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Abstract

In this paper discrete time linear parameter varying (LPV) models with 3nite impulse response (FIR) dynamic structure
are considered. Measurement errors are assumed to be bounded. In such condition optimal input sequences minimizing the
worst case parameter uncertainties are derived. The main result of this paper consists in 3nding optimal worst case input
sequences for LPV–FIR models. These are obtained suitably combining the optimal design results for standing alone invariant
FIR models and standing alone nonlinear memoryless blocks. The quite relevant improvement obtained using optimal input
sequences instead of random sequences is shown by simulation.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In linear parameter varying (LPV) models the pa-
rameters of the equations linking the inputs u to the
outputs y are in general functions of a (possibly vec-
tor valued) variable p, assumed to be measurable, that
determines the operating condition of the system [15].
Although such class of model structures is less general
than generic linear time varying models, in several ap-
plications it is perceived to be quite satisfactory for
representing real systems. Moreover, its applicability
to the industrial practice of gain scheduling makes it
appealing for control design problems.
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E-mail addresses: gustavo.belforte@polito.it (G. Belforte),
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For identi3cation purposes, the p variable plays
the role of an auxiliary input that, beside being al-
ways measurable, in some cases is also under the
designer’s control. In [2,7], for example, LPV mod-
els have been used to approximate distributed para-
meter systems in environmental and agricultural
context and the p variable has been associated to the
spatial coordinate that speci3es where measurements
are collected so that choosing the values of input
p actually corresponds to 3xing the sensor alloca-
tions. In [9] the power generated by a nuclear plant
(that can be set to diBerent values within a given
range) represents the operating condition and is as-
sociated to the p variable while in [10] the vector
valued auxiliary input p is constituted by a set of
airplane operating parameters that can be chosen to
some extent.
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LPVmodels have in general a number of parameters
that is quite bigger than the number of parameters in
their corresponding time invariant models and there-
fore also the number of measurements required for pa-
rameter estimation is correspondingly large. This fact
increases the interest in getting better estimates with
less measurements through optimal experiment design
that consists in 3nding those sequences, both for input
u and for variable p, that allow to derive parameter
estimates with the lowest uncertainty. Applying such
sequences to u and p whenever they are completely
under the designer’s control allows to obtain the best
possible parameter estimates. When p cannot be ar-
bitrarily settled, optimal input sequences are still of
interest since they provide bounds on the best achiev-
able parameter reliability and specify for which val-
ues of p measurements should be collected. Remark
that while the best identi3ability of the LPV model is
ensured if optimal input sequences are applied such
model results to be almost unidenti3able if poor vari-
ations of p occur.
In this paper attention is focused on discrete-time

linear parameter varying (LPV) models with 3nite
impulse response (FIR) dynamic structure. Mea-
surement errors and uncertainties are embedded in a
set-membership framework, consequently the input
sequence optimality is evaluated in terms of the worst
case estimate uncertainty it allows to achieve.
The main result of this paper consists in showing

that optimal input sequences for LPV–FIR models are
obtained combining together optimal input sequences
for time invariant FIR models with those for standing
alone nonlinear blocks describing the dependence of
the parameters on the p variable. The dynamic part of
the LPV model is restricted to be a FIR only because,
to the best of our knowledge, optimal input sequences
for time invariant linear dynamic models have been so
far obtained for FIR models only. This occurrence is
probably motivated by the circumstance that optimal
input sequences for FIR models are independent of
their actual parameter values and this fact, in general,
does not hold true for other structures.
The paper is organized as follows: basic notation is

introduced in Section 2 while in Section 3 proper input
sequences {(uk ; pk)} of 3xed length nopt for the input
u and for the variable p are derived. Such sequences
minimize the worst case parameter uncertainty with
respect to any possible error realization. Although

the collection of extra measurements beside the nopt

optimal one cannot improve the worst case parameter
uncertainty, nevertheless it can reduce the actual
parameter uncertainty to an extent that is related to
the obtained error realization.
The case in which more than nopt measurements can

be collected is then addressed in Section 4. Criteria for
choosing the best input sequences in such conditions
are presented and 3nally the performances that can be
achieved using these sequences are evaluated with a
simulation study in Section 5.

2. Notation and generalities

Let a linear parameter varying discrete-time model,
whose dynamics is described by a FIR, be represented
by

yk = B(q−1; pk)uk + ek ; (1)

where yk , uk , pk and ek denote, respectively, the sys-
tem output and input, the operating condition p and
the measurement error e at sample k, while q−1 is the
usual delay operator.
The dynamic behavior of the underlying system is

described by the regressor

B(q−1; pk) = b0(pk) + b1(pk)q−1 + · · ·
+ bnb−1(pk)q−nb+1: (2)

The generic ith FIR coeHcient bi(pk) is assumed
to be a nonlinear function of variable pk expressed
as a linear combination of given functions fj(pk),
j = 1; : : : ; N , so that

bi(pk) =
N∑
j=1

bi; jfj(pk); (3)

where bi; j, i = 0; : : : ; nb − 1, j = 1; : : : ; N , are the
parameters to be actually estimated.
Relation (3) can be represented as a nonlinear static

block NLi with input pk and output bi as depicted
in Fig. 1. The whole LPV–FIR system can then be
graphically represented as reported in Fig. 2.
Parameters bi; j to be estimated can be rearranged in

one single vector � as

�= [b0;1 b0;2 : : : b0;N b1;1 : : : bnb−1;N ]: (4)
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Fig. 1. The NLi nonlinear static block structure.
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Fig. 2. The LPV–FIR model.

When m consecutive measurements are available,
using relation (1) the following matrix equation is
obtained:

y = A(u; p)�+ e; (5)

where A(u; p) is the regression matrix and y∈Rm,
u∈Rm+nb−1, e∈Rm and p∈Rm are the measurement
vector, the input vector, the measurement error vector
and the operating condition vector, respectively.
The regression matrix A(u; p) has the following

structure:

A(u; p) =


V (u1; p1) V (u0; p1) : : : V (u−nb+2; p1)
...

...
...

V (uk ; pk) V (uk−1; pk) : : : V (uk−nb+1; pk)
...

...
...

V (um; pm) V (um−1; pm) : : : V (um−nb+1; pm)



(6)

with

V (ui; pk) = [uif1(pk) uif2(pk) : : : uifN (pk)]: (7)

In this paper the system input uk and the operating
condition parameter pk are assumed to be bounded
so that

�u = {u∈Rm+nb−1: |uk |6U; k =−nb + 2; : : : ; m}
(8)

and

�p = {p∈Rm: pa6pk6pb; k = 1; : : : ; m}: (9)

Also the measurement error is assumed to be com-
ponentwise bounded so that the error vector e must
belong to its membership set �e de3ned as

�e = {e∈Rm: |ek |6E; k = 1; : : : ; m}: (10)

Relation (5) and (10) associate to each kth mea-
surement a “strip” Sk of feasible parameters in
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the parameter space

Sk = {�∈RN ·nb :− E6yk − aTk �6+ E}; (11)

where aTk is the kth row of the matrix A(u; p).
When m consecutive measurements are consid-

ered, their joint information has to be stored. Such
information is summarized by the parameter feasible
set D(u; p)

D(u; p) = {�∈RN ·nb : y = A(u; p)�+ e; e∈�e}

=
m⋂

k=1

Sk (12)

that collects all the parameter vectors � consistent with
model (5), the actual measurements y and the errors
e. From relation (12) it follows that the feasible
set D(u; p) is a polytope described by a subset of the
2m inequalities

yk − E6 aTk �6yk + E; k = 1; : : : ; m (13)

de3ning the boundaries of Sk .
Any vector in D(u; p) could be the one that gener-

ated the data and therefore the reliability of the esti-
mate is evaluated through the “size” of D(u; p). Such
“size” is usually evaluated in terms of the width of the
parameter uncertainty intervals W (PUIbi; j) de3ned as

W (PUIbi; j (u; p)) = bMi; j − bmi; j ; (14)

where

bmi; j = min
�∈D(u;p)

bi; j and bMi; j = max
�∈D(u;p)

bi; j : (15)

An alternative measure of the “size” of D(u; p) is
its radius rh(D(u; p)) that represents the maximum
achievable estimation error in some suitable lh norm
and is given by

rh(D(u; p)) = inf
#∈RN·nb

sup
�∈D(u;p)

‖# − �‖h: (16)

Throughout this paper the l∞ norm radius r∞(D(u; p))
will be considered.
Remark that D(u; p), beside being a function of

the input vector u and the operating condition p, also
depends on the output vector y and thus on the un-
known error realization. In order to get rid of this last
dependance it is common to refer to the maximum
achievable “size” with respect to any possible error
realization, referred to as the worst case estimation
error.

The largest width of the parameter uncertainty in-
tervals (denoted in the following asW ( ˆPUIbi; j (u; p)))
and the largest radius (denoted in the following as
r(D̂(u; p))) with respect to any error realization can
be easily computed a priori, for linear in the parame-
ter systems (see e.g. [11,13,14]) from relations (14)–
(16) in which, however, the set D(u; p) is replaced
by the set D̂(u; p) de3ned as

D̂(u; p) = {�∈RN ·nb : A(u; p)�= e; e∈�e}: (17)

Remark that, once the error realization dependance
has been discarded considering worst case uncertain-
ties, W ( ˆPUIbi; j (u; p)) and r∞(D̂(u; p)) depend only
on the applied input sequences u and p that determine
the set of measurements de3ning D̂(u; p). Such in-
puts are constrained by relations (8) and (9) only. It
would be convenient to derive the lowest (or optimal)
worst case uncertainties that can be obtained whatever
the input strings are. Such quantities, denoted byW opt

bi; j

and ropt∞ , are de3ned as

W opt
bi; j

:= min
u∈�u
p∈�p

W ( ˆPUIbi; j (u; p));

ropt∞
:= min

u∈�u
p∈�p

r∞(D̂(u; p)): (18)

It can be shown that W opt
bi; j and ropt∞ depend on a

rather low number nopt of optimal measurements [1].
Whenever the m measurements of a generic feasible
parameter set D(u; p) include the nopt optimal mea-
surements the corresponding worst case parameter un-
certainties and worst case radius are W opt

bi; j and ropt∞ ,
respectively. It can be shown that nopt is bounded be-
tween np and n2p where np=N ·nb is the total number
of parameters to be estimated [1]. The interest is then
in 3nding suitable input strings {(uk ; pk)} that allow
to collect a set of nopt optimal measurements.
Indeed in general it is not ensured that optimal input

strings of minimal length, that allow to collect only
nopt optimal measurements, exist.
Models for which the optimal worst case estimation

error can be obtained with a set of only np suitable
measurements are referred to as minimal worst case
models. Some suHcient condition for a model to be
minimal worst case can be found in literature [1,12].
For the special case of time invariant FIR systems

with nb parameters, that however, can also be repre-
sented by Eqs. (1)–(5) assuming, in relation (3), N=1
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and f1(p)=1, it has been proved [6] that such systems
are minimal worst case, hence the worst case estima-
tion uncertainty can be obtained with a set of only nb
suitable measurements. Moreover, it has been shown
that input sequences that allow to get nb subsequent
measurements leading to the worst case estimation
error exist. One of these optimal input series is the
one in which{

ui = U; i = 1; : : : ; nb;

ui =−U; i = nb + 1; : : : ; 2nb:
(19)

This sequence is also “cyclic” in the sense that uk+nb=
−uk and can therefore be cyclically applied to the in-
put u. For such kind of optimal input series it turns
out that 2nb − 1 input samples must 3rst be applied in
order to collect nb measurements (the FIR 3lter needs
to be loaded) thereafter any new set of nb subsequent
inputs allows to collect a new set of nb measurements
that alone allows to determine again the worst case
estimation error. The collection of more than nb mea-
surements, although it does not aBect the worst case
estimation error, nevertheless can reduce the actual
estimation error. Remark that in general there are sev-
eral optimal “cyclic” input series that can be found by
exhaustive search. Among these it is in general con-
venient to choose the one that leads to the smallest
volume of the corresponding D̂(u) set as discussed
in [6].
For what concerns the worst case error radius

r∞(D̂(u; ·)) of the resulting time invariant FIR system
it has been proved [6] that

inf
u∈�u

r(D̂(u; ·)) = E=U (20)

and always from the results in [6], although it is not
explicitly stated therein, it can be easily shown that
the minimal worst case parameter uncertainty interval
width W opt

bi; 1 is

W opt
bi; 1 = minu∈�u

(W ( ˆPUIbi; 1 (u; ·))) = 2E=U;

i = 0; : : : ; nb − 1: (21)

Consider now a generic nonlinear static sub-system
NLi as depicted in Fig. 1, whose behavior is described
by relation (3). For such standing alone block it is
possible to derive a set of N opt optimal input levels
{popt1 ; : : : ; poptN opt} that, whenever applied in sequence

to the input p, allow the optimal worst case identi3-
cation 1 of parameters bi; j ; j = 1; : : : ; N .
In fact, for any family of linear independent func-

tions {f1(p); : : : ; fN (p)} on the interval [pa; pb], the
N opt optimal input levels {popt1 ; : : : ; poptN opt} can always
be numerically derived and N6N opt6N 2, as dis-
cussed in [1]. However, for some particular families
of functions, like complete Taylor polynomial bases
where

fj(pk) = pj−1
k ; j = 1; : : : ; N; (22)

closed form analytical results are available [5].
Taylor polynomial models are minimal worst case,
so that N opt = N , and the set of optimal input levels
{popt1 ; : : : ; poptN opt} over the interval [pa; pb] is consti-
tuted (see [4,8]) by

popt1 = pa;

popti = pa + 1
2(pb − pa)(1 + cos i

N−1$);

i = 1; : : : ; N − 2;

poptN = pb (23)

that are the values for which the 1st kind Chebyshev
polynomial TN−1(p) of degree N − 1 associated with
the interval [pa; pb] achieves its extremal (maximal
and minimal) values.
Remark that, since in relation (3) functions fj(p),

j = 1; : : : ; N , are the very same for all the N nonlin-
ear blocks, the N opt optimal input levels are the same
for each block and N6N opt6N 2. It follows that the
worst case widths of the parameter uncertainty inter-
vals result to be

W opt
j = inf

p∈�p

W ( ˆPUIb0; j (·; p))

= inf
p∈�p

W ( ˆPUIb1; j (·; p)) = · · ·

= inf
p∈�p

W ( ˆPUIbnb−1;j (·; p)): (24)

Such optimal worst case width of the parameter un-
certainty intervals for the standing alone static nonlin-
ear blocks NLi, i=1; : : : ; nb, are told to be normalized
when E = 1. In such condition they are denoted with
MW opt
j , j = 1; : : : ; N .

1 When identifying a standing alone nonlinear block as the one
depicted in Fig. 1 an error e (not reported in 3gure) is assumed to
exist so that relation (3) becomes bi(pk)=

∑N
j=1 bi;jfj(pk)+ ek .
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3. Optimal worst case experiment design

In this section the main result of the paper is pre-
sented. It consists in showing that the optimal worst
case experiment design for LPV–FIR models is ob-
tained combining together the optimal design results
of standing alone invariant FIR models and standing
alone nonlinear memoryless blocks. Optimal input se-
quences for LPV–FIR models can be chosen to be
“cyclic” and whenever the standing alone nonlinear
block is minimal worst case also the corresponding
LPV–FIR model is minimal worst case.
The following theorem allows to 3nd optimal input

sequences {(uk ; pk)} both for the input u and for the
operating condition p.

Theorem 1. Consider a LPV–FIR model as de-
scribed by relations (1)–(3).
Let Mu be any “cyclic” sequence that is optimal for

the time invariant FIR system with nb parameters.
Let {popt1 ; : : : ; poptN opt} be the set of N opt optimal in-

put levels for the identi<cation of any standing alone
static nonlinear block NLi described by relation (3)
and MW opt

j , j = 1; : : : ; N , be the normalized optimal
worst case uncertainty of its parameters.
Then, for the LPV–FIRmodel, the following state-

ments hold:

• the lowest worst case uncertainty W opt
bi; j of param-

eter bi; j is given by

W opt
bi; j =

MW opt
j

E
U
; i = 0; : : : nb − 1; j = 1; : : : ; N:

• the optimal result is achieved collecting nopt = nb ·
N opt optimal measurements generated with the fol-
lowing sequences for input u and for variable p:
◦ the input u is a sequence of nb(N opt +1) samples

such that uk+nb = −uk and the <rst nb samples
are equal to Mu (a “cyclic” optimal sequence for
time invariant FIR),

◦ the variable p is a sequence of nb ·N opt samples
such that pi+nb(k−1) = poptk , i = 1; : : : ; nb, k =
1; : : : ; N opt.

Proof. When the input sequences described in the the-
orem statement are applied to a LPV − FIR model,
each one of the N opt sets of nb measurements obtained
with p = poptk can be regarded as a set of nb optimal
measurements for a time invariant FIR derived from

the LPV–FIR model setting the operating condition
p to the constant value poptk and applying to the in-
put u an optimal “cyclic” sequence Mu. Each one of the
N opt sets of nb measurements then allows to derive a
set of nb values bi(p

opt
k ), i = 0; : : : ; nb − 1, whose un-

certainty intervals are all equal to ±E=U according to
the previously recalled results in [6].
The worst case parameter bounds widthsW ( ˆPUIbi; j)

of the LPV–FIR model parameters bi; j can then be
derived rearranging the bi(p

opt
k ) values into nb sets of

the N opt elements bi(p
opt
k ), k = 1; : : : ; N

opt.
Each of these sets can be regarded as a set of N opt

optimal measurements for the identi3cation of the
standing alone nonlinear block NLi, in fact from re-
lation (3) it is possible to derive the following set of
N opt equations

bi(p
opt
k ) =

N∑
j=1

bi; jfj(p
opt
k ); k = 1; : : : ; N opt : (25)

Since the uncertainty intervals of the bi(p
opt
k ) are

all equal to ±E=U and the poptk values are the optimal
ones for the standing alone nonlinear block identi3ca-
tion, it follows that

W ( ˆPUIbi; j) = MW opt
j

E
U
; j = 1; : : : ; N:

This is obtained from relation (25), substituting the
bi(p

opt
k ), k = 1; : : : ; N

opt values with their uncertain-
ties ±E=U and reminding that MW opt

j , j = 1; : : : ; N ,
are the normalized optimal worst case widths of the
parameters for the standing alone nonlinear blocks
when the uncertainty is equal to ± 1.
If any measure is added to the previously de3ned

set of optimal measurements, it is easy to show that
no improvement can be achieved. In fact, if the new
added measure is collected with a p level equal to
any of the optimal ones {popt1 ; : : : ; poptN opt}, then the new
measure combined with the other ones with the same
value of p=poptk will lead, in the worst error context,
to the same value bi(p

opt
k ) and no improvement on the

LPV − FIR parameters will be obtained.
If on the contrary the new added measure is col-

lected with a p value diBerent from the optimal ones
its uselessness can be proved supposing to collect not
only one, but nb measurements with the same value
of p. This set of measurements allows to derive a
new set of nb values bi(p), i = 0; : : : ; nb − 1, that
have, according to the previously recalled results of
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[6], an uncertainty interval of±E=U . This information
however does not improve the worst case uncertainty
of the parameters bi; j since it only adds a set of nb
relations of the form

bi(p) =
N∑
j=1

bi; jfj(p)

that, by de3nition, is useless with respect to the
determination of the worst case width of the parame-
ter uncertainty intervals.
Finally, it is easy to see that if any of the previously

recalled optimal nb · N opt measurements is omitted,
the worst case parameter uncertainty interval width
is not achieved. In fact, if one of the optimal mea-
surements is omitted there will no longer be a set of
N measurements for one of the optimal levels poptk
so that the bounds of the corresponding parameters
bi(p

opt
k ), i = 0; : : : ; nb − 1, will be larger than ±E=U

thus leading to larger bounds on at least one set of the
parameters bi; j.

The previous results hold indeed also for a vector
valued p variable.
Finally, remark that these results can be extended

to the case in which (3) is substituted by

bi(p) =
N∑
j=1

bi; jfi; j(p) (26)

so that diBerent sets of functions are used to repre-
sent the dependance on p of each one of the FIR
parameters.
In this case the set of optimal levels of p consists

of the union of the input sets that are optimal for
the nb static blocks represented by relation (26) with
i = 0; : : : ; nb − 1.

4. Non-minimal input sequences design

Although the worst case identi3cation error cannot
be improved adding extra measurements, the ac-
tual identi3cation error can be reduced adding more
measurements provided that their error realization
is not the worst one. Since this occurrence is quite
common in several practical cases, in this section
we analyze the case in which more than nb · N opt

measurements can be collected and their error real-
ization is unlikely to be the worst one. To formalize

this last statement it is convenient to introduce some
mild statistical assumption for the measurement er-
ror e that, beside being bounded over the domain
[−E;+E] is also characterized by an unknown distri-
bution. With only this assumption it is still diHcult to
derive general results therefore the error distribution
is restricted to be not-impulsive so that it associates
probability zero to the event of obtaining the same
error realization in two diBerent measurements.
Under such conditions, whenever the considered

model is minimum worst case, the collection of extra
measurements beside the 3rst nopt = nb · N leads to a
reduction of the actual measurement error according
to the following Theorem.

Theorem 2. Given a minimum worst case model, if
the boundedmeasurement error is not-impulsive, then
for any optimal input sequence {(uk ; pk)} providing
nb·N opt measurements, the probability of reducing the
W (PUIbi; j) of all the parameters replicating one time
only the already performed nb · N opt measurements
is one.

Proof. Recalling relation (12), the D(u; p) set, ob-
tained with nb · N opt measurements, is de3ned as the
intersection of the nb ·N opt strips Sk , k=1; : : : ; nb ·N opt,

Sk = {�∈Rnb·N opt
: − E6yk − aTk �6E}: (27)

Since, by assumption, the probability of obtain-
ing the same error realization performing two mea-
surements is zero, the replication of an existing
measurement leads, with probability one, to a new
measurement y′

k �= yk , whose associated strip is

S ′
k = {�∈Rnb·N opt

: − E6y′
k − aTk �6E}: (28)

Since the two strips in relation (27) and (28) are
oriented along the same direction (they share the same
regressor aTk ) in the parameter space, their information
can be combined in an equivalent strip MSk

MSk = Sk ∩ S ′
k

= {�∈Rnb·N opt
: − Ek6 My k − aTk �6Ek} (29)

relative to the equivalent measurement My k

My k =
yk + y′

k

2
(30)
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with an associated error bound Ek , such that

2Ek =min{(yk + E); (y′
k + E)}

−max{(yk − E); (y′
k − E)}: (31)

Since y′
k �= yk with probability one, also Ek ¡E

with probability one. Assuming Ek = E whenever the
kth measurement has not been replicated, from the
sign structure of the inverse of the regression matrix
A(u; p) [1,12] it results


�M0 − �m0

�M1 − �m1
...

�Mnb·N opt−1 − �mnb·N opt−1




=2abs(A−1(u; p))




E1

E2

...

Enb·N opt



: (32)

Therefore, the reduction of any of the error bounds
Ek reduces the W (PUIbi; j) of all the parameters.

Since the W (PUIbi; j) obtained using the input se-
quences of Theorem 1 are the smallest that can be
recovered from nb · N opt measurements only, it fol-
lows that the best strategy consists in replicating such
optimal measurements (i.e. to provide the same input
sequences).
Collecting a new set of the measurements, forcing

the same input sequence, is not the unique way to re-
duce, with probability one, the PUI of the parameters.
In fact, other input sequences, whose associate mea-
surements reduce with probability equal to one the
PUI of all the parameters may exist, but their exis-
tence and location depend on the error realization of
the 3rst nb · N opt measurements. Since the computa-
tion of the location of these measurements requires
the knowledge of the true parameter vector, they can
not be practically computed [3].
It appears that the not-impulsive error hypothesis

alone does not allow to derive results about the PUI
reduction if more than 2(nb · N opt) measurements
can be performed. In such conditions it is however
reasonable to conjecture that more than two repli-

cations of the measurements (i.e. the collection of
the measurement applying two times the same in-
put sequences) are more convenient with respect to
the collection of measurement with generic input se-
quences, diBerent from the optimal ones of Theorem
1. In order to test this conjecture, a numerical simula-
tion has been performed and is presented in the next
section.

5. Numerical example

In this section the eBectiveness of the proposed
optimal input design is illustrated with a simulation
study. An LPV system consisting of a 15th degree
FIR, whose parameters are 3fth-degree polynomials
in the p variable was considered. The actual values of
the parameters used to generate output data were ran-
domly obtained and are reported in Table 1. It was
assumed that the input variable u and the operating
condition parameter p were allowed to vary over the
intervals [− 1; 1] and [0; 1], respectively.
Two possible input sequences were considered: the

3rst one is the optimal sequence in Theorem 1with Mu as
in relation (19), “cyclically” replicated; the second one
is constituted by random sequences, both for u and p,
uniformly distributed over their support intervals. For
both possible input sequences 100 measurement sets
were generated (100 sets with optimal input and 100
with random input). Each measurement set consisted
of 465 input samples (the 3rst 15 of which were used
for loading the FIR) and 450 output samples.
Measurements were obtained as follows:

• Optimal measurement sets: the optimal input se-
quence was applied 100 times and a random error
uniformly distributed over the interval [ − 1;+1]
was added to the resulting output sequences.

• Random measurement sets: 100 diBerent random
sequences were applied to the system input and ran-
dom errors uniformly distributed over the interval
[− 1;+1] were added to the resulting outputs.

From each measurement set 3ve subsets of diBerent
length were obtained considering the 3rst 90 · r, r =
1; : : : ; 5, measurements. Remark that 90 = nb · N opt is
the minimum number of measurements required for
identifying the system, so that, when the optimal input
sequence is considered the 3ve mentioned subsets are
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Table 1
Parameters bi;j used for the simulation

bi;j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 2.9003 1.8114 1.0305 2.0056 1.9931 2.4055
i = 2 1.4623 2.8709 2.4936 2.4189 2.7995 2.0931
i = 3 2.2137 2.8338 1.8902 1.8578 2.6433 1.8898
i = 4 1.9720 1.8205 2.8636 1.6092 2.2898 2.3891
i = 5 2.7826 2.7873 1.9320 1.3793 2.6359 2.2426
i = 6 2.5242 1.1158 1.8373 1.3869 2.3205 2.5896
i = 7 1.9129 1.7057 2.6924 2.3644 1.6839 2.9137
i = 8 1.0370 2.6263 2.0503 1.6055 1.5795 2.0452
i = 9 2.6428 1.0197 1.4053 2.0833 1.6824 2.7603
i = 10 1.8894 1.2778 2.3443 1.3017 2.0682 1.3459
i = 11 2.2309 1.4055 2.6762 2.3958 2.4542 2.9595
i = 12 2.5839 1.3974 1.0393 1.7567 1.6186 1.5429
i = 13 2.8436 2.2076 2.3626 2.7200 2.6770 1.5047
i = 14 2.4764 1.5444 1.7590 2.7073 2.1361 2.7515
i = 15 1.3525 1.3976 2.6636 2.1871 1.7408 2.4746

Table 2
Performance indexes Minr and Avgr as functions of r

Criteria r (used measurements = 90r)

1 2 3 4 5

Avgr 961.07 4.95 3.28 2.77 2.53
Minr 54.42 3.62 2.45 2.00 1.72

derived applying the optimal input sequence r times
(r = 1; : : : ; 5) as discussed in Section 4.
From each measurement subset the system param-

eters were estimated and the estimates’ reliability was
evaluated in terms of the ‘∞ radius of the corre-
sponding parameter feasible set D. For each possi-
ble input sequence (optimal or random) and for each
length of measurement subset (90r, r = 1; : : : ; 5) 100
diBerent evaluations of the ‘∞ radius denoted with
*optr (i), r = 1; : : : ; 5, i = 1; : : : ; 100, and *randr (i), r =
1; : : : ; 5, i = 1; : : : ; 100, respectively were therefore
available.
The minimum and the average of these sets of 100

radiuses have been computed and the performance of
the optimal input with respect to the random one was
evaluated in terms of the ratios between the minimal
radiuses and the average radiuses obtained with the
two possible input sequences (random and optimal),
that is with the two following indexes Minr and Avgr ,

r = 1; : : : ; 5, de3ned as

Minr =
mini*randr (i)

mini*
opt
r (i)

; Avgr =
1=100

∑
i *
rand
r (i)

1=100
∑

i *
opt
r (i)

;

r = 1; : : : ; 5:

Results are reported in Table 2. Results show that opti-
mal input sequences perform quite better than random
input sequences.

6. Conclusions

In this paper the problem of the worst case identi3-
cation of discrete time linear parameter varying (LPV)
models with 3nite impulse response (FIR) dynamic
structure in the case of unknown but bounded errors
was studied. In particular optimal input design for
the worst case identi3cation was addressed. Suitably
combining available results for optimal worst case
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identi3cation of time invariant FIR systems with those
relative to optimal worst case identi3cation of nonlin-
ear static blocks, optimal input sequences that allow
lowest worst case parameter uncertainties for LPV–
FIR systems were derived.
The case in which it is possible to collect more mea-

surement than the minimum required was addressed as
well, outlining strategies for optimally choosing such
measurements. The eBectiveness of the proposed ap-
proach was shown through a simulation study whose
numerical results show that optimal input sequences
perform quite better than random ones.
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