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Abstract

We prove the existence of rotating solitary waves (vortices) for the
nonlinear Klein-Gordon equation with nonnegative potential, by finding
nonnegative cylindrical solutions to the standing equation

2
—Au+ LQu—&-)\u:g(u)7 uwe H' (RY), / u—zdz’ <oo, (1)

|yl N [y
where z = (y,2) € RE xRY"" N >k >2 pu > 0and A > 0. The
nonnegativity of the potential makes the equation suitable for physical
models and guarantees the well-posedness of the corresponding Cauchy
problem, but it prevents the use of standard arguments in providing the

functional associated to () with bounded Palais-Smale sequences.

1 Introduction and main results

In this paper we are concerned with the existence of vortices for the nonlinear
wave equation

Oy + W' (y) =0, (1)
where W’ is (under the standard identification between C and R?) the gradient
of a C'! potential function W : C — R satisfying W (eiew) =W (¢), that is,

v
9]

Roughly speaking, a vortex is a solitary wave with nonvanishing angular mo-
mentum. A solitary wave is a nonsingular solution which travels as a localized

W @)=V (¥]) and W’ (¢)=V'(]4]) for some V € C* (R;R). (2)



packet in such a way that the energy is conserved in time in the region of space
occupied by the wave. A solitary wave bears not only the energy

1 1
ew)= [ [glowl + 5190+ W ()] ao )
R3
but also the other integrals of the motion, such as the angular momentum
M (¢) =Re | 9 (x x Vi) dz, (4)
R3

which represent intrinsic properties of particles. In addition, the solitary waves
of (1) exhibit all the most characteristic features of relativistic particles, such
as the equivalence between mass and energy. Owing to this particle-like be-
haviour, solitary waves can thus be regarded as a model for extended particles,
in contrast with point particles, and they arise in many problems of mathemat-
ical physics, such as classical and quantum field theory, nonlinear optics, fluid
mechanics, plasma physics and cosmology (see, for instance, [36], [26], [22]). For
an introduction to the theory of solitary waves in nonlinear field equations we
refer, e.g., to [3], [9], [32].

Here we are interested in the existence of vortices of equation (1) with non-
negative potentials, that is,

W >0 and M (¢) #0.

Observe that W > 0 implies £ > 0, which is an important request for the
consistence of physical models related to the equation since the existence of field
configurations with negative energy would yield negative masses. Furthermore,
the positivity of the energy also provides good a priori estimates for the solutions
of the corresponding Cauchy problem and these estimates allow to prove that,
under very general assumptions on W, the problem is well posed (cf. [9]).

The most natural way for finding solitary waves for (1) is to look for static
waves, i.e., time-independent solutions of the form

1/) (t7x) = 1/)0 (1‘)7

and then to obtain travelling waves by Lorentz transforming. Unfortunately,
this forces to assume that W takes negative values, for it is well known, since
the renowned paper [19] of Derrik, that W > 0 implies that any finite-energy
static solution of (1) is necessarily trivial.

Such a difficulty can be overcome by looking for standing waves, namely,
finite-energy solutions having the following form:

¥ (t,z) = o (z) e ot 0y > 0. (5)

In the literature a lot of work has been done in proving the existence of standing
waves in the case in which g (z) € R (we recall, e.g., [12],[13], [29], [30], [31]).
Also in the physical literature there are many papers dealing with this topic,



among which we recall the pioneering paper of Rosen [27] and the first rigorous
existence paper [16]. In physics, the spherically symmetric standing waves have
been called Q-balls by Coleman in [15] and this is the name used in all the
subsequent papers.
From the results of [12] (see also [9]) it follows that, if W satisfies (2) together
with
(i) V>0and V(0)=0
(i) V' (u) = Q%u+ O(u?') as u — 0" for some Q% > 0 and ¢ > 2
(iii) V (up) < 102 for some ug > 0,
then, setting
Qo :=inf{w >0: V (u) < 3w?u? for some u > 0}, (6)

equation (1) has standing waves (5) with ¢ (z) € R for every frequency wg €
(Q0, ), where the limit value wy = (2 is also admitted if ¢ > 6 in (ii) (actually,
for wy € (0, Q) the result holds also replacing (ii) with V" (0) = Q2 > 0).
However g () € R implies M (¢)) = 0 and so, in order to get vortices, one
has to consider complex valued 1)’s.
Making an ansatz of the form

O (t,x) = u(z) efFol@=wot) = (1) >0, 0 () € R/27Z, wo > 0,kg # 0, (7)
equation (1) is equivalent to the system

—Au+ k2 |V u—wdu+ V' (u) =0
ulAG + 2Vu-Vo =0.

Moreover, if we denote x = (y, z) = (y1, Y2, 2), assume u (y,z) = u(|y|, z) and
choose the angular coordinate in R? as phase function, that is,

arctan (ya2/y1) ify; >0

_J arctan (y2/y1) + mif y1 <0
0(x) = /2 ify1 =0and y3 >0 (8)
—7/2 ifyy =0and yo <0,
we get
1
N)=0, VO -Vu=0, [VI?’=—5,
[yl
so that the above system reduces to
k3 AN .3
—Au+ —su+ V' (u) = wyu in R 9)

Yl



and direct computations show that (3) and (4) become

: 1 1( kg
& (u (z) el(kog(z)_“’ot)> = / [2 Vul? + 3 <ko + w%) u? +V (u)
R3

dz (10)
|yl

M (u (x) ei(koe(m)f“’ot» = <0,0, fwoko/ uzdz> . (11)
R3

By studying equation (9) we will prove the following result.

Theorem 1 Let W : C — R satisfy (2) and assume conditions (i), (i), (iii).
Then equation (1) has nonzero finite-energy classical solutions of the form (7)-
(8) for every ko # 0 and wy € (o, ), where Qp is given by (6) and the limit
value wyg = § is also admitted if g > 6.

Notice that ©Qy < £ by assumption (iii), so that the interval (Qg, Q) is nonempty.
The finite energy and angular momentum of the solutions we find are given by
(10) and (11), and the angular momentum does not vanish since w is nonzero.

We observe that the assumptions of Theorem 1 are satisfied for example by
the model potential

1 b 1
W) = 3@l = Sl + Sl QA0 p>g>2,

which is nonnegative provided that b > 0 is small enough.

In the physical literature, the existence of solitary waves with nonvanishing
angular momentum in classical field theory seems to be an interesting open
issue, which has been recently addressed in a number of publications (see for
instance [33], [17], [14] and the references therein). In particular, the existence of
vortices for equation (1) has been investigated in [21] and [34], for very particular
potentials.

From the mathematical viewpoint, the existence of vortices has been studied
in [11] and [4] (see also [7], [8], [10], [18] for related equations and results), but
the requirement W > 0 was not permitted by the results there. We also mention
a forthcoming paper [5], where the problem of vortices with prescribed charge
is investigated.

Remark 2 Theorem 1 also gives travelling solitary waves with nonvanishing
angular momentum, since, by Lorentz invariance, a solution 1y travelling with
any vector velocity v can be obtained from a standing one by boosting. For
instance, if 1 (t,z) = u (z) !Fo0@)=w0ot) s g standing solution and v = (0,0,v),
|v] <1, then

wv (t7il') — (y7,y (Z _ ’Ut)) ei(kg@(a:)—wo'y(t—vz))7 = (1 _ 02)*1/2 :

s a solution representing a bump which travels in the z-direction with speed v.



Remark 3 The same arguments leading to Theorem 1 also yield the existence
of standing and travelling rotating solitary waves for the nonlinear Schrédinger
equation

10 = =AY+ W' (), ¥ (t,x) €C, (t,z) € R xR (12)

Actually we stated the result for the nonlinear Klein-Gordon equation (1) because
it is for this equation that, as already mentioned, the assumption W > 0 has
special importance on physical grounds.

According to the previous discussion, the proof of Theorem 1 relies on find-
ing nonnegative symmetric solutions to equation (9) with suitable integrability
properties. In fact we will perform this study in a more general situation, that
is, we will study the existence of nontrivial solutions to the following problem:

—Au—k#u—kx\u:g(u) in RV

Y

u(y,z) =u(lyl,2) >0 in RY (13)
2

u € HY(RY), / u—zdm<oo
R [y

where = = (y,2) € RF x RV=F with N > k > 2, the nonlinearity g : R — R is
continuous and such that g (0) = 0, and x> 0 and A > 0 are real constants.
More precisely, we introduce the spaces

2

H .= {u € H'(RV): [on ‘Zﬁdx < oo}, Hy:={ue H:u(y,z)=u(lyl,2)}
(14)
and look for weak solutions in the sense of the following definition: we name
weak solution to problem (13) any nonnegative u € Hg such that

h
Vu-VhdaH—u/ “—de+A/ uhdx:/ g(u) hdr forall h e H.
RN |y RN RN
(15)

RN
Regarding the nonlinearity, we will assume

(go) foto g (s)ds > Xt /2 for some to > 0

(g1) gt)=0@1"1) as t — 0F for some q > 2

together with one of the following conditions:

(g2) g(B) =0 for some > Bp:=inf{t >0: fgg(s) ds > \t?/2}
(gs) g(t)=0(P1) as t — +oo for some p € (1,2%)

where 2* := 2N/ (N — 2) denotes the critical exponent of Sobolev embedding,.



The relationship between (9) and (13) is clear: writing

V() = 59° [0 — G (),

equation (9) reduces to the equation of (13) with A = Q% — w? and g = G'.
This leads to not assuming the well known superquadraticity condition due to
Ambrosetti and Rabinowitz [1], namely

oG (t) <G (t)t for some o > 2 and all t € R, (16)
since, together with (go), it implies
G (I9]) > (const.) [ for || large

and thus forces W to take negative values.
Our existence result is the following.

Theorem 4 Let N > k > 2, p > 0 and A > 0. Assume that g € C (R;R)
satisfies (o), (g1) and at least one of hypotheses (gz) and (gs), with ¢ > 2*
if A=0and p > 2 if A\ > 0. Then problem (13) has at least a nonzero weak
solution, which satisfies ||ul| @y < B if (g2) holds.

The proof of Theorem 4 will be given in Section 4, where a solution to (13)
will be found as a mountain-pass critical point of the Euler functional associated
to the equation. The difficulty of obtaining a bounded Palais-Smale sequence
without the aid of condition (16) will be preliminarly tackled in Section 3.

As a matter of fact, the case A > 0 can also be studied by suitably adapting
the constrained minimization technique of [12], but such an argument fails for
A = 0, when the H'! variational theory does not apply (in particular one cannot
obtain compactness by exploiting well known results such as [35, Lemma 1.21])
and a different approach is needed.

Still concerning the case A = 0, we also observe that Theorem 4 actually
gives a version of the results of [4] without (16) and that a similar result was
announced in [24] without proof.

Finally, we remark that Theorem 4 applies to more general situations than
the ones needed to deduce Theorem 1. For instance it also admits pure power
nonlinearities, or, more generally, nonlinearities which may satisfy Ambrosetti-
Rabinowitz condition.

We conclude this introductory section by collecting the notations of most
frequent use throughout the paper.

e Given N,k € N, N > k > 2, we shall always write z = (y, z) € R¥ x RNk,

e O (k) is the orthogonal group of R¥.

e By u(y,z) = u(ly|, z) we always mean u (y,z) = u(Ry,z) for all R € O (k)
and almost every (y, z) € R¥ x RN=F,

e For any r € R we set vy := (|r| +r) /2 and r— := (|r| —r) /2, so that r =
ry —r_ with ry,r_ > 0.



e |A] and x4 respectively denote the d-dimensional Lebesgue measure and the
characteristic function of any measurable set A C R¢, d > 1.

e By — and — we respectively mean strong and weak convergence in a Ba-
nach space E, whose dual space is denoted by E’. The open ball B, (ug) :=
{u € E: |lu—up|p <r} shall be simply denoted by B, when E = RY and
UO:(L

e — denotes continuous embeddings.

e C°(A) is the space of the infinitely differentiable (real or complex) functions
with compact support in the open set A C R¢, d > 1.

o If 1 < p < oo then LP(A) and L} (A) are the usual Lebesgue spaces (for any
measurable set A C R, d > 1). We recall in particular that u, — 0 in L} (R?)
if and only if w,, — 0 in LP(B,) for every r > 0.

e 2*:=2N/(N — 2), N > 3, is the critical exponent for the Sobolev embedding,.
o HY(RY) = {u € L*(RY) : Vu € L*(RN)} and D"?(RN) = {u € L* (RV) :
Vu € L2(RYM)} are the usual Sobolev spaces.

2 Preliminaries

In this section we study the functional framework in which problem (13) can be
cast into a variational formulation. In particular, Subsection 2.1 is devoted to a
brief description of some weighted Sobolev spaces naturally related to problem
(13), while in Subsection 2.2 we derive a variational principle for recovering weak
solutions of problem (13) as critical points of a suitable functional (Proposition
7), of which we also give some relevant properties (Lemmas 8 and 9).
Throughout the section we assume N >k > 2 p > 0and A > 0.

2.1 Weighted Sobolev spaces

In order to emphasize the role of A, for A > 0 we respectively denote by H, and
H) s the Hilbert spaces H and Hy of (14) endowed with the norm defined by

2
Hu||i = / \Vul® dz + ,u/ u—zdx + Mu?dr for allu € Hy,  (17)
RN RN |yl RN

which is induced by the inner product

(u|v), ::/ Vu-Vo da:—i—,u/ u—UQdI—&— Auvdr  for all u,v € Hy. (18)
RV RN |yl RN

Clearly Hy s — Hy — HY(RY) and, by well known embeddings of H!(RY),
one has that Hy — LP(RY) for 2 <p < 2* and Hy — L (RV) for 1 < p <2*.
In particular, the latter embedding is compact if p < 2* and thus it assures
that weak convergence in H) implies, up to a subsequence, almost everywhere

convergence in R .



If A = 0, the natural functional spaces associated to equation (13) are instead
Hy = {u € DM2(RY) : [on ﬁdw < oo}
Hos:={u € Ho:u(y 2) =u(lyl,2)}

equipped with the norm and inner product still given by (17)-(18). Clearly
H)\ = HomL2(RN) — Ho — D1’2(RN) and H)\A’s = H()750L2(RN) — HO,S — H()
for any A > 0. Moreover, by well known embeddings of D*2(R¥), one has
Hy — L¥ (RN) and Hy — L? (R™) with compact embedding if 1 < p < 2*

loc
(which also assures that weak convergence in Hy implies, up to a subsequence,

almost everywhere convergence in R”V).

Remark 5 If k > 2, from the Sobolev-Hardy inequalities [6] it follows that
Hy = DVY2(RY) and the norms |||, and [l pr.2ray are equivalent.

Proposition 6 C°((RF\{0}) x RN=*) and C°((R*\ {0}) x RN=F)N Hy ¢ are
dense in Hy and Hy s respectively.

Proof. We divide the proof into two steps, using a standard truncation and
regularization argument. Set O := (RF\ {0}) x RN =F for brevity and let X :=
{u € Hy : suppu is compact in O} and X := X N Hy .

Step 1: X and X are dense in Hy and Hy 5.

Fix £ € C® (R) and n € C* (R) such that £(¢) = 1 and n(t) = 0 on [0, 1],
() =0and n(t) =1on [2,400),0 < ¢ <1land 0 <y <1onR. Forall
n € N\ {0} and z = (y,2) € RV, set &, (z) := ¢ (|z| /n) and n, (z) :==1n (n’ |y)
for some § > (N —k)/k. Then let u € Hp \ {0} and define w,, := &,n,u, in such
a way that suppu, is compact in @. Clearly u,, — u almost everywhere on RY
and || |y| ™" (un — w) | L2~y — 0 by dominated convergence. Now consider

Vu, = & Vu + un, VE, +u§n Vi, -

Again by dominated convergence one deduces that &,n,Vu — Vu in L2(RY).
On the other hand, setting C} := max;>0 &’ (t)Q, we obtain

/ (une)? |V, do < — ¢ (Ja] /n)® wida < %1/ utds
RN B2, \Bp

n2
n B2n \Bn n

c 2/2*
=L Bon \ B! (/ Ju|? d:c)

2
n B2, \Bh,

2/2*
o |Bl|2/N (2N B 1)2/N (/B y \u|2 d:c)
2n n

where the last integral goes to zero as n — oo because u € LQ*(RN ). Finally,
setting A, := {z € RN : 1 < |n’y| <2, |2| < 2n} and Cy := max;>on’ ()%, we

IN



have

/ u2£i\Vnnl2dw=/ uzéﬁlvnnlzdwén%/ o (0 |y))* wida
RN A

Anp n

2 2
< anz‘;/ |y|2 u—2d1‘ < 402/ u—2dx
Ayl A,y

where the last integral goes to zero as n — oo because |y| > u2 € L*(RY) and
|An| = CnN=F=9% = 5(1),,_, o for some constant C' > 0. Therefore u,, € X and
up, — u in Hy. Since u, only depends on |y| if u € Hy, the claim is proved.

Step 2: C°(0O) and C°(0) N X are dense in X and X, (with respect to ||-]|,)-

Fix any u € X, u # 0, and let 0 < rg < r be such that suppu C A :=
{z e RN :rg < |y| <, |2| <r}. Define

ue (x) := / w(x') pe (v — ') da’ for all z € RY and ¢ € (0, %O)
A

where {p.} C C°(RY) is a family of radial mollifiers, that is, p. > 0, supp p. C
B. and ||pe||p1gny = 1. By standard arguments, u. € CX(RY) and u. — u
in DY2(RY) and L? (RV) as ¢ — 0. Moreover ¢ < 79/2 implies that both

loc
suppu and suppu. lie in K := {x ERN irg/2 < |y| <2, |2 < 2r}, whence
one deduces

(ufus)2 (ufus)2 4 9
———dx = ———dz < — (u—u)"dr=0(1)._, -
RV |yl x|yl o JK

Therefore u. € C°(O) and u. — u in Hy as € — 0. Since one easily checks
that u € Xy implies u. (Ry,z) = uc (y,2) for all R € O (k) and almost every
(y,2) € RF x RVN=*_the proof is complete. B

2.2 Variational approach

Let g € C(R;R) satisfy the hypotheses of Theorem 4. Set x := x(0,) if (g2)
holds, x := X(0,4-00) Otherwise. Then define

f@®)=x®g(t) and F(t):= /o f(s)ds forall t € R. (19)

So, in any case, from (go) one deduces that
(Fo) 3to > 0 such that F (to) > \2/2.

Moreover, if A > 0, it is not restrictive to assume ¢ < 2* in (g:) and the
hypotheses of Theorem 4 imply

() Im >0, VteR, |f(t)] <mmax{|tf"", (2"} (where p,q € (2,2%))



(Fy) IM >0, VteR, |F(t)| < Mmax{|t|",[t|?} (where p,q € (2,2%))
whereas, if A = 0, one deduces
() Im >0, VeeR, |f(#)] <mmin{t'"",[t]'} (where 1 < p < 2* < q)
which yields in particular
(£) |fOI<mt* " forall teR
(F.) 3IM >0 such that |F (t)| < M|t|2* forallt e R.

Thanks to (fyv), (Fv), (f.), (F.) and the continuous embeddings H) —
LP(RN) N LY(RY) for A > 0 and Hy — L*> (RY), one checks (see for example
[23]) that the functional Iy : Hy — R defined (for any A > 0) by

I (u) := % Hu||§ - /RN F (u)dz for all u € Hy (20)

is of class C' on H) and has Fréchet derivative I’ (u) € H} at any u € H, given
by

IN(u)h=(u|h), — RNf(u)hdx for all h € H) . (21)

We now show that the set of weak solutions to problem (13) equals the set
of critical points of the functional

Jy = IMH“ Hys— R

defined as the restriction of Iy to H, s, which is obviously such that Jy €
Cl' (Hys;R) and J{ (u)h = I{ (u)h for all u,h € Hys. Observe that weak
solutions belong to H!(R™) by definition, while Hy € H'(R") (cf. Remark 5).

Proposition 7 Every critical point of Jy is a weak solution to problem (13)
and, if (gz) holds, it satisfies u < 3 almost everywhere in RN,

Proof. Let u € Hys be such that J, (u)h = 0 for all h € Hys. Then,
by virtue of the principle of symmetric criticality [25], u is a critical point of
I, ie., I{ (u)h = 0 for all h € Hy. Now, using h = u_ € Hy as test
function in (21), one obtains |[u_||, = 0, that is, u > 0. If f = X(0,4c0)9, this
implies f (u) = g (u) and thus (15) holds by (21). Otherwise, if f = x(0,5)9, We
compute (21) for h = (u— 3), € Hy s and, since f (u) (u — 3), vanishes almost
everywhere in RN, we get

+

u(u_|f)+da: + [ u(u—p), do
RN

0= Vu-V(u—ﬁ)+dx+u/

RN RNy

> vu.V(u—@)+dx=/RN|V(u—5)+|2dx.

RN

10



This implies (u— (), = 0, i.e.,, u < B, which yields f(u) = g(u) and thus
proves (15) again. Finally, one deduces that u € H*(RY) also if A = 0 thanks
to [4, Proposition 6]. W

The next lemma assures that weak limits of criticizing sequences are actually
critical points for J).

Lemma 8 For any h € Hy ¢ the mapping Ji (-)h : Hxs — R is sequentially
weakly continuous.

Proof. We assume A > 0 and follow the argument of [4, Proposition 14], where
the claim of the lemma has already been proved for A = 0. Of course we need
only consider the nonlinear term of the mapping, so fix h € H'(R") and show
the sequential weak continuity on H!(RY) of the mapping u fRN f (u) hdx.
Accordingly, assume u, — wu in H'(RY) and, with a view to arguing by
density, let ¢ € C(RY) and let » > 0 be such that suppy C B,. Since
up, — win LP~1 (B,) N L1 (B,) and condition (fy) assures the continuity of
the Nemytskil operator f : LP~! (B,) N LY~' (B,) — L' (B,), one readily has
Jan 1f (ug) = f (u)] || dz = 0 (1) as n — oo. Then, by the boundedness of {u, }
in H'(RY), there exists a constant C' > 0 (independent from ¢ and n) such
that

/ \F um) — f ()] ] daz
]RN

< [ )= Flh=ldo+ [ 17 ) = £ @]l do

IN

/RN (I (wn)| +1F (@) [ = ol dz + 0 (1),

IN

m [ (™ el 7l ) ol de o (1),
RN

IN

-1 p—1
m (laall 2+ 1l 8t ) 1 = ol o +
—1 —1
b (o + Nl S0 ) I = ol oy + 0 (1),
Cllh =@l g1 gny +0(1), 0o

and the density of C°(RY) in H'(RY) allows us to conclude. B

IN

We conclude this subsection with a technical lemma which emphasize the role
of assumption (Fo) and will be useful in proving the mountain-pass geometry
of Jy (Lemma 10 below).

Lemma 9 Let A:= {z € RN : |y| > 1}. Then there exists ug € C°(A) N Hy 5
such that [on (F (uo) — Aud/2) dx > 0.

Proof. Denote Q;, ,, = {z € RN i 7y <|y| <7, ry < 2] <o} formg >y >
0 and, for any r > 3, let ¢, € C°(R) be such that

11



e ¢.(t)=1on [3,7]
e ¢.(t)=0on (—00,2]U[r+1,+00)
e 0<¢.<1lonR.

Let to > 0 be given by (Fo) and set u, () := tod, (|y|) ¢ (|2]) for all x € RV,
Clearly u, € C*®(RN) N H) ¢ with suppu, C Q2,+1. Then we get

/ (F (up) — Auf) dx = / (F (up) — )\uf) dz + Cy |Qs.]
RY 2 Q2.r1\ Q3. 2

> (Co+C1) Q3| — C1|Qari1| = CrY + o(rY)

as r — +oo, where Cp := F (to) — \3/2 > 0, C1 := maxse(o ) | F (£) — At?/2]
and C' > 0 is a suitable constant. H

3 Existence of bounded Palais-Smale sequences

Assume N >k > 2, > 0and A > 0, and let g € C (R; R) satisfy the hypotheses
of Theorem 4. The aim of this section is to prove that the functional Jy defined
in Subsection 2.2 as the restriction of I, to H) s admits a bounded Palais-Smale
sequence at its mountain-pass level ¢ > 0 (see (27) below), that is, a bounded
sequence {w,,} C Hy s such that Jy (w,) — ¢ and J} (w,) — 0 in H ..

In order to emphasize the different behaviour of different terms of Jy in front
of rescalings, we denote

1
F(u) := 3 ||u||(2) — Iy (u) = /RN (F (u) — ;\u2> dx for all uw € Hy 4

and set u! :=u(t~!-) for every u € Hy s and t > 0. Notice that u* € Hy ¢ with
2 IRBINE u(t™1z)? _ 9
'), =t 2/ [Vu(t™'a)|” + p=—g | dz = tN 2 g (22)
RN =1yl
and

F(u') = /RN <F (u(t™'2)) — ;\u(tlx)z) dz = tNF (u). (23)

Similarly |u’ — vt||i = N2 lu — v||s + Y A (u — v)||2L2(RN), so that the map-
ping u — u! is continuous from H) g into itself.
The following lemma shows that Jy has a mountain-pass geometry. Recall

from Lemma 9 that we denote A := {z € R : |y| > 1}.
Lemma 10 There ezist p > 0 and @ € C°(A) N Hy ¢ such that

Ja(u) >0, |lally,>p and Jx(u)<DO0. (24)

inf
uEH/\,S,“uH)\:p
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Proof. Let ugp be the mapping of Lemma 9. Then uf € C°(A) N H) 5 for all
t > 1 and, as t — 400, one has

2 — 2 2
bl =¥ [luollg + MY [luoll 72 @ry — +o0 (25)
2 —
I (uh) = § llubllg = F (uh) =tV |Jug|lg — ¥ F (ug) — —o0.  (26)

On the other hand, if A = 0, by (F.) and the continuity of the embedding
Hy g — L?" (RV) there exists My > 0 such that

1
2
while, if A > 0, the continuous embedding Hy s — LP(RY) N LY(RY) together
with (F\) assures the existence of My, My > 0 such that

1 2 2% 2 2%
Jo () 2 5 l[ully = Ml vy = 5y = Mo Jully for all w € Ho

1 2 1 2
Ia () 2 5 llully = Ml gy = M [ull Loy 2 5 llully = Muflully = Mz [Jull}

for all w € Hy s, where p,q > 2. This proves the first inequality of (24) for any
A > 0. By (25)-(26), we conclude by taking @ := uf) for ¢ > 1 large enough. W

Hereafter we let @ be the mapping of Lemma 10.

Lemma 11 Let {t,} C (0,400) be a sequence such that t, — 1. Then u'" — u
m H)\,S.

Proof. First observe that ' = u(t;!) — @ and Vul» =t 'Vau(t; ) — Va
almost everywhere in RY, with {@!"} and {Vi'"} uniformly bounded in RY.
Then let » > 0 be such that supp@ C ANB, and set B := {z € Ba, : |y| > 1/2},
so that both # and u'" belong to C°(B) for n large enough. By dominated
convergence we thus conclude [|a'" — |2y = @' — @l 125 = 0 (1),

/RN MW:/Bdegél/ls(ut"—ufdx:ou)

] |yl

and ||V (@ = @) xqan) = 19 @ = @) 2y = 0(1) as 0 — oc. W

Henceforth we fix a €, > 0 such that Jy(u) < 0 for all u € B, (@) and, by
Lemma 11, a threshold ¢, € (0,1) such that u* € B., () for all t € (., 1).
Let us now introduce the mountain-pass level
c:=1inf max Jy(u), I':={yeC([0,1];Hxrs):v(0)=0,v(1) =a}, (27)
vET ue~([0,1])
which is positive by Lemma 10. The existence of a Palais-Smale sequence at level
¢ then follows from standard deformation arguments, but, as we do not assume
the already mentioned Ambrosetti-Rabinowitz condition, such a sequence is
not necessarily bounded. The existence of a bounded Palais-Smale sequence is
actually not a trivial problem and the rest of the section is devoted to this issue.
The arguments we use derive from the ones of [2].

13



Lemma 12 For all t € (t.,1) one has ¢ = inf er max,e(jo,17) Jx (u').

Proof. Letting t € (t.,1) and ¢; := inf,er max, e ((o,1]) Jx (u'), we show that
¢ < ¢ and ¢ < c. For any 0 > 0, fix 91 € T such that max,c., (jo,1]) Jx (u*) <
¢; + 60 and set

ey i0<s<1/2
M (s) = 2(1—s)at +2(s—1/2)a if1/2<s<1.

Then M € C([0,1];Hxs), 71 (0) = 0 and #; (1) = 4, i.e., 71 € I'. Moreover
u' € B, (u) implies 71 (s) € Be, (@) and thus Jy (71 (s )) < 0 for all s € [1/2,1].
Hence we get

¢ < max Jy(u)= max Jy (71 (s)) = max Jx(F1(s))

u€1([0,1]) 5€[0,1] s€[0,1/2]
= max J 2t—maxJ = max Jy (v
LB, A (29)7) = max () = max, I ()
<ec+6

which yields ¢ < ¢; since § is arbitrary. Note that this also implies ¢; > 0.
Conversely, for any ¢ > 0 we fix 75 € T' such that max, e, (jo,17) Jx (u) < c+ 0
and set

N B DR if0<s<1/2

T2 (s) = 2(1—s)u/t +2(s—1/2)a if1/2<s<1.
Then 45 € C([O, 1];H)\ S),
if s € [1/2,1], one has ¥, (s
2(s—1/2)u, so that u' € B,
0. Hence we get

(0) = 0 and 7, (1) = a, ie., 32 € I'. Moreover,
— 21 —s)a/t+2(s—1/2)a) =2(1—s)a+
. (@) implies 72 ()" € B, (&) and so Jx(32 (5)") <

Y2
)f

< J t) = J t = J t
o S gy S (V) = ma a0 = s, nGa(5))
_ t\ey B
= dax Ji((02(26) 7)) = max Ji(72 (25)) = max Ji(72 (5))
= max Jy(u)<c+4
wemiiyy P ()

and the conclusion ensues from the arbitrariness of 5. W

Hereafter, by Lemma 12, we assume that to any ¢ € (t., 1) there corresponds
a path v, € I such that

max Jy (u') <e+1—1¢V, 28
aen ) I () = (28)

by which we define the set
Ay ={uey([0,1]): Jy(u) >c— (1—tN)}.
Note that maxye,([o0,1]) /x (u) > c implies A; # @ (indeed, as 1 — tV > 0 and

Jy is continuous, A; even contains a continuous piece of ; ([0, 1])).

14



Lemma 13 For every t € (t.,1) and v € Ay one has ||uH§ < (c+2)N/th=2.

Proof. Fix any t € (t.,1) and u € A;. By (28) and the definition of A; one has
Iy (ut) = Jx (u) <2 (1 —t"). On the other hand, from (22) and (23) it follows
that

N (ut) —Jx(u) = %(HutHo [l ) f(ut) + F (u)
= 5 (11 = e 1) = 7 )+ 7 ()
5 (1) Il - (1- ) 7 )
= %Nf(ut)

1—¢N 1t 2
- L (s Il + 2 )

1—N
> o (g Il v 7 @)

where for the final inequality we have taken into account that the mapping
t — (2 —tV) /(1 —tV) is decreasing for ¢ > 0 and tends to —2/2* as t — 1.
So we obtain — (1/2%) [[ut||2 + F (u) < 2tV , whence

1 1 1 1
Iy () = 5 [ullg = F () 2 5 llutllg = o lullg =26 = 5 [l g — 26

and therefore

N N N(c+2
Julld = s [0 < s (U () +26%) < 2 ek 1464 < 2D

*

where (28) has been used again in order to estimate Jy (u') <c+1—tV. R
The aim of the section will be accomplished in Proposition 15 (and Corollary
16), where we take advantage of the following well known deformation lemma

(see [35, Lemma 2.3], here written for the space H) g, our functional Jy and its
mountain-pass level c).

Lemma 14 Let S C Hys and €,6 > 0 be such that || J} (u)| > 8¢/0 for all
A,s
u € Sy satisfying |Jx (u) — ¢| < 2e, where

&wz{veﬂngyw—musmﬁ.

Then there exists ) € C ([0,1] x Hys; Hxs) such that

o 7 (7,u) =u provided that T =0 or |Jy (u) — ¢| > 2¢ or u ¢ Sas

15



o Jy(n(1,u)) <c—e provided that Jy (u) <c+ec andu €S
e 1) (7,-) is an homeomorphism of Hy s for every T € [0, 1]
o Jx(n(-,u)) is nonincreasing for every u € Hy 5.

Proposition 15 There exists a Palais-Smale sequence {w,} C Hy s for Jy at

level ¢ such that
(c+2)N
N-2

*

sup [[w, [l < 1 +2 (29)

Proof. Set c. := 2N (c+2) /tN =2 for sake of brevity. First we observe that
limy_,1- sup,ey, |x (u') = J (u)] = 0. Indeed, for all t € (t,,1) and u € Ay,
the definition of Ay and (23) yield Jy (u') — Jx (u) <2 (1 —t") =0 (1),_,; and
—tNF (u) = —F (u') < Jy (u!) < c+1—tY by inequality (28), whence, by (22),
(23) and Lemma 13, we get

t 1N 2 N
Iy (u) — Jy (u') = 5 fullg = (1 —tY) F ()
oy Cx c+1—tV
< (1-tN Z)ZJr(l*tN)T:O(l)t_}l.

Now, for every m > 1, define
2 1 1
Unp:=que Hys:|lullyg <co+—, [In(u) —cl < —
m m

and choose t,,, € (t, 1) such that 1—¢)} < 1/32m and Jy (u) < Jy (ul™)+1/32m
for all w € A;,,. Then for every u € A, the inequality of Lemma 13 holds and
one has (recall the definition of Ay, )

1

J— _N —_— —
Iy (u) > ¢ (1 tm)ZC o

and (by (28), with t =t,,)

1 1
< tm < _ 4N < JE—
D) Sy (Wn) + o <ot (L—tp) + o <et ey (30)
whence A, C Uy, and U,, is not empty. For sake of contradiction, assume that

_ 8 1 1
E|m>max{*,8c} Vu € Ug, || J4 (u)HH; > W (31)
and apply Lemma 14 with & = {h € Hy; : ||hH(2J < ¢/2}, e = 1/16m and
§ = 1/2v/m (so that 8/§ = 1/y/m). Note that

. 1
Sos =81/ ym = {U € Hys: lglelgllv —hl, < \/Fn}
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because S is convex and closed in H) s, and observe that if u € S, 77 satisfies
|Jx (u) —¢| < 1/8m then v € Uy, (and thus the last inequality of (31) holds),
because there exists h € S such that ||u — k||, < |lu — k||, < 1/v/m and thus

|| || <||h’H S— < \/C S— < \/ —
u + —= — + —= Cx + —,
0> 0 o 9 o m

where the assumption m > 8/c, has been used to derive the last inequality. So
there exists an homeomorphism ® : Hy ¢ — H) s (namely ® := 7 (1,-) of Lemma
14) such that

(i) @ (u) =wif |Jy (u) — c| > ¢ (recall that ¢ > 1/8m = 2¢)
(it) Jx (@ (u)) < e —1/16m if ||ul|} < c./2 and Jy (u) < ¢+ 1/16m
(iil) Jx (P (u)) < Jx (u) for every u € Hy 5,

by which we define the path v := ® o, € C([0,1];Hys). By (i) one
has 7 (0) = ®(y,, (0)) = ®(0) = 0 and ~(1) = ®(x, (1)) = (@) = @,
since |Jx (@) —c| = [Jx(@)] + ¢ > ¢ (recall that Jy (@) < 0). Hence v €
. We finally deduce the contradiction which assures that the hypothesis
(31) is false and thus concludes the proof. Let u, € ;. ([0,1]) be such that
J(® (ux)) = maxye,, (0,1)) Ir (P (u)) = max,ey(jo,1]) Jx (v). On one hand,
if ue € v, ([0,1]) \ Ay, then Jy (®(uy)) < Jy(us) < ¢ — (1—tY) (by (iii)
and the definition of A¢_). On the other hand, if u, € A;_ then (30) holds
(with m = m) and Lemma 13 gives Hu*||§ < ¢./2 (recall that tz € (t«, 1)),
whence Jy (® (u.)) < ¢ — 1/16m by (ii). Therefore, in any case one obtains
max,c((0,1]) Ja (v) < ¢, which contradicts the definition (27) of c. B

Corollary 16 The sequence {wy} of Proposition 15 is bounded in Hj .

Proof. If A = 0 the assertion is already proved by (29); so assume A > 0. Since
Jx (wp,) — ¢ and (Fy) implies F (wy,) < M(|w,|” + |w,|?) almost everywhere,
there exists a constant C; > 0 such that

A
clzJA(wn)z§/

widfo/ |wn\pdfo/ |w,|?dx  for all n.
RN RN RN

Setting p := (2*—2)/(2* —p)and p' :=p/(p—1) = (2*—2) /(p — 2), from
Holder and Sobolev inequalities one infers that there exists a second constant
(5 > 0 such that

1/p 1/9
/ » |de—/ wnl? [wnl ¥ do < (/ w2dx> " (/ w |2*dx> "
n = n n > n n
RN RN RN RN

2/p 2% /p’
< Cs [lwa [Py lwnlly /7
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whence, by (29), there exists C3 > 0 such that ||wn||ip(RN) < (4 ||wn||i/2ﬁ(RN).

Similarly, there exists Cy > 0 such that [|w,[|7,gy) < Ca ”w"”i/;%RN)’ where
q:=(2* —2) /(2* — q). Therefore we get

A _ _
Crz 3 wnll? 2 vy = MCs llwal| 757wy — MCi l|wa|7le,  for all m,

where 2/p,2/G < 2 since p,q > 2. Hence no diverging subsequence is allowed
for {||wy/p2z~)} and the proof is thus complete. B

4 Proof of Theorem 4

This section is devoted to the proof of Theorem 4, which relies on the application
of a version of the concentration-compactness principle due to Solimini [28].
Accordingly, in order to state his result, we preliminarly introduce a group of
rescaling operators, of which we also remark some basic properties.

As usual, we assume N >k > 2 and let 4 > 0, A > 0.

Definition 17 Let t > 0 and x € RY. For any v € LP(RN) with 1 < p < oo
we define
Tt zu = t—(N=2)/2y, (fl . er) .

Clearly Ty ;u € LP(RY) for all u € LP(RY) and in particular T; ,u € D%?(RY)
if u € DY2(RY). Moreover, by direct computations, it is easy to see that the
linear operator u €— Tj,u is an isometry of both L2 (RN) and D'2(RN).
Notice that

thml =T1/tta and Ty o Too s = Thyto, o0 ftotas - (32)
Remark 18 For any Z = (0,z2) € RE x RN=F gnd t > 0, direct computations
easily show that the linear operators u — Ty zu and u — T} zu are isometries of
Hy and H)y respectively. Moreover Ty zu € Hys if u € Hos and Th zu € Hy ¢ if
u < H>\7s.

The next proposition is proved in [4].

Proposition 19 Let 1 < p < oo and assume that {t,} C (0,400) and {z,} C
RYN are such that t,, — t # 0 and z,, — x. Then Ty, 4 uy, — Ty pu in LP(RY)
if Uy — u in LP(RMN).

nsTn

Corollary 20 Let {t,} C (0,400) and {z,} C {0} x RN=*C RY be such that
t, = t#0 and Z2, — 2. Then Ty, 5, un, — Ty zu in Hos (up to a subsequence)
if up, — u in Hog.

Proof. From the boundedness of {u,}, by Remark 18 we deduce that also
{T, z,un} is bounded in Hys. Hence (up to a subsequence) it weakly converges

nsZn
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in Hy s and L (RM). On the other hand T}, z, u,, — T} zu in L% (RY), because
u, — u in L*" (RV) and Proposition 19 applies. B

We are here in position to recall the above mentioned result of Solimini [28],
which is the following.

Theorem 21 If {v,} C DY2(RY) is bounded, then, up to a subsequence, either
v, — 0 in L* (RN) or there exist {t,} C (0,+00) and {x,} C RN such that
Ty, e, 0n — v in L2 (RN) and v # 0.

Let us now turn to the proof of Theorem 4, which will be divided in sev-
eral lemmas. Accordingly, we hereafter assume that all the hypotheses of the
theorem are satisfied.

The starting point is the Palais-Smale sequence {w,} C H,s provided by
Proposition 15, which, we recall, is bounded in Hy s (see Corollary 16) and
satisfies J (wp) — ¢ > 0 and J3 (wy,) — 0 in H) _.

As {w,} is bounded in D%2(RY), it must satisfy one of the alternatives
allowed by Theorem 21. The following lemma shows that the first one cannot
occur.

Lemma 22 The sequence {w,} does not converge to 0 in L* (RY).

Proof. Note that J§ (w,)w, — 0 since {w,} is bounded in H) s and, for sake
of contradiction, assume that w, — 0 in L? (RY). If A = 0 one can use (f.)
and (F,) to readily deduce

/ |f(wn)wn|dx—|—/ |F' (wp)|de — 0 asn — oo, (33)
RN RN

which, by (20)-(21), yields the contradiction
1 2
Ix (wn) = innuA_ F(wy) dx
RN

1 1
= —J\ (wy) wy, + = f (wy) wpdx — / F(wy)de=0(1),_ .
2 2 RN RN nmee

If A > 0, then {w,} is bounded in L?(R") so that w, — 0 in L?(RY)N LI(RN)
by interpolation (recall that p,q € (2,2%)). Hence (fy) and (Fy) imply (33)
again and the same contradiction as before ensues. W

Corollary 23 There exist {t,} C (0,400), {z,} € RN and w € L* (RV),
w # 0, such that (up to a subsequence) Ty, , wy, — w in L¥ (RV).

Proof. Apply Theorem 21 and use Lemma 22.

Now we can easily exploit the z-translation invariance of Jy to improve the
result of Corollary 23. To this end, we set z, =: (Yn, 2n), Un := (Yn,0) and
Zn = (0, zp,), so that x,, = g, + Z,, and define

Up ‘= TLgnwn .
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Lemma 24 The sequence {u, } is bounded in Hy s and satisfies J} (u,) — 0 in
H}, and Ty, 5, un — w in L*" (RY).

Proof. The boundedness of {u,} follows from the one of {w,}, since the
operators 11 z, are isometries of Hy . Moreover, by (21) and easy computations,
one gets Jy (un)h = Jy (wy) T1,—z,h for all h € Hyg, so that || J} (un)|ly, =
A,s
I|J (wn)”H; ~because also Tz, are isometries of H) ;. Finally, recalling (32),

— _ T2 (RN
we conclude Ty, g, un =Ty, 3,11z, wn =Tt o, wp, — win L* (RY). W

n>Tn

By Lemmas 8 and 24, the sequence {u,,} weakly converges in H) ¢ to some
critical point v € Hy s of Jy. The proof of Theorem 4 is thus accomplished
if we show that u # 0, which is the aim of the next lemmas. The removal of
translations from the rescalings T}, 5, is the first step in that direction and it
is the topic of the following lemma.

Hereafter we denote T} := T} o for any ¢ > 0.

Lemma 25 There exists v € Hogs, v # 0, such that (up to a subsequence)
T;, up — v in Hyg.

Proof. Set v, := T}, uy, for brevity and recall from Lemma 24 that T3, 5, w, —
w # 0 in L (RY). From Remark 18 we get v, € Hog and |[v,]|, = [lunl|o, so
that (up to a subsequence) we can assume v, — v in Hys. If v # 0 the proof

is complete. So, for sake of contradiction, assume v, — 0 in Hy ¢ (and thus in
L? (RYN)). First, we deduce that

T [ty | = +00. (34)

Otherwise, up to a subsequence, t,%, — 9o € R¥ x {0} and Ty —tn g0 Tt g Un —
Ty _gow in L2 (RN) by Proposition 19. But, since T1 4, 5,74, .5, = Tt,, this
means v, — 11 _gow # 0 in L? (RY), which is a contradiction. Now we observe
that w # 0 implies that there exist § > 0 and A C RY with |A| # 0 such that
either w > 0 or w < —§ almost everywhere in A. Then, fixing > 0 such that
|B, N A|] > 0, by weak convergence we obtain

/ wxB,nAdT
RN

— R At S _
On the other hand, Ty, 5, un =Ty, 5,1, vn = T14,5,vn and hence

s/|mm%m:/' o] e
B B, (tngn)

r

1/2*
sc(/ 'WTiQ (36)
B (tngn)

for some constant C' > 0 which only depends on r. From (35) and (36) it follows
that

—

>5|B,NAl>0. (35

/ N Ttn n unXBTﬂAdx
R

/ Ty, .5, UnXB,nAdT
RN

liminf/ |vn|2* dx >0
B '(tn?;n)

n—oo
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and hence, up to a subsequence, we can assume

inf \vn|2* dx > ¢y for some g9 > 0. (37)
n BT(tngﬂr)

This will yield a contradiction. Indeed, using (34), it is easy to see that for
every | € N, [ > 2, there exists n; € N such that for any n > n; one can find
Ry, ..., R; € O (k) satistying the condition

{ 5& Jj = B, (tn (Riyna 0)) N B, (tn (Rjyn,O)) =9

(see [4, Proposition 22] for a detailed proof). As a consequence, using (37) and
the fact that v,, € Hys, we get

l l
g |*” da > / | d = / lua|?" dz > leg
/RN Zzzl Bi-(tn (Riyn,0)) ; By (tnin)

for every natural numbers [ > 2 and n > n;. This finally implies

/ |vn|2* dx — 400
RN

which is a contradiction, since |[vp|p2r@vy = [Tt Unll 2= @y = lunllp2r @w)
and {u,,} is bounded in L?" (RV). W

According to Lemma 25 and in order to apply Corollary 20 with a view to
concluding that {u,} has a nonzero weak limit in Hy¢ (and thus in Hj ), we
need to check that the dilation parameters {t¢,,} are bounded and bounded away
from zero. This is the content of the remaining lemmas.

Lemma 26 If A > 0 then inf,, t, > 0.

Proof. Recall from Lemma 25 that Ty, u, — v # 0 in Hos — L2 _(RY) and

fix ¢ € C°(RY) and r > 0 such that supp¢ C B, and [n védz # 0. Then
Ty, un, — v in L?(B,) and

| @uyode= [ @uodo— [ vode= [ vodsro.
RN B, B, RN
On the other hand, {u,,} is bounded in L2(R") and we get

, 1/2
< [6liagu ( [ 1Tl a )

9 1/2
= ¢l z2®n) (/ )t;“\’—”/?un (t;lfﬂ)‘ da:)
RN

1/2
— Vel (22 [ u2ao)
RN

smWhmmwawwM)eo

/ (T, un) @ dx
]RN
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As a conclusion, no vanishing subsequence is allowed for {t,} and the claim
follows. W

Lemma 27 If A > 0 then sup,, t, < +oo.

Proof. Recall from Lemma 25 that T} u, — v in Hys and [[v]|, > 0. Then, by
Proposition 6, there exists © € Hy s such that (v | ©), > 0, so that

(tn | Trje,0)y = (un | T;,'0)y = (Ty,un | 0)g — (v ] 0)g >0 (38)

by (32) and Remark 18. For sake of contradiction, up to a subsequence we now
assume t, — +o0. Then T, '0 = Ty, 0 € Ho, with HTl/tnf}HO = ||7]|, and

2
/ \Tl/tnﬁ\gdazz/ ‘t;N—Q)/%(tnx)’ dm:t;Z/ 52 dz — 0,
RN RN RN

which implies that {Tl t, v} is bounded in H) ¢ and L? (RYN), and thus it con-
verges to zero in LP(RY) N L4(RY) by interpolation (recall that p,q € (2,2%)).
Hence (recall Lemma 24) J3 (un) Ty, 0 — 0 and

/RN |unTh e, 0] dz < [t vy HTl/tnf’HLz(RN)

IN

— 0.

<s171Lp Iun||L2(RN)> HTl/tnf’ |L2(RN)

Moreover, by (fy) and the boundedness of {u,} in LP(R™) N LY(RY), there
exists a constant C' > 0 such that

/]RN |f(un) Tl/tnf)| dx < m/RN (|un|P*1 + |un|‘1*1) |T1/tnf)| dx

(p—1)/p 1/p
<m (/ [un [P dx) </ |T1/tn1~)’pdx) +
RN RN
(g—1)/q 1/q
+m (/ [un|? dx) (/ |T1/tnf)|qu>
RN RN

< € (170l oy + T30, ogay) = 0-

Therefore by (21) we obtain

(Un | Tl/tnf))o = J;\ (Un) Tl/tnﬁ — )\/RN unTl/tnf) dx + /RN f (un) Tl/tnf)dx — 0

which contradicts (38). W

Lemma 28 If A =0 then 0 < inf, ¢, <sup,, t, < +oo.
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Proof. Recall from Lemma 25 that T; u, — v # 0 in Hy 4. Then, by Proposi-
tion 6, there exists o € Hos N LP(RY) N LY(RY) such that (v | ¥), > 0, whence

(un | Tiye,0) = (un | T;,'0)y = (Ty,un | 9)g — (v ] 8)g >0 (39)

by (32) and Remark 18. Now observe that, setting p’ := p/(p — 1) and ¢’ :=
q/(q—1), p<2* < qgimplies (p — 1) ¢ <2* < (¢—1)p, so that condition (f,)
gives

ma { | OF 1 @} < (m om0 ) |17 forall 1 € R

Hence, as {u,} is bounded in L* (RN), {f (u,)} is bounded in L? (RV) N
L7 (RY) and thus there exist Cy,Cy > 0 such that

, 1/p' » 1/p
[Ty lar< ([ 1w ac) ([ irera)
RN RN RN
N—2 1/p
< (tﬁ e / |5|pdx)
RN

N2 (p—27) | .
= City™ 191l 1.0 (mv)

and, similarly,

S5 (a-27)

/ |f (un) Tiye, 0] dz < Catyy 1ol o vy -
RN

Since p < 2* < ¢, this implies [p ff (un) Tl/t"f}| dxz — 0 (up to a subsequence)
either if ¢,, — 0 or if t,, — 400 (up to a subsequence) and therefore one deduces

(Un | Tl/tn’D)Q = J(; (un) Tl/tnﬁ + /I;N f (Un) Tl/tni}dx — 0

since Jg (un) — 0 in Hy ; (Lemma 24, with A = 0) and Ty 4,9 is bounded in Hp s
because HTl/tn@HO = ||7]|,- So a contradiction ensues with (39) if the assertion
of the lemma is false. B

We are now able to easily conclude the proof of Theorem 4.

Proof of Theorem 4. By the last Lemmas 26-28, up to a subsequence we can
assume ¢, — ¢ # 0. Thus, from T} u, — v # 0 in Hys (Lemma 25) we deduce
Uy — Tt_lv # 0 in Hyg (up to a subsequence) by Corollary 20. Therefore,
recalling from Lemma 24 that {w, } is bounded in Hj s — Hy s for every A, one
infers that u, — Tt_lv in Hys also for A > 0. Finally, since J} (u,) — 0 in
Hj . (see Lemma 24 again), Lemma 8 assures that 7T, 'v € H) 5 is a (nonzero)
critical point for Jy. The conclusion then follows from Proposition 7. W
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5 Proof of Theorem 1

In this section we give the proof of Theorem 1, which follows from Theorem 4
together with an extendibility argument aimed at removing of the singularity
of V6 on the plane y = 0, where 6 is the angular coordinate given by (8).

Let W : C — R satisfy (2) and assume all the hypotheses of Theorem 1. Let
ko # 0 and wy € (Qo, 2], with wy € (0, 2) if 2 < ¢ < 6 in hypothesis (ii). Set

1
G (s) := 59252 —V(s) forallseR.
In order to apply Theorem 4 with N = 3, k = 2, u = k3, A = Q% — w2 and
g = G', one readily checks that (go) and (g:) are satisfied. We just observe
that, if A > 0, definition (6) implies the existence of w € (€g,wp) and so > 0
such that

1 1 1
G (s9) — 5)\3(2) = §w353 -V (s0) > iwzsg -V (so) >0.
Moreover, V > 0 implies
lim sup g (sz < 400 for every p > 2. (40)
s——+o00 Sp_

So, if g(s) > 0 for s > 0 large, then (40) assures that (gs) holds. Otherwise,
if there exists a sequence {s,} such that s,, — 400 and g¢(s,) < 0, it is not
difficult to deduce (gz) from (go) and (g:1). Therefore Theorem 4 provides
equation (9) with a nonzero nonnegative solution u € Hy in the following weak
sense:

h
Vu-Vhdx—i—k:g/ |u2d3:+/ V’(u)hdac:wg/ uhdx forallhe H.
R3

R3 R3 |y R3
(41)
Note that, either if (gz) holds or if (gs) holds, one has that
V' (u) = Q*u— g (u) € Lj,o(R%). (42)

Moreover, according to definitions 20 and 19, we have

1
Igzzwg (u) = 5 /R3

so that (10) becomes

2
Yl

2
\Vul® + EUQ + (2% — i) UZ] dx — / G (u) dz,
R3

& (u (x) ei(koe(:”)_“’ot)) =TIo2_2 (u)+ wg/ u?dr < 0o.
0 RS
Now we set
Yo (z) = u(2) e®?@)  forall = (y,2) € O := (R*\ {0}) x R.

Notice that Viby = e™0? (Vu + ikouV1) implies |Veyo|* = [Vul” + k2 |y| > u? €
L'(R3), so that 19 € H*(R?). In order to conclude the proof of Theorem 1, we
need the following two lemmas.
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Lemma 29 The mapping 1o satisfies
—Dpo + W (o) = wirbo (43)
in the distributional sense on O.

Proof. Since 6 € C*°(O;R/27Z), the claim of the lemma is equivalent to
/ Vipo - V (e7*0Y ) d + / W' (1ho) e~ *0%p da = Wi / Yoe " Vo dy (44)
o o o

for all ¢ € C°(O;C), where W’ (1) = V' (u) e*0? by (2). Writing ¢ = o1 +ip
with @1, p2 € C(O;R), we readily get

/ W (o) e™*0% o do = / V' (u) pdx = / V' (u) prdz + i V' (u) poda
O O R3 R3
and

/¢067ik°19<pd3:=/ ucpdx:/ u<p1dx—|—i/ upadz .
(@ @] R3 R3

On the other hand, denoting & - 7 = &y + Eamp + E3m3 for any &,m € C3, one
has

/ Vg - V (eﬂ'k"ﬁgp) dx
o

(Vu + tkouV1) - (Vo — ikopV9I) dx

(Vu~V<p+k(2)u<p|V?9\2) deriko/ uVY - Vodz
@]

I
S~ g~

Vu- Ve + k§|““’2> da — iko/ div (V) ¢ dz
Y o

(Vu Vo + k§W> da

2
|yl

- / (vu-wl +k3“9";> dx—l—z'/ (Vu-VgOz +k§“‘p§> da
R3 lyl R3 |y

where we have taken into account that Vu- V9 = 0 and div (uVY) = Vu- Vi +
u/\Y = 0. Hence, observing that C°(O;R) C H, one concludes that (44) holds
thanks to (41). W

[
s~

Lemma 30 The mapping o satisfies (43) in the distributional sense on R3.

Proof. Let ¢ € C°(R?;C) and take {n,} C C*°(R?R) such that 7, — 1
almost everywhere in R3 and
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0 0= 5 <1, 70 (4,2) = 0 for [yl < 1/n and 5 (3, 2) = 1 for [y| > 2/n
e |Vn,| < (const.)n on R3.

Clearly nnp € C°(O;C) and |V, (y,2)| = 0 for |y| < 1/n or |y| > 2/n. Then
Lemma 29 gives

/ 0 Vo - Vi, dx + / 1o Vb - Vo dx + / W' (o) onndz = / Yo d .
R3 R3 R3 R3

(45)
Setting A,, := {(y,2) €suppy : 1/n < |y| < 2/n}, we have |A,| < (const.) /n?
and

R3

< (const.) ||| poc (g n/ |Vpo| d

n

1/2
< (const.) (/ |V¢0|2dx) — 0.

n

Passing to the limit in (45) and using the Lebesgue’s dominated convergence
theorem for the other terms (recall that [W’ (vg)| = |V’ (u)| € L}, .(R?) by (2)
and (42)), the claim follows. B

Proof of Theorem 1. Set ¥ (t,x) := 1 (z)e 0! for all z € O and t €
R. Since Lemma 30, together with standard elliptic regularity arguments (see
for example [20]), yields that v defines a classical solution to (43) on R3, a
straightforward substitution proves that ¢ is actually a classical solution of (1)
on R xR3. W
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