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Abstract. Recently, Schärli et al. pointed out that both single and mul-
tiple class-based inheritance are often inappropriate as a reuse mecha-
nism, because classes play two competing roles, namely, a class is both
a generator of instances and a unit of reuse. To overcome this problem,
Schärli et al. proposed traits, which are composable pure units of be-
havior reuse consisting only of methods. However, both in the original
proposal and (to the best of our knowledge) in all the trait-based ap-
proaches that can be found in the literature, traits live together with
the traditional class-based inheritance. Therefore, besides their primary
role of generators of instances, classes can still play a secondary role of
units of (state and behavior) reuse, and a style of programming oriented
to reuse is not enforced by the language, but left to the programmer’s
skills. When static typing is also taken into account, the role of unit of
reuse and the role of type are competing, too.
We argue that, in order to support the development of reusable program
components, class-based statically typed programming languages should
be designed according to the principle that each programming construct
must have exactly one role. We present language constructs that separate
completely the declarations of object type, behavior, state, and generator.

Keywords. Inheritance, Trait, Subtyping, Flattening.

1 Introduction

It is common opinion that standard class-based inheritance does not support low
coupling and, therefore, does not support code reuse. This phenomenon is often
described as the fragile base-class problem and it is well-described in the work by
Mikhajlov and Sekerinski [24]. A well-known technique to circumvent the fragile
base-class problem is to promote the use of interface-based polymorphism. This
idea is also present in most of the design patterns, such as the GoF design
patterns [16], in order to make the patterns as higher-level as possible with
respect to the implementation details.

Class-based inheritance was criticized again recently by Schärli et al. [29, 12],
by pointing out that both single and multiple class-based inheritance are often
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inappropriate as a reuse mechanism. They identify the problem in the fact that
classes play two competing roles. Namely, a class is both a generator of instances
(hence it must provide a complete set of basic features) and a unit of reuse (hence
it should provide a minimal set of sensibly reusable features). Schärli et al. also
observed that mixins [9, 21, 15, 3], which are subclasses parameterized over their
superclasses, are not necessarily appropriate for composing units of reuse. The
problem is due to the fact that, being based on the ordinary single inheritance
operator, mixing composition is linear.

To overcome these problems, Schärli et al. proposed traits, composable pure
units of behavior reuse consisting only of methods, that can be composed in an
arbitrary order. However, both in the original proposal and (to the best of our
knowledge) in all the trait-based approaches that can be found in the litera-
ture, traits live together with the traditional class-based inheritance. Therefore,
besides their primary role of generators of instances, classes can still play a sec-
ondary role of units of (state and behavior) reuse, and a style of programming
oriented to reuse is not enforced by the language, but left to the programmer’s
skills.

The original proposal of Schärli et al. does not address typing issues. Various
proposals for using traits in connection with static typing can be found in the
literature (we refer to [25] for a brief overview). In some of these proposals
(notably in the Scala language [26]) each trait, like each class, also defines a
type. However, as a matter of fact, the role of unit of reuse and the role of type
are competing. For instance, in order be able to define the subtyping relation
on traits in such a way that a trait (or a class) is always a subtype of the
component traits, Scala rules out operations on traits such as method aliasing
and exclusion, limiting the reuse potential of traits. The distinction between the
role of type and the role of unit of reuse, described in terms of type and class,
dates back at least to Snyder [30] (see also Cook et al. [10]).

Having in mind the need of promoting interface-based polymorphism and
arbitrary composable units of behavior reuse, we would like to go further and
give classes the role of object generators only.

We argue that, in order to support the development of reusable program
components, class-based statically typed programming languages should be de-
signed according to the principle that each programming construct must have
exactly one role. We propose programming language features that separate com-
pletely the declarations of object type, behavior, state, and generator, namely,
we consider:

– Interfaces, as pure types.
– Traits, as pure units of behavior reuse.
– Records, as pure units of state definition and initialization reuse.
– Classes, as pure generators of instances.

Interfaces, traits, and records can be defined by composing other interfaces,
traits, and records respectively. Classes are defined by composing records, traits,
interfaces and by adding glue fields and methods. Note that classes cannot be
reused, and in particular there are no hierarchical dependencies among classes.



Therefore, a first outcome of the complete role separation is that problems of
fragility in a class hierarchy (that arise with class-based and mixin-based inher-
itance) are avoided a priori : there is no class hierarchy.

Another outcome of the complete role separation is that multiple inheritance
is subsumed by ensuring that, in the spirit of the trait proposal [12], the com-
posite unit has complete control over the composition and must resolve conflicts
explicitly. Multiple inheritance with respect to methods is obtained via the trait
construct, and multiple inheritance with respect to fields is obtained via our
novel record construct.

The paper is organized as follows. Section 2 illustrates our proposal by pre-
senting an example in a Java-like syntax. Section 3 discusses briefly the issue
of giving a clean semantics to reusable components and illustrates the syntax of
a core calculus for very fine-grained reuse based on the constructs introduced
above, outlines its type system, gives a semantics by translation, and states a
type soundness result. We conclude by discussing some related work.

2 An example

In order to present an introductory example, we exploit a Java-like syntax (at
present, we do not have a prototypical language implementing our proposal).
In a class the only (implicitly) public methods are those declared in interfaces
implemented by the class. All the other methods and the fields are (implic-
itly) private. All the constructors must be declared and are (implicitly) public.
Moreover, for every library class (such as Object, String, etc.) we assume an
interface, a trait and a record. The same name can be used to denote both the
interface, the record, the trait, and the class (the complete separation of roles
ensures that the names of different components cannot occur in the same place
of a program). The Object interface is implicity extended by any other interface,
and the Object trait and record are implicity used by any class.

We consider the problem of building a software system for a non-profit or-
ganization promoting car-sharing, that is, there are participants that offers car
lifts to other participants, and the main task of the association is to allow the
participants offering/requesting lifts to find the best match for their needs. The
specifications for this software are longer and more complicated than that, but
for our purpose (and due to the lack of space) we will limit ourselves to consider
only the ones described and we model only a limited version of users of such an
organization.

We start from defining some types, that in our proposal are represented by
interfaces:

interface CarMatcherType {...}

interface CarOwnerType extends CarMatcherType {...}

Then we build our state description through the record MemberFeatures:

record MemberFeatures {

String name; String surname; String address;



MemberFeatures(String name, String surname, String address) {

this.name = name;

this.surname = surname;

this.address = address;

}

}

and the records InsuranceFeatures and CarFeatures that are defined in a
similar way. Note that records declares fields and constructors, therefore they
are unit of reuse of fields and their initialization code.

Having interfaces and records, we can compose our object generators, that
is, building some of the classes:

class CarPassenger implements CarMatcherType

uses MemberFeatures, InsuranceFeatures {

... /* accessory methods */

CarPassenger(String name, Sting surname, String address,

String company, String kind, String expirationDate) {

MemberFeatures(name, surname, address);

InsuranceFeatures(company, kind, expirationDate);

}

}

class CarOwner implements CarOwnerType

uses MemberFeatures, InsuranceFeatures, CarFeatures {

... /* accessory methods */

CarOwner(String name, Sting surname, String address,

String company, String kind, String expirationDate,

String make, String numberPlate, int seatNumber) {

MemberFeatures(name, surname, address);

InsuranceFeatures(company, kind, expirationDate);

CarFeatures(make, numberPlate, seatNumber)

}

}

Besides the two interfaces CarMatcherType and CarOwnerType presented
above, we assume an interface CarMatcherManagerType that represents the type
for operations on tables of car-sharers. We assume also the existence of a data
base, that stores the data of the organization, and we define a trait DbHandler
that provides the methods that map the tables to the appropriate relations in
the data base:

trait DbHandler requires {Map table;} {

...

}

The class CarPassengerManager contains some methods: one for the inser-
tion of a car-sharer in a Map table (Map is the interface belonging to the Java
API’s); one that, given a criterium (“name”, “surname”, or any other field name
of MemberFeatures or InsuranceFeatures) performs an extraction of an entry
from the table; and one that, given a criterium, deletes an entry from the table



(it returns true if car passenger(s)/owner(s) matching the criterium are found
and deleted, false otherwise). Moreover, it contains the methods updateDB and
loadDB, that use the methods of the trait DbHandler.

class CarPassengerManager implements CarMatcherManagerType

uses DbHandler {

Map passengerTable;

... /* constructors and accessory methods */

void insert(CarMatcherType c) { ... }

CarMatcherType search(String criterium, String data) { ... }

boolean delete(String criterium, String data) { ... }

void updateDB() { ... }

void loadDB() { ... }

}

The classes CarOwnerOperations and CarOwnerPassengerOperations are
defined similarly:

class CarOwnerManager implements CarMatcherManagerType

uses DbHandler {

Map ownerTable;

...

}

/* CarOwnerPassengerManager is the class of whom both offers and asks */

class CarOwnerPassengerManager implements CarMatcherManagerType

uses DbHandler {

Map ownerPassengerTable;

...

}

Note the way the code reuse (that is, the interface, record, and trait reuse)
is realized in the class compositions.

3 FCJ: a Calculus for Reusable Components

Supplying a clean semantics to reusable components is traditionally a critical
issue. We argue that the semantics of reusable components in object oriented
class based programming languages should be defined according to the following
principle: the semantics of a class member introduced through a reusable com-



ponent should be identical to the semantics of the same member defined directly
within a class.1

The above principle is been inspired by:

– the claim that “the semantics of overloading and inheritance is clean only
if it can be understood through a copy semantics, whereby programs are
transformed to equivalent programs without subclasses, and the effect of
inheritance is obtained through copying” [4];

– the copy principle for mixins [3];
– the flattening property for traits [12];
– the proposal that “any type system that accommodates traits should have

the property that programs should be equivalent to their flattened counter-
parts” [25].

To provide a formal account of our idea, we present FCJ (Featherweight-

Compositional Java), a core calculus for interfaces, traits, records, and classes,
inspired by FJ (Featherweight Java) [19] and FTJI (Featherweight-

Trait Java with Interfaces) [25].

3.1 Syntax

The syntax of our calculus, FCJ, is presented in Figure 1. We also consider a
calculus, FFCJ (Flat FCJ), obtained by removing the portions of the syntax
highlighted in grey. The calculus FFCJ can be considered a subset of FJI (FJ

with Interfaces)2. Indeed, FFCJ is not a proper subset of FJI: its syntax
for class constructors is more liberal, in order to provide enough expressivity
to make the flattening of records possible. Besides the differences in the class
constructors, the main difference between FCJ and FTJI are the following:

– Classes and traits are not types, and class-based inheritance is not present;
– Traits can directly access fields and must declare the type of the required

fields and methods.3

– In the symmetric sum operation (that merges two traits to form a new trait)
we require that the summed traits must be disjoint (that is, they must not
provide identically named methods). This requirement might be relaxed by
saying that two methods with the same name do not conflict if they originate
from the same subtrait (as in [22]).

– The override operation (that layers additional methods over an existing
trait) is not present.

– We have the operations hide (that forms a new trait by hiding a method
name from an existing trait, thus permanently binding the method to the
trait) and rename (that creates a new trait by renaming all the occurrences
of a method name from an existing trait).4

1 Notice that this principle just aims to provide a canonical semantics to reusable
components, it is not an especially effective implementation technique.

2 This calculus was introduced in [25] to state the flattening property for FTJI.
3 Field requirements were introduced in [14].
4 Method hiding and renaming were introduced in [27].



ID ::= interface I extends Ī { S; }
S ::= I m (Ī x̄)

TD ::= trait T requires {F̄; S; } uses TE { M̄ }

F ::= I f

TE ::= T | TE exclude m | TE alias m as m | TE hide m

| TE rename m to m | TE rename f to f

M ::= S { return e; }
e ::= x | this.f | e.m(ē) | new C(ē) |(I)e

RD ::= record R uses RE { F̄; KR }

RE ::= R | RE rename f to f

KR ::= R(Ī x̄) { R(ē); ...; R(ē); this.f̄ = ē; }

CD ::= class C implements Ī uses RE and TE { F̄; KC; M̄ }

KC ::= C(Ī x̄) { Ī x̄ = ē; R(ē); ...R(ē); this.f̄ = ē; }

Fig. 1. FCJ: Syntax

– Note that the operations exclude (that forms a new trait by removing a
method from an existing trait) and alias (that forms a new trait by adding
a new name for an existing method) correspond exactly to the minus and
with operators of FTJI, respectively.5

– We have records and record expressions with the operations of symmetric
sum (that merges two disjoint records to form a new record) and field re-
naming (that forms a new record by renaming all the occurrences of a field
name from an existing record).

We use the overbar sequence notation according to [19]. For instance: “f̄” de-
notes the possibly empty sequence “f1, ..., fn”, the pair “Ī x̄” stands for “I1 x1, ...,

In xn”, “Ī x̄;” stands for “I1 x1; ...; In xn;”, the assignment “this.f̄ = ē;” stands
for “this.f1 = e1; ...; this.fn = en;”, and “Ī x̄ = ē;” stands for the sequence
of local (to the body of a class constructor) variable declarations/initializations
“I1 x1 = e1; ...; In xn = en;”. The empty sequence is denoted by “•”.

Sequences of named elements (e.g., methods signatures) are assumed to con-
tain no duplicate names, the sequence of the names of the elements of S is
denoted by names(S), the subsequence of the elements of S with the names
n̄ is denoted by extract(n̄, S), and discard(n̄, S) denotes the sequence obtained
from S by removing the elements with the names n̄. Following [19], we use set-
based notation for operators over sequences of named elements. For instance,
M = I m (Ī x) ∈ M̄ means that the method declaration M occurs in M̄. In the union
and in the intersection of sequences of named elements, denoted by S ∪ Z and

5 When a recursive method is aliased, its recursive invocation refers to the original
method. Another interpretation of aliasing (see [22]) ensures that the recursive in-
vocations refer to the alias.



S ∩ Z, respectively, it is assumed that if n ∈ names(S) and n ∈ names(Z) then
extract(n, S) = extract(n, Z).

The concatenation of two sequences S and Z is denoted by S·Z, where, if S and
Z are sequences of named elements, it is assumed that names(S)∩names(Z) = ∅.

A class table CT is a map from class names to class declarations. Similarly,
an interface table IT, a trait table TT, and a record table RT map interface,
trait, and record names to interface, trait, and record declarations, respectively.
A FCJ program is a 5-tuple (IT, TT, RT, CT, e). In presenting the type system
and the flattening translation we assume fixed, global tables IT, TT, RT, and CT.
We also assume that these tables are well-formed, i.e., they contain an entry for
each interface/trait/record/class mentioned in the program, and the interface
subtyping, trait reuse, and record reuse graphs are acyclic.

3.2 Typing

The FCJ type system combines nominal and structural typing. It typechecks the
uses of method parameters according to the nominal notion of typing defined by
the interface hierarchy, while the uses of the this metavariable are type-checked
according to a structural notion of typing that, within a:

– trait definition, takes into account the field and methods required by the trait
and the methods provided by the trait (i.e., either defined directly within
the trait or introduced through used traits);

– record definition, takes into account the fields provided by the record (i.e.,
either defined directly within the record or introduced through used records);

– class definition, takes into account the fields and methods of the class (i.e.,
either defined directly within the class or introduced through used records
and traits, respectively).

The body of a method is type-checked by assuming an interface name as type
for each parameter of the method and a pair 〈 F̄ � σ 〉 as type for the this

metavariable. The type 〈 F̄ � σ 〉, where F̄ = I1 f1...Ip fp (p ≥ 0) and σ =

J1m1(J̄
(1)

)...Jqmq(J̄
(q)

) (q ≥ 0), specifies that this has the fields F̄ and methods
with signatures σ.

The type of an object creation expression new C(· · · ) is the conjunction I1 ∧
... ∧ In of the interfaces implemented by the class C.6 We will write

∧
Ī, where

Ī is a sequence of n ≥ 0 interfaces I1, ..., In, to denote the type I1 ∧ ...∧ In. We
identify the empty conjunction

∧
• with the empty sequence • and identify the

singleton conjunction
∧
I with the interface I.

The type of any other expressions e (not of the form this or new · · · (· · · ))
is an interface name.

6 Conjunctive (or intersection) types have been introduced by Coppo and Dezani [11]
(see also [5]) in the contex of functional programming. Recently, Igarashi and Na-
gira [18] proposed a use of the dual notion of disjunctive (or union) types for object-
oriented programming.



Besides assigning to each expression e a type describing the object yielded
by the evaluation of e, the FCJ type system assigns to e also an effect. An effect
is a triple

〈 F̄ � σ � Ī 〉

specifying that the expression e selects the fields F̄ and the methods σ on this,
and requires that this implements the interfaces Ī.

The typing rules for interface declarations, expressions, method declarations,
trait declarations, record declarations, and class declarations are syntax directed,
with one rule for each form of term, except that (following [19]) there are three
rules for casts. The most important typing judgements are the following:

– 
 interface I extends Ī { S; } OK

To be read: the declaration of the interface I is well-typed.

– x̄ : Ī, this : 〈 F̄ � σ 〉 
 e : η � δ where

η =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈 F̄ � σ 〉 if e = this∧
J̄ if e = new C(· · · ) for some C such that

CT(C) = class C implements J̄ uses · · ·

I otherwise (for some interface I)

δ = 〈 Ḡ � ζ � J̄
′ 〉

To be read: under the assumption that the variables x̄ have types Ī and
that the metavariable this has fields F̄ and methods σ, the expression e is
well-typed with type η and effect δ.

– this : 〈 F̄ � σ 〉 
 I m (Ī x̄){return e; } : μ where

μ = ζ � δ

To be read: under the assumption that this has fields F̄ and methods σ, the
declaration of method m is well-typed with type μ. I.e., the method m has
signature ζ and its body has effect δ.

– 
 trait T requires {F̄; S; } uses TE {M̄} : μ̄ where

μ̄ = μ1...μn (n ≥ 0)

To be read: the declaration of trait T is well-typed with type μ̄. I.e., the trait
T provides n methods with types μ1, ..., μn, respectively.

– 
 record R uses RE { F̄; KR } : ρ where

ρ = R(Ī) � 〈 Ḡ 〉

To be read: the declaration of record R is well-typed with type ρ. I.e., the
record R provides a field initializer with signature R(Ī) and the fields Ḡ.

– 
 class C implements Ī uses RE and TE { F̄; KC M̄; } OK

To be read: the declaration of the class C is well-typed.



– 
FCJ (IT, TT, RT, CT, e) :
∧

Ī

To be read: the program (IT, TT, RT, CT, e) has type
∧
Ī w.r.t. the 
FCJ sys-

tem. I.e., the interfaces in IT, the records in RT, the traits in TT, and the
classes in CT are well-typed, and the expression e is well-typed with type

∧
Ī

and empty effect (i.e., 〈 • � • � • 〉) under the empty set of assumptions.

3.3 Semantics by Translation and Type Soundness

A FFCJ program is a FCJ program with empty traits and record tables. The
flattening translation removes the trait and the record tables and replaces the
class table with a suitable one containing only FFCJ classes. The translation
is specified through the function �·�, given in Figure 2, that maps a FCJ class
declaration to a FFCJ class declaration. For the sake of simplicity, we assume
that the names of the parameters of the record constructors and the names of
the parameters of the class constructors are all distinct.

A FJI program is a 3-tuple (IT, CT, e). Let 
FJI denote the obvious extension
of the FJ type system [19] to deal with interfaces and richer (as in FFCJ) class
constructors. The main typing judgment of the 
FJI type system is

– 
FJI (IT, CT, e) : ν where

ν is either a class C or an interface I.

To be read: the program (IT, CT, e) has type ν w.r.t. the 
FJI system. I.e.,
the interfaces in IT and the classes in CT are well-typed, and the expression
e is well-typed with type ν under the empty set of assumptions.

The type soundness result is split in two parts: firstly it says that the flatten-
ing translation preserves the type of programs w.r.t. 
FJI, then it relates 
FCJ

with 
FJI.

Theorem 1 (Type Soundness).
If 
FCJ (IT, TT, RT, CT, e) :

∧
Ī, then:

1. 
FCJ (IT, •, •, �CT�, e) :
∧
Ī, and

2. 
FJI (IT, �CT�, e) : ν, where

ν =

⎧⎪⎨
⎪⎩

C if e = new C(· · · ) for some C such that

CT(C) = class C implements Ī uses · · ·

I (with I = Ī), otherwise.
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class C implements J̄

uses RE and TE { F̄;
C(Ī x̄) { Ī

′

x̄′ = ē′;

R1(ē
(1)); ...Rn(ē(n));

this.f̄ = ē; }
M̄ }

�
�������

def
=

class C implements J̄

{ F̄; �RE	;
C(Ī x̄) { Ī

′

x̄′ = ē′;

rPars(RE) = ē(1)...ē(n); xInit(RE); fInit(RE);
this.f̄ = ē; }�TE	 M̄}

�T	 def
= �TE	 M̄ if TT(T) = trait T requires {F̄; S; } uses TE { M̄ }

�TE exclude m	 def
= discard(m, M̄) if �TE	 = M̄ and m ∈ names(M̄)

�TE alias m as n	 def
= M̄ I n(Ī x̄){return e; } if �TE	 = M̄ and I m(Ī x̄){return e; } ∈ M̄

�TE hide m	 def
= �TE	[m0/m] with m0 fresh

�TE rename m to n	 def
= �TE	[n/m]

�TE rename f to g	 def
= �TE	[f/g]

�TE1, ..., TEn	 def
= �TE1	...�TEn	

�R	 def
= �RE	 F̄; if RT(R) = record R uses RE { F̄; KR }

�RE rename f to f′	 def
= �RE	[f′/f]

�RE1, ..., REn	 def
= �RE1	; ...; �REn	

where the auxiliary lookup functions rPars(·), fInit(·), and xInit(·) are defined as follows:

rPars(R)
def
= Ī x̄, if TT(R) = record R uses · · · { · · · R(Ī x̄) {· · · } }

rPars(RE rename f to f′)
def
= rPars(RE)

rPars(RE1, ..., REn)
def
= rPars(RE1); ...; rPars(REn)

fInit(R)
def
= fInit(RE); this.f̄ = ē;

if TT(R) = record R uses RE { · · · this.f̄ = ē; } }

fInit(RE rename f to f′)
def
= fInit(RE)[f

′

/f]

fInit(RE1, ..., REn)
def
= fInit(RE1); ...; fInit(REn)

xInit(R)
def
= rPars(RE) = ē(1)...ē(n); xInit(RE)

if TT(R) = record R uses RE { · · · R(Ī x̄) {R1(ē
(1)); ...; Rn(ē(n)); · · · } }

xInit(RE rename f to f′)
def
= xInit(RE)[f

′

/f]

xInit(RE1, ..., REn)
def
= xInit(RE1); ...; xInit(REn)

Fig. 2. Flattening FCJ to FFCJ

Example 2. As an example of the translation let consider an implementation of
the class ColorPoint.

interface IPoint { String toString(); Integer getX(); Integer getY(); }

interface IColor { String toString(); String getColor(); }



interface IColorPoint extends IColor,IPoint { }

record RPoint { Integer x; Integer y;

RPoint(Integer x, Integer y) { this.x=x; this.y=y; }

}

record RColor { String color;

RColor(String color) { this.color=color; }

}

trait TPoint requires { Integer x; Integer y; } {

Integer getX() { return x; }

Integer getY() { return y; }

String toString() { return x + ‘‘,’’ + y; }

}

trait TColor requires { String color; } {

String getColor() { return color; }

String toString() { return color; }

}

class ColorPoint implements IColorPoint

uses RPoint,RColor

and (TPoint rename toString to toStringP),

(TColor rename toString to toStringC) {

ColorPoint(Integer px, Integer py, String pcolor) {

RPoint(px,py); RColor(pcolor);

}

String toString() { return this.toStringP() + ‘‘,’’ + this.toStringC(); }

}

The FCJ code translated in FJI is as follows, where the interface IPoint, IColor
and IColorPoint are as before:

class ColorPoint implements IColorPoint {

Integer x;

Integer y;

String color;

ColorPoint(Integer px, Integer py, String pcolor) {

Integer x=px; Integer y=py; Integer color=pcolor;

this.x=x; this.y=y; this.color=color;

}

Integer getX() { return x; }

Integer getY() { return y; }

String getColor() { return color; }

String toStringP() { return x + ‘‘,’’ + y; }

String toStringC() { return color; }

String toString() { return this.toStringP() + ‘‘,’’ + this.toStringC(); }

}



4 Related Work and Conclusions

We attacked the root of the general problem of competing roles played by the
same construct, which limits the reuse potential of program components written
in mainstream object oriented class based programming languages.7 To the best
of our knowledge, the conflict between the roles of unit of reuse and generator
of instances was firstly described by Schärli et al. [29, 12]. Also the roles of unit
of reuse and type are competing (see Section 1).

We introduced a calculus of interfaces, traits, and records as programming
constructs for composing incrementally reusable components from smaller com-
ponents, and building classes from reusable components. A distinguished feature
of our approach is that each of those constructs has exactly one role.8

With the aim of achieving flexible typing of reusable components, we have
developed a hybrid nominal/structural type system. Further work is necessary
to extend this system to deal with generic types. Notably, sophisticated hybrid
nominal/structural type systems have been already proposed [13, 23, 28].

Recently, Bergel et al. [7] pointed out several limitations of the trait model.
In order to overcome these limitations, they propose to make traits stateful by
allowing traits to have private fields that, through a variable access operator, may
be accessed from the clients possibly under a new name, and possibly merged
with other variables. Although further work is needed to compare our proposal
with stateful traits, we believe that our proposal provides an alternative solution
to the limitations of the stateless trait model. In particular, Bergel et al. argued
that:

An open question for further study is whether trait composition can subsume
class-based inheritance, leading to a programming language based on compo-
sition rather than inheritance as the primary mechanism for structuring code
following Jigsaw [8] design.

Our proposal addresses exactly this question, by outlining a programming lan-
guage that ensures that code is structured in composable “single-role” units of
reuse.

A special form of reuse is at the base of the contemporary agile software de-
velopment methodologies [2]. Such methodologies range from using the waterfall
model on a small scale, that is, repeating the entire waterfall cycle in every iter-
ation (examples of this are variations of the flexible Unified Process, UP [20]), to
the use of Extreme Programming [6], where team members work on activities si-
multaneously. Considering the iterative approach, each iteration may include all
of the phases necessary to release a small increment of a new functionality: plan-
ning, requirements analysis, design, coding, testing, and documentation. While
an iteration may not add enough functionality to guarantee the release of a final
product, an agile software project intends to be capable of releasing new software
at the end of every iteration, but this means that the next iteration will reuse

7 Our presentation focuses on statically typed (Java-like) languages. However, our
proposal may apply also to dynamically typed (Smalltalk-like) languages.

8 In the context of dynamically typed languages, Python [1] provides some features
that go in this direction.



the software produced in the previous ones. For instance, Holub [17] observes
that:

At the core of the contemporary Agile development methodologies is the con-
cept of parallel design and development. You start programming before you
fully specify the program. This technique flies in the face of traditional wis-
dom — that a design should be complete before programming starts — but
many successful projects have proven that you can develop high-quality code
more rapidly (and cost effectively) this way than with the traditional pipelined
approach. At the core of parallel development, however, is the notion of flex-
ibility. You have to write your code in such a way that you can incorporate
newly discovered requirements into the existing code as painlessly as possible.

We believe that an interesting future research direction is to investigate whether
our proposal for fine-grained reuse may help in writing software following an
agile methodology.
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