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Abstract

We evaluated the potential of the adult epipharynx to reveal interspecific differentiation patterns in closely related
Onthophagus species. Although easy to analyse, this structure has received little attention in Scarabaeidae taxonomy,
probably because a qualitative inspection of its shape often does not yield differences between congeneric species. The
polyphenic sister species Onthophagus taurus Schreber, 1759 and O. illyricus Scopoli, 1763 were chosen as a case study.
They are extremely similar, to the extent that in some cases they cannot be identified unambiguously without the help
of biomolecular analysis. In this study, a combination of linear measurements and a landmark-based approach was
employed to quantify inter- and intraspecific shape variation in the epipharynx of specimens sampled at the same study
site. Our results showed that the epipharynx is a monomorphic structure: its shape does not vary as a function of sex or
male phenotype. In males, epipharynx shape does not change with head shape or horn length. The close proximity of
the epipharynx to the horns and the synchronous developmental patterns of these two structures suggest that a
developmental trade-off may act between them. Despite these predisposing conditions, however, our results suggest
that epipharynx size is not subject to costs associated with horn development, and that the trait is highly canalised.
Surprisingly, when using geometric morphometrics the epipharynx appears to be a better tool than genitalia for
discriminating between the two sister species.
© 2009 Gesellschaft fiir Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
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Introduction tionary novelties (Moczek 2008a, 2008b). In both
species large, ‘major’ males bear horns, whereas smaller,

Among insects, the dung beetle species Onthophagus ‘minor’ males are hornless or exhibit strongly reduced
taurus Schreber, 1759 and O. illyricus Scopoli, 1763 are horns (Paulian 1935; Paulian and Baraud 1982; Cook
considered the epitomes of male polyphenism, and are 1987). This ecophenotypic variation arises because male
emerging as models for evo-devo studies aimed at adult body size is determined primarily by larval feeding
clarifying the mechanisms underlying the rise of evolu- conditions; only males with a body size exceeding a
critical threshold value develop large horns (Emlen
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and Emlen 1999, 2000; Simmons et al. 1999; Palestrini et
al. 2000).

Onthophagus taurus and O. illyricus are the only two
European species in the subgenus Onthophagus s.str.
(Zunino 1979), and are considered as sister species due
to their striking morphological (Balthasar 1963; Baraud
1992; Krell and Fery 1992; Moczek and Emlen 1999;
Martin-Piera and Loépez-Colon 2000) and genetic
similarity (Pizzo et al. 2006b).

Onthophagus  taurus shows a typical Turanic-
European-Mediterranean distribution (Balthasar 1963).
Between 1975 and 1984 it was introduced into Australia
and Tasmania as part of a biocontrol programme
(Tyndale-Biscoe 1990), and into the United States due
to one accidental and subsequent intentional releases.
The chorology of O. illyricus is Turanic-European; its
distribution widely overlaps with that of O. taurus.
However, its exact range is still imprecisely known due
to the unreliability of some distributional data (Martin-
Piera and Lopez-Colon 2000). In their extensive overlap
zone, the two species sometimes occur in syntopy (Pizzo
et al. 2006b; unpublished collecting results by the
authors). Moreover, besides sharing the same pedo-
trophic (paracoprid) behaviour (Halffter and Matthews
1966; Moczek 1998), the two species even seem to share
the same ecology and microhabitat: in the sympatric
populations sampled by the authors, their nests can be
found under the same dung pads, and differences in
food selection were never detected (Pizzo et al. 2006b;
unpublished data). The phenology, however, is slightly
different: O. taurus has two population peaks during
spring and summer, while O. illyricus peaks in the
summer only. Moreover, O. taurus is able to colonise
habitats at slightly higher altitude than O. illyricus
(Martin-Piera and Lopez-Colon 2000).

According to traditional classification criteria (Janssens
1960; Paulian and Baraud 1982), differences between
O. taurus and O. illyricus mainly concern the surface of
the elytra. Onthophagus illyricus elytra show granulation
on the sutural intervals (interstriae) and are pubescent
almost throughout, whereas those of O. faurus exhibit
uneven intervals with pubescence only in the apicodiscal
part. Punctures of the pronotal declivity of O. taurus are
weaker than those on the disc, whereas this difference is
not appreciable in O. illyricus (Krell and Fery 1992). All
other external characters can be considered as identical
in the two species. The shapes of structural components
of the genitalia provide another fairly reliable diagnostic
character for the identification of these species (Zunino
1971; Paulian and Baraud 1982), but in some cases a
certain degree of interspecific overlap in the shapes of
copulative structures remains (Pizzo et al. 2006a, 2008).

In this paper we test the usefulness of the shape of the
adult epipharynx, an internal foraging trait, as a tool to
reveal differentiation patterns between Omnthophagus
taurus and O. illyricus. The epipharynx (Fig. 1) is a

lobe-like structure on the inner surface of the clypeus; it
is largely membraneous but also contains a large, fairly
complicated sclerite (which is studied here), and it is
rich in sensilla. In Coleoptera the epipharynx was
studied first in larval stages, and then its adult structure
was also used in systematics and in phylogenetic
analyses (Dellacasa 1983; Barbero et al. 2003; Medina
et al. 2003; Philips et al. 2004). In Scarabacoidea the
epipharynx was studied comparatively by Nel and
Scholtz (1990). However, its shape has never been
analysed quantitatively.

The interspecific discriminatory power of a morpho-
logical structure can be biased by conditions increasing
its range of intraspecific variation. For example, a trait
could be highly dimorphic between sexes or strongly
dependent on ecophenotypic variation, making inter-
specific comparisons difficult. Therefore, we first in-
vestigated patterns of within-species variation in
epipharynx shape to test the effects of the possible

Fig. 1. Onthophagus taurus, adult epipharynx, distal margin at
top. Scale bar = 0.5 mm. The structure is formed by a double,
more or less thick membranous plate and by variously
sclerotised parts (the tormae). It is situated on the inner
surface of the clypeus, and is divided into a proximal and a
distal part by the proplegmatium (Pr), a well-developed
transversal plica (Nel and Scholtz 1990). Its distal margin is
deeply notched in the middle, and lined with dense and long
setae, the acropariae (Ac). The chaetopariae (Ch), a pair of
longitudinal rows of thick setae, are well-developed, extending
as far as the plegmatic area (PA). The latter is constituted by a
pair of well-developed, non-sclerotised, oval membranes on
the epipharynx surface. The anterior epitorma (Ep) is a narrow
rod-like but strong, sclerotised structure. The nesium (Ne), is
an arched, almost triangular subregion, with few evident
sensilla. The crepis (Cr) is an asymmetrical unpaired apodeme.
Dexiotorma (i.e. right torma; De) and laeotorma (i.e. left
torma; Lae) carry the pternotormae, a pair of internally
widened, symmetrical and rounded apodemes. For futher
details refer to Dellacasa and Dellacasa (2006).
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sources of intraspecific variation. Specific factors taken
into account were sexual dimorphism, male horn
polyphenism and covariation with head morphology,
because the epipharynx is set in a hollow of the head and
polyphenic horn development is correlated with varia-
tions in head morphology (Pizzo et al. 2006a; Macagno
et al. 2009). Thereafter we tested interspecific discrimi-
natory power of epipharynx shape.

We used a combination of linear measurements and a
landmark-based geometric morphometrics approach
(Bookstein 1991; Rohlf and Marcus 1993; Adams et
al. 2004) to quantify inter- and intraspecific epipharynx
shape differentiation between O. taurus and O. illyricus.
We did this study for a single exemplary study site, at
which the two species co-occur and where populations
have been studied intensively in preceding years (Pizzo
et al. 2006a, 2006b, 2008). While this surely limits the
general validity of our results, it was useful to keep
sample sizes manageable.

Static allometries and trade-offs: conceptual
framework

As in previous studies (e.g. Emlen 2001), we used
static allometries as the first step to point out correla-
tions between morphological traits. Allometry refers to
disproportionately large or small changes in one body
part relative to the size of the body as a whole, which
usually implies disproportionate investment, or resource
allocation, during development (Shingleton et al. 2007).
The development of any trait involves potential cost in
terms of resources. Thus, on the premise that resources
for growth are limited during ontogenesis, most traits
should be involved in trade-offs with other morpholo-
gical or functional features (Minelli 2004, 2007). There-
fore, the allometry of each trait is likely to be affected by
the allometry of every other trait (Bonduriansky and
Day 2003). Nijhout and Wheeler (1996) remarked on the
unique condition under which adult structures of
holometabolous insects grow. The metamorphosing
individual does not feed during the pupal stage. There-
fore, imaginal structures grow within a virtually closed
system in which body parts are in direct competition for
metabolic resources (Roth and Mercer 2000). Organ
competition was experimentally demonstrated first in
flies (Smith and French 1991) and butterflies (Nijhout
and Emlen 1998). In dung beetles of the genus
Onthophagus, the production of horns reduces the size
of neighbouring body parts such as antennae, eyes or
wings, depending on the cephalic or thoracic location of
the horns (Nijhout and Emlen 1998; Emlen 2001).

The respective precursors of adult horns and mouth-
parts develop from imaginal discs that proliferate during
the same prepupal growth stage (Svacha 1992; Moczek
et al. 2007). Thus it is likely that their development is

mediated, at least in part, by the same developmental
mechanisms (Truman and Riddiford 2002). These
considerations, together with the spatial proximity
between horns and epipharynx, suggested a possible
competition for resources. We therefore looked for clues
of developmental trade-offs between these body parts.

Moreover, since the process of evolutionary diver-
gence in holometabolous insects often goes along with
shifts in allometric slopes of functional traits (Weber
1990; Moczek and Nijhout 2003), epipharynx allome-
tries were also used to find clues of interspecific
differentiation.

Material and methods
Sampling

The geometric morphometric analysis was based on a
sample of 149 O. taurus (53 females; 96 males, i.e. 54
‘major’ plus 42 ‘minor’ ones) and 60 O. illyricus
(20 females; 40 males = 20 ‘major’+20 ‘minor’) col-
lected at La Mandria Natural Park (Venaria Reale,
Turin, NW Ttaly). These two populations had been
described in detail before, from both morphological and
molecular points of view (Pizzo et al. 2006b). Specimens
from that site can be assigned to either species
unambiguously based on elytra and pronotum puncta-
tion and genital shape (Pizzo et al. 2006b).

Relative warp (RW) analysis of epipharynx shape
variables and Partial Least Squares (PLS) analysis,
employed to describe covariation between epipharynx
and head shape, were performed on the whole sample.
The epipharynx static allometry vs. pronotum size
analyses were conducted on a subsample of 147
O. taurus (51 females; 96 males = 54 ‘major’+42
‘minor’) and 57 O. illyricus (20 females; 37 males = 20
‘major’+ 17 ‘minor’) from which both pronotum and
epipharynx were available. Regressions between horn
length and epipharynx shape variables, and the existence
of a trade-off between horn length and epipharynx size
were tested on 48 ‘major’ and 37 ‘minor’ males of
O. taurus, and on 19 ‘major’ and 16 ‘minor’ males of
O. illyricus.

Morphological measurements
and statistical analyses

Morphological terminology

Certain parts of the scarabaeoid epipharynx are often
referred to with different terms by various authors (Nel
and De Villiers 1988). Here, we employ the terminology
proposed by Barbero et al. (2003) (Fig. 1).
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Morphological preparations

Individuals were cleaned in boiling distilled water for
10 min and dissected. Epipharynges were extracted and
boiled for Smin in 5% caustic potash. After Smin in
distilled water, they were dehydrated for Smin in 70%
and S5min in 99% ethanol, then cleared in BioClear
(CIAB, Chemical Instruments AB, Liding6, Sweden) for
5min. Epipharynges were mounted in Canada Balsam
between microscope slides and coverslips. The Balsam
volume was standardised for all preparations. Heads
and pronota were then fixed separately on plasticine

supports. Epipharynx, head and pronotum images were
taken using a Leica Z16Apo stereoscopic dissecting
scope (Leica Microsystems AG, Wetzlar, Germany) at
magnifications of 57.5x (epipharynx), 32x (head), and
12.5x (pronotum).

Landmarks and measurements

In landmark-based morphometric analyses, the mor-
phology of an object is represented by coordinates of
sets of landmark points (Bookstein 1991). Landmarks,
chosen for their ease of identification, homology

— D

Fig. 2. Onthophagus taurus, positions of morphometric landmarks. (A) Head of ‘minor’ male. (B) Head of female. (C) Head of
‘major’ male. (D) Pronotum, dorsal side. (E) Epipharynx, ventral side. Landmarks (for definitions see text) were digitised on the left
half of each structure to avoid effects of bilateral asymmetry. Scale bars A-D = 1.0mm, E = 0.5mm.
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between the two species, and ability to capture the
general shape of each morphological structure, were
digitised using TpsDig 2.05 (Rohlf 2006a). To evaluate
the confidence of the landmark configuration, a repeat-
ability test was conducted as in Pizzo et al. (2008).
Landmarks on the head (N =5), pronotum (N = 4),
and epipharynx (N = 8) were digitised as shown in
Fig. 2. Landmarks of each specimen were optimally
aligned using a Generalised Procrustes Analysis (GPA)
to remove the non-shape effects of translation, rotation,
and scale (Rohlf 1990, 1999; Rohlf and Slice 1990). As
long as variation in shape space is small, the data in
tangent space are an almost perfect approximation of
the data in shape space; we tested this approximation
with TpsSmall 1.20 (Rohlf 2003). We used the thin-plate
spline (TPS) approach (Bookstein 1989, 1991; Rohlf
1999) to generate multivariate descriptions of the shape
of each specimen, and to visualise them on deformation
grids.

The landmarks were defined as follows: Head, left
side: 1) clypeal margin, on midline; 2) genal suture
at fore margin; 3) hind corner of eye; 4) frontal
suture, on midline; 5) upper margin of occipital
foramen, on midline. Pronotum, left side: 1) fore
margin, at midline; 2) fore margin, at base of fore
angle; 3) apex of fore angle; 4) hind margin, on midline.
Epipharynx: 1) fore margin, at anterior epitorma;
2) chaetopariae, at fore margin; 3) side margin of
proplegmatium; 4) lower junction point between laeo-
torma and the small transversal torma that links
lacotorma and crepis; 5) apex of crepis; 6) left
margin of nesium sensilla; 7) widening point of fore
epitorma, at intersection with unsclerotised portion of
plegmatic area; 8) chaetopariae, at joining point to
proplegmatium.

Relative warp analysis of epipharynx shape

GPA, multivariate descriptions of the shape variables,
relative warp analysis (the principal component analysis
of the partial warp scores) and visualisation of
transformation grids were performed using TpsRelw
1.45 (Rohlf 2007b) to describe intra- and interspecific
epipharynx shape variations. The two first relative
warp scores were plotted on an axis system using SPSS
14.0 software (SPSS Inc., Chicago, IL); parallel
inspection of relative warp plots and transformation
grids gave revealed trends in shape variation of the
structure. Discriminant analysis was carried out on
relative warp scores to obtain a classification matrix
based on epipharynx shape variation. We used the
percentages of correct classifications to evaluate whether
O. taurus and O. illyricus specimens form two distinct
groups.

Partial least squares analysis between
epipharynx and head shapes

As pointed out previously (Pizzo et al. 2008), the
PLS method is applied widely in many disparate
research fields. In spite of its unquestionable usefulness
(Streissguth et al. 1993; Abdi 2003), PLS analysis
remains relatively little used in geometric morpho-
metrics (MclIntosh et al. 1996; Rohlf and Corti 2000;
Roggero 2004; Zelditch et al. 2004; Bastir and Rosas
2006; Marugan-Lobon and Buscalioni 2006; Gomes and
Monteiro 2008). Here, TpsPLS 1.18 (Rohlf 2006b) was
employed to describe covariation between epipharynx
and head shape. The hypothesised pattern of covaria-
tion of the two anatomical structures was tested through
the cross-set analysis (r value representing the correla-
tion degree) (Rohlf 2006b). The PLS method requires
homogeneous samples, so we analysed O. taurus and
O. illyricus separately.

Regression between horn length and
epipharynx shape variables

To evaluate the possible influence of horn growth on
epipharynx shape we performed a regression test
between horn length and epipharynx shape variables
using TpsRegr 1.34 (Rohlf 2007a). Horn length was
measured following the outer edge of the horn as in
Moczek (2006), using the software LAS v 2.5.0 (Leica
Application Suite).

Trade-off between horns and epipharynx

Onthophagus taurus and O. illyricus horn lengths were
graphed as a function of body size (Eberhard and
Gutierrez 1991; Emlen and Nijhout 2000; Moczek and
Nijhout 2003), and their scaling relationships were
determined by fitting to the data the four-parameter
non-linear regression

ax’
Y=htare

(Moczek et al. 2004), where x is body size, y is horn
length, y, specifies the minimum horn length, a defines
the horn length range in the sample, b represents a slope
coefficient, and c is body size at the point of inflection of
the sigmoid curve. Epipharynx vs. pronotum centroid
size scaling relationships were assessed with a linear
regression model (y = yo+bx). Developmental trade-
offs between horns and epipharynx were looked for as
negative correlations between residuals of each scaling
relation (Emlen 2001). Best fitting equations, calculation
of residuals and their correlation were performed with
the software package SigmaPlot (Systat Software Inc.,
Richmond, CA).
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Epipharynx static allometry

In geometric morphometrics, the value of centroid
size (the square root of the sum of squared distances of
the set of landmarks from their centroid, measured on
calibrated images) can be used as a proxy for the size of
a structure (Alibert et al. 2001; Rosenberg 2001;
Ubukata 2003; Pizzo et al. 2006a). We used the centroid
size values as an estimation of epipharynx size, and the
pronotum centroid size as an inference on general body
size. These log-transformed variables were regressed
with SPSS 14.0. We tested the homogeneity of the slopes
of regression lines found for O. taurus and O. illyricus,
respectively, by including the interaction term between
the covariate (log-transformed pronotum centroid size)
and the factor (species) in an analysis of covariance
using Statistica 6.0 (StatSoft Inc., Tulsa, OK) (Engqvist
2005).

Results
The TpsSmall analysis (correlation coefficient
r=1.000, slope =0.9996, root of mean squared

error = 0.000025) confirmed very good correspondence
between shape space and tangent space, thus indicating
that the geometrical heterogeneity of the sample was
small enough to allow subsequent analyses.

Sexual dimorphism

In the relative warp (RW) analysis of epipharynx
shape, the respective first RW score explains 17.32% of

006 0. taurus
0.04 — . . o
[e]
® oo ¢ o
. o o
002+ . ,32. i, *
§ %’ ~..‘é>0 $°
4 . o P
€ 000 <30 ssdertc, .
~ . '%5%3 o °
; o L 3 © %0 © o )
x 00, o 8
o °
-0.02 o . ood® b oo
o o o L
-0.04 — ° L, o e
[e]
[ X}
-0.06 —
x [ T T T I x
008 005 003 000 002 005 008

RW 1 (17.32%)

A. Pizzo et al. / Organisms, Diversity & Evolution 9 (2009) 189-200

the total variation in O. taurus, 18.89% in O. illyricus;
the second score explains 15.51% in O. taurus, 15.85%
in O. illyricus (Fig. 3). The plots of these two first RW
scores display consistent overlap between the sexes,
hence clearly show that the epipharynx is a non-
dimorphic structure.

Male polyphenism

In the RW analysis of male epipharynx shape, the
respective first RW score explains 21.12% of the total
variation in O. taurus, 22.54% in O. illyricus; the second
score explains 15.32% in O. taurus, 18.32% in
O. illyricus. Male morphs largely overlap in the plot of
the two first RW scores (not figured), suggesting that
epipharynx shape does not vary as a function of male
polyphenism.

Covariation between epipharynx and head shape

In the PLS analysis between epipharynx and head
shapes, six dimensions were computed for each species.
Values of r (i.e. the coefficients of correlation between
shape vectors 1 and 2) for each dimension were low and
similar in the two species. Most of the covariation is
concentrated in the respective first two dimensions, but
although all permutation tests gave significant p-values
(<0.01), covariation values were essentially negligible
(<0.001) (Table 1).
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Fig. 3. Scatterplots of the respective first two relative warp (RW) scores obtained from the separate analyses of epipharynx shape in
Onthophagus taurus and O. illyricus; percentage of shape variation explained by each RW reported in brackets. Open
circles = females; solid circles = males. Epipharynx shape does not permit intraspecific discrimination of the sexes.
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Table 1. Results of Partial Least Squares analysis of shape
vectors 1 (head) and 2 (epipharynx) for Onthophagus taurus
and O. illyricus.

Species Dimension  Covariance Correlation Explained
coefficient r  covariation
(%)
O. taurus 1 233-1074 0.53 56.72
2 1.86-107* 0.49 35.93
3 7.15-107° 0.29 5.32
4 3.29.107° 0.28 1.13
5 2.38-107° 0.11 0.59
6 1.71-1073 0.12 0.30
0. illyricus 1 1.72-107* 0.54 43.94
2 1.55-107* 0.42 35.85
3 9.91-107° 0.39 14.61
4 4.85.107° 0.28 3.50
5 3.18-107° 0.30 1.50
6 2.00-107° 0.32 0.60

Regression between horn length
and epipharynx shape

Regression between horn length and epipharynx
shape as described by partial warps gave significant
results both for O. taurus (Wilks’ Lambda = 0.63,
Fip7,=2.762, p<0.001; Generalised Goodall F-test:
F12.996 = 2.96, p<0.001; Permutation test = 0.20%) and
O. illyricus (Wilks’ Lambda =0.39, Fjy,; = 2.76,
p =0.02; Generalised Goodall F-test: Fj5 354 = 2.96,
p =0.019; Permutation test =2.60%). However, the
deformation predicting epipharynx shape as a function
of horn length (provided by deformation grids; not
figured) was very low and barely detectable.

Trade-off

Onthophagus taurus and O. illyricus horn length/body
size scaling relationships were respectively represented
by the two four-parameter non-linear regressions

3.6x26A2

2
and

54.32x363
y =386+ X (R2=078).

0.34365 4 x3.65

Epipharynx and pronotum centroid size scaling
relationships were assessed with the two linear regres-
sion models y = 0.21+0.20x for O. taurus (R> = 0.99)
and y = 0.08+0.22x for O. illyricus (R* = 0.90); corre-
lation of residuals of the first and the second regression
did not reveal any evidence of negative trade-offs in
either species (y =0.01x, R>=0.05 for O. taurus;
y = 0.005x, R*> = 0.32 for O. illyricus).

Interspecific shape differences

In the RW analysis aimed at describing epipharynx
shape variation between O. taurus and O. illyricus,
including all specimens regardless of sex and morph, the
first RW score explains 22.71% of the total variation,
the second 14.04%: only minimal overlap between
specimens of the two species is detectable (Fig. 4).
Discriminant analysis performed on RW scores showed
that 100% of O. illyricus and 98% of O. taurus were
classified correctly (Wilks’ Lambda = 0.23, 7> = 299.31,
2<0.001).

Visualisation of the deformation grids made it
possible to describe trends of epipharynx shape varia-
tion between the two species: visual inspection of these
warp grids showed that generally the epipharynx of
O. taurus is more compressed laterally (Fig. 4: land-
marks 2, 3 and 8). In O. illyricus, on the other hand, the
part of the plegmatic area between nesium (landmark 6)
and proximal edge of anterior epitorma (landmark 7) is
more compressed and narrower. This appears to be the
most variable area in both species, while the anterior
epitorma, the laeotorma and the crepis (landmark 5) are
slightly less variable. Additionally, the crepis seems
shorter in O. taurus, with the apex more arched; the
chaetopariae show a small amount of interspecific
dimorphism, and they are more rectilinear in O. taurus,
more arched and stouter in O. illyricus (landmarks 2
and 8).

Epipharynx static allometry

Regressions between the log-transformed values for
pronotum and epipharynx centroid size were significant
both for O. tauwrus (y = —0.472+0.803x; R>=0.74;
Fy 145 = 413.467; p<0.001) and O. illyricus (y = —0.587 +
0.974x; R* = 0.812; F| 55 = 237.913; p<0.001). The statis-
tical comparison between the two regression lines showed
that epipharynx scaling is different between the two species:
the two regression lines differ significantly in their angular
coefficient (species*log-transformed pronotum centroid size
effect: Fi 590 = 6.16; p = 0.013). Regression plots are shown
in Fig. 5.

Discussion

The goal of this study was to evaluate the potential of
the adult epipharynx as a tool for revealing differentia-
tion patterns between closely related Onthophagus
species. A combination of traditional and geometric
morphometric techniques, which provide a powerful
tool for highlighting subtle, yet significant, morpholo-
gical modifications (Rohlf and Marcus 1993; Baylac
et al. 2003), were chosen to gain insight into epipharynx
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Fig. 4. Epipharynx shape differentiation between Onthophagus
taurus and O. illyricus. Top: scatterplot of first two relative
warp (RW) scores obtained from epipharynx analysis; black
diamonds = O. taurus, grey diamonds = O. illyricus. Bottom
left and right: TPS transformation grids for specimens plotted
on the left (O. taurus) and right (O. illyricus) extremity of first
RW axis. Bottom center: consensus shape.

differentiation patterns. A morphological character is
reliable for interspecific discrimination if it is charac-
terised by low intraspecific variability relative to
interspecific variation. Therefore, analyses were con-
ducted by first assessing the effects of all possible
sources of intraspecific variation (sexual dimorphism,
male horn polyphenism and covariation with head
morphology) on epipharynx shape. Secondly, the
reliability of interspecific variation patterns was ana-
lysed quantitatively.

Intraspecific variation
In both Onthophagus species, epipharynx shape is

indistinguishable between females and ‘major’ and
‘minor’ males, as evident from the relative-warp plots.

In males, the regression between horn length and
epipharynx shape, although slightly significant, does
not support any consistent modifications of the struc-
ture in response to horn development (deformation grids
depict negligible shape variation).

Since the epipharynx is placed in a cavity of the head
(anterior pharynx wall), one might have expected
variation in its shape reflecting that of the head. Sex-
and morph-dependent head shape variation has been
highlighted in some Onthophagus species (Pizzo et al.
2006a; Macagno et al. 2009), where the head undergoes
a morphological readjustment to accommodate horns
of considerable bulk and disproportionate length. In
O. taurus and O. illyricus, female heads differ only
slightly from those of ‘minor’ males. The latter have
longer, narrower heads, which can be beneficial —com-
pared to those of ‘major’ males — when running through
narrow tunnels to reach a female (Moczek and Emlen
2000; Pizzo et al. 2006a). In ‘major’ males the head is
larger, more rounded and compressed longitudinally,
thus giving the appearance of a massive build that could
be advantageous in fighting (Pizzo et al. 2006a). Never-
theless, the analysis of covariation between epipharynx
and head shape did not reveal a shared trend of
variation.

The absence of epipharynx shape variation between
the sexes and between the male morphs, as well as the
absence of covariation with general head shape, is
expected on the basis of strong constraints related to the
feeding habits of individuals. The epipharynx plays an
extremely specific role in that it is used to filter and select
food particles. Considering the strict association of
Onthophagus species with particular feeding resources
(Halffter and Matthews 1966), stabilising selective
pressures are likely to act on this structure, so that
optimal functionality is maintained independent of sex
and morph (Palestrini et al. 2000).

The close proximity between epipharynx and horns
and their common and synchronous developmental
patterns suggest a potential developmental trade-off
between epipharynx and horns (Emlen 2001). Under this
hypothesis, a negative correlation between residuals of
epipharynx/pronotum and horn length/pronotum size
scaling relationships could have been expected. On the
contrary, our results showed that, despite the mentioned
predisposing conditions, epipharynx size is not influ-
enced by costs associated with horn development.
Nijhout and Emlen (1998) demonstrated that in
Onthophagus taurus the allocation of resources to horn
development results in reductions in relative size of the
compound eyes. The fact that the epipharynx does not
show trade-off effects of horn development might
suggest that the feeding function is more important
than the visual one for the ecology of the species
(Halffter and Matthews 1966). Under this scenario,
epipharynx size and shape appear to be strongly
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Fig. 5. Scaling relations between log-transformed centroid size
(CS) values for pronotum and epipharynx in Onthophagus
taurus (black diamonds) and O. illyricus (grey diamonds).

canalised. In general, trade-offs are strongest when the
traits develop simultaneously, and when the develop-
mental processes involved are similar (Nijhout 1994).
Onthophagus horns and epipharynx satisfy both of these
conditions; nevertheless our results suggest that these
features may have independent and compartmentalised
developmental trajectories. Developmentally compart-
mentalised traits tend to incur highly canalised resource
use, and this may facilitate independent evolution of the
traits.

Interspecific variation

In a study conducted on 36 species of the genus
Phalops (Scarabaeinae), Palestrini et al. (1995) showed
that, within each species, epipharynx general morphol-
ogy and chaetotaxis (the number and spatial arrange-
ment of setaec on the ventral epipharynx surface) are
quite constant. On the basis of qualitative inspection of
the structure, no sexual dimorphism was detected in any
species. However, different, independent evolutionary
forces seem to be able to model this structure. It is likely
that general shape and chaetotaxis reflect different
evolutionary mechanisms. The general shape of the
structure might depend on phylogenetic constraints,
because it varies between species as a function of their
phylogenetic relationships. Chaetotaxis, in contrast,
should be more subject to adaptive convergence,

because it is very similar among groups that are
phylogenetically remote but live in similar environments
(Barbero et al. 2003). This hypothesis is supported by
the results of Verdu and Galante (2004), who showed
that one of the most evident adaptations to xeric
conditions is a shared trend of modification of the
mouthparts such as the epipharynx, especially in
those characters connected with chaetotaxis. Species
adapted to the use of dry dung (e.g. Onthophagus
emarginatus, O. punctatus, O. latigena) exhibit strongly
developed setae on the epizygum, zygum, and apices of
the acropariae.

Onthophagus taurus and O. illyricus are both soft-diet
consumers. Where their distribution ranges overlap the
two species occur not only sympatrically but also
syntopically, and can be found to feed on exactly the
same resources and on the same dung pads. Accord-
ingly, their chaetotaxies do not show any of the
described environmental adaptations; on the contrary,
setae are thin and disposed in a corresponding pattern in
the two species. However, when shape attributes of the
epipharynx are considered, small but nonetheless
significant differences clearly arise. Our results show
that even if the first relative warp score only explains
about 23% of the total variation (Fig. 4), the modifica-
tions that it describes are sufficient to discriminate the
species, as demonstrated by the extremely high percen-
tages of correct classifications obtained from discrimi-
nant analysis. Such differences have been quantitatively
assessed here for the first time and, on the basis of
previous considerations, there is scant evidence that they
might have arisen as a consequence of different
ecological adaptations (e.g. dry vs. soft resource use).
Moreover, molecular data have provided evidence of a
historical genetic isolation that persists today, whereas
there is no evidence for any historical or recent
ecological differentiation between Onthophagus taurus
and O. illyricus (Pizzo et al. 2006b). Therefore, inter-
specific differences in the epipharynx might be the
outcome of some secondary effects of allopatric specia-
tion, e.g. of stochastic events (genetic drift or mutations
in genes indirectly involved in defining epipharynx
shape) that occurred at early stages of the divergence
process. Selective constraints on more functional
variants may have canalised and maintained the
differentiation.

In this species pair, a clear genetic divergence
corresponds to a moderate genitalic differentiation and
a very subtle morphological divergence in external traits
(Pizzo et al. 2006a, 2006b). Surprisingly, the epipharynx
makes a better character for distinguishing the two
species than the genitalia, at least when using geometric
morphometric tools. This could be partially due to the
fact that landmark positioning is easier on the rather flat
epipharynx than on a three-dimensional structure
(aedeagus, vagina).
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In both species, the allometric coefficients found are
as expected of body traits that are not under sexual
selection, i.e. equal to or slightly lower than 1.0 (Harvey
and Pagel 1991). The only published work on the
O. taurus epipharynx (Palestrini et al. 2000) reported
epipharynx allometric values lower than those of
external body traits and only slightly higher than those
of genitalia. In that paper, the authors used traditional
morphometrics to obtain four dimensional variables on
the epipharynx (height of epitorma, width of half the
apical portion of epipharynx, width of half the
plegmatical area, height of plegmatical area). They
interpreted their results to suggest that this internal trait
undergoes developmental processes and is subjected to
selective pressures quite different from those affecting
external traits. Palestrini et al. also indicated the
possibility that a developmental trade-off has acted on
this trait. In contrast, we found an almost isometric
relationship. A possible explanation of these differences
is that traditional measures might underestimate actual
dimensional variation. Centroid size, instead, is able to
take into account the overall dimensional variation, and
may represent better the actual allometric relationships
between traits.

Another aspect that provides evidence for this
interspecific differentiation pattern is the fact that
O. taurus and O. illyricus differ in their scaling relations
(or static allometries; Shingleton et al. 2007) between
epipharynx and pronotum centroid sizes. In Drosophila
melanogaster it has been demonstrated that much
additive genetic variance exists for individual dimension
of wings, such that wing allometry can be changed in
any direction by drift (Weber 1990). If a similar pattern
applies to the epipharynx in Onthophagus, the diver-
gence in epipharynx static allometry between the two
sister species may be interpreted as an effect of allopatric
speciation. This divergence is even more significant
when considering that the two species occupy the same
trophic niche. This may be additional circumstantial
proof that the main process that drove epipharynx
interspecific differences was stochastic and not caused
by selection towards specific adaptations.

Further analyses of epipharynx variation over the
entire geographic range of these and other sister species
could offer a more complete characterisation of the trait
and its usefulness for taxonomic purposes.
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