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Abstract

We solve a mean-variance portfolio selection problem in the accumulation phase of a defined
contribution pension scheme. The efficient frontier, which is found for the 2 asset case as well
as the n + 1 asset case, gives the member the possibility to decide his own risk/reward profile.
The mean-variance approach is then compared to other investment strategies adopted in DC
pension schemes, namely the target-based approach and the lifestyle strategy. The comparison
is done both in a theoretical framework and based on simulations. As a result, it turns out that
the target-based approach can be formulated as a mean-variance optimization problem. It is
shown that the corresponding mean and variance of the final fund belong to the efficient frontier
and also the opposite, that each point on the efficient frontier corresponds to a target-based
optimization problem. Furthermore, numerical results indicate that the largely adopted lifestyle
strategy seems to be very far from being efficient in the mean-variance setting.
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1 Introduction

Nowadays defined contribution pension schemes have become increasingly important, due to
the everywhere observed shift from defined benefit (DB) schemes to defined contribution (DC)
schemes. In many countries, reforms for the support and implementation of the second pillar
have been undertaken, mainly pressed by the recognized fact that public systems will not be able
to provide a sufficient income in the retirement age for most of the pensioners, due to the aging
population problem. The passage from PAYG systems to funded systems is therefore a common
characteristic of many developed countries and the choice of DC schemes in preference for DB
plans is mainly motivated by the transfer of financial risk from the sponsor to the member, and
the consequent elimination of insolvency risk in DC schemes. The drawback is evidently a major
risk for the pensioner, whose income is no more guaranteed and depends on two main factors:
investment performance in the accumulation phase and annuity prices at retirement age (see for
instance Knox (1993)). Great attention has been posed in recent academic literature to the man-
agement and control of financial risk in the accumulation phase of DC plans. In particular, the
problem of optimal investment allocation according to some criterion has been treated by many
authors, see, for instance, Boulier, Huang and Taillard (2001), Haberman and Vigna (2002),
Deelstra, Grasselli and Koehl (2003), Battocchio and Menoncin (2004) and Cairns, Blake and
Dowd (2006). With a different and more empirical approach, other authors have been looking
for suitable, ”ad-hoc” investment strategies for defined contribution pension schemes, supporting
their proposals by means of simulations, see, among others, Knox (1993), Ludvik (1994), Booth
and Yakoubov (2000), Blake, Cairns and Dowd (2001) and Arts and Vigna (2003).

In none of the above mentioned papers the optimal (or suitable) investment allocation has been
found by solving a mean-variance optimization problem, nor has the efficient frontier of portfo-
lios been found. The main reason lies perhaps in the difficulty inherent in the extension from
single-period to multi-period or continuous-time framework. Namely, in solving a stochastic op-
timal control problem one typically uses the ”smoothing” property of the expectation operator,
property that is not satisfied by the variance operator. Hence, a multi-period or continuous-time
optimization problem with an objective function that contains the variance is not immediate to
solve. Recently, Li and Ng (2000) in a discrete-time multi-period framework and Zhou and Li
(2000) in a continuous-time model show how to transform the difficult problem into a tractable
one: they embed the original problem into a stochastic linear-quadratic control problem, that
can then be solved through standard methods. These seminal papers have been followed by a
number of extensions, for instance Bielecky, Jin, Pliska and Zhou (2005), who solve a mean-
variance portfolio problem in the continuous-time with a constraint against ruin. In the context
of actuarial literature other extensions are Chiu and Li (2006), Wang, Xia and Zhang (2007)
and Delong and Gerrard (2007). In the context of pension schemes and independently from
the current paper, Delong, Gerrard and Haberman (2007) solve a mean-variance optimization
problem in the accumulation phase of a defined benefit pension plan. Up to our knowledge, a
mean-variance portfolio selection problem in the accumulation phase of a defined contribution
pension scheme has not yet been considered and this paper attempts to fill up this gap in the
literature.

Following the work by Zhou and Li (2000), we define and solve a mean-variance portfolio se-
lection problem in a defined contribution pension scheme and find the optimal policy and the
efficient frontier of feasible portfolios in closed form. This is done first in a standard Black &
Scholes financial market with a risky asset and a riskless one, then in a financial market with
n risky assets and a riskless one and it is shown that, due to the mutual fund theorem, the
solutions are formally identical. We then compare the efficient investment allocation found with
some investment strategies adopted in DC plans. The most important result is that the optimal
investment strategy found via the so-called “target-based approach” (using a quadratic utility
function in the stochastic control problem) is a point of the efficient frontier and, vice versa, each
point on the efficient frontier can be found by solving a target-based optimization problem. On
the contrary, the widespread lifestyle strategy is not efficient in the mean-variance setting, for it
provides a too high standard deviation of the final wealth.
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The remainder of the paper is as follows. In sections 2 and 3 we define and solve the mean-
variance optimization problem in a financial market with a riskless and a risky asset. In section
4 we generalize the model considering a market in which n risky assets and a riskless one op-
erate. In section 5 we compare the strategy found via the mean-variance approach with other
alternative investment strategies for DC pension schemes. Section 6 concludes.

2 The problem

We consider a financial market that consists of two assets, a riskless one, with constant force
of interest r, and a risky one, whose price follows a geometric Brownian motion with drift λ
and diffusion σ. The constant contribution rate payed in the unit time in the fund is c. The
proportion of portfolio invested in the risky asset at time t is denoted by y(t). The fund at time
t, X(t), grows according to the following SDE:

dX(t) = {X(t)[y(t)(λ− r) + r] + c}dt + X(t)y(t)σdW (t)
X(0) = x0 ≥ 0 (1)

where W (t) is a standard Brownian motion defined on a complete filtered probability space
(Ω,F , {Ft},P), with Ft = σ{W (s) : s ≤ t}.

The amount x0 is the initial fund paid in the member’s account, which can also be null, if
the member has just joined the scheme with no transfer value from another fund. The retiree
enters the plan at time 0 and contributes for T years, after which he retires and withdraws all
the money (or converts it into annuity). The temporal horizon T is supposed to be fixed, e.g.
T can be 20, 30 or even more, dependently on the member’s age at entry. The two conflicting
objectives of maximum expected final wealth together with minimum variance of final wealth
are pursued by the investor, who thus seeks to minimize the vector

[−E(X(T )), V ar(X(T ))]

Definition 1 An investment strategy y(·) is said to be admissible if y(·) ∈ L2
F (0, T ;R).

Definition 2 The mean-variance optimization problem is defined as

Minimize (J1(y(·)), J2(y(·))) ≡ (−E(X(T )), V ar(X(T )))

subject to
{

y(·) admissible
X(·), y(·) satisfy (1)

(2)

An admissible strategy y(·) is called an efficient strategy if there exists no admissible strategy
y(·) such that

J1(y(·)) ≤ J1(y(·)) J2(y(·)) ≤ J2(y(·)) (3)

and at least one of the inequalities holds strictly. In this case, the point (J1(y(·)), J2(y(·))) ∈ R2

is called an efficient point and the set of all efficient points is called the efficient frontier.

Problem (2) is a multiobjective optimization problem (MOP). The traditional approach to solving
a MOP problem

min
x∈X

(f1(x), f2(x)...fn(x)) (4)

consists in its reformulation as a single objective optimization problem of the type (see for
instance Ehrgott (2005)):

min
x∈X

n∑

k=1

αkfk(x) (5)
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with non-negative weights: αi ∈ R+ := {y ∈ R : y ≥ 0}. Instead of solving problem (2) we will
therefore address the problem

min
y(·)

[−α1E(X(T )) + α2V ar(X(T ))]

or equivalently
min
y(·)

[−E(X(T )) + αV ar(X(T ))] (6)

where α > 0. It is not so straightforward to tackle problem (6) with standard stochastic control
techniques. In fact, when applying stochastic control theory one typically uses the ”smoothing”
property of the expectation operator

E[E(·|Fs)|Ft] = E(·|Ft)

where s > t. However, when the objective criterion contains the variance one encounters the
problem that the variance operator does not satisfies the smoothness property, in that

V ar[V ar(·|Fs)|Ft] 6= V ar(·|Ft)

Zhou and Li (2000) and Li and Ng (2000) show that it is possible to transform the difficult
problem (6) into a tractable one. They show that (6) is equivalent to the problem

min
y(·)

E[αX(T )2 − βX(T )] (7)

which is a linear-quadratic (LQ) control problem. In particular, they show that if y(·) is a
solution of (6), then it is a solution of (7) with

β = 1 + 2αE(X(T )) (8)

Then, we now want to solve

Minimize (J(y(·)), α, β) ≡ E[αX(T )2 − βX(T )]

subject to
{

y(·) admissible
X(·), y(·) satisfy (1)

(9)

3 Solution of the problem

In solving problem (9) we partially follow the approach presented in Zhou and Li (2000) (see
also Yong and Zhou (1999)). Let us set

γ =
β

2α
and Z(t) = X(t)− γ

It turns out that our problem is equivalent to solve

min
y(·)

E
[
1
2
αZ(T )2

]
= min

y(·)
J(y(·); α) (10)

where the process Z(t) follows the SDE

dZ(t) = {(Z(t) + γ)[y(t)(λ− r) + r] + c}dt + (Z(t) + γ)σy(t)dW (t)
Z(0) = x0 − γ

(11)

This is a standard stochastic optimal control problem and we follow the dynamic programming
approach to solve it. To this end, let us define the value function

V (t, z) = inf
y(·)

Et,z

[
1
2
αZ(T )2

]
= inf

y(·)
J(y(·); α). (12)
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Then V satisfies the Hamilton-Jacobi-Bellmann (HJB) equation

infy∈R

{
∂V
∂t + [(z + γ)(y(λ− r) + r) + c] ∂V

∂z + 1
2 (z + γ)2σ2y2 ∂2V

∂z2

}
= 0

V (T, z) = 1
2αz2

(13)

Assuming V to be a convex function of z, then first order conditions lead to the optimal fraction
of portfolio to be invested in the risky asset at time t, y(t, z):

y(t, z) = − (λ− r)
σ2

1
(z + γ)

Vz

Vzz
(14)

with obvious notation for the partial derivatives. By replacing the optimal control (14) in the
HJB equation (13), and setting

δ =
(λ− r)

σ

we get the following non-linear PDE for the value function

Vt + [(z + γ)r + c]Vz − 1
2
δ2 V 2

z

Vzz
= 0 (15)

As in previous work, we try a solution of the form

V (t, z) = A(t)z2 + B(t)z + C(t) (16)

Replacing the partial derivatives of V in (15), we get the following system of ODE’s:




A′(t) = (δ2 − 2r)A(t),
B′(t) = (δ2 − r)B(t)− 2(γr + c)A(t)
C ′(t) = δ2B(t)2

4A(t) − (γr + c)B(t)
(17)

with boundary conditions

A(T ) =
1
2
α B(T ) = 0 C(T ) = 0 (18)

Solving system (17-18) yields:




A(t) = 1
2αe−(δ2−2r)(T−t)

B(t) = α(γr+c)
r e−(δ2−2r)(T−t)[1− e−r(T−t)]

C(t) =
∫ t

T
[ δ2B(s)2

4A(s) − (γr + c)B(s)]ds

(19)

We notice that the assumption of convexity of V turns out to be true, as

Vzz = 2A(t) > 0

since α > 0. Replacing partial derivatives of V in (14) and replacing (z + γ) with x yields

y(t, x) = −λ− r

σ2x

[
x− γe−r(T−t) +

c

r
(1− e−r(T−t))

]
(20)

The evolution of the fund under optimal control X(t) can be easily obtained:

dX(t) =
[
(r − δ2)X(t) + e−r(T−t)(δ2γ + δ2c

r ) + (c− δ2c
r )

]
dt+

+
[−δX(t) + e−r(T−t)(δγ + δc

r )− δc
r

]
dW (t)

(21)

By application of Ito’s lemma to (21), we obtain the SDE that governs the evolution of X
2
(t):

dX
2
(t) = [(2r − δ2)X

2
(t) + 2cX(t) + δ2((γ + c

r )e−r(T−t) − c
r )2]dt+

−2δ{X2
(t)− [(γ + c

r )e−r(T−t) − c
r ]X(t) + c

r}dW (t)
(22)

5



If we take expectations on both sides of (21) and (22), we find that the expected value of the
optimal fund and the expected value of its square follow the linear ODE’s:

dE(X(t)) = [(r − δ2)E(X(t)) + e−r(T−t)δ2(γ + c
r ) + (c− δ2c

r ]dt
E(X(0)) = x0

(23)

dE(X
2
(t)) = [(2r − δ2)E(X

2
(t)) + 2cE(X(t)) + δ2

(
(γ + c

r )e−r(T−t) − c
r

)2
]dt

E(X
2
(0)) = x2

0

(24)

By solving the ODE’s we find that the expected value of the fund under optimal control at time
t is

E(X(t)) =
(
x0 +

c

r

)
e−(δ2−r)t +

(
γ +

c

r

)
e−r(T−t) −

(
γ +

c

r

)
e−r(T−t)−δ2t − c

r
(25)

and the expected value of the square of the fund under optimal control at time t is:

E(X
2
(t)) =

(
x0 + c

r

)2
e−(δ2−2r)t − (

γ + c
r

)2
e−2r(T−t)−δ2t − 2c

r

(
γ + c

r

)
e−r(T−t)

+ 2c
r

(
γ + c

r

)
e−r(T−t)−δ2t − 2c

r

(
x0 + c

r

)
e−(δ2−r)t +

(
γ + c

r

)2
e−2r(T−t) + c2

r2

(26)

At terminal time T we have:

E(X(T )) =
(
x0 +

c

r

)
e−(δ2−r)T + γ

(
1− e−δ2T

)
− c

r
e−δ2T (27)

and

E(X
2
(T )) =

(
x0 +

c

r

)2

e−(δ2−2r)T + γ2
(
1− e−δ2T

)
− 2c

r

(
x0 +

c

r

)
e−(δ2−r)T +

c2

r2
e−δ2T (28)

Observe, from (8), (27) and the definition of γ, that γ is a decreasing function of α:

γ =
eδ2T

2α
+ x0e

rT +
c

r
(erT − 1) (29)

The expected optimal final fund can be rewritten in terms of α:

E(X(T )) = x0e
rT + c

erT − 1
r

+
eδ2T − 1

2α
(30)

It is easy to see that the expected optimal final fund is the sum of the fund that one would
get investing the whole portfolio always in the riskless asset plus a term, eδ2T−1

2α that depends
both on the goodness of the risky asset w.r.t. the riskless one and on the weight given to the
minimization of the variance. Thus, the higher the Sharpe ratio of the risky asset, δ, the higher
the expected optimal final wealth, everything else being equal; the higher the importance given
to the minimization of the variance of the final wealth, α, the lower its mean. These are intuitive
results. One can also write the optimal proportion to be invested in the risky asset in terms of
α:

y(t, x) = −λ− r

σ2x

[
x−

(
x0e

rt +
c

r
(ert − 1)

)
− e−r(T−t)+δ2T

2α

]
(31)

The amount xy(t, x) invested in the risky asset at time t is proportional to the difference between
the fund x at time t and the fund available investing always only in the riskless asset, minus a
term that depends on δ2, α and the time to retirement. Again, the higher the weight given to the
minimization of the variance, the lower the amount invested in the risky asset, and vice versa,
which is an obvious result. It is clear that a necessary and sufficient condition for the fund to be
invested at any time t in the riskless asset is α = +∞: the (extreme) strategy of investing the
whole portfolio in the riskless asset is optimal if and only if the weight given to the minimization
of the variance is infinite, or, in other words, if and only if one allocates zero importance to the
maximization of the expected final wealth.
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Using (30) and (31) one can express the optimal investment strategy in terms of the expected
final wealth in the following way:

y(t, x) = −λ− r

σ2x

[
x−

(
E[X(T )]e−r(T−t) − c

r
(1− e−r(T−t))

)
− e−r(T−t)

2α

]
(32)

Now the amount xy(t, x) invested in the risky asset at time t is proportional to the difference be-
tween the fund x at time t and the amount that would be sufficient to guarantee the achievement
of the target by adoption of the riskless strategy until retirement, minus a term that depends on
α and the time to retirement.

In realistic situations, when the minimization of the variance plays a role in the investor’s deci-
sions, expressions (27) and (28) allow one to choose his own profile risk/reward. In fact, as in
classical mean-variance analysis, it is possible to express the variance - or the standard deviation
- of the final fund in terms of its mean. Once one has chosen a certain couple mean-variance it
is then straightforward to find the value of α via (30) and the optimal quote of portfolio to be
invested in the risky asset at any time t via (31). The subjective choice of the profile risk/reward
becomes easier if one is given the efficient frontier of feasible portfolios.

3.1 The efficient frontier

To find the efficient frontier of portfolios let us introduce the following notation:

y0 ≡ x0 + c θ ≡ 1− e−δ2T

ρ ≡ e−(δ2−r)T φ ≡ e−(δ2−2r)T
(33)

From (27) and (28), we have:

E(X(T )) = y0ρ− c

r
(1− θ) + γθ (34)

and

E(X
2
(T )) = y2

0φ− 2
c

r
y0ρ +

c2

r2
(1− θ) + γ2θ (35)

Therefore

V ar(X(T )) = E(X
2
(T ))− E(X(T ))2 = y2

0φ− 2 c
r y0ρ + c2

r2 (1− θ) + γ2θ−
−y2

0ρ2 − c2

r2 (1− θ)2 − γ2θ2 + 2y0ρ
c
r (1− θ)− 2y0ργθ + 2 c

r (1− θ)γθ
(36)

After a few passages and noticing that

φ− ρ2 = φθ

we have
V ar(X(T )) = y2

0θφ + θ(1− θ)
(
γ +

c

r

)2

− 2y0ρθ
(
γ +

c

r

)

From (34), we have
θ
(
γ +

c

r

)
= E(X(T ))− y0ρ +

c

r

Therefore

V ar(X(T )) = y2
0θφ + θ(1− θ) (E(X(T ))−y0ρ+ c

r )2

θ2 − 2y0ρ
(
E(X(T ))− y0ρ + c

r

)

= 1−θ
θ

[
y2
0φθ2

1−θ +
(
E(X(T ))− y0ρ + c

r

)2 − 2y0ρθ
1−θ

(
E(X(T ))− y0ρ + c

r

)]

= 1−θ
θ

[
φθ2+ρ2+ρ2θ

1−θ y2
0 + 2E(X(T )) c

r + c2

r2 + E(X(T ))2 − 2y0
ρ

1−θ

(
E(X(T )) + c

r

)]

(37)
Now notice that

φθ2 + ρ2 + ρ2θ

1− θ
= e2rT and

ρ

1− θ
= erT
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So that

V ar(X(T )) = 1−θ
θ

[
y2
0e2rT +

(
E(X(T )) + c

r

)2 − 2y0e
rT

(
E(X(T )) + c

r

)]

= 1−θ
θ

[(
E(X(T )) + c

r

)− y0e
rT

]2

= e−δ2T

1−e−δ2T

[
E(X(T ))−

(
x0e

rT + c erT−1
r

)]2
(38)

where in the last equality we have used (33). It is possible to express the variance of the final
fund in terms of α and δ. In fact, applying (30) in the expression above we have:

V ar(X(T )) =
e−δ2T

1− e−δ2T

(
eδ2T − 1

2α

)2

=
eδ2T − 1

4α2
(39)

The variance is increasing if the Sharpe ratio increases, which is an expected result: in this case
the investment in the risky asset is heavier, leading to higher variance. Obviously, the higher
the importance α given to minimize the variance, the lower the variance of the final fund, which
is null if and only if α = +∞: in this case, the portfolio is entirely invested in the riskfree asset
and

X(T ) = E(X(T )) = x0e
rT + c

erT − 1
r

From (38), we get the expected final fund as a function of the standard deviation:

E(X(T )) = x0e
rT + c

erT − 1
r

+

√
1− e−δ2T

e−δ2T
σ(X(T )) (40)

The efficient frontier in the mean-standard deviation diagram is a straight line with slope
√

1− e−δ2T

e−δ2T
=

√
eδ2T − 1

which is called ”price of risk” (see Luenberger (1998)): it indicates by how much the mean of
the final fund increases if the volatility of the final fund increases by one unit.

4 The n + 1 asset case

The model presented in the previous sections can be generalized to consider a market in which
n risky assets and one riskfree are available. Let us assume, as before, that the riskfree asset has
force of interest equal to r. The price of the ith asset follows the SDE

dSi(t) = λiSi(t)dt + Si(t)
n∑

j=1

σijdWj(t) (41)

where the drift λi is a constant, W(t) ≡ (W1(t),W2(t), ..., Wn(t))T is a standard {Ft}t≥0−adapted
n-dimensional Brownian motion defined on the complete filtered probability space (Ω,F , {Ft}t≥0,P),
Wi(t) and Wj(t) are mutually independent for i 6= j and the volatility matrix Σ = {σij}n

i,j=1 is
nonsingular and supposed to be constant over time.

The fund X(t) is invested in the n+1 assets, denote with yi(t) the quote of portfolio invested in
the ith risky asset at time t. The remaining part 1−∑n

i=1 yi(t) is invested in the riskless asset.
The fund grows according to the SDE:

dX(t) = {X(t)[By(t) + r] + c}dt + X(t)
∑n

j=1 σjy(t)dWj(t)
X(0) = x0 ≥ 0

(42)

where
B = (λ1 − r, λ2 − r, ..., λn − r)

8



collects the extra expected returns of the risky assets w.r.t. the riskless one,

σj = (σ1j , σ2j , ..., σnj)

is the jth row of the matrix ΣT (the transpose of the volatility matrix) and

y(t) = (y1(t), y2(t), ..., yn(t))T

reports the portfolio composition at time t.

Definition 3 An investment strategy y(·) is said to be admissible if y(·) ∈ L2
F (0, T ;Rn).

The problem we want to solve is

Minimize (J(y(·)), α, β) ≡ E[αX(T )2 − βX(T )]

subject to
{

y(·) admissible
X(·),y(·) satisfy (42)

(43)

Problem (43) is a stochastic linear quadratic (SLQ) problem, which can be solved in different
ways. One way is to use the so-called ”mutual fund theorem” (see Karatzas, Lehoczky, Sethi and
Shreve (1986)), whereby the n + 1 asset problem is transformed in a 2 asset problem. Another
possible way is to consider the general theory of SLQ problems, which is thoroughly treated in
Yong and Zhou (1999). We follow here the first method and report in the appendix how to find
the solution with the second method.

The idea is to construct a ”corresponding” 2-asset case and then use, in a simple way, its
solution (which is easily found via section 3) to formulate the solution of the n + 1 asset case.
In order to do this, let us introduce some quantities:

∆2 : = B(ΣΣT )−1BT

λ : = r + ∆2

σ2 : = ∆2
(44)

It can be proved that with this choice of λ and σ2, problem (43) is equivalent to problem (9)
with wealth equation (1) where the Brownian motion W (t) is replaced by the following linear
combination of the Brownian motions Wj(t):

Ŵ (t) =
σ

λ− r
B(ΣΣT )−1ΣW(t) (45)

Then, it can be shown that the optimal investment strategy at time t, y(t, x) is given by:

y(t, x) = y(t, x)
σ2

λ− r
(ΣΣT )−1BT (46)

where y(t, x) is given by (20). It turns out that the optimal investment strategy is:

y(t, x) = − 1
x

[
x− γe−r(T−t) +

c

r
(1− e−r(T−t))

]
(ΣΣT )−1BT (47)

Therefore the optimal fund evolves according to




dX(t) =
[
(r −∆2)X(t) + e−r(T−t)∆2(γ + c

r ) + c−∆2 c
r

]
dt+

+
[
γe−r(T−t) −X(t)− c

r (1− e−r(T−t))
]
B(ΣΣT )−1ΣdW(t)

X(0) = x0

(48)

We now apply the multidimensional Ito’s lemma to (48) to find the evolution of X
2
(t):

dX
2
(t) = {2X(t)

[
(r −∆2)X(t) + e−r(T−t)∆2(γ + c

r ) + c−∆2 c
r

]
+

+
[
γe−r(T−t) −X(t)− c

r (1− e−r(T−t))
]2

Tr
[
(B(ΣΣT )−1Σ)(B(ΣΣT )−1Σ)T

]}dt
+{...}dW(t)

(49)
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where Tr(H) denotes the trace of the square H. Thus, after some passages we see that X
2
(t)

evolves according to the SDE:
{

dX
2
(t) = [(2r −∆2)X

2
(t) + 2cX(t) + ∆2

(
(γ + c

r )e−r(T−t) − c
r

)2
]dt + {...}dW(t)

X
2
(0) = x2

0

(50)

It is easy to see that the drifts of the stochastic differential equations governing the evolution of
the optimal fund and its square (48-50) are essentially the same of those of the 2 asset case (21-
22), with δ2 = ∆2. Due to the mutual fund theorem, this result is expected: namely ∆2 is the
corresponding of δ2 in the transformed 2-asset case (see (44)). Thus, the differential equations
for E(X(t)) and E(X

2
(t)) are the same, and proceeding in the same way as before we find that

the efficient frontier for the n + 1 asset case in the mean-variance diagram is the curve

V ar(X(T )) =
e−∆2T

1− e−∆2T

[
E(X(T ))−

(
x0e

rT + c
erT − 1

r

)]2

(51)

and in the mean-standard deviation diagram is the line

E(X(T )) = x0e
rT + c

erT − 1
r

+

√
1− e−∆2T

e−∆2T
σ(X(T )) (52)

where now the price of risk is √
1− e−∆2T

e−∆2T
=

√
e∆2T − 1

We notice that these results generalize in a very natural way those found by Zhou and Li (2000),
and coincide with them if the contribution paid in the fund is null.

5 Comparison with other strategies

It may be of interest for both academic and professional purposes to compare the mean-variance
optimal portfolio here proposed with other investment strategies typically adopted in defined
contribution pension schemes. We compare our optimal portfolio with two alternatives: the
widespread lifestyle strategy and the optimal investment strategy found via the mean-square
error approach, or target-based approach. The lifestyle strategy (see for instance Booth and
Yakoubov (2000) or Cairns et al. (2006)) consists in investing the whole portfolio in equities at
the beginning of the membership and switch it gradually into bonds and cash in the last years
before retirement. The mean-square error approach is a target-based approach (see, for instance,
Haberman and Vigna (2002) or Gerrard, Haberman and Vigna (2004) in the accumulation and
in the decumulation phase of a DC scheme, respectively): the general form of this approach
consists in setting pre-determined periodic targets - in the discrete time - or a target function
- in the continuous time - for the size of the fund and finding the optimal investment strategy
that minimizes the sum of the squares of the deviations of the fund from the target. In order to
facilitate comparisons we base our work on a 2-asset world.

5.1 Comparison with the target-based approach

In Gerrard et al. (2004) the following problem is considered: for a given target function F (t)
choose the optimal investment strategy that minimizes

E

[∫ T

0

e−%tε1(X(t)− F (t))2dt + ε2e
−%T (X(T )− F (T ))2

]

Since the mean-variance approach is only concerned of the values at time T , we choose here
for the comparisons ε1 = 0 and ε2 = 1. Furthermore, let us notice that for the problem to be
interesting the final target F (T ) should be chosen big enough, i.e. such that

F (T ) > x0e
rT +

c

r
(erT − 1) (53)
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We observe that when ε1 = 0 the discount rate % does not influence the optimal strategy, and
therefore we choose % = r for simplicity. We can see from Gerrard et al. (2004) that the optimal
investment strategy for the target-based (T-B) approach is given on the following form1

ytb(t, x) = −λ− r

σ2x
(x−G(t)) (54)

where

G(t) =
−B(t)
2A(t)

.

The functions A(t), B(t) solve the following ODE’s
{

A′(t) = (δ2 − r)A(t)
B′(t) = δ2B(t)− 2cA(t)

with boundary conditions
A(T ) = 1, B(T ) = −2F (T )

These have solution
{

A(t) = e−(δ2−r)(T−t)

B(t) = −2(F (T ) + c
r )e−δ2(T−t) + 2c

r e−(δ2−r)(T−t)
(55)

so that
G(t) = F (T )e−r(T−t) − c

r
(1− e−r(T−t)) (56)

and
ytb(t, x) = −λ− r

σ2x

[
x−

(
F (T )e−r(T−t) − c

r
(1− e−r(T−t))

)]
(57)

Let us notice that the function G(t) represents a sort of target level for the fund at time t: should
the fund X(t) reach G(t) at some point of time t < T , then the final target F (T ) could be easily
achieved by adoption of the riskless strategy until retirement. However, as will be shown in the
next paragraph, the achievement of G(t) and therefore the sure achievement of the target, is
prevented under optimal control by the construction of the solution.

5.1.1 Aiming for the target

For consistent comparisons, in the mean-variance (M-V) approach we choose α such that E(X(T )) =
F (T ) and we call α this particular choice of α. Comparing (32) with (57) we see that the optimal
investment allocations in the risky asset at time t are very similar. However, the y(t, x) in the
mean-variance approach is riskier than ytb(t, x) due to the additional term

e−r(T−t)

2α
(58)

which clearly will add a higher variance to the final wealth in the M-V approach than in the T-B
approach, with equality only if α = +∞. It is, however, important to notice here that α is no
longer a free parameter. This higher variance should apparently violate the concept of the M-V
approach, but one should notice that the expected final wealth in the M-V approach is forced
to be equal to the target value F (T ) which is not the case for the T-B approach. To calculate
the expected value of the final fund in the T-B approach we let X∗(t) denote the optimal wealth
function for this case. Then in Gerrard et al. (2004) it can be seen that X∗(t) satisfies the
following SDE:

dX∗(t) = [rG(t) + c + (δ2 − r)(G(t)−X∗(t))]dt + δ(G(t)−X∗(t))dW (t). (59)

1Notice that Gerrard et al. (2004) consider the decumulation phase of a DC scheme. The difference in the wealth
equation is that in that case there are periodic withdrawals from the fund whereas here we have periodic inflows into
the fund. Formally the equations are identical if one sets −b0 = c.
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As in previous work, let us define the process

U(t) = G(t)−X∗(t)

Then
dU(t) = G′(t)dt− dX∗(t) = (r − δ2)U(t)dt− δU(t)dW (t) (60)

where in the last equality we have applied (56) and (59). We can see that the process U(t)
follows a geometric Brownian motion and is given by:

U(t) = U(0)e(r− 3
2 δ2)t−δW (t) (61)

Noting that
G(T ) = F (T )

one has
U(T ) = F (T )−X∗(T )

Thus
E(X∗(T )) = F (T )− E(U(T )) = F (T )− (x0 −G(0))e−(δ2−r)T

= e−δ2T [x0e
rT + c

r (erT − 1)] + (1− e−δ2T )F (T )
(62)

The expected final fund turns out to be a weighted average of the target and of the fund that
one would have by investing fully in the riskless asset. Furthermore, the difference

E(X∗(T ))− E(X(T )) = −e−δ2T (F (T )− x0e
rT − c

r
(erT − 1)) =

e−δ2T − 1
2α

< 0 (63)

where the last equality follows by rearranging terms in (30). This means that the T-B strategy
is a ’biased’ strategy in the sense that the expected final wealth is not equal to the target, but
the variance of the final wealth is smaller than in the unbiased M-V approach.

Furthermore, it is straightforward to see that in the T-B approach the final target cannot be
reached. In fact, from (61), one can see that U(T ) > 0 if U(0) > 0. Let us notice that

U(0) = G(0)− x0 = F (T )e−rT − c

r
(1− e−rT )− x0

Notice that U(0) > 0 is the condition (53) that makes the problem interesting. Therefore, the
final fund is always lower than the target. This result is not new. A similar result was already
found by Gerrard et al. (2004) and by Gerrard, Haberman and Vigna (2006) in the decumulation
phase of a DC scheme: with a different formulation of the optimization problem and including
a running cost, in both works they find that there is a ”natural” time-varying target that acts
as a sort of safety level for the needs of the pensioner and that cannot be reached under optimal
control. Previously, in a different context, a similar result was found by Browne (1997): in a
problem where the aim is to maximize the probability of hitting a certain upper boundary before
ruin, when optimal control is applied the safety level (the minimum level of fund that guarantees
fixed consumption by investing the whole portfolio in the riskless asset) can never be reached.
From (54) we can see that another direct consequence of the positivity of U(t) is the fact that the
amount invested in the risky asset under optimal control is always positive and this is obviously
the case also for the M-V approach.

5.1.2 Aiming for the same expected final wealth

The obvious question that arises is what happens if one chooses the mean of the final fund in
the M-V approach equal to the expected final fund in the T-B approach, namely if one chooses
E(X(T )) = E(X∗(T )). The - perhaps unsurprising - answer is that in this case the two optimal
investment strategies coincide. In fact, from (62) we have

eδ2T E(X∗(T )) = x0e
rT +

c

r
(erT − 1) + F (T )(eδ2T − 1)
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Then, applying (30) with E(X(T )) = E(X∗(T )) yields

eδ2T E(X∗(T )) = E(X∗(T ))− eδ2T − 1
2α∗

+ F (T )(eδ2T − 1)

where α∗ is the choice of α that makes E(X(T )) = E(X∗(T )) in the M-V approach. Collecting
terms we have

E(X∗(T )) = F (T )− 1
2α∗

(64)

From (29) and (30) we notice that in this case, interestingly,

γ = F (T ) (65)

Inserting (64) into (32) yields

y(t, x) = −λ− r

σ2x

{
x−

[(
F (T )− 1

2α∗

)
e−r(T−t) − c

r
(1− e−r(T−t)) +

e−r(T−t)

2α∗

]}

= −λ− r

σ2x

{
x−

[
F (T )e−r(T−t) − c

r
(1− e−r(T−t))

]}
(66)

= −λ− r

σ2x
(x−G(t)) = ytb(t, x)

This result shows that the target-based approach is a particular case of the mean-variance ap-
proach by choosing a specific value of α, namely α∗. In particular, applying (64), we have

α∗ =
1

2(F (T )− E(X∗(T )))
(67)

This enables us to compare the two approaches in a more detailed way, as they belong to the
same family. Using (63) and (64), we find that the relationship between α∗ and α is

α∗ =
α

1− e−δ2T
(68)

from which we can see that α∗ > α. This gives us the opportunity also to compare the variance
of the final fund in the T-B approach, V ar(X∗(T )), with the variance in the M-V approach (with
expected wealth equal to the target), V ar(X(T )). In fact we have:

V ar(X∗(T )) =
eδ2T − 1

4α∗2
=

(eδT − 1)(1− e−δ2T )2

4α2 = (1− e−δ2T )2V ar(X(T )) (69)

where we have applied (39) and (68). From (69) it is easy to see that the variance of the final
fund in the T-B approach is smaller than that of the M-V approach (when the expected wealth
equals the target), which is a result already mentioned earlier and here quantified. Furthermore,
the fact that

E(X∗(T )) < E(X(T )) and V ar(X∗(T )) < V ar(X(T ))

is obvious, since the two points

MVX∗ :≡ (σ(X∗(T )), E(X∗(T ))) and MVX :≡ (σ(X(T )), E(X(T )))

belong to the same efficient frontier of portfolios.

We have just proved that the target-based approach is a particular case of the mean-variance
approach. It is straightforward to see that also the reverse statement is valid: each point of the
efficient frontier can be found by solving a target-based optimization problem. In fact, noticing
(39), the efficient frontier of portfolios (40) can be written in the following form

E(X(T )) = x0e
rT +

c

r
(erT − 1) +

eδ2T (1− e−δ2T )
2α
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Thus, as expected, there is a one-to-one correspondence between points on the efficient frontier
and values of the parameter α. This allows us to say that chosen a point (E(X(T )), σ(X(T )))
on the efficient frontier, we can find the corresponding α which in turn defines the target

F (T ) = E(X(T )) +
1
2α

It is then obvious that the point (E(X(T )), σ(X(T ))) chosen on the efficient frontier can be
found by solving the target-based optimization problem with target equal to F (T ). Thus, each
point on the efficient frontier corresponds to a target-based optimization problem.

The fact that the target-based approach is a particular case of the mean-variance approach
should put an end to the criticism of the quadratic utility function, that penalizes deviations
above the target as well as deviations below it. The intuitive motivation for supporting such a
utility function: ”The choice of trying to achieve a target and no more than this has the effect
of a natural limitation on the overall level of risk for the portfolio: once the target is reached,
there is no reason for further exposure to risk and therefore any surplus becomes undesirable”
finds here full justification in a rigorous setting.
We notice that a similar result was mentioned, without proof, by Bielecky et al. (2005). They
noticed, however, that the portfolio’s expected return would be unclear to determine a priori.
In contrast, here we provide the exact expected return and variance of the optimal portfolio via
optimization of the quadratic utility function. We are thus able to determine completely the
exact point on the efficient frontier of portfolios.

5.2 Simulation results

In this section we report results from the simulations that we have run in order to compare
the M-V optimal investment strategy with the T-B optimal investment strategy and with the
lifestyle strategy. Since the target-based approach is a mean-variance approach with a particular
choice of α, we expect results for the first two cases to be qualitatively equal. The main reason
why we perform the comparison between these two points of the same efficient frontier is to
show how a different formulation of the same problem can help explaining what could appear
as disappointing results. For the lifestyle strategy the assumption is that the fund is invested
fully in the risky asset until 10 years prior to retirement, and then is gradually switched into the
riskless asset by switching 10% of the portfolio from risky to riskless asset each year. For the
target-based approach, we choose a final target on the following form (see Haberman and Vigna
(2002)):

F (T ) = x0e
RT +

c

R
(eRT − 1)

where
R =

1
2
(λ + r) +

1
8
σ2

In other words, the final target F (T ) is the fund that would be available after T years if the
fund and the contributions were invested in a riskless asset with rate of return equal to R (target
return), which is chosen to be a certain average of the returns of the rikless and risky assets
available in the market. The values chosen for the parameters are r = 0.03, λ = 0.08, σ =
0.15, c = 0.1, x0 = 1, T = 20. Therefore, the Sharpe ratio is δ = 0.33, the target return is R =
0.0578, the target is F (T ) = 6.945, implying α = 1.726, V ar(X(T )) = 0.69, σ(X(T )) = 0.831,
α∗ = 1.936, E(X∗(T )) = 6.687, V ar(X∗(T )) = 0.548 and σ(X∗(T )) = 0.741. So, in our setting,
we have

MVX∗ = (0.741, 6.687) and MVX = (0.831, 6.945)

We have carried out 1000 Monte Carlo simulations with discretization done on a weekly basis and
in each scenario have found the optimal investment strategy and the corresponding final wealth.
For consistent comparisons, in each approach we have applied the same stream of pseudo random
numbers. Figure 1 reports the optimal investment strategies over time of the M-V and the T-B
approaches in one particular scenario. The x-axis represents the time in years since joining the
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scheme, the y-axis represents the value of the optimal investment allocation in the risky asset in
the two approaches.

Optimal investment strategies in one scenario
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Figure 1.

From Figure 1 we see that both strategies tend to apply a remarkable amount of borrowing
for small values of x and we therefore also introduce the suboptimal strategies ycut(t, x) and
ycut

tb (t, x) which are cut off at 0 or 1 if the optimal strategy goes beyond the interval [0, 1]. It
must be mentioned that suboptimal policies of the same type were applied by Gerrard et al.
(2006) in the decumulation phase of a DC scheme, and proved to be satisfactory: with respect to
the unrestricted case, the effect on the final results turned out to be negligible and the controls
resulted to be more stable over time. Clearly, imposing restriction on the controls would change
substantially the formulation of the problem and would make it very difficult to tackle mathe-
matically. Up to our knowledge, the only work where an optimization problem with constraints
has been thoroughly treated in the accumulation phase of a DC scheme is Di Giacinto and Gozzi
(2007) by means of viscosity solutions. In that case the optimal policy is written in feedback
form and can be given in explicit form only in a special case.

We investigate the behaviour of the cut-off strategies and compare the reached final wealth
with the wealth reached by the optimal strategies and the wealth obtained by the lifestyle strat-
egy. Figure 2 reports the mean and standard deviation of the cut-off strategies over the 1000
scenarios and the behaviour of the lifestyle strategy (whose mean obviously coincides with the
strategy itself and has null standard deviation). The x-axis, as before, represents the time in
years since joining the scheme, the y-axis represents the value of the investment allocation in the
risky asset in each strategy.
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Mean and standard deviation of y(t,x)
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Figure 2.

On average, the suboptimal investment strategy y(t, x) in the M-V and T-B approaches is de-
creasing over time, showing initial investment in the risky asset that is gradually and partially
switched into the riskless one when retirement approaches, like the lifestyle. This result was
found also by Haberman and Vigna (2002). However, unlike the lifestyle strategy, the average
portfolio is invested fully in the risky asset only for a few years after joining the scheme, and
is never invested fully in the riskless asset. From a deeper inspection of the percentiles of the
suboptimal investment strategies (not reported here) investing the whole portfolio in the riskless
asset never occurs (this is expected because for the corresponding optimal strategies this result
comes directly from the theoretical analysis, since α is finite), while in 50% of the cases the
strategy imposes to start disinvesting from the risky asset between 2 and 8 years after joining
the scheme. The tb-cut strategy lies always below the mv-cut strategy, and again this result is
expected due to the observations done in section 5.1.1.

Table 1 reports, for the five strategies considered, some percentiles of the distribution of the
final wealth, its mean and standard deviation, the probability of reaching the target and the
mean shortfall, defined as the mean of the deviation of the fund from the target, given that the
target is not reached.

mv-cut mv-not cut tb-cut tb-not cut lifestyle
5th perc. 3.678 5.909 3.822 5.763 3.803
25th perc. 6.333 6.901 6.251 6.648 5.13
50th perc. 6.946 7.11 6.716 6.834 6.607
75th perc. 7.137 7.191 6.869 6.906 8.72
95th perc. 7.213 7.224 6.927 6.935 13.574

mean 6.445 6.89 6.294 6.638 7.316
st.dev. 1.132 0.793 0.998 0.707 3.058

prob reaching target 0.502 0.715 0 0 0.448
mean shortfall 0.589 0.196 0.651 0.307 0.939

Table 1. Final fund: some statistics of the simulation results (target = 6.945).

We notice that the notcut-optimal strategies dominate in all possible ways the corresponding
cut-suboptimal strategies, providing higher mean, lower standard deviation, higher probability
of reaching the target (in the mv strategies) and lower mean shortfall. However, the price that
one has to pay is twofold. Firstly, a much higher variability of the investment allocation, that can
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take values significantly far away the interval [0, 1]. Secondly, the possibility of ruin: we observe
that in some cases with the not-cut strategies the fund goes below zero, causing a negative value
of the optimal investment allocation. This does not happen with the cut strategies that provide
always positive values for the fund and for the proportion invested in the risky asset.
Whereas in the M-V approach the target is reached in about 50% or 71% of the cases (depending
whether restrictions are applied or not), in the T-B approach the probability of reaching the tar-
get is 0 for both strategies with and without restrictions. This apparently disappointing result
is a consequence of the fact that in the target-based approach the target can never be reached
under optimal control, as shown in 5.1.1. We recall that in the T-B approach the expected
final fund is lower than the nominal target and a correct comparison should be done with the
probability of reaching the expected final fund: this probability turns out to be 53.1% for the
tb-cut strategy and 71.5% for the not-cut one, figures that are, expectedly, on the same level of
those for the M-V approach.
The comparison of the first four strategies with the lifestyle shows that the final fund for the
lifestyle strategy has the highest mean but also the highest standard deviation, which turns out
to be significantly high, as a result of the heavy and prolonged investment in the risky asset;
in addition, it has the highest mean shortfall from the target and a probability of reaching the
target of 45% that is lower than in the M-V approach.

Figure 3 shows the efficient frontier of portfolios in the mean-standard deviation plan and reports
the points (σ(X(T )), E(X(T ))) for each strategy considered so far.
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Figure 3.

It is evident that the lifestyle strategy, though it gives a higher mean than the other strategies,
proves to be very far from being efficient. In particular, for being efficient it should provide either
a standard deviation of about 0.96 (instead of 3.06) with same level of mean, or a mean of 13.34
(instead of 7.32) with the same level of standard deviation. As expected, the empirical values
found by applying the not-cut strategies (MV (X)notcut, MV (X∗)notcut) lie on the efficient
frontier and are not very far from their theoretical counterparts (MV (X), MV (X∗)). However,
the cut versions (MV (X)cut, MV (X∗)cut), though inefficient in strict sense, seem to be not too
far from the efficient frontier. This confirms results previously found (see Gerrard et al. (2006))
that suboptimal policies prove to be satisfactory in terms of final results achieved.
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5.2.1 Changing the Sharpe ratio

In Gerrard et al. (2004) it was shown that if the riskless rate of return r does not change, the evo-
lution of the fund under optimal control is invariant for assets with the same Sharpe ratio. Here
the same result applies and it is therefore interesting to compare assets with different Sharpe
ratio to see how this quantity affects the distribution of the final wealth. It is obvious that also
the slope of the efficient frontier in the mean-standard deviation plan changes accordingly. In
the following we report simulation results with a lower and with a higher Sharpe ratio w.r.t the
previous section, namely we choose σ = 20%, leading to δ = 0.25 and σ = 10%, leading to
δ = 0.5. Table 2 reports results for the case δ = 0.25, table 3 the case δ = 0.5. For consistent
comparisons, we have applied the same stream of pseudo random numbers of the previous sec-
tion.

mv-cut mv-not cut tb-cut tb-not cut lifestyle
5th perc. 2,545 4,224 2,843 4,32 3,045
25th perc. 5,637 6,805 5,691 6,162 4,396
50th perc. 7,149 7,551 6,548 6,694 6,091
75th perc. 7,763 7,925 6,899 6,961 8,731
95th perc. 8,083 8,132 7,091 7,109 15,878

mean 6,411 7,018 6,018 6,314 7,225
st.dev. 1,803 1,736 1,317 1,239 4,184

prob reaching target 0,487 0,652 0 0 0,373
mean shortfall 1,049 0,56 1,168 0,872 1,481

Table 2. Final fund distribution, Sharpe ratio = 0.25 (target = 7.187).

The probability of reaching the expected final fund when δ = 0.25 is 54.3% for the tb-cut strategy
and 65.2% for the not-cut one.

mv-cut mv-not cut tb-cut tb-not cut lifestyle
5th perc. 5,328 6,728 5,34 6,714 4,814
25th perc. 6,667 6,785 6,656 6,77 5,945
50th perc. 6,771 6,791 6,757 6,776 7,073
75th perc. 6,789 6,792 6,774 6,777 8,512
95th perc. 6,792 6,793 6,777 6,778 11,319

mean 6,566 6,775 6,555 6,76 7,409
st.dev. 0,556 0,091 0,55 0,091 2,009

prob reaching target 0,441 0,83 0 0 0,568
mean shortfall 0,216 0,012 0,222 0,017 0,465

Table 3. Final fund distribution, Sharpe ratio = 0.5 (target = 6.778).

The probability of reaching the expected final fund when δ = 0.5 is 44.5% for the tb-cut strategy
and 83% for the not-cut one.

Similar comments to those made for Table 1 apply here. As expected, all the results improve
when the risky asset has a higher Sharpe ratio and worsen when the Sharpe ratio is lower.
The graphs of the efficient frontier of portfolios (not reported here) show similar results to that
of Figure 3 of the previous paragraph, as do the graphs of mean and standard deviation of the
investment strategy y(t, x). The tendency observed is that increasing the Sharpe ratio the ineffi-
cient points tend to become more inefficient (in the sense of distance from the efficient frontier)
and vice versa. The intuition is that by increasing the goodness of the risky asset w.r.t. the
riskless one, the investment in the risky asset becomes heavier, leading to higher variance of the
final fund. We also notice that the mv- and the tb- investment strategies (both cut and notcut)
tend to be closer to each other with higher values of δ and be more distant from each other with
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lower values of δ. This can be explained by observing from (68) that the higher δ the closer the
values of α∗ and α and therefore the closer the two portfolios on the same efficient frontier.

6 Concluding comments

In this paper we have defined and solved a mean-variance portfolio selection problem in the
accumulation phase of a defined contribution pension scheme. The solution has been found by
transforming the mean-variance problem in a linear-quadratic control problem, which has been
solved through standard techniques of stochastic optimal control theory. The optimal investment
strategy and the efficient frontier of portfolios are given in closed form first in a financial market
with two assets and then in a financial market with n+1 assets: using previous results, we show
that the n + 1 assets case is formally identical to the two assets case.

We then compare the optimal strategy found via the mean-variance approach with two alterna-
tive investment strategies typically adopted in DC plans: the lifestyle strategy and the optimal
investment strategy found solving an optimization problem where the aim is to minimize the
square of the distance of the final fund from a final target (target-based approach). The compar-
ison has been done in a theoretical framework and by means of simulations. The main finding
is that, not only the target-based approach is a particular case of the mean-variance approach
and therefore the optimal portfolio associated to a target-based problem is efficient, but there
is a one-to-one correspondence between points of the efficient frontier and optimal portfolios
found via the target-based approach. Another interesting result is the fact that the lifestyle
strategy seems to be very far from being efficient, providing a standard deviation of the final
fund that is too high compared to its mean. The implementation of suboptimal strategies (found
by cutting the optimal investment allocation at 0 or 1 whenever the optimal value goes outside
the interval [0, 1]) gives satisfactory results, in that the suboptimal portfolios, though inefficient
in strict sense, do not seem to lie too far away from the efficient frontier. We prove that an
efficient portfolio is never invested completely in the riskless asset, unless the investor allocates
zero importance to the maximization of the final fund: furthermore, the amount invested in the
risky asset is always strictly positive.

The difficulty of the problem that arises when passing from single-period to multi-period or
to continuous-time in the mean-variance formulation, here solved using fairly recent results that
link portfolio selection problems with standard stochastic control models, had prevented the con-
struction of an efficient frontier in a long term investment setting like pension funds. We think
that the optimal strategies and the efficient frontier presented here can have a practical impact on
the investment decisions of investment managers of DC pension schemes. The criterium of mini-
mizing the square of the difference between final fund and desired target - apparently criticizable
because the deviations above the target are penalized - finds here solid justification, whereas
the more widespread lifestyle strategy seems to be less appropriate due to its inefficiency in the
mean-variance setting. The efficient frontier can also find a direct application on the member’s
decisions regarding his own risk/reward profile, for he can select his own couple desired mean-
maximum variance tolerated and therefore choose the corresponding optimal investment strategy.

This work can be extended in different directions. The efficient investment strategy has been
compared only with two possible investment strategies for DC pension schemes. This choice has
been done in order to limit the length of the paper. In further research, it would be of interest to
extend the comparison to other investment allocations proposed in the literature and to assess
their efficiency. Furthermore, the problem has been solved without restrictions on the optimal
investment allocation, due to the difficulty that arises when constraints are introduced in the
model. It would be of interest to solve the problem with constraints, and make the comparison
with the restricted suboptimal policy applied here. This is left to future research.
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Appendix

A Alternative derivation of the solution of the n + 1 asset
case

The general theory of SLQ problems is treated in great details in Yong and Zhou (1999): the
general solution is given according to three different approaches, namely the stochastic maximum
principle, the dynamic programming and a completion of square technique and the equivalence
among these methods is shown. The solution of the n + 1 asset problem here is found follow-
ing the dynamic programming approach, in line with the first part of the paper. We omit the
derivation of the relevant formulae and refer the interested reader to Yong and Zhou (1999) for
full understanding of all details.

Problem (43) is equivalent to solve

min
y(·)

E
[
1
2
αZ(T )2

]
= min

y(·)
J(y(·);α) (70)

with
γ =

β

2α
and Z(t) = X(t)− γ

where the process Z(t) follows the SDE

dZ(t) = {(Z(t) + γ)[By(t) + r] + c}dt + (Z(t) + γ)
∑n

j=1 σjy(t)dWj(t)
Z(0) = x0 − γ

(71)

The value function is defined as

V (t, z) = inf
y(·)

Et,z

[
1
2
αZ(T )2

]
= inf

y(·)
J(y(·), α) (72)

V satisfies the HJB equation

inf
y∈Rn

{Vt + Vz[(z + γ)r + (z + γ)By + c] +
1
2
Vzz(z + γ)2(

n∑

j=1

σjy)2} = 0 (73)

Then, it turns out that the value function V is quadratic in z and is given by

V (t, z) =
1
2
P (t)z2 + Q(t)z + R(t) (74)

where the functions P , Q and R satisfy the system of ODE’s:




P ′(t) = (∆2 − 2r)P (t)
Q′(t) = (∆2 − r)Q(t)− (γr + c)P (t)
R′(t) = ∆2Q2(t)

2P (t) − (γr + c)Q(t)
(75)

with boundary conditions

P (T ) = α Q(T ) = 0 R(T ) = 0 (76)

where ∆2 is given by (44). It is clear, as expected, that the two systems (17)-(18) and (75)-(76)
are essentially the same, with P (t) = 2A(t), Q(t) = B(t), R(t) = C(t) and δ2 = ∆2. Thus the
solution is identical:





P (t) = αe−(∆2−2r)(T−t)

Q(t) = α(γr+c)
r e−(∆2−2r)(T−t)[1− e−r(T−t)]

R(t) =
∫ t

T
[∆

2Q(s)2

2P (s) − (γr + c)Q(s)]ds

(77)
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The optimal investment strategy at time t is given by

y(t, z) = − 1
z + γ

[
z +

(
γ +

c

r

)
(1− e−r(T−t))

]
(ΣΣT )−1BT (78)

and replacing z + γ with x:

y(t, x) = − 1
x

[
x− γe−r(T−t) +

c

r
(1− e−r(T−t))

]
(ΣΣT )−1BT (79)

which, as expected, coincides with (47).
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