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Abstract

In this paper we consider a class of linear partial differential equations with multiple
characteristics, whose principal part is elliptic in a set of variables. We assume that the
subprincipal symbol has real part different from zero and that its imaginary part does
not change sign. We then prove the local solvability of such a class of operators in mixed
Gevrey-C'® spaces, in the sense that the linear equation admits a local solution when the
datum is Gevrey in some variables and only C'*° in the other ones.

2000 Mathematics Subject Classification: 35505, 35A07, 35A27.

1 Introduction

In this paper we study the local solvability of a class of linear partial differential equations
with multiple characteristics. We say that an operator

Aw,D) = > ca(w)D, (1.1)

lal<m

with cq(w) € C®(R), for an open set Q C R”, and D = (—i)l?19*, is O locally solvable at
xo € Q if there exists a neighborhood V' C € of x( such that for every f € C§°(V') there exists
u € D'(V) satisfying A(w, D)u = f. It is well known that there exist non locally solvable
operators, of a very simple form. The first example was given by Lewy [17], who proved that
the equation

Dy, u~+ iDyyu + i(wy + iwa) Dy,u = f

does not have any distribution solution u in any open non-void subset of R? for a suitable f €
C>(R3). This example was generalized by Hérmander [11], who gave a necessary condition
for the local solvability.



A natural question concerning non C* locally solvable operators is the following: is it
possible to restrict the set of right-hand sides f in such a way that for every f in such a
smaller set the equation A(w, D)u = f has a solution in some distribution space? A suitable
functional setting for this purpose is given by Gevrey spaces. Let us fix s > 1 and an open set
) C R"; we say that f is Gevrey of order s in 2, and we write f € G*(Q), if f € C*°(Q2) and
for every compact set K C () there exists a positive constant C' such that for every o € Z7}
the following estimates hold:

sup [0° £ (w)] < CloH1 (a1)e.
weK

For s > 1 we set G§(2) = G*(Q) N C§°(2). The Gevrey spaces turn out to be a scale of
spaces between the analytic and the C'*° functions, as

AQ) =G Q) c---CcG(N) CGHQ) C---COC®(Q)

for every 1 < s < t, A(Q2) being the set of analytic functions in €. Similarly to the C*
case we say that a linear partial differential operator A(w, D) with coefficients in G*(2) is
G? locally solvable at xg € 2, s > 1, if there exists a neighborhood V' C € of x( such that for
every f € G§(V) there exists u € D,(V) satistying A(w, D)u = f, where D (V) is the space
of ultradistributions, dual of G§(V). Since C'*° local solvability implies G* local solvability
for every s > 1 and G! local solvability implies G* local solvability for every 1 < s < t, the
set {s > 1: A(w, D) is G* locally solvable at x} is either the empty set or an interval of the
kind (1,s0) or (1,sp] for s > 1. For an operator A(w, D) that is not C* locally solvable
we can then look for which Gevrey indexes s it remains not G* locally solvable and if, for s
sufficiently small, it becomes G* locally solvable.
Given an operator A(w, D) as in (1.1) we consider its principal symbol, given by

am(w, () = Z ca(w)C?,

laf=m

and the corresponding characteristic manifold

Y ={(w,{) € Q2 x (R"\{0}) : ay(w, () = 0}.

If Veam(w, ¢) # 0 for all (w,() € ¥ we say that A(w, D) is of principal type. For such oper-
ators a necessary and sufficient condition for the C* local solvability has been provided, cf.
Nirenberg-Treves [22, 23|, and such condition turns out to be necessary and sufficient also for
the G*® local solvability, for every s > 1, cf. [30]. The attention has then been devoted in the
last years to operators with multiple characteristics, i.e. operators with non-empty character-
istic manifold ¥ and for which the gradient of the principal symbol vanishes somewhere on 3.
In this case several results have been obtained, see for instance Mascarello-Rodino [21] and
the references therein, but general necessary and sufficient conditions, comparable to the one
of Nirenberg-Treves for operators of principal type, are missing. In the case of operators with



multiple characteristics the local solvability in Gevrey classes turns out to be an interesting
problem, as there are operators that are not C'® locally solvable but are locally solvable
in some Gevrey spaces, cf. for example Corli [4], Popivanov [28], [29], Oliaro-Rodino [25],
Oliaro-Popivanov [24], Rodino [31], Gramchev-Popivanov [9]. Moreover, variants and gener-
alizations of Gevrey spaces have been considered, such as e.g. ultradifferentiable classes, cf.
for instance Braun-Meise-Taylor [3], Jornet-Oliaro [15], or anisotropic spaces, that permit to
find more precise results by allowing different Gevrey orders in different variables, cf. for ex-
ample Lorenz [19], Sananin [33], Liess-Rodino [18], Marcolongo-Oliaro [20], De Donno-Oliaro
[6, 7].

In this paper we work with anisotropic spaces of functions that can be Gevrey of different
order in different variables and just C*° in other variables. We introduce now the class of
operators that we shall study and we illustrate the main result of the paper. Let us consider
ze€RP yeR?withp,q e N, p,g>1. Fix o € R? with o5, > 1 for every h=1,...,q. We set

w=(z,y) €RPTY ¢ =(1,0) € RPTY, (1.2)

where 1 = (1,...,1) € RP; we study the following (anisotropic) partial differential operator:

P(w?D):Pl(waDr)_PQ(w7Dy)+Q(w¢D) (13)
where
Pi(w,Dy) = > aq(w)DY, (1.4)
|a|=m
Py(w,Dy) = > bs(w)D} (1.5)
(B,0)=m
and
Qw,D)= Y c,(w)D}, m*<m; (1.6)
(v,¢)<m*

the multi-indexes satisfy o € Zﬂ, b€ Zi, v E foq and the notation (-, -) stands for the usual
inner product in the respective space R™. The covariable associated to z,y,w, are denoted
respectively by &,n, (; we then have ( = (&, 7).

We suppose that the following conditions are satisfied:

p1(w, &) is &-elliptic and R pa(w,n) # 0 for n # 0, (1.7)

where p1(w,§) and po(w,n) are the symbols of Pi(w,D,) and P»(w, D) respectively, and
moreover the ‘¢-ellipticity’ of pj(w,£) means that there exist positive constants ¢; and co,
c1 < ¢, such that

(€)™ < Ip1(w, §)[ < e2(§)™
for every w € Q, £ € RP, (£) > 0, where 2 is a neighborhood of the origin in RPT? and

(€ =1+ gHY2 (1.8)



We present now the main result, here in a simplified form. Let € be a neighborhood of the
origin in RPT4. We shall write in the following G2(Q), A € RP, A\; > 1 for j = 1,...,p, for the
space of all the functions that are, roughly speaking, Gevrey of order A; in the z;-variable,
j=1,...,p, and C*™ in the y-variables; analogously, G}/ (Q), p € R%, up, > 1 for h=1,...,q,
indicates the set of all the functions that are C**° in the z-variables and Gevrey of order uyp
in the yp-variable, h = 1,...,¢q. For a precise definition of these spaces, see Definition 2.6.

Theorem 1.1. Let the coefficients of P(w, D) be analytic. We suppose that the operator
P(w, D) satisfies (1.7), and moreover that S p2(w,n) does not change sign for (w,n) € QxRI
(we allow I p2(w,n) to vanish, even identically, on Q0 x RY).

Let us define ro = max{%, 1—(m—m*)} and fix X € RP, p € R? such that 1 < \; < % for
j=1,...;pand 1 < pup < forh=1,...,q. Then the equation

T0

P(w, D)u = f(z,y)
admits a classical solution for f € GX(Q) N C§(Q), or alternatively f € G4(Q) N C(Q).

Theorem 1.1 states a sort of mixed Gevrey-C* local solvability of the operator P(w, D),
in the sense that the datum is allowed to be C* in a set of variables (z or y) but it is
forced to be Gevrey in the other variables. For a more complete statement of Theorem 1.1
see Theorems 3.1 and 3.6, which establish the existence of a parametrix of P in the scale of
Gevrey-Sobolev spaces H;’jf(Rp‘*'q).

Basic examples and source for our work are operators whose principal part is the Laplace (or
powers of the Laplace) operator. Consider for example

Ly, q(w,D) = A" 4 b(x, y)DZ, (1.9)

P
where A, = > ng, x € RP, y € R, m,d € N with d < 2m and b(z,y) is analytic with non
j=1

vanishing real part. Interesting results on the operator L., 4(w, D), for m = d = 1 can be
found in Boutet de Monvel [2] and in Popivanov [27], in which phenomena of hypoellipticity,
local solvability and propagation of singularities for Schrédinger type equations are analyzed.
Observe that if d is even and Rb(z,y) > 0 then L,, 4(w, D) is quasi elliptic, and then its
C local solvability is known from general result, cf. for example Mascarello-Rodino [21].
Suppose now that

Rb(x,y) <0 and I b(x,y) does not change sign on €2, (1.10)

Q) being a neighborhood of the origin in RP*!. In this case Popivanov [27] proved the C*
local solvability of Lji(w,D), but under an additional condition, which actually implies
that b(z,y) cannot vanish identically on €. Theorem 1.1 gives us the local solvability
of L 1(w, D) under the assumption (1.10), without any additional condition (in particular
3'b(x, y) may vanish identically), but in mixed Gevrey-C> spaces; more precisely, we obtain
that the equation Ly (w, D)u = f(x,y) is locally solvable when f is C* in x and G*, s < 4,



in y, or alternatively when f is G°, s < 2, in x and C'* in y, G° being the usual isotropic
Gevrey space. More generally, for m,d € N, d < 2m, the equation L,, 4(w, D)u = f(z,y)
turns out to be locally solvable when f is C* in x and G°, s < 4%}, in y, or alternatively
when f is G°, s < 2, in x and C* in y.

Let us analyze another example, in the case y € R?, ¢ > 1:

A(w, D) = AP — (1 +i[w]*) (D2 + D2)P~! + Q(w, D), (1.11)

(1.11) play the role of P;(w, D) and Pa(w, Dy), respectively, in (1.3); in particular we have

x € R,y € R?, pa,b € N, 1 < a < b, where A” and (1 —|—i|w\2)(D§;‘ + D;g’)p*1 in

m = bp, 0 = (01,09) = (a(;”il), p%l). De Donno [5] proved results of hypoellipticity for
A(w, D) under nonvanishing hypotheses on the imaginary part of Q(w, D); for example the
C* hypoellipticity and local solvability at the origin of A(w, D) is proved in [5] in the case
Q(w,D) = i(D§f+D§g)p_2Ag, p > 4b+2. Here we do not require non vanishing conditions on
Q(w, D), obtaining local solvability in mixed Gevrey-C™ classes; more precisely if in (1.11)

we choose Q(w, D) =0, p,a,b € N, 1 < a < b, we have that the equation A(w, D)u = f(z,y)

admits a local solution when f(z,y) is C*° in the z-variables, G*, s < %, in the y-
variable and G*, s < %, in the ys-variable, or alternatively when f(x,y) is G®, s < 2, in

the x-variables and C'° in the y-variables.

In this paper we use the machinery of pseudo-differential operators (cf. for example Treves
[34]) and techniques from microlocal analysis. In particular the idea is to transform the
operator P(w, D) into another one, by means of a conjugation of the type

P(w, D) = ¥ WP P(w, D) (te™¥(w:=D)),

te=?(w.=D) heing the transposed of e~ %(w:—D) (i.e. te=(w,=D) ig the pseudodifferential op-
erator whose right symbol is e~¥(.0) By a suitable choice of the phase Y(w, D) we can
then apply to P(w, D) the results of De Donno [5], since we show that the operator P(w, D)
contains a lower order term Q(w, D) whose imaginary part turns out to satisfy the non
vanishing condition required in [5]. Then P(w,D) is C* locally solvable. The conju-
gation allows us to transfer on P(w, D) the local solvability in mixed Gevrey-C™ classes.
This technique has already been used in some papers, starting from the work of Kajitani-
Wakabayashi [16]; we refer also to Gramchev-Rodino [10] for the isotropic case, Marcolongo-
Oliaro [20] in the anisotropic frame, and to De Donno-Oliaro [6, 7], in which the influ-
ence of the lower order terms is also taken into account. One of the novelties here is that
we propose in the conjugation a microlocalisation near the anisotropic characteristic set
{(w,¢) € Q x (RPt9\ {0}) : p1(w, &) — pa(w,n) = 0}, that allows us to obtain solvability
in mixed Gevrey-C* classes, whereas the results in the above quoted papers are only in
Gevrey. Moreover, we consider in (1.4) a multidimensional variable z; this causes significant
complications in the study of the conjugate operator and in the choice of the phase 1. We
finally note that some of the results contained in the present work were announced, in a very
preliminary form and without proofs, in Oliaro [26].



2 Banach spaces of Gevrey-C*™ functions

In this section we present a class of Gevrey-Sobolev spaces that we shall use as functional
setting in the analysis of the local solvability of the operator (1.3). To start with, we say that
' C RPTY is a ‘¢-conical set’, ¢ as in (1.2), if it contains the points

(0€1, -, 08, 07 M, - .., 077ng)
for every ¢ > 0 whenever it contains the point (£, 7).

Definition 2.1. We say that an L?>(RPY9) function f(w) belongs to the space H;’;(R”“‘q),
s> 0, ¢ = (1,0), if the following norm is finite:

A 1/2
I = ([ @xlforac)

(o = (&) + (Mo, (2.1)

where

(Mo being given by
q
o= Dt lmf* )2, (2.2)
h=1
Definition 2.2. A function ¢(w,¢) € C®(R2P+) is said to be a weight function of order

(r,¢), 7€ (0,1), ¢ asin (1.2), if Y(w, () is non-negative and satisfies the following condition:
for every v,0 € Z’ﬁ'q there exists a constant C such that

080w, )] < TRy 1 ()0, (23)

for ({)¢ >0 and allw € RPTY9, where € = (e1,...,€ptrq) withej > 1 for every j =1,...,p+q.

Let us now introduce the (anisotropic) characteristic manifold of the operator P: it is
denoted by Y4 and it is defined as follows:

Sg = {(w,¢) € @ x (RPN {0}) : p1(w, &) — p2(w,n) = 0}, (2.4)

where Q is a neighborhood of the origin in RP*9, say, Q = {w € RPT? : |w| < §p} for a fixed
(50 > 0.

Remark 2.3. Since we have assumed that the condition (1.7) is satisfied, we have that ¥
is contained in a ¢-conical set of the type 0 x I'y, where

Ly ={(&n) € RFTI\ {0} : c(n)y < (€) < Cn)o} (2.5)

for suitable constants ¢ < C.



This last remark gives rise to analyze the operator P only in a set of the type Q x I'y,
since outside such a set P is microlocally quasi-elliptic. We then suppose from now on that
the weight function ¢ (w, () vanishes identically for ¢ ¢ I'y. So we can assume (if necessary)
that (w, () satisfies the following estimates for every v,d € Z5? in place of (2.3):

103,02 (w, ¢)] < CHFNIHILy 1€ g1e (g)r1 =070 (gyra=(7.e), (2.6)

where r1, 7 € (0,1), r1 + 72 = r, and we have split Z{Trq 50 =(0,0") with &' e 2, 6" € ZY..
In particular it shall be useful to consider (2.6) in the cases r1 = 0 or ro = 0, assuming then
that the weight function satisfies estimates of the type

10308 (w, )| < CHHIIHL1e 51e () =(0) (1yr= (0" (2.7)

or

10308 (w, Q)| < CHHIIH 1€ 51e ) r=0"0) () (0" (2.8)

for every (w,() € R2PFD)_ (), > 0.
We now pass to define our class of Gevrey-Sobolev spaces.

Definition 2.4. Let ¢(w,() be a weight function of order (r,¢) and s > 0 a real number.
Then H;’gf(RHq) is defined to be the set of all the L* functions f(w) such that || f||syp.er < 00,
where

1f s = e £l

the exponential operator e¥("-P) acts in the following way: e¥(W:Plg(w) = [ ™0 g(¢)dc,
where d¢ = (2m)~P*9 d¢.

Spaces of the kind of H ’w have been first introduced by Kajitani-Wakabayashi [16] and
then used in various 51tuat10ns in the study of partial differential equations in Gevrey classes,
cf. for example Gramchev-Rodino [10] for the isotropic case, Marcolongo-Oliaro [20], D
Donno-Oliaro [6] in the anisotropic frame, Bourdaud-Reissig-Sickel [1] where the composition
is investigated, Jornet-Oliaro [15] where spaces related to ¢’¢ are considered in the frame of
ultradifferentiable functions.

We want now to prove that Hjﬁf contains suitable classes of Gevrey anisotropic functions.

To this aim we need the followiﬁg lemma.

Lemma 2.5. Let a(w,() € C®(R2P+9) be o function such that for every v, € forq and
N € N there exists a constant C.s(N) satisfying

05,02a(w, ¢)] < Cra(N)I¢| 7,
for every (w, () € RXPH0) . Then
Flo(alw, Q) € S(RPY), (2.9)

where F~1 stands for the inverse Fourier transform.



Proof. Let us fix v,6 € Z’fq; by a simple computation and an integration by parts, for every
N € N we have:

‘uﬂ@fv (S"Eiw(a(w,g)))‘ = ‘uﬂz (i) /C”eiwgai)_”a(w,@ ac

v<d

IS () S fetamon

v<s n<y
pu<v

<> <i> > (Z) / <1V oy (NS G

v<é p<y
u<v

for N sufficiently large the last integral is convergent, and so (2.9) is true. O

Let us now define suitable classes of anisotropic Gevrey functions.

Definition 2.6. Fiz A € RP and o € R? in such a way that \j > 1 for every j = 1,...,p
and pup, > 1 for every h=1,...,q.

(i) We say that g(w) belongs to the space GO (RPT) if g(w) € C®(RPF) and for every
compact set K C RPTY there exists a positive constant Cg such that for all o € Zi and

pezi
sup 8gﬁfg(w)| < C’;;rla'ﬂﬂloz!)‘ B, (2.10)
weK
where we have split w = (z,y), c¢f. (1.2), and moreover a!* = ay!M ..., B =
Byl B,

(ii) The space G2(RP+9) is defined to be the set of all the functions g(w) € C®(RPT?) such
that for every compact set K C RPT4 and for every 3 € Zi we can find Cg i such that
for all a« € ZE.

sup 8?859(11))] < Céj;‘(odoz!’\. (2.11)
weK

(iii) In an analogous way we set Gi(RP1Y) to be the space of all g(w) € C*°(RPTY) such that
or every compact set K C RPT4 and for every o € ZE_ there exists a positive constant

y y i

Co,i satisfying the following condition for all 8 € ZY:

su?( Ggﬁgg(w)] < C’;:;'f‘ﬁ!“. (2.12)
we

We then define
G((]A,u) (RPF9) = GOM(RPHI) M) C3°(RPHY),
G;}\p(Rp—‘,-q) _ G;}(Rpﬂ) N Cgo (Rzﬂrq)7
Gl (RY¥1) = GY(RY™0) N CR(RI),



We have the following result.
Proposition 2.7. Let us fit v € (0,1) and A € RP, p € R? such that 1 < \j < % for every
j=1,...,pand 1 < py < for every h=1,...,q. Then
G;"O(Rﬁq) - HZ’Tf(Rerq) and GZ,O(RPH) - H;’ff(RpH),
for all s > 0 and for every weight function ¥(w, () of order (r,d).
Proof. We observe at first that if g(w) € G} o(RPT?) (resp. g(w) € G ((RP*9)) there exist
positive constants C' and € such that:

19(0)] < Ce =X 0HED"™  (ragn |5(¢)] < Ceme Thaa(rm) /ey, (2.13)

the estimates (2.13) can be proved by a standard technique, cf. for example Theorem 2.1 in
[20]. From now on we shall only study the case g(w) € Gi‘vo(RpJ“q), since the other one can
be treated in the same way.

We have to prove that e?(@P)g(w) € H3(RPF?). Since S(RPTY) C HE(RPF) for all s and ¢,

it is enough to show that e?(¥"P)g(w) € S(RP*9); by Lemma 2.5 we have only to prove that
for every 7,6 € Zf_frq and N € N there exists a constant C,5(N) satisfying

00,08 ("9(0))] < Cra ()¢~ (2.14)

To estimate the left hand side ot (2.14) we can use Leibnitz rule and the following Faa di
Bruno estimate, valid for f: R — R and g : R" — R:

02 F g < Ca S 1P S 1@ 19 )],

0<h<|a| aD) ...t ah)=q

where the second sum in the right hand side is performed over all decomposition of « in a sum
of h multi-indexes. We then obtain, using the well known relation 82’@(() = (—i)lPlwrg(Q),

)
|0202(e"™9g(0)| < Y () |07,0¢ e 04 (Q)|

v+p=4§

o
<> (e ¥ o
v+p=3 0<h<|y+v|

<> oo w0l 100" 8" w(w, O [wPg (Q);

7(1)+...+’y(h):fy
v () =y

since g € G o(RPT?) we have w’g € G o(RPT?) for every p € ZE; recall moreover that 1)
is assumed to satisfy the estimates (2.6), in particular (2.7) and (2.8). Then we can apply
(2.13) and (2.8), obtaining:

|3;’,(9§ (ezb(w,C)g(C))‘ < 075<£>T|7+V|66<§>’" e € Z?:MHIEH)UAj_ (2.15)

9



Recall that the weight function ¢ (w, ) vanishes for ¢ ¢ I'y, cf. (2.5); if ( € 'y by (2.15) we
have that for every N we can find a constant C5(N) satisfying

03,02 (e”g(0)] < Cra(N)(E) N < Cra(N)(0) ™,

by definition of I'y; this implies that (2.14) is satisfied for ( € I'y. On the other hand for
¢ ¢ Ty we have e¥ (W) g(¢) = §(¢); since g(w) € C°(RPHY) C S(RPFY), then §(¢) € S(RPHI),
and so (2.14) is fulfilled for every (w, (). The proof is then complete. O

3 Main result

We want to construct a parametrix of the operator (1.3) in the Gevrey-Sobolev spaces Hs’qf,
and then we shall prove Theorem 1.1. To this aim, we start by fixing the weight function
¥ = 1(w, ) in the following way:

v(w.0) = (123 i) ) s ) (3.1)
j=1

with the usual splitting w = (z,y), ( = (£, 1), and moreover:

O¢ . p1(0, . . .
(i) ¢;(§) = cj%(,f) for every j =1,...,p, with ¢; > 0 sufficiently small;

(ii) x(¢) € G(RPTY), € = (€1,...,€p+q) as in (2.3); moreover, if I'; and 'y are two (suf-
ficiently small) ¢-conical neighborhoods of the set {¢ € RPT? : pi(0,£) = p2(0,7)},
I'y € 'y, we suppose that:

- x(Q) =1for €Ty, (Qp = M
- x(Q)=0for ¢ ¢ T, ((p = M

for a constant M > 0.
We can now state the main result, concerning the existence of a parametrix.

Theorem 3.1. Let A and p be fized as in Proposition 2.7; we suppose that the coefficients
of the operator P(w, D) are in G;}’O(Q), or alternatively in G} ;(Q), Q being a (sufficiently
small) neighborhood of the origin. Let us assume that the condition (1.7) is satisfied, and that
there exists a neighborhood £ x I'y of the anisotropic characteristic manifold ¥4, I'y being a
¢-conical set, such that

S pa(w,n) does not change sign for (w, () = (w,&,n) € Q x Ty. (3.2)

Moreover, let us fir r € (0,1) in such a way that
1 *
r>max{§,m —m—l—l}, (3.3)

10



m* being the order of Q(w, D), cf. (1.6). We fix the weight function ¥ (w, ) as in (3.1), with
sign — (respect. +) depending on the fact that Spa(w,n) > 0 (resp. < 0). Then there exists
a linear map
: +m—(1=1),
B Hz)jﬁ(Rp—l—q) _ H;,rm ( r)¢(Rp+q) (3.4)

such that
P(w,D)Eu = x(w)u + Ru (3.5)

for every u € HZ’}f(RI’*q), where x(w) € G(()/\’”)(Q), x(w) =1 in a neighborhood of the origin,
and
s, s+(1-r),
R HGY(RPT0) — HH T (RH), (3.6)

In order to prove Theorem 3.1 we need some technical results. The idea is to transform
(1.3) into another operator P (‘conjugate operator’, see below), prove the existence of a
parametrix for P in H, (‘; spaces, and then transfer back to the original P the existence of a
parametrix as stated in Theorem 3.1.

Let us fix now A € RP and g € RY satisfying the assumptions of Proposition 2.7 and fix
consequently € in Definition 2.2 in such a way that

€ < (A ), (3.7)

in the sense that e¢; < A;j for j = 1,...,p and €,y < pp for h = 1,...,9q. We consider a
symbol a(w, ¢) that is compactly supported in the w-variable and has the following property:
there exists a positive constant C' such that for every v, d € Z’frq and w, € RPT4

m—{(4,
D} Dia(w, C)| < CHHHELy ) 10 ()= 0] (3.8)

where we mean 1) = 4 1M vp!/\P Yo+1!" . Yptg!te, and similarly for S11) - We then

write as usual A(w, D) for the pseudodifferential operator with symbol a(w, ().
We fix now a weight function ¢(w, () and consider the conjugate operator

A(w, D) = ¥ A(w, D) (tf,’_"/’(w’_D))7 (3.9)
where te=%(®:—=D) denotes the transposed operator of e~ ¥(®:—D),

Theorem 3.2. The symbol a(w, () admits the following asymptotic expansion:

_ 1 _
a(w, ) ~ Z W (92 [szua(w, C)@Zew(w’C)Die w(w&“)]? (3.10)
5 el

in the sense that

~ 1 w —(w
a(w,¢) — Z W@g[Dz)a(w,C)agew( ) pJ e ’C)] =rn(w,()
(y+0,6)<N

11



satisfies the following estimates:
5 50 1+5+18] ~ IN m—l—rN—S7
yagang(w,g)\ < CN+|7|+| ‘7!(/\#) S101) () (1=r)N—( ¢>’

for every N € N. More precisely we can write A(w,D) = Ay(w, D) + Ry(w, D), where
(writing ay(w, ) and ry(w, () for the symbols of Ay(w, D) and Ry(w, D), respectively):

(i) there exist positive constants C' and ¢ such that
|62’)8§7"¢(w, O < CI-I—WHSW!(/\»M) S!(NH)E*C(Q;’ (3.11)
~ T -+ .
for every 4,0 € ZE™;

(ii) the remainder

1 —(w
sq(pN)(w,C) = ay(w, () — Z '—6'823 [Dla(w,g“)(‘)zed’(w’oDie Wl ’O] (3.12)

(y+6,0)<N
satisfies the following estimates:
03085 (w, Q)] < CMHAHBIIO i) gy m=(1=IN=(0.9)
for every ’?,5 € Zz_frq.
Corollary 3.3. We have the following facts:
eV D) (te=Vw=D)) = 1 4 Ry (3.13)
te=¥(w=D)b(w.D) — [y 4 Ry (3.14)

where Iy means the identity in the space Hg(Rp+q), Iy means the identity in the space
HY (RP+9), and

Ry : H3(RPT9) — H3HOTD (RP), (3.15)
Ry - HY (RP9) — HH T (RPH), (3.16)

The proofs of Theorem 3.2 and Corollary 3.3 are very technical, and shall be presented in
Section 4. Now we want to apply the conjugation to the operator (1.3). Let us consider then

P(w, D) = e¥P)P(w, D) (te~ ¥~ D)), (3.17)

where we suppose that the coefficients of P(w, D) are in the space G(()A’“) (RP+9), with A and
u satisfying the hypotheses of Proposition 2.7; then the symbol p(w, ¢) satisfies the estimates
(3.8), so we can apply Theorem 3.2 to p(w, {), obtaining:

ﬁ(wa C) = p(UJ, C) - ipadd(wv C) + pm—(l—r)—l/(wa C) (318)

12



with
p+q

Padd(w, () = Zawj pi(w, &) — pa(w,n)) 09 (w, C)

ha (3.19)

-4, {(Pl(w,f) p2(w,0)) O, (w, g)}

Jj=1

where (in the chosen splitting of variables { = (£,7)) p1(w, &) and pa(w,n) are the symbols
of (1.4) and (1.5) respectively, and moreover p,,__,)—, (w, () satisfies

10302Pm— (1) (w, Q)] < CTHNIFRI O g o) (y= (=) == (007

for every 7,6 € Zf_frq and for a suitable fixed v > 0.
We want now to prove that, for the chosen weight function ¢ (w, ¢), the symbol paqq(w, ¢)
is real and does not change sign.

Lemma 3.4. Let us fiz the weight function ¥(w, () as in (3.1), with sign —. Then the symbol
(3.19) satisfies
Pada(w, ) = ()77, (3.20)

for a positive constant ¢ and for all ( belonging to Qs x I's;, where I's; is a ¢-conical neigh-
borhood of the anisotropic characteristic manifold X4, and Qs := {w € RPT7: |w| < §}.
If we choose the sign + in (3.1) we have that

Pada(w,¢) < —c(¢) 1", (3.21)
forc>0 and ( € Q5 x I's.

Proof. We limit ourselves to the case when 1 (w, () is chosen as in (3.1) with sign —, since
the other case is similar. We observe that with our choice of 1 (w, ) the symbol pagq(w, ()
becomes:

Pada(w, ¢) = ' (w, ) + pC (w, ¢) + p&, (w, ©),

where:
p;ﬁ)d (w ¢ ) =

=0, (m(w,€) pz<wn>){(1—2§%k<a) 0 X(C) = D 55 O, ou(&) >zx<c>}
j=1 k= k=1

#3010 €) — o) (1 —Z?m(@)aﬂh«m;x(o),
h=1

?r

p
Pa0,0) = 55> e i, s € ) X0
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and
Paa(w, ¢) = 25Zp1ws> p2(w.€)) 9%, (95() ()5 X(C))-

7j=1

35]171 05))

2
The particular form of ¢;(§) gives us pgl)d(O,C ) = 35 Z (Mo x(¢) and so we

obtain

Py (w,¢) > 265<C> —0), (3.22)

for (w,() € Q5 x I'y. Moreover, since w € Q5 we have x; € (—4,9) for every k = 1,...,p
then

[y (w, Q) < Cr (™, (3.23)

for a constant C7 independent of §. Regarding pgd)d(w, ¢) we can obtain |p1(w, &) —p2(w,n)| <

e(C >$ for every € > 0, by taking 6 and I'ys sufficiently small; then we have that

P, Ol < 5(Q)5 0 (3.24)

for (w, () € Qs x I's;, where c is the constant of the estimate (3.22). Then (3.22), (3.23) and
(3.24) give us (3.20). 0

Now we are ready to prove the main Theorem 3.1. In the proof we shall use a result on
the C*° hypoellipticity of operators of the kind (1.3), proved in De Donno [5, Theorem 2.10].
For the sake of completeness we recall here the statement.

Theorem 3.5. Let us consider the operator
L(va) = P1<’U),D$) - PQ(vay) +A(U),D)7

where P (w, D) and Pa(w, Dy) are given by (1.4) and (1.5) respectively, and A(w, D) is an
anisotropic pseudodifferential operator, whose symbol A\(w, () is C* and satisfies

DY DIA(w, Q)] < Cy5(¢)] >

for every ~v,0 € szrq, where m is a real number such that m — % <m < m.

We suppose that Pi(w, D,) and Py(w, Dy) have C* coefficients and that they satisfy (1.7);
in addition we assume that there exists a ¢-conical neighborhood I' C RPT4 of the anisotropic
characteristic manifold (2.4), such that for every (w,() € Q x T', Q being a neighborhood of
the origin in RPTY, the following conditions hold:

(1) 1SAMw, Q)] = e(O)F;
(ii)) SMw, ) Sp2(w,n) <0.

14



Then there exists a constant d > 0, and for every v,§ € Z{frq we can find a positive constant
M, s such that

[€(w, ¢)| = d(C)g; (3.25)
DD (w, C)] < My glt(w, Q)[(Q)§ ™ (o= om0, (3.26)

for every (w, () € QxT', where we have denoted by ¢(w, () the symbol of the operator L(w, D).

Proof of Theorem 3.1. We first observe that by Lemma 3.4 the conjugate operator (3.17)
satisfies the hypotheses of Theorem 3.5, for (w, () € Q x I'y, with ™ = m — (1 — r) (observe
that m—3 < m < m in view of (3.3)). Then by Theorem 3.5 we have that there exists a linear

operator E) : Hj — H;er_(l_r) satisfying PE = y(w)r(D) + R, where x(w) € Gé)"“)(Q),
the symbol £(¢) (anisotropic of order 0) is supported in a neighborhood of ¥4, and R is
regularizing on Hj, ie. R: Hj — H};5 for every ¢ > 0. Observe that we can choose x(() in

such a way that the operat0r~§ is microlocally quasi elliptic on supp (1 — x(()); we then have
a microlocal parametrix of P also outside a neighborhood of the anisotropic characteristic
manifold ¥4. Then a standard procedure of patching together there microlocal parametrices,
cf. for example Gramchev-Rodino [10], Marcolongo-Oliaro [20], enables us to find a linear
operator

E - H[Z(Rp“) _ H;er (1 T)(Rerq)

such that

PE = x(w) + R,
where x(w) € G(()A’“)(Q) and
R Hg(Rerq) N Hé (]RPH)

for every t > 0. We then have

tefw(w’fD)ﬁEGw(w’D) — tefw(wva)X(w)ew(er) + tefdj(wv*D)Eew(w:D). (327)
Now, from Theorem 3.2 applied to the symbol a(w, () = x(w) we have that

ew(mD)X(w)te—w(w,—D) —x(w) : H;;(RPJF‘]) N H;Jr(l*?")(Rerq);

then, from Corollary 3.3 it is easy to deduce that

Ry = eV Py (w)e? WD) -y (w) : HEY (RPH) — HH ¥ (ReF), (3.28)

By (3.28), (3.17) and (3.14), writing E = te~¥(w:=D) Ee¥(w.D) and § = te=¥(w.=D) Ret(w.D)
we then have
(IH + RQ)PE = (X(w) + RX) + S,

and so
PE = x(w)+ Ry + S — RyPE. (3.29)
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Now, for y € GE)A’“ ) and v € ]I-]Is’lff with A and p satisfying the hypotheses of Proposition 2.7

we have that xv € ijf, this is a consequence of (2.13) and Lemma 2.5. Observe moreover
that, by definition, E satisfies (3.4); since

St H3Y (RPTY) — HEY (RPTY) (3.30)
for every ¢t > 0,
Ry - HY(RPH9) — HEH 077 (RPH) (3.31)
by (3.16), and
RyPE : H¥/(RPTY) — HY (RPT) (3.32)

by the mapping properties of £, P, Ry and R,, we have from (3.29) that
PE : H}¥ (RPTY) — HYY (RPH), (3.33)
Then (3.33) and (3.16) imply that
) + 1- )
RyPE - HYY (RPT0) — HHT (RPH), (3.34)

Now defining R = R, + S — Ry PE we obtain (3.4) from (3.29) and we deduce (3.6) from
(3.30)-(3.31)-(3.34). 0

Theorem 3.6. Let us suppose that the hypotheses of Theorem 3.1 are satisfied. Then the
equation

P(w,Dyu = f (3.35)

admits a local solution for every f € HZ’jf(Rp*‘q); taking s sufficiently large the solution is
classical.

Proof. We shall prove the local solvability of (3.35) by fixed point arguments. We want to
find a solution u of the equation (3.35) of the form u = Ev; replacing in (3.35) such a function
and using the fact that PE = I + R, cf. the previous Theorem 3.1 we obtain

v=f— Ruv;

we then have to find a fixed point of the operator Qv = f — Ru.
Now since R : Hzf — H‘;ﬁ(l_”’w — Hfbf, the same technique as in Gramchev-Popivanov
[8], cf. also Gramchev-Rodino [10] allows us to find a positive, continuous, non-decreasing
function R : [0, dp] — [0, +oc] such that R(0) = 0 and, writing Qs = {w € RPT? : |w| < 6},
6 < o, we have

IR0 < R(S)|[0

S7¢7¢7T
for every v € Hfb’f(Rerq ) with support contained in €s. Let us consider the complete metric
space B = {v € HJY(RP9) N GO (Q5) : [ — fllsppr < 1}. We then have:
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(i) @: B — B: if v € B we have

1Qu—f

sabr = [[R||s .00 < RO 0|50 <1

for ¢ sufficiently small;

(ii) Q is a contraction on B: if u,v € B we obtain

1Qu — Qu

s = [[1R(w = 0)lls.p,6.,r < RO u —0lls,5.6,r+
and R(9) < 1 for ¢ sufficiently small.

So if § < 1 we obtain the desired result by applying the Fixed Point Theorem in the space
B. O

4 Proof of the symbolic calculus for the conjugation

We give in this section the proof of Theorem 3.2 and Corollary 3.3.
In the following we shall need an anisotropic version of the Taylor formula.

Proposition 4.1. Let ¢ be as in (1.2). We consider a function u(w) such that the derivatives
0%u exist and are continuous for all v satisfying (v,¢) < k + max ¢j. Then for every
J=1..5n

w, z € R™ we have:

27 20 [t _
uw+z)= Y ﬁmu(ww > 5 ) (1 — )19 u(w + t2) dt,  (4.1)
(v,0)<k k<(y,9)<k+max ¢;
where '
ey =) % Ly={jy#0and (3, ¢) <k}, (4.2)
jely
~9) being the multi-index
YD = (11, %=1, — LY - - Tn)- (4.3)

We observe that the remainder in (4.1) contains derivatives of u whose anisotropic order
(v, ¢) is close to k; this is of crucial importance in the proof of the symbolic calculus stated
in Theorem 3.2. Since we did not find, in the anisotropic case, a formula with such a feature
in the literature, we give here the proof.

Proof of Proposition 4.1. Let us consider the function

,
w(wzt) = Y (1= @) (w + te);
(g <k v

17



we observe that

Now we want to compute

gtvk(w s = 3 {hla-phl- 17 (O7u)(w + t2)}

0<(,) <k
(4.6)
+ Z { (1—1) HES Z(@”ﬁwju)(w+tz)zj}.
(v,9)<k Jj=1
We can write the second sum in the right-hand side of (4.6) in the following way:
> Z v+ 1)(1 = =2 (98, w)(w + t2). (4.7)
’ Mo +DT

(7,¢) <k j=1

Let us put 6 = (v1,...,7%j-1,7% + 1,%j+1,...,7n); observe that v = 8 cf. (4.3). Then
S involves terms of the type d;(1 — t)‘5|_1%(85u)(w + tz), where 0 satisfies 0 < (0,¢) <

k+ max ¢;. Let us consider two cases:
7j=1,..,n

(i) if 0 < (J, ) < k, the addends on (4.7) involving §%u are exactly the terms with v = §00)
for every j such that ; # 0, so they are given by

S 8501 = P @)+ ) = 1811 — 01 2 (@) + 1)
J:0;7#0

(ii) let us consder now k < (§,¢) < k + [ max ¢j; the terms in (4.7) that give rise to such

seees Tl

& are the ones with v = ) for all j € I5. Then in this case the terms of S involving
dou, for fixed §, are given by

> 51—l 12 (85 Yw +t2) = cs(1 — t)l01-12 5 (35 )(w +tz).
J€ls
Applying in (4.6) the arguments developed in (i)-(ii) we then have
aatvk(w, z,t) = > cs(1— )12 5 (85 )(w +tz). (4.8)
k<(8,¢)<k+max ¢;
The conclusion then follows from (4.4), (4.5), (4.8) and the Fundamental Theorem of Calculus.
O
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The asymptotic expansion (3.10) has been proved, in the simpler case when the weight
function v (w, () does not depend at the same time on a variable and the corresponding
covariable, in [20]; a proof in the more involved case 1) = ¥ (w, () was given (even for infinite
order symbols a(w, ¢)) in [16], Proposition 2.13, but only in the isotropic case and for analytic
weight functions ¥ (w, ). We give now the proof of Theorem 3.2, following the technique of
[16]. Let us start by giving two technical lemmas.

Lemma 4.2. Let F(w,(,¢) € COO(]R?’(p“)) be a function such that, for every fived w,( €
RPTY F(w,(, C) is bounded in ¢ and all the derivatives 8 F(w ¢, C) j=1,....,p+¢q, are

compactly supported in (. Suppose moreover that F(w,(, C) = 0 for ]C\ < ¢g for a positive
constant ¢y (eventually depending on w and (). Then

/ e " F(w, ¢, &) didC = 0. (4.9)
Proof. Let [C] be a C* function such that [(] = |¢| for |¢| > ¢, [(] # 0 for all { € RPH,
Then )
[ rw.cdand = [ rw.c O 4 az.
(€17
since ]5]26*“55 = Ay (e*“bc), an integration by parts gives (4.9). O

Let us fix now a function ®(¢) € G¢(RP*?), € being the same as in (2.3), with the following
properties:

(i) ®(¢) =1 for [Cly < 73
(it) ®(¢) =0 for [¢ly > 3,

p+q

IClo =D 1¢u|/ .
h=1
We consider now the function

=(C 0 = S| C~p+q .
2(¢,9) ¢(<C>§1"“7<C>§”“>’ (4.10)

we have the following result.

Lemma 4.3. (i) E(C, C~) =1 for ICls. < %;

Y = = Ko S 1.
(11) ‘—‘(Cv C) — O fO?" Q 2 27
(iii) there exists a positive constant C such that for every 5,5 € Zﬁ’jq

0802 2(¢, Q)| < CHIOIHIBlg1e Gie () O+,
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The results of Lemma 4.3 can be easily deduced from the corresponding properties of ® and
from Faa di Bruno formula; the proof is omitted.

Now in order to prove Theorem 3.2 we start by considering the following operator:
T(w, D) = e¥™P) A(w, D); (4.11)

moreover, we fix functions

¢l (¢) € GRM(RPHY), (4.12)
R € R, R > 0, satisfying the following conditions for every j € Z,:
(i) 0< gof({) <1 for all ¢ € RPHY;
(i) ¢ (¢) =1 for (¢)}, > 2Rj;
(iif) ¢ (¢) =0 for (¢)}, < Ry
(iv) |5‘ggaf(g)\ < C’H"s‘é!(/\’”)(@;w’@, for every ¢ € RP*4 and § € Z5.

Let us now define

g(w, Q) = ef(O)gi(w, ), (4.13)
§=0
where ]
g(w,Q)= > S0’ ID]a(w,(),
Ji<(re)y<j+1
and set

’l"(’UJ, C) = t(wa C) - q(wa C)? (414)
t(w, ) being the symbol of the operator (4.11), The following result then holds.

Proposition 4.4. (i) There exist positive constants C' and ¢ such that

\33)3?(1(107 Q)] < Cl+|’y|+|5|:y!(%u) S1A) <C>Zt—(5,¢> oM (4.15)

5 8 P+q .
for every 3,6 € Z1,";

(ii) For every co > 0 we can find a constant Cy = Co(co) such that
lﬁlagr(w, O] < CoclJrW\HSI:Y!(A,u) §1m) g =080 (4.16)

5 5 p+q
v,0 € Zi.
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Proof. (i) Let us start by proving that for every 3,0 € Zlfrq the following estimate holds:

T

‘azageww,()’ < Cl+|‘¥|+\5l,~y!€ 5!6<C>;<5’¢>6C<<>"’~ (4.17)

To this aim, we need the Faa di Bruno formula: if F: R — R and G : R* — R are two C"
functions, for every a € Z'!, |a| < h, we have:

|a|

)) =Y FU(G(2)Ba s ({0°G(2)}), (4.18)
k=1
where B, ;({zg}), for a sequence {3}, are the so called ‘Bell polynomials’, defined as follows:

Bar({zs}) = ol Z H < ) (4.19)

—k B>0 cs!
\m>0
> cpf=a
|8]>0

We then have the following well know identity:

#P\F
> Buatfon)s = (X ) (1.20

>k 18>0

So, by (4.18) with a = (7, 0) we have:

. e 08" 02 pw, )1\
|05,00eV ] < 4151 Y evlwd) Z 11 B( 7 ) ;o (421)
k=1 cg= k  B>0
\B\>0
> cpB=(7.0)
|B1>0

where we have split Z?r(pﬂ) > 3 = (M, 3?), with gV, 33 ¢ Zp+q. Now, from (2.3) and
since Zlﬁ\>0 cgB? = § we easily deduce that

[T 105702 ww, Q)| < MRy SO TT (B0 p@ne) s

B8>0 B>0
< MR, O TT (B8O 517510
B8>0
where
E=(e1—1,...,€6prq — 1). (4.22)
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Then from (4.21) we deduce that

N [51+13] i .
05020 < 3EHE 3 OB k() SO g5 ((81). (4.23)
k=1
For every z € R2P+0), 2 £ 0, we have B(; 5, ({81}) <3101 5 Bpau({8) 55 =

Iy|+161=k

k
A1 ,3,< > zﬂ> , as we can deduce from (4.20); this implies that, taking |z| sufficiently

z("/a‘” |ﬁ|>0
small, R
16!
Bs 5, {8}) < C— (4.24)
Moreover, we observe that
(O < Klelt)o, (4.25)

for every ¢ € RP*? and k € Z,. We then obtain (4.17) by applying (4.24), (4.25) and (2.3)
in (4.23), since by definition of ¢ we have 7€ §1€ 5! 5! = 1€ 5le.

We can then simply estimate the derivatives of gj(w,() by applying Leibnitz formula,
(3.8), (4.17) and (3.7):

03080)(w, )| < CHITHBIZIO G0 (=GO 57 el 0,
J<(r,9)<j+1
(4.26)

€ being given by (4.22).
We now pass to analyze the symbol g(w, (). Let us fix ( € RPT? and prove (4.15) for this (.
We can find k£ € N such that Rk < <Z>g < R(k 4+ 1). Then, due to the properties of gaf((),
cf. (4.12), we have:

k
Q(wa C) = Z @ﬁ(Z)QJ (w7 C)

By Leibnitz rule, (4.26) and the property (iv) of the functions @?(C ) we obtain

~ k 5 ~ ~ o » _ o
’azjagq(w’Z” < Z Cl+|’y\+|5\;)'/!(/\,p) 5!()\,,u) <C>Zl*<5,¢>66<§>¢ Z ,y!e ,y!()\,,u)cl+|’y| <C>;<'Yv¢>

=0 J<(r) <+l
(4.27)
Observe that <Z>;<7’¢> < <Z>;] < R7I/mk=3/"; the Stirling formula gives us n™ > Cn! e”%,
for every n € N, and so
" "
<
<C>¢ - Rj/rCl/rj!l/rej/r’ (428)

Observe now that !¢ < |y[Imaxé < (5 + 1)Imaxé  Moreover, since A and u satisfy the
hypotheses of Proposition 2.7 we can find x > 0 such that \; < % —kforevery j=1,...,p
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1_
and & < 1k for every h = 1,...,q; then 1) < (ypl .yl 1ot ppglorre) T <

C(j + 1)!%_". This last inequality, together with (4.28), enables us to deduce from (4.27)
that

103,0%q(w, 0)| < Zoulvlﬂél (8 G100 (Fym=50) 0

=0 (4.29)

gl kdmaxér /- 1_k+maxé, -
y Z 02+j]!r K~+ma: eh(]+1)r K+ma; eh]r/2 ‘
<{7,¢)<j+1 Rj/TCl/Tj!l/r el ’
IS J

then, choosing €5, in such a way that maxé, < x we have that for R sufficiently large the
quantity in brackets {...} in (4.29) is the j-th term of a convergent series, so (4.15) is proved
for ¢ = (; since ( is arbitrary (4.15) is true for all ¢ € RPH4,

(ii) We pass now to analyze the remainder r(w, (), cf. (4.14), and we prove (4.16). From
standard computations we have that the symbol ¢(w, () of the operator (4.11) is given by

tw.0) = [ et + 5,0) di
then, remembering the definition of ¢(w, (), cf. (4.13), we can write r(w, ) in the following
way':

C) = Z {TlN(wv C) + TQN(wv C)}? (4'30)

where

rin(w, Q) = (@ﬁ(o - @%H(C))
- ~ - - N .
% {/ efmcezﬁ(w,uc)a(w +w,¢)2(¢,¢)dwd¢ — qu(w, C)} (4.31)

J=0

and
ron(w,¢) = (¢R(¢) — 0% 11(Q) / e g (w 4, ¢)[1 — (¢, )] dwal,  (4.32)

E being the function (4.10). Consider at first 71 5 (w, ¢): using the anisotropic Taylor formula,
cf. Proposition 4.1, for a(w + w, () we can split

riv(w, ¢) = rig(w, ¢) + ri(w, ¢), (4.33)

where

r(w,¢) = (PR(0) — R 11(0)

N
x{ > / —iin (w,+O) P a'v (w, Q) (¢, €) du?df_ij(w,o}’ (4.34)

(v, ) <N+1 §=0
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.0 = (¢R(Q) - 9811(0) ) &

N+1<(y,0)<N+1+max ¢;

X . (4.35)
- / / e1¢ Lt w0 (1 - )1 gy a(w + 1, ) 2(¢, €) dv dd dt.
R2(p+4q) -

Regarding r%),(w, (), since Ve ¢ = (—1)|7|Dge_i“~)5, we can integrate by parts, obtaining

7"8\)/( @1}3/(( 80N+1 ))

Z {/ —ua¢ L 102 Da(w, C)E(C,f)dwd‘é—71!326“’(”’001@(%0}

(7.6)<N+1
+ (@ﬁ(( <PN+1(C))

x ) Z( ) / —in L g0 ev e+ D a(w, €) (G, O) dub G

|
(v,¢)<N+1 6<y e
620

the condition ¢ # 0 in the second addend implies that 85 2(¢,¢) = 0 for [¢] < 1, cf. (i) in

Lemma 4.3, and so by Lemma 4.2 the second addend of rg x(w, ) vanishes identically. Then

a taylor expansion of age¢(wv<+5> stopped at the first order gives us

TlN(w Q)=
= (PR = eR1(©Q) > i,azew(w’ODZ}a(w,C) / e [2(¢, &) — 1] dw al
(7,9)<N+1 v
+ (wﬁ(C) - @%H(C)) Z i'DZ,a(w,C) (4.36)
(1,¢)<N+1 i

p+q 1 . ~
X —C Fo 5. g7 e (w,C+i0) = ’ P dii Efdt,
Z/o /IR?(p+q)e G %, ¢c¢ (¢,¢)dwdc

since

/ e~ i d¢ = 1. (4.37)

By Lemma 4.2 the first addend in the right hand side of (4.36) vanishes, since Z((, )—-1=0
for |(| < 1; the second addend also vanishes, as we can deduce by an integration by parts.
This implies that
1
rY(w, ¢) = 0. (4.38)

(1-+]o]” )M and integrating

We pass now to the analysis of (4.35); multiplying in the integral by THaP™
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by parts we can write r( )(w, () in the following form:

1
TS\)z(w,C) = (saﬁ(é“) - 90%4-1(0) Z c,y/o (1-— t)M—l

N+1<(y,0) <N+14+max ¢; (4.39)
« / (1 + [[2) MYy (w, ¢, b, C) i A€ dt,

where

i, Ct.0) = ZOalw+4.0(1+ AMDH OO}, (4do)

M being a fixed positive integer, sufficiently large. Since Z(¢,¢) = 0 for <‘ C": > %, cf. Lemma

4.3, in the analysis of ]y (w, ¢, tw, ¢) we can suppose that \§\¢ < %(qu. This implies that

we may assume ,
5(Ce < (C+ 0o < 5(Co, (4.41)

since (¢ +C)p < (C)g +[C|s- Now (3.8), (4.17), (4. 41), (3. 7) condition (iii) of Lemma 4.3 and
Leibnitz rule enable us to prove that for every 7, 6 e Zp 1 there exist positive constants C
and c¢ such that

DO o

‘avacrlN(w, ¢, tw, Q)| < Cl+|ﬁ|+|5|,~yg(/\,u) S1A) o1ty (o) +e <C>$7<v+5,¢>eé(<); (4.42)

€ being given by (4.22). Let us analyze the constant ¢y in (4.39): by (4.2) we have
cy <yl < (v, 9) < N + 1+ maxg;. (4.43)

Now by Leibnitz rule, (4.42), the property (iv) of the functions (4.12) and the fact that
(] < 3(C), we then have:

050070 (w, Q)] < (N + 1+ max ¢;) CHIHRIZIA0 510 (0 =09 24005 (4P

&/ — 4.44
% Z O )+ <C>¢<7 ¢>TN(C) (4.44)
N+1<(y,0)<N+1+max ¢

where € is given by (4.22), D satisfies

/~ d¢ < const(()g,
ICI<5 (O

and YT n(¢) is the characteristic function of the set

Ky ={{ € RPT?: RN < (()j < 2R(N +1)} (4.45)
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(observe that supp(¢R(¢) — ¢R.(¢)) € Ky). Since A and p satisfy the hypotheses of
Proposition 2.7, we can find x > 0 such that A\; < % —k,j=1,...,pand up < O'h(% — K),
h=1,...,q. Then, since for every ¥ > 1, ¥ € R, and n € N

n! < ([¥n] + 1)!%

([9n] being the largest integer < ¥n) we have:

7!(’\’“) <M .vp!/\?’([alvpﬂ] + 1)!% e ([Uq’Yerq] + 1)!%
1
< {’71! x "Yp!([UI’Yp-ﬁ-l] + 1)! e ([0q7p+q] + 1)!}T )
< (At orrpa] + o g pag] + @)1

now, since 1 + -+ +Yp + [01Yp+1] + - - + [0 Vp+q) < (7, 0) < N + 1+ max ¢;, using the well
known estimate (N + k)! < 2¥k12V N we can conclude that

AN < CoN NIFF, (4.46)

where C does not depend on N. N
By (4.46) and since by Stirling formula NV > % for all N € N, we have:

(N + 1+ max ¢;) Z Cl+|7|p},!(>\7u)+€<c>;<%¢)TN(C)
N+1<(y,¢) <N+1+max ¢,

< > CoC Nt NN Y ()

N+1<{v,0)<N+1+max ¢;
1
CoCNNz s _1
< Ogl N!;—fi—‘rmaxe]—TTN(C);
er RN

observe now that, choosing € in such a way that maxé; < x we have N!™* R < O(¢)e~N

N
for every ¢ > 0; moreover, taking R sufficiently large we have that Ay := 00%7]\72 satisfies

e RN
00

Apn,00. We then have
N=0

(N +1+ max ;) > CHIIOREG 0N (0) < C@e N ANTN(Q)
N+1<(vy,0)<N+1+max ¢
< C@)e oAy,
since (()y, < 2R(N + 1) on supp Yn((). Taking into account the inequality <C>§> < C’k7re<<>2
we then conclude by (4.44) that

|ala§rg\)[(w’ 0] < C(CO)CI—I—W\-HSW!()\:H) 5O e =e0lOG A (4.47)

26



for every c¢o > 0, where Ay satisfies Y Ayn < oo.
N=0
So from (4.33), (4.38) and (4.47) we have:

|6Z(9§T‘1N(w, 0| < C(CO)Cl+|7|+|5|,~7[(>\7M) 5!()‘71‘)6700(();14]\[’ (4.48)

[e.e]
where Y Ay < 0.
N=0
We have now to analyze ron(w, (), cf. (4.32); applying the change of variables w + @ = w
(and rewriting w in place of W) we have

ran(w,¢) = (9R(¢) = oR.1(0)) / SV (WSO 1 - 2(¢, O)] ( / e a(w, ¢) dw) dC. (4.49)

Recall that the symbol a(w, () is compactly supported in the w-variables and satisfies the
estimates (3.8); then, since A and p satisfy the hypotheses of Propostion 2.7, for every
q,0,0 € Zﬂ)_ﬂ we have:

TR

70 / e a(ib, ¢) dib| < CHHPO GG (oym= 00 ~dCLT g 50)

for a positive constant & depending on A and u. The estimate (4.50) can be proved by
standard techniques, cf. for example [20], formula (2.2). Then the derivatives of ron(w, ()
can be estimated by applying Leibnitz rule, by using (4.17), (3.7), the property (iv) of the
functions (4.12), the property (iii) of Lemma 4.3 and (4.50), obtaining:

C”>r+.%

103,00ran (w, Q)] < CHHIHRIZIOm G100 1 (¢) / (C)pretctelne= e (¢, O) a,

where W(-) is the characteristic function of supp(1 — Z(+)) and Yx(¢) is the characteris-

tic function of Ky, cf. (4.45). Then we can assume that ]5\4) > 1(()y. Observe now

that, since |C|y < ¢(C)g, we have QO < C”(@g‘ < Ce'%%: moreover, since & > 0 is fixed,
A"

we have that for every M;, Ma > 0 there exists a constant Chy, pz, satisfying e "¢ <

C’MlMQe_Ml<5>g_4]‘/‘[2‘5|;5 < Cae M <5>;e_M2<<>25; we then conclude that
’313§T2N(W, 0] < C(CO)CHW‘HSW!(A’“) 5[(/\#)6*00(4);6—]\/’ (4.51)

by a suitable choice of M; and M, since on suppTn(¢) we have (¢)y > RN. Then (4.16)
follows immediately from (4.30), (4.48) and (4.51). O

We can now prove the asymptotic expansion (3.10) of the conjugate operator (3.9).
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Proof of Theorem 3.2. Let us define the symbol ay(w, () in the following way:

ay(w, ¢) = Z<P§%(C) Z = 3<{q w, ) DYe VWAL (4.52)
=0 '

j§<57¢>><j+1
q(w, ¢) being the symbol (4.13). We then consider the operators
Rl(w,D) = R(w, D) (*e~*(*:=P)) (4.53)

and
Ty(w,D) = Q(w, D)(‘e” b, D))v

whose symbols are denoted by r{p(w, ¢) and t1(w, ) respectively; Q(w, D) and R(w, D) are
the operators whose symbols are (4.13) and (4.14), respectively. By definition of R(w, D)
and Q(w, D) we have that A(w, D) =Ti(w, D) + R;,(w, D); then, setting

r(w, ¢) = t1(w,¢) — ay(w,¢)
and
ry(w, ¢) = ry(w, ¢) + ry(w, ¢)
we have
a(w,¢) = ay(w,¢) + ry(w, ¢).
We have now to prove that a,(w,() and ry(w, () satisfy the requested properties (i)-(ii).

i) Consider at first Ry (w, D): to start with, we analyze 7/, (w,(): by (4.53) we have
P ¥
iy (w,¢) = / e r(w, ¢ + (e VTP 4 al;

(] [>)M

so, multiplying by FSrDL in the integral and integrating by parts we obtain:

a’yacrw w C /if»y7 d(,
where
nﬂmga:aﬁé/amﬁkwm%mu+A9M&m4+©a“WMHﬂdw

We now observe that e=%(¥:Q) satisfies similar estimates as in (4.17); by (4.16) we then
have that r(w, ¢ + ¢)e~¥(@+®<+0) is Gevrey of anisotropic order € = (ey, .. .,€p1q) in the @
variables; so, since for M sufficiently large (1 + |@|?)™™ ensures us the convergence of the
integral, we can prove as in (4.50) that

1
2¢;

st G012 ¢ BT Cigpcnsiy o v 10
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p+q
where ¢ is arbitrary and C(¢) is a positive constant depending on ¢. We now have ) (1 +
j=1

oL -
G132 > ()5, by choosing €; > 1 sufficiently small; moreover (¢ + ()j > co((Q; — (C);),
so we obtain

|f%5(w, C’ C;Z)| < C(é)Cl+|7|+|6|7!(’\’“) 5!()\,;1) S_ECO<<>;€(ECO_d)<C>2.
It then follows that

103,081, (w, €)| < C(@CH w51 o ceo(C), /e(cco—ci)(f); ac.

Choosing ¢ > 0 in such a way that ¢cg — d < 0 we then have
Iaﬁ,}@gr;(w’ 0] < CHH 101 o) 51(Ao) oy (4.54)

Regarding r”(w, () the same arguments of Propostion 4.4 enable us to prove that r”(w, ()
satisfies estimates as in (4.16), and so (3.11) is proved.

(ii) Observe that, by (4.52) and (4.13) we can write

ay(w, ) =Y hys(w, (),
7,0

where

1 . o

where [y, ¢] (resp. [d, ¢]) stands for the largest integer < (7, ¢) (resp. (4, ¢)). Writing

1

=Y o [ageww,o DY a(w,¢)D?, e—wwm]

9v,6 (’U), C) =
we want to analyze the remainder

SEpN) (w, C) = Z h'y,é(w’ C) - Z g’y,é(wy <)
7,0 (y+d,0)<N (4.55)

= 50w, ¢) + 509 (w,0),
where
Sq(l’]jfl) (’IU, C) = Z {h%(s (’LU, C) — G~ (’U), C)}? (456)
(y+0,0)<N
s (,0) = >0 hys(w,0). (4.57)
(Y+6,0)>N
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Regarding (4.56) we observe that for ()7 > 2R(N—1), gaﬁ ¢](C) = (p[}g dﬂ(g) = 1for (y+94, ¢) <
N, and so sfpj’vl) (w,¢) =0 for (()y, = 2R(N — 1); then we can suppose that (();, < 2R(N —1).
Now writing explicitly 8?61/’(“”0 and DJe~*(<) by means of Faa di Bruno formula (4.18),

using (2.3), (3.8), the property (iv) of the functions (4.12) and the same procedure used to
obtain (4.17) we can prove that:

03085 (w, )] < CLFTHPIFIND G100 ¢y 6, (4.58)

and the same holds for g, s(w, (). Then we have:

o - . ; a=nN o
1030850 (w, 0) < CpFITIFIO 500 ()= ap(N — 1)) 2R(N - 1]
. ) _(d=-mN 7(1774)]\7

since we assume <C>¢ < 2R(N — 1) we have [2R(N — 1)] < <C>¢ ; thus

5 a§s§ﬁ) (w,0)] < 511V+H|+'SIW!(A’“) S <<>Z—<1—T>N—<57¢>. (4.59)

Regarding 51(5?[) (w, ) we obtain that

|8Zagsq(j?72) (w, Q) < Z CIH’V\HS\;}/!(A,#) S10u) <C>$*<5:¢>*(1*7”)<’Y+5»¢>

(y+o,0)=N
by the same technique used to prove (4.58); since now (y+ 4, ¢) > N we have that sfb]\;) (w, ()
satisfies the same estimates as in (4.59). By (4.55) we then obtain (3.12). O

We want now to prove Corollary 3.3. We observe that Theorem 3.2 cannot be applied
in general to operators A(w, D) whose symbol is not compactly supported in the w-variable;
in fact, the estimate (4.50) does not hold if a(w,() does not have compact support in the
w-variable. However, in some particular cases we can avoid this requirement; the proof of
Corollary 3.3 consists in showing that for a(w,() = 1 the asymptotic expansion (3.10) still
holds.

Proof of Corollary 3.3. An inspection of the proof of Theorem 3.2 shows that for a(w,() =1
the formula (4.49) becomes

ran(w,¢) = (2P 1 (9R(C) = pR41(Q) e’ O [1 = E(¢,0)],

and by Lemma 4.3, (i) we then have

TQN(w’ C) = 07

so the estimate (4.51) trivially holds and then the asymptotic expansion of the conjugation in
Theorem 3.2 is true also for a(w, () = 1. Then, (3.13) follows immediately from (3.10) applied
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to the symbol a(w, ) = 1 and stopped at N = 1; the estimate of the remainder, together with
known results about mapping properties in Sobolev spaces of anisotropic pseudo-differential
operators, cf. for example [13], [14], give us (3.15).

Concerning (3.14) we proceed in the following way: we want to prove that

te=¥(w,=D)gb(wD) £ _ ¢ H;ﬁ(lfr)w(RP‘FQ),
for every f € H;’f(R”"’q); by Definiton 2.4, this is equivalent to show that
e (D) (te=v(w=D)) b(w.D) p _ (w.D) f ¢ H;+(1—T) (RPH); (4.60)
writing e¥(®:D) (te=¥(w.=D)) in (4.60) using the expression (3.13) it remains to prove
Rye¥w.D) f ¢ H;Jr(l—”‘) (RPH),

which is true since e¥(®:P) : HZ’%(RH‘I) — Hj(RP*?) by definition, and R satisfies (3.15). [
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