability, blood pressure, and oxygen saturation. The experimental group showed 

a reduced hospitalization rate (18 days vs 24 days) and a reduced mortality (7.9% 

person-year vs 11.3% person-year) with respect to the control group. Even though 

the results are not particularly outstanding they may lay the foundations for further 

analysis [56].  

An important observation about the mentioned studies is that the decision-

making process is based on the monitored parameter, but it’s still performed by 

human specialists: no automatic alarm is triggered by the daily values of the 

parameters. Therefore, it is difficult to assess the actual correlation between the 

monitored vital signs and the reported clinical outcomes in an objective way. This 

also strongly limits the real-life applicability of such systems, even if working, since 

an intensive effort for the healthcare practitioners is decisive for their use. 

A special mention concerning the monitoring of vital signs should be made 

about the monitoring of heart rate variability (HRV). From a theoretical point of 

view, HRV may be more relevant than the other mentioned vital signs because it 

reflects the behavior of the parasympathetic nervous system. Thus, it may allow to 

detect the autonomic adaptation, which occurs at an earlier stage in the process of 

decompensation [32]. Two studies show that features extracted from the tachogram 
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present a high predictive power with respect to episodes of AHF [57,58]. 

Nevertheless, albeit its promising correlation with an early stage of the 

decompensation process, HRV was never used in the clinical practice. 

At date, a single study on vital signs recorded through a stand-alone wearable 

device exists and is currently enrolling. The observational Nanowear Heart Failure 

Management Multisensor Algorithm (NanoSense) clinical trial is based on the 

SimpleSense device by Nanowear Inc. (New York, NewYork, US). SimpleSense is 

an undergarment designed to continuously monitor a number of vital signs such as 

heart rate and sounds, respiration rate, lung volume, and physical activity. The 

algorithm recently proved effective for the cuffless measurement of blood pressure 

from a combination ECG and heart sounds [59]. It should be highlighted that this 

is the first study on a wearable device for AHF prediction. Moreover, SimpleSense 

is the first wearable device for HF monitoring embedding heart sounds. 

Nevertheless, the method still has to prove its effectiveness [60].  

In the end, the Evaluating Mobile Health Tool Use for Capturing Patient-

Centered Outcomes Measures in HF Patients clinical trial is also currently 

enrolling. The study is funded by Biofourmis (Boston, Massachusetts, US) and will 

explore the possibility of using smart devices such as their own Everion™ or Apple 

Watch™ for HF monitoring. The trial is a small feasibility study involving 150 

patients and no further information are currently available. 

Monitoring of lung congestion 

The second category of systems aims at tackling the decompensation at stage 

of the lung congestion. Lung congestion causes a higher concentration of liquids in 

the thorax, decreasing its impedance and changing its dielectric properties. Two 

approaches have been experimented to assess lung congestions, namely thoracic 

impedance through AIMD and remote dielectric sensing [38].  

Thoracic impedance is typically measured between an intracardiac catheter and 

the case of an AIMD [61,62]. The principle behind the use of thoracic impedance 

monitoring is that the impedance of a fluid is significantly lower than the impedance 

of biological tissues. Therefore, a consistent decrease in the measured impedance 

corresponds to an increase in the interstitial fluid, and was found to happen over a 

month before hospitalization for HF [61]. Besides its invasiveness, two main 

limitations affect the usability of the thoracic impedance method: its low sensitivity, 

found little over 30%, and the high rate of false alarms, found both in DEFEAT-PE 

and DOT-HF clinical trials [62,63].  
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The only solution available on the market for thoracic impedance monitoring 

is OptiVol™ by Medtronic Inc. (Minneapolis, Minnesota). Its efficacy has been 

object of several studies. Nevertheless, the results are controversial. The FAST-HF 

study found a sensitivity of 76% in predicting AHF episodes, against 23% obtained 

with weight monitoring [64]. On the contrary, the DOT-HF, CONNECT-OptiVol, 

OptiLink-HF and LIMIT-CHF trials all found that thoracic impedance monitoring 

through OptiVol™ had no significant impact on the clinical outcomes, 

hospitalization and mortality rate [63,65–67]. The SENSE-HF trial found a 

maximum sensitivity of 65% for OptiVol™ to predict AHF episodes, which they 

legitimately declare as unsatisfying from a clinical perspective [68]. Even though 

the monitoring of thoracic impedance did not show impressive results alone, it may 

prove its usefulness when combined with other parameters. 

Remote dielectric sensing is more interesting, from a certain point of view, 

because it can be performed using wearables. At date, a single device implementing 

this technology is available on the market: ReDS™ by Sensible Medical 

Innovations Ltd. (Netanya, Israel). The principle is similar to thoracic impedance, 

but it relies on low-power electromagnetic fields emitted run through the thorax 

using an emitter and receiver located respectively on the chest and the back of the 

patient [69]. The lung congestion is assessed through the measurement of the 

dielectric properties of the thorax [69]. Remote dielectric sensing showed more 

encouraging results with respect to thoracic impedance monitoring: the SMILE-HF 

trial showed that patients discharged with a remote dielectric sensing system 

presented a reduction of 50% in hospital readmissions [69]. 

Monitoring of hemodynamic parameters 

The third category of systems intervene in the earliest stage of the 

decompensation process, since they are based on the monitoring of the intracardiac 

pressures. It must be highlighted that, traditionally, intracardiac pressures are 

measured by means of intracardiac catheterization. The latter is an invasive 

procedure, with a number of associated risks, and is definitely not adequate for 

domiciliary monitoring. The systems object of this paragraph are implantable 

hemodynamic monitors based on a pressure sensor located in one of the cardiac 

chambers. 

In the first developed systems, the target of the monitoring was typically the 

left atrium (LA) or the right ventricle (RV) and the intracardiac pressure was 

continuously monitored by means of an implantable sensor lead equipped with a 
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miniaturized pressure sensor. Even though the approach sounds promising from a 

theoretical point of view, results of clinical trials on both devices are quite 

controversial at date. 

The trials LAPTOP-HF and HOMOSTASIS-HF analyzed the efficacy of 

HeartPod™, an implantable sensor lead by the late St. Jude Medical Inc. (Sylmar, 

California) for the monitoring the Left Atrial Pressure (LAP). The LAPTOP-HF 

clinical trial was suspended because of severe implant-related complications 

[38,70], suggesting that the approach is not naïve from a chirurgical perspective. 

The HOMEOSTASIS study showed moderately promising results on a small 

population of 40 patents [71], but this was not considered sufficient to organize an 

appropriate RCT, and the project was not further carried out. 

The efficacy of Chronicle™ by Medtronic Inc. (Minneapolis, Minnesota), 

measuring the pressure in the Right Ventricle, was the object of the COMPASS-HF 

clinical trial. COMPASS-HF reported a reduction by 21% of the HF-related 

emergency visits and rehospitalizations, but the difference towards the control 

group was not found significant [72]. On the other hand, in the hindsight, a 36% 

reduction in the hospitalization rate was found over NYHA class III patients 

(against NYHA class IV) [70]. In the overall, the results of COMPASS-HF, the first 

RCT on hemodynamics monitoring of HF patients, provided the first proof of the 

importance of PAP monitoring and laid the foundations for the design of the next 

generation devices [70]. The REDUCE-HF clinical trial further analyzed the 

efficacy of Chronicle™ in combination with an ICD, but was prematurely 

suspended due to a device failure [73]. 

A novel approach for intracardiac pressure monitoring has recently gained the 

attention of the scientific community, namely the hemodynamic monitoring 

through implantable pulmonary artery sensors [31]. CardioMEMS™ by Abbott 

(Chicago, Illinois, US) is the only device currently on the market. It is a 

miniaturized pressure sensor based on MEMS technology placed in the PA. The 

CHAMPION-HF clinical trial analyzed its safety and effectiveness in reducing 

rehospitalization and mortality of HF patients. CHAMPION-HF showed that the 

daily monitoring of the pulmonary artery pressure (PAP) through CardioMEMS 

reduced by 80.4% the HF admissions and by 69% the all-cause admissions of HF 

patients with NYHA III [74]. A new clinical trial with the goal of studying the 

effectiveness of CardioMEMS in patients with no indication but with future risk 

(GUIDE-HF) is currently in the recruitment phase.  
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At date, CardioMEMS is regarded by the scientific community as the most 

promising technology for the prevention of AHF. The reason of its high 

effectiveness is to be searched for in the phase of development of the 

decompensation it acts on: monitoring the PAP, CardioMEMS is capable of 

detecting the very first changes of the heart physiology, enabling a prompt 

intervention. Given the high effectiveness of CardioMEMS to reduce the 

hospitalization of at-risk patients, the only drawback of CardioMEMS is its 

invasiveness.  

A quite unique approach, combining invasive and noninvasive monitoring, is 

currently under evaluation in the SIRONA clinical trial, based on the Cordella™ 

system by Endotronix (Lisle, Illinois, US) [60]. Cordella™ is a multiparameter 

system that combines the information about the PAP recorded through an invasive 

hemodynamic monitor with a variety of other vital signs (blood pressure, heart rate, 

blood oxygen, weight), recorded through wearables [75]. The SIRONA study 

showed that the system is safe and accurate, and ready to undergo an RCT to prove 

its clinical efficacy. The PROACTIVE-HF study is thus currently enrolling. 

Most recently (June 2022), the first results of the VECTOR-HF clinical trial on 

the efficacy of V-LAP by Vectorious Medical Technologies (Tel Aviv, Israel) were 

presented. V-LAP is a novel, still under development, LAP-monitoring device 

consisting of a miniaturized lead-less and battery-less implantable sensor. In 

synthesis, V-LAP has similar characteristics to CardioMEMS, but is implanted in 

the LA. Preliminary results showed a 40% reduction in the NYHA class after 6 

months, but the study was not powered to assess clinical endpoints [76]. 

AIMD-based multiparameter systems 

The role of AIMD-based multiparameter systems in HF monitoring is not 

straightforward. The rationale for research on this topic is that a high percentage of 

chronic HF patients have an underlying cardiac cause, such as arrhythmias or 

branch blocks, that benefit from the implant of an ICD or CRT-D. Therefore, since 

many HF patients already have an AIMD implanted, a fair amount of effort has 

been made over the last decade to benefit from the device for the monitoring of the 

patient and the prevention of acute episodes. It should be highlighted, though, that 

the implant of AIMDs in HF patients is not recommended by guidelines unless they 

have an indication due to another cardiac condition [2,6]. 

The first documented RCT aimed at analyzing the effectiveness of ICDs to 

reduce hospitalization of chronic HF patients is the TRUST-HF clinical trial, in 
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2010. The monitoring relied on commercial ICDs by Medtronic (Minneapolis, 

Minnesota) and involved a range of typical ICD features, (such as the rate of VT, 

VF, SVT episodes) combined with thoracic impedance. The results of the study 

were quite promising, showing a reduction of in-hospital follow-up visits by 45% 

with a preserved adverse events’ rate [77]. Similar conclusions were drawn in the 

EVOLVO study [78], in the MORE-CARE study [79]. Nevertheless, the impact of 

the ICD use on the prevention of acute episodes was beyond the objectives of either 

of these studies.  

On the contrary, the PARTNERS-HF trial aimed at answering this question. 

The investigators still used ICDs by Medtronic (Minneapolis, Minnesota), equipped 

with the Optivol™ module for thoracic impedance monitoring. A diagnostic 

algorithm was developed, based on the following features: atrial fibrillation (AF) 

duration, ventricular rate during AF, fluid index (Optivol™), patient activity, night 

heart rate, HRV, percentage of pacing CRT, ICD shock for potentially lethal VT/VF 

[80]. The results are very interesting: the diagnostic algorithm was found capable 

of stratifying the patients for the risk of an acute episode, and, in particular, patients 

with a positive diagnostic result were found 4.8 more likely to incur in a HF-related 

hospitalization in the following month than patients with a negative result [80]. The 

results of the PARTNERS-HF trial show how the integration of multiple HF-related 

parameters can lead to a positive result, even though the single parameters did not 

prove very effective for HF monitoring when considered alone (as HRV or thoracic 

impedance). 

Similarly, the IN-TIME clinical trial studied the efficacy of an analogue ICD-

based system developed by Biotronik (Berlin, Germany), relying on the Biotronik 

Home Monitoring function. The study found a decrease in 1-year mortality from 

8.7% in the control group to 3.4% in the group of patients subjected to 

telemonitoring [81]. The Authors claim that the efficacy of the ICD-based 

telemonitoring is based on three factors: early detection of ventricular and atrial 

tachyarrhythmias, early detection of suboptimal functioning of the device, better 

recognition of the patient’s symptoms due to interviews prompted by the device’s 

alarms [81].  

The RESULT-HF study was even more relevant for a real life scenario, since 

it involved all the available AIMD-based systems for HF monitoring: CareLink™ 

by Medtronik (Minneapolis, Minnesota), Merlin@home™ by Abbott (Chicago, 

Illinois), Home Monitoring™ by Biotronik (Berlin, Germany) and Latitude™ by 

Boston Scientific (Marlborough, Massachusetts) [82]. Results show a significant 
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reduction in the hospitalization rate of the remote monitoring group from 45.5% to 

37.1% [82]. 

It should be highlighted that other RCTs found less optimistic results. The 

TELECART study found that telemonitoring based on CRT-D could effectively 

predict the hospitalization rate of HF patients but showed no reduction in either all-

cause or cardiovascular-related mortality [83]. The REM-HF study grounded the 

monitoring of 1650 HF patients on a variety of commercial CRT devices (by 

Medtronic, Boston Scientific or Abbott) and on a variety of features (including 

percentage of bi-ventricular pacing, nocturnal HR, thoracic impedance, activity 

levels, AT/AF burden, HRV). Even though the study design reminds the one from 

the PARTNERS-HF study, they found no significant difference between 

experimental and control groups on either mortality or hospitalization [84]. The IN-

CONTACT study, using the Merlin@home system by Abbott (Chicago, Illinois), 

found comparable clinical outcomes between in-person follow-up and 

telemonitoring [85]. 

Two studies aimed at developing a predictor index for AHF based on AIMD-

derived parameters, i.e., the TRIAGE-HF study [86] and the MultiSENSE study 

[87].  

The TRIAGE-HF study developed and validated a HF risk status (HFRS) based 

on parameters recorded using the CareLink™ system by Medtronik (Minneapolis, 

Minnesota). The score uses the same parameters as the PARTNERS-HF trial, which 

already proved their value [80]. A validation over 971 patients showed that patients 

who were characterized by an above-threshold value for the HFRS were found 10 

times more likely to be admitted for HF in the following 30 days [86]. A further 

study analyzed the predictive value of the HFRS towards mortality, and found that 

a day with HFRS corresponded to a three times higher risk of mortality [88]. 

The MultiSENSE study aggregates data from the Latitude™ system by Boston 

Scientific (Marlborough, Massachusetts) in a composite index of clinical relevance, 

through a multisensory alert algorithm named HeartLogic™. Features are extracted 

from physiological parameters such as heart sounds (S1 and S3), lung impedance, 

respiratory rate and volume, activity, and night-time heart rate [87]. The study 

involved 974 HF patients, divided into a development set and a test set. The 

HeartLogic index was found to have a sensitivity of 70% for the prediction of HF 

acute episodes, with a median advance of 34 days [87]. The results are very 

encouraging to obtain a sensitive and timely prediction of AHF. The actual 
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effectiveness of HeartLogic from a clinical perspective is object of the MANAGE-

HF clinical trial, currently enrolling [60]. It should be highlighted that, at date, 

HeartLogic™ is the only technological solution involving features extracted from 

heart sounds, even though recorded invasively. 

In the overall, it can be concluded that AIMD-based multiparameter systems 

can be quite promising in flanking CardioMEMS™ and other hemodynamics 

monitors for the prevention of AHF. It should be highlighted, though, that given the 

risks associated with the implant, AIMDs are not used on HF patients full-scale, but 

they are implanted only when there is an indication based on the underlying 

cardiological cause. 

2.2.3 Technological benchmark 

After having reviewed all the monitoring possibilities explored in the literature in 

the last decades, the goal of this paragraph is to synthesize the currently available 

systems in a more market-oriented way. The goal is to provide a link between 

research and clinical practice: among all the above-described approaches that were 

tested from a scientific perspective, what methodologies could actually reach the 

market and be used in clinics? 

It should be highlighted that all the mentioned approaches for remote 

monitoring of HF patients are effective only if integrated in an appropriate care 

service. In fact, the benefits of the use of each of the abovementioned systems were 

produced by a therapy adjustment triggered by changes in the monitored 

physiological features. The COMPASS-HF clinical trial on hemodynamic 

monitoring showed that the therapy was adjusted 28% more times in the group of 

patients with the implanted hemodynamic monitor [72]. No system can really be 

effective without being integrated in an appropriate telemonitoring clinical 

pathways.   

Figure 6 resumes the main characteristics of the technological solutions 

proposed in the literature, along with the commercially available devices exploiting 

each technology and the devices currently in the validation phase. 

Some important considerations can be derived from the analysis of the 

technological benchmark.  
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At date, no system based on vital signs monitoring is available on the market. 

This is fundamentally due to the fact that no noninvasive technology proved 

effective enough to reach the market and the clinical environment. The only 

exception is ReDS®, based on remote dielectric sensing. Nevertheless, the latter 

acts in a mid-term phase of the decompensation process: there is room for 

improvement, in terms of time promptness as well as efficacy. 

The technological benchmark highlights a high number of commercially 

available AIMD-based systems. Basically, all the main players in the AIMD market 

proposed a solution for HF monitoring based on their device. Even though 

controversial results emerged from the literature analysis, the efficacy of some 

systems looks particularly promising. It must be underlined that each system 

grounds its monitoring on different physiological features: on one side, this may 

strongly affect their efficacy, on the other side it makes it difficult to localize their 

intervention in the process of decompensation. Research in this sense is surely 

 

Figure 6: Technological benchmark, along with commercially available and under development 

devices. 
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worth continuing, since many patients affected by HF are implanted with an AIMD 

on an indication for some comorbidity. The AIMD-implanted HF-patients is a 

rather small population compared to the entire population of patients affected by 

HF: the proportion of patients living with HF implanted with an ICD was estimated 

between 2% and 8% [89]. A more pervasive technology is required to have a larger 

impact. 

Invasive hemodynamic monitoring is nowadays the only technology 

cardiologists really rely on for the prediction of AHF. A fair amount of research is 

still ongoing, but the results presented by Abbott about CardioMEMS™ undeniably 

confirm the efficacy of the method. The presence of two more systems based on the 

same approach in the validation phase confirms the trend and the interest of the 

scientific population as well as the clinical environment. The main limitation to the 

use of CardioMEMS™, or potential similar devices, resides in the implant phase: 

even though its safety was demonstrated in the CHAMPION-HF clinical trial [74], 

the need for an implant limits the use of the device to patients already diagnosed 

with HF. At-risk patients are unlikely to get a hemodynamic monitor implanted, 

therefore a huge proportion of patients who could benefit from the monitoring of 

their status of compensation are excluded. 

It is evident from the technological benchmark that there is a gap in the market 

(and therefore in the clinical practice) for a noninvasive system capable of 

monitoring hemodynamic variables, as CardioMEMS™ already does in an invasive 

way. 

2.3 The promise of electro-phonocardiography  

As shown in the previous paragraphs, there is a clinical need for a biomarker, that 

could be monitored noninvasively, whose changes are related to changes in the 

intracardiac pressures. Such a biomarker would enable the domiciliary monitoring 

of HF patients with the scope of preventing AHF episodes.  

The idea of using electro-phonocardiography (or acoustic cardiography) 

grounds on the assumption that AHF is associated with changes in the timing of the 

mechanical events in the heart, which reflect the changes in the intracardiac 

pressures. Those changes reflect, for example, in the electromechanical coupling of 

the heart, i.e., the latency between the electrical depolarization of the ventricles and 

their mechanical contraction. The first is clearly visible in the ECG, the second 
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causes the closure of the cardiac valves, which generates the main vibrations of the 

heart sounds. 

The time intervals between electrical and mechanical events in the cardiac cycle 

go under the name of Cardiac Time Intervals. The goal of this paragraph is to 

propose an analysis on the Cardiac Time Intervals, how to estimate them from 

biomedical signals and their relationship to AHF. In the end, a summary of the 

technical challenges to bring electro-phonocardiography to homecare will be 

presented along with the proposed solution.  

2.3.1 The Cardiac Time Intervals and how to find them 

The Cardiac Time Intervals (CTIs) provide a temporal description of the phases of 

the cardiac cycle from an electro-mechanical perspective, and are therefore 

important hemodynamic indices [90]. For this reason, they have been object of wide 

research over the last decades. Most often, they are referred to as Systolic Time 

Intervals (STIs) since they mainly describe the systolic phase of the cardiac cycle 

[91]. The CTIs can typically be measured by means of echocardiography, but 

researchers are focusing on finding alternative ways based on some biomedical 

signals, with the scope of making the methodology suitable for domiciliary 

monitoring [90]. 

Figure 7 illustrates the main CTIs described in the literature. As reported, they 

can be described as follows [90,92]:  

• Electromechanical Activation Time (EMAT) – or Delay (EMD): 

time between the onset of the ventricular depolarization and the closure 

of the mitral valve. 

• Pre-ejection Period (PEP): time between the onset of the ventricular 

depolarization and the opening of the aortic valve. 

• Isovolumic Contraction Period (IVCP): time between the closure of 

the mitral valve and the opening of the aortic valve. 

• Left Ventricular Ejection Time (LVET): time between the opening 

and the closure of the aortic valve. 

• Left Ventricular Systolic Time (LVST): time between the closure of 

the mitral valve and the closure of the aortic valve. 

• Total Systolic Time (TST) or Total Electromechanical Systole 

(QS2): time between the onset of the ventricular depolarization and the 

closure of the aortic valve. 
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Figure 7 proposes a definition of the CTIs on an extended version of the famous 

Wiggers diagram including the relevant biomedical signals. 

As shown in Figure 7, the CTIs are defined according to the opening and 

closure of the cardiac valves, but these events correspond to specific points in the 

curves of the intracardiac pressures. In other words, a change in the intracardiac 

pressures produces a change in the CTIs. Therefore, the latter may be a suitable 

biomarker for the monitoring of the status of decompensation of the heart, from a 

theoretical point of view. 

It should be highlighted that all the CTIs are traditionally described for the left 

side of the heart, because the assessment of the left ventricular performance is 

 

Figure 7: Visual definition of the main Cardiac Time Intervals, in relation to the LV intracardiac 

pressures and to the main biomedical signals used for their estimation (ECG and heart sounds), in a 

modified version of the Wiggers diagram. MC represents the instant of closure of the mitral valve, AO 

and AC represent respectively the opening and closure of the aortic valve. Adapted from [93,94]. 
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typically most used in clinics. Nevertheless, the same parameters could be described 

for the right side of the heart. In that case, the opening and closure of the tricuspid 

and pulmonary valves would substitute the opening and closure of the mitral and 

aortic valves in the definitions above. 

Reasonably, the CTIs are influenced by the length of the cardiac cycle, i.e., they 

vary inversely with the heart rate. Therefore, it is well established that the variations 

of the CTIs need to be compensated for variations in the heart rate to be correctly 

interpreted from a clinical perspective [91]. Back in 1968, Weissler et al. studied 

the regression between the heart rate and each CTI and proposed correction 

equations [95], which are presented in Table 1.  

The normality indexes represent the normal value of the corresponding CTI at 

a theoretical heart rate (HR) of 0 bpm, as found by the Authors in 211 normal 

subjects [95]. 

Table 1: Correction equations for each CTI [91,95]. 

CTI Sex Correction equation Normality index 

EMAT M cEMAT = - 0.4 * HR + EMAT EMAT = 90 ms 

F cEMAT = - 0.3 * HR + EMAT EMAT = 89 ms 

PEP M cPEP = - 0.4 * HR + PEP PEP = 131 ms 

F cPEP = - 0.4 * HR + PEP PEP = 133 ms 

IVCP M Independent on HR IVCP = 38 ms 

F Independent on HR IVCP = 39 ms 

LVET M cLVET = - 1.7 * HR + LVET LVET = 413 ms 

F cLVET = - 1.6 * HR + LVET LVET = 418 ms 

LVST M cLVST = - 1.8 * HR + LVST LVST = 456 ms 

F cLVST = -1.6 * HR + LVST LVST = 461 ms 
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TST M cTST = - 2.1 * HR + TST TST = 546 ms 

F cTST = - 2.0 * HR + TST TST = 549 ms 

 

The equations show that the dependence of the CTIs on the heart rate is linear 

and that the coefficients slightly differ for males and females.  

Even though the correction equations remain valid at date, most Authors 

compute the corrected CTIs by simply dividing the CTI value by the RR interval 

(e.g., cEMAT = EMAT/RR). Moreover, considering the fact that relative values are 

more important than absolute values, two more CTIs were defined as the ratio of 

other timing interval, namely: 

• EMAT/LVST: ratio between the electromechanical delay and the left 

ventricular systolic time (based on the closure of the mitral and aortic 

valves). 

• PEP/LVET: ratio between the pre-ejection period and the left 

ventricular ejection time (based on the opening and closure of the aortic 

valve). 

CTIs are typically expressed in milliseconds. Corrected CTIs are expressed as 

a percentage of the cardiac cycle. Ratios are dimensionless. 

In the overall, the definition of the CTIs grounds on the identification of the 

time of occurrence of three events: the onset of the ventricular depolarization, the 

opening of some cardiac valves, the closure of some cardiac valves. 

The onset of the ventricular depolarization can easily be identified as the 

beginning of the QRS complex in the ECG. Some Authors reported the use of the 

R-wave peak as reference, instead of the Q-wave, because of its easier 

identification.  

The identification of the time of opening and closure of the cardiac valves is 

more critical. The two mechanical events can be easily identified in the 

echocardiogram, but, as already highlighted, the latter is not an option if the 

application is in a homecare context. The first noninvasive way to extract the CTIs 

from biomedical signals grounded on simultaneous recordings of ECG, heart 

sounds and carotid pulse wave in 1977 [91]. Since then, a variety of biomedical 
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signals were used: a brief description of their characteristics and potentiality is 

proposed below. 

Phonocardiography 

Phonocardiography (PCG) is the recording by means of a microphone of the 

acoustic vibrations generated by the closure of the cardiac valves (heart sounds) and 

the blood flow in the heart [90]. Sometimes, when used in combination with ECG, 

it is also referred to as acoustic cardiography [92]. 

In a healthy subject, two main heart sounds are recognizable: the first heart 

sound (S1), generated by the closure of the atrioventricular valves (mitral and 

tricuspid); and the second heart sound (S2), generated by the closure of the 

semilunar valves (aortic and pulmonary). Physiologically, the acoustic waves are 

produced by the vibration of the taut valves, and consequently of the adjacent 

cardiac wall, occurring immediately after the closing because of the blood backflow 

[96]. In pathophysiological situations, a third heart sound (S3), may occur at the 

beginning of the middle third of the diastole, possibly due to the blood reverberation 

inside the ventricles during their filling. A fourth heart sound (S4), occurring during 

the atrial contraction and caused by the vibration of blood rushing into the 

ventricles, may appear in even rarer cases [96]. Figure 8 presents a plot of a typical 

PCG signal with S1, S2 and S3 highlighted, in relation to a simultaneous ECG. 

Given the nature of the signal, the PCG has traditionally been used to estimate 

the EMAT and the LVST, but it’s considered unsuitable for the estimation of the 

PEP and the LVET, because it does not contain any information about the opening 

of the cardiac valves. Nevertheless, Paiva et al. proposed a Bayesian approach to 

estimate the PEP and LVET from PCG recordings [98]. Their approach reached an 

estimation error of 9.97% and 4.26% respectively for PEP and LVET. The TST was 

 

Figure 8: Representation of a typical PCG signal and the main heart sounds [97]. 
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successfully estimated through PCG with an error of 2.1% against 

echocardiography by Dehkordi et al [90]. A higher percentage error (28.5%) was 

found for EMAT, but it could admittedly be due to the echocardiography device 

[90]. In the overall, PCG can be reliably used to estimate the EMAT, the LVST, the 

ratio EMAT/LVST and the TST. 

Seismocardiography 

Seismocardiography (SCG) uses and accelerometer to record the chest 

vibrations generated by the motion of the myocardium. The accelerometer is 

typically located in the lower part of the sternum [90].  

The SCG is a deterministic signal with a repeatable morphology. Nevertheless, 

the correlation of the waves of the signal with respect to the physiological events in 

the heart was unclear until recently. In 2018, Sørensen et al. formalized the 

 

Figure 9: Definition of the fiducial points of the SCG signal according to Sørensen et al. [99]. 
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definition of the SCG fiducial points and their significance with respect to the 

events of the cardiac cycle [99]. Their definitions are proposed in Figure 9. It should 

be underlined that the most important fiducial points for the definition of the CTIs 

are present, namely: 

• The closure of the mitral valve (MC) 

• The opening of the aortic valve (AO) 

• The closure of the aortic valve (AC) 

• The opening of the mitral valve (MO) 

Nevertheless, all fiducial points refer to the left side of the heart and the opening 

and closure of the tricuspid and pulmonary valves have not been determined in the 

SCG signal so far.  

Since both the opening and the closure of the mitral and the aortic valves are 

visible in the SCG, the latter was found suitable for the estimation of every CTI. 

Dehkordi et al. found SCG suitable for estimating TST with a 1.4% error and PEP 

with a 12.8% error against echocardiography (best of the tested methodologies) 

[90]. As for PCG, a higher percentage error (24.0%) was found for EMAT [90]. In 

the overall, PCG can be reliably used to estimate all CTIs. 

It should be highlighted that a morphological analysis of the SCG signal, based 

on the identification of its fiducial points, may not be used to obtain the CTIs in 

case of pathology, as investigated by Işilay Zeybek et al. [100]. In fact, the 

morphology of the signal may be distorted and the fiducial points are not 

recognizable. Moreover, even in healthy cases, the morphology of the signal 

presents a high inter-subject variability [101]. It was proposed that combining the 

information from the accelerometer with the information from a co-located 

gyroscope helps in improving the estimate of the PEP [102]. 

Impedance Cardiography 

Impedance Cardiography (ICG) is the measure of the changes in the thorax 

impedance generated by the changes in blood volume and velocity in the aorta 

within the cardiac cycle [90].  

As highlighted in Figure 10, which proposes a representation of the ICG signal 

and its main fiducial points, the opening and closure of the aortic valves can be 

identified in the ICG as the B and X fiducial points respectively. In this way, the 

LVET and the PEP can be estimated. Even though ICG is suitable for estimating 
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every CTI, it was found severely sub-optimal in terms of accuracy and precision of 

the estimate with respect to PCG, SCG and even photopletysmography [90,104]. 

This is mainly due to the technical difficulties in reliably detecting the fiducial 

points in the ICG signal [104].  

Other signals 

A variety of other signals have been proposed in the literature with the purpose 

of estimating the CTIs in a noninvasive way, even though their validity has not been 

yet extensively verified as in the case of PCG, SCG and ICG. Promising results 

were obtained from the analysis of the carotid pressure waveform [105], continuous 

wave radar signal [106], ballistocardiography [107,108] and photopletysmography 

[104,109]. 

The wide number of signals that were exploited over the years to obtain a 

noninvasive assessment of CTIs proves that: 1) the potentiality of obtaining CTIs 

from biomedical signals is high; and 2) a noninvasive estimate of the CTIs would 

be extremely valuable for ambulatory and domicile applications.  

 

 

Figure 10: Definition of the fiducial points of the ICG signal [103]. 
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2.3.2 Cardiac Time Intervals and Heart Failure 

The possibility of using the CTIs to assess the status of HF-patients is considered 

highly appealing by the experts in the field. In the latest decades, several Authors 

investigated the correlation of one or more CTIs with respect to: 

1. The intracardiac pressures, whose changes represent the first signal of an 

upcoming episode of decompensation. 

2. The systolic and/or diastolic function of the heart, measured by means of 

some echocardiographic marker, which is directly correlated with the 

worsening of the condition of HF-patients. 

3. Some clinical outcome related to the disease, such as the mortality or 

hospitalization rate. 

In other words, three levels of analysis of the problem are possible: the 

intracardiac level of analysis, the functional level of analysis and the clinical level 

of analysis. In the next paragraphs the results of the main studies involving the 

analysis of the CTIs extracted from biomedical signals on one of the three 

mentioned levels are discussed. It should be underlined that a many studies exist 

that aim at correlating echocardiography-based CTIs with cardiac functionality and 

HF, but they are outside the purposes of this review. 

Few works focused on the relationship between the CTIs and the intracardiac 

pressures in the state of the art. This is mainly due to the technical difficulties of 

performing this kind of studies, which involve invasive cardiac catheterization. In 

particular, right heart catheterization is required to obtain the Pulmonary Artery 

Pressure (PAP), which is particularly fascinating due to the tremendously positive 

results invasively obtained by CardioMEMS™. Some previous works highlighted 

that various characteristics of the heart sounds showed a positive correlation with 

the PAP, namely the S2 complexity and the ratio between the S2 complexity and 

the S1 complexity [110]; the S2 width and S3 strength [111]; the S1 and S2 energy 

[112]. In this sense, PCG could potentially provide the most complete information 

for the assessment of the cardiac function in patients affected by HF. 

Concerning the timing relationships, Wang et al. experimentally found a strong 

correlation between the cEMAT and the right ventricular systolic blood pressure (R 

= 0.81) in four beagle dogs subjected to right ventricular catheterization and 

pharmacologically induced in a pulmonary hypertensive state [112]. The result is 

definitely promising, even though a wider study would be required to draw 
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conclusions. On the other hand, Shapiro et al. [113] and Efstratiadis et al. [114] 

found no direct correlation between the cEMAT and the left ventricular end-

diastolic pressure. It can be concluded that the literature is still lacking robust 

evidence on this point. 

The large majority of previous works focused on the correlation between CTIs 

and some metrics of the cardiac function. Moyers et al. investigated the relationship 

between CTIs extracted from PCG and the left ventricular dysfunction, defined as 

the presence of a left ventricular end-diastolic pressure higher than 15 mmHg 

together with an Ejection Fraction lower than 50%. They found that patients 

presenting left ventricular dysfunction  were characterized by a significantly higher 

EMAT and EMAT/LVST [115]. Similarly, a higher EMAT and a lower LVST have 

been found to be associated with an impaired LV performance [116], with a lower 

LVEF [93,114,117,118] and with a lower maximum LV dP/dt [119]. Also TST was 

found to be inversely correlated with LVEF [93]. Kosmicki et al. found that CTIs 

extracted from heart sounds were better predictors of a lower EF than BNP, which 

is the gold standard at date (AUC = 0.88 vs 0.67) [117].  

EMAT, cEMAT and EMAT/LVST can be extracted from heart sounds and 

were the object of the large majority of previous works. As described above, their 

correlation with metrics of the cardiac function is very promising. Nevertheless, a 

few Authors checked the correlation between the other CTIs, extracted from 

different biomedical signals, and the cardiac performance. It should be highlighted 

that Shah et al. found a moderate yet significant correlation between the ratios 

EMAT/LVST (extracted from electro-phonocardiography) and PEP/LVET 

(estimated through echocardiography) [93]. Therefore, since they are correlated, it's 

expected that the set of CTIs using the closure of mitral and aortic valves (EMAT, 

LVST and their ratio) and the set of CTIs using the opening and closure of the aortic 

valve (PEP, LVET and their ratio) should be suitable to reach the same clinical 

goals. 

Cheng et al. used combined recordings of ECG, PCG and pulse volume signal 

and found that the ratio PEP/LVET is significantly associated with the ratio of 

effective arterial elastance (Ea) to ventricular end-diastolic elastance (Ees), which 

is an echocardiographic biomarker indicating the status of the ventriculo-arterial 

coupling [120]. The same Authors had previously demonstrated that NT-proBNP 

was linearly correlated to both PEP and PEP/LVET [121]. The PEP/LVET ratio 

was also proved to be inversely correlated with LVEF in ICG recordings by 

Thompson et al. [122]. 
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Some very recent studies (from 2020 on) explored the influence of a CTIs-

based monitoring on the clinical outcomes in patients affected by HF. Already in 

2013, Constantino et al. highlighted that EMAT is significantly higher in HF 

patients and proposed a relevant mechanistic insight [123]. Later, Burkhoff et al. 

characterized the normality ranges for EMAT, cEMAT, LVST and cLVST in 

patients affected by HF, for the sake of comparison against a normal population 

[124]. Trabelsi et al. explored the diagnostic potentiality of EMAT, LVST and 

EMAT/LVST on 855 patients with suspected HF. They found that EMAT/LVST 

has the highest correlation with LVEF and they obtained sensitivity and specificity 

as high as 72% and 88% respectively with a threshold of 40% [12].  Similar results 

were achieved by Orter et al. using oscillometric brachial blood pressure 

measurements in a head-tilt condition used to simulate the physiological effects of 

HF: a significant reduction of cLVET and cTST along with a significant increase 

of cPEP and PEP/LVET was found [125]. Moreover, they found that the parameters 

went back to their baseline values after the end of the experiment, showing that the 

method may be valuable for monitoring purposes [125]. 

Wang et al. moved a step further and demonstrated that CTIs are meaningful 

not only to distinguish normal vs HF patients, but also HF phenotypes, i.e., HF with 

reduced EF against HF with preserved EF (more difficult to discriminate than the 

other). They found that a cEMAT higher than 11.54% differentiated patients with 

HF with preserved EF from patients with hypertension with the same accuracy as 

echocardiography (AUC = 0.83) [126]. 

More recently, other studies focused their effort on analyzing the effects of a 

CTI-based management of HF-patients on their long-term clinical outcomes. Zhang 

et al. found that a cEMAT higher than 13.8% is an independent predictive factor 

for Major Cardiac Adverse Events (MACEs) in HF-patients [127] and a cEMAT 

higher than 15% is predictive for cardiogenic death [128]. A similar result was 

obtained by Chao et al., who found that cPEP and cEMAT at discharge could both 

predict an adverse event (rehospitalization or death) within one year [129]. Shitara 

et al. prospectively enrolled patients hospitalized for AHF and followed up the 

variation of the CTIs during their treatment until discharge. They found that 

cEMAT progressively decreased over the recovery, whereas TST increased [130]. 

Lastly, Sung et al. conducted a prospective single-blind study and found that 

EMAT-based management of HF patients resulted in lower hospitalization rate and 

mortality at the 1-year follow-up than traditional symptoms-driven management 

[131].  
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In the overall, there is a great agreement among the experts in the field 

concerning the qualitative relationship between CTIs and cardiac function, and even 

with the clinical outcome of HF patients. To summarize, the following 

modifications occur in the CTIs in case of a worsening cardiac functionality due to 

HF: 

• cEMAT and cPEP increase. 

• cLVST and cLVET decrease. 

• EMAT/LVST and PEP/LVET increase. 

Figure 11 proposes a graphical representation of the changes occurring on the 

CTIs due to systolic HF, in relation to the intracardiac pressures and the main 

signals of interest (ECG and heart sounds). 

 

Figure 11: Differences in the CTIs due to the presence of Systolic Heart Failure with respect to a 

normal subject. The same definitions as in Figure 7 apply. Adapted from [93,94]. 
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Some Authors tried to move a step further and analyze the problem from a 

quantitative perspective. In fact, for the method to be useful in the clinical practice, 

thresholds are needed to distinguish patients with an impaired functionality of the 

heart from healthy subjects.  

The thresholds which were found discriminative for patients with an impaired 

cardiac function are reported in Table 2. 

 

Table 2: CTIs’ thresholds that were found discriminative for patients 

with an impaired cardiac function. 

CTI Threshold 
Sensitivity and 

specificity 

Reference 

EMAT > 100 ms Se: 63%, Sp: 89% [94,119] 

> 110 ms Se: 64%, Sp: 86% [12] 

> 120 ms N/A [132] 

cEMAT > 11.54% Se: 55%, Sp: 90% [126] 

> 13.8% Se: 81.8%, Sp: 65.9% [127] 

> 15% Se: 44%, Sp: 94% [115,128,129] 

Se: 54%, Sp: 92% [114] 

LVST < 270 ms Se: 71%, Sp: 82% [12] 

EMAT/LVST > 40% Se: 55%, Sp: 95% [115] 

 
Se: 72%, Sp: 88% [12] 

PEP > 89 ms Se: 60%, Sp: 60% [121] 

LVET < 272 ms, 

> 310 ms 

Se: 63%, Sp: 60% [121] 
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PEP/LVET > 31% Se: 60%, Sp: 62% [121] 

> 42.3% Se: 85.7%, Sp: 84.3% [120] 

 

It should be highlighted that most quantitative studies are grounded on the 

EMAT. This is reasonable because in HF the electrical behavior of the heart is not 

necessarily compromised, but its mechanical function is. Moreover, most studies 

rely on PCG to estimate the CTIs, therefore they can only rely on the CTIs involving 

the closure of the cardiac valves (and not the opening).  

Many works propose thresholds that are suboptimal in terms of sensitivity but 

achieve a very high specificity. Even though the accuracy is not impressive, given 

the low sensitivity, a very high specificity confirms the suitability of some CTIs as 

biomarkers for the prevention of AHF. In fact, a positive result in a CTI-based test 

could be followed by further diagnostic investigations if needed, but it is of utmost 

importance that no decompensation episode is missed.   

As already highlighted, an increased intracardiac pressure is not only associated 

with changes in the CTIs, but also with other variations in the heart sounds, like an 

increase in the energy of S1 and S2, the presence of S3 and sometimes of S4. CTIs 

are considered more reliable than the other biomarkers to monitor HF patients on a 

long-term basis because they were proved to show lower circadian variation besides 

a lower correlation with the age of the subject [133]. Nevertheless, using a 

combination of different biomarkers extracted from heart sounds may result in an 

even better prediction capability.  

In fact, some works attempted to put together various information extracted 

from combined recording of ECG and heart sounds into a multivariate index 

capable of discriminating HF patients from healthy patients. Collins et al. grounded 

their multivariate model on LVST, strength of S3, maximum negative area on the 

P-wave and QTc interval in the ECG and used it to predict an increase in LV filling 

pressure in HF patients. They obtained an AUC of 0.83 even considering cases 

where the BNP was indeterminate [134].  Shapiro et al. used an index based on 

EMAT/LVST and S3, which was found to have an AUC of 0.89 for the diagnosis 

of LV dysfunction [113]. Shah et al. proposed an index based on the product of 

QRS duration, QR interval, S3 strength and cEMAT with an AUC of 0.89 for the 

detection of LV dysfunction [93]. The latter index was formally defined as Systolic 
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Dysfunction Index (SDI) by Dillier et al. and it was found that a SDI higher than 5 

indicated a systolic dysfunction, and a SDI higher than 7.5 a severe systolic 

dysfunction [133]. Wang et al. found that a SDI higher than 5.43 yielded a 

sensitivity of 53% and a specificity of 91% [126]. Burkhoff et al. confirmed that 

SDI is higher in patients affected by HF [124]. In the end, Erath et al. developed an 

algorithm combining cEMAT, S3 strength and heart rate and proved that their 

model could detect HF-patients in phase of decompensation better than the 

traditional NYHA classification, with a median advance of 32 days with respect to 

the event [135]. The latter result is compatible to what obtained invasively in the 

MultiSENSE study [87]. 

2.3.3 The perks of multi-source Phonocardiography 

As shown in the previous paragraph, the evidence supporting the value of various 

CTIs for the assessment of the cardiac function and thus for the prevention of AHF 

is, at date, pretty robust. Nevertheless, the technological benchmark highlighted that 

no real-life application currently exists that exploits this approach for the purposes 

of domiciliary monitoring. The reasons for this should be searched for in the easy-

of-use of current technologies: as a matter of fact, none of the biomedical signals 

suitable for the extraction of the CTIs can be easily recorded at the patient’s 

domicile by the patient himself or by an inexperienced caregiver. So far. 

Among all techniques, the combination of ECG and PCG for CTI estimation 

and HF monitoring was studied the most over the last 20 years and most data are 

present showing the correlation between the extracted CTIs and the clinical 

outcomes in HF patients. For this reason, electro-phonocardiography was chosen as 

object of the present project. 

Even though PCG has largely been considered a suitable signal for homecare 

applications, as a matter of fact, some technical issues still limit its applicability in 

a domiciliary context. One of them is the need for a careful positioning of the digital 

stethoscope over the chest of the patient. It was previously demonstrated that the 

quality of the PCG signal strongly varies over different recording points [136]. Also 

the time of closure of heart valves is different when measured at different recording 

points, due to the inhomogeneity of the acoustic response of biological tissues 

[137,138]. Figure 12 shows an example of what stated above.  
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Moreover, the most suitable auscultation point depends on the application, as 

in traditional auscultation: the clinician knows where to locate the head of the 

stethoscope depending on what he/she wants to auscultate. A naïve user does not. 

Therefore, the positioning of the stethoscope by a naïve user cannot be trusted to 

obtain reliable results.  

Theoretically, multi-source PCG is expected to provide a possible solution to 

this problem. By simultaneously recording multiple PCG signals from different 

points over the chest of the patient, the selection of the best auscultation point is 

shifted from the recording phase (i.e., from the user) to the processing phase (i.e., 

to the algorithm).  

Even though it is a quite innovative methodology, multi-source PCG was 

already used in the past for different scopes. On one side, it proved a valuable tool 

for technical aspects, like signal compression [139], noise detection [140] or signal 

quality improvement [136,141]. On the other side, it sometimes proved more 

 

Figure 12: Visual representation of the variabilty of the quality of signal and of the latency of the 

closure of the mitral valve with respect to the ventricular depolarization. Each circle represents a 

microphone. The diameter of the colored circle represents the Signal-to-Noise Ratio of the signal 

recorded from that point of the chest. The color represents the estimated latency according to the 

colorbar on the right. 
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efficient than its single-channel counterpart in clinical classification tasks. Features 

extracted from both single-channel and multi-channel recordings were successfully 

employed for the classification of subjects suffering from coronary artery disease 

against normal subjects [142–144], for the classification of cardiac murmurs 

[145,146], and for the estimation of the LVEF [147]. In the context of the estimation 

of features related to the heart timing, Paiva et al. [148] used a two-channel 

approach to improve the accuracy of their estimation of the PEP. They selected the 

best channel according to a feature related to the signal contrast and reduced the 

estimation error from 10.1 to 9.2 milliseconds [148]. 

All above-mentioned works rely on 2 to 6 microphones, positioned over the 

patient’s chest by an expert user over the traditional auscultation areas using 

anatomical landmarks. Their focus is rather research than real-life domiciliary 

applications. A few exceptions exist. Radzievsky et al. [147] used a 36-microphone 

array which was originally developed for lung sound recordings and must be placed 

on the back. Zhang et al. [149] proposed a multi-channel device embedding 16 

microphones in a memory foam pad to be located over the subject’s chest. 

Nevertheless, the device is optimized in terms of shape, dimensions, and 

distribution of the sensors for the recording of lung sounds rather than heart sounds. 

In the end, Guo et al. [150] designed a vest embedding 72 microphone sensors 

covering the entire thorax to record heart sounds and map their propagation. Their 

approach is definitely inspiring, but the resulting product is more suitable for 

research than to a real-life use due to its bulkiness. 

To my best knowledge, no previous examples of the usage of a pad embedding 

a large number of microphones with a high spatial resolution optimized for the 

recording of heart sounds exist in the literature. Moreover, no previous work 

explores the use of multi-source PCG at a high spatial resolution for the estimation 

of CTIs. 

This PhD project aims at filling this gap and at proposing to the scientific 

community a multi-sensor device for the simultaneous recording of ECG and 

multiple PCG signals at a high spatial resolution along with the algorithms to 

estimate some of the main CTIs from recordings performed by inexperienced users 

through the device in a simulated homecare setting. 



  

 



  

 

Chapter 3 

Design of the multi-sensor array 

3.1 Conceptualization of the array 

The design of a wearable device always involves peculiar challenges that need to 

be faced to make the device usable by the common population and suitable for the 

use on the widest possible range of patients, regardless their body shape or other 

physical characteristics. Since the proposed device is unique and little previous 

experience was available to ground the project on, a first phase of conceptualization 

was carried out.  

The goal of this paragraph is to present the reasoning behind the main design 

decisions that led from the idea to the architecture of the array. 

The array must be suitable to record two types of signals: ECG and PCG. The 

two signals have different characteristics and different roles for the estimation of 

the features of interest. The ECG signal has a repeatable and well-known waveform, 

suitable for a morphological analysis. For the estimation of the CTIs, the 

information to be extracted from the ECG signal is the time of occurrence of the 

depolarization of the ventricles. Even though the shape of the waveform varies 

depending on the positioning of the electrodes, a morphological analysis is besides 

the scopes of the application of interest. Therefore, the recording of the ECG signal 

is not particularly critical, and the positioning of the electrodes can be interpreted 

as secondary with respect to the other requirements.  
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The main challenge resides in the recording of the PCG signals. The latter is a 

quasi-periodic signal whose morphology has not been considered interpretable so 

far. It is generated by the closure of four different cardiac structures (the heart 

valves), whose contribution to the waveform of the two main heart sounds is yet to 

be properly understood. Nevertheless, it is well known that the signal presents 

different characteristics depending on the point of auscultation. 

Traditionally, four auscultation points (or areas, according to a more modern 

interpretation) are defined, one for each heart valve [96]: 

• Mitral area: fifth left intercostal space, along the midclavicular line 

• Tricuspid area: fourth left intercostal space next to the sternum 

• Aortic area: second right intercostal space next to the sternum 

• Pulmonary area: second left intercostal space next to the sternum 

The location of the auscultation areas is presented in Figure 13. It should be 

highlighted that the auscultation points are not necessarily placed right over the 

cardiac valve of interest, but mainly depend on their blood flow [151] and were 

identified thanks to decades of clinical experience. All the traditional auscultation 

areas are located in the left hemithorax, except for the aortic area, which is located 

on the right margin of the sternum. All the auscultation areas are defined using the 

intercostal spaces as fiducial points, that are not easily identifiable by an 

inexperienced user.   

The idea of developing a multi-sensor array has the main objective of 

guaranteeing that, even if the device is positioned by a naïve user, unaware of any 

knowledge about the cardiovascular system or auscultation, the traditional 

auscultation areas are covered. Therefore, an L-shaped pad was designed, with the 

largest area covering the left hemithorax and the smallest area covering the right 

side of the sternum where the aortic area is expected to fall. Figure 13 presents a 

graphical representation of the shape of the array in its optimal position over the 

chest.  

As Figure 13 shows, the device is suitable for covering all the four traditional 

auscultation areas. For the sake of comparison, an average male thorax is presented: 

the relative spatial relationships among the shape of the array and the four 

auscultation areas may differ in case of a smaller or wider chest. The suitability of 

a single device for all body shapes was object of analysis in the pre-clinical 

validation phase. 
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The next challenge consists in how to distribute the microphones over the 

thorax. The main constraint in this sense is posed by the intercostal spaces: in fact, 

the traditional definition of the auscultation points is grounded on the positioning 

of the stethoscope in specific intercostal spaces. Such constraint is dictated by the 

difference in sound propagation properties across different biological tissues [152]: 

the filtering effect of the bone tissue would affect the quality of the recordings, and 

therefore it should be avoided. 

As anticipated, a naïve user cannot be relied on autonomously finding the 

intercostal spaces correctly. Therefore, the distribution of the microphones should 

guarantee that at least some of the microphones fall within the intercostal spaces, 

regardless the positioning performed by the user. To achieve this, the distance 

between closest neighboring microphones should be lower than the distance 

between consecutive intercostal spaces. In other words, the microphones are 

required to be located on a grid with a sufficiently high spatial resolution. 

Considering the size of an average rib, a distance between neighboring microphones 

lower than 20 mm should be considered as sufficient. It can be derived that some 

tens of microphones are required to cover the area of interest with a sufficient spatial 

resolution. Forty-eight microphones were used in this work. 

On the available surface, microphones can be distributed in different ways. 

Among the infinite possibilities, two options were hypothesized: 

1. “Homogeneous” array: microphones are distributed homogeneously 

over the surface of the array. 

2. “Cluster” array: the concentration of microphones is higher in 

correspondence of the expected traditional auscultation areas.  

 

Figure 13: Correlation between the traditional auscultation areas (panel A) and the design of shape 

of the array (panel B). 
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Figure 14 proposes a graphical representation of the above-described 

distributions of the microphone sensors over the array surface. Accordingly, two 

versions of the multi-sensor array were designed and implemented.  

As anticipated, the positioning of the electrodes could be considered secondary 

to the distribution of the microphones. The best electrodes’ positioning to correctly 

identify the time of occurrence of the ventricular depolarization would be the first 

standard lead, with an active electrode on each wrist and the reference electrode on 

the right ankle. The same lead could be recreated on the chest by placing the active 

electrodes in the subclavian areas and the reference electrode on the right side of 

the thorax. Nevertheless, even such adaptation would require to severely increase 

the area of the pad, which would increase its bulkiness and possibly limit its 

usability in domiciliary setting.  

A different solution was pursued by identifying a custom non-standard lead 

which exploits the available space and does not require to modify the shape or the 

size of the pad. The defined custom lead involves the positioning of three electrodes 

as follows: 

• A first recording electrode is located over the second intercostal space, 

along the mid-clavicular line. 

• A second recording electrode is located over the fifth intercostal space, 

along the mid-clavicular line. 

• The reference electrode is located over the sternum, at approximately 

the same distance from the two recording electrodes. 

 

Figure 14: Distribution of the microphone sensors over the surface of the array, in two options: A) 

homogenously distributed; B) higher concentration over the traditional auscultation area. 
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A differential configuration was preferred to a single-ended one to reduce the 

effect of the common mode interference. The references based on the intercostal 

spaces are meant to give an approximate idea of the positioning on the chest: in 

fact, the location of the electrodes is fixed on the array, therefore their location with 

respect to the fiducial points of the chest depends on the body shape, as happens 

with the microphones. Moreover, it should be highlighted that the positioning of 

the electrodes on or off a rib is not relevant. Figure 15 proposes a graphical 

representation of the positioning of the electrodes with respect to the typical 

anatomical positioning of the heart in the chest.  

As highlighted by Figure 15, the proposed positioning of the electrodes is 

dictated by the need for having the two recording electrodes on opposite sides of 

the heart and of the reference electrode, to obtain a signal of sufficient amplitude. 

The main drawback of this approach resides in the fact that the morphology of the 

signal is strongly dependent on the orientation of the electrical axis of the subject. 

Since the device is expected to be used by a single subject for monitoring purposes, 

the latter may not be a problem, but the identification of an appropriate time 

reference, invariant with respect to the orientation of the electrical axis, was 

investigated in the signal processing phase. 

Besides microphones and electrodes, which constitute the core of the proposed 

approach, a Magneto-Inertial Measurement Unite (MIMU) completes the set of 

sensors embedded in the array. The purpose of the MIMU is twofold. On one side, 

it was previously demonstrated that the posture of the subject influences the 

intracardiac pressures [153–155]. Its influence on the Cardiac Time Intervals was 

never investigated, but due to their correlation with the intracardiac pressures, it can 

 

Figure 15: Comparison between the anatomical position of the heart (panel A) and the positioning 

of the electrodes in the designed device (panel B). 
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be hypothesized. Therefore, the availability of a MIMU would enable an assessment 

of the posture of the subject and, if necessary, an appropriate compensation of the 

clinical features of interest. On the other side, the MIMU would allow a simple 

detection of the motion artifacts. Sudden movements of the patient can decrease the 

quality of the signal and affect the estimation of the CTIs: if motion could be 

accurately detected, affected signal segments could be removed from the analysis. 

Following the presented considerations, the multi-sensor array was equipped 

with three types of sensors: 

1. Three electrodes, aimed at recording an ECG signal. 

2. Forty-eight microphones, aimed at recording 48 PCG signals from 

different points of the chest with a sufficiently high spatial resolution. 

3. A MIMU, aimed at sensing the subject’s posture and motion that could 

influence the quality of the recording. 

Figure 16 shows a graphical representation of the array with the embedded 

sensors.  

Besides the sensors, a further characteristic is required to make the multi-sensor 

array apt for use by inexperienced users on the widest possible range of body 

shapes: a sufficient flexibility. In fact, both the microphones and the electrodes need 

to contact the skin of the subject to work properly, for different reasons. In the case 

of the microphones, the acoustic vibrations on the chest are quite weak and the 

filtering effect of the air would further diminish the quality of the signal. In the case 

 

Figure 16: Graphical representation of the multi-sensor array and the embedded sensors. 
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of the electrodes, the contact is fundamental to ensure conductivity. The flexibility 

of the array can be achieved by mounting the sensors on a flexible Printed Circuit 

Board (PCB) and designing a custom case to be 3D printed with an elastomeric 

material.  

Given the innovative nature of the proposed device, the latter was patented in 

Italy (Patent ID 102020000014428 – “Multi-sensor device for the prevention of 

heart failure”, 17/06/2020). The project was realized thanks to a Proof of Concept 

funding (PoC Instrument 2020-2022) awarded by Compagnia di Sanpaolo. 

3.2 Electronic design 

In its final conceptualization, the device is expected to be used by a naïve user in a 

domiciliary context. For this purpose, the device should be microcontroller-based, 

embed the algorithms to extract the parameters of interest and communicate the 

results of the analysis to the smartphone of the patient. Nevertheless, given the 

novelty of the sensor side, a first prototyping phase was carried on with the double-

sided scope of validating the concept from a technical and clinical perspective and 

gathering sufficient real-life data to design and optimize the algorithms. In this 

phase, a multi-sensor array has been designed and developed that is completely 

analogous to the final device, with the exception that the signal processing does not 

take place on board the microcontroller: instead, the array is connected to a 

commercial I/O device and the signals are processed on a computer. 

The architecture of the system was designed considering that the array was 

meant to be used in connection with a commercial I/O device by National 

Instrument™ – the multifunction I/O device DAQ USB 6210. The latter offers 8 

differential analog input channels and is equipped with a 16-bit Analog-to-Digital 

Converter (ADC), suitable for the biomedical signals of interest. The electronic 

design of the device is grounded on four main requirements: 

1. The signals need to be acquired using up to 8 differential analog 

channels and hence they need to be multiplexed. 

2. All the signals must be sampled simultaneously, not to artificially 

modify the temporal relationships among them, which is a key point for 

the application to AHF monitoring. 

3. The sampling frequency must guarantee a temporal resolution of at least 

1 millisecond to guarantee a sufficient resolution on the estimated CTIs. 
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4. The amplitude of the signals input to the commercial I/O device must 

be balanced properly using the entire dynamics of the ADC and not 

cause saturation. 

Figure 17 proposes a graphical representation of the architecture of the 

designed system.  

The architecture involves three main blocks: 

1. PCG sensing. The block is devoted to the sensing and conditioning of 

the acoustic waves on the thorax. It consists of 48 microphones and 48 

front-end circuits. 

2. ECG sensing. The block is devoted to the sensing and conditioning of 

the electrical signal on the subject’s skin. It consists of 3 custom 

conductive electrodes. The conditioning is performed using a traditional 

front-end, involving a differential amplifier, and the reference is 

obtained as a traditional Driven Right Leg (DRL) circuit. 

3. Signal recording. The block is devolved to the sampling, multiplexing 

and acquisition of the signals. A microcontroller is in charge for 

defining the control signals and defining their timing.   

At this stage, the MIMU was not connceted. Each block is described in detail 

in the next paragraphs, along with the design decisions that were taken. 
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Figure 17: Architecture of the designed system. 

 



56 3.2 Electronic design 

 

3.2.1 PCG sensing 

The PCG sensing block is based on three sub-blocks, namely: 

• A microphone sensor 

• A low-noise amplifier with a gain of 50 dB 

• A high-pass filter with a cut-off frequency of 2 Hz 

The microphone sensor is responsible for transducing the acoustic vibrations into 

an electric signal. The amplifier and filter constitute an analog front-end block 

which is responsible for amplifying the signal by 50 dB and removing the baseline 

wandering. Figure 18 presents the electrical circuit of the PCG sensing block and 

identifies its sub-blocks: 48 identical blocks are embedded in the array.  

Microphone sensor 

A microphone sensor is a transducer that converts mechanical vibrations 

(audio) into an electrical signal. The choice of the microphone sensor is particularly 

critical for the application of interest and is driven by the characteristics of the 

acoustic signal to be acquired. Table 3 summarizes the main characteristics of the 

first and second heart sounds, that are the focus of the application of interest. 

 

Figure 18: Electrical circuit of the PCG sensing block, comprising the microphone sensor TOM-

1537L-HD-R by Pui Audio™ and the analog front-end MAX9814 by Maxim Integrated™. 
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Table 3: Characteristics of the PCG signal (S1 and S2) [96,156,157].  

Sound Intensity Frequency Duration Split 

S1 < 20 mPa 20 Hz – 100 Hz ~ 140 ms 20 ms – 30 ms 

S2 < 20 mPa 20 Hz – 150 Hz ~ 110 ms 20 ms – 80 ms 

 

As shown, the frequency content of the two main heart sounds is focused on 

the lowest frequencies of the audible spectrum. The second heart sound is slightly 

shorter in duration and higher pitched than the first. Typically, microphone sensors 

on the market cover the large majority of the audible range but they are optimized 

for higher frequencies and might be suboptimal in the low-frequency region. Also, 

the weak intensity of S1 and S2 makes the choice of a highly sensitive microphone 

sensor mandatory. 

Two families of microphone sensors suitable to this application exist on the 

market, namely the electret condenser microphones (ECM) and the microphones 

based on Micro-Electro-Mechanical Systems (MEMS microphones). ECM is the 

most consolidate technology and is based on a capacitive operating principle: a 

capacitor is created between a moving thin metallic membrane (called diaphragm) 

and a static metallic backplate. The pressure on the diaphragm caused by the 

acoustic vibrations triggers a variation in the distance between diaphragm and 

backplate which reflects in a variation in the capacitance. MEMS microphones can 

be either capacitive or piezoelectric. Capacitive MEMS microphones are dominant 

at date and are based on a similar operating principle to ECMs, but the pressure-

sensitive diaphragm is etched into a silicon wafer via MEMS processing. On the 

contrary, in piezoelectric MEMS microphones the membrane is realized using a 

piezoelectric material, capable of directly converting the mechanical changes in 

electrical charge changes without the need of a metallic backplate [158]. Figure 19 

proposes a graphical representation of the structure of the three categories of 

microphone sensors. 

Even though capacitive MEMS microphones have the largest share of the 

market at date, both families are widely used in various electronic devices for 
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capturing sound, because they have different benefits and drawbacks. MEMS 

microphones can typically provide better performances at smaller size, but this 

comes at cost of the low-frequency cut-off, which is typically higher. On the other 

side, ECM proved more resilient in difficult environments.  

For the application of interest, three characteristics of the microphones are 

fundamental: 

• The frequency bandwidth, which should be suitable for acquiring low-

frequency acoustic waves, as the heart sounds have frequency 

components as low as 20 Hz. 

• The sensitivity, which should be maximized given the small amplitude 

of the signal of interest. 

• The dimensions, which should be minimized to ensure the required 

spatial resolution without affecting the array flexibility and thus its 

capability of adapting to the chest surface.  

As anticipated, size and frequency bandwidth are partially correlated, since the 

dimension of the diaphragm influences the high-pass cut-off frequency of the 

sensor: a diaphragm with a smaller diameter can physically not transmit low-

frequency components without attenuation, regardless its manufacturing principle. 

In this scenario, condenser microphones and MEMS microphones offer 

complementary solutions to the problem: MEMS microphone smaller size is 

preferrable, but the higher sensitivity offered by condenser microphones is 

appealing.  

In this work, the best trade-off was found in the TOM-1537L-HD-R by Pui 

Audio™. Table 4 presents the main characteristics of the selected microphone. 

 

Figure 19: Cross-sectional design of the three categories of microphone sensors. Adapted from 

[158]. 
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Table 4: Characteristics of the selected microphone sensor (TOM-1537L-

HD-R by Pui Audio™). 

Parameter Value 

Diameter 4 mm 

Sensitivity -37 dB ± 3 dB 

Signal-to-Noise Ratio (SNR) 68 dB 

Frequency range 20 Hz – 20 kHz 

Output load impedance 2.2 kΩ 

Directivity Omnidirectional 

The selected microphone sensor is an ECM. Accordingly, its performances in 

terms of sensitivity and SNR are among the highest available on the market. 

Moreover, it provides a good trade-off between size and frequency bandwidth: even 

with a diameter as small as 4 mm, the producer guarantees a high-pass cut-off 

frequency as low as 20 Hz, suitable for recording the two main heart sounds without 

sensible phase shift. To date, no commercially available MEMS-microphone could 

guarantee an equally low high-pass cut-off frequency. 

Analog front-end 

As anticipated, the amplitude of the signal output of the microphone is low. 

Therefore, to improve the amplitude of the signal and exploit the dynamics of the 

ADC, analog amplification is carried out. The latter was grounded on a commercial 

high-quality microphone amplifier: the MAX9814 by Maxim Integrated™. Figure 

20 presents a simplified block diagram extracted from its datasheet. 

The MAX9814 is a high-quality amplifier optimized for microphone sensors. 

It provides a low-noise bias to the microphone and is characterized by an Input-

Referred Noise Density as low as 30 nV/√Hz, suitable for small amplitude signals. 

The gain of the amplifier is achieved through three stages:  

1. A low-noise pre-amplifier (gain: 12 dB) 
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2. A variable gain amplifier (VGA), controlled by a programmable 

automatic gain control (AGC) circuitry (gain: 0 dB to 20 dB, with 20 

dB when the AGC is deactivated) 

3. An output amplifier with a selectable gain (gain: 8 dB, 18 dB, 28 dB) 

In this work, the AGC was deactivated to avoid differences in gain between 

different channels and the gain of the output amplifier was set to 18 dB (mid-range). 

The final overall amplification was thus set to 50 dB. Nevertheless, the availability 

of multiple gain options could help in obtaining a custom amplification depending 

on the subject’s body shape in the future. It should be highlighted that saturation 

due to DC components is avoided by means of a 100 nF input capacitor. 

The output of the MAX9814 is subjected to a passive first-order high-pass filter 

with a cut-off frequency of 2 Hz. The latter decreases the effect of baseline 

wandering and removes the bias inserted by the MAX9814. In the end, a buffer is 

introduced to decrease the impedance of the PCG sensing block with respect to the 

next block, i.e., the sample and hold. 

3.2.2 ECG sensing 

Figure 21 presents the electric circuit of the ECG sensing blocks and the sub-blocks, 

each provided with the corresponding gain and/or cut-off frequency. In the overall, 

a gain of 380 is achieved along with the filtering of frequency components below 

6 Hz on the differential mode, and the reduction of the effect of the common mode 

by means of the DRL circuit.  

 

Figure 20: Block diagram of the MAX9814 by Maxim Integrated™. From the datasheet. 
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Electrodes 

The sensing and acquisition of the ECG is a consolidated clinical problem with 

a number of consolidated technological solutions. In the clinical practice, ECG is 

typically sensed by means of disposable wet electrodes with an Ag/AgCl skin 

interface. Even if this technology has optimal performances for short-term 

recordings in an ambulatory or hospital setting, it is not apt for use in a domiciliary 

setting by inexperienced users. In fact, the disposable electrodes need to be changed 

 

Figure 21: Electrical circuit of the ECG sensing block, comprising the custom-made stainless-steel 

electrodes and the conditioning circuit, based on a DRL technique. 
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and correctly re-positioned at each use of the device, which definitely limits its 

usability.   

The mentioned issue is not novel and is common to every wearable device 

involving the recording of an ECG signal. Given the impressive trend in the use of 

wearables for home monitoring, particularly in the cardiological field, many 

different solutions have been tested in the literature over the past decade. Among 

the various possible solutions, three main families of reusable electrodes can be 

identified, namely wet electrodes, dry conductive electrodes, and capacitive 

electrodes [159–161].  

Wet electrodes involve the use of a liquid or hydrogel electrolyte to be placed 

at the interface between the skin and the sensing area of the electrode, with the 

scope of improving the conductivity properties [161]. They are the go-to choice in 

a clinical setting, they are considered suboptimal in domiciliary applications, where 

solutions requiring no maintenance are preferred.  

Dry conductive electrodes still work on a conductive operating principle but, 

contrarily to wet electrodes, do not need to have any gel interposed [161]. Their use 

in wearables is object of wide research and multiple materials were explored 

including metals, polymers, and carbon-based materials [160]. Nevertheless, the 

use of dry electrodes poses new challenges, since the avoidance of a liquid 

electrolyte increases the skin-electrode contact impedance by several orders of 

magnitude, thus worsening the effect of noise and motion artifacts [161].  

Capacitive electrodes work on a different operating principle: the electrode and 

the skin are separated by a layer of a dielectric material, as to recreate a capacitor. 

The concept of capacitive electrodes is very appealing for the use in wearables, 

because they would avoid any direct contact between the patient and a part 

subjected to a voltage. Nevertheless, their use in ECG monitoring has often proved 

critical and the design of the conditioning circuit rather complicated [160].   

Figure 22 presents a graphical interpretation of the operating principle of the 

three families of electrodes and a model of their contact with the skin.  

In this work, the choice fell on dry conductive electrodes due to the combination 

of ease of use and performances. Concerning the material, among the many 

available options, stainless-steel disks with a diameter of 16 millimeters were 
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selected. In fact, stainless steel proved a great candidate because of its good 

electrical properties at a low price and high availability [163–165]. Moreover, a 

diameter of 16 mm was previously proved to be sufficient to obtain a comparable 

quality of the signal to disposable Ag/AgCl electrodes when ECG is recorded at 

rest [166]. 

Conditioning circuit 

The conditioning circuit is based on a typical differential ECG front-end, with 

the reference generated by means of the well-known DRL circuit. Figure 22 

presents the electric circuit diagram. In this paragraph, the identified sub-blocks are 

presented, along with their utility for the recording of a good-quality ECG signal. 

Buffer. As already highlighted, dry conductive electrodes show an equivalent 

impedance 10 to 100 times higher than traditional wet electrodes. To deal with this, 

a first buffering stage with a high input impedance (1 GΩ) is inserted. The buffer 

has the scope of decoupling the high impedance of the sensing block from the rest 

of the circuit. 

 

Figure 22: Graphical representation of the electrode-skin interface and its electrical model for 

respectively A) wet conductive electrodes, B) dry conductive electrodes and C) capacitive electrodes. 

Adapted from [162]. 
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High-pass filter for differential mode components. In a differential 

acquisition modality, as the one proposed, the ECG signal is typically subjected to 

two types of noise contributions, which ought to be treated differently: a differential 

mode noise contribution and a common mode noise contribution. It is of utmost 

importance not to translate the common mode components into differential mode 

components: in this way, their effect would be much more difficult to deal with. 

With this scope, the high-pass filtering stage is designed to act on differential mode 

components only. The value of the passive components is defined to ensure a high-

pass cutoff frequency of 0.5 Hz, suitable to remove the baseline wandering and 

avoid it to cause saturation in the amplifying stage. 

Amplifier + high-pass filter. Each of the two active channels is pre-amplified. 

The amplification block relies on a rail-to-rail operational amplifier (OPA336 by 

Texas Instruments) in a non-inverting configuration. The gain is set to 38 for each 

channel. The amplification block is also provided with a high-pass filtering effect, 

active on differential components only, thanks to the use of the capacitor C11. The 

high-pass cut-off frequency is set to 6 Hz, suitable for the application of interest 

(QRS-complex components start from 10 Hz). 

Driven Right Leg circuit. Until this point, no reduction was applied to the 

effect of common mode noise contributions. Nevertheless, common mode 

components may be important in the ECG acquisition and are mainly related to the 

effect of the electric interference due to the power line. A well-known and widely 

used method to deal with common mode rejection in ECG acquisition is the DRL 

circuit, first described by Winter and Webster in 1983 [167]. The technique works 

on negative feedback: the common mode from the patient is sampled through two 

averaging resistors, inverted, amplified and actively delivered back to the patient, 

through the reference electrode, with the scope of reducing the interference on the 

patient himself [167].  

Instrumentation amplifier. In the end, the two signals from the two active 

channels are fed to an instrumentation amplifier (AD620 by Analog Devices), 

which amplifies the difference between the inputs. The gain is set to 5, which was 

considered a good trade-off between exploiting the dynamics of the DAQ USB 

6210 analog input channels and not cause saturation of the AD620.  
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3.2.3 Management of the signal recording 

Paragraphs “3.2.1 PCG sensing” and “3.2.2 ECG sensing” showed how the 

variations of physiological variables were converted into biomedical signals and 

how those signals were amplified and filtered according to the characteristics of the 

physiological variable and the application of interest. All the described processing 

was carried on analog signals. Once the analog signals are conveniently 

conditioned, they can be sampled, converted into their digital version and recorded.  

As anticipated, in the first prototyping phase, the recording system is based on 

the commercial I/O device DAQ USB 6210 by National Instruments. The recording 

of the signals relies on three different steps:  

1. Sampling, i.e., the conversion of a continuous-time signal into a 

discrete-time signal. It is performed independently on all 49 signals (48 

PCG + one ECG), using 49 sample-and-hold chips, but the same control 

signal (S/H) is used for all channels. In this way, all signals are sampled 

at exactly the same time instant, and no temporal difference is inserted 

by the sampling operation. 

2. Multiplexing, i.e., the combination of multiple different signals into a 

single one on a shared line. Here, 48 PCG signals are combined 8-by-8 

to obtain 6 signals to be acquired by the USB 6210. This step is required 

due to the USB 6210 technical specifications, since the latter is 

equipped with 8 analog input lines, which are not sufficient to record all 

48 channels independently. Six 8-to-1 multiplexers are used. 

Multiplexers are controlled by three control signals (A, B and C) 

forming up a 3-bit counter. Moreover, the multiplexer can be enabled 

using a further control signal (EN). 

3. Analog-to-digital conversion and acquisition on a computer. This 

step is performed by the I/O device DAQ USB 6210, which embeds a 

16-bit ADC with a maximum conversion frequency of 250 kSa/s with a 

time resolution of 50 ns. Two control signals need to be used to properly 

control the DAQ USB 6210, namely a START/STOP signal to define 

when the acquisition should begin and end, and a CONVERT signal 

determining the time instants when the conversion of the analog input 

signals is performed by the ADC.  
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The recording is controlled by the user using a custom-designed application 

running on a Windows computer. The user can set the duration of the recording and 

pressing a button he/she can start the recording. In that moment, the START/STOP 

control signal is set to 1. 

The management of the control signals, which are mainly responsible to define 

the timing of the sampling, multiplexing and conversion of the signals, is a task of 

the microcontroller embedded in the device. An 8-bit ATmega8 microcontroller 

was used for this purpose. The firmware of the microcontroller was programmed in 

Assembly language to ensure the highest control on the counters and on the timing 

intervals. The microcontroller periodically checks if the START/STOP signal is set 

to 1, and if so, it starts sets to 0 the EN signal to enable the multiplexers and starts 

generating the S/H, CONVERT and A/B/C signals. Figure 23 presents the temporal 

diagram of the control signals. 

As shown, the sampling frequency is set to 1 kHz for both the ECG and the 

PCG channels. Accordingly, the conversion of all 48 channels must take place 

within a 1 ms time interval.  

The selected sample&hold (SMP04 by Analog Devices) holds the last sample 

at the falling edge of the S/H control signal. As soon as the first sample is kept in 

hold mode, the counter starts counting. This is achieved by means of three control 

signals (A, B and C, where A is the Least Significant Bit of the counter). At each 

combination of the A, B and C control signals, the multiplexers switch: when A = 

 

Figure 23: Temporal diagram of the digital control signals generated by the microcontroller to define 

the sampling frequency, the multiplexing of the PCG signals and the conversion of the signals from analog 

to digital performed by the internal ADC of the NI DAQ USB 6210.  
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0, B = 0 and C = 0 the input corresponding to the first channel is set to the output; 

when A = 1, B = 0 and C = 0 the input corresponding to the second channel is set 

to the output; and so on. When the counter reaches the A = 1, B = 1, C = 1 

combination, i.e., a 1-ms time interval has gone, a new sample is sampled, and the 

counter starts again.  

The conversion by the ADC is controlled by the control signal CONVERT, 

generated by the microcontroller and transmitted to the NI DAQ USB 6210. Each 

multiplexed signal contains samples from 8 different channels within the 1-ms time 

interval defined by the sampling frequency. Accordingly, the CONVERT signal 

must have an 8-times higher frequency (8 kHz) with a duty cycle of 50%. The 

conversion was set to take place at the falling edge of the CONVERT signal, so that 

the output of the multiplexer is stable.  

As a result of the signal recording chain, the ECG and the 48 PCG channels are 

all sampled simultaneously at a 1 kHz sampling frequency and they are acquired as 

multiplexed 8-by-8 by the computer. The demultiplexing takes place on the 

computer.  

3.2.4 Implementation: realization of the Printed Circuit Boards 

The above-described electrical circuits were implemented in the form of two 

distinct Printed Circuit Boards (PCBs). The rationale for dividing the circuit into 

two PCBs is two-sided. On one side, the array to be located on the thorax should be 

characterized by a high level of flexibility to adapt to the chest thorax, so the 

minimum possible electronics ought to be located on board. On the other side, as 

anticipated, the use of the NI DAQ USB 6210 is temporary, and a re-engineering 

of the signal recording stage can be forecasted. The separation of the circuit into 

two PCBs will allow for redesigning the front-end PCB only, while the multi-sensor 

array could be preserved.  

Figure 24 presents a graphical illustration of how the designed architecture was 

divided into the two PCBs. Details about the two PCBs and their realization are 

provided in the following paragraphs.  
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Figure 24: Implementation of the designed architecture in two PCBs, a flexible PCB with the 

sensors and the conditioning circuit to be placed on the thorax and a rigid PCB with the remaining 

electronics. 
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Flexible multi-sensor array 

The sensors and their conditioning circuits are mounted on a flexible PCB. The 

PCB was realized in Kapton, a polyimide film typically used in flexible electronics 

applications. The PCB was realized in 4 layers, organized as follows: 

• Top layer: electronic components (MIMU, MAX9814, part of the ECG 

conditioning circuits), connectors, electrical connections 

• Inner layer 1: ground 

• Inner layer 2: positive supply 

• Bottom layer: microphones, pads for electrodes 

The PCB presents a total thickness of 353 μm. The obtained flexibility is more 

than sufficient to best adapt to the conformation of the chest of the subject. The 

PCB realization and mounting was contracted to a specialized company. Only the 

mounting of microphones and electrodes was conducted internally, since it required 

manual soldering instead of industrial soldering.  

A fundamental aspect of the realization of the flexible array was the distribution 

of the sensors. The latter followed specific mechanics and ergonomics 

considerations which will be described in paragraph “3.3 Mechanical design”.  

As shown in Figure 24, the output of the flexible PCB are 3 ECG signals, 48 

PCG signals and the power supply. Therefore, the PCB was equipped with a 70-pin 

connector to communicate with the front-end.  

Rigid front-end 

The rigid front-end mounts the remaining electronics, i.e., the sample-and-hold 

chips, the multiplexers, the microcontroller, and part of the ECG conditioning 

circuit. The mentioned components do not require to be located on the chest of the 

patient and occupy a rather large space which would unnecessarily increase the 

rigidity of the flexible array. Therefore, they were conveniently separated from the 

latter and located on a traditional rigid PCB to be connected with the array by a flat 

cable and located next to the subject. 

The rigid front-end was implemented in the form of a 4-layer FR4 board and 

was realized and mounted by a specialized company. The four layers are organized 

as follows: 

• Top layer: electronic components, connectors, electrical connections 
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• Inner layer 1: ground, electrical connections  

• Inner layer 2: positive supply, electrical connections  

• Bottom layer: electrical connections 

It should be highlighted that whereas the flexible PCB is mostly traversed by 

analog signals, a number of digital control signals run through the rigid PCB. For 

the best management of the digital signals, which are characterized by fast 

transitions, some of the electrical connections were located in the inner layers as 

buried connections.  

The rigid PCBs is equipped with 3 connectors to provide the required interface 

to the array, on one side, and to the NI DAQ USB 6210, on the other side. The 

interface with the flexible array is ensured by means of a 70-pin connector, as 

described above. The interface with the NI DAQ USB 6210 is made up of two 

connectors, one for the analog signals (ECG, 6 multiplexed PCGs, ground and 

power supply) and one for the digital signals (START/STOP and CONVERT). 

3.3 Mechanical design 

In the realization of a wearable device, the design of the mechanical aspects is not 

secondary to the design of the electronical circuits. In fact, the ergonomics of the 

device and its usability are strongly influenced by the choice of its dimensions, 

shape, and material. 

In the case of interest, the design of the mechanics of the wearable multi-sensor 

array followed the considerations presented in the paragraph “3.1 

Conceptualization of the array”. To resume, the multi-sensor array should fulfill the 

following requirements: 

• The pad should cover the four traditional auscultation areas. 

• The distribution of the microphone sensors should have a sufficiently 

high spatial resolution to ensure that some microphones fall within the 

intercostal spaces regardless the exact positioning of the device. 

• The pad should be flexible enough to adapt to the conformation of the 

thorax of the subject to ensure a good contact between the sensors and 

the skin. 

The goal of this paragraph is to present further details about the mechanical 

design of the multi-sensor array, according to the proposed conceptualization. In 
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particular, the distribution of the sensors over the array is proposed and some insight 

about the design of the flexible case are presented. 

3.3.1 Dimensions, shape and distribution of the sensors 

As anticipated, two versions of the array were designed, which differ in terms of 

distribution of the microphones. Figure 25 proposes the drawing of the two versions 

of the flexible PCB. Only the most relevant dimensions are reported for readability 

reasons. All dimensions are expressed in millimeters. The CAD design of the PCBs 

was carried on through SolidWorks™. 

The drawings in Figure 25 represent the bottom side of the array, where the 

sensors are located. In other words, the array is looked at from the chest side. It can 

be observed that the array is L-shaped and covers a surface of approximately 

149 mm x 141 mm. In the optimal forecasted positioning, the right side of the L, 

with an area of 101 mm x 141 mm, covers the left hemithorax from the second to 

the fifth intercostal spaces and from the left border of the sternum (which the 70-

pin header border should be aligned to) until the midclavicular line. The left side of 

the L, with an area of 61 mm x 48 mm, should cover the aortic area on the right 

hemithorax. The dimensions were designed considering the dimensions of the chest 

of a wide-chested male subject (worst case scenario): the array will cover a wider 

portion of the chest in case of a thinner subject. 

Both the MIMU and the reference electrode were located approximately over 

the sternum, separating them from the left border by approximately 10 mm. The 

positioning of the MIMU over the vertical axis was not critical. The positioning of 

the reference electrode, instead, was guided by the positioning of the two recording 

electrodes: it was located at the same distance from both.  

The distribution of the microphones was expected to cover the four auscultation 

areas while creating a grid of sufficient spatial resolution to ensure that at least some 

of the microphone sensors could always cover every intercostal spaces. In the 

“homogenous” version, the microphones were organized in 9 columns distanced by 

16 mm. The microphones over the same column were also distanced by 16 mm, but 

the columns were shifted by 8 mm from each other on the vertical axis to increase 

the spatial resolution. In the “cluster” version, the microphones were located 

focusing on the areas where the auscultation areas should fall in case of optimal 

positioning. In those areas, the spatial resolution of the microphones is higher than 

in the “homogeneous” version since each microphone is distanced from its closest  
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Figure 25: Dimensioned drawings of the flexible PCBs in the version with homogeneously 

distributed microphones (panel A) and in the version with the microphones concentrated over the 

traditional auscultation areas (panel B). All dimensions are expressed in millimeters. 
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neighbors by 8 mm both on the horizontal and on the vertical axis. Nevertheless, 

some microphones are located outside the expected auscultation areas, even if with 

a lower spatial resolution: they are meant to ensure a good covering of the 

auscultation areas even in case of suboptimal positioning of the array.  

The 70-pin header was located on the left border of the wide side of the L for 

convenience. Nevertheless, it may help in providing a good reference for the 

positioning performed by a naïve user. 

3.3.2 Design of the case 

The design of the case is particularly important in the application of interest. In fact, 

on one side, the case is the part of the system in contact with the human body: an 

appropriate case is needed to ensure biocompatibility and patient safety throughout 

the life cycle of the device. On the other side, the case must not worsen the 

properties of the device, particularly its flexibility. 

The particular shape of the array and the presence of distributed sensors makes 

it evident that a complete customization is needed. Figure 26 shows the CAD design 

of the case for the “cluster” version of the device, developed using SolidWorks™.  

As it can be observed, the case is composed by two parts: a hollow housing, to 

host the flexible PCB, provided with appropriate holes in correspondence of the 

sensors, to allow their contact with the skin of the subject; and a cover, to be placed 

on top of the PCB and secured by means of double-sided tape. 

The realization of the case was planned to ensure the maximum flexibility at a 

sufficient robustness and durability. Among multiple possibilities, the choice fell 

on a 3D-print approach. In particular, the VisiJet® M2E-BK70 elastomeric resin by 

3D Systems™ was used for the purpose. The selected material is characterized by 

a 70 Shore A hardness (similar to an automotive tire) and by an elongation at break 

of 42%, which give an idea of the achieved flexibility and of the good resilience to 

break. Moreover, the material was declared biocompatible by the producer (USP 

Class VI testing). 

Figure 27 presents pictures of the array in its case, without the cover to allow 

for a proper understanding of how the PCB fits into the housing. 
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Figure 26: Dimensioned drawings of the case of the flexible PCBs in the “cluster” version. Panel 

A: housing, where the flexible PCB is inserted. Panel B: cover. All dimensions are expressed in 

millimeters. 
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3.4 Testing of the complete system  

In the previous paragraphs, the idea behind the multi-sensor array was presented, 

along with details about its design and realization. It was also highlighted that, given 

the novelty of the approach, the multi-sensor array was realized in a prototype 

version to validate the idea behind its design and its usability in a real-life 

monitoring scenario. 

Following these considerations, the multi-sensor array is not, in its first version, 

a stand-alone device but must connected to a computer by means of other devices 

to work. 

 

Figure 27: Pictures of the array in its case (without the cover). Version "homogenous" - chest side 

(A) and top side (B). Version "cluster" - chest side (C) and top side (D). 
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The goal of this paragraph is to summarize the components of the system and 

to define the setup to be used to perform the recordings using the designed multi-

sensor array. 

3.4.1 Complete system and setup 

The complete setup involves five fundamental elements: 

1. The flexible array 

2. The rigid front-end 

3. The NI DAQ USB 6210 device 

4. A computer with a custom application installed 

5. A 5 V power bank 

To perform the recordings, the subject is expected to lay supine and bare-

chested on a bed or examination table. The flexible array is located on the chest of 

the subject and connected by means of a 70-pin flex cable to the rigid front-end, 

which can be located next to the subject on the examination table. On the other side, 

the front end is connected to the NI DAQ USB 6210 device by means of two custom 

flat cables, one for the analog signals and one for the digital signals. The power 

supply is provided by means of a power bank to decouple the subject from the 

power line and increase the safety of the system with respect to the macroshock 

 

Figure 28: Block diagram of the complete setup. Relative dimensions are not meant to be realistic. 
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hazard. The power bank works at a 5 V voltage and can provide up to 2.4 A of 

current. The NI DAQ USB 6210 is connected to a computer by means of a USB 

cable. Figure 28 proposes a graphical representation of the block diagram of the 

complete setup. 

The recording is managed using an application installed on a Windows 

computer, programmed in Python for the purpose. The application allows the user 

to define: 

1. The type of array used for the recording (“homogenous” or “cluster”). 

2. The duration of the recording (in minutes). 

3. The dynamics of the NI DAQ USB 6210, among the ± 1 V or the ± 5 V 

options. This helps in partially customizing the dynamics depending on 

the characteristics of the subject. 

4. Optionally, the clinical trial the recording belongs to. 

5. Optionally, experimental notes in the form of plain text. 

 

Figure 29: Interface of the designed application devolved to perform the recordings with the multi-

sensor array. 
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Figure 29 shows a sample of the interface for a fictitious patient “Test Sistema”.  

When the user presses the Start button the START/STOP signal is set to 1 and 

transmitted to the entire system. The recording starts, a plot window is shown to the 

user with the goal of allowing a monitoring of the signals throughout the recording 

time. In the plot window the ECG and the 6 multiplexed PCG channels are 

visualized over a 10-second running window. The user can wait until the end of the 

recording or terminate it whenever needed by pressing the combination Shift+C. 

Then, the user can decide whether to save the recording or not. When the recording 

is saved, a JSON file is created containing a matrix of size N-by-7 (where N is the 

length of the recording in samples), along with the parameters set by the user. 

At this point, the recording is ready for signal processing, to extract the clinical 

features of interest. The signal processing is performed on the computer using 

Matlab™. 

 



  

 

Chapter 4 

Algorithms for Signal Processing 

4.1 Introduction 

The proposed multi-sensor array outputs an ECG signal, 48 PCG signals and 3-

axial accelerometer, 3-axial gyroscope, and 3-axial magnetometer signals. The 

signals from the MIMU were not used in this phase. The ECG signal and the 48 

PCG signals were used for the estimation of the CTIs. 

An accurate and robust method for the estimation of the CTIs from 

simultaneous ECG-PCG recordings is not fully described in the literature. In fact, 

most previous works describing the use of CTIs for the monitoring of the cardiac 

functionality, reported in paragraph “2.3.2 Cardiac Time Intervals and Heart 

Failure”, do not describe the method they used to extract the time of closure of the 

cardiac valves from the PCG signal. The task is not naïve from a processing 

viewpoint, since it involves differentiating the two components which make up each 

heart sound. In fact, the estimate of the time of closure of the valve should be valve-

specific to improve the accuracy and robustness of the estimate, even in cases where 

a single side of the heart is of interest. Even though multiple algorithms exist for 

the segmentation of the two main heart sounds within the PCG signal, with or 

without a simultaneous ECG as reference, few previous works tackled the problem 

of identifying the two components separately. 
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Our research group proposed an envelope-based method to identify the 

components of the two main heart sounds in simultaneous ECG-PCG recordings 

[168]. Even though the work was carried out before the beginning of this PhD 

project, the algorithm was used as a basis for the signal processing tasks developed 

during this project. Therefore, the fundamental details will be presented in 

paragraph “4.2 Estimation of the time of closure of the cardiac valves”.  

The mentioned algorithm was designed and validated on single-source PCG 

recordings. Goal of the signal processing phase of this PhD project is to define how 

to adapt the algorithm for use with the multiple available PCG signals recorded with 

the multi-sensor array. Two main approaches exist to tackle the problem: signal 

selection and signal combination. The first consists of identifying a single signal or 

a subset of signals that are the most suitable for the specific valve. The second 

involves using specific processing techniques, such as Blind Source Separation 

techniques, to combine the information carried by the recordings into one or 

multiple novel optimized signals. In this work a signal selection approach was tried 

out: the signal processing methods hereby described aim at selecting the most 

suitable subset of PCG signals from the 48 available channels and to use them for 

the estimation of the CTIs. This articulates in three tasks: 

1. Reliably assessing the quality of each channel and discarding channels 

with a below-threshold signal quality. 

2. Separating the channels into spatially coherent groups that could 

constitute auscultation areas. 

3. Identifying the best auscultation area, i.e., the signal or subset of signals 

to be used for the estimate of the CTIs. 

The designed methods will be described in detail in the next paragraphs, along 

with the results of their preliminary validation. As anticipated, the proposed 

pipeline is not the only possibility: some signal combination approaches were 

explored, as expanded at the end of this section, and may be object of future 

development. 

4.2 Estimation of the time of closure of the cardiac valves 

The two main heart sounds have long been considered in their totality: most 

heart sounds segmentation algorithms proposed in the literature focus on 

identifying the time instant of beginning, peak and end of the two heart sounds but 

do not take into consideration the fact that each heart sound is actually made up of 
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multiple components. In particular, the first heart sound (S1) is typically described 

as the sound generated by the closure of the atrioventricular valves, but the closure 

of the two atrioventricular valves (mitral and tricuspid) is not simultaneous. The 

same happens with the second heart sound (S2), where the split between the aortic 

and pulmonary components is even more relevant and correlated with the 

respiration phase and with some cardiac pathologies. 

Being able to distinguish between the closure of the mitral and tricuspid 

components in S1 and between the closure of the aortic and pulmonary components 

in S2 is of key importance for the application of interest. In fact, as highlighted in 

paragraph “2.1.1 Brief pathophysiology of heart failure”, multiple phenotypes of 

HF exist, also depending on the pathophysiological path that led to the development 

of the syndrome. Heart failure can affect mainly the left or the right side of the heart 

(or both), which affects differently the time of closure of the valves of the left and 

right side. Moreover, from a technical point of view, the differentiation of the two 

components of the two main heart sounds increases the accuracy and the 

repeatability of the estimate.  

In the past, some methods were proposed to distinguish the time of closure of 

the two heart sounds components, mainly devoted to the separation of the aortic and 

pulmonary components in the second heart sound and measure their split. In fact, 

the S2 split is expected to be correlated with the PAP which in turns is related to 

the development of pathologies such as Pulmonary Hypertension (PH) and CHF. 

Among the proposed methods, two main families can be identified: 

• Methods aimed at identifying the instant of closure of the two 

overlapping cardiac valves as the peaks of the signal in some domain. 

• Methods aimed at separating the acoustic waveforms emitted by 

respectively the closure of each heart valve. 

To achieve the first goal, the most tested approaches were either based on the 

wavelets, and in particular on the identification of the peaks of the Continuous 

Wavelet Transform [169,170], or on the identification of the peaks on some 

representations of the signal in the time-frequency domain, and particularly on the 

Wigner-Ville Distribution [171–175]. Nevertheless, the two components overlap in 

both the time and the frequency domains, makes it very complicated to see two 

well-distinguishable peaks even in the time-frequency or wavelet domains. In fact, 

the performances of the mentioned approaches were not outstanding. 
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Better results were produced using the second family of methods. In this case, 

two sub-families can be distinguished. Some Authors proposed methods were the 

waveform corresponding to each of the two components was defined a priori and 

modeled by a known function. Goal of the method is to optimize the model’s 

parameters. Proposed models include nonlinear transient chirps [176,177], 

Gaussian chirplets [178], windowed sinusoids [179]. Other Authors proposed 

methods where the waveform’s model was not defined a priori, but extracted from 

the signal itself. In this concern, Gaussian Mixture Model was tested [180]. Tang et 

al. proposed a method based on the estimate of the aortic waveform through 

averaging and the pulmonary waveform through subtraction [181]. Renna et al. 

proposed a further improvement of Tang’s approach employing alternating 

optimization of time and amplitude of the two waveforms [182]. 

For the application of interest, in the final version of the device, the algorithm 

for the estimation of the time of closure of the four cardiac valves should be 

embedded in the device itself. The goal is to provide the patient with a direct, 

straightforward, almost real-time feedback. For this purpose, lightweight 

algorithms are required. Even though model optimization algorithms have shown 

good performances in the past, they typically involve an iterative, computationally 

expensive optimization. With the purpose of finding a lighter solution to the 

problem, in our research group we explored an envelope-based approach. 

Envelope-based segmentation of the two main heart sounds was often described in 

the past, but was not applied independently to distinguish the heart sounds 

components.  

We proposed an algorithm for the estimation of the time of closure of the four 

cardiac valves from a PCG recording by identifying the two main components of 

the two main heart sounds with an envelope-based approach. The method was 

published in MDPI Sensors journal with the title “A novel method for measuring 

the timing of heart sound components through digital phonocardiography” [168]. A 

summary of the fundamental aspects is presented in the following, starting with the 

flowchart proposed in Figure 30. Each block in the flowchart will be better detailed 

in the following paragraphs. 
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ECG filtering and R-wave peaks identification 

For the application of interest, the ECG signal is not meant to be object of a 

morphological analysis but to be used as a time reference for the estimation of the 

time of closure of the cardiac valves. In this sense, the feature of interest is the QRS 

complex, which is a representation of the electrical activity corresponding to the 

ventricular depolarization.  For the stated reasons, ECG filtering was designed to 

preserve the frequency components typical of the QRS complex while reducing the 

effect of high frequency noise as well as baseline wandering. 

To achieve this goal, a band-pass filter was designed as the cascade of a high-

pass filter with a cut-off frequency of 10 Hz and a low-pass filter with a cut-off 

frequency of 35 Hz. The high-pass filter was implemented in the form of a moving 

median filter with a 100-ms long moving window. The low-pass filter was 

implemented as a Finite Impulse Response (FIR) filter of order 250. It should be 

highlighted that the 125-sample delay introduced by the FIR filter was compensated 

to preserve the time relationship between the ECG and the PCG signals. 

Even though in the literature the Q-wave is typically used as reference to 

compute the CTIs, the latter is not always easily recognizable from the clinical and 

technical point of view. To have a more robust reference, the R-wave peak was used 

in this work. The identification of the R-wave peaks within the filtered ECG signals 

was performed by means of a modified version of the well-known Pan-Tompkins 

algorithm [183]. The latter was selected because of its high sensitivity in front of a 

moderate computational cost. The algorithm involves applying to the filtered ECG 

a cascade of linear and nonlinear filters: derivative, point-wise squaring, moving 

average integration with a 150-ms-long moving window. The goal is to highlight 

the QRS complex within the recording and segment it. The peaks are then identified 

through a double-thresholding process, to increase the algorithm sensitivity and 

discard mis-identified peaks. 

 

Figure 30: Flowchart of the algorithm for the estimation of the time of closure of the cardiac valves. 
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PCG filtering 

PCG recordings are typically the object of a wide range of interferences: digital 

filtering is a key pre-processing step to decrease noise interference with the signal 

segmentation [184]. Noise contributions may be due to internal or external causes. 

Internal causes may be physiological, i.e., determined by the normal activity of 

other physiological districts (e.g., lung sounds), or pathological, such as heart 

murmurs and clicks generated by the heart itself in the presence of a CVD. External 

causes are related to the recording phase and may be generated by a wide range of 

situations, from ambient noises to relative motion at the interface between the 

microphone probe and the chest [184].  

Given that a PCG recording involves the presence of multiple sounds, murmurs 

and clicks, PCG filtering should be customized depending on the application of 

interest. In this case, the two main heart sounds (S1 and S2) are the object of the 

analysis, therefore filtering aims at preserving their frequency content while 

reducing the effect of other internal or external sounds. For this purpose, a band-

pass Infinite Impulse Response (IIR) filter with cut-off frequencies between 20 Hz 

and 100 Hz was used. Since there is not a complete agreement in the literature 

regarding the frequency boundaries of the two main heart sounds, the cut-off 

frequencies were defined by visual inspection of the Power Spectrum Density 

function of recordings from more than 70 healthy subjects. The IIR filter was 

implemented as 5th order Chebyshev I filter. Given that IIR filters do not guarantee 

a linear phase response, zero-phase filtering was carried out not to cause signal 

distortion in the time domain.  

Heart sounds segmentation  

PCG segmentation methods can be divided into methods which involve the use 

of a simultaneous ECG as reference and methods which do not. In this case, an 

ECG is available (and it is unavoidable to estimate the CTIs) and it can be used to 

simplify the segmentation step.  

As anticipated, among the many proposed segmentation methods, in this work 

an envelope-based approach was selected because of the low computational cost, 

which is required to implement the algorithm on board the device, in the future. In 

particular, the envelope was computed using the second-order Shannon energy 

(SE), which was already attempted in the literature with good results in terms of 

sensitivity and specificity [185]. Higher orders of SE, capable of smoothing the 

envelope and reducing the effect of noise [186], were tested, but were found to 
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decrease the discriminative capability among two components of the same sound. 

Second order was considered as a good trade-off. 

If 𝑥 is the normalized filtered PCG signal, SE can be defined as follows: 

𝑆𝐸 =  −
1

𝑁
 ∑ 𝑥2(𝑖) ∙ log 𝑥2(𝑖)

𝑁

𝑖=1

 

where N is the length of the moving window expressed in samples. Given that 

the sampling frequency of the recording system is 1 kHz, N was set to 20 samples, 

which is the expected duration of the closure of the valve. In literature, the 

integration window is typically shifted by 50% of its own duration [185]. 

Nevertheless, in this way, the original time resolution of 1 millisecond, suitable to 

correctly differentiate among different components, which are typically split by 10 

to 30 milliseconds, is affected. For this reason, the components could not be 

distinguished in previous works based on the Shannon Energy envelope. In this 

work, instead, the integration window was shifted by one sample at a time to 

preserve a 1-ms time resolution. The SE envelope was standardized over a 1-

second-long sliding window, devoted to ensure that changes in amplitude over the 

recording do not affect the standardization. In the end, the nonnegative samples 

were set to zero to obtain a nonnegative envelope. 

 Segmentation was performed using a double-thresholding approach on the 

signal envelope. First, an amplitude threshold on the envelope was used to gate the 

signal and identify the segments corresponding to a heart sound. The amplitude 

threshold was set to the 5% of the maximum SE value. Then, time thresholding was 

used to fix the segmentation, in two ways: 

1. By removing false positives: if two segments are less than 20% of the 

RR interval apart, the one with the lowest SE is removed. 

2. By joining together split segments: if two segments are less than 10% 

of the RR interval apart, they are joint together. 

Heart sound components identification and time of closure estimation 

The process of identifying the time of closure of the cardiac valves was 

performed in two steps. First, the signal segments identified in the previous steps 

are classified into: 
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1. S1, if the peak SE value of the segment falls within the -0.05% and the 

20% of the cardiac cycle. 

2. S2, if the peak SE value of the segment falls within the 30% and the 

60% of the cardiac cycle. 

3. None, otherwise. 

Once the segments corresponding to S1 and S2 were identified, the problem of 

identifying the two components within each segment was faced. The problem is not 

naïve because the two components mostly overlap, and the separation is almost 

impossible to recognize in the time or frequency domain. Nevertheless, the split is 

visible in the SE envelope domain as a local minimum. Therefore, the identification 

of the two components was carried out by: 

1. Locating the local minimum with the highest prominence 

2. Locating the maximum of the envelope before the local minimum 

(mitral in S1, aortic in S2) and after the local minimum (tricuspid in S1, 

pulmonary in S2). 

In the end, for each cardiac cycle, the time of closure of the cardiac valves is 

expressed as the latency of the identified components with respect to the R-wave 

peak. Therefore, the output of the algorithm is expressed in the form of the 

following parameters: 

1. R-S1,M: the average latency between the R-wave peak and the mitral 

component in the S1. 

2. R-S1,T: the average latency between the R-wave peak and the tricuspid 

component in the S1. 

3. R-S2,A: the average latency between the R-wave peak and the aortic 

component in the S2. 

4. R-S2,P: the average latency between the R-wave peak and the pulmonary 

component in the S2. 

Figure 31 proposes a graphical representation of the temporal relationships of 

the defined parameters on the ECG, the PCG, and the PCG envelope. 
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Experimental validation 

Validation was performed on single-source PCG recordings from healthy 

volunteers and included two phases. In a first phase, the sensitivity and specificity 

of the algorithm in the identification of the two main heart sounds was assessed 

separately for S1 and S2. The sensitivity was defined as the percentage of correctly 

detected heart sounds, taking as reference the detected R-wave peaks. This grounds 

on the assumption, manually verified, that the modified Pan-Tompkins algorithm 

could correctly detect all R-wave peaks. This is obviously not guaranteed in the 

broad population, but holds for the sample population used for the validation. The 

specificity was defined as the percentage of heartbeats where murmurs or noise 

were wrongly identified as heart sounds. In the overall, the sensitivity of detection 

was found as high as 99.6% for S1 and 98.9% for S2, 99.2% in total. The value is 

in line with the results obtained by previous works in the literature. Specificity was 

found equal to 100%, meaning that no murmur nor noise contribution of any kind 

was misclassified as a heart sound. In the second phase, the distribution of the 

estimated time of closure was evaluated and compared to expected values from the 

physiology and the literature. The values were found coherent to what expected 

from the literature and from the physiology of the cardiac cycle.  

 

 

Figure 31: Graphical representation of the defined temporal parameters on the ECG, PCG, and 

PCG envelope signals. 
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4.3 Assessment of the quality of PCG signals  

As already highlighted, the quality of the PCG signal may vary noticeably. The 

quality may depend on the position of the stethoscope, but it may also be affected 

by the anatomical characteristics of the subject. In fact, a consistent layer of fat or 

the presence of breasts is expected to cause attenuation in the propagation of the 

acoustic vibrations, which in turn reflects into a lower intensity [152,187].  

In this context, it is fundamental to determine how the quality of the signal 

affects the estimate of the time of closure of the cardiac valves. This is crucial to 

determine what are the constraints the algorithm is subjected to. Figure 32 proposes 

a comparison between a good-quality and a poor-quality signal. The two signals 

were acquired using the same recording system, from the same position of the chest, 

in similar conditions and they have both been digitally filtered. It is evident that 

extracting reliable information about the time of closure of the cardiac valves from 

the second is impossible. 

The question to be answered is: what minimum signal quality is required to be 

sure that the results of the designed algorithm guarantee the reliability of the 

estimate of the time of closure of the cardiac valves? The issue is particularly 

relevant in homecare applications, as the one proposed in this work. In a homecare 

context, recordings are performed by inexperienced users, such as the patient or a 

caregiver: the variety of possible situations decreasing the quality of the signals 

 

Figure 32: Comparison between a good-quality signal (A, with SNR = 31 dB) and a poor-quality 

signal (B, with SNR = 4 dB). 
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may be relevant. Moreover, the patient is not capable of determining whether the 

recording is of sufficient quality or not. Therefore, an automated and robust method 

to assess the quality of the recordings is required. Besides, knowledge about the 

minimum requirements is needed to determine the range of applicability of the 

method. 

In the latest decades, a few methods were previously proposed in the literature 

for the automatic assessment of PCG signals. The first approaches that were 

proposed grounded the quality assessment on the periodicity of the signal [188] or 

on the spectral matching using a low-noise beat as reference [189]. Afterwards, the 

proposed methods can be divided between heuristics-based and ML-based. 

Concerning the heuristics family, most Authors grounded their quality analysis 

on a range of physiological or technical features extracted from the signal, that were 

sometimes combined into some evaluation criteria. Features were extracted from 

the time, frequency or time-frequency domains, and included the logarithmic 

energy of the signal, the power of noise over 700 Hz, the duration of the heart 

sounds segments, the root mean square of consecutive differences of the signal, the 

number of detected peaks over different moving windows, the zero crossing ratio 

[184,190,191].  

ML-based methods typically aimed at classifying a recording as whether good 

quality or not, in a binary fashion. This interpretation is interesting because the 

output is easily understandable by both clinicians and inexperienced users. On the 

contrary, such an interpretation does not provide a numerical quality metric and is 

therefore much application dependent. ML-based methods typically consider a high 

number of features. Tested ML approaches included Neural Networks [192], 

Support Vector Machine [193], Logistic Regression [194], Convolutional Neural 

Networks [195] or ensemble classification using multiple of the above-mentioned 

techniques [196,197]. 

Despite the usefulness of these methodologies, their reliance on a wide range 

of features extracted from the signal, some of which have no clear physiological 

interpretation, can make it difficult for physicians to understand why a specific 

signal is not considered of sufficient quality. Additionally, the large number of 

features used may be affected by the presence of a pathological condition. Lastly, 

most of the proposed methods are computationally expensive and thus unsuitable 

to provide the user with a real-time feedback, as of interest for telemonitoring. 
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In this study, the use of a simple numerical metrics such as the Signal-to-Noise 

Ratio (SNR) is explored to obtain a straightforward yet reliable assessment of the 

quality of the signal. To achieve this, the robustness of the estimate of the time of 

closure of the cardiac valves against noise was studied. The analysis proposed in 

this paragraph was published in MDPI Sensors journal with the title “Automated 

Assessment of the Quality of Phonocardographic Recordings through Signal-to-

Noise Ratio for Home Monitoring Applications” [198]. 

4.3.1 Materials and methods 

Quality assessment: the Signal-to-Noise Ratio 

As anticipated, some methods were previously proposed in the literature for the 

assessment of the quality of a PCG signal. Most methods grounded the assessment 

on some features, extracted from the signal and reflecting its physiological 

characteristics, used to develop a ML algorithm or to build criteria.  

Nevertheless, such an approach is not suitable for the application of interest. In 

fact, in this case, the quality assessment needs to be implemented on a wearable 

device to be used in a telemonitoring setting at the patient domicile. The evaluation 

of the quality is of key importance to give the user direct feedback in real time, so 

that, in case the quality is deemed insufficient to perform a reliable monitoring, the 

array can be re-positioned, and the recording can be performed again. In such a 

scenario, it is evident that a simple quality assessment algorithm is preferable so 

that it can be implemented directly onboard the recording system.  

 Here, a simple quality assessment solely based on the SNR of the PCG signal 

was explored. The SNR formula is based on elementary numerical computations 

and considers solely the level of noise in the signal, without depending on more 

complex characteristics that may change in case of pathology. We defined the SNR 

beat by beat and independently for each of the two heart sounds, i.e., two separate 

SNR values were computed for each heartbeat. Assuming that each heart sound is 

a quasi-periodic signal and that the additive noise is a stochastic process, we defined 

the SNR as: 

𝑆𝑁𝑅 = 20 log10

𝐴𝑆

4 𝜎𝑁
 

where: 



Algorithms for Signal Processing 91 

 

• 𝐴𝑆 is a measure of the amplitude of the signal, i.e., the peak-to-peak 

amplitude of the heart sound of interest; 

• 4 𝜎𝑁 is a measure of the amplitude of the noise, i.e., the 95% band of 

noise. 

The definition of the two heart sounds and of the noise was performed by 

dividing the cardiac cycles in segments where each sound is expected to occur 

according to physiology. In particular: 

• S1 segment: [−0.05 ∙ 𝑅𝑅; 0.2 ∙ 𝑅𝑅] 

• S2 segment: [0.3 ∙ 𝑅𝑅; 0.6 ∙ 𝑅𝑅] 

• Noise: [0.7 ∙ 𝑅𝑅; 0.85 ∙ 𝑅𝑅] 

Figure 33 proposes a graphical representation of the definitions.  

Rationale of the robustness analysis 

Figure 34 proposes a flowchart of the methodology designed to assess the 

quality of a PCG recording and its effect on the estimate of the time of closure of 

the cardiac valves. 

Real PCG recordings were used, performed on healthy subjects in a laboratory 

setting to ensure repeatable environmental conditions. Even so, the signals 

presented a wide range of quality levels, with a SNR ranging from 7 dB to 25 dB 

 

Figure 33: Definition of the intervals of the heartbeat corresponding to S1, S2 and the noise. 
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before any digital filter is applied. Then, each recording was progressively 

corrupted with artificial noise to decrease its SNR in a controlled way.  

At iteration 𝑖, the PCG signal object of analysis 𝑥𝑖(𝑡) can be modelled as: 

𝑥𝑖(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) + 𝑛𝑖(𝑡) 

 

Figure 34: flowchart of the methodology for the assessment of the effect of the signal quality on 

the estimate of the time of closure of the cardiac valves. 
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where 𝑠(𝑡) is the original acoustic signal as emitted by the closure of the cardiac 

valves; 𝑛(𝑡) is the noise originally present in the recording; 𝑛𝑖(𝑡) is the noise that 

was artificially added at iteration 𝑖. The artificially added noise 𝑛𝑖(𝑡) was 

hypothesized to be modelled as a Gaussian white stochastic process. To confirm 

this point, the original noise 𝑛(𝑡) was analyzed. It was extracted from the original 

recordings as the segments between the 70% and the 85% of each cardiac cycle, 

when no heart sound is expected to occur, using the simultaneous R-wave peak as 

reference. We analyzed more than 16000 cardiac cycles, applied the Chi-square 

goodness of fit test (α = 0.05) against the normal distribution and found that the null 

hypothesis could not be rejected in 84% of the heartbeats. Therefore, 𝑛𝑖(𝑡) was 

modelled as a white Gaussian noise with a standard deviation equal to: 

𝜎𝑖 = 𝜎0 ∙ √10
0.1 𝑖
10 − 1 

With this formula, the SNR is set to progressively decrease by 0.1 dB steps. It 

should be highlighted that the computed SNR is accurate only if the heart sounds 

can be correctly identified within the signal. Therefore, when the quality of the 

signal is extremely poor, the SNR value stops monotonically decreasing. If the SNR 

does not decrease in two consecutive iterations, the stop condition is met.  

At each iteration, the time of closure of each cardiac valve was estimated from 

𝑥𝑖(𝑡) using the algorithm described in paragraph “4.2 Estimation of the time of 

closure of the cardiac valves”. Therefore, for each recording four arrays of time of 

closure values (each corresponding to a cardiac valve) were computed.  

Evaluation of the results 

The test presented in the previous paragraph was repeated 10 times for each 

signal, for robustness. In the end, all 10 arrays were resampled at fixed SNR values, 

maintaining a resolution of 0.1 dB, and the median array was computed.  

Two kinds of analysis were carried out to define the minimum acceptable SNR 

value.  

In the first place, the minimum acceptable SNR value was defined, valve by 

valve, as the first SNR value in decreasing order where the estimated time of closure 

of the valve of interest could be considered significantly different from the 

reference estimate, i.e., the estimate at the maximum available SNR, when no 



94 4.3 Assessment of the quality of PCG signals 

 

artificial noise is added. An estimate was considered as significantly different if two 

conditions were met: 

1. The estimate differs from the reference by at least 1 millisecond 

(resolution of the recording system). 

2. A trend in the estimate is detected (by applying Wald–Wolfowitz runs 

test with α = 0.05). 

For reference, Figure 35 shows an example of the variation of the time of 

closure of the tricuspid valve over a set of 10 experiments, with the median curve 

highlighted, performed on a subject and the corresponding minimum acceptable 

SNR threshold. 

The presented criterion ensures that the measurement error of the estimate is 

lower or equal to the resolution of the recording system. In other words, in the first 

analysis the minimum detectable error was considered as significant. Nevertheless, 

this is not always consistent with the requirements of the clinical application. In 

fact, most often, a more relaxed measurement uncertainty is sufficient in the clinical 

context. 

Therefore, in a second phase, the analysis was repeated by considering as 

acceptable subsequently higher percentages of the reference estimate: 2.5%, 5%, 

 

Figure 35: Variation of the time of closure of the tricuspid valve for one subject (10 experiments) 

in function of the SNR. The vertical line represents the minimum acceptable SNR value to obtain an 

estimate not significantly different from the reference. 
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7.5%, 10%, 12.5%, 15%, 17.5%, 20%. In the end, for each valve, a curve of the 

minimum acceptable SNR value in function of the acceptable measurement 

uncertainty was built. 

Testing population 

The algorithm was tested (and the acceptable SNR values found) on a sample 

population counting 25 healthy subjects. Enrolled subjects were different in terms 

of biological sex (46% females), age (18 to 83 years), Body Mass Index (BMI, 17.7 

kg/m2 to 30.5 kg/m2). Therefore, the testing population could be considered 

representative of the overall population.  

For convenience, 10-minute-long single-source recordings were used, carried 

out using a commercial system for the recording of biomedical signals (ReMotus™, 

It-MeD, Italy). The ReMotus™ system is suited to acquire up to four channels, 

simultaneously sampled at a sampling frequency of 1 kHz and converted by means 

of a 24-bit ADC. It ensures a 3-dB bandwidth spanning from DC to 262 Hz, suitable 

for the biomedical signals of interest. The system is fully isolated (CF type) to 

ensure the patient’s safety. The recordings are performed through a PC, whom the 

system is connected via USB.  

Among the four available channels, one was devoted to ECG recording and one 

to PCG recording. The first channel was equipped with an active probe for ECG 

recording with an input impedance of 1 GΩ and a 0-dB gain. Three disposable 

Ag/AgCl electrodes were employed and positioned over the subject’s chest as to 

recreate a first standard lead, with the two active electrodes in the right and left 

subclavian areas, along the midclavicular lines, and the reference electrode over the 

right side of the subject’s abdomen. The second channel was devoted to PCG 

recording and equipped with a custom designed microphone probe for the purpose. 

The microphone probe uses an electret condenser microphone sensor, as in the 

multi-sensor array, along with the required conditioning circuit. The PCB mounting 

the sensor and the electronics is housed into a rigid 3D-printed case shaped as a 

truncated cone, like a typical stethoscope head, to focus the acoustic waves on the 

sensor, located in the center. The position of the microphone probe over the 

subject’s chest was not standardized, but the examiner decided the best location by 

visually inspecting the signal through the ReMotus™ computer interface, to ensure 

a sufficient signal quality. Figure 36 presents a picture of the system and of the 

custom designed microphone probe, along with a graphical representation of the 

positioning of the sensors over the chest. 
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Validation population 

As anticipated, the acceptable SNR values in function of the measurement 

uncertainty were found, valve by valve, on the testing population. To validate the 

results, the publicly available PhysioNet CinC Challenge 2016 dataset [199] was 

employed. In particular, the recordings from the Massachusetts Institute of 

Technology (MIT) heart sound database were selected because the remaining 

recordings did not provide a simultaneous ECG. Only the “Normal” recordings, i.e., 

the recordings from patients with no history of cardiopathy, were used, in coherence 

with the testing population.  

Among the 117 available recordings, only the signals with a starting SNR 

higher than the identified minimum acceptable SNR found in the testing phase were 

selected. For each of them, the robustness analysis was repeated, and a minimum 

acceptable SNR found accordingly. The sensitivity of the methodology and of the 

acceptable SNR values found in the testing phase was assessed by means of the 

percentage of recordings of the validation population featuring a minimum 

acceptable SNR lower or equal to our finding. 

4.3.2 Experimental results 

Figure 37 shows the plots of the time of closure of each of the four cardiac valves 

in function of the decreasing SNR. To enable a comparison among different 

subjects, the values were normalized with respect to the reference estimate, i.e., the 

estimated time of closure at the highest available SNR, before any artificial noise 

was added.  

 

Figure 36: Recording system for the single-source recordings: A) ReMotus™, B) the custom 

realized microphone probe, C) the positioning of three electrodes and of the microphone probe over the 

chest. 
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For each subject, a minimum acceptable SNR value was computed for the four 

valves according to the above-described criteria. The detailed values are reported 

in [198]. In the end, the overall minimum acceptable SNR values were defined as 

the maximum values over the testing population (worst case). Their values are 

reported in Table 5. 

Table 5: Minimum acceptable SNR value for each cardiac valve. 

Heart valve Min SNR (dB) 

Mitral 12 

Tricuspid 14 

Aortic 12 

Pulmonary 13 

 

 

Figure 37: Time of closure of each cardiac valve in function of the SNR. The values are 

normalized with respect to the reference estimate for the purposes of comparison. Each line represents a 

different subject in the testing population. The black vertical lines represent the computed minimum 

acceptable SNR value. 
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Results in Table 5 show that a PCG recording with a SNR equal to or higher 

than 14 dB is sufficient to estimate the time of closure of all four cardiac valves 

with an uncertainty lower than the time resolution of the recording system (1 

millisecond). It should be highlighted that this is a technically relevant limit, but it 

may even be exaggerated when considering the clinical applicability of the method. 

In fact, the plots reported in Figure 37 show that in most cases, and mainly 

concerning the semilunar valves, the variability of the estimate is extremely small 

even below the estimated threshold. Nevertheless, the mentioned SNR values 

represent a solid technical limit that should put the user in a safe position.  

The second phase of the analysis considered different possible measurement 

uncertainties to evaluate their effect on the minimum acceptable SNR value. Figure 

38 summarizes the obtained results. 

It should be highlighted that also in this case the reported results represent the 

maximum over the testing population (worst case scenario). The decreasing curves 

confirm that the methodology is robust. It can also be inferred that the time of 

closure of the atrioventricular valves, extracted from S1, is more sensitive to noise 

than the time of closure of the semilunar valves, extracted from S2. This is coherent 

 

Figure 38: Minimum acceptable SNR in function of the acceptable measurement uncertainty for 

the four cardiac valves. 
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with the fact that the time of closure of the semilunar valves is several times higher: 

percentage uncertainties over higher values produce a higher absolute error. 

Nevertheless, in clinics, percentage errors are typically more relevant than absolute 

ones. Moreover, the estimates on the left side of the heart are typically slightly more 

robust towards noise than their right counterpart. This may depend on the fact that 

the left heart components are typically wider in amplitude, due to the higher 

pressure gradients, and more easily recognizable.  

The presented curves provide a useful tool to determine the acceptable signal 

quality depending on the application of interest. For example, if a 10% accuracy is 

sufficient, a SNR equal to 10 dB ensures a reliable estimate on all four cardiac 

valves.  

In the end, Figure 39 presents the results of the validation phase, i.e., the 

sensitivity of the minimum acceptable SNR values found for the increasing 

percentage uncertainties. Each bar represents the percentage of recordings in the 

validation population that satisfied the corresponding percentage uncertainty when 

their SNR is decreased at the corresponding minimum acceptable SNR value. 

 

Figure 39: Sensitivity of the computed minimum acceptable SNR values over the validation 

population for the four cardiac valves. 
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As shown, the sensitivity of the found minimum acceptable SNR values is 

always higher than 90% for all uncertainties and all cardiac valves. This result is 

especially relevant when considering that the validation population was extracted 

from a dataset with different characteristics than what used in the testing 

population: different locations of the stethoscope, different recording conditions 

(from clinical contexts to extremely noisy domiciliary contexts), different types of 

subjects (children are included), different recording systems and users, different 

durations. It is possible to conclude that the proposed method is robust with respect 

to the sample population, the context, the recording system, the user, the duration 

of the recording and the location of the stethoscope.  

4.3.3 Discussion 

A couple of take-home messages can be derived from the results of the presented 

analysis.  

In the first place, the presented results confirm that a simple numerical metrics 

such as the SNR is a robust option to describe the quality of the PCG signal. In fact, 

the curves in Figure 37 are monotonic and show that the error on the estimate is 

well inversely correlated with the SNR of the signal, as expected. This is extremely 

useful because: 

1. The SNR is based on elementary numerical computations with a low 

computational complexity: therefore, it is apt to be embedded on the 

device and provide the user with automatic, real-time feedback on the 

signal quality. 

2. The SNR has a technical rather than physiological meaning: its 

interpretation is not affected by the presence of a pathological condition. 

3. The interpretation of the information provided by the SNR about the 

signal quality is straightforward and easily interpretable by clinicians 

but also by inexperienced users. 

Concerning the minimum acceptable SNR values that were found and validated 

in this study, a few considerations can be made. Results show that a SNR equal to 

14 dB on both heart sounds ensures an estimate with a measurement uncertainty as 

low as the time resolution of the recording system. This level of quality can easily 

be obtained by an expert user, with an average electronic stethoscope and in a 

clinical or laboratory setting. Nevertheless, the selection of the validation 

population proved that obtaining such quality in a domicile setting is not 
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straightforward. In fact, the MIT heart sounds dataset, where the validation 

population was extracted from, counted 117 recordings from various settings, 

including the patient’s domicile: only the 39% of the recordings had a starting SNR 

higher than 14 dB, and was thus selected to build up the validation population. This 

confirms that the quality of the signal is an essential characteristic to be considered 

when moving PCG to home care applications.  

As already highlighted the 14 dB limit should not be considered a limit in the 

strict sense, since higher uncertainties are typically considered acceptable in the 

clinical practice. In this concern, some considerations should be made to interpret 

the results of the proposed analysis in function of the application of interest, i.e., 

the telemonitoring of HF patients. For monitoring purposes, the acceptable 

uncertainty over the estimate is highly dictated by the order of magnitude of the 

physiological fluctuations that the CTIs are subjected to on a daily basis.  

We investigated the latter point in a single-subject study that was presented at 

the “Convegno Nazionale di Bioingegneria” conference in June 2020 (Trieste, 

Italy). Details can be found in [200]. In this pilot study, simultaneous ECG and 

single-source PCG recordings were performed on the same subjects repeatedly for 

25 consecutive days. The recordings were performed in supine position, within an 

hour from waking up, before breakfast and with the same experimental setup, with 

the goal of ensuring the highest possible repeatability of the experimental 

conditions, both from a physiological and an environmental point of view. The 

coefficients of variation (CV) of the estimates of the time of closure of the four 

cardiac valves were found equal to 8% for the mitral, 11% for the tricuspid, 2% for 

the aortic and 3% for the pulmonary [200].  

Even though the study was performed of a single subject (due to the practical 

complexity of performing a long-term analysis on a wider population), thus limiting 

the generalizability of the results, it can be used to hypothesize the order of 

magnitude of the physiological fluctuations of the time of closure over the time in 

a simulated monitoring setting. If we consider the above-enunciated CVs as a 

measure of the acceptable uncertainty and we compare, valve by valve, with the 

curves in Figure 38, it can be derived that a SNR equal to 10 dB ensures a good 

enough estimate on all cardiac valves. It can also be observed that the CVs were 

found higher for S2 than for S1, but this results in a similar acceptable SNR for the 

two heart sounds. 
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In the overall, the presented study provided us, from one side, with a method to 

automatically assess the quality of the signals in a simple, computationally 

inexpensive and straightforward way, and, on the other side, with a quantitative 

interpretation of the metrics that enables a direct feedback on the suitability of the 

signal quality depending on the application of interest. 

4.4 Spatial clustering of the signals 

After having defined a robust method to assess the quality of the multi-source 

recordings, the next problem to be faced consists in identifying the best signal or 

group of signals to be used for the estimation of the time of closure of each cardiac 

valve. The most straightforward approach consists in simply selecting the signal 

with the highest SNR for the heart sound under analysis. This conceptually 

simulates what happens with single-source PCG: the expert user moves the 

electronic stethoscope over the thorax of the patient and manually selects a point 

where the signal quality is considered sufficient according to his/her expertise. The 

same can be achieved with multi-source PCG by selecting the signal with the 

highest SNR in the processing phase. Nevertheless, this approach may not be 

optimal when a high number of channels recorded at a high spatial resolution are 

available. Indeed, a higher amount of information can be used to improve the 

robustness of the estimate and its repeatability over the time. 

Potential benefits may arise from selecting not the best auscultation point, i.e., 

the best signal, but the best auscultation area, i.e., the best subset of neighboring 

signals. Nevertheless, identifying coherent subsets of microphones for a given valve 

can be challenging when the recordings are made by inexperienced users, since the 

microphone placement on the chest may vary across recordings. In other words, 

selecting the best signal in a relevant auscultation area is not possible without 

dividing the channels in potential auscultation areas before. Therefore, the 

automated selection of the best auscultation area requires two processing steps: 

1. Dividing the channels into groups that represent potential auscultation 

areas. 

2. Selecting the best auscultation area as the group with the best 

characteristics according to some identified criteria. 

The first step is the object of the study presented in this paragraph. It should be 

highlighted that this step of the processing pipeline is exploratory: no evidence 
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exists that selecting a subset of signals produces better results than selecting a single 

signal with optimal characteristics. 

The question to be answered is: how to automatically divide the signals into 

spatially coherent groups with similar characteristics without having any 

knowledge about the spatial location of the array over the chest? Clustering may 

provide a suitable answer. 

Clustering is a family of techniques aimed at dividing the items belonging to a 

dataset into groups, or clusters, based on their similarity. The similarity is measured 

using a relevant metric, whose definition depends on the characteristics of the 

dataset and the intended use of clustering. Clustering was often used in the literature 

for purposes such as Knowledge Discovery in Data, Identification of Frequent 

Patterns, and Data Mining [201,202]. In fact, its main advantage resides in its 

suitability for use on unlabeled datasets, i.e., datasets where no a priori information 

is available regarding which group each item is expected to belong to.  

Typically, in the context of signal processing, clustering techniques are fed with 

a set of relevant features extracted from the signals. Some Authors used this 

approach for heart sounds segmentation in the past [203–210]. The choice for the 

relevant features strongly impacts the result of the clustering and must be wisely 

analyzed in the context of the application of interest. In this study, a novel approach 

was tested which performs clustering based on the signal itself and not on a set of 

features extracted from it. In fact, the signal waveforms were directly compared. To 

the best of the Author’s knowledge, no previous study exists that uses clustering 

techniques to group PCG signals into coherent clusters according to their 

morphology.  

The first challenge faced in this work consisted of defining an appropriate 

similarity measure to compare the morphology of the waveforms of different 

channels. Then, two possible clustering techniques were evaluated and compared:  

1. Hierarchical clustering, and in particular agglomerative hierarchical 

clustering. 

2. Partitional clustering, and in particular k-means. 

More details about the implementation of the two methods for the purpose of 

dividing the PCG signals into groups, along with the methodology for their 

evaluation and comparison are presented in the next paragraphs. The study 

presented in this paragraph was presented at the 2022 IEEE International 
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Symposium on Medical Measurements and Applications (MeMeA) in June 2022 

with the title “Comparison of Hierarchical and Partitional Clustering in Multi-

Source Phonocardiography” [211]. 

4.4.1 Materials and methods 

Rationale and similarity measure 

The below-described methodology was applied on the 48-channel recordings 

performed using the presented multi-source array. Pre-processing involved the 

following steps: 

1. ECG band-pass filtering (10 Hz to 35 Hz) and identification of the R-

wave peaks using the modified Pan-Tompkins algorithm. 

2. 48-channel PCG band-pass filtering (20 Hz to 100 Hz). 

3. Segmentation of the 48-channel PCG into heartbeats, where the 

heartbeat 𝑖 is defined, channel by channel, as the signal’s samples within 

the interval ]𝑅𝑖 − 100; 𝑅𝑖+1 − 100].  

4. Assessment of the signal quality using the SNR (as described in 

paragraph “4.3 Assessment of the quality of PCG signals”) and removal 

of channels with SNR < 10 dB. 

As anticipated, the goal of clustering is to divide the elements of the dataset in 

groups: in this case, the elements to be grouped are the signals recorded by different 

microphones of the multi-sensor array. It should be highlighted that the number of 

signals to be clustered may be lower than 48, because some signals may have been 

discarded in the quality assessment phase of the preprocessing. The methodology 

is applied repeatedly to each heartbeat independently. Figure 40 presents an 

example of a set of signal segments the clustering is applied to. 

For every heartbeat, two clustering methods, i.e., agglomerative hierarchical 

clustering and k-means, were employed to divide the good-quality signals into 

coherent groups. Although both methods are iterative, they differ in their approach 

to initialize and construct clusters: details are provided in the next paragraphs. The 

ultimate goal of both methods, however, is to group the elements into clusters that 

have low intra-cluster variability, indicating homogeneity, and high inter-cluster 

distance, indicating dissimilarity among clusters. 
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The most important parameter to be defined, equally for both approaches, is the 

similarity metrics. In this sense, we wanted to ground the similarity measure on the 

morphological characteristics of the signals. In this way, the signals are compared 

with each other directly, and not in terms of a set of extracted features as most 

typically done in the literature. The goal was to insert no constraint concerning the 

spatial relationship of the microphones the signals are recorded from in the 

clustering phase. Therefore, the definition of the similarity metrics was based on 

the correlation between two signal segments captured by different microphones. If 

𝑥𝑖  and 𝑥𝑗 are two signal segments corresponding to the same heartbeat recorded by 

different microphones, the distance between them 𝑑𝑖,𝑗 is calculated as: 

𝑑𝑖,𝑗 = 1 −
(𝑥𝑖 − �̅�𝑖)(𝑥𝑗 − �̅�𝑗)

′

√(𝑥𝑖 − �̅�𝑖)(𝑥𝑖 − �̅�𝑖)′√(𝑥𝑗 − �̅�𝑗)(𝑥𝑗 − �̅�𝑗)
′
 

 

Figure 40: Single-heartbeat segments recorded by the 48 microphones of the multi-sensor array. 

The grey signals were classified as poor-quality (SNR < 10 dB) and discarded. 
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According to the proposed definition, 0 < 𝑑𝑖,𝑗 < 2, where small values are 

associated with heartbeats with a similar morphology: in the extreme case, if 𝑥𝑖 =

𝑥𝑗, then 𝑑𝑖,𝑗 = 0, i.e., their distance is at its minimum. It should be highlighted that 

the defined similarity metrics is independent on the scaling: if two signals have a 

similar morphology they will be associated with a low distance even if their 

amplitude is different. For the sake of comparison, Figure 41 shows the similarity 

between the same heartbeat recorded by three different channels and the 

corresponding distances.  

Agglomerative hierarchical clustering 

In agglomerative hierarchical clustering, every element of the dataset initially 

represents a separate cluster. In each iteration, the two clusters that have the highest 

similarity metrics (or the smallest distance) are merged, until all elements belong to 

a single cluster. This process results in a hierarchical tree, called dendrogram, 

which can be cut at a certain level to obtain the final clusters. The appropriate cut 

level depends on the intended use of the clustering. One major advantage of 

 

Figure 41: Comparison between the morphology of the same heartbeat recorded by different 

microphones. If the heartbeat a) is taken as reference, the heartbeat b) has a high similarity and 

therefore a low distance whereas the heartbeat c) has a low similarity and thus a high distance. 
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hierarchical clustering is that it requires minimal initial parameters and prior 

knowledge. The user only needs to set the similarity metrics, the linkage method 

for merging clusters, and the cut level. Additionally, this method is completely 

deterministic [201,212]. 

In this study, we used the defined distance as the similarity metrics and the 

"complete linkage" as the linkage method. The complete linkage uses the farthest 

distance between elements in different clusters to select the two clusters to be 

merged. This approach yields more compact groups and identifies outlier points 

[213]. The cut level was automatically set as the iteration in which the two farthest 

clusters were merged. For the sake of brevity, agglomerative hierarchical clustering 

will be referred to as “dendrogram” in the following. 

K-means 

The k-means algorithm is a popular unsupervised ML technique used for 

clustering the elements of a dataset into k groups, where k is a priori selected. The 

algorithm starts by randomly initializing k cluster centroids, which are the center 

points of each group. Then, each item is assigned to the cluster with the nearest 

centroid based on the similarity metric. The centroid of each cluster is then updated, 

typically as the mean of the elements assigned to that cluster. This process is 

repeated iteratively until the assignment of points to clusters no longer changes, or 

a specified maximum number of iterations is reached [201]. The result is k clusters, 

each with a centroid that represents the center of the group.  

Despite its good performances in a variety of situations, the main limitation of 

k-means is that it requires the number of clusters k to be specified in advance, which 

can be challenging in some cases, depending on the clinical problem. Moreover, the 

algorithm has a stochastic nature: in fact, the final result may be influenced by the 

initial centroids, which are randomly defined. To increase the robustness of the 

methodology, the k-means algorithm is typically repeated more than once. In this 

study, k values between 5 and 10 were tried out, as suitable to identify a reasonable 

number of homogeneous areas. The algorithm was run 10 times for each k value 

and the result featuring the highest minimum inter-cluster distance was selected.  

Experimental validation 

The two clustering techniques were applied to multi-source recordings 

performed using the version of the array with homogenously distributed 

microphones. This choice was dictated by the will of studying the distribution of 
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the selected areas without any constraint posed by a non-symmetrical distribution 

of the sensors. A dataset composed of 721 heartbeats, extracted from daily repeated 

recordings on a healthy volunteer, was employed for the testing. Both 

agglomerative hierarchical clustering and k-means were applied to each heartbeat 

belonging to the sample population, independently. 

The analysis of the results included two phases. In the first phase, the agreement 

between the methods was assessed. Two tools were employed for this purpose, 

namely the contingency matrix and the Rand Index (RI). The contingency matrix 

was built by inserting in the cell with the coordinates (𝑖, 𝑗) the number of elements 

that are clustered in cluster 𝑖 by hierarchical clustering and in cluster 𝑗 by k-means. 

If 𝑎 is the number of pairs of elements that are clustered together by both 

approaches, 𝑏 is the number of pairs of elements that are clustered separately by 

both approaches and 𝑛 is the total number of elements of the dataset, the RI can be 

computed as [201]: 

𝑅𝐼 =  
𝑎 + 𝑏

(𝑛
2

)
 

According to its definition, the RI ranges from 0 to 1, with 0 corresponding to 

a complete disagreement and 1 corresponding to a complete agreement. The 

analysis was repeated twice:  

1. By selecting the number of clusters using the dendrogram and then 

running k-means with the same k. 

2. By selecting k using the k-means and then cutting the dendrogram to 

obtain the same number of clusters. 

In the second phase, each clustering technique was evaluated on its own, using 

its optimal number of clusters. Three performance metrics were employed, namely:  

• VarIntra: the maximum (worst case) intra-cluster variability, defined 

for each cluster as the average distance between elements belonging to 

the same cluster.  

• DistInter: the minimum (worst case) inter-cluster distance, defined for 

each pair of clusters as the distance between their centroids, defined as 

the median of its elements. 
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• SC: Silhouette Coefficient, defined as the average of the silhouette 

values defined for an element 𝑖 as: 

𝑠(𝑖) =  

𝑚𝑖𝑛
𝐽≠𝐼

1
𝑁𝐶𝐽

∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐽
−

1
𝑁𝐶𝐼

− 1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐼,𝑗≠𝑖

max (
1

𝑁𝐶𝐼
− 1

∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐼,𝑗≠𝑖 , 𝑚𝑖𝑛
𝐽≠𝐼

1
𝑁𝐶𝐽

∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐽
)

 

where the first addend of the numerator represents the distance from the 

closest element belonging to a different cluster (measure of the inter-

cluster distance) and the second addend is the average distance from the 

elements from the same cluster (measure of the intra-cluster variability). 

Silhouette value ranges from -1 to 1, where -1 represents a badly 

clustered element and 1 represents an optimally clustered element. 

Therefore, a SC close to 1 is associated to a good clustering, i.e., a 

clustering that ensures a good trade-off between VarIntra and DistInter. 

4.4.2 Experimental results 

Figure 42 proposes a graphical representation of the clustering obtained on the same 

randomly selected heartbeat using the two methodologies, i.e., the dendrogram and 

the k-means (10 repetitions). Each circle represents a microphone, and they are 

spatially distributed as in the physical array. Each color represents a cluster, and the 

blank circles represent discarded microphones, i.e., microphones whose recorded 

signal had a below-threshold SNR. 

Concerning k-means, the clustering results varied to some degree across 

different repetitions, which is known to depend on the stochastic nature of the 

algorithm. In this study, the final k-means clustering was chosen based on the 

highest inter-cluster distance, which was found in the second repetition in the 

proposed example. Therefore, the result of the second repetition of k-means was 

compared against the result of the dendrogram by means of the contingency matrix 

and of the RI. The results are presented in Figure 43. 
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Figure 42: Example of comparison between the clustering obtained by agglomerative hierarchical 

clustering (dendrogram) and k-means over 10 different repetitions on the same heartbeat. Each circle 

represents a microphone, and the colors of the circles highlight the clusters. The white circles represent 

microphones whose signal’s SNR was below threshold. 
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The contingency matrix proposes a detailed analysis of the agreement between 

the two methods, whereas the RI summarizes the agreement in a single value and 

enables the comparison among the heartbeats belonging to the sample population. 

Table 6 summarizes the mean and standard deviation of the RI obtained by either 

selecting the number of clusters using the dendrogram or by using the k-means. 

Table 6: Distribution of the Rand Index over the sample population. 

Heart valve 

Rand Index 

Mean Std 

Number of clusters selected 

through dendrogram 
0.88 0.05 

Number of clusters selected 

through k-means 
0.84 0.06 

 

In both cases, the RI was found higher than 0.7 for every heartbeat belonging 

to the sample population. This confirms that the agreement among the two 

approaches is good. The RI obtained when the dendrogram drives the selection of 

the optimal number of clusters is significantly higher when the Student’s t-test is 

applied with a significance level α = 0.05 (p < 0.001). It was also observed that the 

optimal number of clusters selected through the two approaches is equal only in 

26% of the heartbeats. The automatic cutting rule on the dendrogram selects a 

 

Figure 43: Example of the contingency matrix and the corresponding Rand Index for the 

clustering shown on the maps. 
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higher number of clusters in the 70% of the cases, which may be considered a better 

choice in the context based on the RI results. 

Figure 44 proposes three sets of boxplots comparing the two clustering 

approaches in terms of inter-cluster distance, intra-cluster variability and Silhouette 

Coefficient. The two approaches were applied with their own selected optimal 

number of clusters. 

It can be observed that the hierarchical approach favors the minimization of the 

intra-cluster variability at the expense of the maximization of the inter-cluster 

distance, whereas the opposite happens with k-means. Nevertheless, the SC was 

found slightly (but significantly) higher for the dendrogram. The absolute value of 

the SC was found positive for all heartbeats in the sample population and for both 

approaches, which is associated to a good clustering. 

4.4.3 Discussion 

Even with a limited sample population, the presented results allow to make some 

interesting considerations regarding the suitability of clustering for the application 

of interest and regarding the method to perform it. 

In the first place, the distribution of the channels in the clusters should be 

assessed from a spatial perspective. It should be reminded that no spatial constraint 

was inserted in the definition of the similarity metric: only the signal morphology 

was considered. In other words, the waveforms were compared to group the 

 

Figure 44: Comparison between the distribution of respectively a) the inter-cluster distance, b) the 

intra-cluster variability and c) the Silhouette Coefficient using hierarchical clustering (dendrogram) and 

k-means. 
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channels into clusters. If the clustering works correctly, it can be expected that 

signals recorded by neighboring microphones have similar waveforms and will be 

clustered together. The results of both clustering approaches show that this actually 

happens: microphones belonging to the same cluster were typically located near 

each other, indicating spatial coherence. This confirms the significance of the 

results and provides an implicit validation of the similarity metrics and of the use 

of clustering for the purpose. 

Concerning the comparison among the hierarchical and partitional clustering, a 

first take-home message from the experimental results resides in the agreement 

between the methods. The high agreement level that was found constitutes a 

validation, again, of the goodness of clustering. Little discrepancies may even be 

due to the stochastic nature of k-means: a similar level of agreement can be found 

when comparing different repetitions of the k-means algorithm over the same 

heartbeat. 

Given the high level of agreement, both techniques should be considered 

reliable to divide the channels of a multi-source recordings into coherent groups. If 

one method needs to be chosen to be embedded in the overall processing pipeline, 

the choice should better fall on agglomerative hierarchical clustering. This is partly 

due to the experimental results, which show that the latter method allows for 

obtaining a slightly better trade-off between the homogeneity of the groups and 

their distance. But even if the results were absolutely equal, agglomerative 

hierarchical clustering should be selected because of its implicitly deterministic 

nature and because it does not require to determine the number of clusters a priori. 

Therefore, the use of agglomerative hierarchical clustering to divide channels into 

coherent groups looks to be reasonable in theory and supported by the presented 

experimental data. 

4.5 Automatic identification of the best auscultation area 

The last step of the proposed processing pipeline consists of deciding which of the 

identified subset of signals is to be selected as the most appropriate auscultation 

area for each of the four cardiac valves. This is not a naïve task since the decision 

may be based on different criteria. 

Criteria may be based either on technical features of the signals, such as the 

average SNR, which we would like to maximize, or the variability of the SNR over 

the signals belonging to the same cluster, which we would like to minimize. Or may 
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be based on physiological hypotheses, such as that the time of closure should be 

minimized to minimize the propagation time in the chest, or that the variability of 

the time of closure in the same cluster should be minimized because it is 

unreasonable that close microphones pick up very different signals. 

Even if all reasonable, the mentioned criteria may be conflicting, raising issues 

regarding which criterion should be prioritized. Instead of choosing a criterion, 

multiple criteria can be considered simultaneously by using Multi-Criteria Decision 

Analysis techniques. Multi-Criteria Decision Analysis (MCDA) is a branch of 

operation research that deals with decision making problems in complex 

environments, when conflicting criteria may be taken into account [214,215]. 

Having defined a set of sub-objectives from the main general objective, the first 

step in MCDA consists of translating them into criteria, i.e. measurable variables to 

be maximized or minimized. The MCDA algorithms work on an evaluation matrix 

E, defined as an A-by-C matrix, where A is the number of possible alternatives to 

choose among and C is the number of criteria. Each element of the evaluation 

matrix is the value of a certain criterion for a certain alternative. 

Among the possible MCDA methods to evaluate the alternative against the 

mentioned criteria, Electre III [216] is particularly suitable for the application of 

interest. The latter is an aggregation method, meaning that it aims at globally 

aggregating the local information from the criteria to reach a decision. It is also an 

ordinal method, i.e., it builds on pairwise comparisons of alternatives (and not on 

an individual score). This allows for avoiding a total compensation among criteria 

(a very good score of one criterion does not compensate a very bad score of another 

one). What mentioned makes Electre III a suitable method to face the decision-

making problem under analysis, from a theoretical point of view.  

The use of MCDA in healthcare has been explored in the last decade in the 

context of clinical decision making, for both screening and treatment purposes 

[217]. Nevertheless, novel applications may arise by employing MCDA for 

automatic decision making, as required in telemonitoring. 

The goal of the study presented in this paragraph is to test the use of a MCDA 

approach, using Electre III, against the use of single criteria for the selection of the 

cluster representing the best auscultation area. The study presented in this paragraph 

was presented at the 2022 Computing in Cardiology (CinC) conference in 

September 2022 entitled “Automatic Identification of the Best Auscultation Area 
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for the Estimation of the Time of Closure of Heart Valves through Multi-Source 

Phonocardiography” [218].  

4.5.1 Materials and methods 

Pre-processing 

The same pre-processing as in paragraph “4.4 Spatial clustering of the signals” 

was carried out, involving the following steps: 

1. ECG band-pass filtering (10 Hz to 35 Hz) and identification of the R-

wave peaks using the modified Pan-Tompkins algorithm. 

2. 48-channel PCG band-pass filtering (20 Hz to 100 Hz). 

3. Segmentation of the 48-channel PCG into heartbeats, where the 

heartbeat 𝑖 is defined, channel by channel, as the signal’s samples within 

the interval ]𝑅𝑖 − 100; 𝑅𝑖+1 − 100].  

4. Assessment of the signal quality using the SNR (as described in 

paragraph “4.3 Assessment of the quality of PCG signals”) and removal 

of channels with an SNR < 10 dB. 

5. Agglomerative hierarchical clustering (as described in paragraph “4.4 

Spatial clustering of the signals”). 

The output of the pre-processing phase consists of, for each heartbeat and for 

each channel: 

• A label which assigns the channel to a cluster.  

• The SNR value of S1 and S2. 

• The estimated time of closure for each cardiac valve. 

Multi-criteria Decision Analysis 

After having divided the channels into homogenous subsets, the next step is 

defining which cluster is to be used to estimate the time of closure of the four heart 

valves. What described in the following is repeated for each heart valve. The latency 

of the heart valve under analysis is generally referred to as RSx,y (with {x,y} = 

{1,M}, {1,T}, {2,A}, {2,P}). 

The first step of MCDA is the definition of the sub-objectives to be translated 

into quantifiable criteria. In the application under analysis, we identified four sub-

objectives to be considered for selecting the cluster: 
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• Sub-objective 1: to obtain an estimation as close as possible to the real 

time of closure of the heart valve, it is needed to minimize the time of 

propagation of the acoustic waves across the biological tissues. 

• Sub-objective 2: to obtain a robust estimation, it is preferable to select 

a cluster where the estimated latencies are as similar as possible. 

• Sub-objective 3: to obtain a technically reliable estimation, from the 

signal processing point of view, it is preferable to select a cluster 

containing good-quality signals. 

• Sub-objective 4: to obtain a robust estimation also from the technical 

point of view, it is preferable to select a cluster where the quality of the 

signals is as similar as possible. 

To apply MCDA, we translated the above-mentioned sub-objectives into four 

measurable criteria, which should be either minimized or maximized: 

• Criterion 1: the average of the latency value estimated by each of the 

channels belonging to the cluster (RSx,y). To be minimized. 

• Criterion 2: the difference between the maximum and the minimum 

latency values estimated by channels belonging to the cluster 

(RSx,y_var). To be minimized. 

• Criterion 3: the average of the SNR values of the channels belonging to 

the cluster (SNR). To be maximized. 

• Criterion 4: the difference between the maximum and the minimum 

SNR values of the channels belonging to the cluster (SNR_var). To be 

minimized. 

The evaluation matrix was built using as alternatives to choose from the 

identified clusters and as criteria the four above-mentioned ones. Each element of 

the evaluation matrix is the value of a certain criterion for a certain alternative (for 

example, the value of the RSx,y latency for the cluster 1). Afterwards, Electre III 

method was applied to the defined evaluation matrix, heartbeat by heartbeat. The 

outcome of Electre III was the subset of signals to be selected according to the 

multiple criteria taken into account. 

Experimental validation 

The same sample population described in paragraph “4.4 Spatial clustering of 

the signals” was employed. As anticipated, the dataset was acquired on the same 

healthy volunteer over daily recordings. Instead of putting all the heartbeats 
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together, as in the previous study, the one-minute recordings were kept separate. 

The recordings were performed over 5 consecutive days, roughly at the same time 

(± one hour) and in a repeatable laboratory setting. The experimental protocol was 

defined as described to simulate, to some extent, the telemonitoring application of 

interest. 

In this study we explored 3 possible decision approaches: 

1. Maximization of the SNR, as an expression of the signal quality 

(technical criterion).  

2. Minimization of the time of closure of each cardiac valve (physiological 

criterion).  

3. The above-described approach based on MCDA, which allows us to 

consider all the described criteria simultaneously. 

First, a visual evaluation of the results was performed by plotting the maps of 

the hits. For each recording and each approach, a map was realized where each 

circle represents a microphone, and the color of the circle represents the number of 

times that microphone was selected by each of the three decision approaches as part 

of the best auscultation area. In this way, insight about the dispersion of the selected 

microphones over the beats could be obtained. In fact, the selected best auscultation 

area was expected not to vary much over the heartbeats of the same recording. 

Then, the time of closure estimated through three proposed approaches for the 

selection of the best auscultation areas were compared among each other and 

against the time of closure estimated by selecting the single signal with the highest 

SNR. The latter simulates a traditional single-source PCG approach, where an 

expert user selects the best auscultation point by moving around the electronic 

stethoscope over the expected auscultation areas until they find the best quality. The 

comparison was performed in terms of mean and standard deviation of the 

estimated time of closure. 

4.5.2 Experimental results 

Before the aggregated results are presented, an overview of the individual results 

of the clustering and MCDA phase on a single, randomly selected heartbeat are 

proposed. The mitral valve was considered. For this purpose, Figure 45 shows: 

A. The dendrogram obtained performing agglomerative hierarchical clustering 

on the above-threshold channels of the selected heartbeat. 
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B. A map representing the spatial distribution of the signals divided into 

clusters. 

C. The resulting evaluation matrix, where in each cell there is the value of a 

specific criterion (on the rows) by each cluster (on the columns). 

D. The outranking matrix resulting from the application of Electre III, showing 

the obtained outranking relationship among each pair of clusters. 

E. The resulting distillation graph, which plots the rank of each cluster 

according to the ascending and descending distillation. The best cluster is 

the one on the top right corner on the main bisector. 

 

Figure 45: Results of the various phases of the proposed pipeline on a randomly selected heartbeat 

for the mitral valve: A) dendrogram, B) map of the signals divided in clusters, C) evaluation matrix, D) 

outranking matrix and E) distillation graph generated by Electre III. 
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Cluster number 5 was selected in the proposed example, which shows the best 

trade-off between the values of the criteria. As shown, the average time of closure 

is not minimized, but the selected cluster outranks all the other clusters due to the 

values of the other criteria. The minimization of the time of closure would be 

achieved by cluster number 1, but the latter has the smallest average SNR: the 

weirdly low time of closure may be due to an error in the estimate, given the 

severely lower quality of the signals belonging to the cluster. In this sense, cluster 

number 5 allows to obtain the best trade-off among the multiple criteria of interest.  

Figure 46 presents the maps of the hits obtained for the three approaches on the 

recording performed on the first day of analysis. The mitral valve is considered.  

 

Figure 46: Maps of the hits for the mitral valve obtained on the recording performed on day 1 

using the three approaches: A) minimum time of closure, B) maximum quality, C) MCDA. 
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It can be observed in the first two maps that the best quality criterion and the 

minimum time of closure criterion led to the selection of different auscultation 

areas. A disagreement between the criteria reinforces the idea that MCDA is a 

valuable tool to find the best trade-off among multiple involved criteria. In this case, 

it can be observed that the auscultation area selected through MCDA is most similar 

to what selected using the SNR approach (also due to the higher weight assigned to 

the quality criteria), but the final estimate is slightly lower, which is preferable. The 

maps also show that the dispersion of the values over the map is low, meaning that 

the selected area is coherent over the heartbeats. 

In the end, the results of the proposed approach are presented, i.e., the 

comparison among the time of closure obtained by the three presented approaches 

against the simulated single-source approach. The resulting time of closure (mean 

and standard deviation band) are plotted in Figure 47, where each point of the time 

axis represents a consecutive recording day, as in a real telemonitoring application. 

Results show that the standard deviation band of the three multi-source 

approaches is thinner, in every recording day, than the standard deviation band of 

the single-source approach. This proves that, independently on the approach for 

selecting the best auscultation area, multi-source PCG allows for obtaining a more 

stable and accurate estimate of the time of closure of the heart valves over the days.  

When comparing the different approaches for the automatic selection of the 

best auscultation area, it can be observed that the maximum SNR approach leads to 

the most unstable estimates. On the other side, the estimates obtained through 

MCDA are coherent to what obtained selecting the cluster with the minimum time 

of closure, but are theoretically more robust. 

4.5.3 Discussion 

A first consideration to be made after observing the presented results is that the task 

of channel selection is definitely not naïve. Single-criterion approaches led to 

consistent definitions of the best auscultation area: the maps of hits proposed in 

Figure 46 show that the area is well defined in all proposed approaches, with a low 

spatial variability of the selected microphones. Given that the clusters were found 

to group together neighboring microphones, as inferred in paragraph “4.4 Spatial 

clustering of the signals”, this means that most often the same cluster was selected. 

This is relevant to conclude that the combination of clustering and cluster selection 

can produce consistent results across heartbeats. Nevertheless, the maps of hits also 
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show that single criteria may be conflicting, even if they are both quite reasonable. 

The experimental application of the designed pipeline shows that the reality is 

probably more complicated than the theory.  

 

Figure 47: Comparison of the time of closure obtained through: A) the simulated single-source 

approach, B) the MCDA approach, C) the minimum time of closure approach, D) the maximum quality 

approach. The dots represent the mean value, the dashed area represents the standard deviation band 

over each recording. 
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On a second level of analysis, the comparison between the single-source 

approach and the multi-source approach shows that selecting a subset of 

microphones instead of a single microphone improves the robustness of the estimate 

of the time of closure. This is true regardless of the method for the cluster selection. 

Keeping in mind that the maps of the hits show that signals from the same area are 

always selected, this proved more robust than selecting a single channel, which 

probably fluctuates more.   

Concerning the comparison between single- and multi-criteria approaches, it 

should be first underlined that, from a clinical perspective, the most straightforward 

choice for the selection criterion would be the signal quality. This is associated to 

the clinical experience in the field of auscultation: the cardiologist typically moves 

around the stethoscope on the desired area to find the point where the most audible 

sound is heard. Nevertheless, results show that adding other criteria to the signal 

quality may be relevant to improve the robustness of the estimate: in fact, the 

estimate obtained by maximizing the SNR is the one that decreases the least the 

standard deviation of the estimate itself. It should be highlighted that a certain level 

of variability of the estimate is physiological, particularly on the right heart valves 

that are affected the most by respiration. Nevertheless, a higher variability using 

different methods is most probably associated to errors in the estimate. The lower 

variability obtained using MCDA instead of a SNR-based approach may suggest 

that inserting some physiological constraint may be helpful. 

In the end, it should be highlighted that the presented results should be 

considered as preliminary. A thorough validation of the proposed approach on a 

wider sample population is required, not only to ensure that the MCDA approach 

works better than its single-criterion counterparts, but also to explore the use of 

different possible criteria and to optimize the definition of the Electre III 

parameters. A further criterion to be explored, for example, is the prominence of 

the split between the two components, which should be maximized to obtain the 

highest level of differentiability between them.  

4.6 Signal selection or signal combination? 

As anticipated in the Introduction to this section, two main approaches can be 

conceived to deal with multi-source recordings: signal selection and signal 

combination. This is true with a whatsoever number of available channels. With 

some decades of available channels, as in the proposed system, this is particularly 

relevant and even hybrid approaches could be designed. 
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The proposed signal processing pipeline explores a signal selection approach.  

Nevertheless, some explorative analysis on signal combination was carried out in 

the context of this project. In particular, the viability of a Blind Source Separation 

(BSS) approach was investigated.  

Blind Source Separation is a family of techniques that are typically employed 

in acoustics to separate a number of source signals from a set of recordings 

performed on at different spatial positions. Each recording can be regarded to as a 

mixture of the source signals, that need to be identified and separated. The 

advantage of BSS technique is that they require no a priori knowledge about the 

sources, nor the geometry of the recording system, nor the mixture mechanism 

[220]. Some previous works explored the use of BSS techniques in the context of 

heart sounds, with two main goals: the separation of the heart sounds from lung 

sounds, for denoising purposes, and the separation of fetal heart sounds from 

maternal sounds.  A few Authors previously explored the use of BSS to separate 

the contributions of different cardiac structures [221–224]. To the Author’s best 

knowledge, no previous work successfully separated the contribution of the left and 

right side of the heart to separately identify the two components of the two heart 

sounds via BSS. 

To fill this gap, a preliminary study was conducted. The study was presented at 

the 2020 IEEE International Symposium on Medical Measurements and 

Applications (MeMeA) in June 2020 entitled “A Method for the Estimation of the 

Timing of Heart Sound Components Through Blind Source Separation in Multi-

Source Phonocardiography” [225]. 

The study was conducted on 3-channel recordings performed on 12 healthy 

volunteers. The 3 microphones were located by an expert user on the pulmonary, 

tricuspid and mitral areas. The goal of using 3 channels instead of 48 was to reduce 

the complexity of the problem. Given that the maximum number of source signals 

that can be separated using BSS is equal to the number of available recordings, we 

aimed at separating three source signals: 

• Contribution of the left side of the heart 

• Contribution of the right side of the heart 

• Contribution of noise 
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The rationale of the proposed approach is graphically summarized in Figure 48.  

For the separation phase, Independent Component Analysis (ICA) was 

performed. The latter method consists of transforming the signals into a suitable 

statistical domain where the components are the most independent. Two different 

algorithms for ICA were tested, namely FastICA and Joint Approximation of 

Diagonalization of Eigenmatrices (JADE). The first is the most common ICA 

choice because it’s highly efficient. It aims at maximizing the independence of the 

components by maximizing a measure of their non-gaussianity (kurtosis). JADE is 

based on the construction and diagonalization of a fourth-order cumulant tensor 

from the data. Further details can be found in [225]. 

Results were quite promising. First, the two algorithms provided consistent 

results. The application of one-way Analysis of Variance (ANOVA) resulted in a 

very high p-value for all cardiac valves, showing that the results were not 

statistically different. Moreover, a visual inspection of the separation of the 

components showed that the separated source signals were coherent to what 

expected from the analysis of the single-source recording. Figure 49 shows an 

example of what stated on a single heartbeat. 

When compared against the single-source reference, the two BSS-based 

approaches proved a higher consistency with each other. Even though a thorough 

validation would be needed, this may be interpreted as a potential increased 

accuracy. 

 

Figure 48: Rationale of the tested 3-channel BSS approach devoted to separate the contribution of 

the left and right sides of the heart to better identify the heart sounds components. 
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From what observed in the above-described preliminary study, a BSS-based 

approach may be promising. This is even more relevant when the problem is moved 

to a 48-channel space, where more source signals could be identified and thus the 

contributions of more anatomical structures separated. Nevertheless, besides being 

so appealing, BSS presents some challenges that need to be solved. A main 

conceptual issue regards the independence of the sources to be separated. In fact, 

even though the two overlapping sounds are generated by two distinct valves, i.e., 

two distinct anatomical structures, the mechanical processes that generate the two 

sounds are interacting: the contraction of each side of the heart is not completely 

independent on the other [182]. Moreover, the application of BSS techniques to a 

high number of recordings is definitely more challenging than its application to a 

few simultaneous recordings: the level of complexity of source separation is way 

higher when the number of sources is increased ad should be properly dealt with.  

In the overall, it can be stated that the exploration of both a signal selection and 

a signal combination approach can open to novel interesting processing possibilities 

devoted to increase the robustness of the estimate of the time of closure of the 

cardiac valves for multi-source PCG recordings at a high spatial resolution. A 

combination of the two approaches may be of interest when a high number of 

channels is available, as with the designed multi-sensor array. 

 

 

Figure 49: Comparison between the heart sounds components identified on a single-source signal 

against on separated source signals. 

 



  

 



  

 

Chapter 5 

Pre-clinical validation 

5.1 Introduction 

A fundamental stage of every novel biomedical device is its clinical validation. In 

fact, even if thorough evidence exists in the literature that the approach the device 

grounds on is solid, nothing replaces the experimental evidence of its functioning 

on the target patients. Nevertheless, clinical validation is to be considered the last 

stage of the validation process: before going to the clinics, every novel approach 

should prove its functioning in a pre-clinical setting.  

The multi-sensor system proposed in this work grounds on two main 

assumptions that need to be validated in a pre-clinical validation phase. 

The first assumption is related to the physiological aspect of the project. Based 

on the literature review presented in paragraph “2.3.2 Cardiac Time Intervals and 

Heart Failure”, it was hypothesized that the monitoring of the CTIs, extracted from 

ECG-PCG noninvasive recordings, can be used as a surrogate of the monitoring of 

the intracardiac pressures. Nevertheless, this assumption must be verified. In fact, 

both the aspects, i.e., the designed multi-sensor array, and the signal processing 

pipeline, may impact the predictive value of the extracted parameters.  

To validate this first assumption, the correlation between the features extracted 

from the signals and the intracardiac pressures must be assessed. Before clinically 

validating this point on patients affected by HF, a pre-clinical validation was 
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performed in this work on an animal model. The advantage of the employment of 

animals is the possibility of designing a reversible experiment that involves actively 

triggering changes in the intracardiac pressures, which would not be feasible in 

humans. A detailed description of the experimental protocol, the analysis that was 

carried out and the experimental results is presented in paragraph “5.2 Validation 

on animal model”. 

The second assumption is related to the technical aspect of the project. As 

explained in paragraph “3.1 Conceptualization of the array”, the multi-sensor array 

was specifically designed with the purpose of enabling the application of PCG in a 

homecare scenario, which is not ensured by traditional single-source systems. This 

translates into a usability test: the multi-sensor array must prove to be usable 

directly by its target users, i.e., the patient or (most often) a caregiver.  

Before designing a more complex experimental protocol to clinically validate 

the usability of the system by its target users in a real home monitoring setting, a 

pre-clinical validation on healthy subjects in a simulate laboratory environment was 

carried out. In fact, to give the system to real patients, a further re-engineering step 

is required: the actual prototype still requires a computer for the recording, which 

is not straightforward for all users. The most critical aspect of the usability concerns 

the positioning of the array of the chest: this feature can be verified on healthy 

subjects in a laboratory setting without losing generalizability. A detailed 

description of the experimental protocol, the analysis that was carried out and the 

experimental results, are presented in paragraph “5.3 Validation on healthy 

subjects”. 

5.2 Validation on animal model 

As anticipated, a validation of the physiological hypothesis the proposed approach 

grounds on, i.e., the hypothesis that the monitoring of the intracardiac pressures can 

be performed noninvasively thanks to the heart sounds, was carried out by means 

of an animal study. This study, presented in this paragraph, was conducted during 

a 5-month visiting period of the author at the CardioTech research group, 

Department of Health Science and Technology, Aalborg University (DK), under 

the supervision of Prof. Samuel Emil Schmidt. The experimental protocol was 

designed Prof. Schmidt and conducted at the Aalborg University Hospital under the 

supervision of Dr. Benedict Kjærgaard. 
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The following paragraphs provide details about the conceptualization and the 

design of the experimental protocol and about the analysis conducted on the 

gathered experimental data. The experimental protocol and its efficacy to produce 

reversible PAP changes in the animals were presented by Prof. Samuel Emil 

Schmidt at the 2022 Computing in Cardiology (CinC) conference in September 

2022 with the title “Porcine model for validation of noninvasive estimation of 

pulmonary artery pressure”. They will be summarized in the next paragraphs. The 

processing phase is still ongoing: the results obtained by recording the heart sounds 

using the multi-sensor array should be considered as preliminary. 

5.2.1 Motivation for the animal model 

As motivated in paragraph “2.2 Monitoring of heart failure patients: state of the 

art”, CardioMEMS™ by Abbott (Chicago, Illinois, US) is currently the gold 

standard device for the monitoring of patients affected by HF. The CardioMEMS™ 

hemodynamic monitor is a miniaturized pressure sensor implanted in the 

pulmonary artery. Therefore, CardioMEMS™ monitoring grounds on the 

monitoring of the PAP. The availability of a noninvasive alternative to 

CardioMEMS™, i.e., a system capable of noninvasively monitor the PAP, is 

appealing. 

The use of heart sounds to monitor the status of decompensation of the patients 

affected by HF grounds on the assumption that changes in the intracardiac pressures 

affect the time of closure of the cardiac valves. As shown in paragraph “2.3.2 

Cardiac Time Intervals and Heart Failure”, a fair amount of experience was gained 

over the years within the scientific community about the correlation between the 

CTIs and the functionality of the heart, but further validation is needed concerning 

the correlation between the CTIs and the intracardiac pressures.  

When the focus is placed on PAP, the analysis of S2 is of particular interest. In 

fact, S2 is generated by the closure of the aortic and pulmonary valves: if changes 

in the PAP occur, they are expected to primarily affect the pulmonary component 

of S2, and thus to provoke changes in the S2 split, i.e. the time separation between 

the aortic component (A2) and the pulmonary component (P2). In particular, a raise 

in the PAP is expected to be associated with a prolongation of the S2 split. In a 

previous study, Xu et al. investigated the problem in a porcine animal model and 

found a strong correlation between the split of S2, normalized with respect to 

cardiac cycle, and the systolic and mean PAP [226]. Their experimental protocol 
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was designed to change the PAP level to three different levels (normal, moderate 

PH, severe PH) [226].  

In this work, the experimental protocol was designed with the scope of enabling 

a controlled, continuous, and reversible modification of the intracardiac pressures 

of the animal. This is dictated by two main reasons. On the ethical side, a reversible 

experiment allows the investigator to repeat the experiment multiple times on the 

same animal and thus reduces the number of animals that are required to obtain 

sufficient data to demonstrate the scientific hypothesis. On the technical side, a 

reversible experiment provides the possibility of tracking both the ascending and 

descending phase of the intracardiac pressure. Indeed, both phases may be 

interesting from a monitoring point of view, to track both the worsening and the 

recovery of the HF-patient from an acute episode. Moreover, the possibility of 

monitoring the PAP in a continuous fashion is novel and closer to the real-life 

scenario. 

5.2.2 Experimental protocol  

Experimental setup 

The experimental protocol was developed for use on a porcine model. The latter 

choice was dictated by the fact that the pig has the most similar cardiovascular 

system to the human and is therefore the typical choice for cardiovascular animal 

studies. The protocol was applied to Danish Landrace pigs (also known as Danish 

bacon). The pigs were anesthetized and mechanically ventilated throughout the 

experiment. 

Two catheters were employed for the recording of the intracardiac pressures. 

Arterial catheterization provided the measurement of the systemic blood pressure 

measured in the aorta. A Swan-Ganz catheter was used for the monitoring of the 

pressure in the heart. As anticipated, the goal of the study consists of determining 

the correlation between the S2 split and the PAP. Nevertheless, placing the tip of 

the catheter inside the PA is not fully convenient in this case: in fact, the Swan-

Ganz catheter would need to be inserted through the pulmonary valve, and thus it 

would affect its closure and the generated S2. To work this issue around, the tip of 

the catheter was placed in the RV. As it can be observed in Figure 7 (which 

represents the pressures in the left side of the heart, but the same relative 

relationships exist on the right side), in the systolic phase of the cardiac cycle the 

pressure in the PA equals the pressure in the RV. Therefore, the systolic RV 

pressure (RVPs) can be used as a surrogate for the systolic PA pressure (PAPs). 
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In the overall, the following vital signs were monitored throughout the 

experiment and visualized on the surgical monitor: 

• Heart rate (HR) 

• Systolic pressure in the aorta (SBP) 

• Diastolic pressure in the aorta (DBP) 

• Systolic pressure in the RV (RVPs) 

• Diastolic pressure in the RV (RVPd) 

• Oxygen saturation (SpO2) 

The values for each vital sign were automatically recorded every 10 seconds, 

i.e., with a 0.1 Hz sampling frequency. 

The experiment was first designed with the scope of extracting the S2 split from 

SCG recordings. For the purpose, two triaxial accelerometers were employed: one 

located over the fourth intercostal space next to the sternum (IC4) and one over the 

lower border of the sternum. The two triaxial accelerometer signals were recorded 

through an iWrox™ commercial system for the recording of biomedical signals, 

with a sampling frequency of 5 kHz. A simultaneous ECG was recorded.  

For the testing of the multi-sensor array presented in this work, the 

accelerometers were removed, and the multi-sensor array was placed on the thorax 

of the animal. The dimensions of the array were not optimized for the shape and 

dimensions of the chest of a pig, but the flexibility of the array enabled its adaptation 

to the animal. The contact between the animal skin and the multi-sensor array was 

ensured by means of an elastic band. Figure 50 proposes a graphical representation 

of the experimental setup, both in the original setup with the two accelerometers 

and in the modified setup with the multi-sensor array. 

Provocation of pulmonary hypertension 

Two types of experiment were designed to provoke PH, using two different 

kinds of triggers. Both triggers were aimed at causing PH acting on some 

physiological mechanisms, but they are meant to provoke a different systemic 

reaction. In this way, the change in the PAP is not always associated with the same 

changes in the other vital signs.  

The first kind of experiment was based on the provocation of a condition of 

hypoxemia in the animal. The latter was obtained through a mechanism known as 

hypoxic pulmonary vasoconstriction, that was triggered through nitrogen 
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asphyxiation: the oxygen supply through the ventilator was replaced by nitrogen. 

From a physiological perspective, a low oxygen concentration in the inspired air 

causes localized vasoconstriction of the pulmonary capillaries at an alveolar level, 

devoted to divert the blood to areas of the lungs characterized by a higher ventilation 

[227]. An increased pressure at pulmonary capillaries level reflects in the PA and 

provokes a rise in the PAP.  

The second kind of experiment was based on the provocation of a condition of 

hypercapnia in the animal. In this case, the condition was obtained by means of 

carbon dioxide asphyxiation: the oxygen supply was replaced by CO2 and the CO2 

absorber was removed, to further increase the CO2 concentration and its effect. The 

physiological mechanism at the base of the hypercapnic pulmonary 

vasoconstriction is similar to what described for hypoxemia, and, again, results in 

an increase of the PAP [228].  

In both types of experiment, the trigger was removed, i.e., normal oxygen 

supply was provided again through the ventilator and, in case it was removed, the 

CO2 absorber was put back in place, when either the RVPs reached a plateau or in 

case of severe arrhythmias. In both cases, the cardiovascular system of the animal 

was expected to return to the baseline condition after a proper amount of time. 

 For each animal, the following experimental protocol was executed: 

 

Figure 50: Graphical presentation of the experimental setup, in its original conceptualization (A) 

and adapted for the validation of the multi-sensor array (B). 
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1. Baseline. A 1-minute recording was performed before any trigger was 

provided. 

2. Hypoxemia. While recording, the hypoxemic trigger was provided and 

kept until the RVPs reached a plateau or severe arrhythmias arose. 

Then the trigger was removed and the recording was continued until 

the animal was again in a stable condition. 

3. Hypercapnia. While recording, the hypercapnic trigger was provided 

and kept until the RVPs reached a plateau or severe arrhythmias arose. 

Then the trigger was removed and the recording was continued until 

the animal was again in a stable condition. 

Hypoxemia and hypercapnia experiments were repeated iteratively, always 

waiting until the animal was back to a stable condition, until the Clinical Supervisor 

decided that the baseline condition was compromised.  

5.2.3 Sample population and efficacy of the model 

The experimental protocol was executed on 11 Danish Landrace pigs. Pigs with a 

weight of around 30 kg were selected for the study. Three pigs were used for the 

SCG experiment alone, whereas 8 pigs were also equipped with the designed multi-

sensor array. As anticipated, in each experiment, either SCG or multi-source PCG 

was recorded. 

A total number of 71 experiments were carried out. Among them, 58 were 

included in the sample population: in the remaining experiments, no increase in the 

RVPs was observed when the trigger was applied. The recordings were almost 

equally divided between hypoxemia and hypercapnia experiments (30 vs 28). 

Among the 58 available experiments, heart sounds were recorded using the triaxial 

accelerometers in 42 recordings and using the designed multi-sensor array in 16 

recordings.  

As a first analysis, the effect of the triggers on the monitored physiological 

variables was assessed, partly to verify that the rise in the PAP occurs as expected, 

partly to determine the effect on the other physiological variables that could affect 

the timing of the cardiac valves, such as the heart rate and the systolic blood 

pressure. Figure 51 presents the relative variations of the heart rate, the SBP, the 

RVPs and the SpO2 in function of the elapsed time from the start of the trigger.  
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It can be observed that both triggers provoke a consistent rise in the RVPs and 

in the HR, but the effect of the hypercapnic is stronger than that of the hypoxemic 

triggers. On the contrary, a diverse effect was observed on the SBP: the hypoxemic 

trigger was followed by a decrease in the SBP, whereas the hypercapnia caused the 

SBP to strongly increase. This is an interesting effect from the perspective of the 

correlation analysis: the effect of the pressures in the pulmonary circuit and in the 

systemic circuit can be differentiated and the changes in the S2 split can be more 

safely associated with the changes of the correct pressure. Concerning the SpO2, 

the trend confirms that the trigger provoked the expected effect in terms of oxygen 

saturation: the hypoxemic trigger actually causes hypoxemia, as the severe decrease 

in SpO2 confirms, whereas the hypercapnic trigger does not. Table 7 presents the 

values of the HR, the RVPs and the SBP for the baseline (i.e., the first recorded 

value), and the peak of the trigger (i.e., the maximum value of the RVPs) for both 

the hypoxemic and the hypercapnic triggers. 

 

 

Figure 51: Changes produced in the monitored physiological parameters when the hypoxemic 

trigger (A) or the hypercapnic trigger (B) is applied. 
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Table 7: Comparison of the baseline and peak values of the monitored 

physiological variables, both in hypoxemic and hypercapnic experiments.  

Physiological 

variable 

Hypoxemia Hypercapnia 

Baseline Peak Baseline Peak 

HR (bpm) 76 ± 15  105 ± 29 72 ± 20  123 ± 46 

RVPs (mmHg) 29 ± 10  48 ± 12 28 ± 10  61 ± 21 

SBP (mmHg) 124 ± 19  112 ± 27 127 ± 22  224 ± 67 

 

Even though the trend of the physiological variables is repeatable over the 

experiments, even across different animals, the variability is high. If on one side 

this strengthens the validity of the results of the correlation analysis (if obtained), 

one the other side it complicates the analysis because a different combination of the 

physiological variables may provoke a different effect on the heart sounds. 

In the end, the repeatability of the experiments was verified by checking if the 

baseline values over subsequent experiments performed on the same animal were 

significantly different or not. The values were found not to be significantly different 

for HR, RVPs, and SBP.  

5.2.4 Correlation between S2 split and PAP 

For the purposes of this work, only the analysis of the experiments performed using 

the multi-source array is presented in this paragraph. The analysis involved 16 

experiments, carried out over 8 pigs. Among them, 9 hypoxemic and 7 hypercapnic 

experiments are described. The methods of analysis and the preliminary results over 

the reduced sample population are presented in the next paragraphs. 

Methods 

Given the complexity of the experiments, which involved the combined effect 

of the variations of multiple physiological variables, a first-level analysis involved 

the visual inspection of the recordings. Afterwards, a quantitative correlation 

analysis was carried out. 
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Given that no morphological analysis is typically performed on the heart 

sounds, because no clear interpretation exists on the waveform of the sounds, the 

visual inspection was not performed directly on signals. Instead, a 200-millisecond-

long segment containing the S2 was first segmented from the signal, to create a N-

by-M matrix where N is the number of heartbeats and M is 200 samples. The matrix 

was then visualized as an image, with the heartbeats of the recording on the x-axis 

and the time of the S2 segments on the y-axis. This method found inspiration from 

what described in [181].  

For a better visualization of the changes in the S2 split, the S2 segments were 

visualized both before and after alignment. In fact, the latency of S2 with respect to 

the QRS complex is strongly influenced by the heart rate, which is not constant over 

time during the experiment. Since the focus of this analysis is on the changes in the 

S2 split, the variability of the RS2,A and RS2,P timing may be misleading. The 

alignment was performed by computing the cross-correlation between each 

segment and the median segment and compensating for the delay estimated as the 

maximum of the cross-correlation function.  

The changes in the heart sounds were visually compared to the changes in the 

physiological variables, and to RVPs in particular. 

As a second-level analysis, the quantitative correlation between the S2 split of 

the heart sounds and the corresponding RVPs, used as a surrogate for the PAP, was 

computed. To estimate the S2 splits, the signal processing pipeline described in 

section “Error! Reference source not found.” was applied to the recordings. The S

2 split was defined, beat-by-beat, as the time difference between the located aortic 

component and the located pulmonary component. The RVPs value corresponding 

to each beat was computed by interpolation of the monitored RVPs signal. In the 

end, a S2 split value and a RVPs value were available for each heartbeat. Both 

arrays were low-pass filtered by applying a moving average of 60 heartbeats to 

highlight the trend. 

The correlation analysis was first performed on three levels: experiment-by-

experiment, animal-by-animal, and in the overall. The goals are different. The 

overall analysis is interesting to understand if a single linear model can describe the 

relationship between PAP and S2 split in general, from a physiological point of 

view. This would be extremely interesting for generalization purposes: 

nevertheless, it’s also especially challenging given the multitude of other 

physiological variables potentially involved. On the other side, the experiment-by-
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experiment analysis and the animal-by-animal analysis are more related to the final 

scope, i.e., the monitoring of the PAP over the time. In fact, it can be hypothesized 

that each subject is characterized by a different combination between the baseline 

PAP and the baseline S2 split. Given that the monitoring is patient-wise, the relative 

changes of the physiological variables within the same subject are more important 

than the absolute variable of the parameters.  

Correlation was estimated by means of the Pearson correlation coefficient.   

Preliminary results 

Figure 52 shows an example of the visual inspection phase performed on a 

single experiment. The matrices of the S2 segments, realized as described above, 

are represented in the form of images. Both the S2 segments and their envelope are 

shown, before and after the alignment step. The figure also shows the trend of the 

S2 split estimated from the signal and the monitored RVPs.  

It should be noted that the proposed example shows a very good match between 

the S2 split and the RVPs, corresponding to a Pearson correlation coefficient as 

high as 0.93. In other cases, the relationship between the two is less visible, and the 

variability of the S2 segments is much higher. In the proposed example, instead, the 

progressive separation of the aortic and pulmonary components of S2 at the rise of 

the RVPs is clearly recognizable. Even though the separation is visible in the S2 

segments, the use of the Shannon Energy envelope strongly highlights the 

components. It should be highlighted that the aortic component is stronger in 

amplitude and in energy than the pulmonary, as expected, and that the pulmonary 

component is more affected by the respiration.  

Figure 53 presents a graphical representation of the Pearson correlation 

coefficients, with their confidence intervals, for every experiment where the multi-

sensor array was employed and the best channel was selected.  

In the vast majority of the experiments, the estimated S2 split was found to be 

strongly correlated with the RVPs, i.e., with the PAP. Only one experiment resulted 

in a negative correlation and one experiment in a weak positive correlation: these 

cases should be object of further analysis in the future to understand if the changes 

of other physiological variables played a role. A median Pearson correlation 

coefficient as high as 0.71 was found. 
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Concerning the pig-by-pig analysis, Figure 54 presents a pig-by-pig 

comparison between the estimated S2 split and the corresponding RVPs. On each 

pig, one to three experiments were performed with the multi-sensor array. 

A qualitative analysis of the plots confirms that in every pig the changes in the 

S2 split are consistent with the changes in the RVPs, i.e., in the PAP. Nevertheless, 

the S2 split is characterized by a much higher variability, which decreases the 

 

Figure 52: Example for a single experiment. Representation by images of the S2 segments, before and 

after alignment, and their envelope. Comparison between the resulting S2 split and the monitored RVPs. 
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correlation between the variables. This suggests that the correlation is present, but 

the S2 split estimate can be improved. The median Pearson correlation coefficient 

was found equal to 0.68, which is not significantly lower than what obtained in the 

experiment-by-experiment analysis.  

Table 8 reports the correlation coefficient found in the three levels of the 

analysis: the median correlation coefficient of the experiment-by-experiment phase, 

the median correlation coefficient of the pig-by-pig phase and the overall 

correlation coefficient. 

Table 8: Correlation coefficient obtained in the three phases of analysis.  

 
Single 

experiments 

(median) 

Single 

animals 

(median) 

Overall 

Pearson correlation 

coefficient 
0.71  0.68 0.23 

 

 

Figure 53: Correlation coefficient between S2 split and RVPs of each recording. The red circles 

represent the estimated R, whereas the blue lines represent the confidence interval. 
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It can be observed that the overall correlation is weak. This can be explained 

by the fact that each pig has a different combination of baseline PAP and baseline 

S2 split, as it can be observed in Figure 54.  

 

Figure 54: Pig-by-pig comparison between the S2 split and the RVPs over time. Each panel 

represents the physilogical variables of a different pig. 
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Discussion 

As anticipated, the results presented in this paragraph are to be considered as 

preliminary: if on one side they confirm the physiological hypothesis that a 

correlation exists between the timing of the heart sounds and the intracardiac 

pressures, on the other side a multitude of further research questions arise from the 

presented analysis. 

A first point of focus regards the complexity of the experiment and thus of the 

analyses that can be done. Both the hypoxemic and hypercapnic triggers provoke 

extreme physiological states in the animal. If this results, on one side, on strong and 

steady variations of the PAP, which is beneficial to study its effect on the heart 

sounds, it also causes extreme variations in the heart rate and in the systemic blood 

pressure (among the others). This also results from the visual inspection of the 

images constructed by stacking the S2 segments and their envelopes: the variations 

in the heart sounds over the recording are clearly recognizable, but not always as 

easy explained as in the case of the example proposed in Figure 52. 

Therefore, even if at this stage the correlation of the S2 split and the PAP was 

assessed, a more complex model of the changes in the time of closure of the four 

cardiac valves (and particularly of the semilunar valves, which are mostly affected 

by changes at the pulmonary level) including the changes of multiple physiological 

variables may be required. This will be the object of future work. 

From the presented results, it can be derived that a positive correlation exists 

between the split of the aortic and pulmonary components in S2 and the PAP on the 

same subject. In other words, a rise in the PAP delays the closure of the pulmonary 

valve with respect to the closure of the aortic valve. This is coherent to what 

expected from physiology and what suggested from previous studies [226]. 

Nevertheless, the relationship between the S2 split and the PAP over the general 

population is not easily derived: if the correlation is strong when comparing values 

recorded on the same subject, even across different recordings and different 

experiments (hypoxemic or hypercapnic), this does not hold when values recorded 

on different animals are put together. This is mainly due to the fact that baseline S2 

split and PAP values are different across different animals. 

The presented finding does not limit the applicability of the approach in home 

care telemonitoring: since the monitoring is performed independently on each 

subject, a personalized ground truth could be constructed when the subject is in a 

verified compensated state and relative variations with respect to the ground truth 
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could be recognized from the S2 split, according to the presented results. 

Nevertheless, the existence of a general correlation should not be excluded: a 

further analysis of the impact of the other physiological variables may provide a 

better insight into the matter. 

From the technical point of view, the interpretation of the results is threefold. 

On one hand, the existence of a strong correlation in the vast majority of the 

recordings proves that the processing pipeline leads to reasonable estimates of the 

time of closure of the cardiac valves. On the other hand, the trend in the S2 split is 

affected by a higher variability than the trend in the RVPs, which is expected to be 

the result of errors in the estimates on some heartbeats. This suggests that the 

separation of the two components, which is the most critical processing phase, can 

still be improved. On a third level, the comparison between the visual inspection of 

the heart sounds and the trends of the extracted heart sounds components may be 

an interesting validation tool: for example, in experiment number 6 (Figure 53) the 

correlation coefficient was found to be negative, but the trend in the S2 split was 

found to be consistent with the changes in the heart sounds that could be visualized 

in the images. This tells us that the reason of the negative correlation should not be 

searched for in the estimation algorithm, but in the physiological domain. 

In conclusion, the above-presented preliminary results confirm that a positive 

correlation exists between some time features extracted from the heart sounds and 

some intracardiac pressures. This constitutes, to some extent, a validation of the 

hypothesis this work grounds on. On the other side, the analysis can be extended 

and opens to the construction of a more complex model of the effect of the changes 

of some physiological variables (and their combination) on the time of closure of 

the four cardiac valves. 

5.3 Validation on healthy subjects 

As anticipated, the pre-clinical validation on healthy subjects was designed with the 

purpose of validating the usability of the multi-sensor array by inexperienced users. 

This translates, as a primary goal, in validating that the multi-sensor array can be 

successfully positioned over the chest of a subject by someone with no clinical nor 

technical knowledge about auscultation. As a secondary goal, the device should 

ensure a good fit on the broadest possible population. Indeed, the device was 

designed as a noninvasive alternative to invasive hemodynamic monitors: the main 

advantage resides in enlarging the pool of at-risk patients that can benefit from the 

monitoring.  
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The validation was carried out at the PolitoBIOMed Lab at Politecnico di Torino. 

It was articulated in two phases: in the first, the usability was assessed on the multi-

source PCG recordings alone; in the second, the results obtained with the multi-

source PCG approach was compared to what obtained through the traditional 

single-source approach. Details about the experimental protocols and the performed 

analyses are the object of the next paragraphs. 

5.3.1 Experimental protocol 

To achieve the goal, volunteers were enrolled for the experiment with the following 

exclusion criteria: 

• Medical or technical education in the field of auscultation 

• Declared presence or history of cardiovascular diseases. 

The goal of the first exclusion criterion was to ensure that the volunteers could 

be considered inexperienced with respect to auscultation, and in particular with 

respect to the correct positioning of the stethoscope over the chest. On the other 

side, the second exclusion criterion was meant to limit the experiment to healthy 

subjects, to ensure that no pathological conditions affect the analysis and to obtain 

a baseline for the quality and the CTIs.  

The experimental protocol simulated a real-life home monitoring scenario, 

where a caregiver performs the recording on a patient. For this purpose, volunteers 

were enrolled in couples. Upon their arrival, the volunteers were thoroughly 

explained the scope and methods of the experiment and asked to sign an informed 

consent. Then, in each couple, volunteers were randomly labelled as Subject A and 

Subject B.  

First, Subject A was assigned the role of the patient and Subject B the role of 

the caregiver. The experiment articulated in three phases: 

Phase 1: Multi-source PCG recording by inexperienced user. The 

volunteer-caregiver was asked to read a simple set of instructions on how to use 

multi-sensor array. Figure 55 shows the instructions paper. 
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In the meanwhile, height, weight, and thoracic circumference of the volunteer-

patient were measured by the investigator. Then, the volunteer-patient was asked to 

lay on an examination table in a supine position with a bare thorax. When the 

volunteer-caregiver was ready, he/she was asked to locate the multi-sensor array on 

the volunteer-patient and to fix it with an elastic band. No feedback whatsoever was 

given by the investigators. A 5-minute recording was then performed. The 

volunteer-patient was asked to stay still and quiet throughout the recording and to 

breath normally.  

Phase 2: Single-source PCG recording (left heart) by expert user. An 

investigator, acting the role of the expert user, removed the multi-sensor array from 

 

Figure 55: Instructions provided to the volunteer-caregiver on how to locate the multi-sensor array 

on the chest of the volunteer-patient. 
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the chest of the volunteer-patient and set up the single-source system. The 

ReMotus™ system described in paragraph “4.3 Assessment of the quality of PCG 

signals” was employed. The investigator placed three Ag/AgCl disposable 

electrodes to recreate a first standard lead. The two active electrodes were located 

in the left and right sub-clavicular areas, along the mid-clavicular lines, whereas the 

reference electrode was located on the right side of the abdomen. Two microphone 

probes were located over the: 

1. Mitral area: fifth left intercostal space, along the mid-clavicular line. 

2. Aortic area: second right intercostal space, next to the border of the 

sternum. 

A 5-minute recording was performed in this setting. 

Phase 3: Single-source PCG recording (right heart) by expert user. The 

investigator changed the positions of the microphone probes and located them over 

the: 

1. Tricuspid area: fourth left intercostal space, next to the border of the 

sternum. 

2. Pulmonary area: second left intercostal space, next to the border of the 

sternum. 

A 5-minute recording was performed in this setting. 

Figure 56 compares the positioning of the sensors in the three phases of the 

experiment and the traditional auscultation areas.  

At the end, the roles were reversed: Subject A was assigned the role of the 

caregiver and Subject B was assigned the role of the patient. The three above-

described phases were repeated with the same modalities. In the end, for each 

subject, the following signals were available: 

• One 5-minute 48-channel PCG recording at high spatial resolution. 

• Four 5-minute single-channel PCG recordings, each one optimized for 

a different cardiac valve. 

The described experimental protocol was approved by the Research Ethics 

Committee of Politecnico di Torino (protocol number 16863/2021). 



146 5.3 Validation on healthy subjects 

 

 

Sample population 

Forty-two volunteers were enrolled in the study to constitute the sample population. 

The subjects were heterogeneous in terms of biological sex (50% females) and body 

shape. The body shape was described in terms of Body Mass Index (BMI) and 

thoracic circumference. Figure 57 presents the distribution of BMI and thoracic 

circumference in the sample population, in function of the gender.  

5.3.2 Validation of usability 

The validation of usability is of fundamental importance because it determines 

whether the designed multi-sensor array achieves the primary goal it was designed 

for. The usability articulates in two different analyses: 

 

Figure 56: Comparison between the traditional auscultation areas (A) and the positioning of the 

sensors in the three phases of the experimental protocol (B-D). 
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1. Usability by inexperienced users. 

2. Usability on a wide range of body types. 

The first analysis is aimed at determining whether the multi-sensor array 

enables users with no technical nor clinical experience, as the patient or a caregiver, 

to record signals apt to estimate the CTIs for monitoring purposes. The second 

analysis is aimed at determining if the characteristics of the chest of the subject 

affect the quality of the recordings and thus limit the target population of the device. 

This is required for every wearable device. The usability on a wide range of body 

types should not be taken for granted: it is reasonable to hypothesize that factors 

like the presence of breasts or the presence of a thick interposed layer of fat or 

muscular tissue could increase the filtering effect of the biological tissues and in 

turn cause a decreased intensity of the vibrations produced by the closure of the 

cardiac valves on the skin. What stated was also suggested by previous studies in 

the field of heart sounds analysis [152,187].  

The next paragraphs will provide details about the method of analysis and the 

experimental results, along with their discussion. Part of the analysis presented in 

this paragraph was accepted for poster presentation at the VIII Congress of the 

National Group of Bioengineering (GNB) entitled “Usability of a multi-sensor 

array for the application of electro-phonocardiography in home care”.  

 

Figure 57: Violin plots of the distributions of respectively BMI and thoracic circumference, 

differentiating the biological sex, over the sample population. 
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Rationale and methods 

For the first goal, the usability of the device was defined as the capability of 

inexperienced users of carrying out a recording through the device which can be 

used to reliably estimate the CTIs. This translates into a quality assessment of the 

recording, which requires to be classified as good quality for the purpose of 

estimating the time of closure of the four cardiac valves.  

It was found in the study presented in paragraph “4.3 Assessment of the quality 

of PCG signals” that a SNR higher than 13 dB for S1 and 14 dB for S2 ensures an 

absolute error on the estimate lower than the temporal resolution of the recording 

system (1 millisecond) [198]. Therefore, it can be stated that if an inexperienced 

user can obtain a recording with a SNR higher than 13 dB for S1 and 14 dB for S2, 

the said recording can be reliably used to estimate the CTIs. Therefore, the usability 

of the multi-sensor array was evaluated as the percentage of multi-source recordings 

with an above-threshold SNR for both S1 and S2. 

At the first level of analysis, the best SNR of each recording was considered to 

demonstrate that at least one good single-channel recording could be achieved by 

all inexperienced volunteers. The percentage of recordings with the best SNR 

higher than the thresholds was computed for this purpose. The analysis was 

conducted on both raw and filtered PCG signals. Filtered signals were obtained 

from raw signals by means of a band-pass IIR Chebyshev II filter between 20 Hz 

and 100 Hz. 

A second-level analysis involved assessing the percentage of channels with an 

above-threshold SNR, recording by recording. If a high number of channels present 

a good quality even in recordings performed by inexperienced user, this could give 

an insight into the possibility of differentiating the auscultation areas in a home 

monitoring. In the end, the spatial distribution of the SNR over the chest across the 

subjects was visually inspected to investigate the consistence with the expected 

auscultation areas. 

For the second goal, the usability of the device was defined as the possibility 

of obtaining good-quality recordings on a broad population, regardless of their body 

type. For this scope, the body shape of the subject was described in terms of: 

• Biological sex (categorical variable, male or female). 

• BMI (continuous variable, expressed in kg/m2). 

• Thoracic circumference (continuous variable, expressed in cm). 
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The correlation between the SNR of respectively S1 and S2 and each of the 

above-defined descriptors of the body shape was evaluated. The correlation was 

computed by means of the point biserial correlation for categorical variables 

(biological sex) and by means of Pearson correlation coefficient for continuous 

variables (BMI and thoracic circumference). If a correlation is found, a regression 

line is computed with the scope of defining the limits of applicability of the device. 

Results 

Concerning the usability by inexperienced users, Figure 58 shows the boxplots 

of the distribution of the best SNR for respectively S1 and S2, in respectively the 

raw and filtered recordings.  

The two distributions (raw and filtered) provide a different kind of information. 

An above-threshold SNR on the raw recordings confirms that the subject could 

perform a good quality recording, regardless of the goodness of the signal 

processing. Even in case the quality of the original recordings was low, an above-

threshold SNR on the filtered signals ensures that the features of interest can be 

reliably extracted provided that appropriate signal processing is performed.  

In the tested sample population, all recordings achieved an above-threshold 

SNR on both heart sounds even before any digital filtering was applied. As a result, 

100% of the inexperienced users could successfully perform the task of recording 

the heart sounds on a peer by means of the multi-sensor array. If the filtered signals 

are taken into consideration, the average best SNR was found as high as 24 dB for 

both heart sounds, which proves that excellent-quality recordings are achievable in 

a telemonitoring context.  

When considering the different channels independently, the average percentage 

of channels resulting in an above-threshold SNR was found to be 55% for S1 and 

64% for S2. The difference is consistent with the slightly higher values of the SNR 

of S2 resulting from the distributions in Figure 58. It can be stated that on average 

more than half of the available channels can be used for further processing. This in 

turn enables the use of both signal selection and signal combination techniques on 

multi-source recordings: in fact, it can be hypothesized that some good-quality 

signals are available in each of the forecasted auscultation areas.  

As a confirmation of what stated, Figure 59 presents a graphical mapping of 

the percentage of recordings were respectively the SNR of S1 is higher than the 

SNR of S2 and the other way round. In other words, the map in panel A shows a 
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higher intensity on the channels where the S1 is prevalent, whereas the map in panel 

B shows a higher intensity on the channels where the S2 is prevalent.  

It can be observed that the channels presenting the highest quality on S1 are 

located in the lower side of the left lower side of the map, which is consistent with 

the expected positioning of the device over the chest. In fact, the mentioned area of 

the map corresponds to the mitral and tricuspid auscultation areas. On the contrary, 

the highest quality on S2 is found in the channels in the upper side of the array, 

corresponding to the aortic and pulmonary valves. 

Concerning the effect of the characteristics of the chest, Figure 60 shows the 

scatter plots of the SNR of respectively S1 and S2 in function of each of the three 

descriptors of the body type, namely BMI, thoracic circumference and gender.  

Table 9 includes the correlation coefficients that were found between the SNR 

of respectively S1 and S2 and each of the three descriptors of the body type. The 

values in brackets represent the confidence interval of the correlation coefficient. 

The * highlights the correlation coefficients that were found statistically significant 

(α = 0.05).  

 

Figure 58: Boxplots of the distributions of the SNR of S1 and S2 over the sample population, 

before and after filtering. 
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Figure 59: Maps of the percentage of recordings belonging to the sample population with 

respectively A) the SNR of S1 higher than the SNR of S2 and B) the SNR of S2 higher than the SNR of 

S1. Each circle represents a microphone, the color represents the percentage according to the colorbar. 
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Table 9: Correlation coefficients between the SNR of S1 and S2 and the 

descriptors of the body type.  

Descriptor of the body 

type 

Correlation against 

SNR S1 

Correlation against 

the SNR S2 

Sex 
0.00  

(-0.30 – 0.31) 

0.35 * 

(0.06 – 0.60) 

BMI 
-0.03 

(-0.33 – 0.28) 

-0.53 * 

(-0.72 - -0.27) 

Thoracic circumference 
-0.16 

(-0.44 – 0.15) 

-0.48 * 

(-0.68 – -0.21) 

 

Results show that no correlation is present between the signal quality of S1 and 

the characteristics of the chest of the subject. On the contrary, a weak to moderate 

correlation was found between the quality of S2 and the biological sex, the BMI 

and the thoracic circumference. In particular, a wider thorax and a higher BMI 

(which are most typically found in male subjects) seem to be associated with a lower 

quality of S2. To further investigate the effect of body shape in the real-life 

applicability of the multi-sensor array, we used a linear regression model to predict 

the threshold of respectively BMI and thoracic circumference that would 

theoretically lead to an under-threshold SNR for S2. Table 10 reports the results. 

Table 10: Linear regression of the SNR of S2 against BMI and thoracic 

circumference.  

Linear regression SNR S2 vs BMI 
SNR S2 vs thoracic 

circumference 

Regression coefficient -0.35 dB/kg/m2 -0.08 dB/cm 

Intercept 28.14 dB 26.85 dB 

Predicted value of the 

anatomical feature @ 

SNR S2 = 14 dB 

39.88 kg/m2 171 cm 
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The resulting predicted values for BMI and thoracic circumference, 

respectively equal to 39.88 kg/m2 and 171 cm, are extreme values. As a reference, 

a BMI of 40 kg/m2 determines the threshold for class 3 obesity, which affects less 

than the 2% of the population in developed countries [229].  

Discussion 

The results of the validation of the usability of the device can be considered 

extremely promising to demonstrate that the approach proposed in this work can 

overcome the limits of traditional PCG for the use by the patient or a caregiver in a 

domicile setting. From the results of the analysis on the usability by inexperienced 

users, it is possible to conclude that the multi-sensor array achieves its primary goal, 

i.e., obtaining a PCG signal of good to excellent quality even if the device is 

positioned by a user with no clinical nor technical skills. This is by itself a validation 

of the designed multi-sensor array for the purposed goal. 

 

Figure 60: Scatter plots of the SNR of S1 and S2, in function of the BMI, the thoracic 

circumference and the biological sex, respectively. 
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A more thorough analysis of the spatial distribution of the recordings according 

to their quality shows that not only naïve users can successfully record heart sounds 

from a peer by means of the array, but also that a high number of good-quality 

signals is achievable and that the positioning is consistent to the instructions. 

Therefore, the multi-sensor array not only enables inexperienced users to gain the 

same information that an expert user would gain through a traditional single-source 

system but also to gain access to a greater insight.  

In other words, the multi-sensor array successfully achieves its primary goal 

but goes further and allows a real multi-source analysis, even when inexperienced 

users perform the recording. In this sense, the array opens to completely new 

possibilities of analysis that could be of use not only in domiciliary monitoring but 

also in an ambulatory setting.  

The applicability to a broad population is a secondary key requirement for the 

final application. It should be highlighted that design decisions were made with the 

scope of ensuring the ergonomics of the device, from the dimensions to the 

flexibility of the pad. Nevertheless, the success of the proposed approach had to be 

experimentally evaluated. 

The experimental results confirmed that good-quality signals could be recorded 

from every subject belonging to the sampling population, regardless the presence 

of breasts, the BMI, and the thoracic circumference. A difference was found among 

S1 and S2: the quality of S1 was not affected by the body type, whereas the quality 

of S2 was. A weak to moderate correlation was found between the quality of S2 and 

the descriptors of the anatomy of the chest. This may be due to physiological 

reasons, besides to the propagation of the acoustic waves: in fact, a condition of 

overweight or obesity can produce a higher load on the cardiac output, which affects 

the closure of the semilunar valves more directly than the atrioventricular ones.   

The regression analysis showed that the theoretical limits on the BMI and 

thoracic circumference that would cause the quality of S2 to become too poor for a 

reliable estimate of the time of closure of the aortic and pulmonary valves are 

extreme. It should be highlighted that, given that the correlation is not strong, the 

regression analysis should be performed on a wider population for robustness. 

Nevertheless, if the found limits hold, they would limit the applicability of the 

device to the 98% of the population, when it comes to the anatomy of the thorax. 
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The possibility of using the multi-sensor array on the broadest possible 

population is a key factor to increase its value. In fact, the monitoring of the CTIs 

through ECG and multi-source PCG was first proposed as a noninvasive alternative 

to invasive hemodynamic sensors such as CardioMEMS™. The greatest value of 

the noninvasive approach against its invasive counterpart resides in the possibility 

of reaching a wider at-risk population: to achieve this goal successfully, the multi-

sensor array should not be constrained to be used on an “optimal” body type, but 

should be usable regardless the characteristics of the chest of the patient. In the 

worst case, if such constraints exist, they should be quantified so that the use of the 

multi-sensor array can properly be inserted in the clinical pathway of the patients 

only if they can effectively benefit from its use.  

From the experimental results of this phase of the analysis, it can be concluded 

that the multi-sensor array enables inexperienced volunteers to record signals of 

sufficient quality for the estimate of the CTIs regardless of their anatomical 

characteristics. This is a fundamental preliminary confirmation that the multi-

sensor array is worth testing in a real home monitoring setting and with at-risk 

patients for HF, which should be the next validation step.  

5.3.3 Validation against single-source PCG 

The validation against a single-source PCG system is used, in this work, as a gold 

standard for comparison. Single-source PCG cannot be considered a gold standard 

in the broad sense for the estimate of the CTIs: echocardiography and cardiac 

catheterization are currently used for the purpose in clinics. Nevertheless, the goal 

of this work is to propose a system that can replace single-source PCG in a home 

care setting: the question that this validation phase is aimed at answering is not 

whether PCG is a valid method to estimate the CTIs against the gold standard 

(cardiac catheterization, echocardiography) or not, but whether the proposed multi-

source PCG approach enables the use of PCG by inexperienced users against the 

traditional single-source PCG approach, performed by an expert user by locating 

the well-known auscultation areas. In this sense, single-source PCG can be used as 

a gold standard for the purposes of this analysis. 

The comparison between the single-source PCG performed by an expert user 

ad the multi-source PCG performed by an inexperienced user was analyzed in two 

phases: 

1. The quality of the signals obtained through each system was compared. 
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2. The time of closure of the four cardiac valves estimated through each 

system was compared. As a final analysis, the main CTIs were 

computed and compared. 

The next paragraphs will describe the methods of the analysis and the 

experimental results obtained on the sample population, along with their discussion. 

Rationale and methods 

First, the quality of the multi-source recordings performed by inexperienced 

users was compared against the quality of the single-source recordings performed 

by expert users over the four traditional auscultation areas.  

To achieve the purposed goal, the microphones of the array were divided in 

four areas, according to the theoretical auscultation areas. This choice was made 

after having experimentally confirmed that the distribution of the signal quality over 

the channels was consistent with the expected auscultation areas, as shown in 

paragraph “5.3.2 Validation of usability”. Figure 61 shows the correspondence 

between each auscultation area and its associated microphones.  

From each area, the microphone with the highest SNR was selected, to simulate 

what the expert user physically does when he/she positions the stethoscope over the 

chest. For each cardiac valve, the SNR of the single-source signal was statistically 

compared against the SNR of the selected microphone in the multi-source recording 

using a paired Student’s t-test (α = 0.05). 

Then, the times of closure of each cardiac valve were extracted from the single-

source and multi-source PCG recordings. The single-source recordings were 

processed using the method described in [168] and summarized in paragraph “4.2 

Estimation of the time of closure of the cardiac valves”. Four single-source 

recordings were performed, one on each auscultation area: the time of closure of 

each cardiac valve was extracted from the signal recorded over the corresponding 

auscultation area. In the end, for each cardiac valve, an array containing its time of 

closure for each recorded heartbeat was obtained. The multi-source recordings were 

processed using the full pipeline described in chapter “Error! Reference source n

ot found.”, where the channels are divided in potential auscultation areas through 

clustering and the best auscultation area is selected by means of MCDA. Also in 

this case, an array containing the time of closure of each cardiac valve for each 

recorded heartbeat was available in the end. 
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The comparison between the series of results could not be performed directly, 

because it was found that the heart rate was not stable across the recordings. In fact, 

a physiological relaxation took place along the experiment and caused a decrease 

 

Figure 61: Comparison between the positioning of the single-source stethoscope over the four 

auscultation areas (A, C, E, G) and the corresponding microphones in the multi-sensor array (B, D, F, 

H).  
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in the heart rate over the time. The effect of heart rate was compensated by 

considering the normalized time of closure. The latter was obtained by dividing the 

real time of closure by the corresponding RR interval and corresponds to the 

percentage of the cardiac cycle. To obtain the corresponding value in milliseconds, 

which is needed to estimate the CTIs from the time of closure, the normalized time 

of closure estimated through the single-source system was multiplied by the average 

RR interval obtained with the multi-source system. 

The comparison between the time of closure of the cardiac valves obtained 

through the two approaches was carried out by computing on three levels, for each 

cardiac valve: 

1. The two distributions were compared through the rank-sum Wilcoxon 

test (α = 0.05) to check if they were statistically different. 

2. The Pearson correlation coefficient between the distributions was 

computed. 

3. The Root Mean Squared Error and the Normalized Root Mean Squared 

Error between the distributions were estimated to quantify the 

difference among the estimates. 

In the end, the following CTIs were computed: 

• EMAT: difference between the time of closure of the mitral valve and 

the Q wave in the ECG. 

• cEMAT: EMAT divided by the RR interval. 

• LVST: difference between the time of closure of the aortic valve and 

the time of closure of the mitral valve. 

• EMAT/LVST: ratio between EMAT and LVST. 

For each CTI, the two distributions were compared through the rank-sum 

Wilcoxon test (α = 0.05) to check if they are statistically different. 

Results 

The first analysis investigates the compared quality of S1 and S2 obtained 

through the single-source and multi-source systems, optimized for each cardiac 

valve. Figure 62 presents the boxplots of the distribution of the SNR values for each 

auscultation area.  
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Complementarily, Table 11 presents a comparison between the average SNR 

over the sample population for each cardiac valve. The table also reports the p-value 

of the Student’s t-test applied to each comparison: the * highlights the comparisons 

which resulted as statistically different. 

Table 11: Average SNR of the signals obtained by the two systems 

optimized for each auscultation area.  

Cardiac valve 
Single-source 

SNR (dB) 

Multi-source 

SNR (dB) 

Student’s t-test  

p-value 

Mitral 21.4 21.8 0.59 

Tricuspid 21.0 22.9 0.008 * 

Aortic 17.1 18.1 0.19 

Pulmonary 18.9 22.4 < 0.001 * 

 

 

Figure 62: Boxplots of the distribution of the SNR of respectively the single-source and the multi-

source recordings for each cardiac valve. 
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The average SNR was found to be statistically different only for the valves of 

the right side of the heart. In this case, the SNR obtained using the multi-sensor 

array was found statistically higher by 1.9 dB for the tricuspid and 3.5 dB for the 

pulmonary valve. In the case of the mitral and aortic valves, instead, the two 

systems were found equivalent with respect to the signal quality. 

Concerning the time of closure of the four cardiac valves, Figure 63 (panels A 

to D) presents a plot of the distribution of the estimated values subject-wise. The 

lines represent the mean of the distribution for each subject whereas the shaded area 

represents the standard deviation. Panel E presents the mean values in the form of 

a scatter plot: theoretically, the points should lie on the bisector. 

The plots show the corrected mean value for the single-source PCG, i.e., the 

value corrected by the heart rate. The results presented in Figure 63 qualitatively 

show that the two systems provide comparable results. The results of the statistical 

comparison of the values obtained through the systems are presented in Table 12.  

Table 12: Results of the statistical comparison between the time of closure 

of each cardiac valve obtained through single-source and multi-source PCG.  

Cardiac valve 
p-value 

Wilcoxon test 

Pearson 

coefficient 

RMSE 

(ms) 
NRMSE 

Mitral 0.92 0.60 9 0.19 

Tricuspid 0.04 0.66 14 0.16 

Aortic 0.29 0.93 17 0.07 

Pulmonary 0.47 0.88 20 0.07 

 

The results of the Wilcoxon test show that the time of closure of the mitral, 

aortic, and pulmonary valves are not statistically different when estimated using 

single-source and multi-source PCG. On the contrary, the time of closure of the 

tricuspid valve was found to be significantly different, even though the p-value is 

at the limits of the confidence level. A moderate to strong correlation was found for 

the atrioventricular valves, whereas a very strong correlation was found for the  
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Figure 63: Plots of the time of closure of each cardiac valve estimated by single-source PCG 

recordings performed by an expert user in the traditional auscultation areas and by multi-source PCG 

recordings performed by inexperienced users through the described multi-sensors array. 
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semilunar valves. The NRMSE was found to be higher for the atrioventricular 

valves than for the semilunar valves.  

In the end, Figure 64 presents the boxplots of the CTIs obtained on the sample 

population using each of the two systems. The horizontal lines represent the 

thresholds that were found in the literature search presented in paragraph “2.3.2 

Cardiac Time Intervals and Heart Failure” to determine the normality ranges, and 

are equal to: 

• EMAT < 100 ms. 

• cEMAT < 0.15. 

• LVST > 270 ms. 

• EMAT/LVST < 0.4. 

The green areas represent the normality ranges, the red area the ranges where 

the value of the CTI is associated with an impairment of the cardiac functionality.  

Given that the presence of an existing or previous condition of cardiopathy was 

considered an exclusion criterion for the enrollment of the subjects, it is expected 

that all CTIs follow within the normality ranges. The experimental results confirm 

this assumption. The statistical comparison of the two distributions resulted, for all 

CTIs, in a p-value higher than the significance level.    

Discussion 

The experimental results of the comparison between the single-source system 

used by an expert user on the four traditional auscultation areas and the multi-source 

system used by an inexperienced user complete with the processing pipeline are 

definitely encouraging. 

From the point of view of the signal quality, the comparison between the 

systems proves the success of the proposed multi-source approach. In fact, even 

though the multi-source recordings were performed by inexperienced users, they 

demonstrated an equal or higher quality than their single-source counterpart, 

recorded by an expert user.  It should also be highlighted that the average SNR 

obtained by the two systems is slightly higher than the average SNR obtained on a 

publicly available dataset (PhysioNet CinC Challenge 2016 [199] – recordings from 

training set “a” from the MIT), which was found equal to 17 dB for S1 and 15 dB 

for S2. This confirms that the proposed system has characteristics in line with the 

state of the art. 
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The experimental results show that the multi-sensor array is superior to the 

single-source system regardless of the skills of the user. In this sense, it could be 

interesting to evaluate the use of the device even in an ambulatory setting or in an 

emergency department. In fact, it was proved in previous studies that the 

auscultation performed by a general clinical practitioner or by a physician with a 

different specialty is not equivalent to the auscultation performed by a cardiologist 

[230]. The availability of the proposed multi-sensor array could simplify the 

procedure of obtaining good-quality recordings regardless the specialty of the 

clinical practitioner in charge, in an efficient way: the four cardiac valves could be 

auscultated simultaneously, thus shortening the duration of the exam, and without 

the need of expert staff.  

Concerning the estimate of the time of closure of the four cardiac valves, the 

experimental results show that mostly consistent results could be obtained through 

the two systems. The statistical comparison between the distributions highlighted 

 

Figure 64: Boxplots of the CTIs estimated by the single-source and multi-source PCG recordings. 

The horizontal lines represent the thresholds proposed in the literature to distinguish a normal vs abnormal 

cardiac functionality. The green area represents the normality area. 
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that only the estimate of the time of closure is significantly different, even though 

the p-value was found to be at the limit of the confidence level, suggesting a 

borderline situation. The result is not surprising and is coherent with the physiology 

of the two heart sounds: if the closure of the semilunar valves is the sole 

contribution to S2, the generation of S1 is more complex and most often more than 

two contributors can be hypothesized (for example the opening of the aortic valve 

is known to contribute to the generation of the sound to some extent). This can mask 

the tricuspid component, which is lower in amplitude than the mitral. From a 

technical point of view, this translates to a higher difficulty in accurately identifying 

and separating the tricuspid component. 

A very strong correlation was found on the semilunar valves: this demonstrates 

that the method works very well when it comes to separating the components of S2. 

The correlation is present but lighter in the case of the atrioventricular valves. This 

is mainly linked to the difficulties in correctly detecting the tricuspid component of 

S1: sometimes the latter can influence the detection of the mitral component since 

the two are performed together. A similar finding was derived from the NRMSE, 

which was found to be significantly higher for the atrioventricular valves than for 

the semilunar.  

It should be noted that reasonable CTIs can be extracted from the recordings 

performed using either approach, since all CTIs were found to lie in the normality 

range, as expected. Moreover, the distributions were found not to be statistically 

different for all the CTIs. 

The analysis on the signal quality combined with the analysis of the 

quantification of the error in the estimate proves that there is room for an 

improvement of the algorithm for the identification of the two components of the 

heart sounds. This is particularly relevant for S1. In fact, even though good quality 

recordings can be obtained by either system, the partial agreement between them 

can be attributed to a partially diverse detected components in the heart sounds. As 

anticipated in the introduction to paragraph “4.2 Estimation of the time of closure 

of the cardiac valves”, some other approaches for the identification of the time of 

closure of the cardiac valves exist and could be tested in the future. Nevertheless, 

the separation of the components of the heart sounds is still an open problem in the 

scientific community. 
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5.3.4 Final remarks 

The pre-clinical validation of the multi-sensor array on a population of healthy 

individuals proposed in this paragraph led to some important take-home messages. 

On one side, the analysis of the usability proved that inexperienced users can 

successfully use the array to obtain a good-quality PCG recording, even without 

technical or clinical experience with auscultation. The latter results were obtained 

in a simulated home-care scenario: the promising findings found in this phase 

suggest that the analysis can be repeated in a real-life home setting with real patients 

for clinical validation. On the other hand, successfully testing the device on a 

population featuring a variety of different body types is highly encouraging to 

hypothesize that the proposed monitoring approach can broaden the target 

population, to include not only patients already affected by HF but also at-risk 

patients, with no restrictive limits regarding the physical characteristics. From this 

point of view, the multi-sensor array proved to achieve the goals it was designed 

for, at least in a pre-clinical phase. 

When it comes to comparing the proposed system against the “gold standard” 

single-source PCG recording performed on the traditional auscultation areas by an 

expert user, the experimental results are slightly more controversial. The quality of 

the recordings obtained by inexperienced users through the array was found to be 

equal or higher than the quality obtained by an expert user through the traditional 

system. This can be regarded as further proof of the suitability of the designed array 

for telemonitoring in a homecare setting.  

Concerning the extraction of the CTIs, the preliminary results presented in this 

paragraph show that the estimates obtained by the two systems are consistent but 

can be improved. This is hypothesized to be related to the algorithm for the 

separation of the components of the heart sounds: since the quality of the recordings 

is comparable, no clue exists that the reason is to be searched in the hardware part 

of the project. On the contrary, the separation of the components is known to be a 

critical aspect in the PCG processing panorama. Nevertheless, the sample 

population acquired in this work can serve as basis to optimize the algorithms in 

the future.  

 



  

 



  

 

Chapter 6 

Conclusions 

6.1 Resume of the project 

The project described in this work had an ambitious goal: to move a step further in 

the noninvasive monitoring of patients at-risk for decompensation episodes of heart 

failure. The goal is described as ambitious because it aims at reducing the mortality 

of one of the most burdensome diseases in the developed countries. From this 

perspective, the approach presented in this work has a clear clinical relevance and 

finds straightforward applicability in the clinical domain. 

The proposed solution for the noninvasive home monitoring of the status of 

heart failure patients grounds on three main assumptions: 

1. Pathophysiology confirms that the first changes before an acute episode 

can be detected in the intracardiac pressures and occur weeks before the 

episode. 

2. Evidence exists in the literature that the changes in the intracardiac 

pressures reflect in changes in the timing of the opening and closure of 

the cardiac valves, which may be noninvasively monitored through 

heart sounds.  

3. Heart sounds cannot be easily recorded in a home care context because 

inexperienced users such as the patient or a caregiver have difficulties 
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in correctly positioning the stethoscope over the right auscultation 

areas. 

An approach based on multi-source PCG was designed. The approach involved 

both the design of a novel wearable device to record the biomedical signals of 

interest and the design of the signal processing pipeline to extract the features of 

interest from the signals. The proposed multi-sensor array aims at enabling the 

recording of the heart sounds by inexperienced users by shifting the problem of 

finding a good auscultation point from the recording phase to the processing phase. 

This was obtained through a flexible pad mounting a high number of microphones 

at a high spatial resolution along with custom algorithms to assess the quality of the 

signals, estimate the time of closure of the cardiac valves, divide the channels into 

consistent groups, and automatically determine the best auscultation area. 

Two independent pre-clinical validations were carried out. On one side, an 

animal study was conducted to verify the physiological hypothesis of the project, 

i.e., that the timing of the cardiac valves can be used as a surrogate for the 

monitoring of the intracardiac pressures. Specifically, the study was aimed at 

assessing the correlation between the split of the second heart sound and the 

pressure in the pulmonary artery. On the other hand, an experimental analysis on 

healthy volunteers was conducted to verify the technical hypothesis of the project, 

i.e., that multi-source PCG at high spatial resolution enables the recording of heart 

sounds by inexperienced users.  

6.2 Take-home messages 

First and foremost, the proposed multi-sensor array proved to achieve its primary 

goal, i.e., to overcome the limits of traditional PCG and enable the recording of 

heart sounds in a home care setting without the need for an expert user. As a 

wearable device, its ergonomics ensured, on one hand, a straightforward positioning 

by naïve users, and on the other hand, a successful use on a wide population without 

strict limitations concerning the body type and the morphology of the chest. In this 

sense, the multi-sensor array has a straightforward clinical applicability and has the 

potentiality of broadening the target monitored population with respect to its 

invasive counterpart. 

Multi-source PCG at a high spatial resolution can be considered as a promising 

approach not only to bring the recording of heart sounds to the patient’s domicile, 

but also to gain access to a greater insight into the hemodynamics of the heart, 
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difficult to obtain otherwise using biomedical signals. It can be deemed that the use 

of multi-source PCG, even when performed by inexperienced users, may open to 

novel possibilities of analysis in the future by evaluating not only the time 

variability of heart sounds but also their spatial variability. 

The extraction of the information about the timing of the closure of the cardiac 

valves from the heart sounds could effectively be performed, even by means of 

computationally light methods that could be embedded on the device itself. 

Nevertheless, the separation of the contributions of the two components of each 

heart sounds confirmed to be a delicate processing step that is worth further study 

in the future. 

In the end, the physiological hypothesis the project grounds on, i.e., that the 

changes in the timing relationships between the time of closure of the cardiac valves 

could be used a surrogate for the changes of the intracardiac pressures, could be 

validated to some extent. The availability of a dataset where the heart sounds and 

the intracardiac pressures are monitored simultaneously while physiological 

triggers are applied to change the latter opens to interesting novel possibilities of 

analysis that could improve our understanding of the effect of the hemodynamics 

of the heart on cardiac sounds and improve its clinical relevance. 

6.3 Limitations of the work 

As already highlighted over the text, the proposed work presents some limitations. 

First, the algorithms for signal processing require improvement to some extent. 

As already highlighted, the separation of the components of the two heart sounds is 

critical and the experimental results suggest that it does not work properly on all 

heartbeats. The main limitation to the improvement of the algorithm resides in the 

difficulty of finding a proper method for the validation of the correct identification 

of the instant of closure of the cardiac valves. A good gold standard may be a 

simultaneous echocardiographic examination, but it’s complex to obtain given the 

positioning of the device on the chest.  

Concerning the design of the multi-sensor array, the main limitation resides in 

the fact that the device is at a prototypal stage and must be connected to a computer 

to record the signals. Even though the usability of the device was demonstrated 

from the positioning point of view, the same cannot be said on the entire system. In 

fact, not all patients or caregivers may have an available computer or be capable of 
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using it. The author was fully aware of this limitation since the conceptualization 

of the device, but decided to develop a computer-based prototype as an intermediate 

step in the technological transfer of the solution to enable a first validation of the 

multi-sensor array. 

In the end, the validation of the array was performed only in a pre-clinical 

fashion and with a limited sample population, both in case of the animal study and 

in case of the study on healthy volunteers. The work requires a clinical validation 

on pathological subjects (both with HF and with different comorbidities, to analyze 

their effect) to prove its clinical effectiveness.  

6.4 Future developments 

Both the promising experimental results and the highlighted limitations contribute 

to define the future developments of the project. In fact, the project proved, on one 

side, its potential for solving the aimed clinical problem if some technical issues are 

solved and a further validation is carried out. 

From the signal processing perspective, the two novel datasets that were 

acquired during the project (the animal dataset and the healthy subjects’ dataset) 

constitute an unvaluable new resource for the optimization of the algorithms. In 

fact, modifications can be applied to the algorithms and their effect on the trends in 

the pig recordings and on the consistency with the single-source recordings assessed 

for validation. The focus will be on the algorithm for the separation of the heart 

sounds components and on the algorithm for the identification of the best 

auscultation area (the MCDA parameters need to be further optimized). Moreover, 

as already highlighted, further analysis of the combined effect of different 

physiological variables on the cardiac timing will be carried out on the animal 

dataset. 

On the device side, two main future developments are foreseen. First, the use 

of the MIMU, already embedded in the sensor but unused at date, will be explored 

to analyze (and in case compensate for) the effect of the posture, to automatically 

recognize the motion artifacts and to monitor the respiration of the subject. Second, 

and most importantly, a new stand-alone prototype will be designed to embed the 

entire system on the flexible pad. This project already won a new Proof of Concept 

funding (PoC Instrument 2022-2024 – Transition track – by Compagnia di 

Sanpaolo). 
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The new stand-alone device will enable a clinical validation on patients affected 

by heart failure in a real home monitoring setting. The latter is a further future 

objective of the project and will provide a real validation of the efficacy of the 

proposed approach for its purposed application.   
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