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Abstract

It is well known that the Chern classes ci of a rank n vector bundle on PN , generated by global
sections, are non-negative if i ≤ n and vanish otherwise. This paper deals with the following
question: does the above result hold for the wider class of reflexive sheaves? We show that the
Chern numbers ci with i ≥ 4 can be arbitrarily negative for reflexive sheaves of any rank; on the
contrary for i ≤ 3 we show positivity of the ci with weaker hypothesis. We obtain lower bounds
for c1, c2 and c3 for every reflexive sheaf F which is generated by H0F on some non-empty open
subset and completely classify sheaves for which either of them reach the minimum allowed, or
some value close to it.

1 Introduction

In this paper we investigate some general conditions that ensure the positivity of Chern classes for
reflexive sheaves of any rank on the projective space PN . There are some classical results about vector
bundles:

If a rank n vector bundle F on PN is generated by global sections, then its Chern classes ci are
non-negative if i ≤ n, while the following ones vanish (see [1], Example 12.1.7).

We would like to weaken both hypotheses, considering the wider class of reflexive sheaves (instead
of vector bundles) generated by global sections on some (non-empty) open subset.

In this new context, the situation is immediately more complicated. First of all, a rank n reflexive
sheaf has in general non-zero Chern classes ci also for i > n. Moreover, it is not difficult to obtain for
every pair (n, i) (both ≥ 4) examples of rank n reflexive sheaves on PN , generated by global sections,
having negative ci (see Example 5.7).

So, we can not expect to control the positivity of the i-th Chern class for every reflexive sheaf
when i ≥ 4, even if i is lower than the rank.

The different behavior of a general reflexive sheaf F with respect to a vector bundle is clearly due
to the presence of its “singular locus” S, that is the set of points where F is not locally free; S is a
closed subset of codimension ≥ 3, so that if i > 3 the i-th Chern class ci(F), which is given by a cycle
of codimension i, can have components contained in S. So we cannot expect that ci(F) is necessarily
positive, even if the locally free sheaf FU , the restriction of F to U = Pn \ S, is generated by global
sections.

We might think to apply the same argument also to the third Chern class c3 and even to the lower
ones c1 and c2 in case the reflexive sheaf (or even the bundle) is not globally generated on some closed
subset of small codimension. Thus, it is a little surprising to discover that, on the contrary, c1, c2 and
c3 are positive under the above weaker conditions.

0Mathematics Subject Classification 2000: 14F05, 14F17, 14Jxx
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In fact, in §3 we obtain the above quoted positivity results for the first and second Chern classes
of a rank n reflexive sheaf F , generated by global sections on a non-empty open subset of PN , as a
consequence of more general inequalities involving c1 and c2. More precisely,:
Theorem A If F is not a direct sum of line bundles and it has a proper subsheaf isomorphic to
⊕n

i=1OPN (αi) where α1 ≥ · · · ≥ αn ≥ 0, then:

c1 ≥
∑

αi + 1 and c2(F) ≥
∑
i<j

αiαj +
∑
i 6=2

αi + 1.

Moreover
c1 ≥

∑
αi + 2 and c2(F) ≥

∑
i<j

αiαj + 2
∑
i6=2

αi + 2

unless F has a short free resolution of the type:

0 −→ OPN (β − 1) −→ ⊕n
i=1OPN (αi)⊕OPN (β) −→ F −→ 0

(see Corollary 3.6 and Corollary 3.8).
In §4 we obtain similar results on c1 and c2 using a slightly different set of hypotheses, also involving

the general splitting type of F .
Finally in §5 we obtain similar results about the third Chern class c3 of a rank n reflexive sheaf

on PN :

Theorem B if F is generated by global sections outside a closed subset of codimension ≥ 3, then
c3(F) ≥ 0 and equality c3(F) = 0 can hold only if either N = 3 and F is a vector bundle or N ≥ 4
and FH is a vector bundle for every general linear subspace H ∼= P3 in PN

(see Theorem 5.2). Under some additional condition on the homological dimension of F , c3 can vanish
only if F is a bundle:

Theorem C if hd(F) ≤ 1 and hd(F∨) ≤ 1, then c3(F) = 0 only if F is a vector bundle having a
direct summand Or

PN , for some r ≥ n− 2− h1F(−c1)

(see Corollary 5.3). This extends to sheaves of any rank on projective spaces of any dimension a well
known property for rank 2 reflexive sheaves on P3 (see [3], Proposition 2.6).

2 Notation and preliminary results

In this paragraph we introduce some general facts on reflexive sheaves and Chern classes that we will
use in the paper and especially we study the singular locus of a reflexive sheaf F and its maximal free
subsheaves (see Definition 2.7) that will be the main tool in the proofs.

In what follows, we consider an algebraically closed field k of characteristic 0. Actually, the results
of §3 hold more generally over a ground field of any characteristic, while we need the characteristic
0 in §4 and §5 in order to use Grothendieck’s Theorem for vector bundles on a line and Generic
Smoothness.

PN is the projective space of dimension N over k. As usual, if F is a coherent sheaf on PN , we
will denote by hi(F) the dimension of the i-th cohomology module Hi(F) as a k-vector space and by
Hi
∗F the direct sum ⊕n∈ZH

iF(n); in particular H0
∗OPN = k[X0, . . . , Xn] and for F coherent sheaf,

H0
∗F has a natural structure of H0

∗OPN -module; if Y is a subvariety (that is a closed subscheme) in
PN , we will denote by deg2(Y ) the degree of the codimension 2 (may be reducible or not reduced)
component of Y .

We recall some basic properties of Chern classes and reflexive sheaves.

1. For every coherent sheaf F on PN , we denote by ci(F) or simply ci (i = 1, . . . N) its Chern
classes that we think as integers and by

Ct(F) = 1 + c1(F)t+ · · ·+ cN−1(F)tN−1 + cN (F)tN
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its Chern polynomial. If 0 −→ F ′ −→ F −→ F ′′ −→ 0 is an exact sequence, then Ct(F) =
Ct(F ′)Ct(F ′′) in Z[t]/(tN+1).

If ci are the Chern classes of a rank r coherent sheaf F , the Chern classes of F(l) are given by:

ci(F(l)) = ci + (r − i+ 1)lci−1 +

(
r − i+ 2

2

)
l2ci−2 + · · ·+

(
r

i

)
li. (1)

2. We say that a coherent sheaf F on PN is reflexive if the canonical morphism F −→ F∨∨ is an
isomorphism, where F∨ is the dual sheaf, that is F∨ = Hom(F ,OPN ). We refer to [3] and to
[9] for general facts about reflexives sheaves, especially about rank 2 reflexive sheaves on P3 and
P4. We only recall some of them that we will use more often. The dual of every sheaf is reflexive
and, for every integer l, OPN (l) is the the only rank 1 reflexive sheaf on PN with c1 = l.

A reflexive sheaf F is locally free except at most on a closed subset S(F) of codimension ≥ 3,
its singular locus. Then, reflexive sheaves on P1 and P2 are in fact vector bundles, while on
PN if N ≥ 3 there are reflexive sheaves which are not vector bundles: for every irreducible,
codimension 2, subvariety Y in PN and a general section of ωY (t) (t � 0) we can construct a
non-locally free reflexive sheaf of rank 2 as an extension:

0→ OPN → F → IY (b)→ 0

where b depends on Y and t (see [3], Theorem 4.1).

In the following we will use several times the following general facts:

Lemma 2.1 Let F be a torsion free (respectively: reflexive, locally free) sheaf on PN . If H is a
general linear subspace of dimension r in PN , (1 ≤ r ≤ N − 1), then :

(i) H is “regular” with respect to F that is Tor1(F ,OH) = 0

(ii) FH is a torsion free (reflexive, locally free) sheaf on H;

(iii) the dual of FH as a sheaf on H is isomorphic to (F∨)H ;

(iv) if F is reflexive, the singular locus S(FH) as a sheaf on H is precisely S(F) ∩H.

(v) for every i ≤ r, ci(FH) = ci(F) (where FH is considered as a sheaf on H).

Proof: It is sufficient to prove the results for a general hyperplane H and use induction on N .
(i) and (ii) are special cases of more general statements proved in [5] (see Lemma 1.1.12 and

Corollary 1.1.14 iii)). In the present context F has “codimension” c = 0, so that “F pure (reflexive)
of codimension 0” is equivalent to F torsion free (reflexive), and “FH pure (reflexive) of codimension
1 as a sheaf on PN ” is equivalent to FH torsion free (reflexive) as a sheaf on H.

For (iii), that is the isomorphism (F∨)H ∼= (FH)∨, see again [5], the remark after Definition 1.1.7.
(iv) As in ii) we can see that S(FH) ⊆ S(F) ∩ H, because, for a general H, FH is locally free

(as a sheaf on H) where F is (as a sheaf on PN ). Moreover PN is a regular variety and H is regular
with respect to F ; then for every point x contained in the hyperplane H, dim(OPN,x) − depth(Fx)
as OPN,x-modules, coincides with dim(OH,x)− depth(FH,x) as OH,x-modules, so that x is a singular
point for F if and only if it is for FH .

(v) Fix a free resolution of F ; for a general H it restricts to a free resolution of FH on H. Now
it is sufficient to observe that the equality holds for all free sheaves and use the multiplicativity of
Chern polynomials.
�

Lemma 2.2 Assume that the ground field k has characteristic 0. Let F be a rank r reflexive sheaf
on PN generated by global sections outside a closed subset Z of codimension ≥ 2. Then n− 1 general
global sections degenerate on a closed subset Y of codimension ≥ 2, generically smooth outside Z and
S.
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Proof: On the open subset U = PN − (Z ∪S) of PN the restriction map H0F → H0FU is in fact a
bijection ([3], Proposition 1.6) and so the bundle FU on U is generated by its global sections too (so
that h0F = h0FU ≥ r).

Take n = r− 1 general global sections s1, . . . , sr−1 and consider their degeneracy locus Y ′ = {x ∈
U s.t. dimSpan(s1(x), . . . , sr−1(x)) ≤ r − 2} on U . If both m = r − 2 and m = r − 3 satisfy the
inequality max{0, 2r−1−h0FU} ≤ m ≤ r−1, we can apply Remark 6 of [6] to the bundle FU and to
the vector space V = H0FU and conclude that either Y ′ is empty or it has pure codimension 2 and it
is smooth outside the subset Y ′′ = {x ∈ U s.t. dimSpan(s1(x), . . . , sr−1(x)) ≤ r − 3} of codimension
≥ 3.

If h0FU = r, the degeneracy locus on U of r − 1 general sections is empty. If h0FU = r + 1,
we can deduce from [6] that either Y ′ is empty or codim(Y ′) = 2 and Y ′ is smooth outside Y ′′. In
order to prove that codim(Y ′′) ≥ 3 we can apply [1], Example 14.3.2 (d) to FU with p = h = 3 and
λ′ = (3, 0 . . . , 0) (observe that the first r − 1 of 2r general sections are general too).

Finally, if Y is the degeneracy locus on PN of s1, . . . , sr−1, then Y ∩U = Y ′, so that codim(Y ) ≥ 2
and it is smooth outside Z, S and Y ′′.
�

3. Assume that the ground field k has characteristic 0. For any rank n reflexive sheaf F , we
denote by st(F) the splitting type of F that is the sequence of integers (b1, . . . , bn), (we will
assume b1 ≥ · · · ≥ bn) such that for every general line L in PN , FL = ⊕n

i=1OL(bi); recall that
c1(F) = b1 + · · ·+ bn.

Lemma 2.3 Let F be a reflexive sheaf on PN with Chern classes ci and let Y be a subvariety of PN

of codimension ≥ 2. If there is an exact sequence

0 −→ G −→ F −→ IY (q) −→ 0 (2)

then G is reflexive and :

c1(F) = c1(G) + q c2(F) = c2(G) + deg2(Y ) + c1(G)q. (3)

Furthermore, if G is a vector bundle, then Y is empty or it has pure codimension 2.

Proof: The equalities on c1 and c2 can be easily computed by (2) using 1. in §2: in fact c1(F) =
c1(G)+c1(IY (q)) and c2(F) = c2(G)+c2(IY (q))+c1(G)c1(IY (q)) where c1(IY (q)) = q and c2(IY (q)) =
deg2(Y ).

In order to show that G is reflexive it is sufficient to observe that IY is torsion-free and use [3]
Corollary 1.5.

Finally, suppose that G is a vector bundle and let p be a codimension ≥ 3 point in PN . Then
depth(Gp) = codim(p) ≥ 3 and depth(Fp) ≥ 2, because G is locally free and F is reflexive (see [3]
Proposition 1.3). Localizing the exact sequence (2) at the point p and using the characterization of
depth in terms of non-vanishing of Exti ([8] Theorem 28), we see that depth(IY p) = depth(Fp) ≥ 2,
so that depth(OY p) ≥ 1 so that p is not an associated prime to Y .
�

Definition 2.4 Let H be a coherent sheaf on PN .
We say that H has m independent global sections if there is an injective map:

φ : Om
PN → H.

We will denote by gsrk(H) the maximum m for which H has m independent global sections and call
this number the global section rank of H.

If m = gsrk(H), there are global sections s1, . . . sm in H0H which are linearly independent on
H0
∗OPN = k[X0, . . . , XN ]. Especially, if m = gsrk(H) = rk(H), any set of m independent global

sections generate H outside the hypersurface zero locus of s1 ∧ · · · ∧ sm. Of course, gsrk(H) ≤ rk(H)
and equality holds if, but not “only if ”, H is generated by global sections.
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Example 2.5 Let X be a complete intersection (1, d) (d ≥ 2) in P3 and let H be the rank 2 reflexive
sheaf defined as a (suitable) extension:

0 −→ OP3 −→ H −→ IX(q) −→ 0

for some q � 0. Then gsrk(IX(1)) = 1 = rk(IX(1)) and gsrk(H(1− q)) = 2 = rk(H(1− q)), but they
are not generated by their global sections.

As usual, we will denote by ↪→ any injective map.

Lemma 2.6 Let H be a torsion free sheaf on PN and consider the subsheaf E generated by H0H. For
every integer n, the following are equivalent:

1. gsrk(H) ≥ n;

2. rk(E) ≥ n;

3. rk(EL) ≥ n as an OL-module, for a general line L in PN ;

4. there is a map φ : On
PN → H such that φL is injective for a general line L in PN .

Then gsrk(H) = rk(H) if and only if H0H generates H in every point of a suitable open subset U
of PN

Proof:

1. =⇒ 2. Let B be the image of an injective map φ : On
PN ↪→ H. Then rk(E) ≥ rk(B) = n.

2.⇐⇒ 3. For a general line L, the rank of EL as an OL-module coincides with the rank of E as an
OPN -module.

3. =⇒ 4. Fix a base s1, . . . , sr for H0H as a k-vector space and consider the corresponding surjective
map ψ : Or

PN → E . As E is torsion free and L is general, then ψL : Or
L → EL ' ⊕m

i=1OL(ai) is
surjective too and m = rk(EL) ≥ n by hypothesis. We get a map φ as required, for every choice
of n global section of H such that their restriction to L are independent.

4. =⇒ 1. The map φ induces an exact sequence:

0→ R→ On
PN → E ′ → 0

where both E ′ = Im(φ) ⊆ H and R = Ker(φ) ⊆ On
PN are torsion free. Then for a general line

L, we have T or1(E ′,OL) = 0 and rk(R) = rk(RL) = 0 so that φ is injective and gsrk(H) ≥ n.

Finally if n = rk(H) = gsrk(H), then H and its subsheaf E have the same rank and so they coincide
on some open, non-empty, subset U . On the converse, if H0H generates H on U , we can take any
point x ∈ U such that Hx is free and n = rk(H) sections in H0H defining a map φ : On

PN → H which
is injective in x; then Ker(φ) is a torsion subsheaf of On

PN , that is Ker(φ) = 0.
�

Definition 2.7 Let F be a rank n torsion free sheaf on PN . The global section type gst(F) is the
sequence of integers (a1, . . . , an) such that a1 ≥ · · · ≥ an and for every i = 1, . . . , n

gsrk(F(−ai − 1)) < i and gsrk(F(−ai)) ≥ i.

Note that ai ≥ 0 if and only if gsrk(F) ≥ i; moreover gst(F(l)) = (a1 + l, . . . , an + l).
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Remark 2.8 The global section rank of F is strictly related to some “maximal free subsheaves” of F ,
in the following sense:

gst(F) = (a1, . . . , an) if and only if there is a (not unique) injective map:

φ : ⊕n
i=1 OPN (ai) ↪→ F

and for every injective map f : ⊕r
i=1 OPN (αi) ↪→ F (α1 ≥ · · · ≥ αr), we have r ≤ n and αi ≤ ai for

every i = 1, . . . , r.
Maximal free subsheaves of a sheaf F are studied in [7], Chapter IV. However, the two notions

of maximality are slightly different and the present one is in one sense weaker and in another sense
stronger than that given by [7]. It is weaker because the sheaf φ(⊕n

i=1OPN (ai)) and its direct summand
φ(⊕r

i=1OPN (ai)) (r < n) are maximal among the free subsheaves of F of the same rank and not among
all the subsheaves of F of the same rank as in [7]. It is stronger because it is stable under isomorphisms,
while in [7] it is not. The following example illustrates a few differences between the two notions of
maximality.

Example 2.9 Let F be a non-totally split reflexive sheaf with gst(F) = (a1, . . . , an).

1) ⊕n
i=1OPN (ai) cannot be a maximal free subsheaf of F in the sense of [7] because the only maximal
subsheaf of F of rank n = rk(F) is obviously F itself.

2) every isomorphic image of OPN (a1) is a maximal subsheaf of F in the sense of [7]. On the other
hand, if a1 < a2, the subsheaf φ(OPN (a2)) is maximal, but there are subsheaves of F isomorphic
to OPN (a2) that are not, namely fφ(OPN (a1)), where f is any form of degree a2 − a1.

3) ⊕n−1
i=1 OPN (ai) is not always a maximal subsheaf of F of rank n − 1. For instance, let E be a
non-split bundle of rank n − 1 with gst(E) = (a1, . . . , an−1), let an be any integer > an−1 and
F = E ⊕ OPN (an), so that gst(F) = (a1, . . . , an). Then every subsheaf of F isomorphic to
⊕n−1

i=1 OPN (ai) is strictly contained in E and so it can not be a maximal free subsheaf of F in the
sense of [7].

Lemma 2.10 Let F be a rank n reflexive sheaf on PN and let FH be its restriction to a general linear
space H ∼= Pr in PN . If gst(F) = (a1, . . . , an) and gst(FH) = (a′1, . . . , a

′
n) (as a reflexive sheaf on

Pr), then:
ai ≤ a′i for every i = 1, . . . n.

In particular, if char k = 0: ai ≤ bi, where (b1, . . . , bn) = st(F) = gst(FL) for a general line L in
PN .

Proof: Consider an injective map φ : ⊕n
i=1OPN (ai) ↪→ F . For a general linear space H we have

T or1(coker(φ),OH) = 0 and then the the restriction

φL : ⊕n
i=1OH(ai) −→ FH

is still injective, so that ai ≤ a′i.
Moreover, for a general line L, FL

∼= ⊕iOL(bi), so that the splitting type of F is precisely the
global section type of the restriction FL to a general line L.
�

Lemma 2.11 Let F be a rank n reflexive sheaf on PN and let gst(F) = (a1, . . . , an). If gsrk(F) ≥ c,
then:

(i) the integers a1, . . . , ac are non-negative;

(ii) every f : ⊕c
i=1 OPN (αi) ↪→ F (where α1 ≥ · · · ≥ αc ≥ 0) factorizes through

f̃ : ⊕c
i=1 OPN (αi) ↪→ G and f̂ : G ↪→ F

where G is a rank c reflexive sheaf and coker(f̂) is torsion free.
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(iii) If char(k) = 0 and st(F) = (b1, . . . , bn), then b1, . . . , bc are non-negative; moreover if bc+1, . . . , bn
are strictly negative, then st(G) = (b1, . . . , bc).

(iv) If c = n− 1, then f̂ can be included in the exact sequence

0 −→ G f̂−→ F g−→ IY (q) −→ 0. (4)

where Y is either empty or a codimension ≥ 2 subvariety of PN .

Proof: Part (i) is just the note following Definition 2.7.

(ii) Let R be the rank n− c sheaf coker(f). Dualizing twice the exact sequence

0 −→ ⊕c
i=1OPN (αi)

f−→ F −→ R −→ 0.

we obtain

0 −→ G f̂−→ F∨∨ g−→ R∨∨ (5)

where G is a rank c reflexive sheaf containing ⊕c
i=1OPN (αi), so that gsrk(G) = rk(G) = c and

there is f̃ : ⊕c
i=1 OPN (αi) ↪→ G. Furthermore the sheaf coker(f̂) is torsion-free because it is a

subsheaf of R∨∨ which is reflexive.

(iii) By Lemma 2.10 and part (i), we know that b1, . . . , bc ≥ 0 and also that β1 ≥ · · · ≥ βc ≥ 0,
where (β1, . . . , βc) = st(G).

Suppose bc+1, . . . , bn < 0. For a general line L:

GL ∼= ⊕c
j=1OL(βj)

f̂L
↪→ FL

∼= ⊕n
i=1OL(bi).

So Im(f̂L) is a rank c subsheaf of ⊕c
i=1OL(bi) and then the quotient ⊕c

i=1OL(bi)/Im(f̂L) is a
torsion sheaf; on the other hand, it is also isomorphic to a subsheaf of (R∨∨)L which is torsion-

free. Thus GL ∼= Im(f̂L) ∼= ⊕c
i=1OL(bi).

(iv) If n = c + 1, the sheaf R∨∨ given by (5) is a rank 1 reflexive sheaf, that is R∨∨ ∼= OPN (s).
Then Im(g) is a subsheaf of OPN (s); we can write it as a suitable twist of the ideal sheaf of a
subvariety Y of codimension ≥ 2 and get the exact sequence (4).

�

3 Sharp lower bounds on c1 and c2

In this section F will always be a rank n reflexive sheaf on PN with Chern classes ci and global
section type gst(F) = (a1, . . . , an). We want to state some relations between c1(F) and the number
δ(F) :=

∑n
i=1 ai and also between c2(F) and the number γ(F) :=

∑
1≤i<j≤n aiaj . By the definition

itself of type by global sections, there is a maximal injective map ⊕n
i=1OPN (ai) ↪→ F ; the integers

δ(F) and γ(F) are precisely the first and second Chern class of ⊕OPN (ai). When n = 1, we assume
γ(F) = 0.

First of all, we collect some properties that we will use many times.

Lemma 3.1 Let F be a rank n reflexive sheaf.

(i) c1(F(l))− δ(F(l)) does not depend on l that is c1(F(l))− δ(F(l)) = c1 − δ(F);

(ii) c2(F(l))− γ(F(l)) = c2 − γ(F) + (c1 − δ(F)) · (n− 1) · l.

We now assume an = 0 (and then gsrk(F) = n).
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(iii) There is an exact sequence:

0 −→ G −→ F −→ IY (q) −→ 0 (6)

where G is reflexive, rk(G) = gsrk(G) = n − 1, gst(G) = (a1, . . . , an−1), H0IY (q) 6= 0, q ≥ 0,
H0IY (q − 1) = 0, γ(G) = γ(F), δ(G) = δ(F).

Moreover:

(iv) if q = 0, then Y is empty; the converse is true with the hypothesis H1G(−q) = 0 and in both
cases F ∼= G ⊕OPN .

(v) If G is a direct sum of line bundles and q = 1, then Y is a complete intersection (1, r) where
r = c2(F)− γ(F)− δ(F) and F has the short free resolution:

0 −→ OPN (−r) −→ ⊕n
i=1OPN (ai)⊕OPN (−r + 1) −→ F −→ 0 (7)

Proof: Part (i) and part (ii) can be easily obtained by a straightforward computation.
To show (iii) we apply Lemma 2.11 to the map ⊕n−1

i=1 OPN (ai) ↪→ F . If gst(G) = (a′1, . . . , a
′
n−1) then

a′i ≥ ai because there is an injective map ⊕n−1
i=1 OPN (ai) ↪→ G; on the other hand, ⊕n−1

i=1 OPN (a′i) ↪→
G ↪→ F implies a′i ≤ ai.

Moreover we have H0IY (q) 6= 0 so that q ≥ 0: otherwise G would be isomorphic to the rank
n subsheaf of F generated by its global sections. Observe that, thanks to the assumption an = 0,
we also have h0IY (q − 1) = 0. Finally, the equalities on δ and γ are immediate consequence of the
assumption an = 0.

For (iv) observe that q = 0 implies Y = ∅ (because H0IY 6= 0) so that the sequence (6) is exact
on global sections and splits, that is F = G ⊕ OPN . On the other hand, if Y = ∅ and H1G(−q) = 0,
then F is the trivial extension, because Ext1(OPN (q),G) ∼= H1G(−q); moreover q must be 0 because
gst(F) = (a1, . . . , an−1, q) = (a1, . . . , an) and an = 0.

Finally, in order to prove (v), assume G ∼= ⊕n−1
i=1 OPN (ai) so that Y is a subvariety of pure codi-

mension 2 (see Lemma 2.3); if q = 1, then Y is contained in a hyperplane, so that it is a complete
intersection (1, r), where r = deg2(Y ).

Using mapping cone on (6) and the standard free resolution:

0 −→ OPN (−r) −→ OPN (−r + 1)⊕OPN −→ IY (1) −→ 0

we get the required free resolution for F .
�

Remark 3.2 The assumption an = 0 which appears in Lemma 3.1 will play a key role in the following,
because very often it leads to easier computations. For instance, if F and G are as in Lemma 3.1
(iii) and an = 0, then δ(G) =

∑
1≤i≤n−1 ai =

∑
1≤i≤n ai = δ(F) and γ(G) =

∑
1≤i<j≤n−1 aiaj =∑

1≤i<j≤n aiaj = γ(F): in the sequel when an = 0 we will use simply δ and γ and
∑
ai,
∑
aiaj for

both sheaves.

Theorem 3.3 Let F be a reflexive sheaf with gst(F) = (a1, . . . , an). If gsrk(F) = rk(F) = n, then:

c1(F) ≥
n∑

i=1

ai , c2(F) ≥
∑

1≤i<j≤n

aiaj ;

and equality holds in either case if and only if F ∼= ⊕n
i=1OPN (ai).

Proof: Thanks to Lemma 3.1 (i) and (ii), it is sufficient to prove the statement for the minimal
twist of F which satisfies our hypothesis: thus without lost in generality we may assume an = 0.
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We proceed by induction on n. As the statement clearly holds for line bundles, suppose n ≥ 2
and the statement true for any rank n − 1 reflexive sheaf; thus it holds in particular for the sheaf G
defined in Lemma 3.1 (iii).

For the inequality on c1, we just have to observe that

c1(F) = c1(G) + q ≥ c1(G) ≥
n−1∑
i=1

ai

where the last inequality is obtained applying the inductive hypothesis on G. Using the assumption
an = 0 (so that δ := δ(F) = δ(G) and γ := γ(F) = γ(G)), we have c1(F) ≥ δ(F) = δ(G). If c1(F) = δ,
then also c1(G) = δ so that, by the inductive hypothesis, G ∼= ⊕n−1

i=1 OPN (ai) and moreover q = 0, so
that F ∼= G ⊕ OPN (see Lemma 3.1 (iv)).

For the second Chern class we have:

c2(F) = c2(G) + c1(G)q + deg2(Y ) ≥ γ

where the last inequality is due to the inductive hypothesis c2(G) ≥ γ.

Finally, if c2(F) = γ, we also have c2(G) = γ (so that by induction G ∼= ⊕n−1
i=1 OPN (ai)) and

deg2(Y ) = 0 (so that again Y = ∅, thanks to Lemma 2.3). Observing that in this case H1
∗G = 0, we

can conclude using lemma 3.1 (iv).
�

Remark 3.4 The result of Theorem 3.3 on c1(F) holds without the hypothesis gsrk(F) = rk(F) = n,
because c1(F)−

∑
ai is invariant by twist, while this hypothesis is necessary for the result about c2(F)

because c2 −
∑
aiaj is not invariant by twist (Lemma 3.1, (ii)).

The following example shows that for every choice of non-negative integers a1, . . . , an and s, there
are rank n reflexive sheaves F such that gst(F) = (a1, . . . , an) and c1(F) =

∑
ai + s; in other words,

c1(F) can in fact reach every value above the minimal one δ(F) given by the previous results.

Example 3.5 Let a1 ≥ · · · ≥ an and s be non-negative integers. We define p ≥ a1 − a2 + s and let
Y be a complete intersection (s, p) in PN .

As ωY
∼= OY (s+ p−N − 1), then ωY (N + 1− s− a1 + a2) ∼= OY (p− a1 + a2) has a section which

generates it almost everywhere. Such a section gives an extension:

0→ OPN (a2)→ G → IY (s+ a1)→ 0

where G is a rank 2 reflexive sheaf with first Chern class c1(G) = a1+a2+s; moreover by the hypothesis
on p we have H0IY (s− 1) = 0 and H0IY (s+ a1− a2− 1) = H0IY (s)⊗H0OPN (a1− a2− 1), so that
gst(G) = (a1, a2).

Finally, the rank n reflexive sheaf F = G ⊕ OPN (a3) ⊕ · · · ⊕ OPN (an) has first Chern class
c1(F) =

∑
ai + s and global section type gst(F) = (a1, . . . , an).

Note that such a sheaf has the short free resolution:

0 −→ OPN (a− s) −→ ⊕n
i=1OPN (ai)⊕OPN (a) −→ F −→ 0 (8)

with a = a1 − p+ s.

All the sheaves obtained in Example 3.5 are of a very special type: they have homological dimension
≤ 1 and a short free resolution. Now we will show that in fact every sheaf for which c1(F) = δ(F) + 1
has the same nice properties. Note that we can obtain reflexive sheaves F with a resolution of the
type (8) and gst(F) = (a1, . . . , an) for every possible integer a ≤ a2.

Corollary 3.6 Let F be a reflexive sheaf. If F is not a sum of line bundles, then

c1(F) ≥
∑

ai + 1

and equality holds if and only if hd(F) ≤ 1 and F has a free resolution (7).
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Proof: We have to show that c1(F) − δ(F) ≥ 1. As c1(F) − δ(F) does not change up a twist, we
may assume an = 0: so the inequality follows from Theorem 3.3.

Moreover an = 0 also allows us to use the exact sequence (6). Assume that c1(F) = δ(F) + 1. If
q = 0, then F ∼= G ⊕ OPN (Lemma 3.1, (iv)) and we conclude by induction on the rank. If q 6= 0,
then q = 1 and we have c1(G) = c1(F) − q = δ(F) = δ(G), so that G ∼= ⊕n−1

i=1 OPN (ai) (see Theorem
3.3) and we conclude thanks to Lemma 3.1 (v).
�

For what concerns the second Chern class, not all values above the minimal one given in Theorem
3.3 can in fact be realized, at least for general a1, . . . , an. For instance, if a2 > 0, any integer in the
interval [γ(F) + 1 , γ(F) + δ(F)− a2] is not allowed. More precisely:

Theorem 3.7 Let F be rank n ≥ 2 reflexive sheaf on PN with Chern classes ci and global section
type (a1, . . . , an). Then:

c2 ≥
∑

1≤i<j≤n

aiaj +

c1 − ∑
1≤i≤n

ai

 ∑
1≤i≤n

ai + 1− a2

 . (9)

Proof: First of all observe that equality holds in (9) if F ∼= ⊕OPN (ai) is a sum of line bundles,
because in this case c1(F) =

∑
ai and c2(F) =

∑
aiaj . So, assume that F is not split.

We have to show that the integer ∆(F) = c2 − γ − (c1 − δ)(δ + 1 − a2) is non-negative. Using
Lemma 3.1 (i) and (ii), we can see that ∆(F) is invariant under twist, that is ∆(F(l)) = ∆(F) for
every l ∈ Z. Thus, without lost in generality, we may assume an = 0.

Let G and Y be as in Lemma 3.1 (iii) and denote by di the Chern classes of G. By the exact
sequence (6) and Lemma 2.3, we get:

c2 = d2 + (c1 − d1)d1 + deg2(Y ) ≥ γ + (d1 − δ)(δ + 1− a2) + (c1 − d1)d1 + deg2(Y ).

If rk(F) = 2, then G ∼= OPN (a1) so that the exact sequence (6) becomes

0 −→ OPN (a1) −→ F −→ IY (c1 − a1) −→ 0

and Y is a subvariety of pure codimension 2 (see Lemma 2.3) not contained in hypersurfaces of degree
c1−a1−1, because on the contrary a2 ≥ 1 against the assumption. Moreover d1 = δ = a1, d2 = γ = 0.
So it will be sufficient to prove that (c1−d1)d1+deg2(Y ) ≥ (c1−a1)(a1+1) that is deg2(Y ) ≥ (c1−d1).
This is true because every subvariety Y of pure codimension 2 and degree s is always contained in
some degree s hypersurfaces (for instance cones).

If rk(F) ≥ 3, we can proceed by induction on the rank and assume that (9) holds for the reflexive
sheaf G. Thanks to the equality:

∆(F) = ∆(G) + deg2(Y )− (c1 − d1)(δ + 1− a2 − d1)

and the inductive hypothesis, it is sufficient to prove that:

deg2(Y ) ≥ (c1 − d1)(δ + 1− a2 − d1). (10)

We know that c1 ≥ d1 ≥ δ and a2 ≥ an = 0 (see Theorem 3.3); then (10) clearly holds if either a2 > 0
or d1 > δ.

The only case left to consider is a2 = d1 − δ = 0; in this case G ∼= OPN (a1) ⊕ On−2
PN (again by

Theorem 3.3) so that d1 = a1, Y is a subvariety of pure codimension 2 (see Lemma 2.3), H0IY (c1 −
a1 − 1) = 0 and the exact sequence (6) becomes

0 −→ OPN (a1)⊕On−2
PN −→ F −→ IY (c1 − a1) −→ 0.
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Thus we can now conclude as in the rank 2 case.
�

Now we list a few remarkable consequences of Corollary 3.6 and Theorem 3.7. Note that the
integer

∑
ai − a2 + 1 =

∑
i 6=2 ai + 1 is strictly positive when gsrk(F) = n.

Corollary 3.8 Let F be a rank n reflexive sheaf and let α1, . . . , αn be integers such that F has a free
subsheaf isomorphic to ⊕n

i=1OPN (αi): for instance (α, . . . , αn) = gst(F). If α1 ≥ · · · ≥ αn ≥ 0, then:

c1 ≥
∑

1≤i≤n

αi , c2 ≥
∑

1≤i<j≤n

αiαj .

Moreover equality on c1 holds if and only if F is ⊕n
i=1OPN (αi); equality on c2 holds if and only if F

is either ⊕n
i=1OPN (αi) or On−1

PN ⊕OPN (a1) for some a1 > α1.

If F is not a direct sum of line bundles then

c2(F) ≥
∑

1≤i<j≤n

αiαj +
n∑

i=1

αi + 1− α2 (11)

and moreover

c2(F) ≥
∑

1≤i<j≤n

αiαj + 2(

n∑
i=1

αi + 1− α2) (12)

unless F has the short free resolution given in (7).

Corollary 3.9 Let F be a reflexive sheaf such that gsrk(F) = rk(F). Then

c1(F) ≥ 0 , c2(F) ≥ 0

and either equality holds only if F = On−1
PN ⊕OPN (c1).

Example 3.10 Sharp cases for the lower bounds on c2 given by the previous results when (α1, . . . , αn) =
(a1, . . . , an) = gst(F) can be found in Example 3.5 for special values of the parameters.

For every a1 ≥ · · · ≥ an ≥ 0, we can choose s = 1 and p = a1− a2 + 1 and get a sheaf F such that
c1 = δ + 1 and c2 = γ + (δ − a2 + 1).

For what concerns sheaves with homological dimension ≥ 2 (and then without the free resolution
(7)) a sharp case is given by the rank 2 reflexive sheaf F that we will consider in Example 5.6: its
global section type is (a1 = 0, a2 = 0) and its first and second Chern classes are c1 = 2 and c2 = 2.
Using such a sheaf F we can also find reflexive sheaves of any rank n > 2 on P4 realizing the equality
in (12): for instance F(l)⊕OP4(a3)⊕ · · · ⊕ OP4(an), where l ≥ a3 ≥ · · · ≥ an ≥ 0.

We conclude this section showing that in the previous results we cannot simply avoid the assump-
tion on the global section rank in order to get the positivity of c1 and c2.

Example 3.11 Let q be an integer, q >> 0, and E be the rank 2 bundle on P3 defined as an extension

0 −→ OP3 −→ E −→ IY (−2q + 4) −→ 0

where Y is a (−2q)-subcanonical double structure on a line obtained by Ferrand construction (see [4],
Theorem 1.5).

We have
c1(E) = −2q + 4 c2(E) = 2 h0E 6= 0.

Then for every integer t, 0 < t < q − 2, the global section rank is strictly lower than the rank (in fact
gsrk(E(t)) = rk(E(t))− 1) and both c1(E(t)) and c2(E(t)) are strictly negative.
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4 Special splitting types

As we have seen in the previous section, not all sheaves whose global section rank is lower than the
rank have positive c1 and c2, not even vector bundles. In this section we assume something weaker
about the global section rank (namely gsrk(F) ≥ rk(F)−1), while we introduce balancing hypothesis
on the splitting type.

Proposition 4.1 Let F be a reflexive sheaf on PN such that rk(F) = n, gsrk(F) = n − 1, c1 ≤ 0
and st(F) = (0, . . . , 0, c1). Then:

c2(F) ≥ 0.

Moreover c2(F) = 0 if and only if F ∼= OPN (c1)⊕On−1
PN .

Proof: Let G and Y be as in Lemma 2.11: under the present assumption on F , we have rk(G) =
gsrk(G) = n− 1 and st(G) = (0, . . . , 0) so that c1(G) = 0. The only sheaf of such a type is G ∼= On−1

PN

(see Corollary 3.9) and so by (4) we get c2(F) = c2(IY (c1)) = deg2(Y ) ≥ 0.
Moreover Y has pure codimension 2 or it is empty (see Lemma 2.3); then c2 = 0 if and only if

Y = ∅ and F ∼= OPN (c1)⊕On−1
PN .

�

Remark 4.2 Most properties concerning the sheaf F that appear in the previous section are in general
“stable by positive twist”; for instance for every l ≥ 0, if c1(F) ≥ 0 and c2(F) ≥ 0, then also
c1(F(l)) ≥ 0 and c2(F(l)) ≥ 0 and if gsrk(F) = rk(F) then also gsrk(F(l)) = rk(F(l)). On the
contrary neither the hypothesis nor the thesis that appear in Proposition 4.1 are “stable”, as shown by
the following example.

Example 4.3 Let Y be a line in P3. For any integer c ≤ −2, ωY (4 − c) ∼= OY (2 − c) has a section
which generates it almost everywhere. Therefore there is an extension (see [3], proof of 1.1)

0 −→ OP3 −→ E −→ IY (c) −→ 0

which defines the rank 2 reflexive sheaf E. This sheaf satisfies the hypothesis of Proposition 4.1 that
is gsrk(E) = 1 = rk(E) − 1, c1(E) = c < 0, st(E) = (0, c1); as a consequence, the second Chern class
c2(E) is positive (in fact c2(E) = deg2 Y = 1). On the other hand, E(1) has a negative first Chern
class, but it does not satisfy the hypothesis of Proposition 4.1 about the splitting type, which is in fact
(1, c+ 1) instead of (0, c+ 2). If we compute its second Chern class c2(E(1)) = c+ 2, we can see that
c2(E(1)) is strictly negative when c < −2 and moreover that c2(E(1)) = 0 when c = −2 although E(1)
is not a split bundle.

Proposition 4.4 Let F be a reflexive sheaf on PN with Chern classes ci, such that rk(F) = n,
gsrk(F) = n− 1, c1 ≤ 0 and st(F) = (1, 0, . . . , 0, c1 − 1). Then c2 ≥ c1 − 1. Moreover

(i) c2 = c1 − 1 if and only if F ∼= OPN (1)⊕OPN (c1 − 1)⊕On−2
PN .

(ii) If H0F(−1) 6= 0, then c2 = c1 if and only if F has the following free resolution:

0 −→ OPN (c1 − 3) −→ OPN (c1 − 2)2 ⊕OPN (1)⊕On−2
PN −→ F −→ 0. (13)

(iii) If H0F(−1) = 0 and furthermore H1FHr (−1) = 0 for every general linear subspace Hr
∼= Pr

in PN (r ≥ 3), then c2 = c1 if and only if F ∼= G ⊕OPN (c1 − 1) and G has the free resolution:

0 −→ OPN (−1) −→ On
PN −→ G −→ 0 (14)
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Proof: Let G be the reflexive sheaf constructed in Lemma 2.11 (4); denote by di its Chern classes.
We have rk(G) = gsrk(G) = n−1 (so that d2 ≥ 0: see Corollary 3.9) and moreover st(G) = (1, 0, . . . , 0)
(so that d1 = 1). Using the exact sequence (4) we obtain:

c2 = d2 + d1(c1 − d1) + deg2(Y ) = d2 + c1 − 1 + deg2(Y ) ≥ c1 − 1. (15)

Note that c1 − d1 = c1 − 1 < 0; then H0IY (c1 − 1) = 0 so that H0F(−1) ∼= H0G(−1).

(i) The equality c2 = c1 − 1 can hold only if d2 = 0 so that G ∼= OPN (1)⊕On−2
PN (Corollary 3.9);

moreover Y is a pure codimension 2 subvariety of degree 0 that is Y = ∅ and F ∼= OPN (1)⊕On−2
PN ⊕

OPN (c1 − 1).

The next value c2 = c1 can be realized if and only if either d2 = 0 and deg2(Y ) = 1 or d2 = 1 and
deg2(Y ) = 0.

(ii) In the first case G ∼= OPN (1) ⊕ On−2
PN , Y is a pure codimension 2 subvariety of degree 1,

that is a complete intersection (1, 1). Using mapping cone on (4) and the canonical free resolution of
IY (c1 − 1), we get (13).

(iii) In the other case, namely if d2 = 1 and deg2(Y ) = 0, we find gst(G) = (0, . . . , 0) and then G
has the free resolution (14) (see Corollary 3.8) and so H1

∗G = 0. To complete the proof we just have
to show that Y is empty.

If not, let r be the codimension of Y , 3 ≤ r ≤ N ; the restriction Y ′ = Y ∩ Hr to a sufficiently
general linear subspace Hr is a finite set of points, whose degree δ = deg(Y ) is given by h0OY ′(c1−2) =
h1IY ′(c1 − 2). On the other hand h1IY ′(c1 − 2) ≤ h1FHr (−1) + h2G(−1) = 0. Then Y is empty and
F ∼= G ⊕OPN (c1 − 1) (see Lemma 3.1, (iv)).
�

5 Positivity and border cases for c3

In the present, last section we want to investigate general conditions that ensure the positivity of the
third Chern class c3 of a reflexive sheaf F of any rank.

To this aim it will be useful to have a deeper knowledge about the singular locus of F or, more
generally, about the set of points where it is not freely generated.

Proposition 5.1 Let F be a rank n reflexive sheaf on PN such that hd(F) ≤ 1, hd(F∨) ≤ 1.
Then the singular locus S of F is either a codimension 3 closed subset or it is empty (that is F is

a vector bundle).

Proof: Of course there is nothing to prove if N ≤ 3. Moreover it is equivalent to prove the statement
for F or for its dual F∨ or for some of their twists F(k) or F∨(k) (k ∈ Z).

Assume codim(S) ≥ 4 and consider a locally free resolution of F :

0 −→ E1 −→ E0 −→ F −→ 0 (16)

We may assume that E0 is a direct sum of line bundles. Dualizing, we get:

0 −→ F∨ −→ E∨0 −→ E∨1 −→ Ext1(F ,OPN ) −→ 0

which splits in two short exact sequences:

0 −→ F∨ −→ E∨0 −→ L −→ 0 (17)

0 −→ L −→ E∨1 −→ Ext1(F ,OPN ) −→ 0 (18)

Observe that when the singular locus S is a finite set of points, then hi(Ext1(F ,OPN )) = 0 for every
i ≥ 1 because the support of Ext1(F ,OPN ) is contained in S. In this case using (16),(17),(18) and
duality on E1 we find:

H0E∨1 −→ H0Ext1(F ,OPN ) −→ H1L −→ H1E∨1 −→ 0 (19)
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and moreover
h1L = h2F∨ and h1E∨1 = hN−1E1(−N − 1) = hN−2F(−N − 1).

Then h2F∨ ≥ hN−2F(−N − 1).
We split the proof in three steps.

• First we prove the statement in P4. By hypothesis, S is a 0-dimensional set and so h2F∨ ≥
h2F(−5). Since the same inequality holds for every twist of F and F∨, then equality holds, so
that h1L = h1E∨1 . On the other hand, up a suitable twist of F , we have H0E∨1 = 0 and then
H0Ext1(F ,OP4) = 0, so that Ext1(F ,OPN ) = 0 (because it is a constant sheaf supported on a
finite set of points) and L = E∨1 . Thus we have:

0 −→ F∨ −→ E∨0 −→ E∨1 −→ 0

and F∨ is locally free.

• Now we prove the statement for every N ≥ 5 assuming that S is a finite set of points. As above,
Ext1(F ,OPN ) has a finite support and, using again (16),(17),(18) and duality on E1 we get:

h2F = h3E1 = hN−3(E∨1 (−N − 1)) = (note that N − 3 ≥ 2 )

= hN−3L(−N − 1) = hN−2F∨(−N − 1)

Since the same equality holds for every twist of F and F∨, then H2
∗ (F) and H2

∗ (F∨) are finite
modules. Then for every t� 0, we have h0E∨1 (−t) = 0 and h1L(−t) = h2F∨(−t) = 0, so that by
the cohomology exact sequence of (18) we obtain that H0Ext1(F ,OPN )(−t) = 0. This implies
Ext1(F ,OPN ) = 0, because it is a constant sheaf supported on a finite set of points; from this,
as above, we deduce that F is locally free.

• Finally we consider the general case and proceed by induction on N . Let N ≥ 5 and assume the
statement true for N−1. If H is a general hyperplane, we can apply Lemma 2.1 and see that the
restriction FH is a reflexive sheaf on H, whose singular locus S(FH) = S ∩H has codimension
≥ 4 in H; moreover short locally free resolutions of F and F∨ restrict to short locally free
resolution of FH and (F∨)H ∼= (FH)∨ ((Lemma 2.1 (iii)). Thus FH satisfies the same condition
as F . By the inductive hypothesis, FH is locally free on H, namely S(FH) = S∩H = ∅ (Lemma
2.1 (iv)). This can happen only if S is at most a finite set of points and we conclude thanks to
the previous item.

�

Theorem 5.2 Let F be a rank n reflexive sheaf on PN generated by global sections outside a closed
subset of codimension ≥ 3. Then:

c3(F) ≥ 0

and equality c3(F) = 0 can hold only if N ≥ 3 and FH is a vector bundle for every general linear
subspace H ∼= P3 in PN .

If moreover hd(F) ≤ 1 and hd(F∨) ≤ 1, then c3(F) = 0 only if F is a vector bundle having a
direct summand Or

PN , for some r ≥ n− 2− h1F(−c1).

Proof: Assume that F is not a free bundle. Then n − 1 general sections of F degenerate on a
generically smooth codimension 2 subvariety Y given by the exact sequence:

0 −→ On−1
PN −→ F −→ IY (c1) −→ 0 (20)

(see Lemma 2.2 and [9], §2); thanks to Lemma 2.3, we can see that Y has no embedded or isolated
components of codimension ≥ 3.

If we apply the functor Hom(·,OPN ) to the exact sequence (20), we find:

0 −→ OPN (−c1) −→ F∨ −→ On−1
PN −→ Ext1(IY (c1),OPN ) −→ Ext1(F ,OPN ) −→ 0 (21)
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where Ext1(IY (c1),OPN ) ∼= ωY (N + 1 − c1) (see [2] Ch. III, Proposition 7.5) and Ext1(F ,OPN ) is
supported on S.

Then On−1
PN −→ ωY (N + 1− c1) is surjective outside S that is ωY (N + 1− c1) is generated almost

everywhere by its global sections; as ωY (N+1−c1) has rank 1, it is in fact generated almost everywhere
by just one of them. Such a section and the isomorphisms:

H0ωY (N + 1− c1) ∼= HomY (OY , ωY (N + 1− c1)) ∼=
∼= Ext2PN (OY ,OPN (−c1)) ∼= Ext1PN (IY ,OPN (−c1))

(see [2] III, Lemma 7.4), give an extension:

0 −→ OPN −→ E −→ IY (c1) −→ 0 (22)

where E is a rank 2 reflexive sheaf. Using multiplicativity of Chern classes in (20) and (22), we get

c3(F) = c3(IY (c1)) = c3(E) = c3(EH) ≥ 0.

for every general H ∼= P3 in PN (see Lemma 2.1 (v) and [3], Theorem 4.1). Note that our hypothesis
on F also holds for every restriction of F to a general linear subspace.

Finally, c3(F) = 0 if and only if c3(EH) = 0 , that is EH is a vector bundle (see again [3],
Theorem 4.1). The curve C = Y ∩ H is (c1 − 4)-subcanonical that is ωC(4 − c1) ∼= OC and a
section which generates it almost everywhere in fact generates it; in the exact sequence (21) the map
On−1

P3 −→ Ext1(IC(c1),OP3) ∼= OC is surjective so that Ext1(FH ,OP3) = 0 that is FH is locally free.
If moreover hd(F) ≤ 1 and hd(F∨) ≤ 1, by Proposition 5.1 we can conclude that F is a vector

bundle too.
The exact sequence (21) becomes

0 −→ OPN (−c1) −→ F∨ −→ On−1
PN −→ OY −→ 0.

By a suitable change of base we can assume that r ≥ (n − 2 − h0OY ) copies of OPN are in fact
contained in the kernel of the last map and F contains a direct summand Or

PN .
�

Corollary 5.3 Let F be a rank n reflexive sheaf on PN (N ≥ 4) such that hd(F) ≤ 1 and hd(F∨) ≤ 1.
If F is generated by global sections, then:

c3(F) = 0⇐⇒ F ∼= G ⊕On−2
PN , where G is a rank 2 vector bundle.

Proof: If F ∼= G ⊕On−2
PN and G is a rank 2 vector bundle, then c3(F) = c3(G) = 0. The converse is a

straightforward consequence of the previous result. In fact for n− 1 general global sections of F , the
zero locus Y is a codimension 2 smooth subvariety in PN ; as N ≥ 4, Y must be irreducible so that
h1F(−c1) = h1IY = h0OY = 1.
�

Corollary 5.4 Let F be a rank 2 reflexive sheaf on PN with hd(F) ≤ 1. Then:

c3 = 0⇐⇒ F is a vector bundle.

Proof: For rank 2 reflexive sheaves, duality F∨ ∼= F(−c1) implies hd(F) = hd(F∨); moreover the
third Chern class is invariant under twist. Thus we can apply the previous result to a suitable twist
of F and conclude.
�

Note that in the previous results we cannot simply avoid either hypothesis on the homological
dimension or on global sections of F , because in fact not every reflexive sheaf whose third Chern class
vanish is a vector bundle.
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Example 5.5 Let F be a rank 2 reflexive sheaf with c2 = r and c3 = r2 (for instance we can find
such a sheaf for special values n = 2 and a1 = a2 = 0 in (7) ). Then F ⊕ OPN (−r) is not a bundle
even if c3 = 0.

Example 5.6 Let Y be the union of two general 2-planes in P4 with only one common point Q. A
general non-zero global section of the sheaf ωY (3) generates it at every point P ∈ Y except at the point
Q. Using such a section we can define an extension:

0 −→ OP4 −→ F −→ IY (2) −→ 0

where F is a rank 2 reflexive sheaf with c1 = 2 and c2 = 2. If we cut by a general hyperplane H,
we find that YH is the disjoint union of two lines in H = P3 and that FH(−1) is a null correlation
bundle. Then c3(F) = c3(FH) = 0 even if F is not locally free.

Note that in fact Y is not locally Cohen-Macaulay (at the point Q), while its general hyperplane
section is. If k � 0, a general global section of F(k) degenerates on an integral surface which is not
locally Cohen-Macaulay, while its general section is a subcanonical curve in P3.

We conclude by showing that we can not expect to control the positivity of the i-th Chern class
for every reflexive sheaf when i ≥ 4, even if i is lower than the rank. In fact for every pair (n, i) (both
≥ 4) there are rank n reflexive sheaves on PN , generated by global sections, having negative ci. In the
following example we construct sheaves of this type; it is not difficult to generalize the construction in
order to obtain for every t ∈ N reflexive sheaves F with the same properties and such that moreover
F(−t) is generated by global sections.

Example 5.7 Let G′ be any rank 2 reflexive sheaf on PN with third Chern class strictly positive. If
l � 0, the sheaf G = G′(l) is generated by global sections, its first three Chern classes are positive,
while the forth and following ones with even indexes are negative.
The sheaf F = G ⊕On−2

PN is reflexive too, it is generated by global sections and it has the same Chern
classes as G, so the “even” ones are negative from the fourth on.

For the “odd” Chern classes, we can start from the rank 3 reflexive sheaf G′1 = G ⊕OPN (a) (where
G is as above and a� 0) such that c4(G′1) > 0. Again, if l � 0, G1 = G′1(l) and F1 = G1 ⊕On−3

PN are
generated by global sections, their first four Chern classes are positive, while the fifth and following
“odd” ones are negative.
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