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Abstract

Given a C1 function H: R3 → R, we look for H-bubbles, i.e, surfaces in R3

parametrized by the sphere S2 with mean curvature H at every regular point.
Here we study the case H(u) = H0(u) + εH1(u) where H0 is some “good”
curvature (for which there exist H0-bubbles with minimal energy, uniformly
bounded in L∞), ε is the smallness parameter, and H1 is any C1 function.

Keywords: parametric surfaces, prescribed mean curvature.
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Introduction

In this work we study the existence of S2-type parametric surfaces in the Euclidean
space R3, having prescribed mean curvature.

This geometrical problem can be stated in analytical form as follows: given a C1

map H: R3 → R, find a smooth nonconstant function ω: R2 → R3 satisfying{
∆ω = 2H(ω)ωx ∧ ωy in R2∫

R2 |∇ω|2 < +∞ .
(0.1)

∗Work supported by M.U.R.S.T. progetto di ricerca “Metodi Variazionali ed Equazioni Differen-

ziali Nonlineari” (cofin. 2001/2002)
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Indeed it is known that such a function ω turns out to be conformal and if p =
ω(z) is a regular point, then the value H(p) represents the mean curvature of the
surface parametrized by ω at the point p. Moreover, denoting by σ: S2 → R2 the
stereographic projection, the mapping ω ◦ σ: S2 → R3 defines an S2-type parametric
surface in R3 having prescribed mean curvature H, briefly, an H-bubble.

When the prescribed mean curvature is a nonzero constant H(u) ≡ H0, Brezis
and Coron [2] proved that the only nonconstant solutions to (0.1) are spheres of
radius |H0|−1 anywhere placed in R3.

Only recently, the case in which H is nonconstant has been investigated. In
particular, in [3] the authors studied the case of a bounded function H ∈ C1(R3)
asymptotic to a constant at infinity. Under some global assumptions, the existence
of an H-bubble having “minimal energy” is proved. This existence result constitutes
the starting point of the present work and, for future convenience, let us recall its
precise statement.

Firstly, we point out that problem (0.1) has a variational structure. More pre-
cisely, H-bubbles can be found as critical points of the energy functional

EH(u) =
1
2

∫
R2

|∇u|2 + 2
∫

R2

Q(u) · ux ∧ uy ,

where Q: R3 → R3 is any vectorfield such that div Q = H.
When H is bounded, EH turns out to be well defined (by continuous extension)

and sufficiently regular on some Sobolev space.
Roughly, the integral

∫
R2 Q(u) · ux ∧ uy has the meaning of the algebraic H-

weighted volume of the region enclosed by range u and it is essentially cubic in
u. Therefore, the energy functional EH , which is unbounded from below and from
above, actually admits a saddle type geometry.

In order to make precise the geometrical structure of EH , we consider the re-
striction of EH to the space of smooth functions C1

c (R2, R3), and we introduce the
value:

cH = inf
u∈C1

c (R2,R3)
u 6=0

sup
s>0

EH(su) , (0.2)

which represents the mountain pass level along radial paths. In [3], we proved the
following existence result.

Theorem 0.1 Let H ∈ C1(R3) be such that

(h1) H(u) → H∞ as |u| → ∞, for some H∞ ∈ R,
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(h2) supu∈R3 |∇H(u) · u u| < 1 ,

(h3) cH < 4π
3H2

∞
.

Then there exists an H-bubble ω with EH(ω) = cH . In addition cH = infBH
EH where

BH is the class of the H-bubbles.

We point out that the assumption (h2) is important in order to get a positive
lower bound for the minimal energy of H-bubbles. In addition, it is also used to
get boundedness (with respect to the Dirichlet norm) of the Palais Smale sequences
of EH and to guarantee that the value cH is an admissible minimax level. The
assumption (h3) is variational in nature and it is verified, for instance, whenever
H > H∞ ≥ 0 on a suitably large set. Moreover, together with (h1) and (h2), the
hypothesis (h3) implies that some special Palais Smale sequences of EH at level cH

are bounded even in the strong L∞ topology.
The main difficulty is the lack of compactness, due to the fact that problem (0.1)

is invariant with respect to the conformal group. This means that we deal with a
problem on the image of ω, rather that on the mapping ω itself.

If H is constant there is also an invariance with respect to translations on the
image. The assumption (h3) forces H to be nonconstant and allows us to look
for minimal H-bubbles in some bounded region, recovering some compactness, in a
suitable way.

In this paper we investigate the following question: does the existence result
stated above persist under perturbation of the prescribed curvature function? More
precisely, we consider the case in which

H(u) = H0(u) + εH1(u) := Hε(u)

where H0 ∈ C1(R3) satisfies (h1)–(h3), |ε| is small, and H1: R3 → R is any C1

function, not necessarily bounded.
Clearly, in general, none of the hypotheses (h1)–(h3) is fulfilled by Hε. Fur-

thermore, even the corresponding energy functional EHε is not well defined on the
Sobolev spaces suited to study problem (0.1). Hence no “global” variational ap-
proach works, but a localizing argument has to be followed. To this aim, one takes
advantage from the fact that the set of minimal H0-bubbles is uniformly bounded in
L∞ (thanks to the condition (h3)) and then a truncation on the perturbative term
H1 can be made. The main result of this paper is stated as follows.
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Theorem 0.2 Let H0 ∈ C1(R3) be such that (h1)–(h3) hold, and let H1 ∈ C1(R3).
Then there is ε̄ > 0 such that for every ε ∈ (−ε̄, ε̄) there exists an Hε-bubble ωε.
Furthermore, as ε → 0, ωε converges (geometrically) to some minimal H0-bubble ω.
More precisely

ωε ◦ σ → ω ◦ σ in C1(S2, R3) .

We remark that the energy of ωε is close to the (unperturbed) minimal energy
of H0-bubbles. However in general we cannot say that ωε is a minimal Hε-bubble.

Finally, we remark that Theorem 0.2 cannot be applied in case the unperturbed
curvature H0 is a constant, since assumption (h3) is not satisfied. That case is
studied in the work [5], with quite different techniques.

The paper is organized as follows. In Sec. 1 we introduce some notation and
the functional setting. We also recall some useful results already discussed in other
papers. In Sec. 2 we state some convergence properties for the energy functional,
and finally in Sec. 3 we give the proof of Theorem 0.2.

1 Notation and preliminaries

Denoting by σ: S2 → R2 the stereographic projection, to every map u: S2 → R3 we
associate the map ū := u ◦ σ−1: R2 → R3. Thus, for example, for s ≥ 1, the norm of
u in Ls(S2, R3) is given by

‖u‖s =
(∫

R2

|ū|sµ2

)1/s

where
µ(z) =

2
1 + |z|2

, z = (x, y) .

Similarly, if du(p):TpS2 → R3 denotes the gradient of u at p ∈ S2, and z = σ(p),
one has

|du(p)| = |∇ū(z)|µ(z)−1 (1.1)

where ∇ denotes the standard gradient in R2. Hence, the norm of |du| in Ls(S2) is
given by

‖du‖s =
(∫

R2

|∇ū|sµ2−s

)1/s

.

In the following, we simply write H1 instead of W 1,2(S2, R3) and we will often
identify any map u: S2 → R3 with ū := u ◦ σ−1: R2 → R3.
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Now, let H ∈ C1(R3) be a given curvature, and let Q: R3 → R3 be any smooth
vectorfield such that div Q = H. For every u ∈ H1 ∩ L∞ let us set

VH(u) =
∫

R2

Q(u) · ux ∧ uy .

If u is smooth enough, the integral defined by VH(u) corresponds to the algebraic
volume enclosed by the surface parametrized by u, with weight H, and it is inde-
pendent of the choice of the vectorfield Q (see [9]). Here we choose

Q(u) = mH(u)u , mH(u) =
∫ 1

0
H(su)s2 ds .

Notice that the following identity holds on R3:

H(u) = 3m(u) +∇m(u) · u. (1.2)

Denoting by

D(u) =
1
2

∫
R2

|∇u|2

the Dirichlet integral of u, the energy functional EH :H1 ∩ L∞ → R can be written
as:

EH(u) = D(u) + 2VH(u) .

It is proved that if H is bounded, EH admits admits a continuous extension on H1

(see [9]) and for every u ∈ H1 there exists the directional derivative of EH at u along
any ϕ ∈ H1 ∩ L∞ (see [7]), given by

∂ϕEH(u) =
∫

R2

∇u · ∇ϕ + 2
∫

R2

H(u)ϕ · ux ∧ uy . (1.3)

Now, for any H ∈ C1(R3) define

MH = sup
u∈R3

|∇H(u) · u u| .

Using (1.3) with ϕ = u, and the identity (1.2), one easily obtains the following key
estimate

3EH(u) ≥ (1−MH)D(u) + ∂uEH(u) for u ∈ H1 ∩ L∞ . (1.4)

Notice that, assuming MH < 1 (namely, the hypothesis (h2) of Theorem 0.1), (1.4)
immediately implies that if (un) ⊂ H1 ∩ L∞ is a Palais-Smale sequence for EH at
some level c ∈ R, then sup ‖∇un‖2 < +∞ and c ≥ 0.
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The condition MH < 1 enters in an important way also to infer some properties
on the mountain pass value cH defined by (0.2). This is stated by the next result,
proved in [3].

Lemma 1.1 Let H ∈ C1(R3) satisfy MH < 1. Then:

(i) If ω is an H-bubble, there holds EH(ω) ≥ cH .

(ii) Given u ∈ H1 ∩ L∞, u nonconstant, one has sups>0 EH(su) < +∞ if and
only if there exists s1 > 0 such that EH(s1u) < 0. If this is the case, then
sups>0 EH(su) = maxs∈[0,s1] EH(su).

Remark 1.2 If H(u) ≡ H0 ∈ R \ {0} for all u ∈ R3, then cH0 = 4π
3H2

0
. Indeed, given

u ∈ C1
c (R2, R3), u 6= 0, the mapping s 7→ EH0(su) admits a critical point s̄ > 0 if

and only if VH0(u) < 0. In this case

sup
s>0

EH0(su) = EH0(s̄u) =
1
3

1
(4H0)2

D(u)3

V1(u)2
.

Then

cH0 =
S3

3(4H0)2

where
S = inf

u∈C1
c (R2,R3)
u 6=0

D(u)
V1(u)2/3

is the classical isoperimetric constant. Since S = 3
√

36π the conclusion follows.

2 Some convergence results

The first convergence result presented in this Section is given by an upper semicon-
tinuity property for the mountain pass level defined by (0.2). This result has been
proved in [3].

Lemma 2.1 Let H ∈ C1(R3) satisfy MH < 1. Let (Hn) ⊂ C1(R3) be a sequence of
functions satisfying MHn < 1, and such that Hn → H uniformly on compact sets of
R3. Then lim sup cHn ≤ cH .
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The next result concerns the semicontinuity of the energy functional EH . In gen-
eral EH is not lower semicontinuous, because of possible concentration phenomena
(see an example by Wente in [10]). However, as stated by the next Lemma, the
lower semicontinuity holds true at least along a sequence of solutions.

First, let us introduce the following notation: for every ρ > 0 set

M̄H,ρ = 2 sup
|u|<ρ

|(H(u)− 3mH(u))u| .

Notice that M̄H,ρ ≤ MH . In addition, if Hn → H uniformly on Bρ = {u ∈ R3 :
|u| ≤ ρ}, then M̄Hn,ρ → M̄H,ρ.

Lemma 2.2 Let (Hn) ⊂ C1(R3), H ∈ C1(R3) and ρ > 0 be such that:

(i) Hn → H uniformly on Bρ,

(ii) M̄Hn,ρ ≤ 1 for every n ∈ N.

Let (ωn) ⊂ H1 ∩ L∞ be such that for every n ∈ N:

(iii) ωn is an Hn-bubble,

(iv) ‖ωn‖∞ ≤ ρ,

(v) |∇ωn(0)| = ‖∇ωn‖∞ = 1

(vi) ‖∇ωn‖2 ≤ C for some positive constant C.

Then there exists an H-bubble ω such that, for a subsequence, ωn → ω weakly in X

and strongly in C1
loc(R2, R3). Moreover EH(ω) ≤ lim inf EHn(ωn).

To prove Lemma 2.2 we will use the following “ε-regularity” Lemma, inspired
by a similar result due to Sacks and Uhlenbeck [8] (see also Lemma A.1 in [1]). For
its proof, we refer to [3].

Lemma 2.3 Let H ∈ C1(R3) ∩ L∞. Then there exist ε > 0 such that for every
s > 1 there exists a constant Cs > 0, depending only on s, ‖H‖∞, such that if
u ∈ W 2,s

loc (D, R3) solves ∆u = 2H(u)ux ∧ uy on an open domain Ω ⊆ R2, then

‖∇u‖L2(DR(z)) ≤ ε ⇒ ‖∇u‖W 1,s(DR/2(z)) ≤ CsR
2
s
−s‖∇u‖L2(DR(z))

for every disc DR(z) ⊂ Ω with R ∈ (0, 1).
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Proof of Lemma 2.2. From the assumption (iv) and (vi), there exists ω ∈ H1 ∩ L∞

such that, for a subsequence, ωn → ω weakly in H1. Now fix an arbitrary r > 0 and
let us prove that ωn → ω strongly in C1(Dr, R3). By Lemma 2.3, for every n ∈ N
and for s > 2 fixed, there exists εn > 0 (which in fact depends only on ‖Hn‖L∞(Bρ))
and Cs,n > 0 for which

‖∇ωn‖L2(DR(z)) ≤ εn ⇒ ‖∇ωn‖H1,s(DR/2(z)) ≤ Cs,nR
2
s
−2‖∇ωn‖L2(DR(z))

for every z ∈ R2 and for every R ∈ (0, 1). By (i), one has εn ≥ ε > 0 and Cs,n ≤ Cs

for every n ∈ N. Since ‖∇ωn‖∞ = 1, there exists R ∈ (0, 1) and a finite covering
{DR/2(zi)}i∈I of Dr such that ‖∇ωn‖L2(DR(zi)) ≤ ε for every n ∈ N and i ∈ I.
Since ‖ωn‖∞ ≤ ρ, we have that ‖ωn‖H2,s(DR/2(zi)) ≤ C̄s,ρ for some constant C̄s,ρ > 0
independent of i ∈ I and n ∈ N. Then the sequence (ωn) is bounded in H2,s(Dr, R3).
For s > 2 the space H2,s(Dr, R3) is compactly embedded into C1(Dr, R3). Hence
ωn → ω strongly in C1(Dr, R3). By a standard diagonal argument, one concludes
that ωn → ω strongly in C1

loc(R2, R3).
Now we prove that ω is an H-bubble. Indeed, for every n ∈ N, if h ∈ C∞

c (R2, R3)
then ∫

R2

∇ωn · ∇h + 2
∫

R2

Hn(ωn)h · ωn
x ∧ ωn

y = 0 .

Since ωn → ω strongly in C1
loc(R2, R3), passing to the limit, one immediately infers

that ω is a weak solution to (0.1). By regularity theory of H-systems (see, e.g.,
[6]), ω is a classical, conformal solution to (0.1). In addition ω is nonconstant, since
|∇ω(0)| = lim |∇ωn(0)| = 1. Hence ω is an H-bubble.
Finally, let us show that EH(ω) ≤ lim inf EHn(ωn).
Again by the strong convergence in C1

loc(R2, R3) and by (i) and (iv), for every R > 0,
one has

EHn(ωn, DR) → EH(ω, DR) (2.1)

where we denote

EHn(ωn,Ω) =
1
2

∫
Ω
|∇ωn|2 + 2

∫
Ω

mHn(ωn)ωn · ωn
x ∧ ωn

y

(and similarly for EH(ω, Ω)). Now, fixing ε > 0, let R > 0 be such that

EH(ω, R2 \DR) ≤ ε (2.2)∫
R2\DR

|∇ω|2 ≤ ε . (2.3)
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By (2.2) and (2.1) we have

EH(ω) ≤ EH(ω, DR) + ε

= EHn(ωn, DR) + ε + o(1)

= EHn(ωn)− EHn(ωn, R2 \DR) + ε + o(1) (2.4)

with o(1) → 0 as n → +∞. Since every ωn is an Hn-bubble, using the divergence
theorem, for any R > 0 one has

1
2

∫
R2\DR

|∇ωn|2 = 3EHn(ωn, R2 \DR)−
∫

∂DR

ωn · ∂ωn

∂ν

+2
∫

R2\DR

(Hn(ωn)− 3mHn(ωn))ωn · ωn
x ∧ ωn

y .

Moreover, by definition of M̄Hn,ρ, we can estimate

2
∫

R2\DR

(Hn(ωn)− 3mHn(ωn))ωn · ωn
x ∧ ωn

y ≤
M̄Hn,ρ

2

∫
R2\DR

|∇ωn|2.

Thus, we obtain

−EHn(ωn, R2 \DR) ≤ −1
3

∫
∂DR

ωn · ∂ωn

∂ν
−

1− M̄Hn,ρ

6

∫
R2\DR

|∇ωn|2 (2.5)

≤ −1
3

∫
∂DR

ωn · ∂ωn

∂ν
, (2.6)

because of the assumption (ii). Using again the C1
loc convergence of ωn to ω, as well

as the fact that ω is an H-bubble, we obtain that

lim
n→+∞

∣∣∣∣∫
∂DR

ωn · ∂ωn

∂ν

∣∣∣∣ =
∣∣∣∣∫

∂DR

ω · ∂ω

∂ν

∣∣∣∣
=

∣∣∣∣∣
∫

R2\DR

(
ω ·∆ω + |∇ω|2

)∣∣∣∣∣
=

∣∣∣∣∣
∫

R2\DR

(
2H(ω)ω · ωx ∧ ωy + |∇ω|2

)∣∣∣∣∣
≤ (‖ω‖∞‖H‖∞ + 1)

∫
R2\DR

|∇ω|2

≤ (‖ω‖∞‖H‖∞ + 1) ε (2.7)
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thanks to (2.3). Finally, (2.4), (2.6) and (2.7) imply

EH(ω) ≤ EHn(ωn) + Cε + o(1)

for some positive constant C independent of ε and n. Hence, the conclusion follows.

As a consequence of Lemma 2.2, one obtains the following result.

Lemma 2.4 Let H ∈ C1(R3) satisfy (h1)–(h3). Then there exists ρ > 0 (depending
on ‖H‖∞, on µH := 1−MH > 0 and on δH := 4π

3H2
∞
− cH > 0) such that

‖ω‖∞ ≤ ρ

for every H-bubble ω with EH(ω) = cH .

Proof. First, notice that ω is smooth by the regularity theory for H-systems (see
for example [6]). In addition, if EH(ω) = cH , then by (1.4), we get∫

R2

|∇ω|2 ≤ 6cH

1−MH
. (2.8)

Moreover, by a corollary to a Grüter’s estimate [6] (see [3], proof of Theorem 1.1),
one has

diam ω ≤ C

(
1 +

∫
R2

|∇ω|2
)

where diam ω = supz,z′∈R2 |ω(z) − ω(z′)|, and C is a positive constant depending
only on ‖H‖∞. Hence

diam ω ≤ C(‖H‖∞)
1−MH

=: ρ . (2.9)

To conclude, it is enough to show that there exists ρ0 > 0 such that |ω(0)| ≤ ρ0,
for every H-bubble ω with EH(ω) = cH . Arguing by contradiction, suppose that
|ωn(0)| → +∞ for a sequence (ωn) of H-bubbles with EH(ωn) = cH . Set ω̄n =
ωn−ωn(0) and Hn(u) = H(u+ωn(0)). Then Hn → H∞ uniformly on compact sets.
This also implies that M̄Hn,ρ → 0 as n → +∞. Moreover, thanks to the conformal
invariance, we may suppose |∇ω̄n(0)| = ‖∇ω̄n‖∞ = 1. Clearly, for every n ∈ N, ω̄n is
an Hn-bubble. In addition, (2.8) and (2.9) imply that sup(‖ω̄n‖∞+‖∇ω̄n‖2) < +∞.
Hence we are in position to apply Lemma 2.2, obtaining that

lim inf EHn(ω̄n) ≥ EH∞(ω̄)

where ω̄ is some H∞-bubble. But EHn(ω̄n) = EH(ωn) = cH , and, by Lemma 1.1,
EH∞(ω̄) ≥ cH∞ . Hence, thanks to Remark 1.2, we obtain cH ≥ 4π

3H2
∞

, in contradiction
with (h3). This concludes the proof.
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Finally we state a sufficient condition in order to have strong convergence in H1

along a sequence of Hn-bubbles, when Hn converges to some limit curvature H.

Lemma 2.5 Let (Hn) ⊂ C1(R3), H ∈ C1(R3) and ρ > 0 be such that:

(i) Hn → H uniformly on Bρ,

(ii) M̄H,ρ < 1.

Let (ωn) ⊂ H1 ∩ L∞ and ω ∈ H1 ∩ L∞ be such that:

(iii) ω is an H-bubble and ωn is an Hn-bubble for every n ∈ N,

(iv) ‖ωn‖∞ ≤ ρ for every n ∈ N,

(v) ωn → ω weakly in H1 and strongly in C1
loc(R2, R3),

(vi) EHn(ωn) → EH(ω).

Then ωn → ω strongly in H1.

Proof. First, notice that assumption (v) guarantees that ∇ωn → ∇ω in L2
loc.

Therefore, in order to have strong convergence of the gradients in L2 it sufficies to
prove that

∀ε > 0 , ∃R > 0 such that lim sup
∫

R2\DR

|∇ωn|2 ≤ ε . (2.10)

Furthermore, assumption (iv), together with Rellich theorem, will readily lead to

the conclusion. In order to prove (2.10), we will use some estimates already seen in
the proof of Lemma 2.2. In particular, fixing an arbitrary ε > 0 and R > 0 according
to (2.2) and (2.3), by (2.4), (2.5), and (2.7), we have

1− M̄Hn,ρ

6

∫
R2\DR

|∇ωn|2 ≤ EHn(ωn)− EH(ω) + Cε + o(1) .

Thanks to (i), for n ∈ N large one has M̄Hn,ρ ≤ M̄ for some M̄ < 1. Moreover
EHn(ωn) → EH(ω), by hypothesis, and then we obtain

1− M̄

6

∫
R2\DR

|∇ωn|2 ≤ Cε + o(1) .

that, up to an insignificant multiplicative constant (independent of ε), is the desired
estimate (2.10), since M̄ < 1.
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Finally, we show that strong convergence in H1 of a sequence of Hn-bubbles
implies convergence in C1(S2, R3).

Lemma 2.6 Let (Hn) ⊂ C1(R3), H ∈ C1(R3) and ρ > 0 be such that Hn → H

uniformly on Bρ. Let (ωn) ⊂ H1 ∩ L∞ and ω ∈ H1 ∩ L∞ be such that:

(i) ω is an H-bubble and ωn is an Hn-bubble for every n ∈ N,

(ii) ‖ωn‖∞ ≤ ρ for every n ∈ N,

(iii) ωn → ω strongly in H1.

Then ωn ◦ σ → ω ◦ σ in C1(S2, R3).

Proof. Setting ω̂n(z) = ωn
(
z−1

)
(in complex notation), one easily checks that ω̂n

is an Hn-bubble. Similarly, ω̂(z) = ω
(
z−1

)
is an H-bubble. Let ε > 0 be given

according to Lemma 2.3 and let R > 2 be such that∫
R2\D1/R

|∇ω|2 < ε .

Since ωn → ω strongly in H1, for n ∈ N large enough one has∫
DR

|∇ω̂n|2 =
∫

R2\D1/R

|∇ωn|2 < ε .

Hence, by Lemma 2.3, one obtains

‖∇ω̂n‖W 1,s(DR/2) ≤ CsR
2
s
−s‖∇ω̂n‖L2(DR) ≤ C

for every n ∈ N large enough. Since for s > 2 W 1,s(DR/2) is compactly embedded
into C0(DR/2), we obtain

ω̂n → ω̂ in C1(DR/2) . (2.11)

Now, let z1, . . . , zk and r ∈ (0, 1) be such that D2/R ⊂ Dr(z1) ∪ . . . ∪ Dr(zk) and∫
D2r(zj)

|∇ω|2 < ε for every j = 1, . . . , k. Applying again Lemma 2.3, we infer
that for every j = 1, . . . , k one has ‖∇ωn‖W 1,s(Dr(zj)) ≤ C and then ωn → ω in
C1(Dr(zj)). Hence

ωn → ω in C1(D2/R) . (2.12)

Since |∇ω̂n(z)| = |z|−2|∇ωn(z−1)|, (2.11) and (2.12) imply

sup
z∈R2

|ωn(z)− ω(z)| → 0

sup
z∈R2

|∇(ωn − ω)(z)µ(z)−1| → 0.

Then, by (1.1), the thesis follows.
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3 Proof of Theorem 0.2

Let H0 ∈ C1(R3) satisfy (h1)–(h3) and let R0 > 0 be such that ‖ω‖∞ ≤ R0 for every
minimal H0-bubble ω, according to Lemma 2.4.

Fixing H1 ∈ C1(R3), for every ε ∈ (−1, 1) let

Hε = H0 + εH1 .

Now, let H̃1: R3 → R of class C1 with ‖H̃1‖∞ < +∞, ‖∇H̃1‖∞ < +∞, and H̃1(u) =
H1(u) as |u| ≤ R̃, for some R̃ > R0.

Moreover, let 0 < rε < Rε and let χε: R3 → R be a C1, radial, cut off function
such that χε(u) = 1 as |u| ≤ rε, χε(u) = 0 as |u| ≥ Rε (≥ rε), and |∇χε(u)| ≤ 2

Rε−rε

for all u. Here rε and Rε are asked to satisfy the following conditions:

R̃ < rε for every |ε| < 1 , (3.1)

Rε − rε ≥ 1 for every |ε| < 1 , (3.2)

|ε|R2
ε → 0 as ε → 0 , (3.3)

rε → +∞ as ε → 0 . (3.4)

Finally, for |ε| < 1 let
H̃ε = H0 + εχεH̃1 .

Our strategy is to show firstly that for |ε| small there exists a minimal H̃ε-bubble.
Secondly, we will prove that if ωε is a minimal H̃ε-bubble with |∇ωε(0)| = ‖∇ωε‖∞ =
1, then for every sequence εn → 0 there exists a minimal H0-bubble ω such that, for
a subsequence, ωεn ◦σ → ω ◦σ in C1(S2, R3). In particular, this will imply that any
minimal H̃ε-bubble stays in the region |u| < R̃, and thus it is an Hε-bubble.

Lemma 3.1 There exists ε0 > 0 (depending on ‖H̃1‖∞ and on ‖∇H̃1‖∞) such that
for every |ε| < ε0:

(i) H̃ε(u) → H∞ as |u| → +∞,

(ii) supu∈R3 |∇H̃ε(u) · u u| := MH̃ε
≤ M̄ < 1,

(iii) cH̃ε
≤ 4π

3H2
∞
− δ0, for some δ0 > 0 independent of ε.
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Proof. Part (i) follows by the fact that H̃ε(u) = H0(u) as |u| ≥ Rε. For the same
reason, |∇H̃ε(u) · u u| = |∇H0(u) · u u| ≤ MH0 < 1 as |u| ≥ Rε. For |u| < Rε direct
computations easily give

|∇H̃ε(u) · u u| ≤ MH0 + |ε|R2
ε‖∇H̃1‖∞ +

2|ε|R2
ε

Rε − rε
‖H̃1‖∞ .

Hence (ii) follows, thanks to (3.2)–(3.3). Finally, let us check (iii). By hypothesis,
there exists u ∈ C1

c (D, R3), u 6= 0, such that

sup
s>0

EH0(su) ≤ 4π

3H2
∞
− 2δ0

for some δ0 > 0. By Lemma 1.1, part (i), sups>0 EH0(su) = maxs∈[0,s1] EH0(su) for
some s1 > 0. Setting ρ1 = s1‖u‖∞, by (3.4), rε ≥ ρ1 for |ε| small, and then,

EH̃ε
(su) = EH0(su) + εVH̃1

(su) for s ∈ [0, s1] . (3.5)

In particular, EH̃ε
(s1u) = EH0(s1u) + o(1) with o(1) → 0 as ε → 0. Hence, for

|ε| small, EH̃ε
(s1u) < 0 and, using again Lemma 1.1, part (i), sups>0 EH̃ε

(su) =
maxs∈[0,s1] EH̃ε

(su). Finally, (3.5) yields

max
s∈[0,s1]

EH̃ε
(su) = max

s∈[0,s1]
EH0(su) + o(1) .

In conclusion, for |ε| small enough, one obtains

sup
s>0

EH̃ε
(su) ≤ 4π

3H2
∞
− δ0 ,

namely, (iii).

In the next step we state the existence of minimal H̃ε-bubbles satisfying some
uniform estimates.

Lemma 3.2 There exists ε0 > 0 such that for every |ε| < ε0 there is a H̃ε-bubble ωε

satisfying:

(i) EH̃ε
(ωε) = cH̃ε

,

(ii) ‖∇ωε‖2 ≤ C,

(iii) ‖ωε‖∞ ≤ C,
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where C is a positive constant independent of ε.

Proof. The existence of H̃ε-bubbles ωε with EH̃ε
(ωε) = cH̃ε

, for |ε| small, is guaran-
teed by Lemma 3.1 and by Theorem 0.1. The estimate (ii) follows by (1.4), by (i)
and by Lemma 3.1, parts (ii) and (iii). Finally (iii) can be deduced by Lemma 2.4,
noticing that MH̃ε

≤ M̄ < 1 and cH̃ε
≤ 4π

3H2
∞
− δ0 with δ0 > 0.

For |ε| small, let ωε be the H̃ε-bubble given by Lemma 3.2. Note that, since
rε → +∞, whereas ωε are uniformly bounded in L∞, for |ε| small ωε is in fact an
(H0 + εH̃1)-bubble. Actually, we need a sharper estimate on the L∞ norms of ωε,
and precisely ‖ωε‖∞ ≤ R̃, so that we can conclude that ωε are H̃ε-bubbles. This is
the last step, and it will be accomplished in the sequel.

Notice that, by the invariance of problem (0.1) with respect to dilation, transla-
tion and inversion, we may suppose that

‖∇ωε‖∞ = |∇ωε(0)| = 1 . (3.6)

By the uniform bounds (ii) and (iii) stated in Lemma 3.2, using Lemma 2.2, and
reminding that H̃ε → H0 uniformly on compact sets, we may also suppose that there
exists an H0-bubble ω such that (for a subsequence) ωε → ω weakly in H1 and in
C1

loc(R2, R3). Moreover
EH0(ω) ≤ lim inf EH̃ε

(ωε) . (3.7)

Lemma 3.3 ωε ◦ σ → ω ◦ σ in C1(S2, R3).

Proof. Notice that EH̃ε
(ωε) = cH̃ε

and, since MH̃ε
< 1, by Lemma 2.1, lim sup cH̃ε

≤
cH0 . Hence, by (3.7) and by Lemma 1.1 we infer that ω is a minimal H0-bubble,
namely EH0(ω) = cH0 , and

EH0(ω) = lim EH̃ε
(ωε) . (3.8)

Hence all the hypotheses stated in Lemma 2.5 are fulfilled and thus we conclude
that ωε → ω strongly in H1. Then we apply Lemma 2.6 to obtain the thesis.

Thus, in particular, ωε → ω uniformly on R2, and, since ω is a minimal H0-
bubble, ‖ω‖∞ ≤ R0 and ‖ωε‖∞ < R̃ for |ε| small enough. Hence ωε is an Hε-bubble
and Lemma 3.3 completes the proof of Theorem 0.2.
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