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Tests for normality in classes of skew-t

alternatives

Cinzia Carota

Dipartimento di Statistica e Matematica Applicata ‘Diego De Castro’,

Università di Torino, Italy.

Abstract

We construct tests for normality in the Azzalini and Capitanio skew-t

and linear skew-t classes of distributions. We also provide an explana-

tion for the presence of the inflection point at zero in the skew-normal

log-likelihood when it is obtained from a skew-t log-likelihood with de-

grees of freedom tending to infinity.

Key words: divergence-based Bayesian tests; score tests; skew-normal

alternatives; skew-normal log-likelihood; skew-t alternatives; tests for

normality.

1. Introduction

In the vicinity of the normal model we consider a new parameteri-

zation of the Azzalini and Capitanio (2003) skew-t distribution and

obtain a Bayesian test for normality based on the Jeffreys divergence
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between prior and posterior distributions of the skewness and kurtosis

parameters (Proposition 1). This test depends on the marginal score

function, whose two elements prove to be linear functions of the sample

skewness and sample kurtosis, respectively. We exploit this key finding

in various ways. First of all, it is used to explain the different infer-

ential behavior of the skew-normal log-likelihood in comparison with

the skew-t log-likelihood (Proposition 2). Then, it helps determine an

upper bound for the Bayesian test which is independent of the prior

distribution assigned to the skewness and kurtosis parameters (Propo-

sition 3). Finally, it allows us to derive a ‘marginal’ score test for

normality (Proposition 4). Both the upper bound for the Bayesian test

and this score test are closely related to certain traditional composite

test statistics. These are therefore retrieved and fully justified as tests

for normality within the class of Azzalini and Capitanio skew-t alter-

natives. We also observe some connections between our results and the

results in Jones and Faddy (2003) concerning the underlying logic of

the new parameterization under which they are obtained and the way

the respective score tests for normality depend on the data. We con-

clude by showing that all of the above results remain true if the class

of alternatives is taken to be the class of linear skew-t distributions
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(Proposition 5).

The organization of the paper is as follows. The rest of this sec-

tion demonstrates how a divergence-based Bayesian method (Carota,

Parmigiani and Polson 1996, Carota 2005) can be applied to test for

normality in the restricted class of skew-normal alternatives (Azzalini,

1985) and its connection to a previous result is noted. The main re-

sults (Propositions 1-5) are presented in section 2 and, finally, section

3 contains some concluding remarks.

Let y=(y1, .., yn) be a random sample from the skew-normal density

function,

fSN(y|µ, σ, λ) =
2

σ
φ(
y − µ
σ

)Φ(λ
y − µ
σ

),

where φ and Φ denote the standard normal density function and dis-

tribution function, respectively, and µ ∈ (−∞,∞), σ > 0, λ ∈

(−∞,∞). When λ = 0, fSN reduces to the normal density; oth-

erwise, the sign of λ gives the sign of skewness. Throughout the paper,

the location µ and the scale σ are treated as nuisance parameters and

are therefore assigned a default prior, π(µ, σ) ∝ 1/σ; conversely, the

prior of the parameter of interest, π(λ), is assumed to be very peaked

about λ = 0 so as to express a high degree of belief in the normal

model. By virtue of this assumption, it makes sense to test the null
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hypothesis of normality, H0 : λ = 0 versus H1 : λ 6= 0, by using

a measure of divergence between π(λ) and the corresponding posterior,

π(λ|y). The specific measure adopted here is the Jeffreys divergence

(Jeffreys, 1948),

J =
1

2

{ ∫ ∞
−∞

π(λ|y)log
(π(λ|y)

π(λ)

)
dλ+

∫ ∞
−∞

π(λ)log
( π(λ)

π(λ|y)

)
dλ
}
.

Small values of J indicate closeness of the posterior to the prior of the

parameter of interest and, given the peakedness of the prior about the

null value λ = 0, they are interpreted as sample evidence in favor of the

normal model, which is therefore maintained. (For details see Carota,

2005). In particular, we will consider a meaningful approximation

of J obtained as follows. If we denote the likelihood integrated with

respect to the nuisance parameters by L(λ) and set l(λ) = log(L(λ)),

the Jeffreys divergence can be written as

J =
1

2

{ ∫ ∞
−∞

l(λ)π(λ|y)dλ−
∫ ∞
−∞

l(λ)π(λ)dλ
}
,

and a Taylor expansion of the logarithmic function around the null

value λ = 0 provides

JT =
1

2

[
E(λ3|y)− E(λ3)

]
l′′′(λ)

∣∣∣
λ=0

, (1)

where l′′′ denotes the third derivative of l(λ) evaluated at λ = 0. Given

that l′(λ)
∣∣∣
λ=0

= l′′(λ)
∣∣∣
λ=0

= 0 (there is always an inflection point at
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zero as known since Azzalini 1985), JT represents the first non-zero

term in the Taylor expansion of J .

We recall that l′′′(λ)
∣∣∣
λ=0

is the locally most powerful invariant test for

H0 : λ = 0 versus H1 : λ > 0 provided by Salvan (1986) (see also

Azzalini, 2006). It will be denoted from now on by IS

IS = l′′′(λ)
∣∣∣
λ=0

=
2( 4

π
− 1)
√
n Γ(n

2
)

√
π Γ(n−1

2
)

γ̂1,

γ̂1 =

∑n
i=1(yi − y)3

n(s2)
3
2

, y =

∑n
i=1 yi
n

, s2 =

∑n
i=1(yi − ȳ)2

n
.

2. Tests for normality in classes of skew-t alternatives

Let y=(y1, .., yn) be a random sample from the skew-t density function

fST (y|µ, σ, λ, ν) = 2
1

σ
t(z|ν)T (λ z

√
(ν + 1)/(z2 + ν)

∣∣∣ν + 1),

where z = (y− µ)/σ, t and T denote the univariate standard Student

t density function and distribution function with ν and ν + 1 degrees

of freedom, respectively, and µ ∈ (−∞,∞), σ > 0, λ ∈ (−∞,∞)

(Azzalini and Capitanio, 2003). As in section 1 the prior of µ and σ

is taken to be π(µ, σ) ∝ 1/σ, while the skewness λ and kurtosis ν are

transformed into a new vector of parameters of interest, θI = (λ1, η)′,

where λ1 = λ
ν

and η = 1
ν
. This alternative parametrization is useful in

constructing tests for normality within this class of skew-t distributions
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and is adopted only ‘near’ the normal model, which is the special case

of fST (y|µ, σ, λ1, η) occurring when (λ1, η) = (0, 0) with the second

zero representing an infinitesimal value of η. Detailed comments on

the practical meaning of λ1 and η and on their ‘local’ use will be given

after Proposition 2.

Assuming that the prior of the parameters of interest, π(θI), is peaked

about the null value (0, 0), denoting the likelihood integrated with re-

spect to µ and σ by L(θI), and setting l(θI) = log(L(θI)), in the Ap-

pendix we prove the following result on the divergence-based Bayesian

test for normality.

Proposition 1.

The approximation JT (obtained via Taylor expansion) of the Jeffreys

divergence between prior and posterior distributions of θI is given by

JT =
1

2
[E(θI |y)− E(θI)]

′ × ∂

∂θI
l(θI)

∣∣∣
θI=(0,0)

≈ 1

2

{
[E(λ1|y)− E(λ1)]× 2

√
n√
π

Γ(n
2
)

Γ(n−1
2

)
γ̂1+

+[E(η|y)− E(η)]×
[3(n− 1)

2n
+

(n2 − 1)

4n
γ̂2

]}

where γ̂1 is the sample skewness statistic defined in section 1 and

γ̂2 =

∑n
i=1(yi − y)4

n(s2)2
− 3.
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Proposition 1 says that the approximation JT of J is a linear approxi-

mation and that the elements of the marginal score function, ∂
∂θI
l(θI),

are both non-zero and given by linear functions of the sample skew-

ness and sample kurtosis, respectively. The interesting structure of JT

leads us to explore three different consequences of this key finding in

Propositions 2-4; for details on the use of JT see Carota (2005).

The next remark provides a possible answer to this problem: ‘It would

be useful to have some theoretical insight into why the log-likelihood

function using the skew-t distribution behaves so differently from the

skew-normal model’ (Azzalini and Capitanio, 2003, p.384).

Remark.

Given that fSN(y|µ, σ, λ) = limν→∞fST (y|µ, σ, λ, ν) and consequently

l(λ) = limν→∞l(λ, ν),

where l(λ) and l(λ, ν) are the corresponding integrated log-likelihoods

with respect to µ and σ, we can explain the fact that l′(λ)
∣∣∣
λ=0

= 0,

due to the inflection point, as follows. Let λ ∈ U(0), where U denotes

a neighborhood of 0. Consider the function λ1 = g(λ) = λ/ν and write

l(λ, ν) = l(g(λ) ν, ν), so that l depends on λ only through g. As

l′(λ)|λ=0 =
d

dλ

(
limν→∞l(λ, ν)

)
|λ=0 = limν→∞

d

dλ
l(λ, ν)|λ=0 =
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limν→∞
d

dλ
l(g(λ) ν, ν)|λ=0 = limν→∞

(dl(g(λ) ν, ν)

dg(λ)
× dg(λ)

dλ

)∣∣∣
λ=0

=

(2
√
n√
π

Γ(n
2
)

Γ(n−1
2

)
γ̂1 × limν→∞

1

ν

)
= 0,

the statements a) and b) below hold.

Proposition 2.

a) l′(λ)|λ=0 = 0 because of the infinitely large value of ν.

b)

limν→∞
dl(g(λ) ν, ν)

dg(λ)

∣∣∣
λ=0
∝ IS.

Roughly speaking, the statement b) says that, when the value of ν is

sufficiently large, if we regard l(λ, ν) = l(λ1 ν, ν) as a function of λ1

rather than λ, it is as though we are looking at the skew-normal log-

likelihood from a sufficiently large distance that the inflection point

becomes imperceptible, and, interestingly, the first derivative at 0 be-

comes proportional to IS. This ‘distancing’ effect has been obtained by

dividing λ by the degrees of freedom ν, allowing us to determine that

η = 1/ν is the right ‘distancing’ factor to achieve this twofold advan-

tage.

Jones and Faddy (2003) make a similar observation on p.163, where

their skewness parameter is judged to be ‘not very satisfactorily tied

to skewness’ and a ‘normalization’ of it with respect to the degrees
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of freedom is preannounced to be ‘more meaningful’. However, Jones

and Faddy adopt their alternative parameterization globally, since they

transform the whole original parameter space into a new parameter

space. Instead, we use the new vector θI only locally, close to the nor-

mal model. In particular, θI plays a key role in the proof that the

marginal score function is given by the two linear functions of γ̂1 and

γ̂2 provided in Proposition 1 (see the Appendix), i.e. when λ1 and η

are used in a very special way: one at a time keeping the other fixed

at zero. Thus, in practice, our alternative parameterization is applied

only to the axes of the original parameter space which represent the

sub-classes of skew-normal densities (ν → ∞) and Student t densities

(λ = 0) of the fST (·|µ, σ, λ, ν) family. Nonetheless, there is also an

underlying theoretical necessity for this ‘partial’ use of θI = (λ1, η)′: a

global use would produce a third class of skew-t distributions where the

skewing method is similar to the one in Azzalini and Capitanio (2003),

but skewness and kurtosis change simultaneously as in the skew-t den-

sities by Jones and Faddy (2003). The introduction of this third family

goes beyond the scope of this paper which seeks instead to emphasize

commonalities with the previous two families. All the results in the

rest of the paper are based on such partial and local use of λ1 and η.
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Proposition 3.

With a further transformation of the vector of parameters of interest,

θ∗I = (δ1, ζ)′, where

δ1 =
λ1√

1 + λ2
1

∈ (−1, 1), and ζ =
η

η + 1
∈ (0, 1),

irrespectively of the prior assigned to (δ1, ζ), we have

JT ≤ c0 + c1γ̂1 + c2γ̂2,

where c0 = 3(n−1)/4n, c1 = 2
√
nΓ(n

2
)/(
√
πΓ(n−1

2
)), c2 = (n2−1)/8n.

This result follows from E(δ1|y)−E(δ1|y) < 2, E(ζ|y)−E(ζ|y) < 1

and

∂l(θ∗I )

∂θ∗I

∣∣∣
θ∗I=(0,0)

=
∂l(θI)

∂θI

∣∣∣
θI=(0,0)

.

Proposition 3 provides an upper bound for JT , independent of the prior,

which has the structure of a composite test statistic for normality (see

e.g. Cox and Hinkley, 1974, p.71).

Notice also that, if (y1, .., yn) is assumed to be a random sample from

fSN(y|µ, σ, λ), with the usual transformation δ = λ√
1+λ2 from (1) we

obtain JT < IS, no matter what prior is assigned to δ.

10



Moreover, for a large value of n, we can derive the Fisher information

matrix at θI = (0, 0) corresponding to the marginal score function

∂
∂θI
l(θI),

I(θI)
∣∣∣
θI=(0,0)

= I(0, 0) = E
( ∂

∂θI
l(θI)

( ∂

∂θI
l(θI)

)′)∣∣∣
θI=(0,0)

=


6
n

(
2
√
n√
π

Γ(n
2

)

Γ(n−1
2

)

)2
0

0
(

3(n−1)
2n

)2
+ 24

n

(
(n2−1)

4n

)2

 ,
and the expression of the corresponding score test for normality.

Proposition 4.

S =
∂

∂θI
l(θI)

′I−1(0, 0)
∂

∂θI
l(θI)

∣∣∣
θI=(0,0)

=
n

6
γ̂2

1 +

(
6 + (n+ 1)γ̂2

)2

36 + 24
n

(n+ 1)2

≈ n

6
γ̂2

1 +
n

24
γ̂2

2 .

The last term is the Fisher-Pearson composite test statistic for nor-

mality. It is worth noting that S and the score test derived by Jones

and Faddy within their class of skew-t densities, originating from com-

pletely different variate transformations, are both ‘based on the usual

sample skewness and kurtosis’ (Jones and Faddy, 2003, p. 164, (8)).

Our last point concerns the case of linear skew-t alternatives.

Proposition 5.
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If y=(y1, .., yn) is assumed to be a random sample from the linear skew-t

density function,

f(y|µ, σ, λ, ν) = 2
1

σ
t(z|ν)T (λ z |ν),

the meaning of the symbols being equal, Propositions 1-4 still hold.

3. Final comments

Starting from a Bayesian test for normality, two traditional composite

test statistics have been retrieved and fully justified as tests for nor-

mality within the class of skew-t alternatives by Azzalini and Capitanio

(2003) or linear skew-t. The first is an upper bound, independent of

the prior, for the approximate Jeffreys divergence between prior and

posterior distributions of the skewness and kurtosis parameters. The

second is a score test based on the marginal score function. We have

also found that, close to the normal model, the skew-t by Azzalini and

Capitanio (2003), the linear skew-t and the skew-t by Jones and Faddy

(2003) have two aspects in common: 1) the appropriateness of a ‘nor-

malization’ of the skewness parameter with respect to the degrees of

freedom and 2) the fact that the score test for normality depends on

the data only via sample skewness and kurtosis.

In addition, we have provided an explanation of the inferential be-
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haviour of the skew-normal log-likelihood given from within the skew-t

log-likelihood.
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APPENDIX.

Proof of Proposition 1.

Part I. We show that

limε→0
∂

∂λ1

log(L̄(λ1, η))
∣∣∣
(0,ε)

=
limε→0

∂
∂λ1
L̄(λ1, η)

∣∣∣
(0,ε)

limε→0L̄(λ1, η)
∣∣∣
(0,ε)

=
2
√
n√
π

Γ(n
2
)

Γ(n−1
2

)
γ̂1.
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Consider the likelihood function,

L(µ, σ, λ1, η) = 2n
( 1

σ

)n(η
π

)n
2
[Γ(η

−1+1
2

)

Γ(η
−1

2
)

]n
×

n∏
i=1

[
1+z2

i η
]− η−1+1

2 ×
n∏
i=1

T
(
λ1η

−1zi

√
η−1 + 1

z2
i + η−1

∣∣∣η−1+1
)
,

and observe that

∂

∂λ1

L̄(λ1, η) =
∂

∂λ1

{ ∫ ∞
0

∫ +∞

−∞
L(µ, σ, λ1, η)

1

σ
dµdσ

}∣∣∣
(λ1,η)=(0,ε)

=

=
∫ ∞

0

∫ +∞

−∞

{ ∂

∂λ1

L(µ, σ, λ1, η)
∣∣∣
(λ1,η)=(0,ε)

} 1

σ
dµdσ. (2)

From

∂

∂λ1

L(µ, σ, λ1, η) = 2n
( 1

σ

)n(η
π

)n
2
[Γ(η

−1+1
2

)

Γ(η
−1

2
)

]n
×

n∏
i=1

[
1 + z2

i η
]− η−1+1

2

×
n∑
i=1

t
(
λ1η

−1zi

√
η−1 + 1

z2
i + η−1

∣∣∣η−1+1
)
η−1zi

√
η−1 + 1

z2
i + η−1

×
n∏
j 6=i

T
(
λ1η

−1zj

√√√√ η−1 + 1

z2
j + η−1

∣∣∣η−1+1
)
,

we obtain

∂

∂λ1

L(µ, σ, λ1, η)
∣∣∣
(λ1,η)=(0,ε)

= 2
( 1

σ

)n( ε
π

)n
2
[Γ( ε

−1+1
2

)

Γ( ε
−1

2
)

]n
×

n∏
i=1

[
1+z2

i ε
]− ε−1+1

2

×
n∑
i=1

1√
(ε−1 + 1)π

Γ( ε
−1+2

2
)

Γ( ε
−1+1

2
)
ε−1zi

√
ε−1 + 1

z2
i + ε−1

,

which, considering that
√

(ε−1 + 1)/(z2
i + ε−1) =

√
1 + ε [1 + z2

i ε]
−1/2

and that

[1 + z2
i ε]
−1/2 ×

[
1 + z2

i ε
]− ε−1+1

2 =
[
1 + z2

i

1 + ε

ε−1 + 1

]− (ε−1+1)+1
2 ,

can be rewritten as

2
( 1

σ

)n ( ε
π

) 1
2 Γ( ε

−1+1
2

)

Γ( ε
−1

2
)

√
1 + ε ×

n∑
i=1

ε−1zi ×t
(
zi
√

1 + ε
∣∣∣ε−1+1

)
×

n∏
j 6=i
×t(zj|ε−1).
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We set wi = zi
√

1 + ε and apply the Fisher expansion (Fisher 1925,

Johnson et al. 1995 p. 375) to the t densities,

∂

∂λ1

L(µ, σ, λ1, η)
∣∣∣
(λ1,η)=(0,ε)

= 2
( 1

σ

)n( ε
π

) 1
2 Γ( ε

−1+1
2

)

Γ( ε
−1

2
)

√
1 + ε

n∑
i=1

ε−1zi×φ(wi)×

{
1+

1

4(ε−1 + 1)

(
w4
i−2w2

i−1
)
+

1

96(ε−1 + 1)2

(
3w8

i−28w6
i+30w4

i+12w2
i+3

)
+· · ·

}

×
n∏
j 6=i

φ(zj)
{

1+
ε

4

(
z4
j−2z2

j−1
)

+
ε2

96

(
3z8

j−28z6
j +30z4

j +12z2
j +3

)
+· · ·

}
.

Now we consider

φ(wi)×
n∏
j 6=i

φ(zj) =
( 1

2π

)n
2 exp{−1

2
w2
i −

1

2

n∑
j 6=i

z2
j }

and standard algebra allows us to write

exp{−1

2
w2
i−

1

2

n∑
j 6=i

z2
j } = exp{− 1

2σ2

[
ns2+

n

1 + nε−1
(yi−y)2

]
−n+ ε

2σ2
(µ−mi

)2
},

where mi = (ny + εyi)/(n+ ε) .

Then, we consider the expression

{
1+

1

4(ε−1 + 1)

(
w4
i −2w2

i −1
)

+· · ·
}
×

n∏
j 6=i

{
1+

ε

4

(
z4
j−2z2

j−1
)

+· · ·
}

=

{
1+

ε

4(1 + ε)

(
z4
i (1+ε)2−2z2

i (1+ε)−1−ε+ε
)
+· · ·

}
×

n∏
j 6=i

{
1+

ε

4

(
z4
j−2z2

j−1
)
+· · ·

}

and, by ignoring all terms depending on εk, k ≥ 2, we approximate it

as follows {
1 +

n∑
j=1

ε

4

(
z4
j − 2z2

j − 1
)}
.
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Consequently, we have

∂

∂λ1

L(µ, σ, λ1, η)
∣∣∣
(λ1,η)=(0,ε)

≈ 2
( 1

σ

)n( ε
π

) 1
2 Γ( ε

−1+1
2

)

Γ( ε
−1

2
)

√
1 + ε

n∑
i=1

ε−1zi

×
( 1

2π

)n
2 exp{− 1

2σ2

[
ns2 +

n

1 + nε−1
(yi − y)2

]
− n+ ε

2σ2
(µ−mi)]

2}

×
{

1 +
n∑
j=1

ε

4

(
z4
j − 2z2

j − 1
)}

and, setting

C(ε) = 2
( ε
π

) 1
2 Γ( ε

−1+1
2

)

Γ( ε
−1

2
)

√
1 + ε ×

( 1

2π

)n
2 ,

such an approximation is substituted for ∂
∂λ1
L(µ, σ, λ1, η)

∣∣∣
(λ1,η)=(0,ε)

in

(2).

Now we are going to obtain limε→0(2) as sum of the terms provided in

the next two steps i) and ii).

Considering that

zi =
n

σ

(yi − y
n+ ε

)
− 1

σ
(µ−mi)

and, successively, that

∫ ∞
0

( 1

σ

)h
exp

{
− 1

2σ2
D
}
dσ = 2

h−3
2 Γ(

h− 1

2
)D−

h−1
2 (3)

(Box and Tiao 1973, p. 145, A 2.1.4), where D =
[
ns2+ n

1+nε−1 (yi−y)2
]
,

we have:

i)

∫ ∞
0

C(ε)
( 1

σ

)n+1
n∑
i=1

exp
{
− 1

2σ2

[
ns2 +

n

1 + nε−1
(yi − y)2

]}
×

18



∫ +∞

−∞
ε−1 zi exp

{
− n+ ε

2σ2
(µ−mi)

2
}
dµ dσ =

∫ ∞
0

C(ε)
( 1

σ

)n+1
n∑
i=1

exp
{
− 1

2σ2

[
ns2+

n

1 + nε−1
(yi−y)2

]}
×n
ε

(yi − y
n+ ε

) ( 2π

n+ ε

) 1
2 dσ =

C(ε)
(2π)

1
2

(n+ ε)
3
2

n

ε
2
n
2
−1Γ(

n

2
)

n∑
i=1

(yi − y)
[
ns2 +

n

1 + nε−1
(yi − y)2

]−n
2 ,

whose limit, as ε→ 0, is zero.

ii)

∫ ∞
0

C(ε)
( 1

σ

)n+1
n∑
i=1

exp
{
− 1

σ2

[
ns2 +

n

1 + nε−1
(yi − y)2

]}
×

∫ +∞

−∞
ε−1zi ×

n∑
j=1

ε

4

(
z4
j − 2z2

j − 1
)
exp

{
− n+ ε

2σ2
(µ−mi)

2
}
dµdσ =

=
∫ ∞

0
C(ε)×

( 1

σ

)n+1 1

4

n∑
i=1

exp
{
− 1

2σ2

[
ns2 +

n

1 + nε−1
(yi − y)2

]}
×

∫ +∞

−∞
zi
( n∑
j=1

z4
j − 2

n∑
j=1

z2
j − n

)
exp

{
− n+ ε

2σ2
(µ−mi)

2
}
dµdσ

where, applying (yj − µ)r = [(yj −mi)− (µ−mi)]
r =

∑r
k=0 r!/{k!(r −

k)!}(yj−mi)
k(−1)r−k(µ−mi)

r−k, the value of the integral with respect

to µ is obtained from the central moments of the normal distribution

N(mi,
σ√
n+ε

):

1

σ4
(yi−mi)

n∑
j=1

(yj−mi)
4 (2π)

1
2

(n+ ε)
1
2

+
6

σ2
(yi−mi)

n∑
j=1

(yj−mi)
2 (2π)

1
2

(n+ ε)
3
2

+3n(yi −mi)
(2π)

1
2

(n+ ε)
5
2

− 2

σ2
(yi −mi)

n∑
j=1

(yj −mi)
2 (2π)

1
2

(n+ ε)
1
2
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−2n(yi−mi)
(2π)

1
2

(n+ ε)
3
2

− n(yi−mi)
(2π)

1
2

(n+ ε)
1
2

+
4

σ2

n∑
j=1

(yj−mi)
3 (2π)

1
2

(n+ ε)
3
2

+12
n∑
j=1

(yj −mi)
(2π)

1
2

(n+ ε)
5
2

− 4
n∑
j=1

(yj −mi)
(2π)

1
2

(n+ ε)
3
2

,

and, for each of these terms, τ(σ) say, the value of the integral with

respect to σ,

∫ ∞
0

C(ε)
( 1

σ

)n+1 1

4

n∑
i=1

exp
{
− 1

2σ2

[
ns2+

n

1 + nε−1
(yi−y)2

]}
τ(σ)dσ, (4)

is derived from (3). Since, as ε → 0, (4) takes a non-zero value only

when

τ(σ) =
4

σ2

n∑
j=1

(yj −mi)
3 (2π)

1
2

(n+ ε)
3
2

and this value is given by

2π−
n
2 Γ(

n

2
+ 1)

1√
n

∑n
j=1(yj − y)3

(ns2)
n+2

2

, (5)

from i) and ii) we conclude that

limε→0(2) = (5).

Similarly, applying the Fisher expansion to L(µ, σ, λ1, η)
∣∣∣
(λ1,η)=(0,ε)

,

we easily obtain

limε→0L(λ1, η)
∣∣∣
(λ1,η)=(0,ε)

'
( 1

2π

)(n−1)/2( 1

n

) 1
2 2

n−3
2 Γ

(n− 1

2

)
(ns2)−

n−1
2

20



and this completes the proof of Part I.

Part II. With similar techniques it can be shown that

limε→0
∂

∂η
log(L̄(λ1, η))

∣∣∣
(0,ε)

=
limε→0

∂
∂η
L̄(λ1, η)

∣∣∣
(0,ε)

limε→0L̄(λ1, η)
∣∣∣
(0,ε)

=
3(n− 1)

2n
+

(n2 − 1)

4n
γ̂2.
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