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ABSTRACT

Great advances in molecular genetics have deeply changed the way of doing research in aquaculture, as it 
has already done in other fields. The molecular revolution started in the 1980’s, thanks to the widespread 
use of restriction enzymes and Polymerase Chain Reaction technology, which makes it possible to easily 
detect the genetic variability directly at the DNA level.
In aquaculture, the molecular data are used for several purposes, which can be clustered into two main 
groups. The first one, focused on individuals, includes the sex identification and parentage assignment, 
while the second one, focused on populations, includes the wide area of the genetic characterization, 
aimed at solving taxonomic uncertainties, preserving genetic biodiversity and detecting genetic tags. For 
the future, the increase in the number of molecular markers and the construction of high density genetic 
maps, as well as the implementation of genomic resources (including genome sequencing), are expected 
to provide tools for the genetic improvement of aquaculture species through Marked Assisted Selection.
In this review the characteristics of different types of molecular markers, along with their applications to 
a variety of aquaculture issues are presented.

Key words: Aquaculture, Molecular markers, Practical applications.

RIASSUNTO

LA geNeTICA MOLeCOLARe IN ACqUACOLTURA

La genetica molecolare sta profondamente modificando il modo di fare ricerca nell’ambito dell’acquacol-
tura, così come è già avvenuto in altri settori. La rivoluzione molecolare è iniziata durante gli anni ’80, 
grazie all’utilizzo degli enzimi di restrizione e della Reazione a Catena della Polimerasi, che permettono 
di studiare, in modo rapido e relativamente poco costoso, la variabilità genetica direttamente a livello del 
DNA. Nell’ambito dell’acquacoltura, i dati molecolari sono stati utilizzati per numerose applicazioni, che 
possono essere raggruppate in due categorie. Nella prima, riferita agli individui, rientrano il riconosci-
mento del sesso e la verifica di parentela, mentre nella seconda, riferita alle popolazioni, rientra il vasto 
settore della caratterizzazione genetica, finalizzata alla risoluzione di incertezze tassonomiche, alla tutela 
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della biodiversità e all’individuazione di etichette genetiche. I recenti progressi nell’identificazione di un 
numero sempre più elevato di marcatori, unitamente alla costruzione di mappe genetiche a maggiore den-
sità, forniranno informazioni utili anche nell’ambito del miglioramento genetico. Questa rassegna illustra 
brevemente le caratteristiche dei diversi marcatori molecolari, soffermandosi più in dettaglio sulle loro 
applicazioni nel settore dell’acquacoltura.

Parole chiave: Acquacoltura, Marcatori molecolari, Applicazioni pratiche.

Introduction

Mendelian genetics deduced the princi-
ples of the heredity by observing the individ-
ual phenotypes resulting from appropriate 
breeding experiments. Its integration with 
information and methods made available by 
the progressive advances of molecular biol-
ogy led to a new branch of genetics, called 
molecular genetics, whose aim is to investi-
gate all aspects of the gene, such as its struc-
ture and functions. The molecular approach 
provided geneticists with very powerful 
tools, the molecular markers, which opened 
exciting perspectives of application in many 
research fields. The objective of this work is 
to review the characteristics and potential 
power of different types of genetic markers, 
with a major focus on their applications to a 
variety of aquaculture issues.

Molecular markers

A genetic marker can be defined as any 
trait which allows the identification of the 
genotype of an individual. Until the 1980’s, 
the most used markers were proteins (al-
lozymes), because amino acid differences 
in the polypeptide chain detected by elec-
trophoresis reflect mutations in the coding 
gene. However, the protein markers have a 
reduced power in detecting the DNA varia-
bility both within and between populations 
(Valenta et al., 1977; Valenta et al., 1978; 
Šlechtová et al., 1995; Kohlmann and Ker-
sten, 1998; Antunes et al., 1999), because 
some DNA mutations do not lead to amino 

acid substitutions, or the amino acid substi-
tution does not always change the protein 
total electric charge.

The advances in molecular genetics have 
made it possible to detect the genetic poly-
morphism directly at the DNA level, thanks 
to the widespread use of restriction endo-
nucleases and Polymerase Chain Reaction 
(PCR) technology. Used alone or in asso-
ciation, they allow the identification of dif-
ferent types of DNA variability: base sub-
stitutions, commonly referred to as Single 
Nucleotide Polymorphism (SNP), insertion 
or deletion of nucleotides (indel) and Varia-
ble Number of Tandem Repeat (VNTR). The 
last group includes microsatellites (or Sim-
ple Sequence Repeats, SSRs), which consist 
of short sequences (mostly 2-4 base pairs) 
tandemly repeated up to tens or hundreds 
of times along the DNA strand (Levinson 
and Gutman, 1987; Tautz, 1989) and mostly 
located in non coding regions. Thousands 
of microsatellites have been found in farm 
animals; in fish, in particular, the presence 
of a microsatellite has been estimated every 
10 kb (O’Connell and Wright, 1997), with a 
mutation rate at 10-2-10-6 per locus per gen-
eration, which is much greater than that of 
non repetitive DNA (10-9) (Weber and Wong, 
1993), resulting in a very high level of poly-
morphism. Moreover, microsatellites are 
co-dominant and abundantly distributed 
throughout the genome. For their peculiar 
features, microsatellites are extensively 
used in a wide range of research fields and 
applications.

In aquaculture genetics, mitochondrial 
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DNA (mtDNA) is also quite popular, for its 
intrinsic and technical features: a relatively 
high mutation rate, haploid and maternal 
inheritance, which reduces the effective 
population size and thus increases the sen-
sitivity to genetic drift, ease of isolation and 
manipulation (Avise, 1994; Moritz, 1994). 
The analysis of mtDNA has been gener-
ally carried out by PCR-RFLP and more 
recently by sequencing. Mitochondrial DNA 
complete sequences for some aquaculture 
species, such as common carp (Cyprinus 
carpio) (Chang and Huang, 1994), tench 
(Tinca tinca) (Saitoh et al., 2006) and red 
grouper (Plectropomus leopardus) (Zhu and 
Yue, 2008), are now available.

The last decade has seen a renewed inter-
est in coding genes for studying the associa-
tion of their variability with economically 
important traits. In this respect, compara-
tive genomics can greatly accelerate the 
identification of effective markers, because 
many genes are very conservative, allowing 
the transmission of information between 
species, with reduction of time and costs.

Applications

Molecular markers can be used in a va-
riety of aquaculture studies, at the indi-
vidual or population level, and the choice 
of the markers to be used depends on both 
the aim of the research and on the marker 
characteristics. Some examples are briefly 
presented.

Gene mapping
Gene mapping provides fundamental in-

formation for genetic studies, including QTL 
identification, marker assisted selection 
and comparative genomics (Danzmann and 
Gharbi, 2001). In brief, a physical map de-
fines, by in situ hybridization, the physical 
location of DNA segments on a chromosome, 
while a genetic map depicts the relative dis-

tance and the order of the loci along a chro-
mosome on the basis of segregation analyses 
in reference populations or families: if two 
markers segregate together, they will locate 
very close on the chromosome, so they will 
define a linkage group, where the proportion 
of recombinants between the linked markers 
is used as a measure of the distance between 
them. The microsatellite markers represent 
the tool of choice for the construction of a 
primary framework map, which can be fur-
ther enriched with SNP markers in  coding 
genes (Gregory et al., 2004).

Although less developed than in other an-
imal species, microsatellite and SNP-based 
linkage maps are now available for sever-
al aquaculture species (Table 1). As some 
studies have revealed extensive homology 
among vertebrates (Morizot, 1983; Woods et 
al., 2005), comparative evolutionary stud-
ies will greatly benefit from the increasing 
knowledge on the linkage groups arrange-
ments in different species (Matsuoka et al., 
2004; Gharbi et al., 2006).

Medium-term genome research will focus 
on the integration of genetic linkage and 
physical maps, which would significantly 
enhance the possibility to apply genome-
based technologies to the genetic improve-
ment (Somridhivej et al., 2008).

Sex identification
Sex identification is important in sev-

eral biological sciences, such as genetics 
and conservation biology, but in fish it is of-
ten difficult because of the reduced sexual 
dimorphism and the frequent absence of 
heteromorphic sex chromosomes. Moreo-
ver, in fish species where one sex has bet-
ter performances, monosex stocks have been 
developed, usually by sex reversal and fam-
ily selection, with the need to discriminate 
between genetic and phenotypic sex (Devlin 
and Nagahama, 2002). Molecular genetics 
has proven to be very effective in solving the 
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problem through the possibility of detect-
ing sex-linked markers in different species, 
including Atlantic salmon (Devlin et al., 
1991; Du et al., 1993; Clifton and Rodriguez, 
1997), African catfish (Kovacs et al., 2000), 
rainbow trout (Iturra et al., 2001; Felip et 
al., 2005), tongue sole (Chen et al., 2008).

Individual identification and parentage 
assignment

In many fields, such as conservation ge-
netics or selection, the unambiguous iden-
tification of the individuals and reliable 
genealogical records are required for the 
management programmes. Unfortunately, 
these data are difficult to obtain in fish pop-
ulations, because physical tags are impossi-
ble to apply in juveniles and, when possible, 

such as in farmed mussels, they are lost in 
40-90% of the cases (MacAvoy et al., 2008). 
The alternative to keep different families in 
separate ponds is expensive and limits the 
number of animals available for selection.

Several studies have demonstrated the 
ability to identify a unique genetic profile for 
each individual and to establish parentage 
in fish using highly polymorphic markers, 
especially microsatellites. Investigations 
on rainbow trout (Onchorhynchus mykiss) 
(Herbinger et al., 1995), Atlantic salmon 
(Salmo salar) (Norris et al., 2000) and the 
New Zealand mussel Perna canaliculus 
(MacAvoy et al., 2008) showed that appro-
priate sets of microsatellites allow a success 
rate of 95-99.9% in parentage assignment. 
The disadvantage of using molecular mark-

Table 1. genetic linkage maps in aquaculture species.

Species Reference

Zebrafish (Danio rerio) Knapik et al., 1998; Shimoda et al., 1999; 
 Woods et al., 2005

Nile tilapia (Oreochromis niloticus) Kocher et al., 1998; Agresti et al., 2000

Medaka (Oryzias latipes) Naruse et al., 2000

Channel catfish (Ictalurus punctatus) Waldbieser et al., 2001; Liu et al., 2003

Rainbow trout (Onchorhynchus mykiss) Young et al., 1998; Nichols et al., 2003; 
Rexroad et al., 2008

Arctic charr (Salvelinus alpinus) Woram et al., 2004

Atlantic salmon (Salmo salar) Moen et al., 2004, 2008; gilbey et al., 2004

Pacific oyster (Crassostrea gigas) Li and guo, 2004

european sea bass (Dicentrarchus labrax) Christiakov et al., 2005

Brown trout (Salmo trutta) gharbi et al., 2006

gilthead sea bream (Sparus aurata) Franch et al., 2006

Atlantic halibut (Hippoglossus hippoglossus) Reid et al., 2007

european flat oyster (Ostrea edulis) Lallias et al., 2007

Bighead carp (Aristichthys nobilis) Liao et al., 2007

Silver carp (Hypophthamichthys molitrix) Liao et al., 2007

Coho salmon (Oncorhynchus kisutch) McClelland and Naish, 2008
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ers is the relatively high cost, which can be 
limited by choosing the minimum number of 
markers compatible with the maximum lev-
el of accuracy and developing multiplex sys-
tems able to co-amplify the markers used, as 
already done for many aquaculture species 
(O’Reilly et al., 1996; Fishback et al., 1999; 
Porta et al., 2006; Johnson et al., 2007).

Population genetics
The genetic characterization of the indi-

viduals leads to the possibility of describing 
a population by means of allele frequencies. 
In recent decades, the molecular markers 
have been extensively used to define the ge-
netic structure of many aquaculture popu-
lations, which represents the fundamental 
step for the definition of the taxonomic sta-
tus, that is for species, subspecies, breeds 
and strains identification. From a practi-
cal point of view, once a status has been as-
signed to each population, the information 
can be used for either understanding their 
role in determining the whole variability of 
the species, or detecting cases of crossbreed-
ing and/or hybridization.

For the identification of species, sepa-
rated by large genetic distances, almost 
all markers can be used. On the contrary, 
markers with a very high resolution power 
are needed for breeds and strains identifica-
tion because the genetic distances between 
the phylogenetic units are often quite small. 
The microsatellite variability made it pos-
sible to distinguish European and American 
populations of Atlantic salmon (McConnell 
et al., 1995), as well as seven populations of 
masu salmon living in the Atsuta river (Ki-
tanishi et al., 2009), while significant differ-
ences between two adjacent Canadian pop-
ulations were revealed by mtDNA (Tessier 
et al., 1995). David et al. (2001) successfully 
applied AFLP markers to distinguish nine 
common carp populations, showing that the 
Amur carp was the most different, so that 

one marker was sufficient to recognize it, 
while two or more markers were necessary 
to distinguish the other populations.

Molecular markers are widely used in 
conservation genetics as well, to indirectly 
estimate the inbreeding level by measuring 
the heterozygosity degree, whose changes 
during time reveal population size fluctua-
tions and possible bottlenecks occurred in 
the past (Gross et al., 2007). The main pur-
pose of these studies is to provide tools for 
preserving the existing genetic variability, 
which is fundamental for the survival of the 
species, because it allows individuals to face 
changes in the environmental conditions. 
Focusing on farmed animals, the genetic 
diversity represents the possibility of both 
adapting to new rearing conditions/food 
sources/diseases, and providing improved 
products in answer to new requirements. 
Nevertheless, any selection programme 
leads to a reduction of the genetic diversity, 
which should be limited as much as pos-
sible in order to avoid the negative effects, 
known as inbreeding depression (Pante et 
al., 2001). From this point of view, molecu-
lar information can be used to maximise the 
genetic diversity when assembling a found-
er population in order to ensure maximum 
long-term genetic response from the breed-
ing programmes (Hayes et al., 2006).

Fortunately, most of aquaculture species 
have a great advantage compared to other 
species: as the domestication process started 
only recently, wild populations still exist and 
can represent the source of genetic diversity 
in the future. In this context, molecular ge-
netics plays a basic role because molecular 
markers are able to detect differences be-
tween wild and cultured populations and 
to reveal processes which determined the 
observed differences. Mitochondrial DNA 
is especially employed for this purpose in 
several aquaculture species. For example, 
Hansen et al. (1997) used mtDNA polymor-
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phism to detect differences between brown 
trout cultured strains and wild populations 
from three river basins, revealing a greater 
reduction of genetic variability in hatchery 
strains, mainly due to the small numbers of 
founder females. Also data on microsatellite 
markers showed that farmed strains were 
genetically quite similar, while clearly sepa-
rated from wild populations in rainbow trout 
(Gross et al., 2007) and tench (Kohlmann et 
al., 2007). The ability to discriminate wild 
and cultured populations can be also exploit-
ed to identify escaped domesticated animals, 
as demonstrated for Chinook salmon reared 
in marine netpens (Withler et al., 2007).

The genetic characterization offers the 
possibility to trace back to the origin of a proc-
essed product (traceability). Species-specific, 
strain-specific or population-specific mark-
ers can be used as genetic tags, which make 
it possible to detect the original taxon and 
secure the consumer’s rights to be informed 
about the purchased product. For example, 
the polymorphism of the mitochondrial Cyt 
b gene made it possible to discriminate be-
tween 23 species, including European eel 
(Anguilla anguilla), Atlantic salmon (Salmo 
salar), Atlantic cod (Gadus morhua), bass 
(Dicentrarchus labrax), sea bream (Sparus 
aurata), tuna (Thunnus thynnus) and plaice 
(Pleuronectes platessa) (Wolf et al., 2000). 
Recently a species database of fish, molluscs 
and crustaceans has been created with the 
aim to identify species of origin of seafood 
products by previously defined AFLP pat-
terns (Maldini et al., 2006).

A strictly related application is in forensic 
science to detect cases of fraud, for example 
in caviar trade (Wuertz et al., 2007), or illegal 
poaching of threatened species. Primmer et 
al. (2000) reported a funny case of fraud that 
occurred during a fishing competition in Fin-
land: the microsatellite genotyping, together 
with software able to assign an individual to 
its population, provided a highly significant 

power for excluding the possibility of a sus-
pected fish originating from the competition 
lake. At the end, the offender confessed to 
purchasing it in a local fish shop!

Selection
Selection is aimed at modifying the ge-

netic structure of a breed in order to obtain 
animals with superior performances for the 
traits of interest. The classical approach is to 
estimate the breeding value of the individu-
als on the basis of phenotypic values, to se-
lect the ones with the best genetic perform-
ances and to mate them within appropriate 
breeding schemes.

Although the basic concepts are the same, 
the selection strategies used in most farm 
animals do not directly apply to fish species 
for their biological and breeding character-
istics. On one hand, the extremely high re-
productive capacity and the external fertili-
zation of fish offer a great flexibility in the 
implementation of selection programmes 
with a high precision in the estimates and 
permits the use of higher intensities of selec-
tion. On the other hand, the peculiar breed-
ing management has some practical limi-
tations, such as the difficulty in obtaining 
accurate genealogical and phenotypic data, 
or the influence of the competition between 
individuals in the same pond, which induces 
a distortion in the estimates of the genetic 
parameters, with negative effects on the se-
lection response (Moav and Wohlfart, 1974).

Apart from these differences, the traits 
objectives of selection in aquaculture are 
similar to those of other species (including 
growth, carcass composition and quality) 
and the genetic improvement realized so far 
mainly depends on the application of tradi-
tional methods, involving selection, crossing 
and hybridation (Wohlfarth, 1993; Bakos and 
Gorda, 1995; Hulata, 1995; Hulata, 2001). 
However, the progress in molecular genetics 
provides perspectives for implementing the 
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marker assisted selection (MAS), aimed at 
choosing the genetically superior individu-
als using molecular information.

To perform MAS, markers tightly linked 
to the loci responsible for quantitative traits 
(QTL) or major genes directly involved in 
the phenotypic expression should be found. 
In the first case, a QTL can be identified and 
localized due to the co-segregation with a 
molecular marker; in this respect the micro-
satellites are very helpful, being highly poly-
morphic and widely distributed throughout 
the genome. In the second case, candidate 
genes possibly responsible for quantitative 
traits are chosen, based on previous knowl-
edge of their position and/or function, and the 
statistical associations between their SNPs 
and the phenotypic expression of the trait of 
interest are investigated. The identification 
of genetic markers related to traits objec-
tive of selection would have a great impact 
on the selection response, mainly for traits 
with low heritability, such as reproduction 
or disease resistance. In fact, if a given allele 
were associated to a given trait, it would be 
sufficient to select the individuals carrying 
that allele in order to improve the associ-
ated trait. If so, the selection process would 
be greatly simplified, because simple Men-
delian traits would be concerned, instead of 
complex quantitative traits.

Up to now, the QTL analysis in fish is in 
its infancy because the genetic mapping is 
not so advanced as in other species, even 
if medium-density linkage maps are avail-
able at least for the principal aquaculture 
species, as mentioned above. The first data 
on QTLs date back to the late 1990’s, when 
Jackson et al. (1998) identified two mark-
ers associated with the upper temperature 
tolerance in rainbow trout. Later on, other 
QTLs were reported in different aquacul-
ture species (Table 2).

In aquaculture many efforts are devoted 
to the search of markers for disease resist-

ance, due to both the enormous economical 
implications and the difficulties of the clas-
sical selection, which requires the genetic 
evaluation of the individuals through ex-
posure to the virus. Ozaki et al. (2001) first 
identified, in rainbow trout, two markers 
associated with the infectious pancreatic 
necrosis (IPN), a highly contagious disease 
against which the presently available vac-
cines offer only a partial protection. More 
recently, a marker for resistance to lym-
phocystis disease in Japanese flounder has 
been identified (Fuji et al., 2007); the poten-
tial of MAS for improving the disease resist-
ance is demonstrated by the fact that no af-
fected fish were observed in an experimental 
population selected for the allele associated 
to the lymphocystis resistence, compared to 
about 5% of the control population.

Concerning major genes, the available 
data are still limited (Table 3). However, 
aquaculture species have the great advan-
tage that the economically important traits 
are similar to those included in the selec-
tion programmes of many farm animals, 
so that the huge amount of information al-
ready available for other vertebrates can be 
exploited to find homologous genes in fish, 
where the research in this field is less ad-
vanced. For example, growth rate, which 
is one of the main objectives of selection in 
most fish species, has been thoroughly in-
vestigated for many years in other animals, 
where the genes associated to the somato-
tropic axis have been identified, mapped and 
sequenced. These results have accelerated 
the research in fish, leading to the identifica-
tion in different species of GH (Growth Hor-
mone), GHR (Growth Hormone Receptor), 
GHRH (Growth Hormone Releasing Hor-
mone), IGF-I (Insulin-like Growth Factor I) 
genes (De-Santis and Jerry, 2007). The iden-
tification of polymorphic sites in these genes 
is the further step towards investigations 
on the possible associations with production 
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traits. Another promising candidate gene is 
Myostatin, whose variability is responsible 
for the double muscled phenotype in cattle. 
Recently, Acosta et al (2005) reported that 

the inactivation of the Myostatin gene in ze-
brafish resulted in an increased weight gain 
(+45% compared to the control), as observed 
in mice (McPherron et al., 1997). Therefore, 

Table 2. examples of qTL in aquaculture species.

Species Trait Reference

Rainbow trout (Oncorhyncus mykiss) Upper temperature tolerance Jackson et al., 1998

Spawning time Sakamoto et al., 1999

IPNV resistance Ozaki et al., 2001

embryonic development rate Robison et al., 2001

Sex Iturra et al., 2001

Early maturation Haidle et al., 2007

Cortisol level Drew et al., 2007

Tilapia (Oreochromis hybrid) Stress/immune response Cnaani et al., 2004

Body colour Lee et al., 2005

Coho salmon (Oncorhynchus kisutch) Flesh colour Araneda et al., 2005

Spawning date Araneda et al., 2007

Atlantic salmon (Salmo salar) IPNV resistance Houston et al., 2007

Body lipid percentage Derayat et al., 2007

Sea bass (Dicentrarchus labrax) Morphometric traits Chatziplis et al., 2007

Japanese flounder (Paralichthys olivaceus) Lymphocystis disease Fuji et al., 2007

Eastern oyster (Crassostrea virginica) Disease resistance Yu and guo, 2006

Table 3.     examples of candidate genes in fish species.

Species Gene Trait Reference

Zebrafish (Danio rerio) MYO Growth Acosta et al., 2005

Rainbow trout (Oncorhyncus mykiss) Clock Spawning time Leder et al., 2006

Asian seabass (Lates calcarifer) PVALB1
Body weight/

length
Xu et al., 2006

Grouper (Epinephelus coioides) Epinecidin-1
Antimicrobial 

activity
Yin et al., 2006

Tilapia (Nile tilapia)
ACTB, ATP2B1, 

HBB, POMC
Water salt 
tolerance

Rengmark et al., 2007

Masu salmon (Oncorhyncus masou) MELO HUFA biosynthesis Alimuddin et al., 2008
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the polymorphism of the gene could be asso-
ciated to growth differences also in fish.

Transgenesis
The knowledge of molecular genetics 

gives a basic contribution to the genetic en-
gineering, which in fish is more advanced 
compared to other animals, for the simpler 
manipulation, due to the external fertiliza-
tion and embryogenesis (Maclean, 2003).

Following the milestone experiment of 
Palmiter et al. (1982) in mice, the main appli-
cation in aquaculture concerned the growth 
rate, with the successful transfer of GH gene 
from mammals and more recently from fish. 
The results were impressive, with growth 
rate four times higher in salmon (Devlin et al., 
1994) and 2.5 - 4 times in tilapia (Rahman et 
al., 2001). However, some results showed that 
the growth enhancement is relatively low in 
species selected for growth over centuries, 
as they had less ‘capacity’ for extra growth 
(Devlin et al., 2001). Therefore, the existence 
of biological limitations could reduce the use-
fulness of the transgenesis. The consumer 
acceptance of the transgenic fish, probably 
related to the perceived risk, and possible ad-
verse environmental impacts are also to be 
taken into account (Maclean, 2003).

Considerable work in the field of trans-
genesis concerns the pathogen resistance 
and freeze resistance, but, even if trans-
genic fish have been produced, the research 
remains at a preliminary stage (Maclean, 
2003). The development of ornamental fish 

expressing naturally fluorescent proteins 
in the skeletal muscle (Gong et al., 2003) 
and the construction of models for human 
diseases (Kari et al., 2007) demonstrate the 
wide range of application of the transgenic 
technology.

Conclusions

For the last twenty years the genetic re-
search in aquaculture has been exponential-
ly increasing thanks to the widespread use 
of molecular technologies together with the 
possibility to exploit the impressive amount 
of data available for other species.

Up to now the knowledge on molecular 
genetics has been mainly applied to the ge-
netic characterization of the populations, 
covering a variety of aspects, with special 
emphasis on diversity analysis and conser-
vation. For the future considerable progress 
can be expected from gene mapping thanks 
to the efforts presently devoted to both the 
enrichment of the genetic maps and to the 
integration of genetic linkage and physical 
maps, which is essential for the understand-
ing of genes responsible for performance 
traits, including growth and disease resist-
ance. With the increasing global demand for 
aquaculture products and the early stage of 
selection for most aquatic species, molecular 
genetics is expected to play a major role in 
the management of breeding programmes 
aimed at developing improved strains for 
the most economically important species.
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