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Abstract  

The semi-classical approach, successfully applied in the past to the inelastic, inclusive electron 
scattering off nuclei, is extended to the treatment of exclusive processes. The associated formalism 
goes beyond the plane wave impulse approximation, since it can account also for the final states 
interaction in the mean field approximation, respecting the Pauli principle. We then explore, in the 
frame of two admittedly crude approximations, the impact on the exclusive cross section of the 
distortion of the outgoing nucleon wave. In addition also the influence, on the same observable, 
of the shape of the potential binding the nucleons into the nucleus is investigated. In accord with 
the findings of fully quantum mechanical calculations, the exclusive scattering is found to be 
quite sensitive to the mean field final states interaction, unlike the inclusive one. Indeed we verify 
that the latter is not affected, as implied by unitarity, by the distortion of the outgoing nucleon 
wave except for the effect of relativity, which is modest in the range of momenta up to about 
500 MeV/c.  Furthermore, depending upon the correlations between the directions of the outgoing 
and of the initial nucleon, the exclusive cross-section turns out to be remarkably sensitive to the 
shapc of the potential binding the nucleons. These correlations also critically affect the domain 
in the missing energy - missing momentum plane where the exclusive process occurs. Finally 
the issue of the validity of the semi-classical framework, in leading order of the h expansion, in 
providing a description of the exclusive processes is shortly addressed. (~) 1998 Elsevier Science 
B.V. 
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1. Introduct ion  

The plane wave impulse approximation (PWIA) has been a framework extensively 
employed in analysing the exclusive (or semi-inclusive) processes of inelastic scattering 

of electrons off nuclei, like, e.g., the (e, etp) one [ I ] .  The advantage of such an 

approach lies of course in its simplicity : indeed, in the PWIA, the final nucleon is 
described by a plane wave and is not antisymmetrized with the daughter (A 1) 
nucleus. Accordingly in PWIA one deals with the diagonal component of the spectral 

function S(p ,  Ep) only, which is the easiest to calculate. 

The chief flaw of PWIA is of course the neglect of final state interactions (FSI). These 
should be calculated on the basis of a realistic model. The simplest available model, 

namely the Fermi gas (FG),  appears hardly suitable for describing exclusive processes, 
being an uniform distribution of unbound hadrons in an infinite volume. Yet finite size 

(surface) and binding effects can be properly inserted into the FG model within a semi- 
classical formalism, which has been developed in Ref. [3,4]. It has been satisfactorily 
tested in the "inclusive" nuclear response functions, but for their low energy side, where 

the semi-classical approach interpolates the quantum mechanical cross sections without 
reproducing their rapid variation with the energy. 

The aim of this paper is to extend the semi-classical method to deal with exclusive 

processes, going beyond the PWIA by accounting tbr the FSI. Of course the problem of 
the FSI in the exclusive processes has already been widely addressed [5]: not, however, 

in the semi-classical framework. In this paper we shall show that the latter allows not 

only for an adequate treatment of the inclusive processes, but of the exclusive (or semi- 
inclusive) ones as well, at least in a mean field framework, the scheme we shall adhere 
to, for simplicity, in the present work. 

Indeed when the momenta transferred to the nucleus responding to an external elec- 
tromagnetic field are not too small, the semi-classical spectral function S ( p , p  ~, E) and 

distortion operator PN (to be later defined) are expected to satisfactorily account for the 
dynamics of a nucleon inside the nucleus (the first) and for the distortion the outgoing 
nucleon wave suffers in crossing the nuclear surface (the second). We actually conjec- 

ture the semi-classical method to be applicable to exclusive processes when the variation 
of the nuclear density and mean field over distances of, say, half a wavelength of the im- 

pinging photon is modest. Accordingly momentum transfers down to 300-500 MeV/c, 

with associated half-wavelengths of 1 - 2  fro, should fulfill the above requirement except, 
possibly, in the surface of the nucleus. The latter is known to play a minor role in the 
physics of the quasi-elastic "inclusive" scattering (witnessing the success of the Fermi 
gas in accounting for the quasi-elastic peak). This paper suggests that this occurrence 
remains true for "exclusive" processes also, in the kinematical domain above referred to 
and in the mean field framework. 

Whether the extension of the semi-classical method to encompass nucleon-nucleon 
(NN) dynamical correlations is justified, both for the spectral function and for the 
distortion of the final nucleon wave, is a subject yet to be explored. We intend to 
carry out this task since the data unambiguously point to the existence of a substantial 
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exclusive cross-section in kinematical regions hardly compatible with a pure mean field 

description of the (e, e~p) process [7]. 

As it is well-known the semi-classical method expresses the physical observables in 
powers of the Planck's constant h. It turns out that the leading term of the expansion 

already accounts, in the mean field approximation, for the basic elements of the exclusive 
physics, namely the nuclear confinement and the FSI. It becomes then possible to address 

more directly several questions related to the physics of the exclusive (and inclusive) 

processes, whose answer would otherwise be much harder to get in a fully quantum 
mechanical many-body scheme. 

As a first point one would like to appreciate the impact on the exclusive process of 

the FSI. For this purpose we describe the distortion of the outgoing nucleon wave in two 

opposite, schematic models, the so-called eikonal and uniform approximations: in the 

first the outgoing nucleon is not deflected from the direction of the initial momentum, 
while in the latter the final nucleon is isotropically emitted from the nucleus. We compare 
the results we obtain with the exclusive cross-sections in the semi-classical PWIA. 

As a second point the sensitivity of the semi-classical exclusive cross-section to the 

shape of the shell model potential binding the nucleons in the nucleus should be tested: 
accordingly we employ in our calculations both an harmonic oscillator and a Woods- 

Saxon potential well. Here, for simplicity, the field felt by the particles and the holes is 
taken to be real and non-relativistic. Actually an approach with a complex shell model 
potential which extrapolates the mean field from positive toward negative energies has 

been developed in Ref. [ 8,9 ], while a relativistic approach, both for the shell model [ 10] 
and for the optical potential (which accounts for the distortion of the ejected nucleon) 

has been recently used in exclusive processes [ 11 ]. 
We have found, as expected, that indeed in the exclusive (e,e~p) cross-section the 

outgoing nucleon wave can keep track of the original bound state, again depending upon 
the distortion mechanism, in contradistinction to the inclusive cross-section, which is 
almost unaffected by the shape of the potential. In other words the exclusive cross-section 

is sensitive to the structure of the spectral function. 

Accordingly, although the focus of this work is largely centered on the effects of 

FSI, we have also paid special attention to the spectral function, a key ingredient 
of the exclusive cross-section. Direct calculations of the hole spectral density have 
been performed long ago with variational methods in few-nucleon systems [12,13] 
and later on in nuclear matter [ 14,15] in the frame of the correlated basis theory. 
More recently spectroscopic factors have been evaluated in the relativistic shell model 
approach of Ref. [ 10], both in medium and heavy nuclei. While the semi-classical 

approach admittedly fails in reproducing specific quantum mechanical aspects of the 
spectral function, it keeps the basic average features of the latter (which instead are 
missed by the Fermi gas description), still retaining a great deal of simplicity. 

We want to point out that the semi-classical formalism developed in detail in this 
work looks somewhat intricate, but in fact its application leads to relatively simple 

calculations. 
We summarize now the organization of the paper: in Section 2 the general expressions 
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Fig. 1. The Feynman diagram representing the inclusive (e, e') process. 

for the inclusive and exclusive cross-section in the one-photon exchange approximation 

are shortly revisited. Furthermore the off-diagonal spectral function and the distortion 
operator are introduced. In Section 3 we derive and discuss the semi-classical expression 

for the exclusive cross-section, both in PWIA and DWIA. In Section 4 the diagonal 
part of the semi-classical spectral function is obtained in the mean field framework. 
Analytic expressions of this quantity for a few one-body potential wells are provided 

in Appendix A. In Section 5 we deduce the mean field expression for the distortion 
operator and discuss it in the context of the two rather extreme models (eikonal and 
uniform approximation) referred to above. In Section 6 we calculate, for both models, 

the exclusive cross-sections and, in Section 7, the inclusive ones, by integrating the 
former over the appropriate regions of the missing energy-missing momentum plane. 

Finally in Sections 8 and 9 we present and discuss our numerical results and examine 
the validity of the semi-classical approach together with its possible extensions. 

2. The cross-sections 

The inclusive cross-section for the scattering of an electron, with initial and final 

four-momenta k and k' respectively, out of a nucleus, initially in its ground state IA) 

and then excited into "any" final state IX), reads 

d 2 o  - _ 2 a  2 1 k '  
(Q2)-----5-~rI""Z(AIJ~(q)  I X } ( X I J ' . ( q ) I A ) • ( E x - -  E A - - w )  (2.1) 

d ~ e  de '  
x 

(all the states are normalized to one in a large box of volume V). In the above Q2 = 
_q2 ~ q2 _ ¢.0 2 is the space-like four momentum transferred from the electron to the 

nucleus and 

71 ~*~ = k**k" + k~k '** - g ~ k  • k'  (2.2) 

is the well-known symmetric leptonic tensor of rank two. The diagram describing the 
inclusive process is displayed in Fig. 1. 

In the present work we confine ourselves, for sake both of simplicity and of illustra- 
tion, to consider one-body current only, disregarding meson exchange currents (MEC). 
Likewise correlations among nucleons beyond the mean field will be dealt with in future 
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research. In any case the matrix elements of the nucleon's one-body current )'~ entering 
into (2.1) read (the symbols are self-explanatory) 

/ dp / dp' (Xl'dt(p,,s,)'d(p,s)[a)(p,,s, lj~(q)lp, s) ' (XlJ'~(q) la) - -  (27r)3 
S 

(2.3) 

the standard annihilation and creation operators 'd and 'd* being normalized according to 
the anticommutation rule 

{'d (p, s),'d*(p', s ')} = (2zr)3~(p - P~)~ss'. (2.4) 

In the above 

(p', s'lj~( q) [p, s) = (2zr) 38(p ' - p - q) j f  S (p + q, p) (2.5) 

and 

js'S(p+q,p)=it(p+q,s~)[Fl(Q2)yu+F2(Q2)i2-~No'~,pq~']u(p,s), (2.6) 

where FI and F2 are the Dirac and Pauli nucleon's form factors, i< = 1.79 for protons 
and x = -1.91 for neutrons. Finally the spinor normalization is u)u = 1. 

Clearly the insertion of (2.5) into (2.3) leads to 

(XIJ~(q)IA)= ~ f (2@)3 (Xl'dt(p + q,s')'d (p,s)la)js's(p+ q,p). (2.7) 
S 

Now in the PWIA framework the final nuclear state is factorized as follows (V is the 
normalization volume) 

1 
IX) = In) ® ~ [ P N ,  SN), (2.8) 

where In) represents an excited state, normalized to one, of the residual ( A -  1) nucleus 
and IPN, SN) is just a plane wave, normalized according with the anticommutators (2.4). 
In such a scheme, to the matrix element (2.7) only a single nucleon with a given 
momentum p will contribute, the rest of the nucleus behaving just as a spectator. 

In the present approach instead the wave of the outgoing nucleon, [PN, sN), is "dis- 
torted" by the interaction with the residual nucleus and no longer is a momentum 
eigenstate; as a consequence the nuclear matrix element (2.7) will be expressed through 
an integral (sum) over all possible initial nucleons' momenta (spin) and will read: 

I ~ . [  dp 
(X[J,(q)IA) = ~ ( ~ N l p +  q)j~"X(p+ q,p)(n I'd (p,s)lA) (2.9) 

providing the spin of the outgoing nucleon, which will no longer be explicitly indicated 
in the state vectors, is unaffected by the distortion. 
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Fig. 2. Diagrammatic representation of an exclusive (e, etN) process. 

In Fig. 2 the exclusive process is diagrammatically displayed : the bubble on the final 
nucleon leg should be ignored in the PWIA scheme, whereas in the framework of the 

present paper it is meant to embody the FSI. 
Using (2.9) we can now compute the cross-section for the exclusive process. In the 

laboratory frame, where the nucleus is at rest (hence EA = M A ) ,  we obtain 

d4o" _ 2ce2 1 k' f dp f dp ' 
d O e d e t d p  N (2,n.)3 (Q2)2 k r/uu ~ (2,n-) 3 

X ' ~  ./.z . v  Js'.,N (P" P' + q)(P' + qlPN){PulP + q)JsNs (P + q, P) 
s N ,s t .s 

x Z ( a l ' a t ( p t ,  S')tn)3[E"a_l -- (o9 + MA - Eu)l(nl'd(p,s)la) 
n 

(2.10) 

the sum extending over the whole spectrum of eigenfunctions of the residual (A - 1) 
nucleus, with eigenvalues E~_l, while EN is the energy of the outgoing nucleon. 

Concerning the electromagnetic vertices they will be taken, according to (2.6), with 
the nucleon on the mass-shell (which is the case for the FG, but clearly not for a 

finite nucleus). Of course this assumption can be corrected by employing, e.g., the CCI 
prescription of De Forest [ 6] to move the nucleon off the energy shell preserving gauge 
invariance. 

It is customary to introduce the positive "nuclear separation energy" 

Es = M N  -Jr- M A -  I --  M A  = MN - tz, (2.1 1 ) 

/x being the nuclear chemical potential, and the positive "excitation energy" 

E , i =  E ~ _ I  - -  EOA I -  ~ = EA-n I - -  M A - I  - -  Erec 

of the residual ( A -  1) 
mentum") and energy 

Erec ~ ( q - PN ) 2 
2 MA-I 

(2.12) 

nucleus recoiling with momentum q -  Pu (the "missing too- 
in the non-relativistic approximation) 

(2.13) 
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Accordingly we can write 

S[Ena_l -- (gO+MA - E u ) ]  =6[Cn - ( w - T N - E s - E r e c ) ]  =6(8, - E ) ,  (2.14) 

where 

E = w - TN -- Es - Erec (2.15) 

is the so-called "missing energy", fixed by the external kinematics, and TN the kinetic 
energy of the outgoing nucleon. 

To proceed further we introduce now three quantities, related to different one-body 
operators, which allow to express the exclusive cross-section in a compact form. 

The first of these is the general (off-diagonal) spectral function defined as follows 

(p, slS(E)lP',S')=~--~(al'd*(p',s')ln)8[E E" E°A_I --  ( a--I --  )](nl'd(p,s)l A) 
n 

= (A[~ t (p',  s) 6(7~ - E)~(p,  s)IA). (2.16) 

In the above closure has been applied and 7~ is the Hamiltonian whose eigenvalues are 
the excitation energies of the residual nucleus. 

Upon integration over the excitation energy, the spectral function, diagonal in the spin 
indices for parity conserving interactions, yields 

dE(p, siS(E)IP', s) = (AI ~t (p', s)*d(p, s)IA), (2.17) 

which, for p = p', is just the momentum distribution of the nucleons inside the nucleus. 
The latter becomes experimentally accessible if the data span a range of missing energy 
large enough. 

Obviously for the diagonal part of the spectral function the well-known sum rule 

/ ~ d p  f dE(p, siS(E )lp,s  }=a,  (2.18) 

holds, A being the number of nucleons in the nucleus and a spin-isospin summation 
being implicitly assumed. 

Next the matrix elements in momentum space 

<p'l-fNIp> = <P'I~N><~NIP> (2.19) 

of the one-body projection operator "fin should be introduced. The operator -fJv embodies 
the distortion of the outgoing nucleon's wave and it is clearly of central relevance for the 
present treatment. In PWIA the outgoing nucleon state is a plane wave and thus (2.19) 
becomes: 

<p'l-fNIp> = (27r) 66 ( p '  - P N )  6 ( P N  -- P )  " (2.20) 

In the next three sections we shall study in detail both S and -fJv in the semi-classical 
framework. 
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Finally the one-body operator associated with the electromagnetic vertices, namely 
the single nucleon tensor (which we shall assume it to be on the mass-shell) 

(p,,s, iW~.(q)lp, s)-'~'* :,,, , .. -JsNs,,v +q,P )J.,.Ns(P+q,P), (2.21) 

is the third element which enters into the physics of the electromagnetic exclusive 

processes. 
On the basis of the above definitions the exclusive cross-section (2.10) can be rewrit- 

ten as follows 

d 4 o  - 

dg2~ de I dp: v 
2a2 1 k' f dP f dP ' 

(2qr)3 (Q2)2 Tr//~" ~ (2,r:)3 Z (P' + qlp:v]p + q) 
SN,St,S 

x (p, sIS(£)IP', s')(p', s'lWff(q)]p, s). (2.22) 

We shall discuss in the following section the condition under which the off-diagonal 
matrix elements of W~ ~ can be disregarded. The diagonal W~ " directly relates to the 
physical "on shell" electron-nucleon cross-section according to 

( d o ' )  ' k' 
--rl~,,(p, slW~ ( q) IP, s). (2.23) s. = 2c22 (Q2)2 k 

3. The semi-classical approach 

For the details of the method we refer the reader to Ref. [4]. Here it suffices to 
remind the definition of the Wigner transform (WT) of a one-body operator O, namely 

k 

and, inversely, 

(p,OIp')= / dRei~p-l/)'~Ow ( R , ~ - ~ - )  . (3.2) 

The core of the semi-classical approach lies in the systematic expansion in h (or in 
the gradient with respect to R or p) of the Wigner transform of operators; in our case 
only the leading order of the expansion will be kept: accordingly the Wigner transform 
of the product of operators reduces to the product of the Wigner transforms of each 
factor. We shall repeatedly exploit this rule in the following. 

Introducing the Wigner transforms and performing the change of variables 

U U 
p = K + - and p~ = K -  - (3.3) 

2 2 

we can recast the expression (2.22) into the form 

d4o" _ 2a2 1 k' f dK / du 
df2e de' dPu (27r)3 (Q2)2 k r/u" ~ (27"r) 3 
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× Z f dRe-iU'R[~N]w(R,K +q) f dSeiU's[s.~.~.,(C)]w(S,K) 
.V N S I .~ 

U U × ( K - ~ , s '  W~"(q) K+-~,s) 

7.0. 2 1 k/ ~¢s f dK / - (2~)3 (Q2)2 k q/zu ~ dRdS[Ss, s(g) lw(S,K) 

/zv 
× [PN]w(R,  K + q) [ W,.,,.,,(q)]w(S - R, K),  (3.4) 

+q.+;)]* 

where 

[W~V.,.(q)] w (S - R, K) = f (2"n') 3 d t  eit.(s_R) 

SN S ! 
SN (t ;) 

×J.~"u.; K - ~ + q , K -  

~-- 6 (R - S) (K, slW~"(q)IK, s). (3.5) 

To leading order in h the t-dependence in the electromagnetic current can be disregarded. 
Hence the Wigner transform in Eq. (3.5) depends on the diagonal nucleonic matrix 
elements only. This approximation leads to a local expression for the exclusive cross- 
section. The interference between the elementary contributions arising from different 
regions of the nucleus is neglected in first order and would come into play through higher 
order terms in the h expansion. The latter involve derivatives of the mean binding field, 
thus they are mainly relevant for surface effects, namely for the removal of peripheral 
nucleons. 

By inserting (3.5) into (3.4) one finally obtains for the exclusive cross-section the 
semi-classical expression 

d4o- 20 .2 1 k I / d K K 
dOede'dPN (2zr) 3 ( a z ) z - k  -~/*v __ ~ (  ,slW~V(q)[ K,s) 

X / d R  [S,~s(E )]W ( R , K )  [pN] w ( R , K +  q) 

.1,- (,,) -(2~-)3 ~ ~ (g,q) 
sII 

f dRiSss(C)lw (R,K) [~N]w (R,K+ q) X (3.6) 

(repeated indices are meant to be summed) where, considering, for sake of illustration, 
the longitudinal channel only, 

[ d o - ]  MN MN (Q2~2RL ' (3.7) 
(P'q) = o-M°ttE(p) E([p+ ql) \ qZ ] 

Sn 
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O'Mott being the Mott cross-section, E(p ) = v/p 2 + M~, 

q2 
RL = ~ {G~(Q 2) + W2(Q2)x 2} (3.8) 

and 

W2(Q2) _ 1 2 2 ~.G~(Q2) ]. (3.9) 
! + Q2/4M2N [GE(Q ) + 

Furthermore the dimensionless variable ) = P sin O/MN (0 being the angle between p 

and q) is utilized, and GE and GM are the Sach's electric and magnetic nucleon's form 
factors. In the following it will be understood, without explicit mention, that all our 

calculations and results refer to the longitudinal channel. 

Eq. (3.6) clearly shows the modification with respect to the PWIA scheme, where 

only one nucleon with momentum K = PN - q takes part in the exclusive process. Here 
instead because of the FSI embodied in ,~U, the momentum of the nucleon actually 
involved into the process might take any value: hence the integration over the variable 

K. 
The above formulae also transparently show how the Wigner transform operates: it 

replaces the off-diagonal momentum matrix elements of the one-body operators entering 
into the expression for the exclusive cross-section with diagonal "space-dependent" 

matrix elements. 
Belbre ending this section we write the expression for the semi-classical PWIA cross- 

section; introducing into (2.22) the explicit form (2.20) for the matrix element of the 

one-body projection operator and considering the inverse WT of the spectral function 
and the single nucleon tensor, one easily ends up with: 

( d 4 ° ' ~  - l (  dO" ) /'dR R, Pm), (3.10) 
d~edetdPuJpWlA (2"rr) 3 ~ e e  ~,, (Pro'q) [Sss(£)]w( 

where the so-called missing momentum Pm= q - PN has been introduced. The above 
formula clearly shows that in PWIA the cross-section is directly proportional to the 
spectral function. 

In the next two sections we shall calculate the WT of the spectral function and of the 
distortion operator in leading order. 

4. The diagonal semi-classical spectral function 

Let us consider a closed shell nucleus having A nucleons sitting in the lowest orbits 
of a potential well V(R) (in principle the Hartree-Fock (HF) mean field) and an 
(A - 1 ) daughter nucleus obtained by creating a hole in a generic occupied level of the 
former. The (A - 1) nucleus thus obtained will generally be in an excited state with 
an energy given by (in the non-relativistic HF approximation and neglecting the small 
recoil energy) 



W.W. Alberico et al./Nuclear Physics A 634 (1998) 233-263 243 

E A - I  - - E a - l , h  = M A  -- M N  -- eh (4.1) 

= ~--~ t# + 5' ~--~(## ' lvl## ' )a  + A M l v  - th -- Z ( h # l v l h f ) a  - M N ,  (4.2) 
#<~v #,#' # 

where the Eq. (4.1) defines the hole energy eh. In (4.2) the first three terms on the RHS 
correspond to the energy of the nucleus with mass number A, v is a suitable two-body 
interaction and the subtracted terms represent the energy of a particle in the h orbit. 
Of course in the HF scheme the ground state energy of the A - 1 daughter nucleus is 
obtained by removing a particle at the Fermi energy, namely 

EOA_I = M A  - -  M N  - eF - -  M A - I ,  (4.3) 

from where, according to (2.11), the relation eF = - E s  follows. We then get for the 
(positive) excitation energy 

c : E t - l , h  -- M A - I  = eF -- El,. (4.4) 

In the semi-classical approximation the "negative" Fermi energy is 

k~(n) 
eF -- + V ( R ) ,  (4.5) 

2M~ 

R being the radial variable; a nucleon effective mass M~v has been introduced to account, 
together with the potential well V(R),  for the Hartree-Fock mean field. Eq. (4.5) locally 
defines a Fermi momentum kF(R) for R ~< Rc, Rc being the classical turning point fixed 
by the equation 

eF = V(Rc). (4.6) 

We now express the spectral function in the basis of the eigenfunctions of the single 
particle hamiltonian 

p2 
h = - -  + V ( R ) ,  (4.7) 

2M~v 

rather than in the basis of the momentum eigenfunctions. The former of course obey 
the equation 

h l a )  = e,~la), (4.8) 

e,~ being the associated eigenvalues. 
We thus get 

(plS(C) Ip') = ~-- '~(p ' la ' ) (a l~ ,6(7~ - E ) ~ . l a ) ( a l p )  
O t ~  p 

~--~<#I,~'><o, ' I~ [E  - (eF -- e , , ) ]  O(e~ -- e, ,)  I'~><'~IP> 

= (p'10(eF - h)8 [,f - (eF -- h)] IP)- (4.9) 
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By applying then the definition (3.1) of the Wigner transform it is an easy matter to 
verify that, to leading order of the h expansion, one has 

[O(eF-h)]w(R,p)=O eF- +V(R) + O ( h  2) (4.10) 

and 

[ (  )1 { 8 [ £ - ( e F - h ) ] } w ( R , p ) = 8  8 -  EF 2M.N V(R) +O(h2) .  (4.11) 

Hence it follows that, in leading order, the WT of the spectral function is just the product 
of the WT (4.10) and (4.11), namely 

[S (£ ) ] w  (R,p) = 0 eF 2M.N V(R) 6 8 -  eF 2M~ V(R) . (4.12) 

An integration over the whole nucleus yields then for the diagonal spectral function 
in the semi-classical approximation the expression 

) p2 
S(P'E)= f dRO( k2(R)2M~ 2M~P2 / ¢~ [E__ (k2(R)2M~v 2--M-~N)] , (4.13) 

which displays a striking similarity with the one of a Fermi gas. In (4.13) the defini- 
tion (4.5) of the local Fermi momentum has been used. Actually, in leading order, the 
HF semi-classical approximation of the spectral function for a finite nucleus might be 
viewed as arising from a superposition of a large set of FG each one characterized by a 
different kF, the latter being defined according to the prescription (4.5), or, equivalently, 

kF(R) = v/2M~v (eF -- V(R)). (4.14) 

To illustrate the method we report in Appendix A the calculation of the diagonal 
semi-classical spectral function for a few specific single-particle potentials. 

In a square well potential the spectral function is different from zero only along the 
curve (V0 is the depth of the well) 

p2 
£ = eF + V0 - 2M----~N, (4.15) 

in analogy with the FG. 
For the harmonic oscillator potential 

V(R) = ~lVlu(.O01 ~ 1 , . .  2 n 2  _ V o  ' (4.16) 

V0 being a positive constant and hwo = 41/A j/3 MeV the harmonic oscillator frequency, 
the semi-classical spectral function is displayed in Fig. 3: here we consider the nucleus 
of 4°Ca (hwo ~- 12 MeV and V0 = 55 MeV). It can be compared with the quantum 
mechanical situation, illustrated in Fig. 8 of Ref. [2], where £ is quantized and p is a 
continuous variable. In the semi-classical case instead both £ and p are continuous. Fur- 
thermore the semi-classical Sho (p,£) vanishes abruptly along the line (4.15) whereas 
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Fig. 3. Semi-classical spectral function obtained with the harmonic oscillator potential, as a function of missing 
energy and missing momentum. 

in the quantum case there is a small leakage across this line. Finally the oscillations 

characterizing the quantum momentum distribution of  the nucleons in a given shell are 

now replaced by a smooth behaviour with p. The semi-classical approach averages the 

quantum mechanical spectral function and fills up the domain of  the (C,  pm) plane 

where the strength of  the latter is concentrated, keeping nevertheless to a large extent 

the simplicity of  the quantum Fermi gas. 

In Fig. 4 the semi-classical spectral function is displayed for the Woods-Saxon well 

vl 
V ( R )  = 1 + e ( R - e o ) / a '  (4.17) 

with Vl = 50 MeV, Ro = 1.2A 1/3 fm and a = 0.65 fm. The strength distribution is 

somewhat different than in the previous case: it also vanishes abruptly along the line 

g + 2M---~N -- eF -- VI = E F -- £ 2--~, u e -R°/a, (4.18) 

which is in practice quite close to the one of  the square potential well ( if  V0 = I,'1) 
defined in Eq. (4.15). The two lines coincide, as expected, in the limit a --~ 0. Indeed the 
Woods-Saxon semi-classical spectral function becomes sizable close to the line (4.18),  

in resemblance with the square well case. 
This can be better understood from the momentum distribution 

n ( p )  = f d ~ S ( p , C ) ,  (4.19) 
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Fig. 4. Semi-classical spectral function obtained with the Woods-Saxon potential, as a function of missing 
energy and missing momentum. 
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Fig. 5. Semi-classical momentum distribution (multiplied by 103), Eq. (4.19), as a function of p, for the 
harmonic oscillator well (dashed line) and the "customary" Woods-Saxon well (solid line). The dot-dashed 
line corresponds to the same quantity for a Woods-Saxon potential with a sharp surface (a = 0.1 fm). 

which is illustrated in Fig. 5 for three cases: (a) the harmonic oscillator oscillator 

potential, (b)  the Woods-Saxon well with the "standard" parameters referred to above 

and (c) with a sharper surface (a  = 0.1 fm, Vi = 60 MeV and R0 = 1.2A U3 fm, 

to preserve the correct normalization). In spite of the marked differences between 

the corresponding spectral functions, the cases (a) and (b) are quite similar. On the 

contrary a very thin surface in the Woods-Saxon well [case (c) ]  leads to a momentum 

distribution which is reminiscent of the FG one. This confirms the above interpretation 

of the behaviour of Sws(P, C) in approaching the boundary (4.18). 
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5. The distortion operator 

The distortion operator 

obeys, in the HF scheme, the equation 

p2 ~ ,  
h~N = 2---ff~NVN (5.2) 

where, on the RHS, the free nucleon mass appears. 
Taking the WT of the above one gets 

~ p~ 
(hpN)w = (h)w(PN)w = 2---~N (pN)w, (5.3) 

or, focussing on the dependence upon the variables R and p, 

,o2 ] (p)v)w(R,p) = 0. (5.4) 
(h)w(R,p) - 2MNJ 

Now since 

p2 
(h)w(R,p) = - -  + V(R), (5.5) 

2M~ 

V(R) being the chosen potential well, one has 

P~ - V(R) - (5.6) (PN)w( R, p) = Z ( R,p; pN)~3 \ 2MN ~ ' 

where the factor Z(R,p;pN ) can be partially fixed by the closure condition: 

f dp N (--~-~)3 [PN)(PN[ + ~ [a)(a lO(-h)  = 1, (5.7) 
~t 

the sum being extended over the bound HF orbits. In Wigner transform (5.7) becomes 

/ dPN (-fiN)w(R,p)= / dPN (P~I V ( R ) - ~ )  
~ \2MN - 

= 0  + V ( R )  , (5.8) 

or, after performing the integration over the modulus of PN, 

f d ~ N  z ( p 2  ) MNpN(R,p) ~ (R,p;pN(R,p)) = 0 ~ + V(R) , (5.9) 

the integral being over the direction of PN (R, p) -- PN(R, p)fiN, with 
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MNp2 
p u ( R , p )  = V--M~ u + 2MNV(R).  (5.10) 

In a quantum framework one would obtain the states IPJv) from the positive energy 
solutions of an appropriate optical potential: the distortion operator, as well as its Wigner 
transform (5.6), would then be fixed. Here we heuristically set 

Z (R ,p ;pN(R ,p ) )  - (2zr)3 fi)O + V(R) (5.11) 
MNpN(R,p) F(pN, - ~ N  ' 

with the additional condition 

f dfiNF(fiu,'fi) = 1. (5.12) 

As an illustration we shall consider in the following two extreme assumptions for F, 

namely: 

F(~"N,/~) = 6(P'N - / ~ ) ,  (5.13) 

which corresponds to the eikonal approximation and therefore is expected to be valid 
only for large enough energies of the outgoing nucleon. In this case in fact the final 

nucleon should be little deflected from the direction of the initial one, which has 

absorbed the photon inside the nucleus; 

1 
F(~N,~')  = ~--~, (5.14) 

which obviously corresponds to a final nucleon escaping the nucleus with the same 
probability in all directions (uniform approximation). 

One clearly expects the true physics to lie in between the predictions of (5.13) 
and (5.14), respectively. 

6. The semi-classical exclusive cross-section 

In this section we derive explicit expressions for the exclusive cross-section in the 
semi-classical approximation, treating the distortion of the outgoing nucleon wave in the 
HF approximation as discussed in Section 5. For sake of comparison we use both the 
harmonic oscillator (cut at the classical turning point) and the Woods-Saxon wells. 

To settle the basis for this scope, we insert into the expression of the exclusive cross- 
section (3.6) the distortion operator as given by (5.6) and (5.11). Then the &function 
appearing into the latter allows us to perform the integration over the modulus of the 
momentum variable. We thus obtain: 
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d4o " 1 (M*u~ fd~fdR [ d o ' ]  (P(R)~-q ,q)  
dO, d,' = \ MN / s. 

p(R) x [S~(C)]w(R,P(R)~-q)  F(~N,~), pN 
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(6.1) 

with 

P(R) = N 2 _ 2MNV(R). N (6.2) 

To proceed further we exploit the general expression (4.12) for the semi-classical 
spectral function in Wigner transform. Then (6.1) can be recast as follows 

d 4 o  " _ 1 (M*u) IR2dR P(R) 
dl'2edetdPN 2"n "2 \MNJ ~ )q-------Pml 

XB g-- eF 2MN 2M---~N +--~-~ P "q 0(£), (6.3) 

where the trivial integration over the angles of the vector R has been performed and the 
missing momentum variable p,, has been used. 

We now separately investigate the exclusive cross section in the two limiting approxi- 
mations for the "distortion function" F discussed at the end of Section 5 (for simplicity 
here and in the following we shall ignore the effective mass, setting M~ = MN). 

To start with we consider the eikonal approximation [formula (5.13)]. In this case 
it is straightforward to obtain the following one-dimensional integral expression for the 
exclusive cross-section 

R~ 
d4o" 1 f P (R)  [ d o ' ]  (']9(R)(q-pm) ) 

da~de'dPN =~--~2 R2dR]q2Pml ~ sn \ ~-----P-m] - q ' q  
o 

×t3{S_ [eF_ P"2__~__ ~ (q2--q'Pm) ( P ( R )  
2MN+-M'- -N  " \ [~--S_'~m I 1)]  } O(g). 

(6.4) 

Note that the "exclusive variables" • and Pm appear explicitly in (6.4); among the 
"inclusive" ones only q does, whereas the transferred energy to is hidden in the scalar 
product q'Pm" Moreover the upper limit of the R-integration in (6.4) is set by the 
Eq. (4.6), which clearly entails V(Rc) < 0 and x / l -  2MNV(R)/(q-pm) 2 > 1. 
Hence, since the hole energy 

_ p2 q2_q.pm ( p(R ) ) 
eh 2M~ ~/-u- [q _-- p--~.,[ 1 (6.5) 
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is obviously negative, it follows that in the semi-classical eikonal approximation the 
projection of the missing momentum Pm on the momentum transfer q has to be less 
than q. 

It remains now to exploit the energy conserving 6-function in (6.4) to perform the 
R-integration. This is easily achieved by taking advantage of the identity 

( q - p r o )  2 8 ( R - R )  7~(R) 
8 [ E - -  (e-F -- el,)] = (q2- -q 'Pm)  [dV/dR[ [q-Pml'  (6.6) 

being the root of the equation 

A (  R )  = A - 

where 

£ - eF + p2m/2MN 
(q2 __ q. Pro) /MN 

+ 1, (6.7) 

I 
79(R) _ ~/ V( R) 

A(R) = Iq-Pml 1 -  (q_pm)2/2M u. (6.8) 
l 

One then obtains the following "analytic" expression for the semi-classical exclusive 
cross-section in the eikonal approximation for the mean field distortion operator: 

d4o" 1 /~2 A2(~ ) 
dl'2 e de t dPN 2zr 2 

1 (q--pro)2 [do "] 
[dV/dR[R=~ ('~-- q-l-Pro) ~ sn 

× [.A(q - Pm) - q, q]" (6.9) 

For a full exploitation of formula (6.9) an expression for the cosine of the angle 
between Pm and q is still needed: it is most easily obtained by applying the energy 
conservation to the right sector of the diagram displayed in Fig. 2. One gets: 

COSOp.,q : MN (o e ~- ES - w) + ~ 1 + + . (6.10) 
qPm 

Choosing now for V(R) the harmonic oscillator potential, as given by formula (4.16) 
with the bare nucleon's mass, we easily get the following cross-section 

d 4 o  - 

doe de' dPN 
1 1 { ( q - p m ) 2 ( l _  A2)+Vol V2 

x/~7.r2 ..3/2 3 2MN IVI N 0")'0 

×AZ(q-2--q~pm) ~ee  s n [ ' A ( q - P n ' ) - q ' q ] '  

where the solution of (6.7) is 

(6.11) 

R =  1 ~ / 2 [ ( q - p m ) 2  1 z-if; (1-A2)+v0. 

For a Woods-Saxon well [Eq. (4.17)] formula (6.9) holds with 

(6.12) 
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2MNVI } 
R = R o + a l n  ( q - p , , , ) Z ( A : - l ) - I  . (6.13) 

Next we turn to the uniform approximation for the distortion function F [for- 
mula (5.14)].  In this case a fully analytic expression for the exclusive cross-section 
cannot be achieved. Indeed by exploiting the 6-function appearing in the definition of 
the distortion operator and the azimuthal angle independence of the elementary single 
nucleon cross-section, one gets 

gc 

dl2e de' dPN (27r) 2 R2dR Iq~-Pm[ d cos 0 ~ sn ( 7 ~ ( R ) P -  q' q) 
0 

x6  g -  eF 2MN 2M~ +--M--~N qc°s0  ' (6.14) 

where P ( R )  and Rc are again fixed by Eq. (6.2) and (4.6), and 0 is the angle between 
q and p. The integration over the latter variable is trivial and one finally obtains for the 
semi-classical exclusive cross-section, in the uniform approximation for the distortion 
operator, the following one-dimensional integral expression 

d4o - 

d12ede' dpu 

ec 

1 MN 1 f 
(27r) 2 q Iq-Pml J R2dR 

o 

× (7~( R)ff  - q, q) 
sn cos 0=yo ( R ) 

0(1 - lYo(R) l ) ,  (6.15) 

where 

q2 

yo( R) - 7~( R)-------- ~ 2MN " 

Notably the one-body potential confining the nucleons into the nucleus does not 
explicitly appear in (6.15): it is however hidden in the equations fixing Re, eF and 
T~(R). 

7. The semi-classical t-inclusive cross-section 

To get the inclusive cross-section in the t-channel one should integrate the exclusive 
one, obtained in the previous section, over the outgoing nucleon's momentum. Indeed in 
the t-inclusive scattering only the final electron is detected: accordingly the momentum 
q transferred to the nucleus is kept fixed in the process. By contrast in the u-channel, 
where the outgoing nucleon only is detected, the vector ~: = PJv - k is kept fixed, whereas 
q varies. 
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We intend to apply the semi-classical formalism to the u-inclusive scattering in a 
forthcoming paper: here we focus instead on the t-inclusive channel, where the vast 
majority of the electron scattering experiments have been performed. 

To start with we first show that by integrating the exclusive cross-section over the 
momentum of the emitted nucleon we recover the correct inclusive cross-section if 
and only if the distortion of the outgoing particle is properly accounted for. For this 
purpose the integral of (3.6) over PN is carried out by exploiting the semi-classical 
expressions (4.12) for the spectral function and (4.5) for the Fermi energy. We get 

d2~r _ f dpl v dK d~r 
doe de t J 

K;' 

Now, using the 8-function explicitly embodied in the distortion operator [see (5.6)],  
we transform the argument of the 8-function in Eq. (7.1) (neglecting the recoil energy) 

as follows: 

[ K 2 ] ( q 2  ~ )  
g -  eF 2 M . u  V(R) = ~ o -  ~ +  . (7.2) 

Then the integration over PN is immediately done with the help of (5.8) and we end 
up with 

dl2ed , ' -  d2°" - -  ( ~ e ) s n  (K,q) O 
f dK { d R  d~r [ I K + q l  z ] 

(2 )3 j / 2M - + v(R)j 

which is the well-known semi-classical expression for the inclusive cross-section, limited 
however to the continuum spectrum for the emitted nucleon. The internal consistency of 
the semi-classical approach is thus proved. In connection with this result we note that it 
extends the PWIA of Ref. [2] where it is shown that for the fully quantum mechanical 
relativistic Fermi gas the integral of the exclusive cross-section leads to the inclusive one 
only in the non-Pauli blocked domain, l The expression (7.3) instead fully respects the 
Pauli principle: of course it does not account for the contribution to the inclusive cross 
section arising from the unoccupied bound states lying in between the Fermi energy and 
the continuum. 

For the actual evaluation of (7.3), however, we choose here to follow the approach 
of integrating over the "exclusive" variables g and Pro. For this purpose we observe 
that, owing to the independence of the exclusive cross-section upon the azimuthal angle 
of PN, the integration over the latter can be converted into an integration over an ap- 

I The same result is obtained in the present framework, when the PWIA for p'N, expression (2.20), is 
employed. 
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propriate domain of the missing-energy-missing-momentum plane. Indeed the following 

relationship holds: 

d2°" 21r MN f P., dpm dC d4°" - , , ( 7 . 4 )  
dO e dE' q J d~e dE dpN 

I" 

the boundaries of the integration domain F being given (in the positive quadrant of the 

(~C,p,,) plane) by the curves [2] 

C-  = to - Es (q - pro)2 p2 (7.5) 
2MIv 2MA- l 

C + = to - Es (q + pro)2 P"% (7.6) 
2MN 2MA- I ' 

which are obtained by setting cos0p,,q = - 1  and COS0p.,q :-  + l ,  respectively, in 
Eq. (6.10). They represent the largest ( E - )  and the lowest (C +) excitation energy 

of the residual nucleus compatible with the kinematical constraints in an exclusive 

process. 
We remind that, while E -  always extends to the first quadrant of the (,f, Pm) plane, 

this might not be the case for C +. Indeed, for to <~ q2/2MN + Es =-- ff~, E + lives entirely 
outside the first quadrant: in this case the lower limit of integration over the variable C 
should simply be set equal to zero. On the other hand, for to /> ~, ,f+ extends to the 

first quadrant as well. 

8 .  R e s u l t s  

In this section the predictions of our theory are numerically appraised. We first 

consider the exclusive cross-sections. They are displayed in Figs. 6a-d as a function 

of the missing momentum for various missing energies at q = 300 MeV/c  (Figs. 6a 

and 6b) and at q = 500 MeV/c  (Figs. 6c and 6d); results both in the eikonal (Figs. 6a 
and 6c) and in the uniform (Figs. 6b and 6d) approximation for the distortion of the 
outgoing nucleon are shown. The energy transfer to has been chosen here to be close 
to the quasi-elastic peak (to "-~ q2/2MN + Es).  All the figures displayed in this first set 
refer to the harmonic oscillator well, with V0 = 55 MeV and hto0 = 41/A 1/3 ~- 12 MeV 

for the 4°Ca nucleus. 
The corresponding results for the Woods-Saxon well (in the same kinematical con- 

ditions and in the two approximations employed for the distortion operator) are shown 
in Figs. 7a-d; we use I/i = 49.8 MeV, R0 = 1.2A 1/3 fm and a = 0.65 fm. 

A few features are worth commenting: one is related to the remarkable difference 

between the exclusive cross-sections evaluated in the uniform and in the eikonal ap- 
proximations. In the first case the cross-sections are seen to be fairly constant over the 
whole range of the kinematically allowed values of the missing momentum Pro, inde- 
pendently from the potential well binding the nucleons into the nucleus. In the second 
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Fig. 6. (a)-(d) Exclusive longitudinal cross sections divided by OrMott as a function of the missing momentum 
pm (in MeV/c) at q = 300 MeV/c (a and b) and q = 500 MeV/c (c and d); the vertical scale is in 
fm3MeV - l; to = q2/2M N + Es. The eikonal (on the left) and the uniform (on the right) approximations 
for the distortion operator are used; the harmonic oscillator potential is employed. In all figures curves 
corresponding to three different values for the missing energy are displayed: • = 10 MeV (continuous line), 
£ = 20 MeV (dashed line) and C = 30 MeV (dot-dashed line). 

case the cross-sect ions  tend to peak at low miss ing momenta ;  moreove r  they turn out 

to be restr icted to a rather l imited range of  p, , ,  much  smal ler  than the one a l lowed by 

pure kinematics .  

These  ou tcomes  clear ly  reflect the drastic dif ference be tween  the funct ions F charac-  

ter izing our  two mode ls  for the distort ion operator. However ,  while  the cross-sect ion in 

the eikonal  approximat ion  is quite sensi t ive to the specific form of  the spectral  funct ion 

and, in turn, to the potential  well,  this out  not  to be the case for the un i form distor- 

tion. The  quest ion then arises whether  the semi-classical  method  can be satisfactorily 

emp loyed  in both situations. In the l ight o f  the previous  discussion the h expansion 

seems to be more  adequate  in deal ing with physical  situations descr ibed by the e ikonal  
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Fig. 7. ( a ) - (d )  The same as in Fig. 6a-d, but employing the Woods-Saxon potential well. 

approximation (high energy, small scattering angles) rather than for the ones described 

by the uniform one, the latter stemming from complex quantum interactions inside the 
nucleus. Yet in both cases the present approach provides a valuable orientation on the 

physics of the exclusive processes. 
We also notice that the exclusive cross-section in eikonal approximation is quite 

sensitive to the shape of the potential well: indeed in this case the outgoing particle keeps 
memory of the initial momentum and hence of the spectral function inside the nucleus. 

The eikonal cross-sections turn out in fact to reflect quite closely the structure of S(p, C). 
This is clearly shown in Figs. 8a and 8b (for the harmonic oscillator and the Woods- 
Saxon well, respectively), where the "distorted" exclusive cross-sections are compared 
with the corresponding ones evaluated in PWIA, which, according to Eq. (3.10), are 
directly proportional to the spectral function. In both cases q = 300 MeV/c,  to is close 
to the quasi-elastic peak and C -- 10 MeV/c.  The PWIA turns out to be similar to the 
distorted cross-section evaluated in eikonal approximation, but, at least for the kinematics 
chosen here, the range of missing momenta (p,,) spanned by (3.10) is somewhat larger 
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Fig. 8. (a),(b) Exclusive longitudinal cross-sections divided by O'Mott as a function of the missing momentum 
pm (in MeV/c), for q = 300 MeV/c, to = q2/2MN + Es, E = 10 MeV, in the eikonal (continuous line) and 
uniform (dashed line) DWIA, as well as in PWIA (dot-dashed line); the vertical scale is in fm3MeV -1 . In 
(a) the harmonic oscillator potential is employed, in (b) the Woods-Saxon well. 

than in the eikonal approximation. Indeed in both cases the outgoing nucleon keeps the 

direction of the one which has absorbed the virtual photon but, according to (5.10), the 
modulus of the final nucleon momentum is reduced by the mean field acting through the 
distortion operator: this, in turn, can lower the maximum allowed missing momentum 
with respect to the PWIA. 

We consider it premature to test our semi-classical approach against either the ex- 

periment or quantum calculations before working out a realistic distortion function F, 
in particular before correcting the "extreme" (eikonal or uniform) assumptions of Sec- 

tion 5. In this connection we have already pointed out the inability of the semi-classical 
framework to account for specific quantum effects, like the shell structure, which show 
up in the spectral function. In fact, as already discussed in Section 4, the semi-classical 
spectral function averages the fluctuations of the quantum one. 

Concerning the inclusive cross-sections, they are displayed in Figs. 9a and 9b at q = 
200 MeV/c  and q = 500 MeV/c,  respectively, for both the harmonic oscillator and the 
Woods-Saxon well; they are obtained by integrating in the (E,pm) plane the exclusive 
cross-section, using for the single nucleon cross-section triou only. The calculation 
has been performed both in the uniform and in the eikonal approximations, which 
however cannot be distinguished in the figures, owing to their identity• The expected 
numerical coincidence of the inclusive cross-sections obtained by integrating the two, 
markedly different, exclusive cross-sections is thus seen to be realized, providing that 
higher order relativistic effects in the single nucleon cross-section are ignored (this 
amounts to keep only the Mott cross-section). When however the fully relativistic 
expression for the single nucleon cross-section, Eq. (3.7), is employed, then the above 
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Fig. 9. (a) , (b)  Inclusive longitudinal cross-sections divided by O'Mott at q = 200 MeV/c  (a) and 
q = 500 MeV/c  (b), as a function of the energy transfer to (in MeV): the single nucleon cross section 
coincides with O'Mou; the vertical scale is in MeV - l  . The continuous and dashed (coincident) lines refer 
to the integral of  the exclusive cross-section in eikonal and uniform approximation, respectively, using the 
harmonic oscillator potential. The dot-dashed (eikonal) and dotted (uniform) lines are obtained with the 
Woods-Saxon well. The long-dashed line is the direct evaluation (with the harmonic oscillator potential) of 
the inclusive cross-section, through the polarization propagator. 
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Fig. 10. (a) , (b)  The same as in Fig. 9a,b hut using the fully relativistic single nucleon cross section (and 
omitting the direct calculation). 
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mentioned coincidence between inclusive cross-sections no longer holds, especially near 

the maximum, but the discrepancy remains mild up to q = 500 MeV/c,  as illustrated in 
Figs. 10a and 10b, which exhibit the same cases as in Fig. 9a and 9b. 

Also displayed in Figs. 9a and 9b are the inclusive cross-sections obtained through the 

semi-classical expression for the polarization propagator. These differ in the low energy 

side from the cross sections produced by the integration of the exclusive processes in 
the missing energy-missing momentum plane: at low q the difference is sizeable, but 

it becomes negligible as q increases. In general the inclusive cross sections obtained 
through the polarization propagator turn out to be larger. This difference arises from the 
bound unoccupied orbits, which are embodied in the polarization propagator, but are not 
allowed to the outgoing nucleon in exclusive processes. The effect disappears at large 
q, as it should. 

As a consequence of these findings, we confirm that little can be learned from the 

inclusive electron scattering, treated within the mean field approximation, about the 
mechanism responsible for the distortion of the outgoing nucleon wave [18]. Fur- 

thermore only a very weak dependence of the inclusive cross-sections on the shape 

of the potential well is observed. Accordingly one is lead to conclude that while the 
nucleon-nucleon correlations ( of short and long range) in the initial state affect both 
the inclusive and exclusive inelastic electron scattering, other details of the dynamics of 
the emitted nucleon, mainly reflecting the shape of the mean field and how it affects 

the way of the nucleon out of the nucleus, are more conveniently studied with exclusive 

processes. 

9. Conclusions 

In this paper we have applied the semi-classical approach to the exclusive electron 

scattering, by addressing two basic questions. First we wished to explore whether the 
semi-classical method can also be applied to processes connected with more detailed 
aspects of nuclear structure than those entering into the inclusive scattering. We did 

not expect the semi-classical method to be able of encompassing finer features of an 
exclusive process (this, after all, does not happen even for the inclusive scattering at 
low frequencies). 

Having however recognized that the semi-classical approach provides a valid average 
description at least for the nuclear quasi-elastic scattering, we wished to go beyond 
the PWIA accounting for the FSI in the mean field approximation, including antisym- 
metrization. In this connection we succeeded in setting up the formalism, in leading 
order of the h expansion, in a way suitable for the treatment of this physics. In order to 
provide a preliminary illustration of how the formalism works, we have resorted to two 
admittedly approximate, actually extreme, models to account for the mechanism of the 
distortion of the outgoing nucleon wave. 

A few outcomes of the present study are worth to be recalled. The first one is the 
strong sensitivity of the exclusive process to the distortion of the outgoing nucleon wave: 
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the stronger is the latter, the weakest are the remnants of the nuclear mean field in the 

exclusive cross-section, as it happens for the rather extreme situation described by the 

uniform approximation. On the other hand a "weaker" distortion, like the one entailed 
by the eikonal approximation, yields cross-sections more strictly related to the spectral 

function and hence closer to the PWIA, as it should: in this framework we have shown 
that the exclusive cross-sections are in fact quite different in shape, whether we adopt 

the harmonic oscillator or the Woods-Saxon well for the nuclear mean field. 
A second result relates to the strong correlation between the distortion mechanism 

and the domain, in the missing energy - missing momentum plane, where the exclusive 
cross-section exists. We have found that in the eikonal approximation this domain is 
quite restricted, whereas in the uniform one it essentially covers the whole kinematically 
allowed region. 

Concerning the inclusive cross-section, obtained by integrating the exclusive ones 
in the appropriate domain of the (C,p,,) plane, we have shown that they are quite 

insensitive both to the distortion of the outgoing nucleon, as we prove also with an 
analytic calculation, and to the specific shape of the mean binding field, in agreement 

with previous direct evaluations and measurements of the quasi-elastic inclusive process. 
Finally we have observed, in the inclusive cross-section, a mild dependence upon the 

distortion mechanism when higher order relativistic effects are taken into account in 
the expression of the single nucleon cross-section: this effect, which is modest up to 

the largest momenta (500-600  MeV/c)  considered here, signals the need of a fully 
consistent relativistic approach, both in the currents and in the mean field utilized to 
describe the nucleon dynamics inside the nucleus, especially when more extreme kine- 

matical conditions, typical of the experiments planned at CEBAF, should be accounted 
for 

Although we have found that the semi-classical method yields sensible results, the 
validity of the scheme can only be ultimately assessed by testing it against both the 
experiment and fully quantum mechanical calculations. 

Yet we consider the semi-classical method attractive by itself on three counts, namely: 

(i) for its simplicity, 
(ii) for allowing to grasp the role of the FSI in a remarkably transparent way (this, as 

we have seen, follows either by comparing the eikonal with the uniform approxi- 

mations for the distortion or by a comparison with the PWIA), 
(iii) for retaining in the exclusive process the simplicity of the Fermi gas model but 

taking into account the local features of the nuclear mean field through the folding 
of Fermi gases at different densities. Quantum mechanical interferences between 

different points in the nucleus, not considered here, occur in the second and higher 
orders of the h expansion. 

With reference to point 2 we note that in our formalism the mechanism of the 
distortion is embedded into the function F(fi'N, ~') of Section 5, whereas in the traditional 
(quantum mechanical) approaches it is included in the distorted wave function of the 
outgoing nucleon. Clearly, as previously stated, before attempting to test the semi- 
classical approach against the experimental data, a realistic expression for the function 
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F should be developed: indeed the ones discussed in this paper were just meant as an 

illustration. 
Concerning point 3 it is worth pointing out the correspondence with the quantum 

mechanical approach of Ref. [2], where a different Fermi gas is associated with each 
individual orbit of the nucleons inside the nucleus rather than with elementary volumes 

into which the nucleus is ideally split. 

In the present work we have left out important dynamical effects arising from 
(i) the nucleon-nucleon correlations 

(ii) the meson exchange currents 
(iii) the two-step processes, which occur when the nucleon which has absorbed the 

photon scatters, in its way out, with another one in the nucleus or when a sec- 
ond nucleon is emitted from the excited daughter nucleus and comes out almost 

simultaneously to the one directly hit by the impinging photon. These mecha- 

nisms can of course contribute to both the (e, e~p) and to the (e, e~NN) exclusive 

cross-sections. 
Undoubtedly these processes can be, and in fact have partly been, treated in a fully 

quantum mechanical framework [ 19,20]. Yet, as in the case of the FSI in the mean 
field approximation, we believe that the semi-classical method can be advantageously 

employed in dealing also with this far from simple physics to gain at least an orientation 
on its role in shaping the remarkably complex structure of the exclusive response in the 

missing energy-missing momentum plane. 

Appendix A 

We calculate here explicitly the diagonal semi-classical spectral function for a few 

typical potential wells. We use natural units, h = c = I. 

A. 1. Square potential well 

Let us call V0(> 0) the depth of the well and R its range: 

-Vo for O~<R~<k,  
V(R) = ( A . 1 )  

0 for R > / ~ .  

Then one gets for the Fermi momentum, only defined for R < R, 

kF = v/2M~v(eF + V0). (A.2) 

An easy calculation yields then for the spectral function the following expression 

4'77"/~3 0 x/2M~,(eF + Vo) - p 6 ~" eF + Vo ~ , S.~w(p, L') = .~ - - (A.3) 

which looks indeed like the FG one. 
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The support of (A.3) in the (£ ,p )  plane is a line. Note that 

OO 

4 f d£ Ssw(p,£)= 44¢r/~30 (v/2M~v(eF + V0) - p )  (A.4) 

o 

provides the momentum distribution of the nucleons inside the nucleus, while 

4 f  ~dP fdgSsw(p,£)=4,n.k32k_~3F2:A 3"rr (A.5) 

[with kF given by (A.2)] is the number of nucleons, the factor of 4 accounting for 
the spin-isospin degeneracy. Of course the normalisation (A.5) holds valid if the Fermi 
energy fulfills the condition 

1 (9~A) 2/3 
eF - Vo. (A.6) 

8 M~vk 2 

A.2. Harmonic oscillator potential well 

With the potential (4.16) one easily derives the spectral function 

Sho (p, £)  = V/2 ( M ; ~ )  3/2 0(£) V/eF + Vo - p2/2M* N _ £, ( A.7) 

whose support is no longer a line in the (£,p) plane, but rather a two-dimensional 
domain bound by the curve 

£ = eF + Vo -- p2/2M*N, (A.8) 

the range of the allowed momenta being 

0 ~ p  ~ max Pho ' 

with 

(A.9) 

p~noaX = v/2M~v(eF + V0). (A.10) 

Although (A.8) is reminiscent of the Fermi gas, the actual support of Sho is more 
closely related to the one of a quantum mechanical harmonic oscillator. Indeed in the 
latter case the spectral function is substantially different from zero only in the region 
where the semi-classical Sho(p,S) does not vanish, although it lives only on a set of 
parallel lines corresponding to the discrete harmonic oscillator eigenvalues. 

The corresponding momentum distribution reads 

OO 

/ d £  Sho(p, £ ) -  16"rr ~ (2M~v(eF + V0) - p 2 )  3/2 4 
3 M~veo ~ 

o 

[ ] _ _ p 2  , ( A . 1 1 )  3 M~v3¢.o 3 (P~°ax)2 3/2 



262 W.W. Alberico et al./Nuclear Physics A 634 (1998) 233-263 

with the normalization 

4 f dP.dgSho(p ,g )=2  ( e F + V ° ] 3 = a ,  (A.12) 
(27r) ~ 3 \ wo / 

which fixes eF. 

A.3. Woods-Saxon potential well 

The semi-classical spectral function associated with the Woods-Saxon well (4.17) 

reads: 

Sws(P, L') = 47rR~O [eF 

where 

p2 ] O( R,~) 
v(R~) 

2Mu IdV/dRIR=k, 
(A.13) 

VI - 1) (A.14) R ~ = R 0 + a l n  g + p2/2Mu - eF 

and dV/dR is the derivative of the Woods-Saxon well (4.17). 
The corresponding momentum distribution and normalization condition cannot be 

expressed analytically, but must be numerically evaluated. 

A.4. Power-law potential well 

For the potential 

V( R) = -Vo + (eF + Vo) , (A.15) 

V0 and Rc being positive constants and n = ! ,  2 ,  3 . . . . .  one finds 

g + p2/2M* u'] 3/.-, 3 1 
 Tgo / 

2--M~N) ] , (A.16) 
×o [,F+ Vo- (E+ p2 

the Fermi energy being linked to the potential through the relation (4.6). 
As in the previous instances Splw(P. g) lives in a domain of the plane (g,p)  bound 

by the curve 

p2 
$ = eF + V0 - - -  (A.17) 

2M~v 

on which it vanishes, and within the range of momenta 

0 ~ p ~< Pplmw x, (A.18) 

with, as before, 
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max = v/2M~,(EF + V0). (A.19)  P p l w  

Note that for n = 3 the spectral function is constant. Furthermore it becomes closer and 

closer to the one of  the square well (and, hence, of  the FG) as n becomes large. 
The momentum distribution is given by 

167rR3(eF+V°-p~/2M*N) 3/n 
dS SpJw(p,C) - ~ eF + Vo ' (A.20)  

0 

with normalization 

OO 

~l.pp] w Kc) - + 1 (A.21)  dCSplw(P,C) = 4,  maxn ,3 B ' n 

o 

B being the Euler function of  second kind, and yields the nucleons' number A when 
the Fermi energy is fixed according to 

1 ( 37rA ) 2/3 
~£F - -  * 2 - -  V0. (A.22) 2MoR e k,4B(3/2,3/n + 1) 

We notice that (A.15)  interpolates between various forms of  the mean field. 
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