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Optimal input design for set-membership identification of Hammerstein models

GUSTAVO BELFORTE{* and PAOLO GAY{

In this paper the problem of optimal input design for the identification of Hammerstein models is considered under the
assumption that the linear dynamic part of the model is a FIR and that lower and upper bounds are available for the
additive measurement errors. The parameters of the Hammerstein model can then be estimated via the identification of a
linearized augmented Hammerstein model. External approximations of the feasible intervals for the parameters of the
original Hammerstein models are then derived (which may correspond to the actual feasible intervals).

This paper deals with the design of input sequences minimizing parameter uncertainty for the linearized augmented
Hammerstein model. Some new results are also reported about optimal input design for polynomial non-linear blocks,
that may be part of Hammerstein models.

1. Introduction

When real systems have non-linear behaviours that
cannot just be neglected or approximated by some suit-
able linearization technique, then non-linearity must be
incorporated somehow into their models.

Hammerstein models are a possible answer to such a
need. They consist of a non-linear static block followed
by a linear dynamic block, as described in figure 1 which
corresponds to a discrete-time version of such a model.
The inner signal xðkÞ is usually not available for
measurement and only the system input uðkÞ can be
chosen by the designer. The system output yðkÞ can be
measured with some additive measurement noise eðkÞ.
Despite their relative simplicity Hammerstein models
turn out to be quite adequate to describe some aspects
of the behaviour of chemical processes, distillation col-
umns, electric heat exchangers etc. (see, e.g. Korenberg
1973, Kortmann and Unbehauen 1988, Eskinat et al.
1991).

The identification of Hammerstein models has been
studied since the late sixties (Narendra and Gallman
1966) and a number of identification algorithms
have already been proposed (see, e.g. Haber and
Unbehauen 1990, Al-Duwaish and Nazmul Karim
1997 and Zi-Qiang 1994). In all of them, to the best of
our knowledge, the measurement error eðkÞ has received
a probabilistic description.

The possibility of dealing with unknown but
bounded errors has recently been investigated in
Belforte and Gay (1999 a) where identification is accom-
plished via the estimation of the parameters of a linear-
ized augmented Hammerstein model. Optimal estimation

of these parameters is crucial since they are used to
compute external approximations of the feasible inter-
vals for the parameters of the original Hammerstein
model (which may correspond to the actual feasible
intervals).

In this paper the problem of optimal input design for
linearized augmented Hammerstein model identification
is addressed in a bounded-error context, with the linear
dynamic part of the model assumed to be a FIR model.
Input sequences that ensure the lowest worst case uncer-
tainty of all the parameter estimates are derived and
linked to the optimal identification problem for the
non-linear static block standing alone. Such a link pro-
vides convenient tools for the computation of optimal
input sequences.

Finally some new analytical results are reported
about the optimal input design for non-linear blocks
in the usual case where they are modelled by polynomial
functions. Explicit optimal input sequences are derived.

The results presented in this paper are reminescent
of similar results that can be found (e.g. in Kiefer
and Wolfowitz 1959, Karlin and Studden 1966 a,
Puklsheim and Studden 1993) but it is important
to note that these results were not obtained in a
bounded-error environment, but in a probabilistic set-
ting. Moreover the cost functions to be minimized differ.

At the end of the paper, a numerical example shows
the performance and usefulness of the proposed meth-
odology.

2. Problem formulation

Consider a SISO discrete-time Hammerstein model
consisting of a static non-linear block followed by a
dynamic linear time-invariant subsystem as shown in
figure 1.

The static non-linear part �ð�Þ is assumed to be a
generalized polynomial so that the (non-measurable)
inner signal xðkÞ can be expressed as
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xðkÞ ¼ �ðuðkÞÞ ¼
Xp
i¼1
cigiðuðkÞÞ ð1Þ

where g1ð�Þ; g2ð�Þ; . . . ; gpð�Þ are given linearly indepen-
dent functions defined on the interval ½ua; ub� with
gið0Þ ¼ 0, i ¼ 1; . . . ; p, so that the system steady-state
output is zero for a zero input u.

The dynamic linear part is assumed to be described
by a FIR model

yðkÞ ¼ Bðq�1ÞxðkÞ þ eðkÞ ð2Þ
with

Bðq�1Þ ¼ b0 þ b1q�1 þ b2q�2 þ � � � þ bnbq
�nb

where q�1 is the unit time delay operator, as usual.
The system input uðkÞ is bounded and can vary only

on ½ua; ub�, while the error eðkÞ is assumed to be
unknown but bounded, so that

jeðkÞj 
 E 8k ð3Þ
where E is a known constant.

Combining (1) and (2), the following input/output
relation can be derived

yðkÞ ¼ b0½c1g1ðuðkÞÞ þ c2g2ðuðkÞÞ þ � � � þ cpgpðuðkÞÞ�

þ b1 c1g1ðuðk� 1ÞÞ½

þ c2g2ðuðk� 1ÞÞ þ � � � þ cpgpðuðk� 1ÞÞ�

..

.

þ bnb c1g1ðuðk� nbÞÞ½

þ c2g2ðuðk� nbÞÞ þ � � � þ cpgpðuðk� nbÞÞ�

þ eðkÞ ð4Þ

The parameters b and c are not uniquely related to
the total gain of the system and cannot be identified
uniquely. To avoid this ambiguity it will be assumed,
without loss of generality, that b0 ¼ 1.

The b and c parameters can be rearranged, for
notational convenience, into a single vector � as

� ¼ �1 �2 � � � �pþnb
� �T

¼ c1 c2 � � � cp b1 � � � bnb
� �T

Equation (4) can then be arranged in vector form as

y ¼ Fð�Þ þ e
where y is the vector of measurements and e that of
errors.

Under the assumption (3), identifying the parameter
vector � corresponds to finding the set D� of all � con-
sistent with the model (4), the measurements y and the
bound E on the absolute value of the errors.

When m measurements are available the correspond-
ing parameter feasible set D� can be expressed as

D� ¼ � 2 R
pþnb : y ¼ Fð�Þ þ e; e 2 Oe

� �
ð5Þ

where Oe is the feasible error set defined as

Oe ¼ e 2 R
m : jeðkÞj 
 E; k ¼ 1; . . . ;mf g

Let �mi and �Mi be the extreme values of the ith com-
ponent of � in D�

�mi ¼ min
�2D�

�i and �Mi ¼ max
�2D�

�i

The parameter uncertainty interval (PUI) of the ith par-
ameter �i is then defined as

PUI�i ¼ ½�mi ; �Mi �
and its width

WðPUI�iÞ ¼ �Mi � �mi

can be introduced as a measure of the reliability of the
estimate of �i.

Throughout this paper the size of the set D� is
measured in terms of the corresponding WðPUI�iÞ,
i ¼ 1; . . . ; ð pþ nbÞ.

Define the augmented parameter vector � 2 R
n, with

n ¼ pðnb þ 1Þ, as

� ¼ �1 �2 � � � �n½ �T
where

�1 ¼ c1 �2 ¼ c2 � � � �p ¼ cp
�pþ1 ¼ b1c1 �pþ2 ¼ b1c2 � � � �2p ¼ b1cp

..

.

�pnbþ1 ¼ bnbc1 �pnbþ2 ¼ bnbc2 � � � �pðnbþ1Þ ¼ bnbcp

9>>>>>=
>>>>>;
ð6Þ

This vector can be partitioned as

� ¼ ½ �TNL �TBL1 �TBL2 � � � �TBLnb �
T

where �NL ¼ ½�1 � � � �p�T and �BLi ¼ ½�ipþ1 � � �
�ðiþ1Þp�T, i ¼ 1; . . . ; nb.

Equation (4) can then be rewritten as

yðkÞ ¼
Xp
i¼1

ð�igiðuðkÞÞ þ �pþi giðuðk� 1ÞÞ

þ �2pþigiðuðk� 2ÞÞ

þ � � � þ �pnbþi giðuðk� nbÞÞÞ þ eðkÞ ð7Þ

In the following, this structure will be referred to as the
linearized augmented Hammerstein model.
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Define gTðuð�ÞÞ as

gTðuð�ÞÞ ¼ g1ðuð�ÞÞ g2ðuð�ÞÞ � � � gpðuð�ÞÞ
� �

so rearrange (7) as

yðkÞ ¼ gTðuðkÞÞ gTðuðk� 1ÞÞ � � � gTðuðk� nbÞÞ
� �

�

þ eðkÞ

When m consecutive output measurements
fyðkÞgk¼mk¼1 are available, together with the corresponding
set of mþ nb consecutive inputs fuðkÞgk¼mk¼�nbþ1, (7) can
be expressed more compactly in vector form as

y ¼ AðuÞ�þ e ð8Þ
where the regression matrix is

AðuÞ ¼

gTðuð1ÞÞ gTðuð0ÞÞ � � � gTðuð1� nbÞÞ
gTðuð2ÞÞ gTðuð1ÞÞ � � � gTðuð2� nbÞÞ

..

. ..
. ..

.

gTðuðmÞÞ gTðuðm� 1ÞÞ � � � gTðuðm� nbÞÞ

2
666664

3
777775

ð9Þ
where y ¼ ½ yð1Þ yð2Þ � � � yðmÞ�T and where e 2 R

m is
the corresponding error vector. The parameter feasible
set for the augmented parameter vector is defined by

D� ¼ � 2 R
n y ¼ AðuÞ�þ e; e 2 Oef g

Provided that rankAðuÞ ¼ dim�, D� is a convex
polytope described by a subset of the following 2m
linear inequalities

yðkÞ � E 
 aTk � 
 yðkÞ þ E k ¼ 1; . . . ;m ð10Þ
with aTk the kth row of AðuÞ.

The augmented parameter uncertainty intervals
PUI�i ¼ ½�mi ; �Mi � and their width WðPUI�iÞ ¼ �Mi � �mi
are easily computed via the solution of the linear pro-
grams

�mi ¼ min
�2D�

�i and �Mi ¼ max
�2D�

�i

Equation (6) implies that the following relations
should hold true simultaneously

c1 ¼ �1 c2 ¼ �2 � � � cp ¼ �p

b1 ¼
�pþ1
�1

b1 ¼
�pþ2
�2

� � � b1 ¼
�2p
�p

b2 ¼
�2pþ1
�1

b2 ¼
�2pþ2
�2

� � � b2 ¼
�3p
�p

..

.

bnb ¼
�pnbþ1
�1

bnb ¼
�pnbþ2
�2

� � � bnb ¼
�pðnbþ1Þ

�p

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð11Þ

Outer approximations for the PUIs for the parameters
of the original Hammerstein model ~PUIPUIci � PUIci and
~PUIPUIbi � PUIbi can now be derived based on (11).

For the c parameters of the non-linear block the
procedure is trivial, as

~PUIPUIci ¼ PUI�i � PUIci i ¼ 1; . . . ; p ð12Þ

Computations are more complex for the b parameters of
the FIR model since all equations in (11) should hold
true simultaneously. It follows that outer bounds for the
b parameters can be obtained from

~PUIPUIbi ¼ ½max f bi1 ; bi2 ; . . . bip g

min f �bbi1 ;
�bbi2 ; . . . �bbip g� ð13Þ

where

bij ¼

�1 if 0 2 ½�mj ; �Mj �

min
�mipþj
�mj

;
�mipþj
�Mj

;
�Mipþj
�mj

;
�Mipþj
�Mj

( )
otherwise

8>>><
>>>:

and

�bbij ¼

þ1 if 0 2 ½�mj ; �Mj �

max
�mipþj
�mj

;
�mipþj
�Mj

;
�Mipþj
�mj

;
�Mipþj
�Mj

( )
otherwise

8>>><
>>>:

Although �i ¼ ci, i ¼ 1; . . . ; p, in general PUI�i is
actually an outer approximation of PUIci . The reason
for this lies in the fact that, although all the points in D�

represent a feasible augmented Hammerstein model, not
all of them correspond to a vector � of a Hammerstein
model. As already mentioned this occurs only if
all equations in (11) are simultaneously satisfied.
Unfortunately, the fact that �i ¼ ci, i ¼ 1; . . . ; p, does
not imply that the components of the vectors in D�,
whose ith element is equal to �mi (�Mi ), will simul-
taneously satisfy all equations in (11).

The shape, size and location of D� in parameter
space depend on the error bound E (assumed to be
known). More importantly they depend on the actual
measurements used for deriving D� (number and
information content) and on the error realization.
Since the uncertainty in the parameter estimates is
related to the size of D�, it also depends on the number
and on the informational content of the measurements
as well as on the error realization. To get rid of the
dependence on the error realization it is common
practice to look for the worst parameter feasible set
(the largest), in terms of its size, with respect to any
possible error realization. In the set-membership litera-
ture the size of D� is often measured in terms of its
diameter{ in some suitable norm, with l1, l2 and
l1 being the most commonly used. However other
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measures of uncertainty such as the volume of D� are
used as well. When attention is focused on parameter
estimation, the size of D� is frequently evaluated in
terms of the widths of the parameter uncertainty inter-
valsWðPUI�iÞ, which can be regarded as parameter con-
fidence intervals with confidence coefficient equal to 1.
The optimality criterion used in this paper will be the
minimization of all the WðPUI�iÞ, i ¼ 1; . . . ; n, which
implies the minimization of the l1 diameter of D�.
When using this criterion authors often claim that an
l1 diameter minimization is performed. This is indeed
true, however the condition is even stronger as the width
of each of the worst-case parameter uncertainty inter-
vals is minimized.

In the bounded-error context, we are interested in
finding the (shortest) input string that allows a set of
measurements to be obtained that ensures the smallest
worst-case parameter set, according to some given
optimality criterion, here the minimization of all the
WðPUI�iÞ, i ¼ 1; . . . ; n.

With such a criterion the smallest worst-case par-
ameter set is obtained if and only if the identification
is performed using a small set of specific measurements
denoted as the optimal measurement set, possibly
together with other possible measurements. The number
of measurements in this set lies between the number of
parameters (n in the case of D�) and its square (n2) for
any given model and set of possible feasible measure-
ments (Belforte et al. 1987). The smallest worst-case
parameter set can always be derived numerically as
described in (Belforte et al. 1987). The addition of
extra measurements to the optimal measurement set
may affect the size of the actual set D� but cannot reduce
the smallest worst-case parameter set. This is why we
shall not consider such extra measurements. When, for
given system and set of feasible measurements, the
optimal measurement set consists of just as many
measurements as there are parameters (n in the case of
D�), such a system will be said to correspond to a
minimal worst case.

Sufficient conditions for a system to be minimal
worst case can be found in literature (Belforte et al.
1987, Micchelli 1988). It will be the case, for instance,
whenever any regression matrix A 2 R

m�n obtained with
any possible set of m feasible measurements is strictly
totally positive (STP) (Karlin and Studden 1966 b), that
is whenever all of its minors have positive determinants.

Note however that the ordering of the measurements
does not affect D� but affects A and the sign of the
determinants of its minors. For this reason whenever
A can be converted, by a suitable row swapping, into
an STP matrix we shall take the liberty to refer to it as
STP. Note also that for minimal worst-case systems the
optimal measurement set ensures not only the minimiza-
tion of all the WðPUI�iÞ i ¼ 1; . . . ; n, and thus of the l1

diameter, but also of the diameter in any lh , 1 
 h 
 1,
norm. The worst-case parameter set and related quanti-
ties are hereafter denoted by the symbol �̂�, as in D̂D�,
^PUIPUI�i , etc. Such quantities are usually computed from

(10) forcing y ¼ 0.

3. Optimal worst-case input design

In the case considered in this paper, the regression
matrix AðuÞ is only a function of the system inputs
so it is possible to look for the shortest input strings
that allow the smallest worst-case parameter set to be
obtained. In the sequel a particular set of input strings
that possesses this property and can be derived a priori is
exhibited and referred to as optimal input set.

For the sake of simplicity of the notation and proof,
the optimal inputs are derived for the case in which the
non-linear block of the Hammerstein FIR model is mini-
mal worst case when it is considered in isolation.

Define L as a set of p distinct levels l1; l2; . . . ; lp for
the input

L ¼ l1; l2; . . . ; lp : li 2 ½ua; ub�
� �

and UðLÞ as the set of p! input vectors obtained by
combining the p levels in L

UðLÞ ¼ fu ¼ u1; u2; . . . ; up
� �T

:

ui 2 L; ui 6¼ uj; i 6¼ j; 8i; jg

Finally, let SðUðLÞÞ be the set of input sequences such
that

SðUðLÞÞ ¼
�
½0 . . . 0|fflffl{zfflffl}
nb

u1 0 . . . 0|fflffl{zfflffl}
nb

u2 0 . . . 0|fflffl{zfflffl}
nb

. . . up 0 . . . 0|fflffl{zfflffl}
nb

� :

½u1; . . . ; up�T 2 UðLÞ
�

ð14Þ

Sequences of the form (14) are a subset of all possible
input sequences. However some of them are optimal
inputs for the Hammerstein FIR model. The set
SðUðLoptÞÞ of all such optimal inputs is obtained from
(14) with L ¼ Lopt where Lopt is the set of p distinct
levels ensuring the optimal worst case estimation of
the non-linear system when considered in isolation.
This result is proved in the following theorem.

Theorem 1: Consider any linear augmented
Hammerstein (FIR) model in which the non-linear
submodel is minimal worst-case when considered in
isolation. Let Lopt be the set of p distinct levels that
ensure the optimal worst-case estimation of the non-
linear system when considered in isolation. Then any
input sequence sopt 2 SðUðLoptÞÞ minimizes the worst-
case widths of the parameter uncertainty intervals for all
the parameters �i.
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Proof: When using an input vector s 2 SðUðLÞÞ, the
regression matrix of relation (9) becomes

AðsÞ ¼

gTðu1Þ 0
gTðu1Þ

. .
.

0 gTðu1Þ
..
. ..

. ..
. ..

.

gTðupÞ 0

gTðupÞ
. .
.

0 gTðupÞ

2
66666666666666664

3
77777777777777775

By suitable row swapping, the relation y ¼ AðsÞ�þ e
linking measurements, parameters and errors can be
rewritten as

�yy ¼

GðLÞ 0
GðLÞ

. .
.

0 GðLÞ

2
6664

3
7775

�NL
�BL1
..
.

�BLnb

2
6664

3
7775þ �ee ð15Þ

where

GðLÞ ¼

g1ðl1Þ g2ðl1Þ . . . gpðl1Þ
g1ðl2Þ g2ðl2Þ . . . gpðl2Þ

..

. ..
. ..

.

g1ðlpÞ g2ðlpÞ . . . gpðlpÞ

2
6664

3
7775 ð16Þ

Partitioning �yy into nb þ 1 subvectors of p components
each so that �yy ¼ ½ �yy0T �yy1T � � � �yynbT�T, allows the par-
ameter subvectors �NL and �BLi to be independently
identified using only p suitable measurements, namely
�yy0 for �NL and �yyi for �BLi , i ¼ 1; . . . ; nb. By hypothesis
the standing alone non-linear subsystem is minimal
worst-case, therefore the smallest worst-case param-
eter set is achieved only when all the p distinct input
levels Lopt appear in the input string. Since in this
case the input string for independently identifying
�NL; �BL1 ; . . . ; �BLnb

consists of p suitable measurements
only, then the worst-case uncertainty is minimal only
when the p distinct input levels Lopt are used so that
GðLÞ ¼ GðLoptÞ. Any input sequence sopt 2 SðUðLoptÞÞ
ensures GðLÞ ¼ GðLoptÞ and minimizes therefore the
Wð ^PUIPUI�iÞ, i ¼ 1; . . . ; n.

Note that the specific structure of the problem evi-
denced by (15) implies that Wð ^PUIPUI�iÞ ¼Wð ^PUIPUI�jpþiÞ,
i ¼ 1; . . . ; p, j ¼ 1; . . . ; nb.

In the sequel of the proof the worst-case optimality
of sopt with respect to any other possible sequence is
proved. To this end rewrite (15) as

�yy ¼
GðLÞ A12 ¼ 0

A21 ¼ 0 A22 6¼ 0

� �
�NL

�B

� �
þ �ee ð17Þ

where �B ¼ ½�BL1 ; �BL2 ; . . . ; �BLnb �. For a generic input
sequence (17) would be replaced by

�yy ¼
A11 6¼ 0 A12 6¼ 0

A21 6¼ 0 A22 6¼ 0

� �
�NL

�B

� �
þ �ee ð18Þ

The worst-case parameter uncertainty widthsWð ^PUIPUI�iÞ,
i ¼ 1; . . . ; p, would then be no smaller than the par-
ameter uncertainty widths that could be achieved apply-
ing the same input sequence but forcing �B to zero, since
the parameter uncertainty set obtained forcing �B ¼ 0 is
a subset of the parameter uncertainty set D̂�D� with no
constraints on �B.

We shall therefore force �B to zero in the remainder
of the proof. The uncertainty in �NL can then be com-
puted from the a simplified version of (18)

�yy ¼
A11

A21

� �
�NL þ �ee ð19Þ

However, the worst-case parameter uncertainty widths
achievable from (19) are no smaller than those that
could be obtained processing

�yy ¼ GðLoptÞ
� �

�NL þ �ee

which are exactly those obtained from relation (17)
where an optimal input sequence is used. This proves
that the worst-case parameter uncertainty widths
Wð ^PUIPUI�iÞ, i ¼ 1; . . . ; p, obtained from (17), where an
optimal input sequence is used, are no larger than
those obtained from (18), where a generic input
sequence is used. By a suitable row and column swap-
ping, (15) can be rearranged as

��yy�yy ¼

GðLÞ 0

GðLÞ
. .
.

0 GðLÞ

2
66664

3
77775

�BLi
�NL

..

.

2
664

3
775þ ��ee�ee ð20Þ

where �BLi is any of the nb relevant parameter sub-
vectors. It is then possible to apply to �BLi the same
reasoning as used for �NL, which completes the
proof. &

Remark 1: The optimal set Lopt ¼ flopt1 ; lopt2 ; . . . ; loptp g
of levels required to design the optimal input sequence
can be obtained by considering the non-linear block in
isolation. In practice, it can be computed using techni-
ques based on linear programming as described in Bel-
forte et al. (1987).

Remark 2: Theorem 1 can be extended to the case of
not minimal worst-case systems. Optimal worst-case
estimation would then be achieved by applying any
input sequence s 2 SðUðLoptÞÞ. The matrices GðLÞ,
GðLoptÞ and A11 would be rectangular.
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4. Polynomial basis functions

In order to describe the non-linear block, it is com-
mon practice to assume the non-linear function �ð�Þ to
be a polynomial

�ðuðkÞÞ ¼ c1u�1ðkÞ þ c2u�2ðkÞ þ � � � þ cpu�pðkÞ

where �1; �2; . . . ; �p is any strictly increasing sequence
of non-negative integer numbers. This corresponds to
choosing the functions g1ð�Þ; . . . ; gpð�Þ of (1) as

giðuðkÞÞ ¼ u�iðkÞ; i ¼ 1; . . . ; p ð21Þ
Whenever the input signal uðkÞ belongs to ½ua; ub� such
that 0 62 ðua; ubÞ, the following lemma holds.

Lemma 1: Any non-linear subsystem described by a set
of polynomial functions g1ð�Þ; . . . ; gpð�Þ as in ð21Þ and
studied in isolation, is minimal worst case.

Proof: Assume p input output data have been col-
lected applying the p distinct levels li 2 L, i ¼ 1; . . . ; p
(without loss of generality these levels are assumed to
be ordered so that li > lj, 8 i > j). The model for the
non-linear block can be described by

x ¼ GðLÞc
where

GðLÞ ¼

l�1

1 l�2

1 � � � l�p1
l�1

2 l�2

2 � � � l�p2
..
. ..

. ..
.

l�1
p l�2

p � � � l�pp

2
666664

3
777775 ð22Þ

is the regression matrix, c ¼ ½c1; c2; . . . ; cp�T is the par-
ameter vector and x 2 R

p is the output of the non-linear
block. The matrix GðLÞ can be obtained by extracting p
columns out of the following generalized rectangular
Vandermonde matrix

VðLÞ ¼

1 l1 � � � l�p1
1 l2 � � � l�p2
..
. ..

. ..
.

1 lp � � � l�pp

2
666664

3
777775

Since the Vandermonde matrix VðLÞ is STP (Karlin
and Studden 1966 b), all its minors are positive. Any
submatrix of VðLÞ including GðLÞ is STP as well. &

For complete polynomials the set of optimal levels
Lopt ensuring the optimal worst-case estimation of the
non-linear block considered in isolation can be derived
analytically (Belforte et al. 1997). It is usually considered
desirable that the inner signal x be zero when the input is
identically zero which implies that �1 > 0. A common
practice is to take

giðuðkÞÞ ¼ uiðkÞ; i ¼ 1; . . . ; p ð23Þ

For such polynomials the set of optimal input levels
Lopt in ½0; ub� is provided by the following theorem.

Theorem 2: For any non-linear block described by a set
of functions g1ð�Þ; . . . ; gpð�Þ as in ð23Þ, the p elements
lopti 2 ½0; ub� of the optimal set Lopt are

lopti ¼ ub
1þ cos ð1=2pÞ	 cos

p� i
p

	þ cos
1

2p
	

� �
;

i ¼ 1; . . . ; p ð24Þ

Proof: Assume again without loss in generality that
li > lj � 0, 8i > j. The regression matrix GðLÞ for the
non-linear block considered in isolation, when p dis-
tinct levels li 2 L, i ¼ 1; . . . ; p, have been applied to its
input, is STP (see Lemma 1) and therefore minimal
worst-case. From the positiveness of its minors, it
turns also out that the sign of each element rij of
G�1ðLÞ satisfies

sign ðrijÞ ¼ ð�1Þiþj i; j ¼ 1; . . . ; p ð25Þ

as remarked in Belforte et al. (1987) and proved in
Belforte et al. (1984).

From (25), it follows that there are only two vectors
�̂�iMNLðLÞ and �̂�imNLðLÞ, i ¼ 1; . . . ; p, where the extreme
worst-case parameter values �̂�mNLi , �̂�

M
NLi , i ¼ 1; . . . ; p, are

achieved, instead of 2p distinct vectors because

�̂�imNLðLÞ ¼ �̂�1MNL ðLÞ and �̂�iMNLðLÞ ¼ �̂�1mNLðLÞ for i even

�̂�imNLðLÞ ¼ �̂�1mNLðLÞ and �̂�iMNLðLÞ ¼ �̂�1MNL ðLÞ for i odd

)

ð26Þ

Therefore, the two vectors �̂�1MNL ðLÞ and �̂�1mNLðLÞ contain
all the information about the size of the worst-case
feasible parameter set D̂DNLðLÞ in terms of parameter
uncertainty intervals.

Moreover

�̂�1MNL ðLÞ ¼ ��̂�1mNLðLÞ ¼

�̂�MNL1

�̂�mNL2

�̂�MNL3

..

.

2
66666664

3
77777775
¼ �

�̂�mNL1

�̂�MNL2

�̂�mNL3

..

.

2
66666664

3
77777775

¼ G�1ðLÞ

þE

�E

þE

..

.

2
666664

3
777775

Consider the two polynomials

Pðl;LoptÞ ¼ l l2 � � � lp
� �

�̂�1MNL ðLoptÞ

�Pðl;LoptÞ ¼ l l2 � � � lp
� �

�̂�1mNLðLoptÞ

9=
; ð27Þ
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interpolating the points �ð�1ÞiE in the nodes li 2 Lopt

of (24). Since the first p� 1 optimal levels lopt1 ; . . . ;
loptp�1 are the zeros of the p� 1-degree second kind
Chebyshev polynomial shifted on the interval
½�ubð1� cos ð	=2pÞÞ=ð1þ cos ð	=2pÞÞ; ub� and since
loptp coincides with the upper bound ub of the input signal
u, then lopti , i ¼ 1; . . . ; p, are the points at which the
p-degree first kind Chebyshev polynomial, shifted on
the interval ½�ubð1� cos ð	=2pÞÞ=ð1þ cos ð	=2pÞÞ; ub�
achieves its extreme values. It follows that Pðl;LoptÞ is
a Chebyshev polynomial bounded by �E in the interval
½�ubð1� cos ð	=2pÞÞ=ð1þ cos ð	=2pÞÞ; ub� � ½0; ub�, so
jPðl;LoptÞj 
 E for any l 2 ½0; ub�.

From (27) it follows that

�E 
 l l2 � � � lp
� �

�̂�1MNL ðLoptÞ 
 E 8l 2 ½0; ub�
ð28Þ

and

�E 
 l l2 � � � lp
� �

�̂�1mNLðLoptÞ 
 E 8l 2 ½0; ub�
ð29Þ

Equality holds in (28) and (29) only when l 2 Lopt. For
any set of levels L the corresponding set D̂DNLðLÞ is
defined by a set of inequalities of the form

�E 
 lk l2k � � � lpk
� �

�NL 
 E

lk 2 L; k ¼ 1; . . . ; p ð30Þ

that derive from relation (10) forcing y to zero in order
to deal with the worst-case error. From (28), (29) and
(30) it follows that

�̂�1MNL ðLoptÞ 2 D̂DNLðLÞ and �̂�1mNLðLoptÞ 2 D̂DNLðLÞ 8L
ð31Þ

Equations (26) and (31) then imply that

�̂�MNLiðLÞ � �̂�MNLiðLoptÞ and �̂�mNLiðLÞ 
 �̂�mNLiðLoptÞ

i ¼ 1; . . . ; p

so

Wð ^PUIPUI�NLi ðLÞÞ ¼ �̂�MNLiðLÞ � �̂�mNLiðLÞ �Wð ^PUIPUI�NLi ðLoptÞÞ

¼ �̂�MNLiðLoptÞ � �̂�mNLiðLoptÞ i ¼ 1; . . . ; p

ð32Þ

Lopt is therefore optimal and minimizes the worst-case
parameter uncertainty.

Since the vectors �̂�1MNL ðLÞ and �̂�1mNLðLÞ where all the
extreme values �̂�MNLiðLÞ and �̂�mNLiðLÞ, i ¼ 1; . . . ; p, occur
are two vertices of D̂DNLðLÞ where p out of the 2p
inequalities (30) are saturated, (31) implies that equality
holds in (32) if and only if �̂�1MNL ðLÞ ¼ �̂�1MNL ðLoptÞ and
�̂�1mNLðLÞ ¼ �̂�1mNLðLoptÞ, which occurs only if L ¼ Lopt. &

For notational convenience the optimal levels in
Theorem 2 have been assumed to belong to the interval
½0; ub�, but a set of levels relative to a generic interval
½ua; ub� can be easily obtained as described in Belforte
et al. (1997, 2000).

5. Numerical example

Assume that the Hammerstein model has a non-
linear block represented by a fourth-degree polynomial
with no constant term

xðkÞ ¼ c1uðkÞ þ c2u2ðkÞ þ c3u3ðkÞ þ c4u4ðkÞ ð33Þ
Assume further that the FIR block has four parameters,
the first of which b0 is forced to 1 as described in } 2 and
has not to be identified. The nominal parameter values
used to generate the simulated data to be used for
identification are

b0 ¼ 1 b ¼ 0:5 �0:4 2½ � c ¼ 1 �3 2 0:5½ �
The admissible input interval ½ua; ub� has been assumed
to be ½0; 1� and randomly generated measurement errors
uniformly distributed in the interval ½�E;E� for given
values of E have been added to the outputs. Since for
input strings uniformly generated in ½0; 1� the average
absolute output value is about 0.3, the error bounds E
used in the following are expressed as percentages of this
average absolute output value.

To evaluate the performances of the optimal input
sequences the following simulations have been per-
formed. The optimal input string (whose length is 20
but which generates 16 measurements only) has been
applied to the model generating the data 100 times
with E ¼ 0:1% and 100 times with E ¼ 1%.

For each one of the 100 sets of 16 measurements in
each error condition the PUI�i and the correspond-
ing WðPUI�iÞ, i ¼ 1; . . . ; 16, have been computed. The
sixteen values of WðPUI�iÞ, i ¼ 1; . . . ; 16, averaged
over the 100 realizations are reported in table 1 for
both error levels. The ~PUIPUI�i and the corresponding
Wð ~PUIPUI�iÞ, i ¼ 1; . . . ; 7, have then been derived accord-
ing to (11)–(13). The seven values of Wð ~PUIPUI�iÞ,
i ¼ 1; . . . ; 7, averaged over the 100 realizations are
reported in table 2 for both error levels.

A second simulation similar to the one already
described has then been performed using the two error
levels E ¼ 0:1% and E ¼ 1% but replacing the optimal
input string by randomly generated input strings of
20 elements uniformly distributed in ½0; 1�. The values
of the PUI�i , WðPUI�iÞ, i ¼ 1; . . . ; 16, and ~PUIPUI�i ,
Wð ~PUIPUI�iÞ, i ¼ 1; . . . ; 7, have also been computed.
There are now error realizations that do not allow finite
values of the Wð ~PUIPUI�iÞ to be derived. For the lower
error bound (E ¼ 0:1%) the number of cases in which
at least one of the Wð ~PUIPUI�iÞ, i ¼ 1; . . . ; 7, is not finite is
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equal to 7 while for the higher error bound (E ¼ 1%)
this number rises to 48.

The average values of the WðPUI�iÞ, i ¼ 1; . . . ; 16,
and of Wð ~PUIPUI�iÞ, i ¼ 1; . . . ; 7, obtained omitting these
cases are reported in tables 1 and 2 for both error levels.

If the error bound E were increased some Wð ~PUIPUI�iÞ
could become infinite, even using optimal input strings.

Indeed the error levels must be considered in connection
with the number of available measurements which, in

the present case, is quite low (only 16). When higher
measurement error levels must be handled, longer

measurement records are needed to allow parameter
identification.

When more measurements can be collected than the
minimum number ensuring optimal worst-case estima-

tion, the best policy, according to the results described in
Belforte and Gay (1999 b), is to replicate the optimal

measurements, i.e. to apply a long input sequence
obtained repeating several times the optimal input

sequence (omitting the first nb zeros of the sequence
that are needed for initialization).

With this in mind, a second simulation study has
been performed on the same model with higher error

bounds and longer input strings. Again two error levels
have been considered, but this time they have been set to
E ¼ 10% and E ¼ 20%. The length of the input strings

was set to 84 leading to 80 output measurements (five
times more than in the first simulation study).

Again two types of inputs have been compared. The
optimal one in which the input sequences are obtained

by repeating the optimal string five times (with the
omission of the first four zeros). The other inputs

consist of randomly generated strings of 84 elements
uniformly distributed in ½0; 1�. For both types of

inputs and both error levels 100 measurement sets
have been generated from which the WðPUI�iÞ,
i ¼ 1; . . . ; 16, and Wð ~PUIPUI�iÞ, i ¼ 1; . . . ; 7, have been
computed. The average values of these quantities have

been reported in tables 3 and 4. Finite parameter
uncertainty widths Wð ~PUIPUI�iÞ i ¼ 1; . . . ; 7 have always

been obtained with the optimal inputs while with the
random input there has been one case with error level
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Input E is equal to 0.1% of the averaged absolute value of y

Optimal 0.012 0.076 0.130 0.068 0.012 0.075 0.130 0.068 0.012 0.075 0.130 0.068 0.012 0.075 0.130 0.068

Random 0.562 2.629 4.605 2.581 1.203 4.681 6.845 3.425 1.719 6.961 10.207 4.993 0.915 3.598 5.309 2.636

Input E is equal to 1% of the averaged absolute value of y

Optimal 0.126 0.763 1.316 0.685 0.126 0.763 1.316 0.685 0.126 0.763 1.316 0.685 0.126 0.763 1.316 0.685

Random 4.667 21.316 36.278 19.611 10.537 41.526 60.914 29.820 7.593 30.448 45.855 22.966 6.152 22.105 33.145 17.344

Table 1. Averaged WðPUI�i Þ; i ¼ 1; . . . ; 16 for optimal and random input strings.

Input E is equal to 0.1% of the averaged absolute value of y

Optimal 0.0124 0.0756 0.1303 0.0679 0.0187 0.0174 0.0373

Random 0.2936 1.3785 2.3713 1.3282 2.1381 1.3771 2.3821

Input E is equal to 1% of the averaged absolute value of y

Optimal 0.1257 0.7628 1.3160 0.6851 0.1890 0.1761 0.3771
Random 1.2102 5.6314 9.4722 5.2179 6.8488 5.2406 8.1064

Table 2. Averaged WðPUI�i Þ; i ¼ 1; . . . ; 7, for optimal and random input strings.

Input E is equal to 10% of the averaged absolute value of y

Optimal 0.391 2.426 4.228 2.213 0.403 2.487 4.335 2.271 0.443 2.628 4.480 2.316 0.440 2.643 4.530 2.348

Random 1.157 4.939 7.628 3.847 1.162 4.994 7.696 3.865 1.157 4.968 7.657 3.846 1.149 4.926 7.584 3.812

Input E is equal to 20% of the averaged absolute value of y

Optimal 0.894 5.359 9.168 4.740 0.851 5.213 9.008 4.687 0.807 4.990 8.717 4.581 0.841 5.088 8.766 4.562

Random 2.432 10.325 15.783 7.895 2.376 10.232 15.799 7.945 2.372 10.122 15.610 7.854 2.404 10.190 15.600 7.810

Table 3. Averaged WðPUI�i Þ; i ¼ 1; . . . ; 16, for random and replicated optimal input strings.



E ¼ 10% and 72 cases with error level E ¼ 20% in
which this was not so.

The results reported in the tables confirm that the
optimal input performs much better than the random
one. The parameter uncertainty intervals are always
much smaller when the optimal input sequence is used.
Even more importantly the � parameters of the
Hammerstein model could always be identified with
the optimal input sequences while this was not the
case with the random inputs.
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Input E is equal to 10% of the averaged absolute value of y

Optimal 0.3906 2.4256 4.2279 2.2133 0.6136 0.6279 1.2658
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Table 4. Averaged WðPUI�i Þ; i ¼ 1; . . . ; 7, for random and replicated optimal input strings.
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